NASA Astrophysics Data System (ADS)
Yokoyama, Masafumi; Asakura, Yuji; Yokoyama, Haruki; Takenaka, Mitsuru; Takagi, Shinichi
2014-06-01
We have studied the impact of process temperature on interface properties of GaSb metal-oxide-semiconductor (MOS) structures fabricated by an ex-situ atomic-layer-deposition (ALD) process. We have found that the ALD temperature strongly affects the Al2O3/GaSb MOS interface properties. The Al2O3/GaSb MOS interfaces fabricated at the low ALD temperature of 150 °C have the minimum interface-trap density (Dit) of ˜4.5 × 1013 cm-2 eV-1. We have also found that the post-metalization annealing at temperature higher than 200 °C degrades the Al2O3/GaSb MOS interface properties. The low-temperature process is preferable in fabricating GaSb MOS interfaces in the ex-situ ALD process to avoid the high-temperature-induced degradations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoyama, Masafumi, E-mail: yokoyama@mosfet.t.u-tokyo.ac.jp; Takenaka, Mitsuru; Takagi, Shinichi
We have studied the impact of process temperature on interface properties of GaSb metal-oxide-semiconductor (MOS) structures fabricated by an ex-situ atomic-layer-deposition (ALD) process. We have found that the ALD temperature strongly affects the Al{sub 2}O{sub 3}/GaSb MOS interface properties. The Al{sub 2}O{sub 3}/GaSb MOS interfaces fabricated at the low ALD temperature of 150 °C have the minimum interface-trap density (D{sub it}) of ∼4.5 × 10{sup 13 }cm{sup −2} eV{sup −1}. We have also found that the post-metalization annealing at temperature higher than 200 °C degrades the Al{sub 2}O{sub 3}/GaSb MOS interface properties. The low-temperature process is preferable in fabricating GaSb MOS interfaces in the ex-situmore » ALD process to avoid the high-temperature-induced degradations.« less
Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory
NASA Astrophysics Data System (ADS)
Garwood, T.; Modine, N. A.; Krishna, S.
2017-03-01
The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. Developing a procedure to accurately predict band gaps using hybrid density functional theory lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structures calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.
Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garwood, Tristan; Modine, Normand A.; Krishna, S.
2016-12-18
The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. By developing a procedure to accurately predict band gaps using hybrid density functional theory, it lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structuresmore » calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyata, Noriyuki, E-mail: nori.miyata@aist.go.jp; Mori, Takahiro; Yasuda, Tetsuji
2014-06-09
HfO{sub 2}/GaSb interfaces fabricated by high-vacuum HfO{sub 2} deposition on clean reconstructed GaSb surfaces were examined to explore a thermally stable GaSb metal-oxide-semiconductor structure with low interface-state density (D{sub it}). Interface Sb-O bonds were electrically and thermally unstable, and post-metallization annealing at temperatures higher than 200 °C was required to stabilize the HfO{sub 2}/GaSb interfaces. However, the annealing led to large D{sub it} in the upper-half band gap. We propose that the decomposition products that are associated with elemental Sb atoms act as interface states, since a clear correlation between the D{sub it} and the Sb coverage on the initial GaSbmore » surfaces was observed.« less
Nirmal Kumar, Velu; Arivanandhan, Mukannan; Rajesh, Govindasamy; Koyama, Tadanobu; Momose, Yoshimi; Sakata, Kaoruho; Ozawa, Tetsuo; Okano, Yasunori; Inatomi, Yuko; Hayakawa, Yasuhiro
2016-01-01
InGaSb ternary alloys were grown from GaSb (111)A and B faces (Ga and Sb faces) under microgravity conditions on board the International Space Station by a vertical gradient freezing method. The dissolution process of the Ga and Sb faces of GaSb and orientation-dependent growth properties of InGaSb were analysed. The dissolution of GaSb(111)B was greater than that of (111)A, which was found from the remaining undissolved seed and feed crystals. The higher dissolution of the Sb face was explained based on the number of atoms at that face, and its bonding with the next atomic layer. The growth interface shape was almost flat in both cases. The indium composition in both InGaSb samples was uniform in the radial direction and it gradually decreased along the growth direction because of segregation. The growth rate of InGaSb from GaSb (111)B was found to be higher than that of GaSb (111)A because of the higher dissolution of GaSb (111)B. PMID:28725736
Nirmal Kumar, Velu; Arivanandhan, Mukannan; Rajesh, Govindasamy; Koyama, Tadanobu; Momose, Yoshimi; Sakata, Kaoruho; Ozawa, Tetsuo; Okano, Yasunori; Inatomi, Yuko; Hayakawa, Yasuhiro
2016-01-01
InGaSb ternary alloys were grown from GaSb (111)A and B faces (Ga and Sb faces) under microgravity conditions on board the International Space Station by a vertical gradient freezing method. The dissolution process of the Ga and Sb faces of GaSb and orientation-dependent growth properties of InGaSb were analysed. The dissolution of GaSb(111)B was greater than that of (111)A, which was found from the remaining undissolved seed and feed crystals. The higher dissolution of the Sb face was explained based on the number of atoms at that face, and its bonding with the next atomic layer. The growth interface shape was almost flat in both cases. The indium composition in both InGaSb samples was uniform in the radial direction and it gradually decreased along the growth direction because of segregation. The growth rate of InGaSb from GaSb (111)B was found to be higher than that of GaSb (111)A because of the higher dissolution of GaSb (111)B.
NASA Astrophysics Data System (ADS)
Liu, Henan; Yue, Naili; Zhang, Yong; Qiao, Pengfei; Zuo, Daniel; Kesler, Ben; Chuang, Shun Lien; Ryou, Jae-Hyun; Justice, James D.; Dupuis, Russell
2015-06-01
Heterostructures like InAs /GaSb superlattices (SLs) are distinctly different from well-studied ones like GaAs /AlAs SLs in terms of band alignment, common interface atom, and phonon spectrum overlapping of the constituents, which manifests as stark differences in their electronic and vibrational properties. This paper reports a comprehensive examination of all four types of phonon modes (confined, quasiconfined, extended, and interface) that have long been predicted for the InAs /GaSb SL, with the observation and interpretation of a set of phonon modes by performing cleaved edge μ -Raman study with polarization analysis. Furthermore, we show a signature of symmetry reduction from D2 d for GaAs /AlAs SL to C2 v for InAs/GaSb SL revealed as a phonon-polariton effect.
NASA Astrophysics Data System (ADS)
Nishimoto, Naoki; Fujihara, Junko; Yoshino, Katsumi
2018-05-01
In this study, Ga0.6Sb0.4 thin films were grown on quartz and Ge(100) 1° off-axis substrates by RF magnetron sputtering at 500 °C. Ga0.6Sb0.4/Ge(100) shows n-type conductivity at room temperature (RT) and p-type conductivity at low temperatures, whereas undoped GaSb thin films exhibit p-type conductivity, irrespective of their growth methods and conditions. Their electrical properties were determined by rapid thermal annealing, which revealed that Ga0.6Sb0.4/Ge(100) contains two types of acceptors and two types of donors. The acceptors are considered to be GaSb and electrically active sites on dislocations originating at the Ga0.6Sb0.4/Ge(100) interface, while donors are believed to be Gai and electrically active sites originating at the Ga0.6Sb0.4/Ge(100) interface. In these acceptors and donors, the shallow donor concentration is higher than the shallow acceptor concentration, and the shallow donor level is deeper than the shallow acceptor level. Thus, we concluded that Ga0.6Sb0.4/Ge(100) shows n-type conductivity at RT due to electrically active sites originating at the Ga0.6Sb0.4/Ge(100) interface and native defects originating from excess Ga.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishi, K., E-mail: nishi@mosfet.t.u-tokyo.ac.jp; Takenaka, M.; Takagi, S.
2014-12-08
We demonstrate the operation of GaSb p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs) on (111)A surfaces with Al{sub 2}O{sub 3} gate dielectrics formed by atomic-layer deposition at 150 °C. The p-MOSFETs on (111)A surfaces exhibit higher drain current and lower subthreshold swing than those on (100) surfaces. We find that the interface-state density (D{sub it}) values at the Al{sub 2}O{sub 3}/GaSb MOS interfaces on the (111)A surfaces are lower than those on the (100) surfaces, which can lead to performance enhancement of the GaSb p-MOSFETs on (111)A surfaces. The mobility of the GaSb p-MOSFETs on (111)A surfaces is 80% higher than that onmore » (100) surfaces.« less
2007-12-14
20.20 Ga (3d 5 2 ) in Ga2O3 21.00 Sb (4d 5 2 ) in GaSb 31.94 Sb (4d 5 2 ) 33.44 Sb (4d 5 2 ) in Sb2O3 34.50 Sb (4d 5 2 ) in Sb2O5 35.70 GaSb Sb2O3...growth. Once again, only Ga2O3 was observed at the interface. TXPS measurements revealed the presence of the F 1s peak up to substrate temperatures of...with a GaBr3 peak at 22.7 eV. Again, there is no published data for GaBr3 in this region but it is consistentGa2O3 Ga 3d GaSb Ga2O3 GaSb Ga 25 20 15 25
Optimization of the interfacial misfit array growth mode of GaSb epilayers on GaAs substrate
NASA Astrophysics Data System (ADS)
Benyahia, D.; Kubiszyn, Ł.; Michalczewski, K.; Kębłowski, A.; Martyniuk, P.; Piotrowski, J.; Rogalski, A.
2018-02-01
The growth of undoped GaSb epilayers on GaAs (0 0 1) substrates with 2° offcut towards 〈1 1 0〉, by molecular beam epitaxy system (MBE) at low growth temperature is reported. The strain due to the lattice mismatch of 7.78% is relieved spontaneously at the interface by using interfacial misfit array (IMF) growth mode. Three approaches of this technique are investigated. The difference consists in the steps after the growth of GaAs buffer layer. These steps are the desorption of arsenic from the GaAs surface, and the cooling down to the growth temperature, under or without antimony flux. The X-ray analysis and the transmission electron microscopy point out that desorption of arsenic followed by the substrate temperature decreasing under no group V flux leads to the best structural and crystallographic properties in the GaSb layer. It is found that the 2 μm-thick GaSb is 99.8% relaxed, and that the strain is relieved by the formation of a periodic array of 90° pure-edge dislocations along the [1 1 0] direction with a periodicity of 5.6 nm.
Biocompatibility of GaSb thin films grown by RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Nishimoto, Naoki; Fujihara, Junko; Yoshino, Katsumi
2017-07-01
GaSb may be suitable for biological applications, such as cellular sensors and bio-medical instrumentation because of its low toxicity compared with As (III) compounds and its band gap energy. Therefore, the biocompatibility and the film properties under physiological conditions were investigated for GaSb thin films with or without a surface coating. GaSb thin films were grown on quartz substrates by RF magnetron sputtering, and then coated with (3-mercaptopropyl) trimethoxysilane (MPT). The electrical properties, surface morphology, and crystal structure of the GaSb thin film were unaffected by the MPT coating. The cell viability assay suggested that MPT-coated GaSb thin films are biocompatible. Bare GaSb was particularly unstable in pH9 buffer. Ga elution was prevented by the MPT coating, although the Ga concentration in the pH 9 buffer was higher than that in the other solutions. The surface morphology and crystal structure were not changed by exposure to the solutions, except for the pH 9 buffer, and the thin film properties of MPT-coated GaSb exposed to distilled water and H2O2 in saline were maintained. These results indicate that MPT-coated GaSb thin films are biocompatible and could be used for temporary biomedical devices.
Fermi Level Unpinning of GaSb (100) using Plasma Enhanced Atomic Layer Deposition of Al2O3
2010-01-01
of high-/GaSb semiconductor interface. GaSb has a highly reactive surface and on exposure to air it will form a native oxide layer composed of Ga2O3 ...and Sb2O3 2GaSb+3O2→ Ga2O3 +Sb2O3. The Sb2O3 can fur- ther react with the GaSb surface forming elemental Sb and Ga2O3 Sb2O3+2GaSb→ Ga2O3 +4Sb.5,6...rights_and_permissions mentioned before, Sb2O3 reacts with GaSb forming Ga2O3 and elemental Sb.6 The kinetics of this reaction is enhanced at higher temperatures200 °C.14
Growth mechanisms of GaSb heteroepitaxial films on Si with an AlSb buffer layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vajargah, S. Hosseini; Botton, G. A.; Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1
2013-09-21
The initial growth stages of GaSb epilayers on Si substrates and the role of the AlSb buffer layer were studied by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Heteroepitaxy of GaSb and AlSb on Si both occur by Volmer-Weber (i.e., island mode) growth. However, the AlSb and GaSb islands have distinctly different characteristics as revealed through an atomic-resolution structural study using Z-contrast of HAADF-STEM imaging. While GaSb islands are sparse and three dimensional, AlSb islands are numerous and flattened. The introduction of 3D island-forming AlSb buffer layer facilitates the nucleation of GaSb islands. The AlSb islands-assisted nucleation of GaSbmore » islands results in the formation of drastically higher quality planar film at a significantly smaller thickness of films. The interface of the AlSb and GaSb epilayers with the Si substrate was further investigated with energy dispersive X-ray spectrometry to elucidate the key role of the AlSb buffer layer in the growth of GaSb epilayers on Si substrates.« less
NASA Astrophysics Data System (ADS)
Li, Qiang; Lai, Billy; Lau, Kei May
2017-10-01
We report epitaxial growth of GaSb nano-ridge structures and planar thin films on V-groove patterned Si (001) substrates by leveraging the aspect ratio trapping technique. GaSb was deposited on {111} Si facets of the V-shaped trenches using metal-organic chemical vapor deposition with a 7 nm GaAs growth initiation layer. Transmission electron microscopy analysis reveals the critical role of the GaAs layer in providing a U-shaped surface for subsequent GaSb epitaxy. A network of misfit dislocations was uncovered at the GaSb/GaAs hetero-interface. We studied the evolution of the lattice relaxation as the growth progresses from closely pitched GaSb ridges to coalesced thin films using x-ray diffraction. The omega rocking curve full-width-at-half-maximum of the resultant GaSb thin film is among the lowest values reported by molecular beam epitaxy, substantiating the effectiveness of the defect necking mechanism. These results thus present promising opportunities for the heterogeneous integration of devices based on 6.1 Å family compound semiconductors.
NASA Astrophysics Data System (ADS)
Boiton, P.; Giacometti, N.; Santailler, J. L.; Duffar, T.; Nabot, J. P.
1998-11-01
A facility, based on a profiled resistive heater, has been designed for the growth of antimonide crystals (GaSb, InSb) by the vertical Bridgman method. Solid-liquid interface shapes during the growth of 2-in diameter crystals are marked by means of variations of the pulling rate and are revealed by chemical etching. The comparison with the calculated interface shapes, obtained using a finite element method, gives a satisfactory agreement. It is shown that the heat transfer and consequently the interface shapes are greatly influenced by the crucible assembly. For example, small spacings around the crucible or slots in the crucible holder can change the interface curvature from convex to concave. From numerical simulations it is also shown that convection in the melt flattens the interface but that an increase of the pulling rate has the reverse effect.
Optimization of the Al2O3/GaSb Interface and a High-Mobility GaSb pMOSFET
2011-10-01
explored the use of in situ deposition of Al2O3 on GaSb grown on InP using molecular beam epitaxy and reported Dit values in the low 1012/cm2eV range near...M. Heyns, M. Caymax, and J. Dekoster, “GaSb mole- cular beam epitaxial growth on p-InP(001) and passivation with in situ deposited Al2O3 gate oxide...transmission electron microscopy. Capacitors were made on these films using platinum (Pt) electrode deposited in an e- beam evaporator through a shadow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cionca, C.; Walko, D. A.; Yacoby, Y.
2007-01-01
We have used Bragg rod x-ray diffraction combined with a direct method of phase retrieval to extract atomic resolution electron-density maps of a complementary series of heteroepitaxial III-V semiconductor samples. From the three-dimensional electron-density maps we derive the monolayer spacings, the chemical compositions, and the characteristics of the bonding for all atomic planes in the film and across the film-substrate interface. InAs films grown on GaSb(001) under two different As conditions (using dimer or tetramer forms) both showed conformal roughness and mixed GaAs/InSb interfacial bonding character. The As tetramer conditions favored InSb bonding at the interface while, in the casemore » of the dimer, the percentages corresponding to GaAs and InSb bonding were equal within the experimental error. The GaSb film grown on InAs(001) displayed significant In and As interdiffusion and had a relatively large fraction of GaAs-like bonds at the interface.« less
Oxidation of GaSb(100) and its control studied by scanning tunneling microscopy and spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mäkelä, J., E-mail: jaakko.m.makela@utu.fi, E-mail: pekka.laukkanen@utu.fi, E-mail: rmwallace@utdallas.edu; Tuominen, M.; Yasir, M.
2015-08-10
Atomic-scale knowledge and control of oxidation of GaSb(100), which is a potential interface for energy-efficient transistors, are still incomplete, largely due to an amorphous structure of GaSb(100) oxides. We elucidate these issues with scanning-tunneling microscopy and spectroscopy. The unveiled oxidation-induced building blocks cause defect states above Fermi level around the conduction-band edge. By interconnecting the results to previous photoemission findings, we suggest that the oxidation starts with substituting second-layer Sb sites by oxygen. Adding small amount of indium on GaSb(100), resulting in a (4 × 2)-In reconstruction, before oxidation produces a previously unreported, crystalline oxidized layer of (1 × 3)-O free of gap states.
Electrical and optical characterization of n-InAsSb/n-GaSb heterojunctions
NASA Astrophysics Data System (ADS)
Lackner, D.; Martine, M.; Cherng, Y. T.; Steger, M.; Walukiewicz, W.; Thewalt, M. L. W.; Mooney, P. M.; Watkins, S. P.
2010-01-01
We report the electrical properties of n-InAsSb/n-GaSb heterojunctions as a function of the GaSb doping concentration. Because of the staggered type II band alignment, strong electron accumulation occurs on the InAsSb side. For low GaSb doping, depletion occurs on the GaSb side resulting in a Schottky-like junction as previously reported. As the GaSb doping increases, the built-in voltage as well as depletion width decreases as shown using self-consistent simulations. For GaSb doping levels above 5×1017 cm-3, the junction loses its rectifying properties due to tunneling. Under zero and reverse bias voltage, the photoresponse of these diodes is solely due to the photovoltaic effect in the GaSb depletion region. For forward bias voltages >400 mV, we also observed a photoconductive response from the InAsSb layer. The proposed physical mechanism is quite different from the one suggested in a recent paper.
NASA Astrophysics Data System (ADS)
Lai, Billy; Li, Qiang; Lau, Kei May
2018-02-01
InAs/GaSb nanoridge heterostructures were grown on V-grooved (0 0 1) Si by metal organic chemical vapor deposition. Combining the aspect ratio trapping process and a low temperature GaAs buffer, we demonstrated high quality GaSb nanoridge templates for InAs/GaSb heterostructure growth. Two different interfaces, a transitional GaAsSb and an InSb-like interface, were investigated when growing these heterostructures. A 500 °C growth temperature in conjunction with a GaAsSb interface was determined to produce the optimal interface, properly compensating for the tensile strain accumulated when growing InAs on GaSb. Without the need for a complicated switching sequence, this GaAsSb-like interface utilized at the optimized temperature is the initial step towards InAs/GaSb type II superlattice and other device structures integrated onto Si.
Ultrathin type-II GaSb/GaAs quantum wells grown by OMVPE
NASA Astrophysics Data System (ADS)
Pitts, O. J.; Watkins, S. P.; Wang, C. X.; Stotz, J. A. H.; Meyer, T. A.; Thewalt, M. L. W.
2004-09-01
Heterostructures containing monolayer (ML) and submonolayer GaSb insertions in GaAs were grown using organometallic vapour phase epitaxy. At the GaAs-on-GaSb interface, strong intermixing occurs due to the surface segregation of Sb. To form structures with relatively abrupt interfaces, a flashoff growth sequence, in which growth interruptions are employed to desorb Sb from the surface, was introduced. Reflectance-difference spectroscopy and high-resolution X-ray diffraction data demonstrate that interfacial grading is strongly reduced by this procedure. For layer structures grown with the flashoff sequence, a GaSb coverage up to 1 ML can be obtained in the two-dimensional (2D) growth mode. For uncapped GaSb layers, on the other hand, atomic force microscope images show that the 2D-3D growth mode transition occurs at a submonolayer coverage between 0.3 and 0.5 ML. Low-temperature photoluminescence spectra of multiple quantum well samples grown using the flashoff sequence show a strong quantum well-related peak which shifts to lower energies as the amount of Sb incorporated increases. The PL peak energies are consistent with a type-II band lineup at the GaAs/GaSb interface.
Optical Properties of Si, Ge, GaAs, GaSb, InAs, and InP at Elevated Temperatures
2010-03-01
transmitted, and an absorbed (or scattered) component. The reflectance can be defined in terms of the index of refraction of the media on either side...of the interface. If the index of refraction of the material is n and the material is surrounded by air (nair ≈ 1), then the reflectance for near...the absorption coefficient and t is the sample thickness. 9 Since R depends on the refractive index and the refractive index depends on the
Optical properties of beryllium-doped GaSb epilayers grown on GaAs substrate
NASA Astrophysics Data System (ADS)
Deng, Zhuo; Chen, Baile; Chen, Xiren; Shao, Jun; Gong, Qian; Liu, Huiyun; Wu, Jiang
2018-05-01
In this work, the effects of p-type beryllium (Be) doping on the optical properties of GaSb epilayers grown on GaAs substrate by Molecular Beam Epitaxy (MBE) have been studied. Temperature- and excitation power-dependent photoluminescence (PL) measurements were performed on both nominally undoped and intentionally Be-doped GaSb layers. Clear PL emissions are observable even at the temperature of 270 K from both layers, indicating the high material quality. In the Be-doped GaSb layer, the transition energies of main PL features exhibit red-shift up to ∼7 meV, and the peak widths characterized by Full-Width-at-Half-Maximum (FWHM) also decrease. In addition, analysis on the PL integrated intensity in the Be-doped sample reveals a gain of emission signal, as well as a larger carrier thermal activation energy. These distinctive PL behaviors identified in the Be-doped GaSb layer suggest that the residual compressive strain is effectively relaxed in the epilayer, due possibly to the reduction of dislocation density in the GaSb layer with the intentional incorporation of Be dopants. Our results confirm the role of Be as a promising dopant in the improvement of crystalline quality in GaSb, which is a crucial factor for growth and fabrication of high quality strain-free GaSb-based devices on foreign substrates.
Correlating optical infrared and electronic properties of low tellurium doped GaSb bulk crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roodenko, K., E-mail: kroodenko@intelliepi.com; Liao, P.-K.; Lan, D.
2016-04-07
Control over the Te doping concentration is especially challenging in the mass-production of optically transparent, high-resistivity Te-doped GaSb crystals. Driven by the necessity to perform fast, robust, and non-destructive quality control of the Te doping homogeneity of the optically transparent large-diameter GaSb wafers, we correlated electronic and optical infrared properties of Te-doped GaSb crystals. The study was based on the experimental Hall and Fourier-Transform Infrared (FTIR) data collected from over 50 samples of the low-doped n-type material (carrier concentration of 6 × 10{sup 16} cm{sup −3} to 7 × 10{sup 17} cm{sup −3}) and the Te-doped p-type GaSb (4.6 ×more » 10{sup 15} cm{sup −3} to 1 × 10{sup 16} cm{sup −3}). For the n-type GaSb, the analysis of the FTIR data was performed using free carrier absorption model, while for the p-type material, the absorption was modeled using inter-valence band absorption mechanism. Using the correlation between the Hall and the IR data, FTIR maps across the wafers allow a fast and reliable way to estimate carrier concentration profile within the wafer.« less
Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De; Wan, Jian Guo
2016-07-07
An optimization strategy combining global semiempirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (GaSb)n clusters up to n = 9. The growth pattern of the clusters differed from those of previously reported group III-V binary clusters. A cagelike configuration was found for cluster sizes n ≤ 7. The structure of (GaSb)6 deviated from that of other III-V clusters. Competition existed between core-shell and hollow cage structures of (GaSb)7. Novel noncagelike structures were energetically preferred over the cages for the (GaSb)8 and (GaSb)9 clusters. Electronic properties, such as vertical ionization potential, adiabatic electron affinities, HOMO-LUMO gaps, and average on-site charges on Ga or Sb atoms, as well as binding energies, were computed.
NASA Astrophysics Data System (ADS)
Seo, Dongwan; Na, Jihoon; Lee, Seunghyo; Lim, Sangwoo
2017-03-01
Gallium antimonide (GaSb) and indium antimonide (InSb) have attracted strong attention as new channel materials for transistors due to their excellent electrical properties and lattice matches with various group III-V compound semiconductors. In this study, the surface behavior of GaSb (100) and InSb (100) was investigated and compared in hydrochloric acid/hydrogen peroxide mixture (HPM) and ammonium hydroxide/hydrogen peroxide mixture (APM) solutions. In the acidic HPM solution, surface oxidation was greater and the etching rates of the GaSb and InSb surfaces increased when the solution is concentrated, which indicates that H2O2 plays a key role in the surface oxidation of GaSb and InSb in acidic HPM solution. However, the GaSb and InSb surfaces were hardly oxidized in basic APM solution in the presence of H2O2 because gallium and indium are in the thermodynamically stable forms of H2GaO3- and InO2-, respectively. When the APM solution was diluted, however, the Ga on the GaSb surface was oxidized by H2O, increasing the etching rate. However, the effect of dilution of the APM solution on the oxidation of the InSb surface was minimal; thus, the InSb surface was less oxidized than the GaSb surface and the change in the etching rate of InSb with dilution of the APM solution was not significant. Additionally, the oxidation behavior of gallium and indium was more sensitive to the composition of the HPM and APM solutions than that of antimony. Therefore, the surface properties and etching characteristics of GaSb and InSb in HPM and APM solutions are mainly dependent on the behavior of the group III elements rather than the group V elements.
Mixed Anion Heterostructure Materials
2004-10-01
Because the analysis is ex-situ, the Ga2O3 fit component at 20.5 eV is also present. In the Sd 4d photoelectron spectra, the Sb2O3 and Sb2O5...indicating that AsSby segregates at the GaAsySb1-y/GaSb interface. Ga3d Sb4dAs3d GaAs As2O3 As2O5 4244464850 40 AsSby As 16182022 Ga2O3 GaSb Ga...AsSby 182022 GaSb GaAsGa2O3 182022 GaSb GaAsGa2O3 3840424446 As2O3 GaAs As 182022 Ga2O3 GaAs As2, 10 sec, 420 °C As4, 30 sec, 420 °C 18 Figure
2012-01-01
InAs/GaSb type II superlattices were grown on (100) GaSb substrates by metalorganic chemical vapor deposition (MOCVD). A plane of mixed As and Sb atoms connecting the InAs and GaSb layers was introduced to compensate the tensile strain created by the InAs layer in the SL. Characterizations of the samples by atomic force microscopy and high-resolution X-ray diffraction demonstrate flat surface morphology and good crystalline quality. The lattice mismatch of approximately 0.18% between the SL and GaSb substrate is small compared to the MOCVD-grown supperlattice samples reported to date in the literature. Considerable optical absorption in 2- to 8-μm infrared region has been realized. PACS: 78.67.Pt; 81.15.Gh; 63.22.Np; 81.05.Ea PMID:22373387
GaSbBi/GaSb quantum well laser diodes
NASA Astrophysics Data System (ADS)
Delorme, O.; Cerutti, L.; Luna, E.; Narcy, G.; Trampert, A.; Tournié, E.; Rodriguez, J.-B.
2017-05-01
We report on the structural and optical properties of GaSbBi single layers and GaSbBi/GaSb quantum well heterostructures grown by molecular beam epitaxy on GaSb substrates. Excellent crystal quality and room-temperature photoluminescence are achieved in both cases. We demonstrate laser operation from laser diodes with an active zone composed of three GaSb0.885Bi0.115/GaSb quantum wells. These devices exhibit continuous-wave lasing at 2.5 μm at 80 K, and lasing under pulsed operation at room-temperature near 2.7 μm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchel, W. C., E-mail: William.Mitchel.1@us.af.mil; Haugan, H. J.; Mou, Shin
2015-09-15
Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overallmore » mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.« less
NASA Astrophysics Data System (ADS)
Kushwaha, A. K.
2017-07-01
A proposed eleven-parameter three-body shell model is used to study the lattice dynamical properties such as phonon dispersion relations along high symmetry directions, phonon density of states, variation of specific heat and Debye characteristic temperature with absolute temperature, elastic constants and related properties for III-V semiconductor AlSb, GaSb and their mixed semiconductor Ga_{1-x}AlxSb having zinc-blende structure. We found an overall good agreement with the available experimental and theoretical results available in the literature.
Improvement of the GaSb/Al2O3 interface using a thin InAs surface layer
NASA Astrophysics Data System (ADS)
Greene, Andrew; Madisetti, Shailesh; Nagaiah, Padmaja; Yakimov, Michael; Tokranov, Vadim; Moore, Richard; Oktyabrsky, Serge
2012-12-01
The highly reactive GaSb surface was passivated with a thin InAs layer to limit interface trap state density (Dit) at the III-V/high-k oxide interface. This InAs surface was subjected to various cleaning processes to effectively reduce native oxides before atomic layer deposition (ALD). Ammonium sulfide pre-cleaning and trimethylaluminum/water ALD were used in conjunction to provide a clean interface and annealing in forming gas (FG) at 350 °C resulted in an optimized fabrication for n-GaSb/InAs/high-k gate stacks. Interface trap density, Dit ≈ 2-3 × 1012 cm-2eV-1 resided near the n-GaSb conductance band which was extracted and compared with three different methods. Conductance-voltage-frequency plots showed efficient Fermi level movement and a sub-threshold slope of 200 mV/dec. A composite high-k oxide process was also developed using ALD of Al2O3 and HfO2 resulting in a Dit ≈ 6-7 × 1012 cm-2eV-1. Subjecting these samples to a higher (450 °C) processing temperature results in increased oxidation and a thermally unstable interface. p-GaSb displayed very fast minority carrier generation/recombination likely due to a high density of bulk traps in GaSb.
Surface passivation of (100) GaSb using self-assembled monolayers of long-chain octadecanethiol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papis-Polakowska, E., E-mail: papis@ite.waw.pl; Kaniewski, J.; Jurenczyk, J.
2016-05-15
The passivation of (100) GaSb surface was investigated by means of the long-chain octadecanethiol (ODT) self-assembled monolayer (SAM). The properties of ODT SAM on (100) GaSb were characterized by the atomic force microscopy using Kelvin probe force microscopy mode and X-ray photoelectron spectroscopy. The chemical treatment of 10 mM ODT-C{sub 2}H{sub 5}OH has been applied to the passivation of a type-II superlattice InAs/GaSb photodetector. The electrical measurements indicate that the current density was reduced by one order of magnitude as compared to an unpassivated photodetector.
NASA Astrophysics Data System (ADS)
Wang, Yue; Zou, Xiaochuan; Feng, Xia; Shi, Yongfang; Wu, Liming
2017-01-01
A new rare-earth metal gallium thioantimonate, Y4GaSbS9, has been synthesized successfully via high-temperature solid-state method. Single-crystal X-ray diffraction analyses revealed it adopted a known RE4GaSbS9-structure type in the orthorhombic space group Aba2 (no.41) with a=13.480(4) Å, b=13.790(4) Å, c=13.990(4) Å, V=2600.6(2) Å3 and Z=8. The structure is composed of bimetallic polar (Sb2S5) units and dimeric (GaS4)2 tetrahedra that share vertexes to form a 1D infinite chains 2 ∞ 1Ga 10-, inside which the isolated Y3+ cations and S2- anions. Polycrystalline Y4GaSbS9 shows the weak powder second harmonic generation (SHG) responses of this family, which is about 7.5 times that of the benchmark α-SiO2 in the particle size of 74-106 μm at the laser radiation wavelength of 2050 nm with a non-phase-matchable behavior. In addition, the synthesis, structural characterization, and optical properties as well as theoretical studies are also discussed.
2012-01-01
We have investigated the structural and optical properties of type-II GaSb/InGaAs quantum dots [QDs] grown on InP (100) substrate by molecular beam epitaxy. Rectangular-shaped GaSb QDs were well developed and no nanodash-like structures which could be easily found in the InAs/InP QD system were formed. Low-temperature photoluminescence spectra show there are two peaks centered at 0.75eV and 0.76ev. The low-energy peak blueshifted with increasing excitation power is identified as the indirect transition from the InGaAs conduction band to the GaSb hole level (type-II), and the high-energy peak is identified as the direct transition (type-I) of GaSb QDs. This material system shows a promising application on quantum-dot infrared detectors and quantum-dot field-effect transistor. PMID:22277096
Microstructure and conductance-slope of InAs/GaSb tunnel diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iutzi, Ryan M., E-mail: iutzi@mit.edu; Fitzgerald, Eugene A.
2014-06-21
InAs/GaSb and similar materials systems have generated great interest as a heterojunction for tunnel field effect transistors (TFETs) due to favorable band alignment. However, little is currently understood about how such TFETs are affected by materials defects and nonidealities. We present measurements of the conductance slope for various InAs/GaSb heterojunctions via two-terminal electrical measurements, which removes three-terminal parasitics and enables direct study on the effect of microstructure on tunnelling. Using this, we can predict how subthreshold swings in TFETs can depend on microstructure. We also demonstrate growth and electrical characterization for structures grown by metalorganic chemical vapor deposition (MOCVD)—a generallymore » more scalable process compared with molecular beam epitaxy (MBE). We determine that misfit dislocations and point defects near the interface can lead to energy states in the band-gap and local band bending that result in trap-assisted leakage routes and nonuniform band alignment across the junction area that lower the steepness of the conductance slope. Despite the small lattice mismatch, misfit dislocations still form in InAs on GaSb due to relaxation as a result of large strain from intermixed compositions. This can be circumvented by growing GaSb on InAs, straining the GaSb underlayer, or lowering the InAs growth temperature in the region of the interface. The conductance slope can also be improved by annealing the samples at higher temperatures, which we believe acts to annihilate point defects and average out major fluctuations in band alignment across the interface. Using a combination of these techniques, we can greatly improve the steepness of the conductance slope which could result in steeper subthreshold swings in TFETs in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juang, Bor-Chau, E-mail: bcjuang@ucla.edu; Laghumavarapu, Ramesh B.; Foggo, Brandon J.
There exists a long-term need for foreign substrates on which to grow GaSb-based optoelectronic devices. We address this need by using interfacial misfit arrays to grow GaSb-based thermophotovoltaic cells directly on GaAs (001) substrates and demonstrate promising performance. We compare these cells to control devices grown on GaSb substrates to assess device properties and material quality. The room temperature dark current densities show similar characteristics for both cells on GaAs and on GaSb. Under solar simulation the cells on GaAs exhibit an open-circuit voltage of 0.121 V and a short-circuit current density of 15.5 mA/cm{sup 2}. In addition, the cells on GaAsmore » substrates maintain 10% difference in spectral response to those of the control cells over a large range of wavelengths. While the cells on GaSb substrates in general offer better performance than the cells on GaAs substrates, the cost-savings and scalability offered by GaAs substrates could potentially outweigh the reduction in performance. By further optimizing GaSb buffer growth on GaAs substrates, Sb-based compound semiconductors grown on GaAs substrates with similar performance to devices grown directly on GaSb substrates could be realized.« less
NASA Astrophysics Data System (ADS)
Luna, E.; Delorme, O.; Cerutti, L.; Tournié, E.; Rodriguez, J.-B.; Trampert, A.
2018-04-01
Using transmission electron microscopy, we present an in-depth microstructural analysis of a series of Ga(Sb,Bi) epilayers and Ga(Sb,Bi)/GaSb quantum wells grown on GaSb(001) substrates by molecular beam epitaxy. Despite the dilute bismide compound Ga(Sb,Bi) is regarded as a highly-mismatched alloy, we find that the material is of remarkable structural perfection, even up to 11%-14% Bi, the maximum Bi concentration incorporated into GaSb so far. No extended defects, nanoclusters, or composition modulations are detectable in the pseudomorphic layers. In addition, the quantum wells exhibit regular and homogeneous morphologies including smooth and stable interfaces with a chemical width on the same order as in other high-quality III-V heterointerfaces. These results may give reasons for the recent successful realization of mid-infrared lasers with room temperature operation based on the very same quantum well structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, R. L.; Chiang, T. H.; Hsueh, W. J.
2014-11-03
Molecular beam epitaxy deposited rare-earth oxide of Y{sub 2}O{sub 3} has effectively passivated GaSb, leading to low interfacial trap densities of (1–4) × 10{sup 12 }cm{sup −2} eV{sup −1} across the energy bandgap of GaSb. A high saturation drain current density of 130 μA/μm, a peak transconductance of 90 μS/μm, a low subthreshold slope of 147 mV/decade, and a peak field-effect hole mobility of 200 cm{sup 2}/V-s were obtained in 1 μm-gate-length self-aligned inversion-channel GaSb p-Metal-Oxide-Semiconductor Field-Effect-Transistors (MOSFETs). In this work, high-κ/GaSb interfacial properties were better in samples with a high substrate temperature of 200 °C than in those with high κ's deposited at room temperature, in terms of themore » interfacial electrical properties, particularly, the reduction of interfacial trap densities near the conduction band and the MOSFET device performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Michael; Datta, Suman, E-mail: sdatta@engr.psu.edu; Bruce Rayner, G.
2014-12-01
We investigate in-situ cleaning of GaSb surfaces and its effect on the electrical performance of p-type GaSb metal-oxide-semiconductor capacitor (MOSCAP) using a remote hydrogen plasma. Ultrathin HfO{sub 2} films grown by atomic layer deposition were used as a high permittivity gate dielectric. Compared to conventional ex-situ chemical cleaning methods, the in-situ GaSb surface treatment resulted in a drastic improvement in the impedance characteristics of the MOSCAPs, directly evidencing a much lower interface trap density and enhanced Fermi level movement efficiency. We demonstrate that by using a combination of ex-situ and in-situ surface cleaning steps, aggressively scaled HfO{sub 2}/p-GaSb MOSCAP structuresmore » with a low equivalent oxide thickness of 0.8 nm and efficient gate modulation of the surface potential are achieved, allowing to push the Fermi level far away from the valence band edge high up into the band gap of GaSb.« less
Growth and properties of GaSbBi alloys
NASA Astrophysics Data System (ADS)
Rajpalke, M. K.; Linhart, W. M.; Birkett, M.; Yu, K. M.; Scanlon, D. O.; Buckeridge, J.; Jones, T. S.; Ashwin, M. J.; Veal, T. D.
2013-09-01
Molecular-beam epitaxy has been used to grow GaSb1-xBix alloys with x up to 0.05. The Bi content, lattice expansion, and film thickness were determined by Rutherford backscattering and x-ray diffraction, which also indicate high crystallinity and that >98% of the Bi atoms are substitutional. The observed Bi-induced lattice dilation is consistent with density functional theory calculations. Optical absorption measurements and valence band anticrossing modeling indicate that the room temperature band gap varies from 720 meV for GaSb to 540 meV for GaSb0.95Bi0.05, corresponding to a reduction of 36 meV/%Bi or 210 meV per 0.01 Å change in lattice constant.
In-situ characterization of the optical and electronic properties in GeTe and GaSb thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velea, A.; Popescu, M.; Galca, A. C., E-mail: ac-galca@infim.ro
2015-10-07
GeTe and GaSb thin films obtained by pulsed laser deposition were investigated by spectroscopic ellipsometry at controlled temperatures. The GeTe films were fully amorphous, while the GaSb films were partially crystalized in the as-deposited state. The Tauc-Lorentz model was employed to fit the experimental data. From the temperature study of the optical constants, it was observed the crystallization in the 150–160 °C range of GeTe amorphous films and between 230 and 240 °C of GaSb amorphous phase. A second transition in the resonance energy and the broadening parameter of the Lorentz oscillator was observed due to the crystallization of Sb after 250 °C.more » The temperatures of 85 °C and 130 °C are noticed as the start of the relaxation of the amorphous GeTe phase and as-deposited GaSb. The peaks of the imaginary part of the dielectric function red shifted after the phase change, while the variation with temperature of the crystalline phase follows the Varshni law. The electron-phonon coupling constants are 2.88 and 1.64 for c-GeTe and c-GaSb, respectively. An optical contrast up to 60% was obtained for GeTe films and a maximum value of 7.5% is revealed in the case GaSb, which is altered by the partial crystallinity of the as-deposited films.« less
Bioinspired broadband antireflection coatings on GaSb
NASA Astrophysics Data System (ADS)
Min, Wei-Lun; Betancourt, Amaury P.; Jiang, Peng; Jiang, Bin
2008-04-01
We report an inexpensive yet scalable templating technique for fabricating moth-eye antireflection gratings on gallium antimonide substrates. Non-close-packed colloidal monolayers are utilized as etching masks to pattern subwavelength-structured nipple arrays on GaSb. The resulting gratings exhibit superior broadband antireflection properties and thermal stability than conventional multilayer dielectric coatings. The specular reflection of the templated nipple arrays match with the theoretical predictions using a rigorous coupled-wave analysis model. The effect of the nipple shape and size on the antireflection properties has also been investigated by the same model. These biomimetic coatings are of great technological importance in developing efficient thermophotovoltaic cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871; Zhang, Qin
2014-11-24
We report experimental methods to ascertain a complete energy band alignment of a broken-gap tunnel field-effect transistor based on an InAs/GaSb hetero-junction. By using graphene as an optically transparent electrode, both the electron and hole barrier heights at the InAs/GaSb interface can be quantified. For a Al{sub 2}O{sub 3}/InAs/GaSb layer structure, the barrier height from the top of the InAs and GaSb valence bands to the bottom of the Al{sub 2}O{sub 3} conduction band is inferred from electron emission whereas hole emissions reveal the barrier height from the top of the Al{sub 2}O{sub 3} valence band to the bottom ofmore » the InAs and GaSb conduction bands. Subsequently, the offset parameter at the broken gap InAs/GaSb interface is extracted and thus can be used to facilitate the development of predicted models of electron quantum tunneling efficiency and transistor performance.« less
NASA Astrophysics Data System (ADS)
Mir, Raja N.; Frensley, William R.
2013-10-01
InAs-Sb/GaSb type-II strain compensated superlattices (SLS) are currently being used in mid-wave and long-wave infrared photodetectors. The electronic bandstructure of InSb and GaSb shows very strong anisotropy and non-parabolicity close to the Γ-point for the conduction band (CB) minimum and the valence band (VB) maximum. Particularly around the energy range of 45-80 meV from band-edge we observe strong non-parabolicity in the CB and light hole VB. The band-edge dispersion determines the electrical properties of a material. When the bulk materials are combined to form a superlattice we need a model of bandstructure which takes into account the full bandstructure details of the constituents and also the strong interaction between the conduction band of InAs and valence bands of GaSb. There can also be contact potentials near the interface between two dissimilar superlattices which will not be captured unless a full bandstructure calculation is done. In this study, we have done a calculation using second nearest neighbor tight binding model in order to accurately reproduce the effective masses. The calculation of mini-band structure is done by finding the wavefunctions within one SL period subject to Bloch boundary conditions ψ(L)=ψ(0)eikL. We demonstrate in this paper how a calculation of carrier concentration as a function of the position of the Fermi level (EF) within bandgap(Eg) should be done in order to take into account the full bandstructure of broken-bandgap material systems. This calculation is key for determining electron transport particularly when we have an interface between two dissimilar superlattices.
The Co-Sb-Ga System: Isoplethal Section and Thermodynamic Modeling
NASA Astrophysics Data System (ADS)
Gierlotka, Wojciech; Chen, Sinn-wen; Chen, Wei-an; Chang, Jui-shen; Snyder, G. Jeffrey; Tang, Yinglu
2015-04-01
The Co-Sb-Ga ternary system is an important thermoelectric material system, and its phase equilibria are in need of further understanding. The CoSb3-GaSb isoplethal section is experimentally determined in this study. Phase equilibria of the ternary Co-Sb-Ga system are assessed, and the system's thermodynamic models are developed. In addition to the terminal phases and liquid phase, there are six binary intermediate phases and a ternary Co3Sb2Ga4 phase. The Ga solution in the CoSb3 compound is described by a dual-site occupation (GaVF) x Co4Sb12- x/2(GaSb) x/2 model. Phase diagrams are calculated using the developed thermodynamic models, and a reaction scheme is proposed based on the calculation results. The calculated results are in good agreement with the experimentally determined phase diagrams, including the CoSb3-GaSb isoplethal section, the liquidus projection, and an isothermal section at 923 K (650 °C). The dual-site occupation (GaVF) x Co4Sb12- x/2(GaSb) x/2 model gives good descriptions of both phase equilibria and thermoelectric properties of the CoSb3 phase with Ga doping.
Surface cleaning and pure nitridation of GaSb by in-situ plasma processing
NASA Astrophysics Data System (ADS)
Gotow, Takahiro; Fujikawa, Sachie; Fujishiro, Hiroki I.; Ogura, Mutsuo; Chang, Wen Hsin; Yasuda, Tetsuji; Maeda, Tatsuro
2017-10-01
A clean and flat GaSb surface without native oxides has been attained by H2 plasma cleaning and subsequent in-situ N2 plasma nitridation process at 300 oC. The mechanisms of thermal desorption behavior of native oxides on GaSb have been studied by thermal desorption spectroscopy (TDS) analysis. The suitable heat treatment process window for preparing a clean GaSb surface is given. Auger electron spectroscopy (AES) analysis indicates that native oxides were completely removed on the GaSb surface after H2 plasma exposure and the pure nitridation of the clean GaSb surface was obtained at a relatively low temperature of 300 °C. This pure nitridation of GaSb have a possibility to be used as a passivation layer for high quality GaSb MOS devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Yifei; Kim, Honggyu; Zuo, Jian-Min
2014-07-07
We propose a digital model for high quality superlattices by including fluctuations in the superlattice periods. The composition and strain profiles are assumed to be coherent and persist throughout the superlattice. Using this model, we have significantly improved the fit with experimental X-ray diffraction data recorded from the nominal InAs/GaSb superlattice. The lattice spacing of individual layers inside the superlattice and the extent of interfacial intermixing are refined by including both (002) and (004) and their satellite peaks in the fitting. For the InAs/GaSb strained layer superlattice, results show: (i) the GaSb-on-InAs interface is chemically sharper than the InAs-on-GaSb interface,more » (ii) the GaSb layers experience compressive strain with In incorporation, (iii) there are interfacial strain associated with InSb-like bonds in GaSb and GaAs-like bonds in InAs, (iv) Sb substitutes a significant amount of In inside InAs layer near the InAs-on-GaSb interface. For support, we show that the composition profiles determined by X-ray diffraction are in good agreement with those obtained from atom probe tomography measurement. Comparison with the kinetic growth model shows a good agreement in terms of the composition profiles of anions, while the kinetic model underestimates the intermixing of cations.« less
NASA Astrophysics Data System (ADS)
Kudrawiec, R.; Nair, H. P.; Latkowska, M.; Misiewicz, J.; Bank, S. R.; Walukiewicz, W.
2012-12-01
Contactless electroreflectance (CER) has been applied to study the Fermi-level position on GaSb surface in n-type and p-type GaSb Van Hoof structures. CER resonances, followed by strong Franz-Keldysh oscillation of various periods, were clearly observed for two series of structures. This period was much wider (i.e., the built-in electric field was much larger) for n-type structures, indicating that the GaSb surface Fermi level pinning position is closer to the valence-band than the conduction-band. From analysis of the built-in electric fields in undoped GaSb layers, it was concluded that on GaSb surface the Fermi-level is located ˜0.2 eV above the valence band.
ERIC Educational Resources Information Center
National Association of College and University Business Officers (NJ1), 2001
2001-01-01
This guide was prepared for public institution business officers as a supplement to the "Guide to Implementation of GASB Statement 54 on Basic Financial Statements--and Management's Discussion and Analysis--for State and Local Governments, published in April 2000 by the Governmental Accounting Standards Board (GASB) on GASB Statements 34 and 35.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boiko, V. M.; Brudnii, V. N., E-mail: brudnyi@mail.tsu.ru; Ermakov, V. S.
2015-06-15
The electronic properties and the limiting position of the Fermi level in p-GaSb crystals irradiated with full-spectrum reactor neutrons at up to a fluence of 8.6 × 10{sup 18} cm{sup −2} are studied. It is shown that the irradiation of GaSb with reactor neutrons results in an increase in the concentration of free holes to p{sub lim} = (5−6) × 10{sup 18} cm{sup −3} and in pinning of the Fermi level at the limiting position F{sub lim} close to E{sub V} + 0.02 eV at 300 K. The effect of the annealing of radiation defects in the temperature range 100–550°Cmore » is explored.« less
Growth and characterization of InSb on (1 0 0) Si for mid-infrared application
NASA Astrophysics Data System (ADS)
Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt
2018-05-01
Monolithic integration of InSb on (1 0 0) Si is a practical approach to realizing on-chip mid-infrared photonic devices. An InSb layer was grown on a (1 0 0) Si substrate using an AlSb/GaSb buffer containing InSb quantum dots (QDs). The growth process for the buffer involved the growth of GaSb on Si using an interfacial misfit array, followed by InSb QDs on AlSb to decrease the density of microtwins. InSb layers were separately grown on AlSb and GaSb surfaces to compare the effect of different interfacial misfit arrays. The samples were characterized using transmission electron microscopy and X-ray diffraction to determine the structural properties of the buffer and InSb layers. The InSb on the AlSb sample exhibited higher crystal quality than the InSb on GaSb sample due to a more favorable arrangement of interfacial misfit dislocations. Hall measurements of unintentionally doped InSb layers demonstrated a higher carrier mobility in the InSb on the AlSb sample than in InSb on GaSb. Growing InSb on AlSb also improved the photoresponsivity of InSb as a photoconductor on Si.
Raman Scattering Study of Lattice Vibrations in the Type-II Superlattice InAs /InAs1 -xSbx
NASA Astrophysics Data System (ADS)
Liu, Henan; Zhang, Yong; Steenbergen, Elizabeth H.; Liu, Shi; Lin, Zhiyuan; Zhang, Yong-Hang; Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch; Dupuis, Russell D.; Kim, Jin K.; Hawkins, Samuel D.; Klem, John F.
2017-09-01
The InAs /InAs1 -xSbx superlattice system distinctly differs from two well-studied superlattice systems GaAs /AlAs and InAs /GaSb in terms of electronic band alignment, common elements at the interface, and phonon spectrum overlapping of the constituents. This fact leads to the unique electronic and vibrational properties of the InAs /InAs1 -xSbx system when compared to the other two systems. In this work, we report a polarized Raman study of the vibrational properties of the InAs /InAs1 -xSbx superlattices (SLs) as well as selected InAs1 -xSbx alloys, all grown on GaSb substrates by either MBE or metalorganic chemical vapor deposition (MOCVD) from both the growth surface and cleaved edge. In the SL, from the (001) backscattering geometry, an InAs-like longitudinal optical (LO) mode is observed as the primary feature, and its intensity is found to increase with increasing Sb composition. From the (110) cleaved-edge backscattering geometry, an InAs-like transverse optical (TO) mode is observed as the main feature in two cross-polarization configurations, but an additional InAs-like "forbidden" LO mode is observed in two parallel-polarization configurations. The InAs1 -xSbx alloys lattice matched to the substrate (xSb˜0.09 ) grown by MBE are also found to exhibit the forbidden LO mode, implying the existence of some unexpected [001] modulation. However, the strained samples (xSb˜0.35 ) grown by MOCVD are found to behave like a disordered alloy. The primary conclusions are (1) the InAs-like LO or TO mode can be either a confined or quasiconfined mode in the InAs layers of the SL or extended mode of the whole structure depending on the Sb composition. (2) InAs /InAs1 -xSbx and InAs /GaSb SLs exhibit significantly different behaviors in the cleaved-edge geometry but qualitatively similar in the (001) geometry. (3) The appearance of the forbidden LO-like mode is a universal signature for SLs and bulk systems resulting from the mixing of phonon modes due to structural modulation or symmetry reduction.
Study on electrical properties of metal/GaSb junctions using metal-GaSb alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishi, Koichi, E-mail: nishi@mosfet.t.u-tokyo.ac.jp; Yokoyama, Masafumi; Kim, Sanghyeon
2014-01-21
We study the metal-GaSb alloy formation, the structural properties and the electrical characteristics of the metal-alloy/GaSb diodes by employing metal materials such as Ni, Pd, Co, Ti, Al, and Ta, in order to clarify metals suitable for GaSb p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) as metal-GaSb alloy source/drain (S/D). It is found that Ni, Pd, Co, and Ti can form alloy with GaSb by rapid thermal annealing at 250, 250, 350, and 450 °C, respectively. The Ni-GaSb and Pd-GaSb alloy formation temperature of 250 °C is lower than the conventional dopant activation annealing for ion implantation, which enable us to lower the processmore » temperature. The alloy layers show lower sheet resistance (R{sub Sheet}) than that of p{sup +}-GaSb layer formed by ion implantation and activation annealing. We also study the electrical characteristics of the metal-alloy/GaSb junctions. The alloy/n-GaSb contact has large Schottky barrier height (ϕ{sub B}) for electrons, ∼0.6 eV, and low ϕ{sub B} for holes, ∼0.2 eV, which enable us to realize high on/off ratio in pMOSFETs. We have found that the Ni-GaSb/GaSb Schottky junction shows the best electrical characteristics with ideal factor (n) of 1.1 and on-current/off-current ratio (I{sub on}/I{sub off}) of ∼10{sup 4} among the metal-GaSb alloy/GaSb junctions evaluated in the present study. These electrical properties are also superior to those of a p{sup +}-n diode fabricated by Be ion implantation with activation annealing at 350 °C. As a result, the Ni-GaSb alloy can be regarded as one of the best materials to realize metal S/D in GaSb pMOSFETs.« less
Influence of GaAs surface termination on GaSb/GaAs quantum dot structure and band offsets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zech, E. S.; Chang, A. S.; Martin, A. J.
2013-08-19
We have investigated the influence of GaAs surface termination on the nanoscale structure and band offsets of GaSb/GaAs quantum dots (QDs) grown by molecular-beam epitaxy. Transmission electron microscopy reveals both coherent and semi-coherent clusters, as well as misfit dislocations, independent of surface termination. Cross-sectional scanning tunneling microscopy and spectroscopy reveal clustered GaSb QDs with type I band offsets at the GaSb/GaAs interfaces. We discuss the relative influences of strain and QD clustering on the band offsets at GaSb/GaAs interfaces.
NASA Astrophysics Data System (ADS)
Kajikawa, Y.; Nishigaichi, M.; Tenma, S.; Kato, K.; Katsube, S.
2018-04-01
InGaAs layers were grown by molecular-beam epitaxy on nominal and vicinal Ge(111) substrates with inserting GaSb buffer layers. High-resolution X-ray diffraction using symmetric 333 and asymmetric 224 reflections was employed to analyze the crystallographic properties of the grown layers. By using the two reflections, we determined the lattice constants (the unit cell length a and the angle α between axes) of the grown layers with taking into account the rhombohedral distortion of the lattices of the grown layers. This allowed us the independent determination of the strain components (perpendicular and parallel components to the substrate surface, ε⊥ and ε//) and the composition x of the InxGa1-xAs layers by assuming the distortion coefficient D, which is defined as the ratio of ε⊥ against ε//. Furthermore, the twin ratios were determined for the GaSb and the InGaAs layers by comparing asymmetric 224 reflections from the twin domain with that from the normal domain of the layers. As a result, it has been shown that the twin ratio in the InGaAs layer can be decreased to be less than 0.1% by the use of the vicinal substrate together with annealing the GaSb buffer layer during the growth interruption before the InGaAs overgrowth.
NASA Astrophysics Data System (ADS)
Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt
2018-01-01
This work presents the effects of in situ thermal annealing under antimony overpressure on the structural, electrical, and optical properties of III-Sb (GaSb and InSb) grown on (100) GaAs using an interfacial misfit array to accommodate the lattice mismatch. Both the sample growth and the in situ thermal annealing were carried out in the in the molecular beam epitaxy system, and the temperature of the as-grown sample was increased to exceed its growth temperature during the annealing. X-ray diffraction demonstrates nearly fully relaxed as-grown and annealed III-Sb layers. The optimal annealing temperatures and durations are for 590 °C, 5 min for GaSb and 420 °C, 15 min for InSb, respectively. In situ annealing decreased the surface roughness of the III-Sb layers. X-ray reciprocal space mapping and transmission electron microscopy observation showed stable interfacial misfit arrays, and no interfacial diffusion occurred in the annealed III-Sb layers. A Hall measurement of unintentionally doped III-Sb layers showed greater carrier mobility and a lower carrier concentration in the annealed samples at both 77 and 300 K. In situ annealing improved the photoresponsivity of GaSb and InSb photoconductors grown on GaAs in the near- and mid-infrared ranges, respectively.
Semiconductor/dielectric interface engineering and characterization
NASA Astrophysics Data System (ADS)
Lucero, Antonio T.
The focus of this dissertation is the application and characterization of several, novel interface passivation techniques for III-V semiconductors, and the development of an in-situ electrical characterization. Two different interface passivation techniques were evaluated. The first is interface nitridation using a nitrogen radical plasma source. The nitrogen radical plasma generator is a unique system which is capable of producing a large flux of N-radicals free of energetic ions. This was applied to Si and the surface was studied using x-ray photoelectron spectroscopy (XPS). Ultra-thin nitride layers could be formed from 200-400° C. Metal-oxide-semiconductor capacitors (MOSCAPs) were fabricated using this passivation technique. Interface nitridation was able to reduce leakage current and improve the equivalent oxide thickness of the devices. The second passivation technique studied is the atomic layer deposition (ALD) diethylzinc (DEZ)/water treatment of sulfur treated InGaAs and GaSb. On InGaAs this passivation technique is able to chemically reduce higher oxidation states on the surface, and the process results in the deposition of a ZnS/ZnO interface passivation layer, as determined by XPS. Capacitance-voltage (C-V) measurements of MOSCAPs made on p-InGaAs reveal a large reduction in accumulation dispersion and a reduction in the density of interfacial traps. The same technique was applied to GaSb and the process was studied in an in-situ half-cycle XPS experiment. DEZ/H2O is able to remove all Sb-S from the surface, forming a stable ZnS passivation layer. This passivation layer is resistant to further reoxidation during dielectric deposition. The final part of this dissertation is the design and construction of an ultra-high vacuum cluster tool for in-situ electrical characterization. The system consists of three deposition chambers coupled to an electrical probe station. With this setup, devices can be processed and subsequently electrically characterized without exposing the sample to air. This is the first time that such a system has been reported. A special air-gap C-V probe will allow top gated measurements to be made, allowing semiconductor-dielectric interfaces to be studied during device processing.
NASA Astrophysics Data System (ADS)
Jadaun, Priyamvada; Nair, Hari P.; Bank, Seth R.; Banerjee, Sanjay K.
2012-02-01
We present an ab-initio density functinal theory study of dilute-nitride GaSb. Adding dilute quantities of nitrogen causes rapid reduction in bandgap of GaSb (˜300 meV for 2% N). Due to this rapid reduction in bandgap, dilute-nitrides provide a pathway for extending the emission of GaSb based type-I diode lasers into the mid-infrared wavelength region (3-5 micron). In this study we look at the effect of substitutional N impurity on the electronic properties of our system and compare it with the band-anticrossing model, a phenomenological model, which has been used to explain giant band bowing observed in dilute-nitride alloys. We also study the effect of Sb-N split interstitials which are known to be non-radiative recombination centers. Furthermore we also discuss the stability of the Sb-N split interstitial relative to substitutional nitrogen to determine if the split interstitials can be annihilated using post-growth annealing to improve the radiative lifetime of the material which essential for laser operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, D. P.; Som, T., E-mail: tsom@iopb.res.in; Kanjilal, A.
2014-07-21
Room temperature implantation of 60 keV Ar{sup +}-ions in GaSb to the fluences of 7 × 10{sup 16} to 3 × 10{sup 18} ions cm{sup −2} is carried out at two incidence angles, viz 0° and 60°, leading to formation of a nanoporous layer. As the ion fluence increases, patches grow on the porous layer under normal ion implantation, whereas the porous layer gradually becomes embedded under a rough top surface for oblique incidence of ions. Grazing incidence x-ray diffraction and cross-sectional transmission electron microscopy studies reveal the existence of nanocrystallites embedded in the ion-beam amorphized GaSb matrix up to the highest fluence used inmore » our experiment. Oxidation of the nanoporous layers becomes obvious from x-ray photoelectron spectroscopy and Raman mapping. The correlation of ion-beam induced structural modification with photoluminescence signals in the infrared region has further been studied, showing defect induced emission of additional peaks near the band edge of GaSb.« less
Gaining Insight into an Organization's Fixed Assets.
ERIC Educational Resources Information Center
Hardy, Elisabet
2003-01-01
Discusses issues related to school district implementation of June 2001 Government Accounting Standards Board (GASB) Statement 34 designed to change how schools report fixed assets. Includes planning for GASB implementation, conducting fixed-asset inventories, and making time for GASB reporting. (PKP)
GASB 35: The New Financial Reporting Requirements for Public College and Universities.
ERIC Educational Resources Information Center
Qayoumi, Mohammad H.
2001-01-01
Presents the basic financial reporting elements of the Governmental Accounting Standards Board (GASB-35) for public colleges and universities, including statements of net assets and cash flow reporting. The GASB-35's impact on facilities managers is discussed. (GR)
NASA Astrophysics Data System (ADS)
Kujala, J.; Segercrantz, N.; Tuomisto, F.; Slotte, J.
2014-10-01
We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude. We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.
Development of III-V p-MOSFETs with high-kappa gate stack for future CMOS applications
NASA Astrophysics Data System (ADS)
Nagaiah, Padmaja
As the semiconductor industry approaches the limits of traditional silicon CMOS scaling, non-silicon materials and new device architectures are gradually being introduced to improve Si integrated circuit performance and continue transistor scaling. Recently, the replacement of SiO2 with a high-k material (HfO2) as gate dielectric has essentially removed one of the biggest advantages of Si as channel material. As a result, alternate high mobility materials are being considered to replace Si in the channel to achieve higher drive currents and switching speeds. III-V materials in particular have become of great interest as channel materials, owing to their superior electron transport properties. However, there are several critical challenges that need to be addressed before III-V based CMOS can replace Si CMOS technology. Some of these challenges include development of a high quality, thermally stable gate dielectric/III-V interface, and improvement in III-V p-channel hole mobility to complement the n-channel mobility, low source/drain resistance and integration onto Si substrate. In this thesis, we would be addressing the first two issues i.e. the development high performance III-V p-channels and obtaining high quality III-V/high-k interface. We start with using the device architecture of the already established InGaAs n-channels as a baseline to understand the effect of remote scattering from the high-k oxide and oxide/semiconductor interface on channel transport properties such as electron mobility and channel electron concentration. Temperature dependent Hall electron mobility measurements were performed to separate various scattering induced mobility limiting factors. Dependence of channel mobility on proximity of the channel to the oxide interface, oxide thickness, annealing conditions are discussed. The results from this work will be used in the design of the p-channel MOSFETs. Following this, InxGa1-xAs (x>0.53) is chosen as channel material for developing p-channel MOSFETs. Band engineering, strain induced valence band splitting and quantum confinement is used to improve channel hole mobility. Experimental results on the Hall hole mobility is presented for InxGa1-xAs channels with varying In content, thickness of the quantum well and temperature. Then, high mobility InxGa 1-xAs heterostructure thus obtained are integrated with in-situ deposited high-k gate oxide required for high performance p-MOSFET and discuss the challenges associated with the gated structure and draw conclusions on this material system. Antimonide based channel materials such as GaSb and InxGa 1-xSb are explored for III-V based p-MOSFETs in last two chapters. Options for Sb based strained QW channels to obtain maximum hole mobility by varying the strain, channel and barrier material, thickness of the layers etc. is discussed followed by the growth of these Sb channels on GaAs and InP substrates using molecular beam epitaxy. The physical properties of the structures such as the heterostructure quality, alloy content and surface roughness are examined via TEM, XRD and AFM. Following this, electrical measurement results on Hall hole mobility is presented. The effect of strain, alloy content, temperature and thickness on channel mobility and concentration is reported. Development of GaSb n- and p-MOS capacitor structures with in-situ deposited HfO2 gate oxide dielectric using in-situ deposited amorphous Si (a-Si) interface passivation layer (IPL) to improve the interface quality of high-k oxide and (In)GaSb surface is presented. In-situ deposited gate oxides such as Al2O3 and combination oxide of Al 2O3 and HfO2 with and without the a-Si IPL are also explored as alternate gate dielectrics. Subsequently, MOS capacitor structures using buried InGaSb QWs are demonstrated. Development of an inversion type bulk GaSb with implanted source-drain contacts and in-situ deposited gate oxide HfO2 gate oxide is discussed. The merits of biaxial compressive strain is demonstrated on strained surface and buried channel In0.36 Ga0.64Sb QW MOSFETs with thin top barrier and in-situ deposited a-Si IPL and high-k HfO2 as well as combination Al 2O3+HfO2 gate stacks and ex-situ atomic layer deposited (ALD) combination gate oxide and with thin 2 nm InAs surface passivation layer is presented. Finally, summary of the salient results from the different chapters is provided with recommendations for future research.
What's New: Update on GASB and Accounting Standards.
ERIC Educational Resources Information Center
Marrone, Robert S.; Scharle, Robert E.
1996-01-01
Updates the Governmental Accounting Standards Board (GASB) statements, which pronounce upon and provide guidance in accounting and financial reporting for state and local governmental entities. Describes the development of GASB's governmental finance-reporting model project and identifies five components of internal control. One figure and two…
NASA Astrophysics Data System (ADS)
Zhao, Hua-Jun
2016-05-01
Two new quaternary sulfides La2Ga0.33SbS5 and Ce4GaSbS9 have been prepared from stoichiometric elements at 1223 K in an evacuated silica tube. Interestingly, La2Ga0.33SbS5 crystallizes in the centrosymmetric structure, while Ce4GaSbS9 crystallizes in the noncentrosymmetric structure, which show obvious size effects of lanthanides on the crystal structures of these two compounds. Ce4GaSbS9 belongs to RE4GaSbS9 (RE=Pr, Nd, Sm, Gd-Ho) structure type with a=13.8834(9) Å, b=14.3004(11) Å, c=14.4102(13) Å, V=2861.0(4) Å3. The structure features infinite chains of [Ga2Sb2S1110-]∞ propagating along a direction separated by Ce3+ cations and S2- anions. La2Ga0.33SbS5 adopts the family of La4FeSb2S10-related structure with a=7.5193(6) Å, c=13.4126(17) Å, V=758.35(13) Å3. Its structure is built up from the alternate stacking of La/Sb/S and La/Ga/S 2D building blocks. The La/Sb/S slabs consist of teeter-totter chains of Sb1S4 seesaws, which are connected via sharing the apexes of μ4-S1. Moreover, La1 is positionally disordered with Sb1 and stabilized in a bicapped trigonal prismatic coordination sphere. Between these La/Sb/S slabs, La2S8 square antiprisms are connected via edge-sharing into 2D building blocks, creating tetrahedral sites partially occupied by the Ga1 atoms. UV/Vis diffuse reflectance spectroscopy study shows that the optical gap of La2Ga0.33SbS5 is about 1.76 eV.
Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Hai-Ming; Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083; Liang, Baolai, E-mail: bliang@cnsi.ucla.edu
2015-03-09
We investigate the photoluminescence (PL) properties of a hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot (QD) structure grown in a GaAs matrix by molecular beam epitaxy. This hybrid QD structure exhibits more intense PL with a broader spectral range, compared with control samples that contain only InAs or GaSb QDs. This enhanced PL performance is attributed to additional electron and hole injection from the type-I InAs QDs into the adjacent type-II GaSb QDs. We confirm this mechanism using time-resolved and power-dependent PL. These hybrid QD structures show potential for high efficiency QD solar cell applications.
ERIC Educational Resources Information Center
Hardy, Elisabet
2002-01-01
Describes several options for school districts to comply with Governmental Accounting Standards Board (GASB) Statements 34 and 35 that require school districts to inventory their fixed assets and measure the value of these assets over their estimated life for inclusion in their financial statements. Information about GASB Statements 34 and 35 is…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kujala, J.; Segercrantz, N.; Tuomisto, F.
2014-10-14
We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude.more » We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.« less
NASA Technical Reports Server (NTRS)
Fan, W. C.; Zborowski, J. T.; Golding, T. D.; Shih, H. D.
1992-01-01
Reflection high-energy electron diffraction (RHEED) during molecular beam epitaxy is used to study the growth and interface formation of the Ga(1-x)In(x)Sb/InAs (x is not greater than 0.4) strained-layer superlattices (SLSs) on GaSb(100) substrates. A number of surface atomic structures were observed in the growth of the SLS: a (1 x 3) phase from the InAs epilayer surface, a (2 x 3) phase, a (2 x 4) phase, and diffuse (1 x 1)-like phases from the InAs epilayer surface. It is suggested that the long-range order quality of the interface of Ga(1-x)In(x)Sb on InAs may be better than that of the interface of InAs on Ga(1-x)In(x)Sb, but the abruptness of the interfaces would still be compatible. The RHEED intensity variations in the formation of the interfaces are discussed in terms of interface chemical reactions.
NASA Astrophysics Data System (ADS)
Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo
2015-01-01
We demonstrate a high-efficiency solar-thermophotovoltaic system (STPV) using a monolithic, planar, and spectrally selective absorber/emitter. A complete STPV system using gallium antimonide (GaSb) cells was designed and fabricated to conduct power generation tests. To produce a high-efficiency STPV, it is important to match the thermal radiation spectrum with the sensitive region of the GaSb cells. Therefore, to reach high temperatures with low incident power, a planar absorber/emitter is incorporated for controlling the thermal radiation spectrum. This multilayer coating consists of thin-film tungsten sandwiched by yttria-stabilized zirconia. The system efficiency is estimated to be 16% when accounting for the optical properties of the fabricated absorber/emitter. Power generation tests using a high-concentration solar simulator show that the absorber/emitter temperature peaks at 1640 K with an incident power density of 45 W/cm2, which can be easily obtained by low-cost optics such as Fresnel lenses. The conversion efficiency became 23%, exceeding the Shockley-Queisser limit for GaSb, with a bandgap of 0.67 eV. Furthermore, a total system efficiency of 8% was obtained with the view factor between the emitter and the cell assumed to be 1.
NASA Astrophysics Data System (ADS)
Martinez, Rebecca; Tybjerg, Marius; Smith, Brian; Mowbray, Andrew; Furlong, Mark J.
2015-06-01
Gallium antimonide (GaSb) is an important Group III-V compound semiconductor for infra-red (IR) photodetectors used in sensing and imaging applications. Operating in the mid (3-5 μm) to long wavelength region (8-12 μm) of the IR spectrum, the application of GaSb detectors is extensive, encompassing military, industrial, medical and environmental uses. A significant developing technology for GaSb based detectors are those effective in the very long wavelength (VLWIR) infra-red region (13 μm and beyond) which are advantageous in space and stealth based applications which necessitate high operating temperatures. In this study different doping levels of GaSb are considered and the IR transmission spectra examined by Fourier Transform IR analysis. GaSb n-type doped material consistent in delivering long to very long wavelength transmission is demonstrated which is preferable to p-type material which requires backside thinning for IR transmission. Czochralski (Cz) grown GaSb wafers are assessed for electrical quality and uniformity results, on Hall mobility, resistivity and carrier level reported. Results of this work will establish the carrier concentration that ultimately results in high transparency substrates. In summary enhancements in IR transmission will be shown to be achieved in GaSb bulk crystals by tellurium (Te) compensation.
NASA Astrophysics Data System (ADS)
Kakkerla, Ramesh Kumar; Anandan, Deepak; Hsiao, Chih-Jen; Yu, Hung Wei; Singh, Sankalp Kumar; Chang, Edward Yi
2018-05-01
We demonstrate the growth of vertically aligned Au-free InAs and InAs/GaSb heterostructure nanowires on Si (1 1 1) substrate by Metal Organic Chemical Vapor Deposition (MOCVD). The effect of growth temperature on the morphology and growth rate of the InAs and InAs/GaSb heterostructure nanowires (NWs) is investigated. Control over diameter and length of the InAs NWs and the GaSb shell thickness was achieved by using growth temperature. As the GaSb growth temperature increase, GaSb radial growth rate increases due to the increase in alkyl decomposition at the substrate surface. Diffusivity of the adatoms increases as the GaSb growth temperature increase which results in tapered GaSb shell growth. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) measurements revealed that the morphology and shell thickness can be tuned by the growth temperature. Electron microscopy also shows the formation of GaSb both in radial and axial directions outside the InAs NW core can be controlled by the growth temperature. This study demonstrates the control over InAs NWs growth and the GaSb shell thickness can be achieved through proper growth temperature control, such technique is essential for the growth of nanowire for future nano electronic devices, such as Tunnel FET.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... change to adopt Section 14 to Schedule A of the FINRA By- Laws to establish an accounting support fee to adequately fund the annual budget of the Governmental Accounting Standards Board (``GASB''). The proposed... fee to adequately fund the annual budget of the GASB (``GASB Accounting Support Fee''), and rules and...
Sub-kHz Linewidth GaSb Semiconductor Diode Lasers Operating Near 2 Micrometers
NASA Technical Reports Server (NTRS)
Bagheri, Mahmood; Briggs, Ryan M.; Frez, Clifford; Ksendzov, Alexander; Forouhar, Siamak
2012-01-01
We report on the phase noise properties of DFB lasers operating near 2.0 microns. Measured noise spectra indicate intrinsic laser linewidths below 1 kHz. An effective linewidth of less than 200 kHz for 5 ms measurement times is estimated.
Performance evaluation of thermophotovoltaic GaSb cell technology in high temperature waste heat
NASA Astrophysics Data System (ADS)
Utlu, Z.; Önal, B. S.
2018-02-01
In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at high temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The high temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.
Garner, M; Grossman, W
1991-02-01
The Financial Accounting Foundation's (FAF's) November 1989 decision to uphold the 1984 jurisdictional arrangement between the Financial Accounting Standards Board (FASB) and the Government Accounting Standards Board (GASB) leaves little doubt that the healthcare industry will now be subject to two sets of accounting standards. The FAF's decision created a distinction between the accounting practices of government-owned hospitals and non-hospital governmental entities and their adherence to standards set by FASB, GASB, and the American Institute of Certified Public Accountants. A governmental healthcare organization should carefully determine which accounting rules it follows and remain attentive to further GASB developments.
2013-04-12
absence of Sb-oxides, a reduction in elemental Sb, and an increase in the Ga2O3 content at the interface. The use of an in situ hydrogen...elemental Sb, and an increase in the Ga2O3 content at the interface. The use of an in situ hydrogen plasma pre-treatment eliminates the need for wet...the +1 state (Ga2O) and the +3 state ( Ga2O3 ), with peak positions found at 530.5 eV (Sb2O4), 20.1 eV (Ga2O), and 20.7 eV ( Ga2O3 ) [11,18]. The AFM image
Examination of thermophotovoltaic GaSb cell technology in low and medium temperatures waste heat
NASA Astrophysics Data System (ADS)
Utlu, Z.; Önal, B. S.
2018-02-01
In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at low and medium temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The low and medium temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.
Remote p-type Doping in GaSb/InAs Core-shell Nanowires
Ning, Feng; Tang, Li-Ming; Zhang, Yong; Chen, Ke-Qiu
2015-01-01
By performing first-principles calculation, we investigated the electronic properties of remotely p-type doping GaSb nanowire by a Zn-doped InAs shell. The results show that for bare zinc-blende (ZB) [111] GaSb/InAs core-shell nanowire the Zn p-type doped InAs shell donates free holes to the non-doped GaSb core nanowire without activation energy, significantly increasing the hole density and mobility of nanowire. For Zn doping in bare ZB [110] GaSb/InAs core-shell nanowire the hole states are compensated by surface states. We also studied the behaviors of remote p-type doing in two-dimensional (2D) GaSb/InAs heterogeneous slabs, and confirmed that the orientation of nanowire side facet is a key factor for achieving high efficient remote p-type doping. PMID:26028535
High power cascaded mid-infrared InAs/GaSb light emitting diodes on mismatched GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provence, S. R., E-mail: sydney-provence@uiowa.edu; Ricker, R.; Aytac, Y.
2015-09-28
InAs/GaSb mid-wave, cascaded superlattice light emitting diodes are found to give higher radiance when epitaxially grown on mismatched GaAs substrates compared to lattice-matched GaSb substrates. Peak radiances of 0.69 W/cm{sup 2}-sr and 1.06 W/cm{sup 2}-sr for the 100 × 100 μm{sup 2} GaSb and GaAs-based devices, respectively, were measured at 77 K. Measurement of the recombination coefficients shows the shorter Shockley-Read-Hall recombination lifetime as misfit dislocations for growth on GaAs degrade the quantum efficiency only at low current injection. The improved performance on GaAs was found to be due to the higher transparency and improved thermal properties of the GaAs substrate.
Maina, Theodosia; Bergsma, Hendrik; Kulkarni, Harshad R; Mueller, Dirk; Charalambidis, David; Krenning, Eric P; Nock, Berthold A; de Jong, Marion; Baum, Richard P
2016-05-01
Gastrin-releasing peptide receptors (GRPR) represent attractive targets for tumor diagnosis and therapy because of their overexpression in major human cancers. Internalizing GRPR agonists were initially proposed for prolonged lesion retention, but a shift of paradigm to GRPR antagonists has recently been made. Surprisingly, radioantagonists, such as [(99m)Tc]DB1 ((99m)Tc-N4'-DPhe(6),Leu-NHEt(13)]BBN(6-13)), displayed better pharmacokinetics than radioagonists, in addition to their higher inherent biosafety. We introduce here [(68)Ga]SB3, a [(99m)Tc]DB1 mimic-carrying, instead of the (99m)Tc-binding tetraamine, the chelator DOTA for labeling with the PET radiometal (68)Ga. Competition binding assays of SB3 and [(nat)Ga]SB3 were conducted against [(125)I-Tyr(4)]BBN in PC-3 cell membranes. Blood samples collected 5 min postinjection (pi) of the [(67)Ga]SB3 surrogate in mice were analyzed using high-performance liquid chromatography (HPLC) for degradation products. Likewise, biodistribution was performed after injection of [(67)Ga]SB3 (37 kBq, 100 μL, 10 pmol peptide) in severe combined immunodeficiency (SCID) mice bearing PC-3 xenografts. Eventually, [(68)Ga]SB3 (283 ± 91 MBq, 23 ± 7 nmol) was injected into 17 patients with breast (8) and prostate (9) cancer. All patients had disseminated disease and had received previous therapies. PET/CT fusion images were acquired 60-115 min pi. SB3 and [(nat)Ga]SB3 bound to the human GRPR with high affinity (IC50: 4.6 ± 0.5 nM and 1.5 ± 0.3 nM, respectively). [(67)Ga]SB3 displayed good in vivo stability (>85 % intact at 5 min pi). [(67)Ga]SB3 showed high, GRPR-specific and prolonged retention in PC-3 xenografts (33.1 ± 3.9%ID/g at 1 h pi - 27.0 ± 0.9%ID/g at 24 h pi), but much faster clearance from the GRPR-rich pancreas (≈160%ID/g at 1 h pi to <17%ID/g at 24 h pi) in mice. In patients, [(68)Ga]SB3 elicited no adverse effects and clearly visualized cancer lesions. Thus, 4 out of 8 (50 %) breast cancer and 5 out of 9 (55 %) prostate cancer patients showed pathological uptake on PET/CT with [(68)Ga]SB3. [(67)Ga]SB3 showed excellent pharmacokinetics in PC-3 tumor-bearing mice, while [(68)Ga]SB3 PET/CT visualized lesions in about 50 % of patients with advanced and metastasized prostate and breast cancer. We expect imaging with [(68)Ga]SB3 to be superior in patients with primary breast or prostate cancer.
In-situ crystallization of GeTe\\GaSb phase change memory stacked films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velea, A., E-mail: alin.velea@psi.ch; National Institute of Materials Physics, RO-077125 Magurele, Ilfov; Borca, C. N.
2014-12-21
Single and double layer phase change memory structures based on GeTe and GaSb thin films were deposited by pulsed laser deposition (PLD). Their crystallization behavior was studied using in-situ synchrotron techniques. Electrical resistance vs. temperature investigations, using the four points probe method, showed transition temperatures of 138 °C and 198 °C for GeTe and GaSb single films, respectively. It was found that after GeTe crystallization in the stacked films, Ga atoms from the GaSb layer diffused in the vacancies of the GeTe crystalline structure. Therefore, the crystallization temperature of the Sb-rich GaSb layer is decreased by more than 30 °C. Furthermore, at 210 °C,more » the antimony excess from GaSb films crystallizes as a secondary phase. At higher annealing temperatures, the crystalline Sb phase increased on the expense of GaSb crystalline phase which was reduced. Extended X-ray absorption fine structure (EXAFS) measurements at the Ga and Ge K-edges revealed changes in their local atomic environments as a function of the annealing temperature. Simulations unveil a tetrahedral configuration in the amorphous state and octahedral configuration in the crystalline state for Ge atoms, while Ga is four-fold coordinated in both as-deposited and annealed samples.« less
Enhanced Hole Mobility and Density in GaSb Quantum Wells
2013-01-01
Keywords: Molecular beam epitaxy Quantum wells Semiconducting III–V materials Field-effect transistors GaSb a b s t r a c t Modulation-doped quantum wells...QWs) of GaSb clad by AlAsSb were grown by molecular beam epitaxy on InP substrates. By virtue of quantum confinement and compressive strain of the...heterostructures studied here are grown by molecular beam epitaxy (MBE) on semi-insulating (001) InP substrates using a Riber Compact 21T MBE system. A cross
Assessing Risk with GASB Statement No. 3.
ERIC Educational Resources Information Center
Wood, Venita M.; Scott, Bob
1987-01-01
Discusses a Government Accounting Standards Board (GASB) publication designed to provide financial statement users with information to assess a government's actual and future deposit and investment market and credit risk. (MLF)
Electronic and optical properties of GaSb:N from first principles
NASA Astrophysics Data System (ADS)
Jadaun, Priyamvada; Nair, Hari; Lordi, Vincenzo; Bank, Seth; Banerjee, Sanjay
2014-03-01
We present an ab-initio study of dilute nitride III-Vs, focusing on dilute nitride GaSb (GaSb:N). GaSb:N displays promise towards realization of optoelectronic devices accessing the mid-infrared wavelength regime. Theoretical and experimental results on its electronic and optical properties are however few. To address this, we present a first principles, density functional theory study using the hybrid HSE06 exchange-correlation functional of GaSb doped with 1.6% nitrogen. We conduct a comparative study on GaAs:N, also with 1.6% nitrogen mole fraction, and find that GaSb:N has a smaller band gap and displays more band gap bowing than GaAs:N. In addition we examine the orbital character of the bands, finding the lowest conduction band to be quasi-delocalized, with a large N-3s contribution. At high concentrations, the N atoms interact via the host matrix, forming a dispersive band of their own which governs optoelectronic properties and dominates band gap bowing. While this band drives the optical and electronic properties of GaSb:N, its physics is not captured by traditional models for dilute-nitrides. We thus propose that a complete theory of dilute-nitrides should incorporate orbital character examination, especially at high N concentrations. Texas Advanced Computing Center (TACC), U.S. Department of Energy, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
The effects of electron and proton radiation on GaSb infrared solar cells
NASA Technical Reports Server (NTRS)
Gruenbaum, P. E.; Avery, J. E.; Fraas, L. M.
1991-01-01
Gallium antimonide (GaSb) infrared solar cells were exposed to 1 MeV electrons and protons up to fluences of 1 times 10(exp 15) cm (-2) and 1 times 10(exp 12) cm (-2) respectively. In between exposures, current voltage and spectral response curves were taken. The GaSb cells were found to degrade slightly less than typical GaAs cells under electron irradiation, and calculations from spectral response curves showed that the damage coefficient for the minority carrier diffusion length was 3.5 times 10(exp 8). The cells degraded faster than GaAs cells under proton irradiation. However, researchers expect the top cell and coverglass to protect the GaSb cell from most damaging protons. Some annealing of proton damage was observed at low temperatures (80 to 160 C).
NASA Astrophysics Data System (ADS)
Steenbergen, Elizabeth H.
Infrared photodetectors, used in applications for sensing and imaging, such as military target recognition, chemical/gas detection, and night vision enhancement, are predominantly comprised of an expensive II-VI material, HgCdTe. III-V type-II superlattices (SLs) have been studied as viable alternatives for HgCdTe due to the SL advantages over HgCdTe: greater control of the alloy composition, resulting in more uniform materials and cutoff wavelengths across the wafer; stronger bonds and structural stability; less expensive substrates, i.e., GaSb; mature III-V growth and processing technologies; lower band-to-band tunneling due to larger electron effective masses; and reduced Auger recombination enabling operation at higher temperatures and longer wavelengths. However, the dark current of InAs/Ga1-xInxSb SL detectors is higher than that of HgCdTe detectors and limited by Shockley-Read-Hall (SRH) recombination rather than Auger recombination. This dissertation work focuses on InAs/InAs1-xSbx SLs, another promising alternative for infrared laser and detector applications due to possible lower SRH recombination and the absence of gallium, which simplifies the SL interfaces and growth processes. InAs/InAs1-xSbx SLs strain-balanced to GaSb substrates were designed for the mid- and long-wavelength infrared (MWIR and LWIR) spectral ranges and were grown using MOCVD and MBE by various groups. Detailed characterization using high-resolution x-ray diffraction, atomic force microscopy, photoluminescence (PL), and photoconductance revealed the excellent structural and optical properties of the MBE materials. Two key material parameters were studied in detail: the valence band offset (VBO) and minority carrier lifetime. The VBO between InAs and InAs 1-xSbx strained on GaSb with x = 0.28--0.41 was best described by Qv = DeltaEv/DeltaE g = 1.75 +/- 0.03. Time-resolved PL experiments on a LWIR SL revealed a lifetime of 412 ns at 77 K, one order of magnitude greater than that of InAs/Ga1-xInxSb LWIR SLs due to less SRH recombination. MWIR SLs also had 100's of ns lifetimes that were dominated by radiative recombination due to shorter periods and larger wave function overlaps. These results allow InAs/InAs1-xSbx SLs to be designed for LWIR photodetectors with minority carrier lifetimes approaching those of HgCdTe, lower dark currents, and higher operating temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrova, Olga; Balakrishnan, Ganesh
2017-02-24
The etch rates of NH 4OH:H 2O 2 and C 6H 8O 7:H 2O 2 for GaAs and GaSb have been investigated to develop a selective etch for GaAs substrates and to isolate GaSb epilayers grown on GaAs. The NH 4OH:H 2O 2 solution has a greater etch rate differential for the GaSb/GaAs material system than C 6H 8O 7:H 2O 2 solution. The selectivity of NH 4OH:H 2O 2 for GaAs/GaSb under optimized etch conditions has been observed to be as high as 11471 ± 1691 whereas that of C 6H 8O 7:H 2O 2 has been measured upmore » to 143 ± 2. The etch contrast has been verified by isolating 2 μm thick GaSb epi-layers that were grown on GaAs substrates. GaSb membranes were tested and characterized with high-resolution X-Ray diffraction (HR-XRD) and atomic force microscopy (AFM).« less
Space- and Ground-Based Crystal Growth Using a Baffle (CGB)
NASA Technical Reports Server (NTRS)
Ostrogorsky, A. G.; Marin, C.; Peignier, T.; Duffar, T.; Volz, M.; Jeter, L.; Luz, P.
2001-01-01
The composition of semiconductor crystals produced in space by conventional melt-growth processes (directional solidification and zone melting) is affected by minute levels of residual micro-acceleration, which causes natural convection. The residual acceleration has random magnitude, direction and frequency. Therefore, the velocity field in the melt is apriori unpredictable. As a result, the composition of the crystals grown in space can not be predicted and reproduced. The method for directional solidification with a submerged heater or a baffle was developed under NASA sponsorship. The disk-shaped baffle acts as a partition, creating a small melt zone at the solid-liquid interface. As a result, in ground based experiment the level of buoyancy-driven convection at the interface is significantly reduced. In several experiments with Te-doped GaSb, nearly diffusion controlled segregation was achieved.
Calculation of Vertical and Horizontal Mobilities in InAs/GaSb Superlattices (Postprint)
2011-10-13
width 2a and GaSb having width 2b, with the period = 2a + 2b. For energies near the band gap edges, the carrier wave function can be approximated by a...online) Electron energy bands along the growth direction for three combinations of InAs/ GaSb layer widths. For typical carrier densities, at low...Fermi energies , parallel masses, and band gaps from the 8×8 EFA model. Sheet carrier Calculated Measured Calculated InAs GaSb concentration per period
Low temperature Zn diffusion for GaSb solar cell structures fabrication
NASA Technical Reports Server (NTRS)
Sulima, Oleg V.; Faleev, Nikolai N.; Kazantsev, Andrej B.; Mintairov, Alexander M.; Namazov, Ali
1995-01-01
Low temperature Zn diffusion in GaSb, where the minimum temperature was 450 C, was studied. The pseudo-closed box (PCB) method was used for Zn diffusion into GaAs, AlGaAs, InP, InGaAs and InGaAsP. The PCB method avoids the inconvenience of sealed ampoules and proved to be simple and reproducible. The special design of the boat for Zn diffusion ensured the uniformality of Zn vapor pressure across the wafer surface, and thus the uniformity of the p-GaSb layer depth. The p-GaSb layers were studied using Raman scattering spectroscopy and the x-ray rocking curve method. As for the postdiffusion processing, an anodic oxidation was used for a precise thinning of the diffused GaSb layers. The results show the applicability of the PCB method for the large-scale production of the GaSb structures for solar cells.
Self-organized MBE growth of II VI epilayers on patterned GaSb substrates
NASA Astrophysics Data System (ADS)
Wissmann, H.; Tran Anh, T.; Rogaschewski, S.; von Ortenberg, M.
1999-05-01
We report on the self-organized MBE growth of II-VI epilayers on patterned and unpatterned GaSb substrates resulting in quantum wires and quantum wells, respectively. The HgSe : Fe quantum wires were grown on (0 0 1)GaSb substrates with a buffer of lattice-matched ZnTe 1- xSe x. Due to the anisotropic growth of HgSe on the A-oriented stripes roof-like overgrowth with a definite ridge was obtained. Additional Fe doping in the direct vicinity of the ridge results in a highly conductive quantum wire.
Strain Engineering of Epitaxially Transferred, Ultrathin Layers of III-V Semiconductor on Insulator
2011-01-01
The structure of the source wafer is shown schematically in Fig. 2a, with both InAs and AlGaSb layers coherently strained to the GaSb 001...is due to the surface plasmon-LO phonon FIG. 2. Color online a The structure of GaSb /AlGaSb/InAs source wafer with an assumed strain state for...insulator layers obtained from an epitaxial transfer process is studied. The as-grown InAs epilayer 10–20 nm thick on the GaSb /AlGaSb source wafer has the
NASA Astrophysics Data System (ADS)
El Kazzi, S.; Alian, A.; Hsu, B.; Verhulst, A. S.; Walke, A.; Favia, P.; Douhard, B.; Lu, W.; del Alamo, J. A.; Collaert, N.; Merckling, C.
2018-02-01
In this work, we report on the growth of pseudomorphic and highly doped InAs(Si)/GaSb(Si) heterostructures on p-type (0 0 1)-oriented GaSb substrate and the fabrication and characterization of n+/p+ Esaki tunneling diodes. We particularly study the influence of the Molecular Beam Epitaxy shutter sequences on the structural and electrical characteristics of InAs(Si)/GaSb(Si) Esaki diodes structures. We use real time Reflection High Electron Diffraction analysis to monitor different interface stoichiometry at the tunneling interface. With Atomic Force Microscopy, X-ray diffraction and Transmission Electron Microscopy analyses, we demonstrate that an "InSb-like" interface leads to a sharp and defect-free interface exhibiting high quality InAs(Si) crystal growth contrary to the "GaAs-like" one. We then prove by means of Secondary Ion Mass Spectroscopy profiles that Si-diffusion at the interface allows the growth of highly Si-doped InAs/GaSb diodes without any III-V material deterioration. Finally, simulations are conducted to explain our electrical results where a high Band to Band Tunneling (BTBT) peak current density of Jp = 8 mA/μm2 is achieved.
The effects of the initial stages of native-oxide formation on the surface properties of GaSb (001)
NASA Astrophysics Data System (ADS)
Bermudez, V. M.
2013-07-01
Atomically clean surfaces of n-type GaSb (001) have been prepared by a combination of ex-situ wet-chemical treatment in HCl and in-situ annealing in a flux of H atoms in ultra-high vacuum (UHV). The surfaces are exposed to "excited" O2 and studied using primarily x-ray photoelectron spectroscopy. Low O2 exposures, up to ˜3 × 103 Langmuirs (L), result in a partial passivation of electrically active defects as shown by a decrease in upward band bending. Adsorption of O2 in this exposure range appears to form mainly Ga+1 sites, with little or no indication of Ga+3, and saturates at an O coverage of ˜0.2-0.3 monolayers. For exposures of ˜104 L or higher, oxidation occurs through insertion into Ga-Sb bonds as indicated by the onset of Ga+3 as well as of Sb+4 and/or Sb+5 together with the appearance of an O 1s feature. Defects resulting from this process cause a reversal of the band-bending change seen for smaller exposures. Data obtained for the composition of a native oxide formed in situ in UHV are compared with those for a "practical" surface produced by processing under ambient conditions. These results suggest an optimum procedure for forming a Ga2O3 layer prior to the growth by atomic layer deposition of an Al2O3 layer.
NASA Astrophysics Data System (ADS)
Thiet, Duong Van; Quang, Nguyen Van; Hai, Nguyen Thi Minh; Huong, Nguyen Thi; Cho, Sunglae; Tuan, Duong Anh; Dung, Dang Duc; Tam, Tran Van
2018-04-01
In this work, we report on the structural and thermoelectric properties of Sb2Te3 films deposited on GaSb(111) substrates by using molecular beam epitaxy. The effects of the growth temperature on the microstructure and thermoelectric properties of the films were investigated. The results show that Sb2Te3 films grow on GaSb(111) along (00l) axis normal to the substrate and have a hexagonal structure with a layer-by-layer growth mode in growth temperature range from 200 to 250 °C while at 175 and 300 °C, the films show an island growth mode. Te and Sb2Te3 phases coexist at a growth temperature of 175 °C. The films exhibit a metallic behavior for growth temperatures below 250 °C and a semiconductor behavior at 300 °C. By changing growth temperature, we were able to vary the carrier density from 9.96×1018 to 4.55×1019 cm -3. At room temperature, the Seebeck coefficients are 110, 146, and 138 μV/K for growth temperatures of 175, 200 and 250 °C, respectively, and a large value of the power factor 61.67 μW/cm-K2 is achieved for the film grown at 250 °C.
NASA Astrophysics Data System (ADS)
Nelson, George T.; Juang, Bor-Chau; Slocum, Michael A.; Bittner, Zachary S.; Laghumavarapu, Ramesh B.; Huffaker, Diana L.; Hubbard, Seth M.
2017-12-01
Growth of GaSb with low threading dislocation density directly on GaAs may be possible with the strategic strain relaxation of interfacial misfit arrays. This creates an opportunity for a multi-junction solar cell with access to a wide range of well-developed direct bandgap materials. Multi-junction cells with a single layer of GaSb/GaAs interfacial misfit arrays could achieve higher efficiency than state-of-the-art inverted metamorphic multi-junction cells while forgoing the need for costly compositionally graded buffer layers. To develop this technology, GaSb single junction cells were grown via molecular beam epitaxy on both GaSb and GaAs substrates to compare homoepitaxial and heteroepitaxial GaSb device results. The GaSb-on-GaSb cell had an AM1.5g efficiency of 5.5% and a 44-sun AM1.5d efficiency of 8.9%. The GaSb-on-GaAs cell was 1.0% efficient under AM1.5g and 4.5% at 44 suns. The lower performance of the heteroepitaxial cell was due to low minority carrier Shockley-Read-Hall lifetimes and bulk shunting caused by defects related to the mismatched growth. A physics-based device simulator was used to create an inverted triple-junction GaInP/GaAs/GaSb model. The model predicted that, with current GaSb-on-GaAs material quality, the not-current-matched, proof-of-concept cell would provide 0.5% absolute efficiency gain over a tandem GaInP/GaAs cell at 1 sun and 2.5% gain at 44 suns, indicating that the effectiveness of the GaSb junction was a function of concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Atwani, O.; Norris, S. A.; Ludwig, K.
In this study, several proposed mechanisms and theoretical models exist concerning nanostructure evolution on III-V semiconductors (particularly GaSb) via ion beam irradiation. However, making quantitative contact between experiment on the one hand and model-parameter dependent predictions from different theories on the other is usually difficult. In this study, we take a different approach and provide an experimental investigation with a range of targets (GaSb, GaAs, GaP) and ion species (Ne, Ar, Kr, Xe) to determine new parametric trends regarding nanostructure evolution. Concurrently, atomistic simulations using binary collision approximation over the same ion/target combinations were performed to determine parametric trends onmore » several quantities related to existing model. A comparison of experimental and numerical trends reveals that the two are broadly consistent under the assumption that instabilities are driven by chemical instability based on phase separation. Furthermore, the atomistic simulations and a survey of material thermodynamic properties suggest that a plausible microscopic mechanism for this process is an ion-enhanced mobility associated with energy deposition by collision cascades.« less
NASA Astrophysics Data System (ADS)
Guo, Jixiao; Jiao, Qing; He, Xiaolong; Guo, Hansong; Tong, Jianghao; Zhang, Zhihang; Jiang, Fuchao; Wang, Guoxiang
2018-03-01
Dy3+-doped Ga-Sb-S and Ga-Sb-S-PbI2 chalcohalide glasses were prepared by traditional melt quenching method. The effect of halide PbI2 on the physical and optical properties of Dy3+ ions was investigated. The density and ionic concentration of the host sample increased with the introduction of PbI2 halides, whereas the refractive index at 1.55 μm decreased. The Judd-Ofelt parameters showed that Ω2 increased in PbI2-modified glass, whereas the Ω6 value showed the opposite tendency. Infrared emission spectrum also showed that the intensity increased with PbI2 addition, and considerable enhancement at 2.8 μm was observed in the mid-infrared region. The halide PbI2 promoted the reduction of phonon energy of the host and the improvement of the laser pump efficiency, which led to the construction of optimized infrared glass materials for optical applications.
Major Changes in Governmental GAAP.
ERIC Educational Resources Information Center
Piotrowski, Craig L.
1988-01-01
The Governmental Accounting Standards Board (GASB) is the standard-setting body for establishing generally accepted accounting principles for school systems and all state and local governments. A brief summary of a statement prepared by GASB's staff outlines the proposed changes in school accounting and financial reporting. (MLF)
Other Postemployment Benefits: Coming Soon to Your Financial Statements.
ERIC Educational Resources Information Center
Alioto, Nicholas C. A.; Dickson, Roger J.
2002-01-01
Describes Governmental Accounting Standards Boards' (GASB) proposed new standards addressing the recognition, measurement, and reporting of other postemployment benefits (excluding pension benefits), the most common of which are health-care benefits. Includes a lengthy table of tentative GASB decisions on other postemployment benefits. Suggests…
Overlayer growth and electronic properties of the Bi/GaSb(110) interface
NASA Astrophysics Data System (ADS)
Gavioli, Luca; Betti, Maria Grazia; Casarini, Paolo; Mariani, Carlo
1995-06-01
The overlayer growth and electronic properties of the Bi/GaSb(110) interface and of the two-dimensional ordered (1×1)- and (1×2)-Bi layers have been investigated by complementary spectroscopic techniques (high-resolution electron-energy-loss, photoemission, and Auger spectroscopy). Bismuth forms an epitaxial monolayer, followed by island formation (Stranski-Krastanov growth mode) covering an average surface area of 40% at a nominal coverage of 4 ML. The (1×2)-symmetry stable structural phase, obtained after annealing at ~220 °C, corresponds to an average nominal Bi coverage of about 0.7 ML, suggesting an atomic geometry different from the epitaxial-continued layer structure. The disposal of Bi atoms in the (1×2) structure should build up an ``open'' layer, as the Ga-related surface exciton quenched in the (1×1) epitaxial monolayer is present in the (1×2) stable phase. The two symmetry phases are characterized by strong absorption features at 1 eV [(1×1)-Bi] and 0.54 eV [(1×2)-Bi], related to interband electronic transitions between Bi-induced electronic states. The major Bi-related occupied electronic levels, present in the valence band of the (1×1)- and (1×2)-Bi layer, have been detected by angle-integrated ultraviolet photoemission spectroscopy. Both the (1×1) and (1×2) phases show a metallic nature, with a low density of electronic states at the Fermi level. Schottky barrier heights of 0.20 and 0.14 eV are estimated for the epitaxial (1×1)- and (1×2)-symmetry stage, respectively, by analyzing the space-charge layer conditions through the study of the dopant-induced free-carrier plasmon in the GaSb substrate.
Suspended Ga2Se3 film and epitaxial Bi2Se3(221) on GaSb(001) by molecular-beam epitaxy
NASA Astrophysics Data System (ADS)
Li, Bin; Xia, Yipu; Ho, Wingkin; Xie, Maohai
2017-02-01
High-index Bi2Se3(221) has been successfully grown on partially suspended Ga2Se3(001). The Ga2Se3 layer was formed by selenation of GaSb(001) surface, which revealed a suspended structure supported only by some GaSb nano-pillars. Such a growth behavior may be beneficial for achieving heterostructures with large lattice misfits and suppressing the coupling between the substrate and deposit. Bi2Se3, a typical topological insulator, has been grown on Ga2Se3 along the high-index [221] direction despite of the large lattice mismatch.
GASB's New Financial Reporting Model: Implementation Project for School Districts.
ERIC Educational Resources Information Center
Bean, David; Glick, Paul
1999-01-01
In June 1999, the Governmental Accounting Standards Board (GASB) issued its statement on the structure of the basic financial reporting model for state and local governments. Explains the new financial reporting model and reviews the implementation issues that school districts will need to address. (MLF)
GASB and Its New Financial Reporting Model.
ERIC Educational Resources Information Center
Bean, David R.
1998-01-01
The Governmental Accounting Standards Board (GASB) recently crafted a new dual-perspective financial reporting model. In their tentative conclusions concerning model elements, the board started with the new management's discussion and analysis (MD&A) letter, continued with the new entrywide statements, and then moved to the more familiar…
75 FR 33306 - Notice of Meeting Location Change and Joint Meeting of FASAB and GASB
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-11
... meeting is to discuss: --Measurement Attributes, --Reporting Model, --Cost Accounting, and --Governance... FEDERAL ACCOUNTING STANDARDS ADVISORY BOARD Notice of Meeting Location Change and Joint Meeting of FASAB and GASB AGENCY: Federal Accounting Standards Advisory Board. ACTION: Notice. Board Action...
Unravelling the confusion caused by GASB, FASB accounting rules.
Duis, T E
1994-11-01
Separate GASB and FASB accounting and financial reporting rules for governmental healthcare providers are producing confusion. Among other problems, they reduce the usefulness of aggregated data about the healthcare industry. This article addresses the inconsistencies of the various reporting standards and identified problems they can cause.
NASA Astrophysics Data System (ADS)
Tayubi, Y. R.; Suhandi, A.; Samsudin, A.; Arifin, P.; Supriyatman
2018-05-01
Different approaches have been made in order to reach higher solar cells efficiencies. Concepts for multilayer solar cells have been developed. This can be realised if multiple individual single junction solar cells with different suitably chosen band gaps are connected in series in multi-junction solar cells. In our work, we have simulated and optimized solar cells based on the system mechanically stacked using computer simulation and predict their maximum performance. The structures of solar cells are based on the single junction GaAs, GaAs0.5Sb0.5 and GaSb cells. We have simulated each cell individually and extracted their optimal parameters (layer thickness, carrier concentration, the recombination velocity, etc), also, we calculated the efficiency of each cells optimized by separation of the solar spectrum in bands where the cell is sensible for the absorption. The optimal values of conversion efficiency have obtained for the three individual solar cells and the GaAs/GaAs0.5Sb0.5/GaSb tandem solar cells, that are: η = 19,76% for GaAs solar cell, η = 8,42% for GaAs0,5Sb0,5 solar cell, η = 4, 84% for GaSb solar cell and η = 33,02% for GaAs/GaAs0.5Sb0.5/GaSb tandem solar cell.
Tips for School Districts: GASB's New Fund Balance Standards
ERIC Educational Resources Information Center
Mead, Dean Michael
2010-01-01
In March 2009, the Governmental Accounting Standards Board (GASB) issued Statement No. 54, "Fund Balance Reporting and Governmental Fund Type Definitions." School districts that prepare financial reports based on generally accepted accounting principles are required to implement this standard no later than the first fiscal year that starts after…
It's Time to Implement GASB Statement 54
ERIC Educational Resources Information Center
Heinfeld, Gary; Nuehring, Bert
2012-01-01
In February 2009, the Governmental Accounting Standards Board (GASB) issued Statement No. 54, "Find Balance Reporting and Governmental Fund Type Definitions." This statement changes how a fund balance is classified on the face of the government fund financial statements and refines the definitions for government fund types. The statement's…
MOCVD growth and characterization of gallium nitride and gallium antimonide nanowires
NASA Astrophysics Data System (ADS)
Burke, Robert Alan
Group-III nitride and group-III antimonide thin films have been used for years in optoelectronic, high-speed applications, and high power/high temperature applications such as light emitting diodes (LEDs), microwave power devices, and thermovoltaics. In recent years, nanowires have gained interest due to the ability to take advantage of their geometry for increased light absorption and the synthesis of radial heterostructures. Several growth techniques have been explored for the growth of GaN and GaSb nanowires. Metal-organic chemical vapor deposition (MOCVD) is of particular interest due to its use in the commercial growth and fabrication of GaN-based and GaSb-based devices. The first part of this thesis focused on addressing several key issues related to the growth of GaN nanowires by MOCVD. Preliminary studies investigated the effect of growth conditions on GaN nanowire formation in a hot wall MOCVD reactor. A computational fluid dynamics-based model was developed to predict the gas phase velocity, temperature and concentration profiles in the reactor. The results demonstrate a strong dependence of GaN nanowire growth on substrate position within the reactor which is due to the rapid reaction and depletion of precursors near the gas inlet of the reactor. Ni-catalyzed GaN nanowire growth was observed to occur over the temperature range of 800-900°C, which is significantly lower than typical GaN thin film temperatures. The nanowires, however, exhibited a tapered diameter due to thin film deposition which occurred simultaneously with nanowire growth. Based on the low growth temperatures, TEM characterization was carried out to investigate the nature of the catalyst. Through these studies, the catalyst was found to consist of Ni3Ga, indicating the presence of a vapor-solid-solid growth mechanism. In an attempt to improve the nanowire growth selectivity, GeCl4 was added during growth resulting in a drastic increase in nanowire density and a reduction in the tapering of the nanowires. Upon further inspection with TEM, the nanowires were found to consist of two morphologies: smooth nanowires and serrated nanowires. The smooth nanowires were found to consist of the wurtzite crystal structure, while the serrated nanowires were determined to have a wurtzite core with zinc blende faceted islands protruding from the wurtzite core. The second half of this thesis focused on the growth and characterization of GaSb nanowires. An extensive amount of work has been carried out on GaSb thin films, however only a few reports exist on GaSb nanowire growth. As a result, it was necessarily to complete a systematic study to determine a growth window for GaSb nanowires. A narrow range of growth conditions were found for Au-catalyzed GaSb nanowire growth. Vertically oriented nanowires were observed over a pressure range of 150-300 Torr depending on the substrate. Based on these findings, additional characterization was carried out to investigate the structural properties of the nanowires along with chemical analysis of the catalyst to determine the nature of the catalyst as a function of the growth conditions. The catalyst was found to consist of Ga, Sb, and Au consistent with that expected for vapor-liquidsolid growth, however the concentrations varied depending on the growth conditions and nanowire sample. For one set of nanowires, the seed particle contained a Au-Sb solid solution (1-15 at.% Sb). For the other set of nanowires, the particle consisted of an AuSb2 grain and an AuGa or Au2Ga grain that resulted in the formation of a bicrystalline nanowire. Photoluminescence measurements were also obtained on these samples and compared to the thin film literature. Samples grown on Si (111) were found to possess good optical properties, while samples grown on sapphire substrates were dominated by native defect transitions. The optical quality of the nanowire sample was also found to have a significant dependence on the V/III ratio.
ERIC Educational Resources Information Center
Green, Tim; Williamson, Margie E.; Endris, William L., jR.
2000-01-01
Describes how the Vernon Parish (Louisiana) School District implemented Governmental Accounting Board Statement No. 34 for fiscal year 1999. Implementing GASB 34 was mentally challenging and demanded a team effort. The system uses columnar displays for major funds and contains burdensome capital-assets accounting standards. (MLH)
Antimonide-Based Compound Semiconductors for Low-Power Electronics
2013-01-01
A, Madan HS, Kirk AP, Zhao DA, Mourey DA, Hudait MK, et al. Fermi level unpinning of GaSb (100) using plasma enhanced atomic layer deposition of...et al. Atomic layer deposition of Al2O3 on GaSb using in situ hydrogen plasma exposure. Appl Phys Lett. 2012;101: 231601. [18] Ali A, Madan H
2017-06-15
the GaSb valance band edge, in agreement with values deduced recently from lifetime measurements and analysis [Aytac et al . Phys. Rev. Appl., 5...meV below the GaSb valance band edge, in agreement with values deduced recently from lifetime mea- surements and analysis [Aytac et al . Phys. Rev
Kinetics of Structural Changes on GaSb(001) Singular and Vicinal Surfaces During the UHV Annealing
NASA Astrophysics Data System (ADS)
Vasev, A. V.; Putyato, M. A.; Preobrazhenskii, V. V.; Bakarov, A. K.; Toropov, A. I.
2018-05-01
The dynamics of processes of antimony desorption was investigated on the singular and vicinal GaSb(001) surface by RHEED method. The role of the terraces edges was determined during antimony evaporation in Langmuir desorption mode. It is shown that the structural transition (2x5) -> (1x3) is a complex of two transitions - order -> disorder and disorder -> order. The influence of the degree of surface miscut from the singular face on the dimension of the transition (2x5) -> DO was studied. The activation energies of structural transitions ex(2x5) -> (2x5), (2x5) -> DO and DO -> (1x3) on singular and vicinal faces GaSb(001) were determined.
NASA Astrophysics Data System (ADS)
Woo, S. Y.; Hosseini Vajargah, S.; Ghanad-Tavakoli, S.; Kleiman, R. N.; Botton, G. A.
2012-10-01
Unambiguous identification of anti-phase boundaries (APBs) in heteroepitaxial films of GaSb grown on Si has been so far elusive. In this work, we present conventional transmission electron microscopy (TEM) diffraction contrast imaging using superlattice reflections, in conjunction with convergent beam electron diffraction analysis, to determine a change in polarity across APBs in order to confirm the presence of anti-phase disorder. In-depth analysis of anti-phase disorder is further supported with atomic resolution high-angle annular dark-field scanning transmission electron microscopy. The nature of APBs in GaSb is further elucidated by a comparison to previous results for GaAs epilayers grown on Si.
El-Atwani, O.; Norris, S. A.; Ludwig, K.; ...
2015-12-16
In this study, several proposed mechanisms and theoretical models exist concerning nanostructure evolution on III-V semiconductors (particularly GaSb) via ion beam irradiation. However, making quantitative contact between experiment on the one hand and model-parameter dependent predictions from different theories on the other is usually difficult. In this study, we take a different approach and provide an experimental investigation with a range of targets (GaSb, GaAs, GaP) and ion species (Ne, Ar, Kr, Xe) to determine new parametric trends regarding nanostructure evolution. Concurrently, atomistic simulations using binary collision approximation over the same ion/target combinations were performed to determine parametric trends onmore » several quantities related to existing model. A comparison of experimental and numerical trends reveals that the two are broadly consistent under the assumption that instabilities are driven by chemical instability based on phase separation. Furthermore, the atomistic simulations and a survey of material thermodynamic properties suggest that a plausible microscopic mechanism for this process is an ion-enhanced mobility associated with energy deposition by collision cascades.« less
Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb
NASA Astrophysics Data System (ADS)
Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.
2013-08-01
The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.
Unassisted Water Splitting Using a GaSb xP (1- x ) Photoanode
Martinez-Garcia, Alejandro; Russell, Harry B.; Paxton, William; ...
2018-02-21
Here in this work, unbiased water splitting with 2% solar-to-hydrogen efficiency under AM 1.5 G illumination using new materials based on GaSb 0.03P 0.97 alloy is reported. Freestanding GaSb xP 1-x is grown using halide vapor phase epitaxy. The native conductivity type of the alloy is modified by silicon doping, resulting in an open-circuit potential (OCP) of 750 mV, photocurrents of 7 mA cm -2 at 10 sun illumination, and corrosion resistance in an aqueous acidic environment. Alloying GaP with Sb at 3 at% improves the absorption of high-energy photons above 2.68 eV compared to pure GaP material. Electrochemical Impedancemore » Spectroscopy and illuminated OCP measurements show that the conduction band of GaSb xP 1-x is at -0.55 V versus RHE irrespective of the Sb concentration, while photocurrent spectroscopy indicates that only radiation with photon energies greater than 2.68 eV generate mobile and extractable charges, thus suggesting that the higher-laying conduction bands in the Γ 1 valley of the alloys are responsible for exciton generation.« less
Unassisted Water Splitting Using a GaSb xP (1- x ) Photoanode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Garcia, Alejandro; Russell, Harry B.; Paxton, William
Here in this work, unbiased water splitting with 2% solar-to-hydrogen efficiency under AM 1.5 G illumination using new materials based on GaSb 0.03P 0.97 alloy is reported. Freestanding GaSb xP 1-x is grown using halide vapor phase epitaxy. The native conductivity type of the alloy is modified by silicon doping, resulting in an open-circuit potential (OCP) of 750 mV, photocurrents of 7 mA cm -2 at 10 sun illumination, and corrosion resistance in an aqueous acidic environment. Alloying GaP with Sb at 3 at% improves the absorption of high-energy photons above 2.68 eV compared to pure GaP material. Electrochemical Impedancemore » Spectroscopy and illuminated OCP measurements show that the conduction band of GaSb xP 1-x is at -0.55 V versus RHE irrespective of the Sb concentration, while photocurrent spectroscopy indicates that only radiation with photon energies greater than 2.68 eV generate mobile and extractable charges, thus suggesting that the higher-laying conduction bands in the Γ 1 valley of the alloys are responsible for exciton generation.« less
In-plane optical anisotropy of InAs/GaSb superlattices with alternate interfaces
2013-01-01
The in-plane optical anisotropy (IPOA) in InAs/GaSb superlattices has been studied by reflectance difference spectroscopy (RDS) at different temperatures ranging from 80 to 300 K. We introduce alternate GaAs- and InSb-like interfaces (IFs), which cause the symmetry reduced from D2d to C2v. IPOA has been observed in the (001) plane along [110] and [11¯0] axes. RDS measurement results show strong anisotropy resonance near critical point (CP) energies of InAs and GaSb. The energy positions show red shift and RDS intensity decreases with the increasing temperature. For the superlattice sample with the thicker InSb-like IFs, energy positions show red shift, and the spectra exhibit stronger IPOA. The excitonic effect is clearly observed by RDS at low temperatures. It demonstrates that biaxial strain results in the shift of the CP energies and IPOA is enhanced by the further localization of the carriers in InSb-like IFs. PMID:23799946
Photoluminescence investigation of type-II GaSb/GaAs quantum dots grown by liquid phase epitaxy
NASA Astrophysics Data System (ADS)
Wang, Yang; Hu, Shuhong; Xie, Hao; Lin, Hongyu; lu, Hongbo; Wang, Chao; Sun, Yan; Dai, Ning
2018-06-01
GaSb quantum dots (QDs) with an areal density of ∼1 × 1010 cm-2 are successfully grown by the modified (rapid slider) liquid phase epitaxy technique. The morphology of the QDs has been investigated by scanning electron microscope (SEM) and atom force microscope (AFM). The power-dependence and temperature-dependence photoluminescence (PL) spectra have been studied. The bright room-temperature PL suggests a good luminescence quality of GaSb QDs/GaAs matrix system. The type-II alignment of the GaSb QDs/GaAs matrix system is verified by the blue-shift of the QDs peak with the increase of excitation power. From the temperature-dependence PL spectra, the activation energy of QDs is determined to be 111 meV.
Visible-light absorption and large band-gap bowing of GaN 1-xSb x from first principles
Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; ...
2011-08-01
Applicability of the Ga(Sb x)N 1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sb x)N 1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sb x)N 1-x alloys could be potential candidates for splitting watermore » under visible light irradiation.« less
2013-08-15
InAsSb, compositionally graded buffer, MBE, infrared, minority carrier lifetime, reciprocal space mapping Ding Wang, Dmitry Donetsky, Youxi Lin, Gela...infrared, minority carrier lifetime; reciprocal space mapping . Introduction GaSb based Ill-Y materials are widely used in the development of mid... space mapping (RSM) at the symmetric (004) and asymmetric (335) Bragg reflections. Figure 3 presents a set of RSM measurements for a structure
Characterization and Fabrication of High k dielectric-High Mobility Channel Transistors
NASA Astrophysics Data System (ADS)
Sun, Xiao
As the conventional scaling of Si-based MOSFETs would bring negligible or even negative merits for IC's beyond the 7-nm CMOS technology node, many perceive the use of high-mobility channels to be one of the most likely principle changes, in order to achieve higher performance and lower power. However, interface and oxide traps have become a major obstacle for high-mobility semiconductors (such as Ge, InGaAs, GaSb, GaN...) to replace Si CMOS technology. In this thesis, the distinct properties of the traps in the high-k dielectric/high-mobility substrate system is discussed, as well as the challenges to characterize and passivate them. By modifying certain conventional gate admittance methods, both the fast and slow traps in Ge MOS gate stacks is investigated. In addition, a novel ac-transconductance method originated at Yale is introduced and demonstrated with several advanced transistors provided by collaborating groups, such as ultra-thin-body & box SO1 MOSFETs (CEA-LETI), InGaAs MOSFETs (IMEC, UT Austin, Purdue), and GaN MOS-HEMT (MIT). By use of the aforementioned characterization techniques, several effective passivation techniques on high mobility substrates (Ge, InGaAs, GaSb, GeSn, etc.) are evaluated, including a novel Ba sub-monolayer passivation of Ge surface. The key factors that need to be considered in passivating high mobility substrates are revealed. The techniques that we have established for characterizing traps in advanced field-effect transistors, as well as the knowledge gained about these traps by the use of these techniques, have been applied to the study of ionizing radiation effects in high-mobility-channel transistors, because it is very important to understand such effects as these devices are likely to be exposed to radiation-harsh environments, such as in outer space, nuclear plants, and during X-ray or UHV lithography. In this thesis, the total ionizing dose (TD) radiation effects of InGaAs-based MOSFETs and GaN-based MOS-HEMT are studied, and the results help to reveal the underlying mechanisms and inspire ideas for minimizing the TID radiation effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, P. T., E-mail: preston.t.webster@asu.edu; Riordan, N. A.; Gogineni, C.
The optical properties of bulk InAs{sub 0.936}Bi{sub 0.064} grown by molecular beam epitaxy on a (100)-oriented GaSb substrate are measured using spectroscopic ellipsometry. The index of refraction and absorption coefficient are measured over photon energies ranging from 44 meV to 4.4 eV and are used to identify the room temperature bandgap energy of bulk InAs{sub 0.936}Bi{sub 0.064} as 60.6 meV. The bandgap of InAsBi is expressed as a function of Bi mole fraction using the band anticrossing model and a characteristic coupling strength of 1.529 eV between the Bi impurity state and the InAs valence band. These results are programmed into a software toolmore » that calculates the miniband structure of semiconductor superlattices and identifies optimal designs in terms of maximizing the electron-hole wavefunction overlap as a function of transition energy. These functionalities are demonstrated by mapping the design spaces of lattice-matched GaSb/InAs{sub 0.911}Sb{sub 0.089} and GaSb/InAs{sub 0.932}Bi{sub 0.068} and strain-balanced InAs/InAsSb, InAs/GaInSb, and InAs/InAsBi superlattices on GaSb. The absorption properties of each of these material systems are directly compared by relating the wavefunction overlap square to the absorption coefficient of each optimized design. Optimal design criteria are provided for key detector wavelengths for each superlattice system. The optimal design mid-wave infrared InAs/InAsSb superlattice is grown using molecular beam epitaxy, and its optical properties are evaluated using spectroscopic ellipsometry and photoluminescence spectroscopy.« less
2009-07-01
dopants in the semiconductor components of the devices (5). Venkatasubramanian (46) reviewed some state- of-the-art TE materials such as quantum-dot...conversion efficiency of a GaSb micro TPV system incorporating broadband silicon carbide (SiC) and selective emitted materials ( cobalt [Co]/nickel...carbon CFD computational fluid dynamics Co cobalt CO carbon monoxide CO2 carbon dioxide Cu copper GaSb gallium antimonide InGaAs indium gallium
First-principles study of the interaction of H2O with the GaSb (001) surface
NASA Astrophysics Data System (ADS)
Bermudez, V. M.
2013-05-01
The adsorption of H2O on the GaSb (001) surface, both clean and with pre-adsorbed H atoms, has been studied computationally using dispersion-corrected density functional theory. The model employed is the α-(4×3) reconstruction consisting of Ga-Sb dimers adsorbed on the Sb-terminated surface, a disordered version of which is believed to constitute the frequently observed Sb-rich (1×3) surface. On the clean surface, molecular adsorption of H2O at a coordinatively unsaturated Ga site is exothermic (ΔE = -0.57 eV), but dissociation of this adsorbed H2O is significantly endothermic (ΔE = +0.45 eV or more). Dissociation can form either a (HO)Ga-Sb(H) site involving a Ga-Sb dimer or a (H)Ga-O(H)-Sb bridge. Other reactions are also energetically feasible, depending on the bond strength of different inequivalent Ga-Sb dimers. The two structures have essentially the same energy, and both can undergo an exothermic reaction with a second H2O. For the (HO)Ga-Sb(H) site, this reaction leads to the breaking of the dimer bond and the adsorption of molecular water, while the (H)Ga-O(H)-Sb bridge transforms to (HO)Ga-O(H)-Sb with the release of H2. On the H-terminated surface, molecular adsorption of H2O can be suppressed and dissociative adsorption enhanced, which means that formation of an OH-terminated surface may be easier when starting with an H-terminated vs. a clean surface. The implications of these results for the growth of oxide/GaSb heterostructures via atomic layer deposition are discussed.
Characterization of Dual-Band Infrared Detectors for Application to Remote Sensing
NASA Technical Reports Server (NTRS)
Abedin, M. Nurul; Refaat, Tamer F.; Xiao, Yegao; Bhat, Ishwara
2005-01-01
NASA Langley Research Center (LaRC), in partnership with the Rensselaer Polytechnic Institute (RPI), developed photovoltaic infrared (IR) detectors suitable at two different wavelengths using Sb-based material systems. Using lattice-matched InGaAsSb grown on GaSb substrates, dual wavelength detectors operating at 1.7 and 2.5 micron wavelengths can be realized. P-N junction diodes are fabricated on both GaSb and InGaAsSb materials. The photodiode on GaSb detects wavelengths at 1.7 micron and the InGaAsSb detector detects wavelengths at 2.2 micron or longer depending on the composition. The films for these devices are grown by metal-organic vapor phase epitaxy (MOVPE). The cross section of the independently accessed back-to-back photodiode dual band detector consists of a p-type substrate on which n-on-p GaInAsSb junction is grown, followed by a p-on-n GaSb junction. There are three ohmic contacts in this structure, one to the p-GaSb top layer, one to the n-GaSb/n-GaInAsSb layer and one to the p-type GaSb substrate. The common terminal is the contact to the n-GaSb/n-GaInAsSb layer. The contact to the n-GaSb/p-GaInAsSb region of the photodiode in the dual band is electrically connected and is accessed at the edge of the photodiode. NASA LaRC acquired the fabricated dual band detector from RPI and characterized the detector at its Detector Characterization Laboratory. Characterization results, such as responsivity, noise, quantum efficiency, and detectivity will be presented.
Fabrication of InAs quantum ring nanostructures on GaSb by droplet epitaxy
NASA Astrophysics Data System (ADS)
Dahiya, Vinita; Zamiri, Marziyeh; So, Mo Geun; Hollingshead, David A.; Kim, JongSu; Krishna, Sanjay
2018-06-01
In this article, we report the formation of InAs quantum ring nanostructures (QRNs) on GaSb (0 0 1) surface by droplet epitaxy (DE) mode using molecular beam epitaxy. We examined the impact of various growth conditions, including substrate temperature (Ts), As2 beam equivalent pressure (BEP) and surface stoichiometry, on the shape, density and size of the InAs QRNs. We confirmed that the InAs QRNs have better rotational symmetry at relatively high Ts and low As2 BEP. The symmetry of the QRN is due to the isotropic indium (In) out-migration along [1 1 0] and [1 -1 0], controlled via change in stoichiometry (surface As coverage) with temperature and the As2 BEP. These results indicate that we can realize InAs QRN on GaSb surface by DE process.
Hybrid functional study of band structures of GaAs1-xNx and GaSb1-xNx alloys
NASA Astrophysics Data System (ADS)
Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.
2012-02-01
Band structures of GaAs1-xNx and GaSb1-xNx alloys are studied in the framework of the density functional theory within the hybrid functional scheme (HSE06). We find that the scheme gives a clear improvement over the traditional (semi)local functionals in describing, in a qualitative agreement with experiments, the bowing of electron energy band gap in GaAs1-xNx alloys. In the case of GaSb1-xNx alloys, the hybrid functional used makes the study of band structures possible ab initio without any empirical parameter fitting. We explain the trends in the band gap reductions in the two materials that result mainly from the positions of the nitrogen-induced states with respect to the bottoms of the bulk conduction bands.
Staircase and saw-tooth field emission steps from nanopatterned n-type GaSb surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kildemo, M.; Levinsen, Y. Inntjore; Le Roy, S.
2009-09-15
High resolution field emission experiments from nanopatterned GaSb surfaces consisting of densely packed nanocones prepared by low ion-beam-energy sputtering are presented. Both uncovered and metal-covered nanopatterned surfaces were studied. Surprisingly, the field emission takes place by regular steps in the field emitted current. Depending on the field, the steps are either regular, flat, plateaus, or saw-tooth shaped. To the author's knowledge, this is the first time that such results have been reported. Each discrete jump in the field emission may be understood in terms of resonant tunneling through an extended surface space charge region in an n-type, high aspect ratio,more » single GaSb nanocone. The staircase shape may be understood from the spatial distribution of the aspect ratio of the cones.« less
Desplanque, L; Fahed, M; Han, X; Chinni, V K; Troadec, D; Chauvat, M-P; Ruterana, P; Wallart, X
2014-11-21
We report on the selective area molecular beam epitaxy of InAs/AlGaSb heterostructures on a GaSb (001) substrate. This method is used to realize Esaki tunnel diodes with a tunneling area down to 50 nm × 50 nm. The impact of the size reduction on the peak current density of the diode is investigated, and we show how the formation of the InAs facets can deeply affect the band-to-band tunneling properties of the heterostructure. This phenomenon is explained by the surface-dependent incorporation of Si dopant during growth.
Investigation of Electrical and Optical Properties of Bulk III-V Ternary Semiconductors
2009-03-01
metalorganic vapour phase epitaxial grown (MOVPE) InxGa1-xSb with indium mole fractions less than 0.06. [28] They observed that GaSb and InxGa1-xSb had...Treideris, A. Krotkus, and K. Grigoras, “Picosecond GaAs and InGaAs photoconductive switches obtained by low-temperature metal-organic chemical vapour ...Time Dependent Annealing Study of Silicon Implanted Aluminum Gallium Nitride,” Master’s Thesis, Air Force Institute of Technology (AU), Wright
2011-08-31
increased overlap with p-cladding, presumably due to dominant role of inter valence band absorption [7]. Details of the conduction band structure of the...absorption to total loss. In the specific structures used here the n-cladding composition resulted into material with three valleys in conduction band to...materials. The beam properties of the high power 2 μm emitting GaSb -based diode lasers was improved by utilization of the waveguide structure with
2014-01-01
resolution X - ray diffraction (XRD) were collected for all samples, and reciprocal space maps (RSMs) were collected from selected samples. The complete data...exposure. The lines represent the model fit. 19 13 Figure 1. Triple axis x - ray diffraction from the bi-layered InAsSb structures grown on GaSb at...Applied Physics, Structural properties of bismuth‐bearing semiconductor alloys, 63 (1988) 107. 18 12 Figure Captions Figure 1. Triple axis x - ray
Structural and luminescent Properties of Bulk InAsSb
2011-12-21
have used compositionally graded metamorphic buffer layers to accommodate the misfit strain between InAsxSb1-x alloys and GaSb and InSb substrates in...wavelength range. The authors have used compositionally graded metamorphic buffer layers to accommodate the misfit strain between InAsxSb1x alloys...long wave IR range. We used compositionally graded GaInSb, AlGaInSb, and InAsxSb1x metamorphic buffer layers to accommodate the misfit strain between
NASA Astrophysics Data System (ADS)
Ha, Minh Thien Huu; Hoang Huynh, Sa; Binh Do, Huy; Nguyen, Tuan Anh; Luc, Quang Ho; Lee, Ching Ting; Chang, Edward Yi
2018-05-01
A GaSb epilayer is grown on a GaAs/Si(001) epitaxial substrate via metalorganic chemical vapor deposition. High-resolution transmission electron microscopy micrographs and high-resolution X-ray reciprocal space mapping indicate an entirely relaxed interfacial misfit (IMF) array GaSb epilayer. The valence-band offset and conduction-band offset of the Al2O3/GaSb/GaAs/Si structure are estimated to be 2.39 and 3.65 eV, respectively. The fabricated Al2O3/p-GaSb/GaAs/Si MOS capacitors exhibited good capacitance–voltage characteristics with a small accumulation frequency dispersion of approximately 1.05% per decade. These results imply that the GaSb epilayer grown on the GaAs/Si platform in the IMF mode can be used for future complementary metal–oxide semiconductor applications.
High Operating Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Seibel, Alexander (Inventor); Bandara, Sumith Y. (Inventor); Gunapala, Sarath D. (Inventor)
2015-01-01
A barrier infrared detector with absorber materials having selectable cutoff wavelengths and its method of manufacture is described. A GaInAsSb absorber layer may be grown on a GaSb substrate layer formed by mixing GaSb and InAsSb by an absorber mixing ratio. A GaAlAsSb barrier layer may then be grown on the barrier layer formed by mixing GaSb and AlSbAs by a barrier mixing ratio. The absorber mixing ratio may be selected to adjust a band gap of the absorber layer and thereby determine a cutoff wavelength for the barrier infrared detector. The absorber mixing ratio may vary along an absorber layer growth direction. Various contact layer architectures may be used. In addition, a top contact layer may be isolated into an array of elements electrically isolated as individual functional detectors that may be used in a detector array, imaging array, or focal plane array.
NASA Astrophysics Data System (ADS)
Ahia, Chinedu Christian; Tile, Ngcali; Botha, Johannes R.; Olivier, E. J.
2018-04-01
The structural and photoluminescence (PL) characterization of InGaSb quantum well (QW) structures grown on GaSb substrate (100) using atmospheric pressure Metalorganic Vapor Phase Epitaxy (MOVPE) is presented. Both structures (single and double-InGaSb QWs) were inadvertently formed during an attempt to grow capped InSb/GaSb quantum dots (QDs). In this work, 10 K PL peak energies at 735 meV and 740 meV are suggested to be emissions from the single and double QWs, respectively. These lines exhibit red shifts, accompanied by a reduction in their full-widths at half-maximum (FWHM) as the excitation power decreases. The presence of a GaSb spacer in the double QW was found to increase the strength of the PL emission, which consequently gives rise to a reduced blue-shift and broadening of the PL emission line observed for the double QW with an increase in laser power, while the low thermal activation energy for the quenching of the PL from the double QW is attributed to the existence of threading dislocations, as seen in the bright field TEM image for this sample.
Synthesis and Characteristics of HgCdSe for IR Detection
2014-03-11
Photoelectron Spectroscopy Study of Oxide Removal Using Atomic Hydrogen for Large-Area II–VI Material Growth, Journal of Electronic Materials...Workshop on the Physics and Chemistry of II-VI Materials, Chicago IL (October 1-3, 2013) “Use of Atomic Hydrogen to Prepare GaSb(211)B and GaSb(100...Workshop on the Physics and Chemistry of II-VI Materials, Chicago IL (October, 2011) "Xray photoelectron spectroscopy study of oxide removal using
Carrier Concentration Control of GaSb/GaInAsSb System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazzari, J.-L.; Anda, F. de; Nieto, J.
2007-02-22
The residual carrier concentration of GaSb and GaSb-lattice matched Ga1-xInxAsySb1-y alloys (x = 0.12-0.26; y = 0.9x) grown by liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) was studied as a function of growth temperature, V/III ratio and alloy composition. Typical carrier concentrations p {approx} 2-3x1016 cm-3 were obtained for undoped GaSb grown by MBE at 480 deg. C, by LPE from Ga-rich melt at low temperature (400 deg. C), and by LPE from Sb-rich melts at {approx}600 deg. C. The native acceptor defect responsible of the high p-type residual doping in GaSb is reduced when the indium concentrationmore » is increased, and disappears for indium rich alloys (x = 0.23, 0.26). Tellurium compensation was used for controlled n-type doping in the (0.05-30)x1017 cm-3 range. A maximum of free carrier concentration was 1.5x1018 cm-3 for LPE layers, 2x1018 cm-3 for MBE layers grown at 1.0 {mu}m/h, 3.5x1018 cm-3 for MBE layers grown at 0.2 {mu}m/h. SIMS measurements showed Te concentrations of more than 1020 at/cm3, suggesting the formation of ternary GaSb1-xTex solid solution.« less
Timm, Rainer; Eisele, Holger; Lenz, Andrea; Ivanova, Lena; Vossebürger, Vivien; Warming, Till; Bimberg, Dieter; Farrer, Ian; Ritchie, David A; Dähne, Mario
2010-10-13
Combined cross-sectional scanning tunneling microscopy and spectroscopy results reveal the interplay between the atomic structure of ring-shaped GaSb quantum dots in GaAs and the corresponding electronic properties. Hole confinement energies between 0.2 and 0.3 eV and a type-II conduction band offset of 0.1 eV are directly obtained from the data. Additionally, the hole occupancy of quantum dot states and spatially separated Coulomb-bound electron states are observed in the tunneling spectra.
Optical characterization of semiconductor materials by using FTIR-PAS
NASA Astrophysics Data System (ADS)
Arévalo, Fabiola; Saavedra, Renato; Paulraj, M.
2008-11-01
In this paper we discuss the procedures for photoacoustic measurements for semiconducting materials, including bulk samples like Gallium Antimonide (GaSb). The optical absorption at photon energies near the band gap was measured at room temperature using Fourier Transform Infrared Photoacoustic spectroscopy (FTIR-PAS). Measurements were performed using a NEXUS 670 FTIR-spectrometer (from Thermo Nicolet) with a MTEC model 300 PA cell (MTEC Photoacoustics, Inc.). Optical properties of the studied samples were determined from their room temperature PA spectra and band gaps were calculated directly from absorption spectra
Ho:YAG Single Crystal Fiber: Fabrication and Optical Characterization
2014-06-16
between the 5I8 and 5I7 energy levels. The results verified the absorption peaks suitable for in- band direct pumping at 1908 nm and 1932 nm with the...Efficient high-power Ho:YAG laser directly in- band pumped by a GaSb -based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012). 21. M...characterized for its optical absorption and emission properties involving transitions between the 5I8 and 5I7 energy levels. The results verified
Unconstrained Heterogeneous Colloidal Quantum Dots Embedded in GaAs/GaSb Nanovoids
2014-04-17
ex-situ techniques when it comes to both CQD integration as well as regrowth, since the surface is free of contaminants and native oxides . 3.0...monitor the growth surface. The growth was started on a GaSb substrate through a thermal oxide desorption process at 540 C and then a GaSb smoothing...reduces the danger of contamination and/or oxidation of the produced CQDs, and also provides for the removal of any gas byproducts from the
Electrical, Optical and Structural Studies of INAS/INGASB VLWIR Superlattices
2013-01-01
period measured by x-ray diffraction and the optical band gap energy determined by the photoresponse spectra. Sample InAs (Å) GaSb (Å) In (%) IF (Å...8x8 EFA. 22 Temperature-dependent lattice constants, band gap energies , and other physical data for InAs and GaSb are taken from Vurgaftman et al...gallium antimonide to achieve energy band gaps less than 50 meV with a superlattice period on the order of 68 Å. Similar to the work reported on
Flip Chip Bonding of 68 x 68 MWIR LED Arrays
2009-01-01
transmission of IR light through GaSb material varies between 5%–30% and depends on the type of substrate dopants (n- or p-type). Hence, for bottom...emission regions (8.9/16 monolayer’s (ml) InAs/GaSb) separated by (n InAs/GaSb super lattice grade)/(p+ GaSb) tunnel junctions. Graded super lattices were...flip chip bonding process. Besides four corner LED test pads, there are 296 bonding pads in the CMOS driver to bias each LED pixel independently. The
Electron-Spin Filters Based on the Rashba Effect
NASA Technical Reports Server (NTRS)
Ting, David Z.-Y.; Cartoixa, Xavier; McGill, Thomas C.; Moon, Jeong S.; Chow, David H.; Schulman, Joel N.; Smith, Darryl L.
2004-01-01
Semiconductor electron-spin filters of a proposed type would be based on the Rashba effect, which is described briefly below. Electron-spin filters more precisely, sources of spin-polarized electron currents have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-based electronics). There have been a number of successful demonstrations of injection of spin-polarized electrons from diluted magnetic semiconductors and from ferromagnetic metals into nonmagnetic semiconductors. In contrast, a device according to the proposal would be made from nonmagnetic semiconductor materials and would function without an applied magnetic field. The Rashba effect, named after one of its discoverers, is an energy splitting, of what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. The present proposal evolved from recent theoretical studies that suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling. Accordingly, a device according to the proposal would be denoted an asymmetric resonant interband tunneling diode [a-RITD]. An a-RITD could be implemented in a variety of forms, the form favored in the proposal being a double-barrier heterostructure containing an asymmetric quantum well. It is envisioned that a-RITDs would be designed and fabricated in the InAs/GaSb/AlSb material system for several reasons: Heterostructures in this material system are strong candidates for pronounced Rashba spin splitting because InAs and GaSb exhibit large spin-orbit interactions and because both InAs and GaSb would be available for the construction of highly asymmetric quantum wells. This mate-rial system affords a variety of energy-band alignments that can be exploited to obtain resonant tunneling and other desired effects. The no-common-atom InAs/GaSb and InAs/AlSb interfaces would present opportunities for engineering interface potentials for optimizing Rashba spin splitting.
First-principles study of amorphous Ga4Sb6Te3 phase-change alloys
NASA Astrophysics Data System (ADS)
Bouzid, Assil; Gabardi, Silvia; Massobrio, Carlo; Boero, Mauro; Bernasconi, Marco
2015-05-01
First-principles molecular dynamics simulations within the density functional theory framework were performed to generate amorphous models of the Ga4Sb6Te3 phase change alloy by quenching from the melt. We find that Ga-Sb and Ga-Te are the most abundant bonds with only a minor amount of Sb-Te bonds participating to the alloy network. Ga and four-coordinated Sb atoms present a tetrahedral-like geometry, whereas three-coordinated Sb atoms are in a pyramidal configuration. The tetrahedral-like geometries are similar to those of the crystalline phase of the two binary compounds GaTe and GaSb. A sizable fraction of Sb-Sb bonds is also present, indicating a partial nanoscale segregation of Sb. Despite the fact that the composition Ga4Sb6Te3 lies on the pseudobinary Ga Sb -Sb2Te3 tie line, the amorphous network can be seen as a mixture of the two binary compounds GaTe and GaSb with intertwined elemental Sb.
Growth of Lattice-Matched ZnTeSe Alloys on (100) and (211)B GaSb
NASA Astrophysics Data System (ADS)
Chai, J.; Lee, K.-K.; Doyle, K.; Dinan, J. H.; Myers, T. H.
2012-10-01
A key issue with the current HgCdTe/Si system is the high dislocation density due to the large mismatch between HgCdTe and Si. An alternative system that has superior lattice matching is HgCdSe/GaSb. A buffer layer to mitigate issues with direct nucleation of HgCdSe on GaSb is ZnTe1- x Se x . We have performed preliminary studies into the growth of lattice-matched ZnTe1- x Se x on both (100) and (211)B GaSb. The effects of substrate orientation, substrate temperature, and growth conditions on the morphology and crystallography of ZnTe0.99Se0.01 alloys were investigated. The lattice-matching condition yielded minimum root-mean-square (rms) roughness of 1.1 nm, x-ray rocking curve full-width at half-maximum (FWHM) value of ~29 arcsec, and density of nonradiative defects of mid-105 cm-2 as measured by imaging photoluminescence.
AlInAsSb for GaSb-based multi-junction solar cells
NASA Astrophysics Data System (ADS)
Tournet, J.; Rouillard, Y.; Tournié, E.
2018-02-01
Bandgap engineering, by means of alloying or inserting nanostructures, is the bedrock of high efficiency photovoltaics. III-V quaternary alloys in particular enable bandgap tailoring of a multi-junction subcell while conserving a single lattice parameter. Among the possible candidates, AlInAsSb could in theory reach the widest range of bandgap energies while being lattice-matched to InP or GaSb. Although these material systems are still emerging photovoltaic segments, they do offer advantages for multi-junction design. GaSbbased structures in particular can make use of highly efficient GaSb/InAs tunnel junctions to connect the subcells. There has been only little information concerning GaSb-lattice matched AlInAsSb in the literature. The alloy's miscibility gap can be circumvented by the use of non-equilibrium techniques. Nevertheless, appropriate growth conditions remain to be found in order to produce a stable alloy. Furthermore, the abnormally low bandgap energies reported for the material need to be confirmed and interpreted with a multi-junction perspective. In this work, we propose a tandem structure made of an AlInAsSb top cell and a GaSb bottom cell. An epitaxy study of the AlInAsSb alloy lattice-matched to GaSb was first performed. The subcells were then grown and processed. The GaSb subcell yielded an efficiency of 5.9% under 1 sun and the tandem cell is under optimization. Preliminary results are presented in this document.
Pan, C B; Zha, F X; Song, Y X; Shao, J; Dai, Y; Chen, X R; Ye, J Y; Wang, S M
2015-07-15
Femtosecond laser drilled holes of GaSbBi were characterized by the joint measurements of photoconductivity (PC) spectroscopy and laser-beam-induced current (LBIC) mapping. The excitation light in PC was focused down to 60 μm presenting the spectral information of local electronic property of individual holes. A redshift of energy band edge of about 6-8 meV was observed by the PC measurement when the excitation light irradiated on the laser drilled holes. The spatial resolving of photoelectric property was achieved by the LBIC mapping which shows "pseudo-holes" with much larger dimensions than the geometric sizes of the holes. The reduced LBIC current with the pseudo-holes is associated with the redshift effect indicating that the electronic property of the rim areas of the holes is modified by the femtosecond laser drilling.
Three dimensional atom probe imaging of GaAsSb quantum rings.
Beltrán, A M; Marquis, E A; Taboada, A G; Ripalda, J M; García, J M; Molina, S I
2011-07-01
Unambiguous evidence of ring-shaped self-assembled GaSb nanostructures grown by molecular beam epitaxy is presented on the basis of atom-probe tomography reconstructions and dark field transmission electron microscopy imaging. The GaAs capping process causes a strong segregation of Sb out of the center of GaSb quantum dots, leading to the self-assembled GaAs(x)Sb(1-x) quantum rings of 20-30 nm in diameter with x ∼ 0.33. Copyright © 2011 Elsevier B.V. All rights reserved.
Johnson, Karl D
2003-03-01
GASB has proposed new standards that will affect the way in which governments report postemployment health care benefits in audited external financial statements, resulting in more complete and transparent reporting by employers and plans and more relevant and useful information for the users of governmental financial reports. This article provides an overview of current financial reporting standards and practice, the financial reporting objectives of the project, the proposed measurement approach, noteworthy specific proposals, and the projected timetable for completion of the project and implementation of the new standards.
Metamorphic InAsSb-based Barrier Photodetectors for the Long Wave Infrared Region
2013-08-02
The character of the I–V for structures with AlInSb layer grown undoped reflects the complex nature of the potential profile in the valence band ...Al0.75In0.25Sb-based barrier photodetectors were grown metamorphically on compositionally graded Ga1?xInxSb buffer layers and GaSb substrates by...ABSTRACT InAs0.6Sb0.4/Al0.75In0.25Sb-based barrier photodetectors were grown metamorphically on compositionally graded Ga1?xInxSb buffer layers and GaSb
Infrared Emitters and Photodetectors with InAsSb Bulk Active Region
2013-04-29
SLS) buffers on GaSb substrates [9]. By that time, 145 meV (A.= 8.6 J.lm) was reported to be the minimum energy gap for the bulk lnAsSb alloys at 77...substrate side (b) GaSb substrate thinned to 200iJm Figure 5. (a) The band diagram of the heterostructure with the undoped bulk InAsSb0.2 layer...shift of the EL energy peak compared to the PL peak at/, ... I 0 1-1m is explained by band filling under electrical injection. A sublinear
NASA Astrophysics Data System (ADS)
Ha, Minh Thien Huu; Hoang Huynh, Sa; Binh Do, Huy; Nguyen, Tuan Anh; Luc, Quang Ho; Chang, Edward Yi
2017-08-01
High quality 40 nm GaSb thin film was grown on the zero off-cut Si (0 0 1)-oriented substrate using metalorganic chemical vapor deposition with the temperature-graded GaAs buffer layer. The growth time of the GaAs nucleation layer, which was deposited at a low temperature of 490 °C, is systematically investigated in this paper. Cross-sections of the high resolution transmission electron microscopy images indicate that the GaAs compound formed 3D-islands first before to quasi-2D islands, and finally formed uniform GaAs layer. The optimum thickness of the 490 °C-GaAs layer was found to be 10 nm to suppress the formation of antiphase domain boundaries (APDs). The thin GaAs nucleation layer had a root-mean-square surface roughness of 0.483 nm. This allows the continued high temperature GaAs buffer layer to be achieved with low threading dislocation density of around 7.1 × 106 cm-2 and almost invisible APDs. Finally, a fully relaxed GaSb film was grown on the top of the GaAs/Si heterostructure using interfacial misfit dislocation growth mode. These results indicate that the GaSb epitaxial layer can be grown on Si substrate with GaAs buffer layer for future p-channel metal-oxide-semiconductor field effect transistors (MOSFETs) applications.
Theoretical study of native point defects in strained-layer superlattice systems
NASA Astrophysics Data System (ADS)
Krishnamurthy, S.; Yu, Zhi Gang
2018-04-01
We developed a theoretical approach that employs first-principles Hamiltonians, tight-binding Hamiltonians, and Green's function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and InAs-InAs1-xSbx strained layer superlattice (SLS) systems. In InAs and GaSb regions, we considered four types of NPDs—anion vacancy, cation vacancy, anion anti-site, and cation anti-site—as well as isoelectronic substitution at anion sites (Sb at the As site and As at the Sb site). Additionally, we considered three types of defects—the cation at the second anion site, the second anion at the cation site, and second anion vacancy—in the InAs1-xSbx alloy region of the SLS. For a selected few designs, we studied NPDs both in the bulk region and near the interfaces of the SLS. We have considered 12 designs of InAs-GaSb systems and two designs of InAs-InAs0.7Sb0.3 systems lattice-matched to the GaSb substrate. The calculated defect levels not only agreed well with available measurements, but also revealed the connection between mid-gap levels and specific NPDs. We further calculated defect formation energies both in compounds and in all superlattices considered above. Since the absolute value of defect formation energy depends considerably on growth conditions, we evaluated the formation energies in SLS with respect to their value in the corresponding bulk or alloy. The calculated defect formation energies, together with defect energy level results, allow us to identify a few promising SLS designs for high-performing photodetectors.
Atmospheric pressure-MOVPE growth of GaSb/GaAs quantum dots
NASA Astrophysics Data System (ADS)
Tile, Ngcali; Ahia, Chinedu C.; Olivier, Jaco; Botha, Johannes Reinhardt
2018-04-01
This study focuses on the growth of GaSb/GaAs quantum dots (QD) using an atmospheric pressure MOVPE system. For the best uncapped dots, the average dot height, base diameter and density are 5 nm, 45 nm and 4.5×1010 cm-2, respectively. Capping of GaSb QDs at high temperatures caused flattening and formation of thin inhomogeneous GaSb layer inside GaAs resulting in no obvious QD PL peak. Capping at low temperatures lead to the formation of dot-like features and a wetting layer (WL) with distinct PL peaks for QD and WL at 1097 nm and 983 nm respectively. Some of the dot-like features had voids. An increase in excitation power caused the QD and WL peaks to shift to higher energies. This is attributed to electrostatic band bending leading to triangular potential wells, typical of type-II alignment between GaAs and strained GaSb. Variable temperature PL measurements of the QD sample showed the decrease in the intensity of the WL peak to be faster than that of the QD peak as the temperature increased.
Relation between the magnetization and the electrical properties of alloy GaSb-MnSb films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplak, O. V.; Polyakov, A. A.; Davydov, A. B.
2015-06-15
The influence of the charge carrier concentration on the magnetic properties of GaSb-MnSb alloys is studied. The ferromagnetism of GaSb-MnSb films is caused by the presence of MnSb granules and manifests itself in both magnetometric measurements and the presence of an anisotropic magnetoresistance and the anomalous Hall effect. Electric conduction is executed by charge carriers (holes) in a GaSb matrix. The magnetization of clusters depends on stoichiometry and the concentration of Mn{sup 2+} and Mn{sup 3+} ions, which is specified by the film growth conditions. At high film growth temperatures, ferromagnetic clusters containing Mn{sup 2+} ions mainly form. At lowmore » growth temperatures, an antiferromagnetic phase containing Mn{sup 3+} ions forms.« less
Hole Scattering in GaSb: Scattering on Space Charge Regions Versus Dipole Scattering
NASA Astrophysics Data System (ADS)
Pődör, B.
2006-11-01
Hole concentration and mobility were investigated by Hall measurements in nominally undoped p-type GaSb in the temperature range from 77 to 300 K. The dependence of the thermal ionization energy of native acceptors on the acceptor centre concentration and on the compensation degree was determined. The temperature dependence of the hole mobility was analyzed using a heuristic semi-empirical model as well as using a phenomenological two-hole band model. Space charge scattering and/or dipole scattering described with a mobility contribution with a ˜ T-1/2 like temperature dependence dominated the hole mobility in the investigated temperature range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasil’ev, V. I.; Gagis, G. S., E-mail: galina.gagis@gmail.com; Kuchinskii, V. I.
2015-07-15
Processes are considered in which ultrathin layers of III–V ternary solid solutions are formed via the delivery of Group-V element vapors to GaAs and GaSb semiconductor plates, with solid-phase substitution reactions occurring in the surface layers of these plates. This method can form defect-free GaAs{sup 1–x}P{sup x}, GaAs{sup x}Sb{sup 1–x}, and GaP{sup x}Sb{sup 1–x} layers with thicknesses of 10–20 nm and a content x of the embedded components of up to 0.04.
Growth and characterization of AlInAsSb layers lattice-matched to GaSb
NASA Astrophysics Data System (ADS)
Tournet, J.; Rouillard, Y.; Tournié, E.
2017-11-01
We report on the growth by solid-source MBE of random-alloy AlxIn1-xAsySb1-y layers lattice-matched to (0 0 1)-GaSb substrates, with xAl ∈ [0.25; 0.75]. The samples quality and morphology were characterized by X-ray diffraction, Nomarski microscopy and atomic force microscopy. Layers grown at 400 °C demonstrated smooth surfaces and no sign of phase decomposition. Samples with xAl ≤ 0.60 demonstrated photoluminescence (PL) at 300 K whereas samples with higher Al content only demonstrated PL at low temperature. Samples grown at 430 °C, in contrast, exhibited PL at low temperature only, whatever their composition. Inferred bandgap energies corroborate the estimation of a non-null quaternary bowing parameter made by Donati, Kaspi and Malloy in Journal of Applied Physics 94 (2003) 5814. Upon annealing, the PL peak energies increased, getting even closer to the theoretical values. These results are in agreement with recently published results on digital AlInAsSb alloys. Our work, which reports the first evidence for PL emission from random-alloy AlInAsSb layers lattice-matched to GaSb, opens the way to their use in optoelectronic devices.
Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Gaohua; Department of Applied Physics and Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082; Luo, Ning
We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands showmore » rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective mass theory, the probability distributions of the band states in the [001]-oriented nanowires with a square cross section and the [111]-oriented nanowires with a hexagonal cross section show characteristic patterns with symmetries closely related to the irreducible representations of the relevant double point groups and, in general, go beyond the prediction of a simple one-band effective mass theory. We also investigate the effects of quantum confinement on the band structures of the [001]- and [111]-oriented InSb and GaSb nanowires and present an empirical formula for the description of quantization energies of the band edge states in the nanowires, which could be used to estimate the enhancement of the band gaps of the nanowires as a result of quantum confinement. The size dependencies of the electron and hole effective masses in these nanowires are also investigated and discussed.« less
Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires
NASA Astrophysics Data System (ADS)
Liao, Gaohua; Luo, Ning; Yang, Zhihu; Chen, Keqiu; Xu, H. Q.
2015-09-01
We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands show rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective mass theory, the probability distributions of the band states in the [001]-oriented nanowires with a square cross section and the [111]-oriented nanowires with a hexagonal cross section show characteristic patterns with symmetries closely related to the irreducible representations of the relevant double point groups and, in general, go beyond the prediction of a simple one-band effective mass theory. We also investigate the effects of quantum confinement on the band structures of the [001]- and [111]-oriented InSb and GaSb nanowires and present an empirical formula for the description of quantization energies of the band edge states in the nanowires, which could be used to estimate the enhancement of the band gaps of the nanowires as a result of quantum confinement. The size dependencies of the electron and hole effective masses in these nanowires are also investigated and discussed.
Type II GaSb quantum ring solar cells under concentrated sunlight.
Tsai, Che-Pin; Hsu, Shun-Chieh; Lin, Shih-Yen; Chang, Ching-Wen; Tu, Li-Wei; Chen, Kun-Cheng; Lay, Tsong-Sheng; Lin, Chien-chung
2014-03-10
A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.
2013-03-08
tions in the studied SLS structures . The fit of the dependence of the valence- band energy of unstrained InAs1!xSbx on the composition x with a... band . STRUCTURES Bulk InAsSb epilayers on metamorphic buffers and InAsSb/InAs strained-layer superlattices (SLS) were grown on GaSb substrates by solid...meV in InAs and Ev = 0 meV in InSb. For InAsSb with 22.5% Sb grown on GaSb , an unstrained valence- band energy of Ev = !457 meV was obtained. For the
In-plane electrical transport in n-type selectively doped GaSb/AlGaSb multiquantum wells
NASA Astrophysics Data System (ADS)
Ghezzi, C.; Cioce, B.; Magnanini, R.; Parisini, A.
2001-11-01
Results are reported regarding in-plane electrical transport in n-type selectively doped GaSb/AlGaSb multiquantum wells. In the samples, which were grown by molecular beam epitaxy, only the central regions of the Al0.40Ga0.60Sb barriers were Te doped. Low-field, low-temperature Hall measurements in the dark demonstrated the presence in the GaSb wells of a degenerate electron gas with nonzero occupancy only for the lowest miniband. A positive persistent photoconductivity effect, related to the DX character of the Te impurity, was also observed. This behavior enabled the μ electron mobility to be measured at T=10 K as a function of the nS sheet carrier density. Since the experimental data were consistent with a dominant role of the interface roughness scattering in the limiting of μ, the height, Δ, and the lateral size, Λ, of the interface roughness were determined from the analysis of the μ=μ(nS) dependence. Acceptable values of Δ were obtained, consistent with results of structural investigations in single quantum well samples of GaSb/Al0.40Ga0.60Sb [E. Kh. Mukhamedzhanov, C. Bocchi, S. Franchi, A. Baraldi, R. Magnanini, and L. Nasi, J. Appl. Phys. 87, 4234 (2000)].
Critical thickness of MBE-grown Ga 1-xIn xSb ( x<0.2) on GaSb
NASA Astrophysics Data System (ADS)
Nilsen, T. A.; Breivik, M.; Selvig, E.; Fimland, B. O.
2009-03-01
Several Ga 1-xIn xSb layers, capped with 1 μm of GaSb, were grown on GaSb(0 0 1) substrates by molecular beam epitaxy in a Varian Gen II Modular system using either the conventional sample growth position with substrate rotation, or a tilted sample position with no substrate rotation. The GaInSb layers were examined by X-ray diffraction (XRD) using both symmetrical and asymmetrical reflections. The "tilted sample method" gave a variation of ±25% in thickness of the Ga 1-xIn xSb layers, while the indium (In) content varied by ±10% around the nominal value. The disappearance of thickness fringes in 004 XRD scans was used to determine the onset of relaxation, as determining the in-plane lattice constant for tilted samples was found to be difficult. Determining residual strain in samples grown by the tilted method was likewise found to be very difficult. The critical thickness for several In mole fractions between 5% and 19% was determined and was found to be from 2.2 to 2.7 times higher than predicted by Matthews and Blakeslee (1974) [J. Crystal Growth 27 (1974) 118] but lower than that predicted by People and Bean (1985) [Appl. Phys. Lett. 47 (1985) 322].
Limiting scattering processes in high-mobility InSb quantum wells grown on GaSb buffer systems
NASA Astrophysics Data System (ADS)
Lehner, Ch. A.; Tschirky, T.; Ihn, T.; Dietsche, W.; Keller, J.; Fält, S.; Wegscheider, W.
2018-05-01
We present molecular beam epitaxial grown single- and double-side δ -doped InAlSb/InSb quantum wells with varying distances down to 50 nm to the surface on GaSb metamorphic buffers. We analyze the surface morphology as well as the impact of the crystalline quality on the electron transport. Comparing growth on GaSb and GaAs substrates indicates that the structural integrity of our InSb quantum wells is solely determined by the growth conditions at the GaSb/InAlSb transition and the InAlSb barrier growth. The two-dimensional electron gas samples show high mobilities of up to 349 000 cm2/Vs at cryogenic temperatures and 58 000 cm2/Vs at room temperature. With the calculated Dingle ratio and a transport lifetime model, ionized impurities predominantly remote from the quantum well are identified as the dominant source of scattering events. The analysis of the well-pronounced Shubnikov-de Haas oscillations reveals a high spin-orbit coupling with an effective g -factor of -38.4 in our samples. Along with the smooth surfaces and long mean free paths demonstrated, our InSb quantum wells are increasingly competitive for nanoscale implementations of Majorana mode devices.
NASA Astrophysics Data System (ADS)
Huang, Yong; Ryou, Jae-Hyun; Dupuis, Russell D.; Zuo, Daniel; Kesler, Benjamin; Chuang, Shun-Lien; Hu, Hefei; Kim, Kyou-Hyun; Ting Lu, Yen; Hsieh, K. C.; Zuo, Jian-Min
2011-07-01
We propose and demonstrate strain-balanced InAs/GaSb type-II superlattices (T2SLs) grown on InAs substrates employing GaAs-like interfacial (IF) layers by metalorganic chemical vapor deposition (MOCVD) for effective strain management, simplified growth scheme, improved materials crystalline quality, and reduced substrate absorption. The in-plane compressive strain from the GaSb layers in the T2SLs on the InAs was completely balanced by the GaAs-like IF layers formed by controlled precursor carry-over and anion exchange effects, avoiding the use of complicated IF layers and precursor switching schemes that were used for the MOCVD growth of T2SLs on GaSb. An infrared (IR) p-i-n photodiode structure with 320-period InAs/GaSb T2SLs on InAs was grown and the fabricated devices show improved performance characteristics with a peak responsivity of ˜1.9 A/W and a detectivity of ˜6.78 × 109 Jones at 8 μm at 78 K. In addition, the InAs buffer layer and substrate show a lower IR absorption coefficient than GaSb substrates in most of the mid- and long-IR spectral range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopaczek, J.; Misiewicz, J.; Kudrawiec, R., E-mail: robert.kudrawiec@pwr.wroc.pl
2013-12-23
GaSb{sub 1−x}Bi{sub x} layers with 0 < x ≤ 0.042 have been studied by photoreflectance in 15–290 K temperature range. We found that due to the incorporation of Bi atoms into the GaSb host, the E{sub 0} band gap-related transition redshifts (∼30 meV per 1% Bi) and significantly broadens. The shift of the E{sub 0} transition in the temperature range 10–270 K has been found to be ∼70 meV, very similar to the energy shift in GaSb over the same temperature range. We analyzed the energy and broadening of the E{sub 0} transition using the Varshni and Bose-Einstein formulas and found that the Varshni and Bose-Einstein parameters ofmore » GaSb{sub 1−x}Bi{sub x} are similar to those of GaSb. Moreover we concluded that the inhomogeneities in GaSb{sub 1−x}Bi{sub x} alloys is less important than in dilute bismide arsenides since Bi atoms are more similar to Sb atoms (in electronegativities and ionic sizes)« less
N incorporation and associated localized vibrational modes in GaSb
NASA Astrophysics Data System (ADS)
Buckeridge, J.; Scanlon, D. O.; Veal, T. D.; Ashwin, M. J.; Walsh, A.; Catlow, C. R. A.
2014-01-01
We present results of electronic structure calculations on the N-related localized vibrational modes in the dilute nitride alloy GaSb1-xNx. By calculating the formation energies of various possible N incorporation modes in the alloy, we determine the most favorable N configurations, and we calculate their vibrational mode frequencies using density functional theory under the generalized gradient approximation to electron exchange and correlation, including the effects of the relativistic spin-orbit interactions. For a single N impurity, we find substitution on an Sb site, NSb, to be most favorable, and for a two-N-atom complex, we find the N-N split interstitial on an Sb site to be most favorable. For these defects, as well as, for comparison, defects comprising two N atoms on neighboring Sb sites and a N-Sb split interstitial on an Sb site, we find well-localized vibration modes (LVMs), which should be experimentally observable. The frequency of the triply degenerate LVM associated with NSb is determined to be 427.6 cm-1. Our results serve as a guide to future experimental studies to elucidate the incorporation of small concentrations of N in GaSb, which is known to lead to a reduction of the band gap and opens the possibility of using the material for long-wavelength applications.
NASA Astrophysics Data System (ADS)
Shim, Kyurhee
2013-11-01
A theoretical model utilizing a universal tight binding method and a correlated function expansion technique is presented to calculate the valence band maximum (VBM) and the conduction band minimum (CBM) of the binary (GaAs, InAS, GaSb, and InSb) and quaternary alloy GaxIn1-xAsySb1-y systems. By organizing the relative positions of the VBM and CBM between semiconductors, the band alignments and band types in the heterojunctions are determined. A straddling (type-I) band alignment in InAs/GaAs, InSb/GaAs, and GaSb/InSb, staggered (type-II) band alignment in GaSb/GaAs, and broken (type-III) band alignment in InSb/InAs and InAs/GaSb are found respectively. In addition, the compositional variations of VBM, CBM, valence band offset, conduction band offset, and band type for the alloy GaxIn1-xAsySb1-y lattice matched on GaSb and InAs are obtained as increasing the composition x. A pronounced upward bowing for the VBM and a very slight upward bowing (almost linear) for CBM are found, respectively. By controlling the compositions (x, y), band type transitions occur. The GaxIn1-xAsySb1-y heterojunctions lattice matched to GaSb changes their band types from type-III at x ˜0→ to type-II at x = 0.07, and → to type-I at x = 0.38. In contrast, the GaxIn1-xAsySb1-y heterojunctions lattice matched to InAs changes their band types from type-II x ˜0→ to type-III at x = 0.32. Reasonable agreement is obtained between our theoretical results and existing experimental data.
On the modified active region design of interband cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motyka, M.; Ryczko, K.; Dyksik, M.
2015-02-28
Type II InAs/GaInSb quantum wells (QWs) grown on GaSb or InAs substrates and designed to be integrated in the active region of interband cascade lasers (ICLs) emitting in the mid infrared have been investigated. Optical spectroscopy, combined with band structure calculations, has been used to probe their electronic properties. A design with multiple InAs QWs has been compared with the more common double W-shaped QW and it has been demonstrated that it allows red shifting the emission wavelength and enhancing the transition oscillator strength. This can be beneficial for the improvements of the ICLs performances, especially when considering their long-wavelengthmore » operation.« less
NASA Technical Reports Server (NTRS)
Samoska, L. A.; Brar, Berinder; Kroemer, H.
1993-01-01
We report on long-wavelength intersubband absorption under normal incidence in heavily doped binary-binary GaSb-AlSb superlattices. Due to a small energy difference between the ellipsoidal L valleys in GaSb and the low-density-of-states Gamma minimum, electrons spill over from the first Gamma subband into the higher-energy L subband in GaSb wells, where they are allowed to make an intersubband transition under normally incident radiation. A peak fractional absorption per quantum well of 6.8 x 10 exp 3 (absorption coefficient alpha of about 8500/cm) is observed at about 15 microns wavelength for a sheet concentration of 1.6 x 10 exp 12 sq cm/well.
NASA Astrophysics Data System (ADS)
Xiaofeng, Chen; Nuofu, Chen; Jinliang, Wu; Xiulan, Zhang; Chunlin, Chai; Yude, Yu
2009-08-01
A GaSb crystal incorporated with Mn has been grown by the Bridgman method on the Polizon facility onboard the FOTON-M3 spacecraft. Structural defects and growth striations have been successfully revealed by the chemical etching method. By calculating various parameters of the convection, the striation patterns can be explained, and the critical value of the Taylor number, which characterizes the convective condition of the rotating magnetic field induced azimuthal flow, was shown. The stresses generated during crystal growth can be reflected by the observations of etch pit distribution and other structural defects. Suggestions for improving the space experiment to improve the quality of the crystal are given.
Technologies for thermal management of mid-IR Sb-based surface emitting lasers
NASA Astrophysics Data System (ADS)
Perez, J.-P.; Laurain, A.; Cerutti, L.; Sagnes, I.; Garnache, A.
2010-04-01
In this paper, for the first time to our knowledge, we report and demonstrate the technological steps dedicated to thermal management of antimonide-based surface emitting laser devices grown by molecular beam epitaxy. Key points of the technological process are firstly the bonding of the structure on the SiC host substrate and secondly the GaSb substrate removal to leave the Sb-based membrane. The structure design (etch stop layer, metallic mirror, etc), bonding process (metallic bonding via solid-liquid interdiffusion) and GaSb substrate removal process (selective wet-chemical etchants, etc) are presented. Optical characterizations together with external-cavity VCSEL laser emission at 2.3 µm at room temperature in continuous wave are presented.
New GasB-based single-mode diode lasers in the NIR and MIR spectral regime for sensor applications
NASA Astrophysics Data System (ADS)
Milde, Tobias; Hoppe, Morten; Tatenguem, Herve; Honsberg, Martin; Mordmüller, Mario; O'Gorman, James; Schade, Wolfgang; Sacher, Joachim
2018-02-01
The NIR/MIR region between 1.8μm and 3.5μm contains important absorption lines for gas detection. State of the art are InP laser based setups, which show poor gain above 1.8μm and cannot be applied beyond 2.1μm. GaSb laser show a significantly higher output power (100mW for Fabry-Perot, 30mW for DFB). The laser design is presented with simulation and actual performance data. The superior performance of the GaSb lasers is verified in gas sensing applications. TDLAS and QEPAS measurements at trace gases like CH4, CO2 and N2O are shown to prove the spectroscopy performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoyama, Masafumi, E-mail: yokoyama@mosfet.t.u-tokyo.ac.jp; Takenaka, Mitsuru; Takagi, Shinichi
2015-02-16
We have realized ultrathin body GaSb-on-insulator (GaSb-OI) on Si wafers by direct wafer bonding technology using atomic-layer deposition (ALD) Al{sub 2}O{sub 3} and have demonstrated GaSb-OI p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs) on Si. A 23-nm-thick GaSb-OI p-MOSFET exhibits the peak effective mobility of ∼76 cm{sup 2}/V s. We have found that the effective hole mobility of the thin-body GaSb-OI p-MOSFETs decreases with a decrease in the GaSb-OI thickness or with an increase in Al{sub 2}O{sub 3} ALD temperature. The InAs passivation of GaSb-OI MOS interfaces can enhance the peak effective mobility up to 159 cm{sup 2}/V s for GaSb-OI p-MOSFETs with themore » 20-nm-thick GaSb layer.« less
Shallow to deep transformation of Se donors in GaSb under hydrostatic pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro-Contreras, H.; de Anda-Salazar, F.; Olvera-Hernandez, J.
1999-03-01
We have observed that highly doped GaSb:Se, which is opaque to far IR radiation, becomes transparent at hydrostatic pressures above 9.8{plus_minus}2&hthinsp;kbar. We discuss how this behavior may be explained by the transformation of Se shallow donors into Se-DX (where DX is the unknown donor or X donor) centers in GaSb. Under this assumption the position of the Se-DX energy level at zero pressure is calculated to lie 80{plus_minus}30 meV above the conduction band at atmospheric pressure. The onset of transparency allowed us to observe several multiphonon absorbance features. We assign six of them to two-phonon absorptions. From the measured pressuremore » dependence of the TO phonon, the Gr{umlt u}neisen parameter for this compound is calculated to be {gamma}{sub TO}=1.23{plus_minus}0.18. No persistent photoconductivity is observed for these Se-DX centers, a fact that may be explained by the expectation that the optical energy necessary to transform them back into the shallow form is larger than the band-gap energy of GaSb at all pressures examined, although it may be also an indication that the Se shallow donors change to deep donors associated with the L{sub 1} minima of ionization energy larger than 90 meV. {copyright} {ital 1999} {ital The American Physical Society}« less
NASA Astrophysics Data System (ADS)
Tsai, Ming-Li; Wang, Shin-Yuan; Chien, Chao-Hsin
2017-08-01
Through in situ hydrogen plasma treatment (HPT) and plasma-enhanced atomic-layer-deposited TiN (PEALD-TiN) layer capping, we successfully fabricated TiN/HfO2/GaSb metal-oxide-semiconductor capacitors with an ultrathin equivalent oxide thickness of 0.66 nm and a low density of states of approximately 2 × 1012 cm-2 eV-1 near the valence band edge. After in situ HPT, a native oxide-free surface was obtained through efficient etching. Moreover, the use of the in situ PEALD-TiN layer precluded high-κ dielectric damage that would have been caused by conventional sputtering, thereby yielding a superior high-κ dielectric and low gate leakage current.
Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, A. P.; Percy, B.; Marshall, A. R. J.
2015-05-18
Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.
Lightweight concentrator module with 30 percent AM0 efficient GaAs/GaSb tandem cells
NASA Technical Reports Server (NTRS)
Avery, J. E.; Fraas, L. M.; Sundaram, V. S.; Mansoori, N.; Yerkes, J. W.; Brinker, D. J.; Curtis, H. B.; O'Neill, M. J.
1990-01-01
A concept is presented for an aerospace concentrator module with lightweight domed lenses and 30 percent AM0 efficient GaAs/GaSb tandem solar cell circuits. The performance of transparent GaAs cells is reviewed. NASA's high-altitude jet flight calibration data for recent GaSb cells assembled with bulk GaAs filters are reported, along with subsequent Boeing and NASA measurements of GaSb I-V performance at various light levels and temperatures. The expected performance of a basic two-terminal tandem concentrator circuit with three-to-one voltage matching is discussed. All of the necessary components being developed to assemble complete flight test coupons are shown. Straightforward interconnect and assembly techniques yield voltage matched circuits with near-optimum performance over a wide temperature range.
A methodology for highway asset valuation in Indiana.
DOT National Transportation Integrated Search
2012-11-01
The Government Accounting Standards Board (GASB) requires transportation agencies to report the values of their tangible assets. : Numerous valuation methods exist which use different underlying concepts and data items. These traditional methods have...
Effects of substrate orientation on the growth of InSb nanostructures by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, C. Y.; Torfi, A.; Pei, C.
2016-05-09
In this work, the effects of substrate orientation on InSb quantum structure growth by molecular beam epitaxy (MBE) are presented. Motivated by the observation that (411) evolves naturally as a stable facet during MBE crystal growth, comparison studies have been carried out to investigate the effects of the crystal orientation of the underlying GaSb substrate on the growth of InSb by MBE. By depositing InSb on a number of different substrate orientations, namely: (100), (311), (411), and (511), a higher nanostructure density was observed on the (411) surface compared with the other orientations. This result suggests that the (411) orientationmore » presents a superior surface in MBE growth to develop a super-flat GaSb buffer surface, naturally favorable for nanostructure growth.« less
Low-noise AlInAsSb avalanche photodiode
NASA Astrophysics Data System (ADS)
Woodson, Madison E.; Ren, Min; Maddox, Scott J.; Chen, Yaojia; Bank, Scott R.; Campbell, Joe C.
2016-02-01
We report low-noise avalanche gain from photodiodes composed of a previously uncharacterized alloy, Al0.7In0.3As0.3Sb0.7, grown on GaSb. The bandgap energy and thus the cutoff wavelength are similar to silicon; however, since the bandgap of Al0.7In0.3As0.3Sb0.7 is direct, its absorption depth is 5 to 10 times shorter than indirect-bandgap silicon, potentially enabling significantly higher operating bandwidths. In addition, unlike other III-V avalanche photodiodes that operate in the visible or near infrared, the excess noise factor is comparable to or below that of silicon, with a k-value of approximately 0.015. Furthermore, the wide array of absorber regions compatible with GaSb substrates enable cutoff wavelengths ranging from 1 μm to 12 μm.
Radioisotope thermal photovoltaic application of the GaSb solar cell
NASA Technical Reports Server (NTRS)
Morgan, M. D.; Horne, W. E.; Day, A. C.
1991-01-01
An examination of a RTVP (radioisotopic thermophotovoltaic) conceptual design has shown a high potential for power densities well above those achievable with radioisotopic thermoelectric generator (RTG) systems. An efficiency of 14.4 percent and system specific power of 9.25 watts/kg were predicted for a system with sixteen GPHS (general purpose heat source) sources operating at 1100 C. The models also showed a 500 watt system power by the strontium-90 isotope at 1200 C at an efficiency of 17.0 percent and a system specific power of 11.8 watts/kg. The key to this level of performance is a high-quality photovoltaic cell with narrow bandgap and a reflective rear contact. Recent work at Boeing on GaSb cells and transparent back GaAs cells indicate that such a cell is well within reach.
High mobility back-gated InAs/GaSb double quantum well grown on GaSb substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Binh-Minh, E-mail: mbnguyen@hrl.com, E-mail: MSokolich@hrl.com; Yi, Wei; Noah, Ramsey
2015-01-19
We report a backgated InAs/GaSb double quantum well device grown on GaSb substrate. The use of the native substrate allows for high materials quality with electron mobility in excess of 500 000 cm{sup 2}/Vs at sheet charge density of 8 × 10{sup 11} cm{sup −2} and approaching 100 000 cm{sup 2}/Vs near the charge neutrality point. Lattice matching between the quantum well structure and the substrate eliminates the need for a thick buffer, enabling large back gate capacitance and efficient coupling with the conduction channels in the quantum wells. As a result, quantum Hall effects are observed in both electron and hole regimes across the hybridizationmore » gap.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawazu, T., E-mail: KAWAZU.Takuya@nims.go.jp; Noda, T.; Sakuma, Y.
2016-04-15
We investigated the excitation power P dependence of photoluminescence (PL) spectra of GaSb type-II quantum dots (QDs) in GaAs grown by droplet epitaxy. We prepared two QD samples annealed at slightly different temperatures (380 {sup o}C and 400 {sup o}C) and carried out PL measurements. The 20 {sup o}C increase of the annealing temperature leads to (1) about 140 and 60 times stronger wetting layer (WL) luminescence at low and high P, (2) about 45% large energy shift of QD luminescence with P, and (3) the different P dependence of the PL intensity ratio between the QD and the WL. These differences ofmore » the PL characteristics are explained by the effects of the WL.« less
Phase transitions in Group III-V and II-VI semiconductors at high pressure
NASA Technical Reports Server (NTRS)
Yu, S. C.; Liu, C. Y.; Spain, I. L.; Skelton, E. F.
1979-01-01
The structures and transition pressures of Group III-V and II-VI semiconductors and of a pseudobinary system (Ga/x/In/1-x/Sb) have been investigated. Results indicate that GaP, InSb, GaSb, GaAs and possible AlP assume Metallic structures at high pressures; a tetragonal, beta-Sn-like structure is adopted by only InSb and GaSb. The rocksalt phase is preferred in InP, InAs, AlSb, ZnO and ZnS. The model of Van Vechten (1973) gives transition pressures which are in good agreement with measured values, but must be refined to account for the occurrence of the ionic rocksalt structure in some compounds. In addition, discrepancies between the theoretical scaling values for volume changes at the semiconductor-to-metal transitions are observed.
GaSb and Ga1-xInxSb Thermophotovoltaic Cells using Diffused Junction Technology in Bulk Substrates
NASA Astrophysics Data System (ADS)
Dutta, P. S.; Borrego, J. M.; Ehsani, H.; Rajagopalan, G.; Bhat, I. B.; Gutmann, R. J.; Nichols, G.; Baldasaro, P. F.
2003-01-01
This paper presents results of experimental and theoretical research on antimonide- based thermophotovoltaic (TPV) materials and cells. The topics discussed include: growth of large diameter ternary GaInSb bulk crystals, substrate preparation, diffused junction processes, cell fabrication and characterization, and, cell modeling. Ternary GaInSb boules up to 2 inches in diameter have been grown using the vertical Bridgman technique with a novel self solute feeding technique. A single step diffusion process followed by precise etching of the diffused layer has been developed to obtain a diffusion profile appropriate for high efficiency, p-n junction GaSb and GaInSb thermophotovoltaic cells. The optimum junction depth to obtain the highest quantum efficiency and open circuit voltage has been identified based on diffusion lengths (or minority carrier lifetimes), carrier mobility and experimental diffused impurity profiles. Theoretical assessment of the performance of ternary (GaInSb) and binary (GaSb) cells fabricated by Zn diffusion in bulk substrates has been performed using PC-1D one-dimensional computer simulations. Several factors affecting the cell performances such as the effects of emitter doping profile, emitter thickness and recombination mechanisms (Auger, radiative and Shockley-Read-Hall), the advantages of surface passivation and the impact of dark current due to the metallic grid will be discussed. The conditions needed for diffused junction cells on ternary and binary substrates to achieve similar performance to the epitaxially grown lattice- matched quaternary cells are identified.
NASA Astrophysics Data System (ADS)
Saini, Than Singh; Tiwari, Umesh Kumar; Sinha, Ravindra Kumar
2017-08-01
Recently, highly nonlinear Ga-Sb-S chalcogenide glasses have been reported for promising mid-infrared applications such as thermal imaging, nonlinear optics, and infrared lasers. However, the nonlinear optical fiber and waveguide geometries in Ga-Sb-S chalcogenide glasses have not been reported to date. In this paper, we numerically investigate the design of the dual zero dispersion engineered rib waveguide in Ga8Sb32S60 chalcogenide glass by employing MgF2 glass as a lower and upper cladding material. The waveguide structure possesses nonlinearity as high as 24 100 W-1 Km-1 and 14 000 W-1 Km-1 at 2050 and 2800 nm, respectively. The reported waveguide is able to generate a mid-infrared supercontinuum spectrum spanning from 1000 to 7800 nm when it pumped with 97 femtosecond laser pulses of a peak power of 1 kW at 2050 nm. We have also showed that the supercontinuum spectrum can be extended to the spectral range of 1000-9700 nm using pumping with 497 fs pulses of a peak power of 6.4 kW at 2800 nm. To the best of our knowledge, the proposed rib waveguide structure in Ga8Sb32S60 chalcogenide glass has been reported first time for nonlinear applications. Such a dispersion engineered rib waveguide structure has potential applications for the low-cost, power efficient, and compact on-chip mid-infrared supercontinuum sources and other nonlinear photonic devices.
Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites
Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang
2015-01-01
Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively. PMID:26456013
Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoya; Yang, Jiong; Wu, Lijun
2015-10-12
Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co 4Sb 12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing themore » Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively.« less
Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites
NASA Astrophysics Data System (ADS)
Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang
2015-10-01
Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively.
Quantum dots grown in the InSb/GaSb system by liquid-phase epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkhomenko, Ya. A.; Dement’ev, P. A.; Moiseev, K. D., E-mail: mkd@iropt2.ioffe.rssi.ru
2016-07-15
The first results of the liquid-phase epitaxial growth of quantum dots in the InSb/GaSb system and atomic-force microscopy data on the structural characteristics of the quantum dots are reported. It is shown that the surface density, shape, and size of nanoislands depend on the deposition temperature and the chemical properties of the matrix surface. Arrays of InSb quantum dots on GaSb (001) substrates are produced in the temperature range T = 450–465°C. The average dimensions of the quantum dots correspond to a height of h = 3 nm and a base dimension of D = 30 nm; the surface densitymore » is 3 × 10{sup 9} cm{sup –2}.« less
Nanoscopic diffusion studies on III-V compound semiconductor structures: Experiment and theory
NASA Astrophysics Data System (ADS)
Gonzalez Debs, Mariam
The electronic structure of multilayer semiconductor heterostructures is affected by the detailed compositional profiles throughout the structure and at critical interfaces. The extent of interdiffusion across these interfaces places limits on both the processing time and temperatures for many applications based on the resultant compositional profile and associated electronic structure. Atomic and phenomenological methods were used in this work through the combination of experiment and theory to understand the nanoscopic mechanisms in complex heterostructures. Two principal studies were conducted. Tin diffusion in GaAs was studied by fitting complex experimental diffusion profiles to a phenomenological model which involved the diffusion of substitutional and interstitial dopant atoms. A methodology was developed combining both the atomistic model and the use of key features within these experimentally-obtained diffusion profiles to determine meaningful values of the transport and defect reaction rate parameters. Interdiffusion across AlSb/GaSb multi-quantum well interfaces was also studied. The chemical diffusion coefficient characterizing the AlSb/GaSb diffusion couple was quantitatively determined by fitting the observed photoluminescence (PL) peak shifts to the solution of the Schrodinger equation using a potential derived from the solution of the diffusion equation to quantify the interband transition energy shifts. First-principles calculations implementing Density Functional Theory were performed to study the thermochemistry of point defects as a function of local environment, allowing a direct comparison of interfacial and bulk diffusion phenomena within these nanoscopic structures. Significant differences were observed in the Ga and Al vacancy formation energies at the AlSb/GaSb interface when compared to bulk AlSb and GaSb with the largest change found for Al vacancies. The AlSb/GaSb structures were further studied using positron annihilation spectroscopy (PAS) to investigate the role of vacancies in the interdiffusion of Al and Ga in the superlattices. The PL and PAS experimental techniques together with the phenomenological and atomistic modeling allowed for the determination of the underlying mass transport mechanisms at the nanoscale.
Lymperis, Emmanouil; Kaloudi, Aikaterini; Sallegger, Werner; Bakker, Ingrid L; Krenning, Eric P; de Jong, Marion; Maina, Theodosia; Nock, Berthold A
2018-05-16
Recent advances in oncology involve the use of diagnostic/therapeutic radionuclide-carrier pairs that target cancer cells, offering exciting opportunities for personalized patient treatment. Theranostic gastrin-releasing peptide receptor (GRPR)-directed radiopeptides have been proposed for the management of GRPR-expressing prostate and breast cancers. We have recently introduced the PET tracer 68 Ga-SB3 (SB3, DOTA- p-aminomethylaniline-diglycolic acid-DPhe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt), a receptor-radioantagonist that enables the visualization of GRPR-positive lesions in humans. Aiming to fully assess the theranostic potential of SB3, we herein report on the impact of switching 68 Ga to 111 In/ 177 Lu-label on the biological properties of resulting radiopeptides. Notably, the bioavailability of 111 In/ 177 Lu-SB3 in mice drastically deteriorated compared with metabolically robust 68 Ga-SB3, and as a result led to poorer 111 In/ 177 Lu-SB3 uptake in GRPR-positive PC-3 xenografts. The peptide cleavage sites were identified by chromatographic comparison of blood samples from mice intravenously receiving 111 In/ 177 Lu-SB3 with each of newly synthesized 111 In/ 177 Lu-SB3-fragments. Coinjection of the radioconjugates with the neprilysin (NEP)-inhibitor phosphoramidon led to full stabilization of 111 In/ 177 Lu-SB3 in peripheral mouse blood and resulted in markedly enhanced radiolabel uptake in the PC-3 tumors. In conclusion, in situ NEP-inhibition led to indistinguishable 68 Ga/ 111 In/ 177 Lu-SB3 profiles in mice emphasizing the theranostic prospects of SB3 for clinical use.
GASB to Issue Proposals on Pensions.
ERIC Educational Resources Information Center
Gauthier, Stephen
1994-01-01
The Governmental Accounting Standards Board has released three exposure drafts addressing the proper accounting and financial reporting for pensions. If approved, the new guidance would affect both pension plans and employers offering pension benefits to their employees. (Author)
Growth and characterization of an InSb infrared photoconductor on Si via an AlSb/GaSb buffer
NASA Astrophysics Data System (ADS)
Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt
2018-05-01
A 99.6% relaxed InSb layer is grown on a 6° offcut (1 0 0) Si substrate via an AlSb/GaSb buffer using molecular beam epitaxy (MBE). A 200 nm GaSb buffer is first grown on Si and the lattice mismatch between them is accommodated by an interfacial misfit (IMF) array consisting of uniformly distributed 90° misfit dislocations. Si delta doping is introduced during the growth of GaSb to reduce the density of threading dislocation. Subsequently, a 50 nm AlSb buffer is grown followed by a 0.8 μm InSb layer. The InSb layer exhibits a 300 K electron mobility of 22,300 cm2/Vs. An InSb photoconductor on Si is demonstrated with a photoconductive gain from 77 K to 200 K under a 700 °C maintained blackbody.
Controlled nanopatterning & modifications of materials by energetic ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, O. P.
Compound semiconductors (InP, InAs and GaSb) has been exposed to energetic 3 keV Ar{sup +} ions for a varying fluence range of 10{sup 13} ions/cm{sup 2} to 10{sup 18} ions/cm{sup 2} at room temperature. Morphological modifications of the irradiated surfaces have been investigated by Scanning Tunneling Microscopy (STM) in UHV conditions. It is observed that InP and GaSb have fluence dependent nanopattering e.g. nanoneedle, aligned nanodots, superimposed nanodots ripple like structures while InAs has little fluence dependent behaviour indicating materials dependent growth of features on irradiated surfaces. Moreover, surface roughness and wavelength of the features are also depending on themore » materials and fluences. The RMS surface roughness has been found to be increased rapidly in the early stage of irradiation followed by slower escalate rate and later tends to saturate indicating influence of the nonlinear processes.« less
Large disparity between gallium and antimony self-diffusion in gallium antimonide.
Bracht, H; Nicols, S P; Walukiewicz, W; Silveira, J P; Briones, F; Haller, E E
2000-11-02
The most fundamental mass transport process in solids is self-diffusion. The motion of host-lattice ('self-') atoms in solids is mediated by point defects such as vacancies or interstitial atoms, whose formation and migration enthalpies determine the kinetics of this thermally activated process. Self-diffusion studies also contribute to the understanding of the diffusion of impurities, and a quantitative understanding of self- and foreign-atom diffusion in semiconductors is central to the development of advanced electronic devices. In the past few years, self-diffusion studies have been performed successfully with isotopically controlled semiconductor heterostructures of germanium, silicon, gallium arsenide and gallium phosphide. Self-diffusion studies with isotopically controlled GaAs and GaP have been restricted to Ga self-diffusion, as only Ga has two stable isotopes, 69Ga and 71Ga. Here we report self-diffusion studies with an isotopically controlled multilayer structure of crystalline GaSb. Two stable isotopes exist for both Ga and Sb, allowing the simultaneous study of diffusion on both sublattices. Our experiments show that near the melting temperature, Ga diffuses more rapidly than Sb by over three orders of magnitude. This surprisingly large difference in atomic mobility requires a physical explanation going beyond standard diffusion models. Combining our data for Ga and Sb diffusion with related results for foreign-atom diffusion in GaSb (refs 8, 9), we conclude that the unusually slow Sb diffusion in GaSb is a consequence of reactions between defects on the Ga and Sb sublattices, which suppress the defects that are required for Sb diffusion.
Culvert information management system : demonstration project, final report, August 2009.
DOT National Transportation Integrated Search
2009-08-01
The overall objective of the research was to develop a pilot scale Culvert Information Management System (CIMS) that will : comply with both requirements stipulated by the Governmental Accounting Standards Board (GASB-34) and new federal : storm wate...
GASB's Basis of Accounting Project.
ERIC Educational Resources Information Center
Kovlak, Daniel L.
1986-01-01
In July 1984, the Governmental Accounting Standards Board began its "Measurement Focus/Basis of Accounting" project, which addresses measurement issues and revenue and expenditure recognition problems involving governmental funds. This article explains the project's background, alternatives discussed by the board, and tentative…
GASB 8 Compliance; Guidelines to Ease the Pain.
ERIC Educational Resources Information Center
McDougall, Donald B.
1991-01-01
Offers advice to schools and colleges attempting to bring their existing accounting procedures into conformity with "generally accepted accounting principles." Provides data categories for school asset lists and definitions of "cost" most frequently used in fixed asset management. (MLF)
Characterizations of and Radiation Effects in Several Emerging CMOS Technologies
NASA Astrophysics Data System (ADS)
Shufeng Ren
As the conventional scaling of Si based CMOS is approaching its limit at 7 nm technology node, many perceive that the adoption of novel materials and/or device structures are inevitable to keep Moore's law going. High mobility channel materials such as III-V compound semiconductors or Ge are considered promising to replace Si in order to achieve high performance as well as low power consumption. However, interface and oxide traps have become a major obstacle for high-mobility semiconductors (such as Ge, GaAs, InGaAs, GaSb, etc) to replace Si CMOS technology. Therefore novel high-k dielectrics, such as epitaxially grown crystalline oxides, have been explored to be incorporated onto the high mobility channel materials. Moreover, to enable continued scaling, extremely scaled devices structures such as nanowire gate-all-around structure are needed in the near future. Moreover, as the CMOS industry moves into the 7 nm node and beyond, novel lithography techniques such as EUV are believed to be adopted soon, which can bring radiation damage to CMOS devices and circuit during the fabrication process. Therefore radiation hardening technology in future generations of CMOS devices has again become an interesting research topic to deal with the possible process-induced damage as well as damage caused by operating in radiation harsh environment such as outer space, nuclear plant, etc. In this thesis, the electrical properties of a few selected emerging novel CMOS devices are investigated, which include InGaAs based extremely scaled ultra-thin body nanowire gate-all-around MOSFETs, GOI (Ge On Insulator) CMOS with recessed channel and source/drain, GaAs MOSFETs with crystalline La based gate stack, and crystalline SrTiO3, are investigated to extend our understanding of their electrical characteristics, underlying physical mechanisms, and material properties. Furthermore, the radiation responses of these aforementioned novel devices are thoroughly investigated, with a focus on the total ionizing dose (TID) effect, to understand the associated physical mechanisms, and to help to inspire ideas to improve radiation immunity of these novel devices. The experimental methods used in this thesis research include the measurements of C-V, I-V characteristics, where novel gate stack and interface characterization techniques are employed, such as AC Gm method, 1/f low frequency noise method, inelastic electron tunneling spectroscopy (IETS) for chemical bonding and defects detection, and carrier transport modeling. Sentaurus TCAD simulations are also carried out to obtain more physical insight in the complex, extremely scaled, device structures.
GASB Achieves Standardization, Recognition.
ERIC Educational Resources Information Center
Bissell, George E.
1986-01-01
In 1984 the Governmental Accounting Standards Board, created to solidify accounting principles for government entities, enumerated Generally Accepted Accounting Principles endorsed by the American Institute of Certified Public Accountants and the National Council on Governmental Accounting. These principles have recently been approved for school…
Properties of unrelaxed InAs{sub 1-X}Sb{sub X} alloys grown on compositionally graded buffers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belenky, G.; Donetsky, D.; Kipshidze, G.
Unrelaxed InAs{sub 1-x}Sb{sub x} layers with lattice constants up to 2.1% larger than that of GaSb substrates were grown by molecular beam epitaxy on GaInSb and AlGaInSb compositionally graded buffer layers. The topmost section of the buffers was unrelaxed but strained. The in-plane lattice constant of the top buffer layer was grown to be equal to the lattice constant of unrelaxed and unstrained InAs{sub 1-x}Sb{sub x} with given X. The InAs{sub 0.56}Sb{sub 0.44} layers demonstrate photoluminescence peak at 9.4 {mu}m at 150 K. The minority carrier lifetime measured at 77 K for InAs{sub 0.8}Sb{sub 0.2} was {tau} = 250 ns.
Ultra-low input power long-wavelength GaSb type-I laser diodes at 2.7-3.0 μm
NASA Astrophysics Data System (ADS)
Vizbaras, Augustinas; Greibus, Mindaugas; Dvinelis, Edgaras; Trinkūnas, Augustinas; Kovalenkovas, Deividas; Šimonytė, Ieva; Vizbaras, Kristijonas
2014-02-01
Mid-infrared spectral region (2-4 μm) is gaining significant attention recently due to the presence of numerous enabling applications in the field of gas sensing, medical, environmental and defense applications. Major requirement for these applications is the availability of laser sources in this spectral window. Type-I GaSb-based laser diodes are ideal candidates for these applications being compact, electrically pumped, power efficient and able to operate at room temperature in continuous-wave. Moreover, due to the nature of type-I transition; these devices have a characteristic low operation voltage, typically below 1 V, resulting in low power consumption, and high-temperature of operation. In this work, we present recent progress of 2.7 μm - 3.0 μm wavelength single-spatial mode GaSb type-I laser diode development at Brolis Semiconductors. Experimental device structures were grown by solid-source multi-wafer MBE, consisting of an active region with 2 compressively strained (~1.3 %-1.5 %) GaInAsSb quantum wells with GaSb barriers for 2.7 μm devices and quinternary AlGaInAsSb barriers for 3.0 μm devices. Epi-wafers were processed into a narrow-ridge (2-4 μm) devices and mounted p-side up on CuW heatsink. Devices exhibited very low CW threshold powers of < 100 mW, and single spatial mode (TE00) operation with room-temperature output powers up to 40 mW in CW mode. Operating voltage was as low as 1.2 V at 1.2 A. As-cleaved devices worked CW up to 50 deg C.
Cost estimate of electricity produced by TPV
NASA Astrophysics Data System (ADS)
Palfinger, Günther; Bitnar, Bernd; Durisch, Wilhelm; Mayor, Jean-Claude; Grützmacher, Detlev; Gobrecht, Jens
2003-05-01
A crucial parameter for the market penetration of TPV is its electricity production cost. In this work a detailed cost estimate is performed for a Si photocell based TPV system, which was developed for electrically self-powered operation of a domestic heating system. The results are compared to a rough estimate of cost of electricity for a projected GaSb based system. For the calculation of the price of electricity, a lifetime of 20 years, an interest rate of 4.25% per year and maintenance costs of 1% of the investment are presumed. To determine the production cost of TPV systems with a power of 12-20 kW, the costs of the TPV components and 100 EUR kW-1el,peak for assembly and miscellaneous were estimated. Alternatively, the system cost for the GaSb system was derived from the cost of the photocells and from the assumption that they account for 35% of the total system cost. The calculation was done for four different TPV scenarios which include a Si based prototype system with existing technology (etasys = 1.0%), leading to 3000 EUR kW-1el,peak, an optimized Si based system using conventional, available technology (etasys = 1.5%), leading to 900 EUR kW-1el,peak, a further improved system with future technology (etasys = 5%), leading to 340 EUR kW-1el,peak and a GaSb based system (etasys = 12.3% with recuperator), leading to 1900 EUR kW-1el,peak. Thus, prices of electricity from 6 to 25 EURcents kWh-1el (including gas of about 3.5 EURcents kWh-1) were calculated and compared with those of fuel cells (31 EURcents kWh-1) and gas engines (23 EURcents kWh-1).
Model Legislation for GAAP and GASB.
ERIC Educational Resources Information Center
Bissell, George E.
1987-01-01
The use of generally accepted accounting principles (GAAP) by all state and local governments may require legislation. Findings from a survey of states to get data on current accounting and financial reporting practices are summarized. Model legislation to provide uniformity in accounting and reporting is presented. (MLF)
21st Century Water Asset Accounting: Implications Report (WERF Report INFR6R12b)
This project is an important first step towards developing water industry standards and accounting protocols for green infrastructure that could be adopted by the Governmental Accounting Standards Board (GASB) to promote green infrastructure investment. Green infrastructure, the ...
DOT National Transportation Integrated Search
2003-05-01
The Alabama Department of Transportation (ALDOT) Bureau of Materials and Tests has been working with the University of Alabama's Management Information Systems Department to provide a tool for road maintenance and optimization associated funding. Spe...
GASB 34 Financial Statements Are Easier With the Right Tools.
ERIC Educational Resources Information Center
Heinfeld, Gary; Arvizu, C. Christopher; Herrera, Michael L.
2001-01-01
Describes experience with certain tools and resources to help school business officials implement the Governmental Accounting Standards Board Statement 34. Focuses on Association of School Business Officials International's new Certificate of Excellence in Financial Reporting guidebook and financial-statement report-writer software called…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vurgaftman, I.; Belenky, G., E-mail: gregory.belenky@stonybrook.edu; Lin, Y.
The absorption spectra for the antimonide-based type-II superlattices (SLs) for detection in the long-wave infrared (LWIR) are calculated and compared to the measured data for SLs and bulk materials with the same energy gap (HgCdTe and InAsSb). We include the results for the metamorphic InAsSb{sub x}/InAsSb{sub y} SLs with small periods as well as the more conventional strain-balanced InAs/Ga(In)Sb and InAs/InAsSb SLs on GaSb substrates. The absorption strength in small-period metamorphic SLs is similar to the bulk materials, while the SLs with an average lattice constant matched to GaSb have significantly lower absorption. This is because the electron-hole overlap inmore » the strain-balanced type-II LWIR SLs occurs primarily in the hole well, which constitutes a relatively small fraction of the total thickness.« less
NASA Astrophysics Data System (ADS)
Nitta, Noriko; Taniwaki, Masafumi
2006-04-01
The present authors proposed a novel nano-fabrication technique that is able to arrange the fine cells orderly, based on their finding in GaSb implanted at a low temperature. In this article, first the experimental results that anomalous cellular structure was formed in GaSb by ion implantation is introduced and the self-organizational formation mechanism of the structure is described. Next a nano-fabrication technique that utilizes focused ion beam is described. This technique consists of two procedures, i.e. the formation process of the voids array and the development of the initial array to ordered cellular structure. Finally, the nano-fabrication is actually performed by this technique and their results are reported. Fabrication succeeded in structures where the dot (cell) interval was 100 nm or larger. The minimum ion dose for initial voids which develops to the ordered cellular structure is evaluated. It is also shown that the substrate temperature during implantation is an essential parameter for this technique.
Getting to Know Governmental GAAP.
ERIC Educational Resources Information Center
Bissell, George E.
1987-01-01
Presents the history and an overview of how generally accepted accounting principles (GAAP) are established and by what process the standards are created. School business officials are invited to participate in the Governmental Accounting Standards Board (GASB), established as the standard setting body for state and local governments. (MLF)
Are You Ready To Display Depreciation?
ERIC Educational Resources Information Center
Bosserman, David C.
2000-01-01
Addresses issues raised for public colleges and universities as a result of the Governmental Accounting Standards Board (GASB) requirements concerning inclusion of depreciation on an institution's Statement of Revenues, Expenses, and Changes in Net Assets. Provides a sample impact analysis and financial statements for a hypothetical university to…
GASB's New Standard on Reporting Entity for School Districts.
ERIC Educational Resources Information Center
Harmer, W. Gary
1991-01-01
Explains the impact on school district financial reporting of the Governmental Accounting Standards Board Statement 14, "The Financial Reporting Entity." One of Statement 14's objectives is for financial report users to be able to distinguish between the primary government and its component units. (MLF)
GASB Statement No. 3 Guides Deposits, Investments.
ERIC Educational Resources Information Center
Barker, Linda A.
1986-01-01
Discusses an April 1986 Governmental Accounting Standards Board statement concerning disclosures of repurchase and reverse repurchase agreements. The statement tries to help financial statement users assess the risks a goverment entity takes when investing public funds. It is effective for financial statement periods ending after December 15,…
NASA Astrophysics Data System (ADS)
Huo, Jin-Rong; Li, Lu; Cheng, Hai-Xia; Wang, Xiao-Xu; Zhang, Guo-Hua; Qian, Ping
2018-03-01
The interface structure, electronic and optical properties of Au-ZnO are studied using the first-principles calculation based on density functional theory (DFT). Given the interfacial distance, bonding configurations and terminated surface, we built the optimal interface structure and calculated the electronic and optical properties of the interface. The total density of states, partial electronic density of states, electric charge density and atomic populations (Mulliken) are also displayed. The results show that the electrons converge at O atoms at the interface, leading to a stronger binding of interfaces and thereby affecting the optical properties of interface structures. In addition, we present the binding energies of different interface structures. When the interface structure of Au-ZnO gets changed, furthermore, varying optical properties are exhibited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seña, N.; Dussan, A.; Mesa, F.
We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x = 0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method was used in order to calculate total energies and electronic structures. It was found that the Mn{sub Ga} substitution is the most stable configuration with a formation energy of ∼1.60 eV/Mn-atom. The calculated density of states shows that the half-metallic ferromagnetism is energetically stable for all dopant concentrations with a total magnetization of about 4.0 μ{sub B}/Mn-atom. The results indicate that the magnetic ground statemore » originates from the strong hybridization between Mn-d and Sb-p states, which agree with previous studies on Mn-doped wide gap semiconductors. This study gives new clues to the fabrication of diluted magnetic semiconductors.« less
Heterointerface engineering of broken-gap InAs/GaSb multilayer structures.
Liu, Jheng-Sin; Zhu, Yan; Goley, Patrick S; Hudait, Mantu K
2015-02-04
Broken-gap InAs/GaSb strain balanced multilayer structures were grown by molecular beam epitaxy (MBE), and their structural, morphological, and band alignment properties were analyzed. Precise shutter sequence during the MBE growth process, enable to achieve the strain balanced structure. Cross-sectional transmission electron microscopy exhibited sharp heterointerfaces, and the lattice line extended from the top GaSb layer to the bottom InAs layer. X-ray analysis further confirmed a strain balanced InAs/GaSb multilayer structure. A smooth surface morphology with surface roughness of ∼0.5 nm was demonstrated. The effective barrier height -0.15 eV at the GaSb/InAs heterointerface was determined by X-ray photoelectron spectroscopy, and it was further corroborated by simulation. These results are important to demonstrate desirable characteristics of mixed As/Sb material systems for high-performance and low-power tunnel field-effect transistor applications.
Implementation Recommendations for School Districts. GASB Statement No. 34.
ERIC Educational Resources Information Center
Association of School Business Officials International, Reston, VA.
Statement 34 is the most significant change in the history of governmental accounting. It is a dramatic change in the way school districts report and present financial information. This new reporting model affects every public-school organization that issues financial statements in conformity with generally accepted accounting principles (GAAP).…
GASB's Proposed Changes: A Balance of Plus and Minus.
ERIC Educational Resources Information Center
Alito, Nicholas C. A.; Hanson, Dennis W.
1997-01-01
The Governmental Accounting Standards Board recently issued an exposure draft that will result in significant changes to financial reporting produced in accordance with accounting principles. Financial reports will have to include a management's discussion and analysis section, a revised presentation of fund-oriented financial statements, and a…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-09
... in 1984 by agreement of the Financial Accounting Foundation (``FAF'') and ten national associations... standards of accounting and financial reporting for U.S. state and local governments.\\3\\ The GASB is... and publication of the generally accepted accounting principles (``GAAP'') for state and local...
DOT National Transportation Integrated Search
2002-01-02
This project defined the scope, goals, and high-level requirements for the Alabama Department of Transportation's Asset Management System, so that it will comply with the General Accounting Standards Board policy 34. The system will provide a network...
Metal colloids and semiconductor quantum dots: Linear and nonlinear optical properties
NASA Technical Reports Server (NTRS)
Henderson, D. O.; My, R.; Tung, Y.; Ueda, A.; Zhu, J.; Collins, W. E.; Hall, Christopher
1995-01-01
One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantion for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. In general the host material is typically a glass such as optical grade silica. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga and As. An emphasis is placed on host guest interactions between the matrix and the implanted ion and how the matrix effects and implantation parameters can be used to obtain designer level optical devices tailored for specific applications. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. In this part of the program, we are particularly interested in characterizing the thermodynamic and optical properties of these non-composite materials. We also address how phase diagram of the confined material is altered by the interfacial properties between the confined material and the pore wall.
NASA Astrophysics Data System (ADS)
Oumelaz, F.; Nemiri, O.; Boumaza, A.; Ghemid, S.; Meradji, H.; Bin Omran, S.; El Haj Hassan, F.; Rai, D. P.; Khenata, R.
2018-06-01
In this theoretical study, we have investigated the structural, phase transition, electronic, thermodynamic and optical properties of GaPxSb1-x ternary alloys. Our calculations are performed with the WIEN2k code based on density functional theory using the full-potential linearized augmented plane wave method. For the electron exchange-correlation potential, a generalized gradient approximation within Wu-Cohen scheme is considered. The recently developed Tran-Blaha modified Becke-Johnson potential has also been used to improve the underestimated band gap. The structural properties, including the lattice constants, the bulk moduli and their pressure derivatives are in very good agreement with the available experimental data and theoretical results. Several structural phase transitions were studied here to establish the stable structure and to predict the phase transition under hydrostatic pressure. The computed transition pressure (Pt) of the material of our interest from the zinc blende (B3) to the rock salt (B1) phase has been determined and found to agree well with the experimental and theoretical data. The calculated band structure shows that GaSb binary compound and the ternary alloys are direct band gap semiconductors. Optical parameters such as the dielectric constants and the refractive indices are calculated and analyzed. The thermodynamic results are also interpreted and analyzed.
ERIC Educational Resources Information Center
Heinfeld, Gary
This guide presents a financial model that affects all governmental entities that issue financial statements in conformity with Generally Accepted Accounting Principles (GAAP). The model was prepared to provide school business officials specific examples of school system financial-statement presentations. The guide is divided into six chapters.…
Superconducting proximity effect in MBE grown Nb-InAs junctions
NASA Astrophysics Data System (ADS)
Kan, Carolyn; Xue, Chi; Law, Stephanie; Eckstein, James
2013-03-01
Several proposals for the realization of Majorana fermions rely on excellent quality proximity coupling between a superconductor and a high-mobility semiconductor. We examine the long-range proximity coupling between MBE-grown InAs and in situ grown superconducting overlayers by fabricating transport devices, and investigate the effect of substrate choice and growth conditions on the quality of the MBE InAs. GaAs is commonly available as a high quality insulating substrate. Overcoming its lattice mismatch with InAs using GaSb and AlSb layers results in locally smooth terraced surfaces, but global spiral dislocation structures also appear and have a negative impact on the InAs mobility. Growing InAs on homoepitaxial GaSb results in improved morphology and increases the mean free path. We compare the proximity effect in devices made both ways. This material is based upon work supported by the U.S. Department of Energy, Division of Materials Sciences under Award No. DE-FG02 07ER46453, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign.
Recent progress in MBE grown HgCdTe materials and devices at UWA
NASA Astrophysics Data System (ADS)
Gu, R.; Lei, W.; Antoszewski, J.; Madni, I.; Umana-Menbreno, G.; Faraone, L.
2016-05-01
HgCdTe has dominated the high performance end of the IR detector market for decades. At present, the fabrication costs of HgCdTe based advanced infrared devices is relatively high, due to the low yield associated with lattice matched CdZnTe substrates and a complicated cooling system. One approach to ease this problem is to use a cost effective alternative substrate, such as Si or GaAs. Recently, GaSb has emerged as a new alternative with better lattice matching. In addition, implementation of MBE-grown unipolar n-type/barrier/n-type detector structures in the HgCdTe material system has been recently proposed and studied intensively to enhance the detector operating temperature. The unipolar nBn photodetector structure can be used to substantially reduce dark current and noise without impeding photocurrent flow. In this paper, recent progress in MBE growth of HgCdTe infrared material at the University of Western Australia (UWA) is reported, including MBE growth of HgCdTe on GaSb alternative substrates and growth of HgCdTe nBn structures.
Improved GaSb surfaces using a (NH4)2S/(NH4)2S04 solution
NASA Astrophysics Data System (ADS)
Murape, D. M.; Eassa, N.; Nyamhere, C.; Neethling, J. H.; Betz, R.; Coetsee, E.; Swart, H. C.; Botha, J. R.; Venter, A.
2012-05-01
Bulk (1 0 0) n-GaSb surfaces have been treated with a sulphur based solution ((NH4)2S/(NH4)2SO4) to which sulphur has been added, not previously reported for the passivation of GaSb surfaces. Au/n-GaSb Schottky barrier diodes (SBDs) fabricated on the treated material show significant improvement compared to that of the similar SBDs on the as-received material as evidenced by the lower ideality factor (n), higher barrier height (ϕb) and lower contact resistance obtained. Additionally, the reverse leakage current, although not saturating, has been reduced by almost an order of magnitude at -0.2 V. The sample surfaces were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The native oxide, Sb-O, present on the as-received material is effectively removed on treating with ([(NH4)2S/(NH4)2SO4]+S) and (NH4)2S. Analysis of the as-received surface by XPS, prior to and after argon sputtering, suggests that the native oxide layer is ≤8.5 nm.
Fibrous structure in GaSb surfaces irradiated with fast Cu cluster ions
NASA Astrophysics Data System (ADS)
Tsuchida, Hidetsugu; Nitta, Noriko; Yanagida, Yusuke; Okumura, Yuya; Murase, Ryu
2018-04-01
The effect of fast cluster irradiation on the formation of fibrous structures is investigated for single crystal GaSb surfaces irradiated by Cun+ ions (n = 1-3) with an energy of 0.4 MeV/atom at ion fluences up to 5 × 1015 cm-2. We study the cluster size dependence on the growth of fibrous network structures. With increasing cluster size, the shape of the fiber changed from rod-like to spherical. To quantitatively evaluate this cluster effect, a fiber diameter d in rod or spherical portion is examined as a function of ion fluence Φ and cluster size n. We find that the fiber diameter nonlinearly increases and follows the relation d ∝nα×Φ , with α≈2 . This evidently implies that the amount of defects generated by n-sized cluster bombardments varies as n2 for n ≤3 . Cluster ion irradiation enhances the defect generation owing to the overlap between cascades of individual cluster constituents and is therefore effective for the growth of nanofibers.
DX-center transformation of Te donors in GaSb under hydrostatic pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro-Contreras, H.; de Anda-Salazar, F.; Hsu, L.
1998-05-01
We have observed the transformation of Te shallow donors in GaSb into DX centers at hydrostatic pressures of 27.8{plus_minus}2.6kbar. The position of the Te DX energy level at zero pressure is calculated to lie 300{plus_minus}70meV above the conduction band at atmospheric pressure, consistent with the theory that in the III-V compounds the DX centers line up in energy with respect to the vacuum level within experimental error. This binding energy at zero pressure of the Te DX compares well with the value of 210 meV calculated from the cation-cation bonded DX-center model recently proposed by Park and Chadi. At pressuresmore » where the Te shallow donor into DX-center transformation has taken place we observe evidence of the existence of a bound phonon associated with the Te DX center. From its observed pressure dependence the LO optical phonon Gr{umlt u}neisen parameter is calculated to be {gamma}{sub LO}=0.93{plus_minus}0.09. {copyright} {ital 1998} {ital The American Physical Society}« less
Dry etching, surface passivation and capping processes for antimonide based photodetectors
NASA Astrophysics Data System (ADS)
Dutta, Partha; Langer, Jeffery; Bhagwat, Vinay; Juneja, Jasbir
2005-05-01
III-V antimonide based devices suffer from leakage currents. Surface passivation and subsequent capping of the surfaces are absolutely essential for any practical applicability of antimonide based devices. The quest for a suitable surface passivation technology is still on. In this paper, we will present some of the promising recent developments in this area based on dry etching of GaSb based homojunction photodiodes structures followed by various passivation and capping schemes. We have developed a damage-free, universal dry etching recipe based on unique ratios of Cl2/BCl3/CH4/Ar/H2 in ECR plasma. This novel dry plasma process etches all III-V compounds at different rates with minimal damage to the side walls. In GaSb based photodiodes, an order of magnitude lower leakage current, improved ideality factor and higher responsivity has been demonstrated using this recipe compared to widely used Cl2/Ar and wet chemical etch recipes. The dynamic zero bias resistance-area product of the Cl2/BCl3/CH4/Ar/H2 etched diodes (830 Ω cm2) is higher than the Cl2/Ar (300 Ω cm2) and wet etched (330 Ω cm2) diodes. Ammonium sulfide has been known to passivate surfaces of III-V compounds. In GaSb photodiodes, the leakage current density reduces by a factor of 3 upon sulfur passivation using ammonium sulfide. However, device performance degrades over a period of time in the absence of any capping or protective layer. Silicon Nitride has been used as a cap layer by various researchers. We have found that by using silicon nitride caps, the devices exhibit higher leakage than unpassivated devices probably due to plasma damage during SiNx deposition. We have experimented with various polymers for capping material. It has been observed that ammonium sulfide passivation when combined with parylene capping layer (150 Å), devices retain their improved performance for over 4 months.
Transparency in State Debt Disclosure. Working Papers. No. 17-10
ERIC Educational Resources Information Center
Zhao, Bo; Wang, Wen
2017-01-01
We develop a new measure of relative debt transparency by comparing the amount of state debt reported in the annual Census survey and the amount reported in the statistical section of the state Comprehensive Annual Financial Report (CAFR). GASB 44 requires states to start reporting their total debt in the CAFR statistical section in FY 2006.…
Relaxation, Structure and Properties of Semi-coherent Interfaces
Shao, Shuai; Wang, Jian
2015-11-05
Materials containing high density of interfaces are promising candidates for future energy technologies, because interfaces acting as sources, sinks, and barriers for defects can improve mechanical and irradiation properties of materials. Semi-coherent interface widely occurring in various materials is composed of a network of misfit dislocations and coherent regions separated by misfit dislocations. Lastly, in this article, we review relaxation mechanisms, structure and properties of (111) semi-coherent interfaces in face centered cubic structures.
Properties of interfaces and transport across them.
Cabezas, H
2000-01-01
Much of the biological activity in cell cytoplasm occurs in compartments some of which may be formed, as suggested in this book, by phase separation, and many of the functions of such compartments depend on the transport or exchange of molecules across interfaces. Thus a fundamentally based discussion of the properties of phases, interfaces, and diffusive transport across interfaces has been given to further elucidate these phenomena. An operational criterion for the width of interfaces is given in terms of molecular and physical arguments, and the properties of molecules inside phases and interfaces are discussed in terms of molecular arguments. In general, the properties of the interface become important when the molecules diffusing across are smaller than the width of the interface. Equilibrium partitioning, Donnan phenomena, and electrochemical potentials at interfaces are also discussed in detail. The mathematical expressions for modeling transport across interfaces are discussed in detail. These describe a practical and detailed model for transport across interfaces. For molecules smaller than the width of the interface, this includes a detailed model for diffusion inside the interface. Last, the question of the time scale for phase formation and equilibration in biological systems is discussed.
Antimonide-based membranes synthesis integration and strain engineering
Anwar, Farhana; Klein, Brianna A.; Rasoulof, Amin; Dawson, Noel M.; Schuler-Sandy, Ted; Deneke, Christoph F.; Ferreira, Sukarno O.; Cavallo, Francesca; Krishna, Sanjay
2017-01-01
Antimonide compounds are fabricated in membrane form to enable materials combinations that cannot be obtained by direct growth and to support strain fields that are not possible in the bulk. InAs/(InAs,Ga)Sb type II superlattices (T2SLs) with different in-plane geometries are transferred from a GaSb substrate to a variety of hosts, including Si, polydimethylsiloxane, and metal-coated substrates. Electron microscopy shows structural integrity of transferred membranes with thickness of 100 nm to 2.5 μm and lateral sizes from 24×24μm2 to 1×1 cm2. Electron microscopy reveals the excellent quality of the membrane interface with the new host. The crystalline structure of the T2SL is not altered by the fabrication process, and a minimal elastic relaxation occurs during the release step, as demonstrated by X-ray diffraction and mechanical modeling. A method to locally strain-engineer antimonide-based membranes is theoretically illustrated. Continuum elasticity theory shows that up to ∼3.5% compressive strain can be induced in an InSb quantum well through external bending. Photoluminescence spectroscopy and characterization of an IR photodetector based on InAs/GaSb bonded to Si demonstrate the functionality of transferred membranes in the IR range. PMID:27986953
Indium-bump-free antimonide superlattice membrane detectors on silicon substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamiri, M., E-mail: mzamiri@chtm.unm.edu, E-mail: skrishna@chtm.unm.edu; Klein, B.; Schuler-Sandy, T.
2016-02-29
We present an approach to realize antimonide superlattices on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN superlattices are grown on top of a 60 nm Al{sub 0.6}Ga{sub 0.4}Sb sacrificial layer on a GaSb host substrate. Following the growth, the individual pixels are transferred using our epitaxial-lift off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. Structural and optical characterization of the transferred pixels was done using an optical microscope, scanning electron microscopy, and photoluminescence. The interface betweenmore » the transferred pixels and the new substrate was abrupt, and no significant degradation in the optical quality was observed. An Indium-bump-free membrane detector was then fabricated using this approach. Spectral response measurements provided a 100% cut-off wavelength of 4.3 μm at 77 K. The performance of the membrane detector was compared to a control detector on the as-grown substrate. The membrane detector was limited by surface leakage current. The proposed approach could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors.« less
Material considerations for third generation infrared photon detectors
NASA Astrophysics Data System (ADS)
Rogalski, A.
2007-04-01
In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well photoconductors are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. The metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an alternative to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm. In this context the material properties of type II superlattices are considered more in detail.
NASA Astrophysics Data System (ADS)
Boustanji, Hela; Jaziri, Sihem
2018-02-01
GaSb/GaAs type-II quantum-dot solar cells (QD SCs) have attracted attention as highly efficient intermediate band SCs due to their infrared absorption. Type-II QDs exhibited a staggered confinement potential, where only holes are strongly confined within the dots. Long wavelength light absorption of the QDSCs is enhanced through the improved carriers number in the IB. The absorption of dots depends on their shape, material quality, and composition. Therefore, the optical properties of the GaSbGaAs QDs before and after thermal treatment are studied. Our intraband studies have shown an extended absorption into the long wavelength region 1.77 μ {m}. The annealed QDs have shown significantly more infrared response of 7.2 μ {m} compared to as-grown sample. The photon absorption and hole extraction depend strongly on the thermal annealing process. In this context, emission of holes from localized states in GaSb QDs has been studied using conductance-voltage ( G- V ) characteristics.
46 CFR 54.01-5 - Scope (modifies U-1 and U-2).
Code of Federal Regulations, 2010 CFR
2010-10-01
... (approved by the Office of Management and Budget under OMB control number 2130-0181); (2) Meet § 54.01-35... stress relief may be substituted if allowed under Subpart 54.30 of this chapter. III (a) Vapor or gas(b... pressure vessels. (Approved by the Office of Management and Budget under OMB control number 2130-0181...
46 CFR 54.01-5 - Scope (modifies U-1 and U-2).
Code of Federal Regulations, 2013 CFR
2013-10-01
... (approved by the Office of Management and Budget under OMB control number 2130-0181); (2) Meet § 54.01-35... stress relief may be substituted if allowed under subpart 54.30 of this chapter. III (a) Vapor or gas(b... pressure vessels. (Approved by the Office of Management and Budget under OMB control number 2130-0181...
46 CFR 54.01-5 - Scope (modifies U-1 and U-2).
Code of Federal Regulations, 2012 CFR
2012-10-01
... (approved by the Office of Management and Budget under OMB control number 2130-0181); (2) Meet § 54.01-35... stress relief may be substituted if allowed under Subpart 54.30 of this chapter. III (a) Vapor or gas(b... pressure vessels. (Approved by the Office of Management and Budget under OMB control number 2130-0181...
46 CFR 54.01-5 - Scope (modifies U-1 and U-2).
Code of Federal Regulations, 2011 CFR
2011-10-01
... (approved by the Office of Management and Budget under OMB control number 2130-0181); (2) Meet § 54.01-35... stress relief may be substituted if allowed under Subpart 54.30 of this chapter. III (a) Vapor or gas(b... pressure vessels. (Approved by the Office of Management and Budget under OMB control number 2130-0181...
1997-11-15
Vll LIST OF ILLUSTRATIONS (Continued) Figure page No. 3-2 Representative trace from the imaging interferometric end point system of etched...of Nomarski contrast microscopy. Double-crystal x-ray diffraction (DCXD) was used to measure the degree of lattice mismatch Aa/a to GaSb substrates...was increased further, however, Nomarski contrast microscopy revealed surface texture which increases with V/m ratio. These results are similar to
Retiree Health Plans for Public School Teachers after GASB 43 and 45
ERIC Educational Resources Information Center
Clark, Robert L.
2010-01-01
Most public elementary and high school teachers are covered by health insurance provided by their employer while they are employed. In most cases, these health plans are managed at the state level. At retirement, teachers with sufficient years of service are allowed to remain in the health plan. Retiree health plans for teachers vary widely across…
A New Method for Growth and Analysis of Next-Generation IR Detector Materials
2008-12-01
Until recently the highest concentration of nitrogen reported in GaSb1- xNx was 1.75% (Buckle, et al., 2005). Recent work at the Army Research...Andreev, B. N. Murdin, E. P. O’Reilly and C. R. Pidgeon, 2003: InSb1− xNx growth and devices, Solid- State Electronics, 47(3), 387-394. L. Buckle
Manipulation of polarization anisotropy in bare InAs and InAs/GaSb core-shell nanowires
NASA Astrophysics Data System (ADS)
Patra, Atanu; Roy, Anushree; Gomes, Umesh Prasad; Zannier, Valentina; Ercolani, Daniele; Sorba, Lucia
2018-04-01
In this article, we compare the excitation wavelength dependence of the polarization anisotropy (ρ) of an internal field induced Raman scattering signal in individual bare InAs and InAs/GaSb core-shell nanowires. The measured value of ρ of the Raman scattering intensity for InAs/GaSb core-shell nanowires has a minimum at ˜500 nm, while for the bare InAs nanowire, the value of ρ monotonically increases over the same range of wavelengths. We have modeled the scattering intensities of both systems by considering the joint role of Raman tensor components and confinement of electromagnetic radiation inside the nanowire at two orthogonal polarization configurations of the electromagnetic radiation. The theoretical results allow us to understand that the observed behavior of ρ is related to the nanowire geometry and to the difference in the wavelength dependence of the dielectric constants of InAs and GaSb. This work shows the possibility of manipulating the polarization anisotropy by selecting suitable diameters and materials for the core and the shell of the nanowire. We also report a six-fold increase in Raman scattering intensity due to the GaSb shell on InAs nanowires.
Increased p-type conductivity in GaN{sub x}Sb{sub 1−x}, experimental and theoretical aspects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segercrantz, N., E-mail: natalie.segercrantz@aalto.fi; Makkonen, I.; Slotte, J.
2015-08-28
The large increase in the p-type conductivity observed when nitrogen is added to GaSb has been studied using positron annihilation spectroscopy and ab initio calculations. Doppler broadening measurements have been conducted on samples of GaN{sub x}Sb{sub 1−x} layers grown by molecular beam epitaxy, and the results have been compared with calculated first-principle results corresponding to different defect structures. From the calculated data, binding energies for nitrogen-related defects have also been estimated. Based on the results, the increase in residual hole concentration is explained by an increase in the fraction of negative acceptor-type defects in the material. As the band gapmore » decreases with increasing N concentration, the ionization levels of the defects move closer to the valence band. Ga vacancy-type defects are found to act as positron trapping defects in the material, and the ratio of Ga vacancy-type defects to Ga antisites is found to be higher than that of the p-type bulk GaSb substrate. Beside Ga vacancies, the calculated results imply that complexes of a Ga vacancy and nitrogen could be present in the material.« less
Bias Selective Operation of Sb-Based Two-Color Photodetectors
NASA Technical Reports Server (NTRS)
Abedin, M. N.; Refaat, Tamer F.; Bhat, Ishwara B.; Xiao, Yegao; Johnson, David G.
2006-01-01
Multicolor detectors have a strong potential to replace conventional single-color detectors in application dealing with the simultaneous detection of more than one wavelength. This will lead to the reduction of heavy and complex optical components now required for spectral discrimination for multi-wavelengths applications. This multicolor technology is simpler, lighter, compact and cheaper with respect to the single-color ones. In this paper, Sb-based two-color detectors fabrication and characterization are presented. The color separation is achieved by fabricating dual band pn junction on a GaSb substrate. The first band consists of an InGaAsSb pn junction for long wavelength detection, while the second band consists of a GaSb pn junction for shorter wavelength detection. Three metal contacts were deposited to access the individual junctions. Surface morphology of multi-layer thin films and also device characteristics of quasi-dual band photodetector were characterized using standard optical microscope and electro-optic techniques respectively. Dark current measurements illustrated the diode behavior of both lattice-matched detector bands. Spectral response measurements indicated either independent operation of both detectors simultaneously, or selective operation of one detector, by the polarity of the bias voltage, while serially accessing both devices.
Self-diffusion in 69Ga121Sb/71Ga123Sb isotope heterostructures
NASA Astrophysics Data System (ADS)
Bracht, H.; Nicols, S. P.; Haller, E. E.; Silveira, J. P.; Briones, F.
2001-05-01
Gallium and antimony self-diffusion experiments have been performed in undoped 69Ga121Sb/71Ga123Sb isotope heterostructures at temperatures between 571 and 708 °C under Sb- and Ga-rich ambients. Ga and Sb profiles measured with secondary ion mass spectrometry reveal that Ga diffuses faster than Sb by several orders of magnitude. This strongly suggests that the two self-atom species diffuse independently on their own sublattices. Experimental results lead us to conclude that Ga and Sb diffusion are mediated by Ga vacancies and Sb interstitials, respectively, and not by the formation of a triple defect proposed earlier by Weiler and Mehrer [Philos. Mag. A 49, 309 (1984)]. The extremely slow diffusion of Sb up to the melting temperature of GaSb is proposed to be a consequence of amphoteric transformations between native point defects which suppress the formation of those native defects which control Sb diffusion. Preliminary experiments exploring the effect of Zn indiffusion at 550 °C on Ga and Sb diffusion reveal an enhanced intermixing of the Ga isotope layers compared to undoped GaSb. However, under the same conditions the diffusion of Sb was not significantly affected.
Raman Scattering Study of Lattice Vibrations in the Type-II Superlattice InAs / InAs 1 - x Sb x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Henan; Zhang, Yong; Steenbergen, Elizabeth H.
The InAs/InAs 1-xSb x superlattice system distinctly differs from two well-studied superlattice systems GaAs / AlAs and InAs/GaSb in terms of electronic band alignment, common elements at the interface, and phonon spectrum overlapping of the constituents. This fact leads to the unique electronic and vibrational properties of the InAs/InAs 1-xSb x system when compared to the other two systems. Here, we report a polarized Raman study of the vibrational properties of the InAs/InAs 1-xSb x superlattices (SLs) as well as selected InAs 1-xSb x alloys, all grown on GaSb substrates by either MBE or metalorganic chemical vapor deposition (MOCVD) frommore » both the growth surface and cleaved edge. In the SL, from the (001) backscattering geometry, an InAs-like longitudinal optical (LO) mode is observed as the primary feature, and its intensity is found to increase with increasing Sb composition. From the (110) cleaved-edge backscattering geometry, an InAs-like transverse optical (TO) mode is observed as the main feature in two cross-polarization configurations, but an additional InAs-like “forbidden” LO mode is observed in two parallel-polarization configurations. The InAs 1-xSb x alloys lattice matched to the substrate (x Sb ~ 0.09) grown by MBE are also found to exhibit the forbidden LO mode, implying the existence of some unexpected [001] modulation. However, the strained samples (x Sb ~ 0.35) grown by MOCVD are found to behave like a disordered alloy. The primary conclusions are (1) the InAs-like LO or TO mode can be either a confined or quasiconfined mode in the InAs layers of the SL or extended mode of the whole structure depending on the Sb composition. (2) InAs/InAs 1-xSb x and InAs/GaSb SLs exhibit significantly different behaviors in the cleaved-edge geometry but qualitatively similar in the (001) geometry. (3) The appearance of the forbidden LO-like mode is a universal signature for SLs and bulk systems resulting from the mixing of phonon modes due to structural modulation or symmetry reduction.« less
Manipulating Ferroelectrics through Changes in Surface and Interface Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Ramesh, Ramamoorthy; Yu, Pu
Ferroelectric materials are used in many applications of modern technologies including information storage, transducers, sensors, tunable capacitors, and other novel device concepts. In many of these applications, the ferroelectric properties, such as switching voltages, piezoelectric constants, or stability of nanodomains, are crucial. For any application, even for material characterization, the material itself needs to be interfaced with electrodes. On the basis of the structural, chemical, and electronic properties of the interfaces, the measured material properties can be determined by the interface. This is also true for surfaces. However, the importance of interfaces and surfaces and their effect on experiments aremore » often neglected, which results in many dramatically different experimental results for nominally identical samples. Therefore, it is crucial to understand the role of the interface and surface properties on internal bias fields and the domain switching process. Here, the nanoscale ferroelectric switching process and the stability of nanodomains for Pb(Zr,Ti)O 3 thin films are investigated by using scanning probe microscopy. Interface and surface properties are modulated through the selection/redesign of electrode materials as well as tuning the surface-near oxygen vacancies, which both can result in changes of the electric fields acting across the sample, and consequently this controls the measured ferroelectric and domain retention properties. By understanding the role of surfaces and interfaces, ferroelectric properties can be tuned to eliminate the problem of asymmetric domain stability by combining the effects of different electrode materials. Lastly, this study forms an important step toward integrating ferroelectric materials in electronic devices.« less
Manipulating Ferroelectrics through Changes in Surface and Interface Properties
Balke, Nina; Ramesh, Ramamoorthy; Yu, Pu
2017-10-23
Ferroelectric materials are used in many applications of modern technologies including information storage, transducers, sensors, tunable capacitors, and other novel device concepts. In many of these applications, the ferroelectric properties, such as switching voltages, piezoelectric constants, or stability of nanodomains, are crucial. For any application, even for material characterization, the material itself needs to be interfaced with electrodes. On the basis of the structural, chemical, and electronic properties of the interfaces, the measured material properties can be determined by the interface. This is also true for surfaces. However, the importance of interfaces and surfaces and their effect on experiments aremore » often neglected, which results in many dramatically different experimental results for nominally identical samples. Therefore, it is crucial to understand the role of the interface and surface properties on internal bias fields and the domain switching process. Here, the nanoscale ferroelectric switching process and the stability of nanodomains for Pb(Zr,Ti)O 3 thin films are investigated by using scanning probe microscopy. Interface and surface properties are modulated through the selection/redesign of electrode materials as well as tuning the surface-near oxygen vacancies, which both can result in changes of the electric fields acting across the sample, and consequently this controls the measured ferroelectric and domain retention properties. By understanding the role of surfaces and interfaces, ferroelectric properties can be tuned to eliminate the problem of asymmetric domain stability by combining the effects of different electrode materials. Lastly, this study forms an important step toward integrating ferroelectric materials in electronic devices.« less
Atomistic calculations of interface elastic properties in noncoherent metallic bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mi Changwen; Jun, Sukky; Kouris, Demitris A.
2008-02-15
The paper describes theoretical and computational studies associated with the interface elastic properties of noncoherent metallic bicrystals. Analytical forms of interface energy, interface stresses, and interface elastic constants are derived in terms of interatomic potential functions. Embedded-atom method potentials are then incorporated into the model to compute these excess thermodynamics variables, using energy minimization in a parallel computing environment. The proposed model is validated by calculating surface thermodynamic variables and comparing them with preexisting data. Next, the interface elastic properties of several fcc-fcc bicrystals are computed. The excess energies and stresses of interfaces are smaller than those on free surfacesmore » of the same crystal orientations. In addition, no negative values of interface stresses are observed. Current results can be applied to various heterogeneous materials where interfaces assume a prominent role in the systems' mechanical behavior.« less
High-Operating-Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength
NASA Technical Reports Server (NTRS)
Ting, David Z.; Hill, Cory, J.; Soibel, Alexander; Bandara, Sumith V.; Gunapala, Sarath D.
2011-01-01
A mid-wavelength infrared (MWIR) barrier photodetector is capable of operating at higher temperature than the prevailing MWIR detectors based on InSb. The standard high-operating-temperature barrier infrared detector (HOT-BIRD) is made with an InAsSb infrared absorber that is lattice-matched to a GaSb substrate, and has a cutoff wavelength of approximately 4 microns. To increase the versatility and utility of the HOT-BIRD, it is implemented with IR absorber materials with customizable cutoff wavelengths. The HOT-BIRD can be built with the quaternary alloy GaInAsSb as the absorber, GaAlSbAs as the barrier, on a lattice-matching GaSb substrate. The cutoff wavelength of the GaInAsSb can be tailored by adjusting the alloy composition. To build a HOT-BIRD requires a matching pair of absorber and barrier materials with the following properties: (1) their valence band edges must be approximately the same to allow unimpeded hole flow, while their conduction band edges should have a large difference to form an electron barrier; and (2) the absorber and the barrier must be respectively lattice-matched and closely lattice-matched to the substrate to ensure high material quality and low defect density. To make a HOT-BIRD with cutoff wavelength shorter than 4 microns, a GaInAsSb quaternary alloy was used as the absorber, and a matching GaAlSbAs quaternary alloy as the barrier. By changing the alloy composition, the band gap of the quaternary alloy absorber can be continuously adjusted with cutoff wavelength ranging from 4 microns down to the short wavelength infrared (SWIR). By carefully choosing the alloy composition of the barrier, a HOT-BIRD structure can be formed. With this method, a HOT-BIRD can be made with continuously tailorable cutoff wavelengths from 4 microns down to the SWIR. The HOT-BIRD detector technology is suitable for making very-large-format MWIR/SWIR focal plane arrays that can be operated by passive cooling from low Earth orbit. High-operating temperature infrared with reduced cooling requirement would benefit space missions in reduction of size, weight, and power, and an increase in mission lifetime.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... accounting support fees to the Financial Accounting Foundation.\\4\\ \\3\\ See 15 U.S.C. 78o-4. \\4\\ See 15 U.S.C... Financial Accounting Foundation.\\5\\ Any fees or funds collected shall be used to support the efforts of the GASB to establish standards of financial accounting and reporting recognized as generally accepted...
Retiree Health Plans for Public School Teachers after GASB 43 and 45. Conference Paper 2009-03
ERIC Educational Resources Information Center
Clark, Robert L.
2009-01-01
Most public elementary and high school teachers are covered by health insurance provided by their employer while they are employed. In most cases, these health plans are managed at the state level. At retirement, teachers with sufficient years of service are allowed to remain in the health plan. Retiree health plans for teachers vary widely across…
Interband Cascade Laser Photon Noise
2008-12-01
undergo radiative or nonradiative interband transitions into the GaInSb QW, tunnel into the adjacent GaSb QW and then enter the next injection region by... interband tunneling . The laser structures were grown by molecular-beam-epitaxy and processed into mesa-stripe lasers with a mesa width of 15 1... INTERBAND CASCADE LASER PHOTON NOISE Patrick A. Folkes Army Research Laboratory Adelphi, MD 20783-1197 ABSTRACT We report
Optoelectronic Devices and Materials
NASA Astrophysics Data System (ADS)
Sweeney, Stephen; Adams, Alfred
Unlike the majority of electronic devices, which are silicon based, optoelectronic devices are predominantly made using III-V semiconductor compounds such as GaAs, InP, GaN and GaSb and their alloys due to their direct band gap. Understanding the properties of these materials has been of vital importance in the development of optoelectronic devices. Since the first demonstration of a semiconductor laser in the early 1960s, optoelectronic devices have been produced in their millions, pervading our everyday lives in communications, computing, entertainment, lighting and medicine. It is perhaps their use in optical-fibre communications that has had the greatest impact on humankind, enabling high-quality and inexpensive voice and data transmission across the globe. Optical communications spawned a number of developments in optoelectronics, leading to devices such as vertical-cavity surface-emitting lasers, semiconductor optical amplifiers, optical modulators and avalanche photodiodes. In this chapter we discuss the underlying theory of operation of the most important optoelectronic devices. The influence of carrier-photon interactions is discussed in the context of producing efficient emitters and detectors. Finally we discuss how the semiconductor band structure can be manipulated to enhance device properties using quantum confinement and strain effects, and how the addition of dilute amounts of elements such as nitrogen is having a profound effect on the next generation of optoelectronic devices.
Organic-inorganic Interface in Nacre: Learning Lessons from Nature
NASA Astrophysics Data System (ADS)
Rahbar, Nima; Askarinejad, Sina
Problem-solving strategies of naturally growing composites such as nacre give us a fantastic vision to design and fabricate tough, stiff while strong composites. To provide the outstanding mechanical functions, nature has evolved complex and effective functionally graded interfaces. Particularly in nacre, organic-inorganic interface in which the proteins behave stiffer and stronger in proximity of calcium carbonate minerals provide an impressive role in structural integrity and mechanical deformation of the natural composite. The well-known shear-lag theory was employed on a simplified two-dimensional unit-cell of the multilayered composite considering the interface properties. The closed-form solutions for the displacements in the elastic components as a function of constituent properties can be used to calculate the effective mechanical properties of composite such as elastic modulus, strength and work-to-failure. The results solve the important mysteries about nacre and emphasize on the role of organic-inorganic interface properties and mineral bridges. Our results show that the properties of proteins in proximity of mineral bridges are also significant. More studies need to be performed on the strategies to enhance the interface properties in manmade composites. NSF Career Award no. 1281264.
Atomic Layer Deposition of Al2O3 on GaSb Using In Situ Hydrogen Plasma Exposure
2012-12-03
Krishna, and A. Javey, Nano Lett. 12, 3592 (2012). 7A. Ali, H. Madan , A. Agrawal, I. Ramirez, R. Misra, J. B. Boos, B. R. Bennett, J. Lindemuth, and S...Trans. Electron Devices 58, 3407 (2011). 9M. Xu, R. S. Wang, and P. D. Ye, IEEE Electron Device Lett. 32, 883 (2011). 10A. Ali, H. S. Madan , A. P. Kirk
Room Temperature Interband Cascade Lasers
2010-01-01
interband cascade laser (ICL) [6]-[8] is particularly convenient, since the semimetallic band alignment between InAs and GaSb allows the electrons that...superlattice claddings and a non-ohmic part that may be associated with various band discontinuities in the structure . While the latter can probably be...made a radiative transition to the valence band to be transferred readily back to the conduction band via elastic or nearly elastic processes. Our
1996-06-01
to experience the dynamics of working with Jim Scofield whose knowledge seemed complementary to my own, providing an excellent sounding board to dig...111-2 Theoretical Aspects of Deep Level Energies and Capture Cross S ectio n s...111-37 Table 111-3. Summary of the theoretical estimates and experimental measurements of the valence band offset at the AlAs-GaAs heterointerface
A New Method for Growth and Analysis of Next-generation Infrared (IR) Detector Materials
2009-03-01
N) into the group V sites of the semiconductor lattice. Until recently the highest concentration of nitrogen reported in GaSb1– xNx was 1.75% (2...Adams, A. R.; Andreev, A.; Murdin, B. N.; O’Reilly, E. P.; Pidgeon, C. R. InSb1− xNx Growth and Devices. Solid-State Electronics 47 2003, 3, 387–394
Graphene-ferromagnet interfaces: hybridization, magnetization and charge transfer.
Abtew, Tesfaye; Shih, Bi-Ching; Banerjee, Sarbajit; Zhang, Peihong
2013-03-07
Electronic and magnetic properties of graphene-ferromagnet interfaces are investigated using first-principles electronic structure methods in which a single layer graphene is adsorbed on Ni(111) and Co(111) surfaces. Due to the symmetry matching and orbital overlap, the hybridization between graphene pπ and Ni (or Co) d(z(2)) states is very strong. This pd hybridization, which is both spin and k dependent, greatly affects the electronic and magnetic properties of the interface, resulting in a significantly reduced (by about 20% for Ni and 10% for Co) local magnetic moment of the top ferromagnetic layer at the interface and an induced spin polarization on the graphene layer. The calculated induced magnetic moment on the graphene layer agrees well with a recent experiment. In addition, a substantial charge transfer across the graphene-ferromagnet interfaces is observed. We also investigate the effects of thickness of the ferromagnet slab on the calculated electronic and magnetic properties of the interface. The strength of the pd hybridization and the thickness-dependent interfacial properties may be exploited to design structures with desirable magnetic and transport properties for spintronic applications.
Controlled manipulation of the Co-Alq3 interface by rational design of Alq3 derivatives.
Großmann, Nicolas; Magri, Andrea; Laux, Martin; Stadtmüller, Benjamin; Thielen, Philip; Schäfer, Bernhard; Fuhr, Olaf; Ruben, Mario; Cinchetti, Mirko; Aeschlimann, Martin
2016-11-15
Recently, research has revealed that molecules can be used to steer the local spin properties of ferromagnetic surfaces. One possibility to manipulate ferromagnetic-metal-molecule interfaces in a controlled way is to synthesize specific, non-magnetic molecules to obtain a desired interaction with the ferromagnetic substrate. Here, we have synthesized derivatives of the well-known semiconductor Alq 3 (with q = 8-hydroxyquinolinate), in which the 8-hydroxyquinolinate ligands are partially or completely replaced by similar ligands bearing O- or N-donor sets. The goal of this study was to investigate how the presence of (i) different donor atom sets and (ii) aromaticity in different conjugated π-systems influences the spin properties of the metal-molecule interface formed with a Co(100) surface. The spin-dependent metal-molecule-interface properties have been measured by spin-resolved photoemission spectroscopy, backed up by DFT calculations. Overall, our results show that, in the case of the Co-molecule interface, chemical synthesis of organic ligands leads to specific electronic properties of the interface, such as exciton formation or highly spin-polarized interface states. We find that these properties are even additive, i.e. they can be engineered into one single molecular system that incorporates all the relevant ligands.
Interband Cascade Laser Photon Noise
2009-09-01
bias , electrons that are injected into the InAs QW, undergo radiative or non-radiative interband transitions into the GaInSb QW, tunnel into the...to the QC laser photon noise is dominant and increases with bias current (18, 19). This is in contrast to interband diode lasers, where spontaneous...adjacent GaSb QW, and then enter the next injection region by interband tunneling . The laser structures were grown by molecular-beam- epitaxy and processed
Quasiparticle semiconductor band structures including spin-orbit interactions.
Malone, Brad D; Cohen, Marvin L
2013-03-13
We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.
Two-dimensional spinodal interface in one-step grown graphene-molybdenum carbide heterostructures
NASA Astrophysics Data System (ADS)
Qiao, Jia-Bin; Gong, Yue; Liu, Haiwen; Shi, Jin-An; Gu, Lin; He, Lin
2018-05-01
Heterostructures made by stacking different materials on top of each other are expected to exhibit unusual properties and new phenomena. Interface of the heterostructures plays a vital role in determining their properties. Here, we report the observation of a two-dimensional (2D) spinodal interface in graphene-molybdenum carbide (α -M o2C ) heterostructures, which arises from spinodal decomposition occurring at the heterointerface, by using scanning tunneling microscopy. Our experiment demonstrates that the 2D spinodal interface modulates graphene into whispering gallery resonant networks filled with quasibound states of massless Dirac fermions. Moreover, below the superconducting transition temperature of the underlying α -M o2C , the 2D spinodal interface behaves as disorders, resulting in the breakdown of the proximity-induced superconductivity in graphene. Our result sheds light on tuning properties of heterostructures based on interface engineering.
Graphene-Based Interfaces Do Not Alter Target Nerve Cells.
Fabbro, Alessandra; Scaini, Denis; León, Verónica; Vázquez, Ester; Cellot, Giada; Privitera, Giulia; Lombardi, Lucia; Torrisi, Felice; Tomarchio, Flavia; Bonaccorso, Francesco; Bosi, Susanna; Ferrari, Andrea C; Ballerini, Laura; Prato, Maurizio
2016-01-26
Neural-interfaces rely on the ability of electrodes to transduce stimuli into electrical patterns delivered to the brain. In addition to sensitivity to the stimuli, stability in the operating conditions and efficient charge transfer to neurons, the electrodes should not alter the physiological properties of the target tissue. Graphene is emerging as a promising material for neuro-interfacing applications, given its outstanding physico-chemical properties. Here, we use graphene-based substrates (GBSs) to interface neuronal growth. We test our GBSs on brain cell cultures by measuring functional and synaptic integrity of the emerging neuronal networks. We show that GBSs are permissive interfaces, even when uncoated by cell adhesion layers, retaining unaltered neuronal signaling properties, thus being suitable for carbon-based neural prosthetic devices.
First-Principles Study on the Tensile Properties and Failure Mechanism of the CoSb3/Ti Interface
NASA Astrophysics Data System (ADS)
She, Wuchang; Liu, Qiwen; Mei, Hai; Zhai, Pengcheng; Li, Jun; Liu, Lisheng
2018-06-01
The mechanical properties of the CoSb3/Ti interface play a critical role in the application of thermoelectric devices. To understand the failure mechanism of the CoSb3(001)/Ti(01 \\bar{1} 0) interface, we investigated its response during tensile deformations by first-principles calculations. By comparison with the result between the perfect interface and the interface after atomic migration, we find that the atomic migration at the interface has an obvious influence on the mechanical properties. The tensile tests indicate the ideal tensile stress of the CoSb3/Ti interface after atomic migration decreases by about 8.1% as compared to that of the perfect one. The failure mechanism of the perfect CoSb3/Ti interface is different from that of the migrated CoSb3/Ti interface. For the perfect CoSb3/Ti interface, the breakage of the Co-Sb bond leads to the failure of the system. For the CoSb3/Ti interface after atomic migration, the breakage of the Sb-Sb bond leads to the failure of the system. This is mainly because the new ionic Ti-Sb bonds make the electrons redistributed and weaken the stiffness of the Co-Sb bonds.
Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico
2008-11-14
In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (mu=0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micro-mechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load-transfer mechanisms taking place at the cement-bone interface.
ZrO2 film interfaces with Si and SiO2
NASA Astrophysics Data System (ADS)
Lopez, C. M.; Suvorova, N. A.; Irene, E. A.; Suvorova, A. A.; Saunders, M.
2005-08-01
The interface formed by the thermal oxidation of sputter-deposited Zr metal onto Si(100)- and SiO2-coated Si(100) wafers was studied in situ and in real time using spectroscopic ellipsometry (SE) in the 1.5-4.5 photon energy range and mass spectrometry of recoiled ions (MSRI). SE yielded optical properties for the film and interface and MSRI yielded film and interface composition. An optical model was developed and verified using transmission electron microscopy. Interfacial reaction of the ZrO2 was observed for both substrates, with more interaction for Si substrates. Equivalent oxide thicknesses and interface trap levels were determined on capacitors with lower trap levels found on samples with a thicker SiO2 underlayer. In addition to the optical properties for the intermixed interface layer, the optical properties for Zr metal and unreacted ZrO2 are also reported.
Tailoring Heterovalent Interface Formation with Light
Park, Kwangwook; Alberi, Kirstin
2017-08-17
Integrating different semiconductor materials into an epitaxial device structure offers additional degrees of freedom to select for optimal material properties in each layer. However, interface between materials with different valences (i.e. III-V, II-VI and IV semiconductors) can be difficult to form with high quality. Using ZnSe/GaAs as a model system, we explore the use of UV illumination during heterovalent interface growth by molecular beam epitaxy as a way to modify the interface properties. We find that UV illumination alters the mixture of chemical bonds at the interface, permitting the formation of Ga-Se bonds that help to passivate the underlying GaAsmore » layer. Illumination also helps to reduce defects in the ZnSe epilayer. Furthermore, these results suggest that moderate UV illumination during growth may be used as a way to improve the optical properties of both the GaAs and ZnSe layers on either side of the interface.« less
NASA Astrophysics Data System (ADS)
Peng, Simin; Zeng, Qibin; Yang, Xiao; Hu, Jun; Qiu, Xiaohui; He, Jinliang
2016-12-01
The interface between nanoparticles and polymer matrix is considered to have an important effect on the properties of nanocomposites. In this experimental study, electrostatic force microscopy (EFM) is used to study the local dielectric property of the interface of low density polyethylene (LDPE)/TiO2 nanocomposites at nanometer scale. The results show that the addition of TiO2 nanoparticles leads to a decrease in local permittivity. We then carry out the finite element simulation and confirm that the decrease of local permittivity is related to the effect of interface. According to the results, we propose several models and validate the dielectric effect and range effect of interface. Through the analysis of DSC and solid-state NMR results, we find TiO2 nanoparticles can suppress the mobility of local chain segments in the interface, which influences the dipolar polarization of chain segments in the interface and eventually results in a decrease in local permittivity. It is believed the results would provide important hint to the research of the interface in future research.
Peng, Simin; Zeng, Qibin; Yang, Xiao; Hu, Jun; Qiu, Xiaohui; He, Jinliang
2016-01-01
The interface between nanoparticles and polymer matrix is considered to have an important effect on the properties of nanocomposites. In this experimental study, electrostatic force microscopy (EFM) is used to study the local dielectric property of the interface of low density polyethylene (LDPE)/TiO2 nanocomposites at nanometer scale. The results show that the addition of TiO2 nanoparticles leads to a decrease in local permittivity. We then carry out the finite element simulation and confirm that the decrease of local permittivity is related to the effect of interface. According to the results, we propose several models and validate the dielectric effect and range effect of interface. Through the analysis of DSC and solid-state NMR results, we find TiO2 nanoparticles can suppress the mobility of local chain segments in the interface, which influences the dipolar polarization of chain segments in the interface and eventually results in a decrease in local permittivity. It is believed the results would provide important hint to the research of the interface in future research. PMID:27958347
Material Engineering for Phase Change Memory
NASA Astrophysics Data System (ADS)
Cabrera, David M.
As semiconductor devices continue to scale downward, and portable consumer electronics become more prevalent there is a need to develop memory technology that will scale with devices and use less energy, while maintaining performance. One of the leading prototypical memories that is being investigated is phase change memory. Phase change memory (PCM) is a non-volatile memory composed of 1 transistor and 1 resistor. The resistive structure includes a memory material alloy which can change between amorphous and crystalline states repeatedly using current/voltage pulses of different lengths and magnitudes. The most widely studied PCM materials are chalcogenides - Germanium-Antimony-Tellerium (GST) with Ge2Sb2Te3 and Germanium-Tellerium (GeTe) being some of the most popular stochiometries. As these cells are scaled downward, the current/voltage needed to switch these materials becomes comparable to the voltage needed to sense the cell's state. The International Roadmap for Semiconductors aims to raise the threshold field of these devices from 66.6 V/mum to be at least 375 V/mum for the year 2024. These cells are also prone to resistance drift between states, leading to bit corruption and memory loss. Phase change material properties are known to influence PCM device performance such as crystallization temperature having an effect on data retention and litetime, while resistivity values in the amorphous and crystalline phases have an effect on the current/voltage needed to write/erase the cell. Addition of dopants is also known to modify the phase change material parameters. The materials G2S2T5, GeTe, with dopants - nitrogen, silicon, titanium, and aluminum oxide and undoped Gallium-Antimonide (GaSb) are studied for these desired characteristics. Thin films of these compositions are deposited via physical vapor deposition at IBM Watson Research Center. Crystallization temperatures are investigated using time resolved x-ray diffraction at Brookhaven National Laboratory. Subsequently, these are incorporated into PCM cells with structure designed as shown in Fig.1. A photolithographic lift-off process is developed to realize these devices. Electrical parameters such as the voltage needed to switch the device between memory states, the difference in resistance between these memory states, and the amount of time to switch are studied using HP4145 equipped with a pulsed generator. The results show that incorporating aluminum oxide dopant into G2S2T 5 raises its threshold field from 60 V/mum to 96 V/mum, while for GeTe, nitrogen doping raises its threshold field from 143 V/mum to 248 V/mum. It is found that GaSb at comparable volume devices has a threshold field of 130 V/mum. It was also observed that nitrogen and silicon doping made G 2S2T5 more resistant to drift, raising time to drift from 2 to 16.6 minutes while titanium and aluminum oxide doping made GeTe drift time rise from 3 to 20 minutes. It was also found that shrinking the cell area in GaSb from 1 mum2 to 0.5 mum2 lengthened drift time from 45s to over 24 hours. The PCM process developed in this study is extended to GeTe/Sb2 Te3 multilayers called the superlattice (SL) structure that opens opportunities for future work. Recent studies have shown that the superlattice structure exhibits low switching energies, therefore has potential for low power operation.
Al+Si Interface Optical Properties Obtained in the Si Solar Cell Configuration
Subedi, Indra; Silverman, Timothy J.; Deceglie, Michael G.; ...
2017-10-18
Al is a commonly used material for rear side metallization in commercial silicon (Si) wafer solar cells. In this study, through-the-silicon spectroscopic ellipsometry is used in a test sample to measure Al+Si interface optical properties like those in Si wafer solar cells. Two different spectroscopic ellipsometers are used for measurement of Al+Si interface optical properties over the 1128-2500 nm wavelength range. For validation, the measured interface optical properties are used in a ray tracing simulation over the 300-2500 nm wavelength range for an encapsulated Si solar cell having random pyramidal texture. The ray tracing model matches well with the measuredmore » total reflectance at normal incidence of a commercially available Si module. The Al+Si optical properties presented here enable quantitative assessment of major irradiance/current flux losses arising from reflection and parasitic absorption in encapsulated Si solar cells.« less
Al+Si Interface Optical Properties Obtained in the Si Solar Cell Configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subedi, Indra; Silverman, Timothy J.; Deceglie, Michael G.
Al is a commonly used material for rear side metallization in commercial silicon (Si) wafer solar cells. In this study, through-the-silicon spectroscopic ellipsometry is used in a test sample to measure Al+Si interface optical properties like those in Si wafer solar cells. Two different spectroscopic ellipsometers are used for measurement of Al+Si interface optical properties over the 1128-2500 nm wavelength range. For validation, the measured interface optical properties are used in a ray tracing simulation over the 300-2500 nm wavelength range for an encapsulated Si solar cell having random pyramidal texture. The ray tracing model matches well with the measuredmore » total reflectance at normal incidence of a commercially available Si module. The Al+Si optical properties presented here enable quantitative assessment of major irradiance/current flux losses arising from reflection and parasitic absorption in encapsulated Si solar cells.« less
NASA Astrophysics Data System (ADS)
Feng, Tuanhui; Yang, Fei; Li, Yunhui; Sun, Yong; Lu, Hai; Jiang, Haitao; Zhang, Yewen; Chen, Hong
2013-06-01
In this letter, light tunneling effect tuned by a meta-interface with electromagnetically-induced-transparency-like (EIT-like) properties is investigated. Both numerical and experimental results show that the Q-factor of tunneling mode can be well enhanced when an atomic-like three-level system with EIT-like properties is introduced at the interface of a pair structure constructed by epsilon-negative and mu-negative metamaterials. Further study reveals that the Q-factor can be tuned conveniently by altering the EIT-like meta-interface. Moreover, these advantages are not at costs of increase of volume and drastic reduction of transmittance.
The Chandra Source Catalog: Storage and Interfaces
NASA Astrophysics Data System (ADS)
van Stone, David; Harbo, Peter N.; Tibbetts, Michael S.; Zografou, Panagoula; Evans, Ian N.; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger; Hall, Diane M.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Winkelman, Sherry L.
2009-09-01
The Chandra Source Catalog (CSC) is part of the Chandra Data Archive (CDA) at the Chandra X-ray Center. The catalog contains source properties and associated data objects such as images, spectra, and lightcurves. The source properties are stored in relational databases and the data objects are stored in files with their metadata stored in databases. The CDA supports different versions of the catalog: multiple fixed release versions and a live database version. There are several interfaces to the catalog: CSCview, a graphical interface for building and submitting queries and for retrieving data objects; a command-line interface for property and source searches using ADQL; and VO-compliant services discoverable though the VO registry. This poster describes the structure of the catalog and provides an overview of the interfaces.
NASA Astrophysics Data System (ADS)
Fukuda, Yukio; Okamoto, Hiroshi; Iwasaki, Takuro; Otani, Yohei; Ono, Toshiro
2011-09-01
We have investigated the effects of the formation temperature and postmetallization annealing (PMA) on the interface properties of GeNx/p-Ge fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The nitridation temperature is found to be a critical parameter in improving the finally obtained GeNx/Ge interface properties. The GeNx/Ge formed at room temperature and treated by PMA at 400 °C exhibits the best interface properties with an interface trap density of 1 × 1011 cm-2 eV-1. The GeNx/Ge interface is unpinned and the Fermi level at the Ge surface can move from the valence band edge to the conduction band edge.
Measuring the Thermodynamics of the Alloy/Scale Interface
NASA Technical Reports Server (NTRS)
Copland, Evan
2004-01-01
A method is proposed for the direct measurement of the thermodynamic properties of the alloy and oxide compound at the alloy/scale interface observed during steady-state oxidation. The thermodynamic properties of the alloy/scale interface define the driving force for solid-state transport in the alloy and oxide compound. Accurate knowledge of thermodynamic properties of the interface will advance our understanding of oxidation behavior. The method is based on the concept of local equilibrium and assumes that an alloy+scale equilibrium very closely approximates the alloy/scale interface observed during steady-state oxidation. The thermodynamics activities of this alloy+scale equilibrium are measured directly by Knudsen effusion-cell mass spectrometer (KEMS) using the vapor pressure technique. The theory and some practical considerations of this method are discussed in terms of beta-NiAl oxidation.
NASA Astrophysics Data System (ADS)
Aarão Reis, F. D. A.; Pierre-Louis, O.
2018-04-01
We provide a theoretical framework to analyze the properties of frontal collisions of two growing interfaces considering different short-range interactions between them. Due to their roughness, the collision events spread in time and form rough domain boundaries, which defines collision interfaces in time and space. We show that statistical properties of such interfaces depend on the kinetics of the growing interfaces before collision, but are independent of the details of their interaction and of their fluctuations during the collision. Those properties exhibit dynamic scaling with exponents related to the growth kinetics, but their distributions may be nonuniversal. Our results are supported by simulations of lattice models with irreversible dynamics and local interactions. Relations to first passage processes are discussed and a possible application to grain-boundary formation in two-dimensional materials is suggested.
2011-12-21
C. Four samples A, B, C, and D with 20 period SLs were grown under identical condi- tions with varying Sb/(Asþ Sb) beam equivalent pressure ( BEP ) flux...incorporation can be achieved. Thus, the InAs1xSbx layers in samples A, B, C, and D have Sb/(AsþSb) BEP ratios of 0.32, 0.347, 0.378, and 0.412
NASA Astrophysics Data System (ADS)
Sharps, P. R.; Timmons, M. L.; Venkatasubramanian, R.; Hills, J. S.; O'Quinn, B.; Hutchby, J. A.; Iles, P. A.; Chu, C. L.
1995-01-01
Most current emphasis is on GaInAs alloys or GaSb for thermal photovoltaic converters operating in a band gap range between about 0.50 to 0.75 eV. In this paper the growth and fabrication of GaInAs devices with nominal band gaps of 0.6 eV are described. Yield statistics are presented for the growth of a large number of devices, and I-V data are presented. Alternative cell structures are also described, and manufacturing issues are discussed.
Towards the Ultimate Multi-Junction Solar Cell using Transfer Printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumb, Matthew P.; Meitl, Matt; Schmieder, Kenneth J.
2016-11-21
Transfer printing is a uniquely enabling technology for the heterogeneous integration of III-V materials grown on dissimilar substrates. In this paper, we present experimental results for a mechanically stacked tandem cell using GaAs and GaSb-based materials capable of harvesting the entire solar spectrum with 44.5% efficiency. We also present the latest results toward developing an ultra-high performance heterogeneous cell, integrating materials grown on GaAs, InP and GaSb platforms.
Next generation DIRCM for 2.1-2.3 micron wavelength based on direct-diode GaSb technology
NASA Astrophysics Data System (ADS)
Dvinelis, Edgaras; Naujokaitė, Greta; Greibus, Mindaugas; Trinkūnas, Augustinas; Vizbaras, Kristijonas; Vizbaras, Augustinas
2018-02-01
Continuous advances in low-cost MANPAD heat-seeking missile technology over the past 50 years remains the number one hostile threat to airborne platforms globally responsible for over 60 % of casualties. Laser based directional countermeasure (DIRCM) technology have been deployed to counter the threat. Ideally, a laser based DIRCM system must involve a number of lasers emitting at different spectral bands mimicking the spectral signature of the airborne platform. Up to now, near and mid infrared spectral bands have been covered with semiconductor laser technology and only SWIR band remained with bulky fiber laser technology. Recent technology developments on direct-diode GaSb laser technology at Brolis Semiconductors offer a replacement for the fiber laser source leading to significant improvements by few orders of magnitude in weight, footprint, efficiency and cost. We demonstrate that with careful engineering, several multimode emitters can be combined to provide a directional laser beam with radiant intensity from 10 kW/sr to 60 kW/sr in an ultra-compact hermetic package with weight < 30 g and overall efficiency of 15 % in the 2.1- 2.3 micron spectral band offering 150 times improvement in efficiency and reduction in footprint. We will discuss present results, challenges and future developments for such next-generation integrated direct diode DIRCM modules for SWIR band.
Dynamic properties of III-V polytypes from density-functional theory
NASA Astrophysics Data System (ADS)
Benyahia, N.; Zaoui, A.; Madouri, D.; Ferhat, M.
2017-03-01
The recently discovered hexagonal wurtzite phase of several III-V nanowires opens up strong opportunity to engineer optoelectronic and transport properties of III-V materials. Herein, we explore the dynamical and dielectric properties of cubic (3C) and wurtzite (2H) III-V compounds (AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb). For cubic III-V compounds, our calculated phonon frequencies agree well with neutron diffraction and Raman-scattering measurements. In the case of 2H III-V materials, our calculated phonon modes at the zone-center Γ point are in distinguished agreement with available Raman-spectroscopy measurements of wurtzite GaAs, InP, GaP, and InAs nanowires. Particularly, the "fingerprint" of the wurtzite phase, which is our predicted E2(high) phonon mode, at 261 cm-1(GaAs), 308 cm-1(InP), 358 cm-1(GaP), and 214 cm-1(InAs) matches perfectly the respective Raman values of 258 cm-1, 306.4 cm-1, 353 cm-1, and 213.7 cm-1 for GaAs, InP, GaP, and InAs. Moreover, the dynamic charges and high-frequency dielectric constants are predicted for III-V materials in both cubic (3C) and hexagonal (2H) crystal polytypes. It is found that the dielectric properties of InAs and InSb contrast markedly from those of other 2H III-V compounds. Furthermore, InAs and InSb evidence relative strong anisotropy in their dielectric constants and Born effective charges, whereas GaP evinces the higher Born effective charge anisotropy of 2H III-V compounds.
Misra, Anil; Spencer, Paulette; Marangos, Orestes; Wang, Yong; Katz, J. Lawrence
2005-01-01
A finite element (FE) model has been developed based upon the recently measured micro-scale morphological, chemical and mechanical properties of dentin–adhesive (d–a) interfaces using confocal Raman microspectroscopy and scanning acoustic microscopy (SAM). The results computed from this FE model indicated that the stress distributions and concentrations are affected by the micro-scale elastic properties of various phases composing the d–a interface. However, these computations were performed assuming isotropic material properties for the d–a interface. The d–a interface components, such as the peritubular and intertubular dentin, the partially demineralized dentin and the so-called ‘hybrid layer’ adhesive-collagen composite, are probably anisotropic. In this paper, the FE model is extended to account for the probable anisotropic properties of these d–a interface phases. A parametric study is performed to study the effect of anisotropy on the micromechanical stress distributions in the hybrid layer and the peritubular dentin phases of the d–a interface. It is found that the anisotropy of the phases affects the region and extent of stress concentration as well as the location of the maximum stress concentrations. Thus, the anisotropy of the phases could effect the probable location of failure initiation, whether in the peritubular region or in the hybrid layer. PMID:16849175
Lima, Filipe S; Chaimovich, Hernan; Cuccovia, Iolanda M; Horinek, Dominik
2014-02-11
Micellar properties of dodecyltrimethylammonium triflate (DTA-triflate, DTATf) are very different from those of DTA-bromide (DTAB). DTATf aggregates show high aggregation numbers (Nagg), low degree of counterion dissociation (α), disk-like shape, high packing, ordering, and low hydration. These micellar properties and the low surface tension of NaTf aqueous solutions point to a high affinity of Tf(-) to the micellar and air/water interfaces. Although the micellar properties of DTATf are well defined, the source of the Tf(-) effect upon the DTA aggregates is unclear. Molecular dynamics (MD) simulations of Tf(-) (and Br(-)) at the air/water interface and as counterion of a DTA aggregate were performed to clarify the nature of Tf(-) preferences for these interfaces. The effect of NaTf or NaBr on surface tension calculated from MD simulations agreed with the reported experimental values. From the MD simulations a high affinity of Tf(-) toward the interface, which occurred in a specific orientation, was calculated. The micellar properties calculated from the MD simulations for DTATf and DTAB were consistent with experimental data: in MD simulations, the DTATf aggregate was more ordered, packed, and dehydrated than the DTAB aggregate. The Tf(-)/alkyltrimethylammonium interaction energies, calculated from the MD simulations, suggested ion pair formation at the micellar interface, stabilized by the preferential orientation of the adsorbed Tf(-) at the micellar interface.
Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui
2010-04-01
Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.
Effect of TiO, nanoparticles on the interface in the PET-rubber composites.
Vladuta, Cristina; Andronic, Luminita; Duta, Anca
2010-04-01
Usually, ceramic powders (SiO2, ZnO) are used as fillers for enhancing rubber mechanical strength. Poly-ethylene terephthalate (PET)-rubber nanocomposites were prepared by compression molding using titanium oxide (TiO2) nanoparticles as low content fillers (<2% wt). The interface properties of PET-rubber nanocomposites were studied before and after keeping the samples under UV-radiation for a week. UV-radiation has interesting potential for the photochemical modification of polymers and TiO2. The influence of UV radiation on the properties of the interface polymer-TiO2 nanoparticles was evaluated. The impact of nanoparticle aggregates on the nanometer to micrometer organization of PET-rubber composites was studied with Atomic Force Microscopy (AFM). The interface properties were explained by measuring the contact angles and surface tensions. The interactions between components of nanocomposites were investigated with Fourier Transform-Infrared (FTIR) and the effects of TiO2 nanoparticle on the interfaces and composites crystalline structure were evaluated by X-ray diffraction (XRD). The results proved that the TiO2 nanoparticles, in different weight percentages, did not alter the nanocomposites crystallinity or the average crystallites size, but improve the interface properties.
NASA Astrophysics Data System (ADS)
Jeong, Da-Woon; Kim, Jae-Yup; Seo, Han Wook; Lim, Kyoung-Mook; Ko, Min Jae; Seong, Tae-Yeon; Kim, Bum Sung
2018-01-01
Colloidal quantum dots (QDs) are attractive materials for application in photovoltaics, LEDs, displays, and bio devices owing to their unique properties. In this study, we synthesized gradient-interface-structured ZnCdSSe QDs and modified the interface based on a thermodynamic simulation to investigate its optical and physical properties. In addition, the interface was modified by increasing the molar concentration of Se. QDs at the modified interface were applied to QD-sensitized solar cells, which showed a 25.5% increase in photoelectric conversion efficiency owing to the reduced electron confinement effect. The increase seems to be caused by the excited electrons being relatively easily transferred to the level of TiO2 owing to the reduced electron confinement effect. Consequently, the electron confinement effect was observed to be reduced by increasing the ZnSe (or Zn1-xCdxSe)-rich phase at the interface. This means that, based on the thermodynamic simulation, the interface between the core QDs and the surface of the QDs can be controlled. The improvement of optical and electronic properties by controlling interfaces and surfaces during the synthesis of QDs, as reported in this work, can be useful for many applications beyond solar cells.
Lord, Alex M; Ramasse, Quentin M; Kepaptsoglou, Despoina M; Evans, Jonathan E; Davies, Philip R; Ward, Michael B; Wilks, Steve P
2017-02-08
Selecting the electrical properties of nanomaterials is essential if their potential as manufacturable devices is to be reached. Here, we show that the addition or removal of native semiconductor material at the edge of a nanocontact can be used to determine the electrical transport properties of metal-nanowire interfaces. While the transport properties of as-grown Au nanocatalyst contacts to semiconductor nanowires are well-studied, there are few techniques that have been explored to modify the electrical behavior. In this work, we use an iterative analytical process that directly correlates multiprobe transport measurements with subsequent aberration-corrected scanning transmission electron microscopy to study the effects of chemical processes that create structural changes at the contact interface edge. A strong metal-support interaction that encapsulates the Au nanocontacts over time, adding ZnO material to the edge region, gives rise to ohmic transport behavior due to the enhanced quantum-mechanical tunneling path. Removal of the extraneous material at the Au-nanowire interface eliminates the edge-tunneling path, producing a range of transport behavior that is dependent on the final interface quality. These results demonstrate chemically driven processes that can be factored into nanowire-device design to select the final properties.
Use of column V alkyls in organometallic vapor phase epitaxy (OMVPE)
NASA Technical Reports Server (NTRS)
Ludowise, M. J.; Cooper, C. B., III
1982-01-01
The use of the column V-trialkyls trimethylarsenic (TMAs) and trimethylantimony (TMSb) for the organometallic vapor phase epitaxy (OM-VPE) of III-V compound semiconductors is reviewed. A general discussion of the interaction chemistry of common Group III and Group V reactants is presented. The practical application of TMSb and TMAs for OM-VPE is demonstrated using the growth of GaSb, GaAs(1-y)Sb(y), Al(x)Ga(1-x)Sb, and Ga(1-x)In(x)As as examples.
Electrosprayed Heavy Ion and Nanodrop Beams for Surface Engineering and Electrical Propulsion
2014-09-10
arsenide, gallium antimonide, gallium nitride and silicon carbide ; studied the role of the liquid’s composition on the sputtering of silicon ; study...being a material closely related to silicon . The maximum roughness for GaN, GaAs, GaSb, InP, InAs, Ge and SiC are 12.7, 11.7, 19.5, 8.1, 7.9, 17.5...poly crystalline silicon carbide and boron car- bide, respectively. The associated sputtering rates of 448, 172, and 170 nm/min far exceed the
Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors
2013-01-01
013110 (2013) Demonstration of high performance bias-selectable dual- band short-/mid-wavelength infrared photodetectors based on type-II InAs/ GaSb ...been used for the growth of QD structures . These include the formation of self-assembled QD, for example, Stranski-Krastanov (SK) growth mode,8,9 atomic...confinement in SML-QD and the reduction in the amount of InAs used per layer of QD can help stack more layers in a 3-dimensional QD structure . Several
MBE System for Antimonide Based Semiconductor Lasers
1999-01-31
selectivity are reported as a function of plasma chemistry and DC self-bias. Experiment The samples used in this study are undoped bulk GaSb, InSb...Phys. Lett. 64(13), 1673-1675 (1994). 8. J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, and F. Ren, Plasma Chemistry and...AlGaAsSb are reported as functions of plasma chemistry , ICP power, RF self-bias, and chamber pressure. It is found that physical sputtering desorption of
Enhancing Hole Mobility in III-V Semiconductors
2012-05-21
acteristics of the digital superlattice (n¼1,0, andþ 1) that was used in the metamorphic buffer. The GaSb channel peak gets buried in the n¼ 0...materials have been used for a variety of analog and high frequency applications driven by the high electron mobilities in III-V materials. On the other...hand, the hole mobility in III-V materials has always lagged compared to group-IV semiconductors such as germanium. In this paper, we explore the use
Lattice structures and electronic properties of CIGS/CdS interface: First-principles calculations
NASA Astrophysics Data System (ADS)
Tang, Fu-Ling; Liu, Ran; Xue, Hong-Tao; Lu, Wen-Jiang; Feng, Yu-Dong; Rui, Zhi-Yuan; Huang, Min
2014-07-01
Using first-principles calculations within density functional theory, we study the atomic structures and electronic properties of the perfect and defective (2VCu+InCu) CuInGaSe2/CdS interfaces theoretically, especially the interface states. We find that the local lattice structure of (2VCu+InCu) interface is somewhat disorganized. By analyzing the local density of states projected on several atomic layers of the two interfaces models, we find that for the (2VCu+InCu) interface the interface states near the Fermi level in CuInGaSe2 and CdS band gap regions are mainly composed of interfacial Se-4p, Cu-3d and S-3p orbitals, while for the perfect interface there are no clear interface states in the CuInGaSe2 region but only some interface states which are mainly composed of S-3p orbitals in the valance band of CdS region.
Song, Z Q; Ni, Y; Peng, L M; Liang, H Y; He, L H
2016-03-31
Bioinspired discontinuous nanolaminate design becomes an efficient way to mitigate the strength-ductility tradeoff in brittle materials via arresting the crack at the interface followed by controllable interface failure. The analytical solution and numerical simulation based on the nonlinear shear-lag model indicates that propagation of the interface failure can be unstable or stable when the interfacial shear stress between laminae is uniform or highly localized, respectively. A dimensionless key parameter defined by the ratio of two characteristic lengths governs the transition between the two interface-failure modes, which can explain the non-monotonic size-dependent mechanical properties observed in various laminate composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, Yukio; Otani, Yohei; Okamoto, Hiroshi
2011-09-26
We have investigated the effects of the formation temperature and postmetallization annealing (PMA) on the interface properties of GeN{sub x}/p-Ge fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The nitridation temperature is found to be a critical parameter in improving the finally obtained GeN{sub x}/Ge interface properties. The GeN{sub x}/Ge formed at room temperature and treated by PMA at 400 deg. C exhibits the best interface properties with an interface trap density of 1 x 10{sup 11 }cm{sup -2 }eV{sup -1}. The GeN{sub x}/Ge interface is unpinned and the Fermi level at the Ge surfacemore » can move from the valence band edge to the conduction band edge.« less
Effect of Interface Structure on Mechanical Properties of Advanced Composite Materials
Gan, Yong X.
2009-01-01
This paper deals with the effect of interface structures on the mechanical properties of fiber reinforced composite materials. First, the background of research, development and applications on hybrid composite materials is introduced. Second, metal/polymer composite bonded structures are discussed. Then, the rationale is given for nanostructuring the interface in composite materials and structures by introducing nanoscale features such as nanopores and nanofibers. The effects of modifying matrices and nano-architecturing interfaces on the mechanical properties of nanocomposite materials are examined. A nonlinear damage model for characterizing the deformation behavior of polymeric nanocomposites is presented and the application of this model to carbon nanotube-reinforced and reactive graphite nanotube-reinforced epoxy composite materials is shown. PMID:20054466
Transport properties at fluids interfaces: a molecular study for a macroscopic modelling
NASA Astrophysics Data System (ADS)
Russo, Antonio; Morciano, Matteo; Sibley, David N.; Nold, Andreas; Goddard, Benjamin D.; Asinari, Pietro; Kalliadasis, Serafim
2017-11-01
Rapid developments in the field of micro- and nano-fluidics require detailed analysis of the properties of matter at the molecular level. But despite numerous works in the literature, appropriate macroscopic relations able to integrate a microscopic description of fluid and soft matter properties at liquid-vapour and multi-fluid interfaces are missing. As a consequence, studies on interfacial phenomena and micro-device designs often rely on oversimplified assumptions, e.g. that the viscosities can be considered constant across interfaces. In our work, we present non-equilibrium MD simulations to scrutinise efficiently and systematically, through the tools of statistical mechanics, the anisotropic properties of fluids, namely density variations, stress tensor, and shear viscosity, at the fluid interfaces between liquid and vapour and between two partially miscible fluids. Our analysis has led to the formulation of a general relation between shear viscosity and density variations validated for a wide spectrum of interfacial fluid problems. In addition, it provides a rational description of other interfacial quantities of interest, including surface tension and its origins, and more generally, it offers valuable insight of molecular transport phenomena at interfaces.
The effect of interface properties on nickel base alloy composites
NASA Technical Reports Server (NTRS)
Groves, M.; Grossman, T.; Senemeier, M.; Wright, K.
1995-01-01
This program was performed to assess the extent to which mechanical behavior models can predict the properties of sapphire fiber/nickel aluminide matrix composites and help guide their development by defining improved combinations of matrix and interface coating. The program consisted of four tasks: 1) selection of the matrices and interface coating constituents using a modeling-based approach; 2) fabrication of the selected materials; 3) testing and evaluation of the materials; and 4) evaluation of the behavior models to develop recommendations. Ni-50Al and Ni-20AI-30Fe (a/o) matrices were selected which gave brittle and ductile behavior, respectively, and an interface coating of PVD YSZ was selected which provided strong bonding to the sapphire fiber. Significant fiber damage and strength loss was observed in the composites which made straightforward comparison of properties with models difficult. Nevertheless, the models selected generally provided property predictions which agreed well with results when fiber degradation was incorporated. The presence of a strong interface bond was felt to be detrimental in the NiAI MMC system where low toughness and low strength were observed.
Reconstruction of phonon relaxation times from systems featuring interfaces with unknown properties
NASA Astrophysics Data System (ADS)
Forghani, Mojtaba; Hadjiconstantinou, Nicolas G.
2018-05-01
We present a method for reconstructing the phonon relaxation-time function τω=τ (ω ) (including polarization) and associated phonon free-path distribution from thermal spectroscopy data for systems featuring interfaces with unknown properties. Our method does not rely on the effective thermal-conductivity approximation or a particular physical model of the interface behavior. The reconstruction is formulated as an optimization problem in which the relaxation times are determined as functions of frequency by minimizing the discrepancy between the experimentally measured temperature profiles and solutions of the Boltzmann transport equation for the same system. Interface properties such as transmissivities are included as unknowns in the optimization; however, because for the thermal spectroscopy problems considered here the reconstruction is not very sensitive to the interface properties, the transmissivities are only approximately reconstructed and can be considered as byproducts of the calculation whose primary objective is the accurate determination of the relaxation times. The proposed method is validated using synthetic experimental data obtained from Monte Carlo solutions of the Boltzmann transport equation. The method is shown to remain robust in the presence of uncertainty (noise) in the measurement.
First-principles study of the structure properties of Al(111)/6H-SiC(0001) interfaces
NASA Astrophysics Data System (ADS)
Wu, Qingjie; Xie, Jingpei; Wang, Changqing; Li, Liben; Wang, Aiqin; Mao, Aixia
2018-04-01
This paper presents a systematic study on the energetic and electronic structure of the Al(111)/6H-SiC(0001) interfaces by using first-principles calculation with density functional theory (DFT). There are all three situations for no-vacuum layer of Al/SiC superlattics, and two cases of C-terminated and Si-terminated interfaces are compared and analyzed. Through the density of states analysis, the initial information of interface combination is obtained. Then the supercells are stretched vertically along the z-axis, and the fracture of the interface is obtained, and it is pointed out that C-terminated SiC and Al interfaces have a better binding property. And, the fracture positions of C-terminated and Si-terminated interfaces are different in the process of stretching. Then, the distance variation in the process of stretching, the charge density differences, and the distribution of the electrons near the interface are analyzed. Al these work makes the specific reasons for the interface fracture are obtained at last.
Maugini, Elisa; Tronelli, Daniele; Bossa, Francesco; Pascarella, Stefano
2009-04-01
Enzymes from thermophilic and, particularly, from hyperthermophilic organisms are surprisingly stable. Understanding of the molecular origin of protein thermostability and thermoactivity attracted the interest of many scientist both for the perspective comprehension of the principles of protein structure and for the possible biotechnological applications through application of protein engineering. Comparative studies at sequence and structure levels were aimed at detecting significant differences of structural parameters related to protein stability between thermophilic and hyperhermophilic structures and their mesophilic homologs. Comparative studies were useful in the identification of a few recurrent themes which the evolution utilized in different combinations in different protein families. These studies were mostly carried out at the monomer level. However, maintenance of a proper quaternary structure is an essential prerequisite for a functional macromolecule. At the environmental temperatures experienced typically by hyper- and thermophiles, the subunit interactions mediated by the interface must be sufficiently stable. Our analysis was therefore aimed at the identification of the molecular strategies adopted by evolution to enhance interface thermostability of oligomeric enzymes. The variation of several structural properties related to protein stability were tested at the subunit interfaces of thermophilic and hyperthermophilic oligomers. The differences of the interface structural features observed between the hyperthermophilic and thermophilic enzymes were compared with the differences of the same properties calculated from pairwise comparisons of oligomeric mesophilic proteins contained in a reference dataset. The significance of the observed differences of structural properties was measured by a t-test. Ion pairs and hydrogen bonds do not vary significantly while hydrophobic contact area increases specially in hyperthermophilic interfaces. Interface compactness also appears to increase in the hyperthermophilic proteins. Variations of amino acid composition at the interfaces reflects the variation of the interface properties.
Exploring the potential of 3D Zernike descriptors and SVM for protein-protein interface prediction.
Daberdaku, Sebastian; Ferrari, Carlo
2018-02-06
The correct determination of protein-protein interaction interfaces is important for understanding disease mechanisms and for rational drug design. To date, several computational methods for the prediction of protein interfaces have been developed, but the interface prediction problem is still not fully understood. Experimental evidence suggests that the location of binding sites is imprinted in the protein structure, but there are major differences among the interfaces of the various protein types: the characterising properties can vary a lot depending on the interaction type and function. The selection of an optimal set of features characterising the protein interface and the development of an effective method to represent and capture the complex protein recognition patterns are of paramount importance for this task. In this work we investigate the potential of a novel local surface descriptor based on 3D Zernike moments for the interface prediction task. Descriptors invariant to roto-translations are extracted from circular patches of the protein surface enriched with physico-chemical properties from the HQI8 amino acid index set, and are used as samples for a binary classification problem. Support Vector Machines are used as a classifier to distinguish interface local surface patches from non-interface ones. The proposed method was validated on 16 classes of proteins extracted from the Protein-Protein Docking Benchmark 5.0 and compared to other state-of-the-art protein interface predictors (SPPIDER, PrISE and NPS-HomPPI). The 3D Zernike descriptors are able to capture the similarity among patterns of physico-chemical and biochemical properties mapped on the protein surface arising from the various spatial arrangements of the underlying residues, and their usage can be easily extended to other sets of amino acid properties. The results suggest that the choice of a proper set of features characterising the protein interface is crucial for the interface prediction task, and that optimality strongly depends on the class of proteins whose interface we want to characterise. We postulate that different protein classes should be treated separately and that it is necessary to identify an optimal set of features for each protein class.
Structural and electronic properties of the transition layer at the SiO{sub 2}/4H-SiC interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenbo; Wang, Dejun, E-mail: dwang121@dlut.edu.cn; Zhao, Jijun
Using first-principles methods, we generate an amorphous SiO{sub 2}/4H-SiC interface with a transition layer. Based this interface model, we investigate the structural and electronic properties of the interfacial transition layer. The calculated Si 2p core-level shifts for this interface are comparable to the experimental data, indicating that various SiC{sub x}O{sub y} species should be present in this interface transition layer. The analysis of the electronic structures reveals that the tetrahedral SiC{sub x}O{sub y} structures cannot introduce any of the defect states at the interface. Interestingly, our transition layer also includes a C-C=C trimer and SiO{sub 5} configurations, which lead tomore » the generation of interface states. The accurate positions of Kohn-Sham energy levels associated with these defects are further calculated within the hybrid functional scheme. The Kohn-Sham energy levels of the carbon trimer and SiO{sub 5} configurations are located near the conduction and valence band of bulk 4H-SiC, respectively. The result indicates that the carbon trimer occurred in the transition layer may be a possible origin of near interface traps. These findings provide novel insight into the structural and electronic properties of the realistic SiO{sub 2}/SiC interface.« less
Growth and interface properties of Au Schottky contact on ZnO grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Asghar, M.; Mahmood, K.; Malik, Faisal; Hasan, M. A.
2013-06-01
In this paper, we have discussed the growth of ZnO by molecular beam epitaxy (MBE) and interface properties of Au Schottky contacts on grown sample. After the verification of structure and surface properties by X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM), respectively, Au metal contact was fabricated by e-beam evaporation to study contact properties. The high value of ideality factor (2.15) and barrier height (0.61 eV) at room temperature obtained by current-voltage (I-V) characteristics suggested the presence of interface states between metal and semiconductor. To confirm this observation we carried out frequency dependent capacitance-voltage (C-V) and conductance-voltage (G-V) demonstrated that the capacitance of diode decreased with increasing frequency. The reason of this behavior is related with density of interface states, series resistance and image force lowering. The C-2-V plot drawn to calculate the carrier concentration and barrier height with values 1.4×1016 cm-3 and 0.92 eV respectively. Again, high value of barrier height obtained from C-V as compared to the value obtained from I-V measurements revealed the presence of interface states. The density of these interface states (Dit) was calculated by well known Hill-Coleman method. The calculated value of Dit at 1 MHz frequency was 2×1012 eV-1 cm-2. The plot between interface states and frequency was also drawn which demonstrated that density of interface states had inverse proportion with measuring frequency.
Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states
NASA Astrophysics Data System (ADS)
Hsieh, Chi-Ti; Lin, Shih-Yen; Chang, Shu-Wei
2018-02-01
The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially separated electrons and holes. We model the bound-to-continuum absorption of type-II quantum rings (QRs) using a multiband source-radiation approach using the retarded Green function in the cylindrical coordinate system. The selection rules due to the circular symmetry for allowed transitions of absorption are utilized. The bound-tocontinuum absorptions of type-II GaSb coupled and uncoupled QRs embedded in GaAs matrix are compared here. The GaSb QRs act as energy barriers for electrons but potential wells for holes. For the coupled QR structure, the region sandwiched between two QRs forms a potential reservoir of quasi-bound electrons. Electrons in these states, though look like bound ones, would ultimately tunnel out of the reservoir through barriers. Multiband perfectly-matched layers are introduced to model the tunneling of quasi-bound states into open space. Resonance peaks are observed on the absorption spectra of type-II coupled QRs due to the formation of quasi-bound states in conduction bands, but no resonance exist in the uncoupled QR. The tunneling time of these metastable states can be extracted from the resonance and is in the order of ten femtoseconds. Absorption of coupled QRs is significantly enhanced as compared to that of uncoupled ones in certain spectral windows of interest. These features may improve the performance of photon detectors and photovoltaic devices based on type-II semiconductor nanostructures.
Treatment for GaSb surfaces using a sulphur blended (NH4)2S/(NH4)2SO4 solution
NASA Astrophysics Data System (ADS)
Murape, D. M.; Eassa, N.; Neethling, J. H.; Betz, R.; Coetsee, E.; Swart, H. C.; Botha, J. R.; Venter, A.
2012-07-01
A sulphur based chemical, [(NH4)2S/(NH4)2SO4] to which S has been added, not previously reported for the treatment of (1 0 0) n-GaSb surfaces, is introduced and benchmarked against the commonly used passivants Na2S·9H2O and (NH4)2S. The surfaces of the treated material were studied by scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). It has been found that the native oxides present on the GaSb surface are more effectively removed when treated with ([(NH4)2S/(NH4)2SO4] + S) than with (NH4)2S or Na2S·9H2O, as evidenced by the ratio of the O506 eV to Sb457 eV AES peaks. XPS results reveal that Sb2S3/Sb2S5 "replaces" Sb2O3/Sb2O5, suggesting that sulphur atoms substitute oxygen atoms in Sb2O3/Sb2O5 to form Sbsbnd S. It seems sulphurization only partially removes Ga2O3. Treatment with ([(NH4)2S/(NH4)2SO4] + S) also results in a noteworthy improvement in the current-voltage (I-V) characteristics of Au/n-GaSb Schottky contacts compared to those fabricated on as-received material.
Phototransistor (PT) in the 2 Micron Region
NASA Technical Reports Server (NTRS)
Prather, Dennis; Sulima, Oleg V.
2006-01-01
Within the framework of the project the University of Delaware has developed InGaAsSb-based heterojunction phototransistors (HPT) structure with a large (1000 micron diameter) photosensitive/photoactive area. Two different compositions of quaternary alloys were used to provide the cutoff wavelength (50% of maximum quantum efficiency) of 2.4 micron (Type 1) and 2.15 micron (Type 2). The Type 1 HPT was composed of Al0.25Ga0.75As0.02Sb0.98 and In0.18Ga0.82As0.17Sb0.83 layers with room-temperature bandgaps of Eg approximates 1.0 eV and Eg approximates 0.54 eV, respectively. The layers are lattice-matched to a GaSb substrate. The growth started with a 0.15micron-thick n+-GaSb buffer layer and was completed with a 0.1 m-thick n+- GaSb contact layer doped with Te. The HPT structure includes a 0.5 m-thick n-type AlGaAsSb emitter, 0.8 micron-thick p-type composite base consisting of AlGaAsSb (0.3 m) and InGaAsSb (0.5 m) layers, and a 1.5micron - thick n type InGaAsSb collector. The Type 2 HPT differed by a higher bandgap In0.16Ga0.84As 0.14Sb0.86 layers with a room-temperature bandgap of Eg approximates 0.555 eV.
Transfer Learning to Accelerate Interface Structure Searches
NASA Astrophysics Data System (ADS)
Oda, Hiromi; Kiyohara, Shin; Tsuda, Koji; Mizoguchi, Teruyasu
2017-12-01
Interfaces have atomic structures that are significantly different from those in the bulk, and play crucial roles in material properties. The central structures at the interfaces that provide properties have been extensively investigated. However, determination of even one interface structure requires searching for the stable configuration among many thousands of candidates. Here, a powerful combination of machine learning techniques based on kriging and transfer learning (TL) is proposed as a method for unveiling the interface structures. Using the kriging+TL method, thirty-three grain boundaries were systematically determined from 1,650,660 candidates in only 462 calculations, representing an increase in efficiency over conventional all-candidate calculation methods, by a factor of approximately 3,600.
Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran
2015-01-01
Light propagation models often simplify the interface between the optical fiber probe tip and tissue to a laterally uniform boundary with mismatched refractive indices. Such simplification neglects the precise optical properties of the commonly used probe tip materials, e.g. stainless steel or black epoxy. In this paper, we investigate the limitations of the laterally uniform probe-tissue interface in Monte Carlo simulations of diffuse reflectance. In comparison to a realistic probe-tissue interface that accounts for the layout and properties of the probe tip materials, the simplified laterally uniform interface is shown to introduce significant errors into the simulated diffuse reflectance. PMID:26504647
Optical Properties of Nanocrystal Interfaces in Compressed MgO Nanopowders
2011-01-01
The optical properties and charge trapping phenomena observed on oxide nanocrystal ensembles can be strongly influenced by the presence of nanocrystal interfaces. MgO powders represent a convenient system to study these effects due to the well-defined shape and controllable size distributions of MgO nanocrystals. The spectroscopic properties of nanocrystal interfaces are investigated by monitoring the dependence of absorption characteristics on the concentration of the interfaces in the nanopowders. The presence of interfaces is found to affect the absorption spectra of nanopowders more significantly than changing the size of the constituent nanocrystals and, thus, leading to the variation of the relative abundance of light-absorbing surface structures. We find a strong absorption band in the 4.0−5.5 eV energy range, which was previously attributed to surface features of individual nanocrystals, such as corners and edges. These findings are supported by complementary first-principles calculations. The possibility to directly address such interfaces by tuning the energy of excitation may provide new means for functionalization and chemical activation of nanostructures and can help improve performance and reliability for many nanopowder applications. PMID:21443262
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wutzler, Rene, E-mail: r.wutzler@hzdr.de; Rebohle, Lars; Prucnal, Slawomir
2015-05-07
The integration of III–V compound semiconductors in Si is a crucial step towards faster and smaller devices in future technologies. In this work, we investigate the formation process of III–V compound semiconductor nanocrystals, namely, GaAs, GaSb, and InP, by ion implantation and sub-second flash lamp annealing in a SiO{sub 2}/Si/SiO{sub 2} layer stack on Si grown by plasma-enhanced chemical vapor deposition. Raman spectroscopy, Rutherford Backscattering spectrometry, and transmission electron microscopy were performed to identify the structural and optical properties of these structures. Raman spectra of the nanocomposites show typical phonon modes of the compound semiconductors. The formation process of themore » III–V compounds is found to be based on liquid phase epitaxy, and the model is extended to the case of an amorphous matrix without an epitaxial template from a Si substrate. It is shown that the particular segregation and diffusion coefficients of the implanted group-III and group-V ions in molten Si significantly determine the final appearance of the nanostructure and thus their suitability for potential applications.« less
Zak phase induced multiband waveguide by two-dimensional photonic crystals.
Yang, Yuting; Xu, Tao; Xu, Yun Fei; Hang, Zhi Hong
2017-08-15
Interface states in photonic crystals provide efficient approaches to control the flow of light. Photonic Zak phase determines the bulk band properties of photonic crystals, and, by assembling two photonic crystals with different bulk band properties together, deterministic interface states can be realized. By translating each unit cell of a photonic crystal by half the lattice constant, another photonic crystal with identical common gaps but a different Zak phase at each photonic band can be created. By assembling these two photonic crystals together, multiband waveguide can thus be easily created and then experimentally characterized. Our experimental results have good agreement with numerical simulations, and the propagation properties of these measured interface states indicate that this new type of interface state will be a good candidate for future applications of optical communications.
NASA Astrophysics Data System (ADS)
Henry de Frahan, Marc T.; Varadan, Sreenivas; Johnsen, Eric
2015-01-01
Although the Discontinuous Galerkin (DG) method has seen widespread use for compressible flow problems in a single fluid with constant material properties, it has yet to be implemented in a consistent fashion for compressible multiphase flows with shocks and interfaces. Specifically, it is challenging to design a scheme that meets the following requirements: conservation, high-order accuracy in smooth regions and non-oscillatory behavior at discontinuities (in particular, material interfaces). Following the interface-capturing approach of Abgrall [1], we model flows of multiple fluid components or phases using a single equation of state with variable material properties; discontinuities in these properties correspond to interfaces. To represent compressible phenomena in solids, liquids, and gases, we present our analysis for equations of state belonging to the Mie-Grüneisen family. Within the DG framework, we propose a conservative, high-order accurate, and non-oscillatory limiting procedure, verified with simple multifluid and multiphase problems. We show analytically that two key elements are required to prevent spurious pressure oscillations at interfaces and maintain conservation: (i) the transport equation(s) describing the material properties must be solved in a non-conservative weak form, and (ii) the suitable variables must be limited (density, momentum, pressure, and appropriate properties entering the equation of state), coupled with a consistent reconstruction of the energy. Further, we introduce a physics-based discontinuity sensor to apply limiting in a solution-adaptive fashion. We verify this approach with one- and two-dimensional problems with shocks and interfaces, including high pressure and density ratios, for fluids obeying different equations of state to illustrate the robustness and versatility of the method. The algorithm is implemented on parallel graphics processing units (GPU) to achieve high speedup.
Interface Engineering for Nanoelectronics.
Hacker, C A; Bruce, R C; Pookpanratana, S J
2017-01-01
Innovation in the electronics industry is tied to interface engineering as devices increasingly incorporate new materials and shrink. Molecular layers offer a versatile means of tuning interfacial electronic, chemical, physical, and magnetic properties enabled by a wide variety of molecules available. This paper will describe three instances where we manipulate molecular interfaces with a specific focus on the nanometer scale characterization and the impact on the resulting performance. The three primary themes include, 1-designer interfaces, 2-electronic junction formation, and 3-advancing metrology for nanoelectronics. We show the ability to engineer interfaces through a variety of techniques and demonstrate the impact on technologies such as molecular memory and spin injection for organic electronics. Underpinning the successful modification of interfaces is the ability to accurately characterize the chemical and electronic properties and we will highlight some measurement advances key to our understanding of the interface engineering for nanoelectronics.
Interface Engineering for Nanoelectronics
Hacker, C. A.; Bruce, R. C.; Pookpanratana, S. J.
2017-01-01
Innovation in the electronics industry is tied to interface engineering as devices increasingly incorporate new materials and shrink. Molecular layers offer a versatile means of tuning interfacial electronic, chemical, physical, and magnetic properties enabled by a wide variety of molecules available. This paper will describe three instances where we manipulate molecular interfaces with a specific focus on the nanometer scale characterization and the impact on the resulting performance. The three primary themes include, 1-designer interfaces, 2-electronic junction formation, and 3-advancing metrology for nanoelectronics. We show the ability to engineer interfaces through a variety of techniques and demonstrate the impact on technologies such as molecular memory and spin injection for organic electronics. Underpinning the successful modification of interfaces is the ability to accurately characterize the chemical and electronic properties and we will highlight some measurement advances key to our understanding of the interface engineering for nanoelectronics. PMID:29276553
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Dongsheng; Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn; Ma, Li
2015-07-27
Transport efficiency of pure spin current across the ferromagnetic films adjacent with a nonmagnetic metal is strongly dependent on the spin mixing conductance, which is very sensitive to atomic-level interface conditions. Here, by the means of advanced electron microscopy techniques, atomic structure, electronic structure, and magnetic properties at Y{sub 3}Fe{sub 5}O{sub 12} (YIG)/Pt interface are detailed characterized to correlate the microstructure and magnetic properties with interfacial transport properties. It is found that the order-disorder structure transformation at the interface is accompanied with oxygen deficiency, thus the reduced iron valence and the break of magnetic atom-O-magnetic atom bridges, which is responsiblemore » for superexchange interaction and magnetic order. It is also found that the magnetic moment of interfacial iron ions is decreased. The disorder interfacial layer with suppressed magnetism finally contributes to the declined spin transport efficiency. Our results provide the knowledge to control and manipulate the interfacial structure and properties in order to obtain higher spin transport efficiency.« less
Intermetallic Growth and Interfacial Properties of the Grain Refiners in Al Alloys.
Li, Chunmei; Cheng, Nanpu; Chen, Zhiqian; Xie, Zhongjing; Hui, Liangliang
2018-04-20
Al₃TM(TM = Ti, Zr, Hf, Sc) particles acting as effective grain refiners for Al alloys have been receiving extensive attention these days. In order to judge their nucleation behaviors, first-principles calculations are used to investigate their intermetallic and interfacial properties. Based on energy analysis, Al₃Zr and Al₃Sc are more suitable for use as grain refiners than the other two intermetallic compounds. Interfacial properties show that Al/Al₃TM(TM = Ti, Zr, Hf, Sc) interfaces in I-ter interfacial mode exhibit better interface wetting effects due to larger Griffith rupture work and a smaller interface energy. Among these, Al/Al₃Sc achieves the lowest interfacial energy, which shows that Sc atoms should get priority for occupying interfacial sites. Additionally, Sc-doped Al/Al₃(Zr, Sc) interfacial properties show that Sc can effectively improve the Al/Al₃(Zr, Sc) binding strength with the Al matrix. By combining the characteristics of interfaces with the properties of intermetallics, the core-shell structure with Al₃Zr-core or Al₃Zr(Sc1-1)-core encircled with an Sc-rich shell forms.
The metalorganic chemical vapor deposition of III-V nitrides for optoelectronic device applications
NASA Astrophysics Data System (ADS)
Grudowski, Paul Alexander
Nitride-based light-emitting diodes (LEDs) and laser diodes are important for large-area LED displays, flat-panel displays, traffic signals, and optical data storage, due to their characteristic ultraviolet and visible light emission. However, much of the research and development addressing material related problems is recent. The room-temperature continuous wave (CW) operation of nitride-based laser diodes remains a major milestone because the material quality requirements for these devices are extremely high. This study investigates nitride material development by the metalorganic chemical vapor deposition (MOCVD) and characterization of GaN, AlGaN, and InGaN, and by qualifying these materials with fabricated devices. The ultimate goal was to develop a working laser diode. The nitride epitaxial films were characterized by 300K Hall effect, x-ray diffraction (XRD), photoluminescence (PL), cathodoluminescence (CL), secondary ion mass spectroscopy (SIMS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). GaN grown heteroepitaxially on (0001) sapphire substrates was first optimized. A low-temperature GaN nucleation layer was developed that gave subsequent high-temperature GaN layers with low background carrier concentrations (n < 1×10sp{17}\\ cmsp{-3}). Intentional p-type hole concentrations up to 2× 10sp{18} cmsp{-3} and n-type electron concentrations up to 1× 10sp{19} cmsp{-3} were achieved at 300K with magnesium and silicon, respectively. The ternary alloy Insb{x}Gasb{1-x}N was grown with indium compositions up to x = 0.25. These films exhibited strong and narrow 300K PL bandedge peaks. Multiple-quantum-well structures with Insb{0.13}Gasb{0.87}N wells and Insb{0.03}Gasb{0.97}N barriers were grown and gave enhanced PL intensity compared to single InGaN layers. Modulation-doped MQW's produced enhanced PL intensity compared to uniformly-doped MQW's. 300K photopumping experiments produced stimulated emission from a five-period MQW. Light-emitting device structures comprised of InGaN MQW active regions and p-type and n-type GaN contact layers and AlGaN confinement layers were grown and fabricated. LED's showed bright emission at a wavelength of 400 nm. While optically pumped lasers were demonstrated, no injection lasing action was achieved in these devices. GaN grown by selective area lateral epitaxial overgrowth (SALEO) has reduced dislocation defect density and, therefore, may prove to be a promising substrate for nearly defect-free device structures. Plan-view and cross-sectional CL was used to compare spatial inhomogeneities in the bandedge luminescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomenzo, Patrick D.; Nishida, Toshikazu, E-mail: nishida@ufl.edu; Takmeel, Qanit
Ferroelectric HfO{sub 2}-based thin films, which can exhibit ferroelectric properties down to sub-10 nm thicknesses, are a promising candidate for emerging high density memory technologies. As the ferroelectric thickness continues to shrink, the electrode-ferroelectric interface properties play an increasingly important role. We investigate the TaN interface properties on 10 nm thick Si-doped HfO{sub 2} thin films fabricated in a TaN metal-ferroelectric-metal stack which exhibit highly asymmetric ferroelectric characteristics. To understand the asymmetric behavior of the ferroelectric characteristics of the Si-doped HfO{sub 2} thin films, the chemical interface properties of sputtered TaN bottom and top electrodes are probed with x-ray photoelectron spectroscopy. Ta-Omore » bonds at the bottom electrode interface and a significant presence of Hf-N bonds at both electrode interfaces are identified. It is shown that the chemical heterogeneity of the bottom and top electrode interfaces gives rise to an internal electric field, which causes the as-grown ferroelectric domains to preferentially polarize to screen positively charged oxygen vacancies aggregated at the oxidized bottom electrode interface. Electric field cycling is shown to reduce the internal electric field with a concomitant increase in remanent polarization and decrease in relative permittivity. Through an analysis of pulsed transient switching currents, back-switching is observed in Si-doped HfO{sub 2} thin films with pinched hysteresis loops and is shown to be influenced by the internal electric field.« less
Gas-liquid interface of room-temperature ionic liquids.
Santos, Cherry S; Baldelli, Steven
2010-06-01
The organization of ions at the interface of ionic liquids and the vacuum is an ideal system to test new ideas and concepts on the interfacial chemistry of electrolyte systems in the limit of no solvent medium. Whilst electrolyte systems have numerous theoretical and experimental methods used to investigate their properties, the ionic liquids are relatively new and our understanding of the interfacial properties is just beginning to be explored. In this critical review, the gas-liquid interface is reviewed, as this interface does not depend on the preparation of another medium and thus produces a natural interface. The interface has been investigated by sum frequency generation vibrational spectroscopy and ultra-high vacuum techniques. The results provide a detailed molecular-level view of the surface composition and structure. These have been complemented by theoretical studies. The combinations of treatments on this interface are starting to provide a somewhat convergent description of how the ions are organized at this neat interface (108 references).
NASA Astrophysics Data System (ADS)
Zhang, Yu; Tang, Fu-Ling; Xue, Hong-Tao; Lu, Wen-Jiang; Liu, Jiang-Fei; Huang, Min
2015-02-01
Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about -1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about -6.5 to -5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about -5.0 to -1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.
Water at surfaces with tunable surface chemistries
NASA Astrophysics Data System (ADS)
Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.
2018-03-01
Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.
Le Gonidec, Yves; Gibert, Dominique
2006-11-01
We perform a multiscale analysis of the backscattering properties of a complex interface between water and a layer of randomly arranged glass beads with diameter D=1 mm. An acoustical experiment is done to record the wavelet response of the interface in a large frequency range from lambda/D=0.3 to lambda/D=15. The wavelet response is a physical analog of the mathematical wavelet transform which possesses nice properties to detect and characterize abrupt changes in signals. The experimental wavelet response allows to identify five frequency domains corresponding to different backscattering properties of the complex interface. This puts quantitative limits to the validity domains of the models used to represent the interface and which are flat elastic, flat visco-elastic, rough random half-space with multiple scattering, and rough elastic from long to short wavelengths respectively. A physical explanation based on Mie scattering theory is proposed to explain the origin of the five frequency domains identified in the wavelet response.
Radosinski, Lukasz; Labus, Karolina
2017-10-05
Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.
The effect of weak interface on transverse properties of a ceramic matrix composite
NASA Technical Reports Server (NTRS)
Shimansky, R. A.; Hahn, H. T.; Salamon, N. J.
1990-01-01
Experimental studies conducted at NASA Lewis on SiC reaction-bonded Si3N4 composite system showed that transverse stiffness and strength were much lower than those predicted from existing analytical models based on good interfacial bonding. It was believed that weakened interfaces were responsible for the decrease in tranverse properties. To support this claim, a two-dimensional FEM analysis was performed for a transverse representative volume element. Specifically, the effect of fiber/matrix displacement compatibility at the interface was studied under both tensile and compressive transverse loadings. Interface debonding was represented using active gap elements connecting the fiber and matrix. The analyses show that the transverse tensile strength and stiffness are best predicted when a debonded interface is assumed for the composite. In fact, the measured properties can be predicted by simply replacing the fibers by voids. Thus, it is found that little or no interfacial bonding exists in the composite, and that an elastic analysis can predict the transverse stiffness and strength.
NASA Astrophysics Data System (ADS)
Chan, Yuet Ching; Yu, Jerry; Ho, Derek
2018-06-01
Nanointerfaces have attracted intensive research effort for advanced electronics due to their unique and tunable semiconducting properties made possible by metal-contacted oxide structures at the nanoscale. Although much work has been on the adjustment of fabrication parameters to achieve high-quality interfaces, little work has experimentally obtained the various correlations between material parameters and Schottky barrier electronic properties to accurately probe the underlying phenomenon. In this work, we investigate the control of Pt-ZnO nanograin interfaces properties by thermal annealing. Specifically, we quantitatively analyze the correlation between material parameters (such as surface morphology, crystallographic structure, and stoichiometry) and Schottky diode parameters (Schottky barrier height, ideality factor, and contact resistance). Results revealed strong dependencies of Schottky barrier characteristics on oxygen vacancies, surface roughness, grain density, d-spacing, and crystallite size. I-V-T data shows that annealing at 600 °C produces a nanograin based interface with the most rectifying diode characteristics. These dependencies, which have not been previously reported holistically, highlight the close relationship between material properties and Schottky barrier characteristics, and are instrumental for the performance optimization of nanostructured metal-semiconductor interfaces in advanced electronic devices.
Kanevce, A.; Reese, Matthew O.; Barnes, T. M.; ...
2017-06-06
CdTe devices have reached efficiencies of 22% due to continuing improvements in bulk material properties, including minority carrier lifetime. Device modeling has helped to guide these device improvements by quantifying the impacts of material properties and different device designs on device performance. One of the barriers to truly predictive device modeling is the interdependence of these material properties. For example, interfaces become more critical as bulk properties, particularly, hole density and carrier lifetime, increase. We present device-modeling analyses that describe the effects of recombination at the interfaces and grain boundaries as lifetime and doping of the CdTe layer change. Themore » doping and lifetime should be priorities for maximizing open-circuit voltage (V oc) and efficiency improvements. However, interface and grain boundary recombination become bottlenecks for device performance at increased lifetime and doping levels. In conclusion, this work quantifies and discusses these emerging challenges for next-generation CdTe device efficiency.« less
Entrapment of Ciliates at the Water-Air Interface
Ferracci, Jonathan; Ueno, Hironori; Numayama-Tsuruta, Keiko; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji
2013-01-01
The importance of water-air interfaces (WAI) on microorganism activities has been recognized by many researchers. In this paper, we report a novel phenomenon: the entrapment of ciliates Tetrahymena at the WAI. We first characterized the behavior of cells at the interface and showed that the cells' swimming velocity was considerably reduced at the WAI. To verify the possible causes of the entrapment, we investigated the effects of positive chemotaxis for oxygen, negative geotaxis and surface properties. Even though the taxes were still effective, the entrapment phenomenon was not dependent on the physiological conditions, but was instead affected by the physical properties at the interface. This knowledge is useful for a better understanding of the physiology of microorganisms at interfaces in nature and in industry. PMID:24130692
NASA Astrophysics Data System (ADS)
Maughan, Bret
Organic semiconductor interfaces are promising materials for use in next-generation electronic and optoelectronic devices. Current models for metal-organic interfacial electronic structure and dynamics are inadequate for strongly hybridized systems. This work aims to address this issue by identifying the factors most important for understanding chemisorbed interfaces with an eye towards tuning the interfacial properties. Here, I present the results of my research on chemisorbed interfaces formed between thin-films of phthalocyanine molecules grown on monocrystalline Cu(110). Using atomically-resolved nanoscale imaging in combination with surface-sensitive photoemission techniques, I show that single-molecule level interactions control the structural and electronic properties of the interface. I then demonstrate that surface modifications aimed at controlling interfacial interactions are an effective way to tailor the physical and electronic structure of the interface. This dissertation details a systematic investigation of the effect of molecular and surface functionalization on interfacial interactions. To understand the role of molecular structure, two types of phthalocyanine (Pc) molecules are studied: non-planar, dipolar molecules (TiOPc), and planar, non-polar molecules (H2Pc and CuPc). Multiple adsorption configurations for TiOPc lead to configuration-dependent self-assembly, Kondo screening, and electronic energy-level alignment. To understand the role of surface structure, the Cu(110) surface is textured and passivated by oxygen chemisorption prior to molecular deposition, which gives control over thin-film growth and interfacial electronic structure in H2Pc and CuPc films. Overall, the work presented here demonstrates a method for understanding interfacial electronic structure of strongly hybridized interfaces, an important first step towards developing more robust models for metal-organic interfaces, and reliable, predictive tuning of interfacial properties.
Maestro, Armando; Jones, Daniel; Sánchez de Rojas Candela, Carmen; Guzman, Eduardo; Duits, Michel H G; Cicuta, Pietro
2018-06-05
By combining controlled experiments on single interfaces with measurements on solitary bubbles and liquid foams, we show that poly( N-isopropylacrylamide) (PNIPAM) microgels assembled at air/water interfaces exhibit a solid to liquid transition changing the temperature, and that this is associated with the change in the interfacial microstructure of the PNIPAM particles around their volume phase transition temperature. We show that the solid behaves as a soft 2D colloidal glass, and that the existence of this solid/liquid transition offers an ideal platform to tune the permeability of air bubbles covered by PNIPAM and to control macroscopic foam properties such as drainage, stability, and foamability. PNIPAM particles on fluid interfaces allow new tunable materials, for example foam structures with variable mechanical properties upon small temperature changes.
Colloidal systems and interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, S.; Morrison, E.D.
1988-01-01
This book is an excellent, four-part introductory text and sourcebook for those who want to acquire a quick background in , or brush up on, the physical properties and behavior of colloidal dispersions and interfaces. Part I covers properties of particles and techniques for determining particle size and surface area. Part II concentrates on the properties of interfaces, with brief subsections on insoluble monolayers, surface active solutes in aqueous and non-aqueous media, and the thermodynamics of adsorption at interfaces. Part III considers attractive and repulsive interactions, colloid stability (DLVO theory), and kinetics of coagulation. Part IV applies these concepts tomore » emulsions, foams, and suspensions. The sections on colloid rheology, interfacial tensions, Marangoni effects, and calculation of Hamaker constants are particularly good, as are Part IV and the numerous examples of practical applications used throughout the book to illustrate the concepts.« less
Joint Optoelectronics Research Scheme (JOERS) Conference Held in England on June 1988
1989-03-15
with high electro-opt ic-coefficient conditions of InAsSb lattice matched to GaSb; this is a molec Jles as the guest in a host of cost PVDF copolymer... curved ridges have been made by wet gcncc effects in bow-tie fiber may be enhanced by an chemical etching, curves with radii as lov as 3() m are...The work is now being cxtended to curved waveguides, lcscnc ,Nu i 01. Pl 1 A:h, h lnt. m’k v.\\ , r ( IlCIlo - mirrors, Y-junctions, and crosspoints
2011-08-31
dominant role of inter valence band absorption [7]. Details of the conduction band structure of the particular 0 20 40 60 80 100 0 10 20 30 CW 30s...here the n-cladding composition resulted into material with three valleys in conduction band to have almost the same energy minimum so no inter...emitting GaSb -based diode lasers was improved by utilization of the waveguide structure with asymmetric claddings. The AlGaAsSb p-cladding contained
Thermal Conductivity and Large Isotope Effect in GaN from First Principles
2012-08-28
August 2012) We present atomistic first principles results for the lattice thermal conductivity of GaN and compare them to those for GaP, GaAs, and GaSb ...weak scattering results from stiff atomic bonds and the large Ga to N mass ratio, which give phonons high frequencies and also a pronounced energy gap...66.70.f, 63.20.kg, 71.15.m Introduction.—Gallium nitride (GaN) is a wide band gap semiconductor and a promising candidate for use in opto- electronic
Strained GaSb/AlAsSb Quantum Wells for p-Channel Field-Effect Transistors
2008-01-01
Available online 18 October 2008 PACS: 72.80.Ey 73.61.Ey 81.05.Ea 85.30.Tv Keywords: A3. Molecular beam epitaxy A3. Quantum wells B2. Semiconducting III–V...were grown by molecular beam epitaxy on GaAs substrates. The buffer layer and barrier layers consisted of relaxed AlAsxSb1x. The composition of the...composition in order to control the strain in the GaSb quantum well. The heterostructures studied here are grown by molecular beam epitaxy (MBE) on semi
Excited-state thermionic emission in III-antimonides: Low emittance ultrafast photocathodes
NASA Astrophysics Data System (ADS)
Berger, Joel A.; Rickman, B. L.; Li, T.; Nicholls, A. W.; Andreas Schroeder, W.
2012-11-01
The normalized rms transverse emittance of an electron source is shown to be proportional to √m* , where m* is the effective mass of the state from which the electron is emitted, by direct observation of the transverse momentum distribution for excited-state thermionic emission from two III-V semiconductor photocathodes, GaSb and InSb, together with a control experiment employing two-photon emission from gold. Simulations of the experiment using an extended analytical Gaussian model of electron pulse propagation are in close agreement with the data.
Molecular assembly, interfacial rheology and foaming properties of oligofructose fatty acid esters.
van Kempen, Silvia E H J; Schols, Henk A; van der Linden, Erik; Sagis, Leonard M C
2014-01-01
Two major types of food-grade surfactants used to stabilize foams are proteins and low molecular weight (LMW) surfactants. Proteins lower the surface tension of interfaces and tend to unfold and stabilize the interface by the formation of a visco-elastic network, which leads to high surface moduli. In contrast, LMW surfactants lower the surface tension more than proteins, but do not form interfaces with a high modulus. Instead, they stabilize the interface through the Gibbs-Marangoni mechanism that relies on rapid diffusion of surfactants, when surface tension gradients develop as a result of deformations of the interface. A molecule than can lower the surface tension considerably, like a LMW surfactant, but also provide the interface with a high modulus, like a protein, would be an excellent foam stabilizer. In this article we will discuss molecules with those properties: oligofructose fatty acid esters, both in pure and mixed systems. First, we will address the synthesis and structural characterization of the esters. Next, we will address self-assembly and rheological properties of air/water interfaces stabilized by the esters. Subsequently, this paper will deal with mixed systems of mono-esters with either di-esters and lauric acid, or proteins. Then, the foaming functionality of the esters is discussed.
Plasmon modes supported by left-handed material slab waveguide with conducting interfaces
NASA Astrophysics Data System (ADS)
Taya, Sofyan A.
2018-07-01
Theoretical analysis of left-handed material core layer waveguide in the presence of interface free charge layers is presented. The thickness of the interface charge layer can be neglected compared with the incident wavelength. The tangential component of the magnetic field is no longer continuous due to the conducting interfaces. The non-homogeneous boundary conditions are solved and the corresponding dispersion relation is found. The dispersion properties are studied. The proposed structure is found to support even as well as odd plasmon modes. Moreover, the structure shows abnormal dispersion property of decreasing the effective index with the increase of the frequency which means negative group velocity.
Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite
Lee, Seoung Wan; Kim, Jeong Tae; Hong, Sung Hwan; Park, Hae Jin; Park, Jun-Young; Lee, Nae Sung; Seo, Yongho; Suh, Jin Yoo; Eckert, Jürgen; Kim, Do Hyang; Park, Jin Man; Kim, Ki Buem
2014-01-01
The outstading mechanical properties of bimodal ultrafine eutectic composites (BUECs) containing length scale hierarchy in eutectic structure were demonstrated by using AFM observation of surface topography with quantitative height measurements and were interpreted in light of the details of the deformation mechanisms by three different interface modes. It is possible to develop a novel strain accommodated eutectic structure for triggering three different interface-controlled deformation modes; (I) rotational boundary mode, (II) accumulated interface mode and (III) individual interface mode. A strain accommodated microstructure characterized by the surface topology gives a hint to design a novel ultrafine eutectic alloys with excellent mechanical properties. PMID:25265897
1990-12-26
to mechanical properties , atomic structure , electronic bonding, and long term stability of interfaces at high temperature. The objective of this...discussion. The subjects were measurement of the local mechanical properties of-interfaces, constrained deformation, reactions at metal ceramic...as a function of oxygen activity and the effect of these reactions on mechanical properties understood, (iv) local deformation on the scale of
NASA Technical Reports Server (NTRS)
Ansell, G. S.
1972-01-01
An analytical rationale for the sensitivity-insensitivity of dispersion-strengthened systems to process history is provided. In particular, the research was focussed upon the influence of the particle-matrix interface bond in TD-Nickel and TD-Nichrome, and the manner in which the differences in both elastic constants and thermal expansion coefficients between these phases stress this interface when these alloys are subjected to mechanical and thermal loads upon the mechanical properties of these alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Benthem, Klaus; Tan, Guolong; French, Roger H
2006-01-01
Attractive van der Waals V London dispersion interactions between two half crystals arise from local physical property gradients within the interface layer separating the crystals. Hamaker coefficients and London dispersion energies were quantitatively determined for 5 and near- 13 grain boundaries in SrTiO3 by analysis of spatially resolved valence electron energy-loss spectroscopy (VEELS) data. From the experimental data, local complex dielectric functions were determined, from which optical properties can be locally analysed. Both local electronic structures and optical properties revealed gradients within the grain boundary cores of both investigated interfaces. The obtained results show that even in the presence ofmore » atomically structured grain boundary cores with widths of less than 1 nm, optical properties have to be represented with gradual changes across the grain boundary structures to quantitatively reproduce accurate van der Waals V London dispersion interactions. London dispersion energies of the order of 10% of the apparent interface energies of SrTiO3 were observed, demonstrating their significance in the grain boundary formation process. The application of different models to represent optical property gradients shows that long-range van der Waals V London dispersion interactions scale significantly with local, i.e atomic length scale property variations.« less
NASA Astrophysics Data System (ADS)
Hoseini-Athar, M. M.; Tolaminejad, B.
2016-07-01
Explosive welding is a well-known solid state method for joining similar and dissimilar materials. In the present study, tri-layered Al-Cu-Al laminated composites with different interface morphologies were fabricated by explosive welding and subsequent rolling. Effects of explosive ratio and rolling thickness reduction on the morphology of interface and mechanical properties were evaluated through optical/scanning electron microscopy, micro-hardness, tensile and tensile-shear tests. Results showed that by increasing the thickness reduction, bonding strength of specimens including straight and wavy interfaces increases. However, bonding strength of the specimens with melted layer interface decreases up to a threshold thickness reduction, then rapidly increases by raising the reduction. Hardness Values of welded specimens were higher than those of original material especially near the interface and a more uniform hardness profile was obtained after rolling process.
NASA Astrophysics Data System (ADS)
Song, Jun; Liu, Juanfang; Chen, Qinghua
For lithium-ion batteries, the composite silicon-based electrodes can prevent from losing electrical contact and hence retain the capacity over many cycles. To uncover the adhesion mechanism on the interface formed by the copper foil and the thin silicon coatings during the cold gas dynamic spraying (CGDS) at the microscopic level, the first-principle calculations are performed to investigate the interface properties between them. The ideal work of adhesion, fracture toughness and the interface electronic properties are analyzed. It is found that all the atoms on the interface have vertical displacements, and covalent and ionic bonds are formed between the interfacial Cu and Si atoms which increases the bonding strength. However, the ideal work of adhesion on the interface is lower than one of the Cu bulk and Si bulk, so that fracture would be easier to take place on the interface.
Interfacial Properties of Thin Films of Poly(vinyl ether)s with Architectural Design in Water
NASA Astrophysics Data System (ADS)
Oda, Yukari; Itagaki, Nozomi; Sugimoto, Sin; Kawaguchi, Daisuke; Matsuno, Hisao; Tanaka, Keiji
Precise design of primary structure and architecture of polymers leads to the well-defined structure, unique physical properties, and excellent functions not only in the bulk but also at the interfaces. We here constructed functional polymer interfaces in water based on the architectural design of poly(vinyl ether)s with oxyethylene side-chains (POEVE). A branched polymer with POEVE parts was preferentially segregated at the air interface in the matrix of poly(methyl methacrylate). As an alternative way to prepare the POEVE surface, the cross-linked hydrogel thin films were prepared. The moduli of the hydrogel films near the water interfaces, which were examined by force-distance curve measurements using atomic force microscopy, were greatly sensitive to the cross-linking density of the polymers. Diffuse interfaces of POEVE chains at the water interface make it possible to prevent the platelet adhesion on the films.
Intermetallic Growth and Interfacial Properties of the Grain Refiners in Al Alloys
Li, Chunmei; Cheng, Nanpu; Chen, Zhiqian; Xie, Zhongjing; Hui, Liangliang
2018-01-01
Al3TM(TM = Ti, Zr, Hf, Sc) particles acting as effective grain refiners for Al alloys have been receiving extensive attention these days. In order to judge their nucleation behaviors, first-principles calculations are used to investigate their intermetallic and interfacial properties. Based on energy analysis, Al3Zr and Al3Sc are more suitable for use as grain refiners than the other two intermetallic compounds. Interfacial properties show that Al/Al3TM(TM = Ti, Zr, Hf, Sc) interfaces in I-ter interfacial mode exhibit better interface wetting effects due to larger Griffith rupture work and a smaller interface energy. Among these, Al/Al3Sc achieves the lowest interfacial energy, which shows that Sc atoms should get priority for occupying interfacial sites. Additionally, Sc-doped Al/Al3(Zr, Sc) interfacial properties show that Sc can effectively improve the Al/Al3(Zr, Sc) binding strength with the Al matrix. By combining the characteristics of interfaces with the properties of intermetallics, the core-shell structure with Al3Zr-core or Al3Zr(Sc1-1)-core encircled with an Sc-rich shell forms. PMID:29677155
Inhomogeneity at the LaAlO3/SrTiO3 interface
NASA Astrophysics Data System (ADS)
Claeson, T.; Kalabukhov, A.; Gunnarsson, R.; Winkler, D.; Borjesson, J.; Ljustina, N.; Olsson, E.; Popok, V.; Boikov, Yu.; Serenkov, I.; Sakharov, V.
2010-03-01
High electrical conductivity has been reported for the interface between two wide-band gap insulators, LaAlO3 (LAO) and SrTiO3 (STO). It occurs above a critical thickness of LAO and can be tuned by an electric field. The conduction has been attributed to i) ``polar catastrophe'' , where the electrostatic charge at the interface is compensated by the transfer of half an electron per unit cell to the interface, ii) oxygen vacancies in the STO, and iii) cation intermixing, which may result in the formation of metallic La1-xSrxTiO3 layer. The relation between microstructure and electrical properties is crucial for understanding the origin of electrical conductivity. We have investigated the interface composition using medium-energy ion spectroscopy, high resolution electron microscopy, and Kelvin probe force microscopy. We find a correlation between cationic intermixing at the interface and electrical properties and inhomogeneities of the interface conductivity that may support a percolation model. Work supported by Swedish VR & KAW, Russian ISTC 3743, EC NANOXIDE
Nanoionic devices: Interface nanoarchitechtonics for physical property tuning and enhancement
NASA Astrophysics Data System (ADS)
Tsuchiya, Takashi; Terabe, Kazuya; Yang, Rui; Aono, Masakazu
2016-11-01
Nanoionic devices have been developed to generate novel functions overcoming limitations of conventional materials synthesis and semiconductor technology. Various physical properties can be tuned and enhanced by local ion transport near the solid/solid interface. Two electronic carrier doping methods can be used to achieve extremely high-density electronic carriers: one is electrostatic carrier doping using an electric double layer (EDL); the other is electrochemical carrier doping using a redox reaction. Atomistic restructuring near the solid/solid interface driven by a DC voltage, namely, interface nanoarchitechtonics, has huge potential. For instance, the use of EDL enables high-density carrier doping in potential superconductors, which can hardly accept chemical doping, in order to achieve room-temperature superconductivity. Optical bandgap and photoluminescence can be controlled for various applications including smart windows and biosensors. In situ tuning of magnetic properties is promising for low-power-consumption spintronics. Synaptic plasticity in the human brain is achieved in neuromorphic devices.
NASA Astrophysics Data System (ADS)
Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Song, Qi; Yin, Shi-Pan
2018-01-01
In this paper, we fabricated a novel copper matrix composites reinforced by carbon nanotubes (CNTs) using electroless deposition (ED) and spark plasma sintering technique. Microstructure, mechanical, electric conductivity, and thermal properties of the CNTs/Cu composites were investigated. The results show that a favorable interface containing C-O and O-Cu bond was formed between CNTs and matrix when the CNTs were coated with nano-Cu by ED method. Thus, we accomplished the uniformly dispersed CNTs in the CNTs/Cu powders and compacted composites, which eventually leads to the enhancement of the mechanical properties of the CNTs/Cu composites in the macro-scale environment. However, the interface structure can hinder the movement of carriers and free electrons and increase the interface thermal resistance, which leads to modest decrease of electrical and thermal conductivity of the CNTs/Cu composites.
Yokota, Yasuyuki; Miyamoto, Hiroo; Imanishi, Akihito; Takeya, Jun; Inagaki, Kouji; Morikawa, Yoshitada; Fukui, Ken-Ichi
2018-05-09
Electric double-layer transistors based on ionic liquid/organic semiconductor interfaces have been extensively studied during the past decade because of their high carrier densities at low operation voltages. Microscopic structures and the dynamics of ionic liquids likely determine the device performance; however, knowledge of these is limited by a lack of appropriate experimental tools. In this study, we investigated ionic liquid/organic semiconductor interfaces using molecular dynamics to reveal the microscopic properties of ionic liquids. The organic semiconductors include pentacene, rubrene, fullerene, and 7,7,8,8-tetracyanoquinodimethane (TCNQ). While ionic liquids close to the substrate always form the specific layered structures, the surface properties of organic semiconductors drastically alter the ionic dynamics. Ionic liquids at the fullerene interface behave as a two-dimensional ionic crystal because of the energy gain derived from the favorable electrostatic interaction on the corrugated periodic substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailova, M. P.; Ivanov, E. V.; Danilov, L. V.
2014-06-14
We report on superlinear electroluminescent structures based on AlSb/InAs{sub 1−x}Sb{sub x}/AlSb deep quantum wells grown by MOVPE on n-GaSb:Te substrates. Dependence of the electroluminescence (EL) spectra and optical power on the drive current in nanoheterostructures with AlSb/InAs{sub 1−x}Sb{sub x}/AlSb quantum well at 77–300 K temperature range was studied. Intensive two-band superlinear EL in the 0.5–0.8 eV photon energy range was observed. Optical power enhancement with the increasing drive current at room temperature is caused by the contribution of the additional electron-hole pairs due to the impact ionization by the electrons heated at the high energy difference between AlSb and the first electronmore » level E{sub e1} in the InAsSb QW. Study of the EL temperature dependence at 90–300 K range enabled us to define the role of the first and second heavy hole levels in the radiative recombination process. It was shown that with the temperature decrease, the relation between the energies of the valence band offset and the second heavy hole energy level changes due to the temperature transformation of the energy band diagram. That is the reason why the EL spectrum revealed radiative transitions from the first electron level E{sub e1} to the first hole level E{sub h1} in the whole temperature range (90–300 K), while the emission band related with the transitions to the second hole level occurred only at T > 200 K. Comparative examination of the nanostructures with high band offsets and different interface types (AlAs-like and InSb-like) reveals more intense EL and optical power enhancement at room temperature in the case of AlAs-like interface that could be explained by the better quality of the heterointerface and more efficient hole localization.« less
Water permeation and electrical properties of pottants, backings, and pottant/backing composites
NASA Technical Reports Server (NTRS)
Orehotsky, J.
1986-01-01
It is reported that the interface between plastic film back covers and ethylene vinyl acetates (EVA) or polyvinyl butyral (PVB) in photovoltaic modules can influence water permeation, and electrial properties of the composites such as leakage current and dielectric constant. The interface can either be one of two dissimilar materials in physical contact with no intermixing, or the interface can constitute a thin zone which is an interphase of the two materials having a gradient composition from one material to the other. The former condition is described as a discrete interface. A discrete interface model was developed to predict water permeation, dielectric strength, and leakage current for EVA, ethylene methyl acrylate (EMA), and PVB coupled to Tedlar and mylar films. Experimental data was compared with predicted data.
Interface control of bulk ferroelectric polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, P; Luo, Weidong; Yi, D.
2012-01-01
The control of material interfaces at the atomic level has led to no- vel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we em- ploy a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectricmore » hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite un- derlayers extends the generality of this phenomenon.« less
Interface-based two-way tuning of the in-plane thermal transport in nanofilms
NASA Astrophysics Data System (ADS)
Hua, Yu-Chao; Cao, Bing-Yang
2018-03-01
Here, the two-way tuning of in-plane thermal transport is obtained in the bi-layer nanofilms with an interfacial effect by using the Boltzmann transport equation (BTE) and the phonon Monte Carlo (MC) technique. A thermal conductivity model was derived from the BTE and verified by the MC simulations. Both the model and the MC simulations indicate that the tuning of the thermal transport can be bidirectional (reduced or enhanced), depending on the interface conditions (i.e., roughness and adhesion energy) and the phonon property dissimilarity at the interface. For the identical-material interface, the emergence of thermal conductivity variation requires two conditions: (a) the interface is not completely specular and (b) the transmission specularity parameter differs from the reflection specularity parameter at the interface. When the transmission specularity parameter is larger than the reflection specularity parameter at the interface, the thermal conductivity improvement effect emerges, whereas the thermal conductivity reduction effect occurs. For the disparate-material interface, the phonon property perturbation near the interface causes the thermal conductivity variation, even when neither the above two conditions are satisfied. The mean free path ratio (γ) between the disparate materials was defined to characterize the phonon property dissimilarity. γ > 1 can lead to the thermal conductivity improvement effect, while γ < 1 corresponds to the thermal conductivity reduction effect. Our work provides a more in-depth understanding of the interfacial effect on the nanoscale thermal transport, with an applicable predictive model, which can be helpful for predicting and manipulating phonon transport in nanofilms.
Protein adsorption at the electrified air-water interface: implications on foam stability.
Engelhardt, Kathrin; Rumpel, Armin; Walter, Johannes; Dombrowski, Jannika; Kulozik, Ulrich; Braunschweig, Björn; Peukert, Wolfgang
2012-05-22
The surface chemistry of ions, water molecules, and proteins as well as their ability to form stable networks in foams can influence and control macroscopic properties such as taste and texture of dairy products considerably. Despite the significant relevance of protein adsorption at liquid interfaces, a molecular level understanding on the arrangement of proteins at interfaces and their interactions has been elusive. Therefore, we have addressed the adsorption of the model protein bovine serum albumin (BSA) at the air-water interface with vibrational sum-frequency generation (SFG) and ellipsometry. SFG provides specific information on the composition and average orientation of molecules at interfaces, while complementary information on the thickness of the adsorbed layer can be obtained with ellipsometry. Adsorption of charged BSA proteins at the water surface leads to an electrified interface, pH dependent charging, and electric field-induced polar ordering of interfacial H(2)O and BSA. Varying the bulk pH of protein solutions changes the intensities of the protein related vibrational bands substantially, while dramatic changes in vibrational bands of interfacial H(2)O are simultaneously observed. These observations have allowed us to determine the isoelectric point of BSA directly at the electrolyte-air interface for the first time. BSA covered air-water interfaces with a pH near the isoelectric point form an amorphous network of possibly agglomerated BSA proteins. Finally, we provide a direct correlation of the molecular structure of BSA interfaces with foam stability and new information on the link between microscopic properties of BSA at water surfaces and macroscopic properties such as the stability of protein foams.
Impact of Graphene-Metal Interfaces on the Raman and Transport Properties of Graphene Devices
NASA Astrophysics Data System (ADS)
Hsu, Allen; Hofmann, Mario; Fang, Wenjing; Kimg, Ki Kang; Kong, Jing; Palacios, Tomas
2012-02-01
Graphene is an amazing nano-material with many exciting properties and applications. However, due to its low dimensionality, the performance of this material is mainly limited by interfaces and surface properties. One of these interfaces, important for graphene field effect transistors and catalysts supported on graphene membranes, is that between the graphene and a metal layer. In this study, we experimentally examine the impact of various metals on graphene through Raman and Transmission Electron Microscopy. We find that strong graphene-metal interactions have significant impacts on the phonon structure in graphene. Furthermore, we observe changes in our Raman spectra relating to the crystallographic orientation between a metal and graphene.
Compact 2100 nm laser diode module for next-generation DIRCM
NASA Astrophysics Data System (ADS)
Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas
2017-10-01
Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.
Time Resolved Studies of Carrier Dynamics in III -v Heterojunction Semiconductors.
NASA Astrophysics Data System (ADS)
Westland, Duncan James
Available from UMI in association with The British Library. Requires signed TDF. Picosecond time-resolution photoluminescence spectroscopy has been used to study transient processes in Ga _{.47}In_{.53 }As/InP multiple quantum wells (MQWs), and in bulk Ga_{.47}In _{.53}As and GaSb. To facilitate the experimental studies, apparatus was constructed to allow the detection of transient luminescence with 3ps time resolution. A frequency upconversion technique was employed. Relaxation of energetic carriers in bulk Ga _{.47}In_{.53 }As by optic phonons has been investigated, and, at carrier densities ~3 times 10^{18}cm ^{-3} is found to be a considerably slower process than simple theory predicts. The discrepancy is resolved by the inclusion of a non-equilibrium population of longitudinal optic phonons in the theoretical description. Slow energy loss is also observed in a 154A MQW under similar conditions, but carriers are found to relax more quickly in a 14A MQW with a comparable repeat period. The theory of non-equilibrium mode occupation is modified to describe the case of a MQW and is found to agree with experiment. Carrier relaxation in GaSb is studied and the importance of occupation of the L _6 conduction band valley in this material is demonstrated. The ambipolar diffusion of a photoexcited carrier plasma through an InP capping layer was investigated using an optical time-of-flight technique. This experiment also enables the efficiency of carrier capture by a Ga _{.47}In_{.53 }As quantum well to be determined. A capture time of 4ps was found.
Heinz, Hendrik; Lin, Tzu-Jen; Mishra, Ratan Kishore; Emami, Fateme S
2013-02-12
The complexity of the molecular recognition and assembly of biotic-abiotic interfaces on a scale of 1 to 1000 nm can be understood more effectively using simulation tools along with laboratory instrumentation. We discuss the current capabilities and limitations of atomistic force fields and explain a strategy to obtain dependable parameters for inorganic compounds that has been developed and tested over the past decade. Parameter developments include several silicates, aluminates, metals, oxides, sulfates, and apatites that are summarized in what we call the INTERFACE force field. The INTERFACE force field operates as an extension of common harmonic force fields (PCFF, COMPASS, CHARMM, AMBER, GROMACS, and OPLS-AA) by employing the same functional form and combination rules to enable simulations of inorganic-organic and inorganic-biomolecular interfaces. The parametrization builds on an in-depth understanding of physical-chemical properties on the atomic scale to assign each parameter, especially atomic charges and van der Waals constants, as well as on the validation of macroscale physical-chemical properties for each compound in comparison to measurements. The approach eliminates large discrepancies between computed and measured bulk and surface properties of up to 2 orders of magnitude using other parametrization protocols and increases the transferability of the parameters by introducing thermodynamic consistency. As a result, a wide range of properties can be computed in quantitative agreement with experiment, including densities, surface energies, solid-water interface tensions, anisotropies of interfacial energies of different crystal facets, adsorption energies of biomolecules, and thermal and mechanical properties. Applications include insight into the assembly of inorganic-organic multiphase materials, the recognition of inorganic facets by biomolecules, growth and shape preferences of nanocrystals and nanoparticles, as well as thermal transitions and nanomechanics. Limitations and opportunities for further development are also described.
NASA Astrophysics Data System (ADS)
Pindra, Nadjime; Lazarus, Véronique; Leblond, Jean-Baptiste
One studies the evolution in time of the deformation of the front of a semi-infinite 3D interface crack propagating quasistatically in an infinite heterogeneous elastic body. The fracture properties are assumed to be lower on the interface than in the materials so that crack propagation is channelled along the interface, and to vary randomly within the crack plane. The work is based on earlier formulae which provide the first-order change of the stress intensity factors along the front of a semi-infinite interface crack arising from some small but otherwise arbitrary in-plane perturbation of this front. The main object of study is the long-time behavior of various statistical measures of the deformation of the crack front. Special attention is paid to the influences of the mismatch of elastic properties, the type of propagation law (fatigue or brittle fracture) and the stable or unstable character of 2D crack propagation (depending on the loading) upon the development of this deformation.
Self-assembly of conjugated oligomers and polymers at the interface: structure and properties.
Xu, Lirong; Yang, Liu; Lei, Shengbin
2012-08-07
In this review, we give a brief account on the recent scanning tunneling microscopy investigation of interfacial structures and properties of π-conjugated semiconducting oligomers and polymers, either at the solid-air (including solid-vacuum) or at the solid-liquid interface. The structural aspects of the self-assembly of both oligomers and polymers are highlighted. Conjugated oligomers can form well ordered supramolecular assemblies either at the air-solid or liquid-solid interface, thanks to the relatively high mobility and structural uniformity in comparison with polymers. The backbone structure, substitution of side chains and functional groups can affect the assembling behavior significantly, which offers the opportunity to tune the supramolecular structure of these conjugated oligomers at the interface. For conjugated polymers, the large molecular weight limits the mobility on the surface and the distribution in size also prevents the formation of long range ordered supramolecular assembly. The submolecular resolution obtained on the assembling monolayers enables a detailed investigation of the chain folding at the interface, both the structural details and the effect on electronic properties. Besides the ability in studying the assembling structures at the interfaces, STM also provides a reasonable way to evaluate the distribution of the molecular weight of conjugated polymers by statistic of the contour length of the adsorbed polymer chains. Both conjugated oligomers and polymers can form composite assemblies with other materials. The ordered assembly of oligomers can act as a template to controllably disperse other molecules such as coronene or fullerene. These investigations open a new avenue to fine tune the assembling structure at the interface and in turn the properties of the composite materials. To summarize scanning tunneling microscopy has demonstrated its surprising ability in the investigation of the assembling structures and properties of conjugated oligomers and polymers. The information obtained could benefit the understanding of the elements affecting the film morphology and helps the optimization of device performance.
Novel Measurements of Aerosol Particle Interfaces Using Biphasic Microfluidics
NASA Astrophysics Data System (ADS)
Metcalf, A. R.; Dutcher, C. S.
2014-12-01
Secondary organic aerosol (SOA) particles are nearly ubiquitous in the atmosphere and yet there remains large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. These aerosol interfaces can profoundly affect the fate of condensable organic compounds emitted into the atmosphere by altering the way in which organic vapors interact with the ambient aerosol. Aerosol interfaces affect particle internal structure, species uptake, equilibrium partitioning, activation to cloud condensation or ice nuclei, and optical properties. For example, organic thin films can shield the core of the aerosol from the ambient environment, which may disrupt equilibrium partitioning and mass transfer. To improve our ability to accurately predict the fate of SOA in the atmosphere, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Few technologies exist to accurately probe aerosol interfaces at atmospherically-relevant conditions. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred. Chemical compositions of the liquid phases studied here span a range of viscosities and include electrolyte and water soluble organic acid species often observed in the atmosphere, such as mixtures containing ammonium salts (e.g., (NH4)2SO4, NH4NO3) and dicarboxylic acids (e.g., malonic, glutaric, and maleic acid) as well as important mimic compounds such as sucrose - water systems.
NASA Astrophysics Data System (ADS)
Vaughn, Leslie G.
2006-04-01
AlxIn(1-x)AsySb(1-y) quaternary alloys have been used in Type I midwave infrared (MWIR) laser structures as barrier materials with InAs and InAsSb quantum wells. However, growth of these alloys has limited the application because of a large miscibility gap. In this research, quaternary films with compositions well into the miscibility gap (0 ≤ x ≤ 0.50) have been grown for the first time by molecular beam epitaxy (MBE) using a digital alloy technique. These films, lattice-matched to GaSb, have been characterized using double crystal X-ray diffraction (DCXRD), transmission electron microscopy (TEM), and photoluminescence (PL). Results indicate uniform, single-phase, and highly crystalline films. Using PL data, the dependence of the quaternary bandgap on composition has been studied and fit to various theoretical models. Combining the quaternary bandgap equation with strain and quantum size effects, the wavelengths for strained InAsSb wells in AlInAsSb quaternary barriers are predicted and compared to measured values generated from PL experiments. The reasonable agreement of these experimental results with the theoretical model supports the assertion that the AlInAsSb/InAsSb material system is Type I and emits in the target wavelength range of 3.3-4.2 mum. PL spectra of AlInAsSb/InAsSb multiple quantum wells exhibit a substantial increase in intensity with increasing quaternary aluminum content. This is presumably due to increasing valence band offset and, therefore, to better hole confinement. A laser with this active region has been fabricated and tested. Under pulsed optical pumping conditions at 50K, the laser emitted light at ˜3.93 mum. Further work has been done using the digital alloy technique to add gallium to the quaternary alloy to produce an AlGaInAsSb quinary alloy lattice-matched to GaSb. This material is of specific interest for mid-infrared lasers because by adding the fifth element, gallium, the range of material properties is extended. There is some indication from PL testing that the addition of the fifth element may contribute to Auger recombination suppression and may lead to higher operating temperatures. DCXRD and TEM of these quinary alloys give results similar to the quaternary alloys. The stable, single-phase growth of these quinary alloys shows promise for improving the performance of MWIR lasers.
NASA Astrophysics Data System (ADS)
Minato, Taketoshi; Abe, Takeshi
2017-12-01
The application potential of Li-ion batteries is growing as demand increases in different fields at various stages in energy systems, in addition to their conventional role as power sources for portable devices. In particular, applications in electric vehicles and renewable energy storage are increasing for Li-ion batteries. For these applications, improvements in battery performance are necessary. The Li-ion battery produces and stores electric power from the electrochemical redox reactions between the electrode materials. The interface between the electrodes and electrolyte strongly affects the battery performance because the charge transfer causing the electrode redox reaction begins at this interface. Understanding of the surface structure, electronic structure, and chemical reactions at the electrode-electrolyte interface is necessary to improve battery performance. However, the interface is located between the electrode and electrolyte materials, hindering the experimental analysis of the interface; thus, the physical properties and chemical processes have remained poorly understood until recently. Investigations of the physical properties and chemical processes at the interface have been performed using advanced surface science techniques. In this review, current knowledge and future research prospects regarding the electrode-electrolyte interface are described for the further development of Li-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javaid, Saqib; National Centre of Physics, Islamabad 45320; Javed Akhtar, M., E-mail: javedakhtar6@gmail.com
Recently, experimental results have shown that photovoltaic properties of Fullerene (C60)/Phthalocyanine based devices improve considerably as molecular orientation is changed from edge-on to face-on. In this work, we have studied the impact of molecular orientation on C60/ZnPc interfacial properties, particularly focusing on experimentally observed face-on and edge-on configuration, using density functional theory based simulations. The results show that the interfacial electronic properties are strongly anisotropic: direction of charge transfer and interface dipole fluctuates as molecular orientation is switched. As a result of orientation dependant interface dipole, difference between acceptor LUMO and donor HOMO increases as the orientation is changed frommore » edge-on to face-on, suggesting a consequent increase in open circuit voltage (V{sub OC}). Moreover, adsorption and electronic properties indicate that the interfacial interactions are much stronger in the face-on configuration which should further facilitate the charge-separation process. These findings elucidate the energy level alignment at C60/ZnPc interface and help to identify interface dipole as the origin of the orientation dependence of V{sub OC}.« less
Sridharan, Niyanth; Gussev, Maxim; Seibert, Rachel; ...
2016-09-01
Ultrasonic additive manufacturing (UAM) is a solid-state process, which uses ultrasonic vibrations at 20 kHz along with mechanized tape layering and intermittent milling operation, to build fully functional three-dimensional parts. In the literature, UAM builds made with low power (1.5 kW) exhibited poor tensile properties in Z-direction, i.e., normal to the interfaces. This reduction in properties is often attributed to the lack of bonding at faying interfaces. The generality of this conclusion is evaluated further in 6061 aluminum alloy builds made with very high power UAM (9 kW). Tensile deformation behavior along X and Z directions were evaluated with small-scalemore » in-situ mechanical testing equipped with high-resolution digital image correlation, as well as, multi-scale characterization of builds. Interestingly, even with complete metallurgical bonding across the interfaces without any discernable voids, poor Z-direction properties were observed. This reduction is correlated to coalescence of pre-existing shear bands at interfaces into micro voids, leading to strain localization and spontaneous failure on tensile loading.« less
NASA Astrophysics Data System (ADS)
Rao, Ashwath; Verma, Ankita; Singh, B. R.
2015-06-01
This paper describes the effect of ionizing radiation on the interface properties of Al/Ta2O5/Si metal oxide semiconductor (MOS) capacitors using capacitance-voltage (C-V) and current-voltage (I-V) characteristics. The devices were irradiated with X-rays at different doses ranging from 100 rad to 1 Mrad. The leakage behavior, which is an important parameter for memory applications of Al/Ta2O5/Si MOS capacitors, along with interface properties such as effective oxide charges and interface trap density with and without irradiation has been investigated. Lower accumulation capacitance and shift in flat band voltage toward negative value were observed in annealed devices after exposure to radiation. The increase in interfacial oxide layer thickness after irradiation was confirmed by Rutherford Back Scattering measurement. The effect of post-deposition annealing on the electrical behavior of Ta2O5 MOS capacitors was also investigated. Improved electrical and interface properties were obtained for samples deposited in N2 ambient. The density of interface trap states (Dit) at Ta2O5/Si interface sputtered in pure argon ambient was higher compared to samples reactively sputtered in nitrogen-containing plasma. Our results show that reactive sputtering in nitrogen-containing plasma is a promising approach to improve the radiation hardness of Ta2O5/Si MOS devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoen, Kyu Hyoek; Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology, Seoul 136-791; Song, Jin Dong, E-mail: jdsong@kist.re.kr
Highlights: • GaSb/Al{sub 0.33}GaSb MQW layer was grown on Si (1 0 0) by MBE. • The effect of miscut angle of Si substrate was studied. • A lot of twins were removed by Al{sub 0.66}Ga{sub 0.34}Sb/AlSb SPS layers. • Good quality of GaSb/Al{sub 0.33}Ga{sub 0.67}Sb MQW layers were proved by PL spectra. • Optimum growth temperature of the AlSb buffer layer was studied. - Abstract: GaSb/Al{sub 0.33}Ga{sub 0.67}Sb multi-quantum well (MQW) film on n-Si (1 0 0) substrates is grown by molecular beam epitaxy. The effects of a miscut angle of the Si substrate (0°, 5°, and 7°) onmore » the properties of an AlSb layer were also studied. The suppression of the anti-phase domains (APD) was observed at a miscut angle of 5° on Si (1 0 0). It was found that the growth temperature in the range of 510–670 °C affects the quality of AlSb layers on Si. Low root-mean-square surface (RMS) roughness values of 3–5 nm were measured by atomic force microscopy at growth temperatures ranging from 550 °C to 630 °C. In addition, Al{sub 0.66}Ga{sub 0.34}Sb/AlSb short period superlattice (SPS) layers were used to overcome problems associated with a large lattice mismatch. The RMS values of samples with a SPS were partially measured at approximately ∼1 nm, showing a larger APD surface area than samples without a SPS layer. Bright-field cross-sectional transmission electron microscopy images of the GaSb/Al{sub 0.33}Ga{sub 0.67}Sb MQW, the AlSb buffer layer and the Al{sub 0.66}Ga{sub 0.34}Sb/AlSb SPS layers show that numerous twins from the AlSb/Si interface were removed by the AlSb buffer layer and the Al{sub 0.66}Ga{sub 0.34}Sb/AlSb SPS. The GaSb/Al{sub 0.33}Ga{sub 0.67}Sb MQW PL spectra were obtained at 300 K and 10 K with a fixed excitation power of 103 mW. Emission peaks appeared at 1758 nm and 1620 nm, respectively.« less
Design of optimal buffer layers for CuInGaSe2 thin-film solar cells(Conference Presentation)
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo; Varley, Joel B.; He, Xiaoqing; Rockett, Angus A.; Bailey, Jeff; Zapalac, Geordie H.; Mackie, Neil; Poplavskyy, Dmitry; Bayman, Atiye
2016-09-01
Optimizing the buffer layer in manufactured thin-film PV is essential to maximize device efficiency. Here, we describe a combined synthesis, characterization, and theory effort to design optimal buffers based on the (Cd,Zn)(O,S) alloy system for CIGS devices. Optimization of buffer composition and absorber/buffer interface properties in light of several competing requirements for maximum device efficiency were performed, along with process variations to control the film and interface quality. The most relevant buffer properties controlling performance include band gap, conduction band offset with absorber, dopability, interface quality, and film crystallinity. Control of an all-PVD deposition process enabled variation of buffer composition, crystallinity, doping, and quality of the absorber/buffer interface. Analytical electron microscopy was used to characterize the film composition and morphology, while hybrid density functional theory was used to predict optimal compositions and growth parameters based on computed material properties. Process variations were developed to produce layers with controlled crystallinity, varying from amorphous to fully epitaxial, depending primarily on oxygen content. Elemental intermixing between buffer and absorber, particularly involving Cd and Cu, also is controlled and significantly affects device performance. Secondary phase formation at the interface is observed for some conditions and may be detrimental depending on the morphology. Theoretical calculations suggest optimal composition ranges for the buffer based on a suite of computed properties and drive process optimizations connected with observed film properties. Prepared by LLNL under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, Tomoaki, E-mail: kaneko@flex.phys.tohoku.ac.jp; Materials Research Consortium for Energy Efficient Electronic Devices; Ohno, Takahisa, E-mail: OHNO.Takahisa@nims.go.jp
2016-08-22
We investigated the electronic properties, stability, and transport of graphene under c-HfO{sub 2}(111) layers by performing first-principles calculations with special attention to the chemical bonding between graphene and HfO{sub 2} surfaces. When the interface of HfO{sub 2}/graphene is terminated by an O layer, the linear dispersion of graphene is preserved and the degradation of transport is suppressed. For other interface structures, HfO{sub 2} is tightly adsorbed on graphene and the transport is strictly limited. In terms of the stability of the interface structures, an O-terminated interface is preferable, which is achieved under an O-deficient condition.
Jourdain, Laureline S; Schmitt, Christophe; Leser, Martin E; Murray, Brent S; Dickinson, Eric
2009-09-01
We report on the interfacial properties of electrostatic complexes of protein (sodium caseinate) with a highly sulfated polysaccharide (dextran sulfate). Two routes were investigated for preparation of adsorbed layers at the n-tetradecane-water interface at pH = 6. Bilayers were made by the layer-by-layer deposition technique whereby polysaccharide was added to a previously established protein-stabilized interface. Mixed layers were made by the conventional one-step method in which soluble protein-polysaccharide complexes were adsorbed directly at the interface. Protein + polysaccharide systems gave a slower decay of interfacial tension and stronger dilatational viscoelastic properties than the protein alone, but there was no significant difference in dilatational properties between mixed layers and bilayers. Conversely, shear rheology experiments exhibited significant differences between the two kinds of interfacial layers, with the mixed system giving much stronger interfacial films than the bilayer system, i.e., shear viscosities and moduli at least an order of magnitude higher. The film shear viscoelasticity was further enhanced by acidification of the biopolymer mixture to pH = 2 prior to interface formation. Taken together, these measurements provide insight into the origin of previously reported differences in stability properties of oil-in-water emulsions made by the bilayer and mixed layer approaches. Addition of a proteolytic enzyme (trypsin) to both types of interfaces led to a significant increase in the elastic modulus of the film, suggesting that the enzyme was adsorbed at the interface via complexation with dextran sulfate. Overall, this study has confirmed the potential of shear rheology as a highly sensitive probe of associative electrostatic interactions and interfacial structure in mixed biopolymer layers.
Transire, a Program for Generating Solid-State Interface Structures
2017-09-14
function-based electron transport property calculator. Three test cases are presented to demonstrate the usage of Transire: the misorientation of the...graphene bilayer, the interface energy as a function of misorientation of copper grain boundaries, and electron transport transmission across the...gallium nitride/silicon carbide interface. 15. SUBJECT TERMS crystalline interface, electron transport, python, computational chemistry, grain boundary
Stability of the Al/TiB2 interface and doping effects of Mg/Si
NASA Astrophysics Data System (ADS)
Deng, Chao; Xu, Ben; Wu, Ping; Li, Qiulin
2017-12-01
The Al/TiB2 interface is of significant importance in controlling the mechanical properties of Al-B4C composites and tuning the heterogeneous nucleation of Al/Si alloys in industry. Its stability and bonding conditions are critical for both purposes. In this paper, the interfacial energies were investigated by first-principles calculations, and the results support the reported grain refinement mechanisms in Al/Si alloys. Moreover, to improve the mechanical properties of the interface, Mg and Si were doped at the interface, and our simulations show that the two interfaces will both weaken after doping Mg/Si, thus the formation of TiB2 is inhibited. As a result, the processability of the Al-B4C composites may be improved. Our results provide a theoretical basis and guidance for practical applications.
Smooth interface effects on the confinement properties of GaSb/Al xGa 1- xSb quantum wells
NASA Astrophysics Data System (ADS)
Adib, Artur B.; de Sousa, Jeanlex S.; Farias, Gil A.; Freire, Valder N.
2000-10-01
A theoretical investigation on the confinement properties of GaSb/Al xGa 1- xSb single quantum wells (QWs) with smooth interfaces is performed. Error function ( erf)-like interfacial aluminum molar fraction variations in the QWs, from which it is possible to obtain the carriers effective masses and confinement potential profiles, are assumed. It is shown that the existence of smooth interfaces blue shifts considerably the confined carriers and exciton energies, an effect which is stronger in thin QWs.
Interfacial coupling and polarization of perovskite ABO3 heterostructures
NASA Astrophysics Data System (ADS)
Wu, Lijun; Wang, Zhen; Zhang, Bangmin; Yu, Liping; Chow, G. M.; Tao, Jing; Han, Myung-Geun; Guo, Hangwen; Chen, Lina; Plummer, E. W.; Zhang, Jiandi; Zhu, Yimei
2017-02-01
Interfaces with subtle difference in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. In this article, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 (PSMO) films and La0.67Sr0.33MnO3 (LSMO) films of various thicknesses on SrTiO3 (STO) substrate. In particular, using atomically resolved imaging and electron energy-loss spectroscopy (EELS), we measured interface related local lattice distortion, BO6 octahedral rotation and cation-anion displacement induced polarization. In the very thin PSMO film, an unexpected interface-induced ferromagnetic polaronic insulator phase was observed during the cubic-to-tetragonal phase transition of the substrate STO, due to the enhanced electron-phonon interaction and atomic disorder in the film. On the other hand, for the very thin LSMO films we observed a remarkably deep polarization in non-ferroelectric STO substrate near the interface. Combining the experimental results with first principles calculations, we propose that the observed deep polarization is induced by an electric field originating from oxygen vacancies that extend beyond a dozen unit-cells from the interface, thus providing important evidence of the role of defects in the emergent interface properties of transition metal oxides.
Interface effects in ultra-thin films: Magnetic and chemical properties
NASA Astrophysics Data System (ADS)
Park, Sungkyun
When the thickness of a magnetic layer is comparable to (or smaller than) the electron mean free path, the interface between magnetic and non-magnetic layers becomes very important factor to determine magnetic properties of the ultra-thin films. The quality of interface can enhance (or reduce) the desired properties. Several interesting physical phenomena were studied using these interface effects. The magnetic anisotropy of ultra-thin Co films is studied as function of non-magnetic underlayer thickness and non- magnetic overlayer materials using ex situ Brillouin light scattering (BLS). I observed that perpendicular magnetic anisotropy (PMA) increases with underlayer thickness and saturates after 5 ML. This saturation can be understood as a relaxation of the in-plane lattice parameter of Au(111) on top of Cu(111) to its bulk value. For the overlayer study, Cu, Al, and Au are used. An Au overlayer gives the largest PMA due to the largest in-plane lattice mismatch between Co and Au. An unusual effect was found by adding an additional layer on top of the Au overlayer. An additional Al capping layer on top of the Au overlayer reduces the PMA significantly. The possible explanation is that the misfit strain at the interface between the Al and the Au can be propagated through the Au layer to affect the magnetic properties of Co even though the in- plane lattice mismatch is less than 1%. Another interesting problem in interface interdiffusion and thermal stability in magnetic tunnel junction (MTJ) structures is studied using X-ray photoelectron spectroscopy (XPS). Since XPS is a very chemically sensitive technique, it allows us to monitor interface interdiffusion of the MTJ structures as-deposited and during post-deposition processing. For the plasma- oxidized samples, Fe only participates in the oxidation reduction process. In contrast to plasma-oxidized samples, there were no noticeable chemical shifts as- deposited and during post-deposition processing in air- oxidized samples. However, peak intensity variations were observed due to interface interdiffusion.
Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling
NASA Astrophysics Data System (ADS)
Krause, Stefan; Lewandowski, Joerg; Hannah, David; McDonald, Karlie; Folegot, Silvia; Baranov, Victor
2016-04-01
Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale laboratory microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces. Our results furthermore indicate that to fully understand spatial patterns and temporal dynamics of ecohydrological interface functioning, including hotspots and hot moments, detailed knowledge of the impacts of biological behavior on the physic-chemical ecosystem conditions, and vice-versa, is required.
Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling
NASA Astrophysics Data System (ADS)
Krause, S.
2015-12-01
Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces. Our results furthermore indicate that to fully understand spatial patterns and temporal dynamics of ecohydrological interface functioning, including hotspots and hot moments, detailed knowledge of the impacts of biological behavior on the physic-chemical ecosystem conditions, and vice-versa, is required.
NASA Astrophysics Data System (ADS)
Pramchu, Sittichain; Jaroenjittichai, Atchara Punya; Laosiritaworn, Yongyut
2018-03-01
In this work, density functional theory (DFT) was employed to investigate the effect of strain and interface on electronic structures and magnetic properties of L10-FePt/Ag heterojunction. Two possible interface structures of L10-FePt(001)/Ag(001), that is, interface between Fe and Ag layers (Fe/Ag) and between Pt and Ag layers (Pt/Ag), were inspected. It was found that Pt/Ag interface is more stable than Fe/Ag interface due to its lower formation energy. Further, under the lattice mismatch induced tensile strain, the enhancement of magnetism for both Fe/Ag and Pt/Ag interface structures has been found to have progressed, though the magnetic moments of "interfacial" Fe and Pt atoms have been found to have decreased. To explain this further, the local density of states (LDOS) analysis suggests that interaction between Fe (Pt) and Ag near Fe/Ag (Pt/Ag) interface leads to spin symmetry breaking of the Ag atom and hence induces magnetism magnitude. In contrast, the magnetic moments of interfacial Fe and Pt atoms reduce because of the increase in the electronic states near the Fermi level of the minority-spin electrons. In addition, the significant enhancements of the LDOS near the Fermi levels of the minority-spin electrons signify the boosting of the transport properties of the minority-spin electrons and hence the spin-dependent electron transport at this ferromagnet/metal interface. From this work, it is expected that this clarification of the interfacial magnetism may inspire new innovation on how to improve spin-dependent electron transport for enhancing the giant magnetoresistance (GMR) ratio of potential GMR-based spintronic devices.
The Chandra Source Catalog 2.0: Interfaces
NASA Astrophysics Data System (ADS)
D'Abrusco, Raffaele; Zografou, Panagoula; Tibbetts, Michael; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Van Stone, David W.
2018-01-01
Easy-to-use, powerful public interfaces to access the wealth of information contained in any modern, complex astronomical catalog are fundamental to encourage its usage. In this poster,I present the public interfaces of the second Chandra Source Catalog (CSC2). CSC2 is the most comprehensive catalog of X-ray sources detected by Chandra, thanks to the inclusion of Chandra observations public through the end of 2014 and to methodological advancements. CSC2 provides measured properties for a large number of sources that sample the X-ray sky at fainter levels than the previous versions of the CSC, thanks to the stacking of single overlapping observations within 1’ before source detection. Sources from stacks are then crossmatched, if multiple stacks cover the same area of the sky, to create a list of unique, optimal CSC2 sources. The properties of sources detected in each single stack and each single observation are also measured. The layered structure of the CSC2 catalog is mirrored in the organization of the CSC2 database, consisting of three tables containing all properties for the unique stacked sources (“Master Source”), single stack sources (“Stack Source”) and sources in any single observation (“Observation Source”). These tables contain estimates of the position, flags, extent, significances, fluxes, spectral properties and variability (and associated errors) for all classes of sources. The CSC2 also includes source region and full-field data products for all master sources, stack sources and observation sources: images, photon event lists, light curves and spectra.CSCview, the main interface to the CSC2 source properties and data products, is a GUI tool that allows to build queries based on the values of all properties contained in CSC2 tables, query the catalog, inspect the returned table of source properties, browse and download the associated data products. I will also introduce the suite of command-line interfaces to CSC2 that can be used in alternative to CSCview, and will present the concept for an additional planned cone-search web-based interface.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.
NASA Astrophysics Data System (ADS)
Elinski, Meagan B.; Liu, Zhuotong; Spear, Jessica C.; Batteas, James D.
2017-03-01
The use of 2D nanomaterials for controlling friction and wear at interfaces has received increased attention over the past few years due to their unique structural, thermal, electrical and mechanical properties. These materials proffer potential critical solutions to challenges in boundary lubrication across numerous platforms ranging from engines, to biomedical implants and micro- and nano-scaled machines that will play a major role in the Internet of Things. There has been significant work on a range of 2D nanomaterials, such as graphene and molybdenum disulfide (MoS2). From these studies, their frictional properties have been shown to be highly dependent on numerous factors, such as substrate structure, strain, and competing chemical interactions between the interfaces in sliding contact. Moreover, when considering real contacts in machined interfaces, these surfaces are often composed of nanoscaled asperities, whose intermittent contact dominates the tribochemical processes that result in wear. In this review we aim to capture recent work on the tribological properties of graphene and MoS2 and to discuss the impacts of surface roughness (from the atomic scale to the nanoscale) and chemical interactions at interfaces on their frictional properties, and their use in designing advanced boundary lubrication schemes.
Wetting of cholesteric liquid crystals.
Silvestre, Nuno M; Figueirinhas Pereira, Maria Carolina; Bernardino, Nelson R; Telo da Gama, Margarida M
2016-02-01
We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted, the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal.
NASA Astrophysics Data System (ADS)
Sinko, Robert; Keten, Sinan
2015-05-01
Cellulose nanocrystals (CNCs) are one of nature's most abundant structural material building blocks and possess outstanding mechanical properties including a tensile modulus comparable to Kevlar. It remains challenging to upscale these properties in CNC neat films and nanocomposites due to the difficulty of characterizing interfacial bonding between CNCs that governs stress transfer under deformation. Here we present new analyses based on atomistic simulations of shear and tensile failure of the interfaces between Iβ CNCs, providing new insight into factors governing the mechanical behavior of hierarchical nanocellulose materials. We compare the two most relevant crystal interfaces and find that hydrogen bonded surfaces have greater tensile strength compared to the surfaces governed by weaker interactions. On the contrary, shearing simulations reveal that friction between the atomic interfaces depends not only on surface energy but also the energy landscape along the shear direction. While being a weaker interface, the intersheet plane exhibits greater energy barriers to shear. The molecular roughness of this interface, characterized by a greater energy barrier, exhibits stick-slip deformation behavior as opposed to a more continuous sliding and rebonding mechanism observed for the interfaces with hydrogen bonds. Analytical models to describe the energy landscapes are developed using energy scaling relations for van der Waals surfaces in combination with a modification of the Prandtl-Tomlinson model for atomic friction. Our simulations pave the way for tailoring hierarchical CNC materials by taking a similar approach to techniques employed for describing metals, where mechanical properties can be tuned through a deeper understanding of grain boundary physics and nanoscale interfaces.
Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1984-01-01
The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.
Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1986-01-01
The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, V. V., E-mail: sobolev@uni.udm.ru; Perevoshchikov, D. A.
2016-05-15
The localization of the transitions in the bulk of the Brillouin zone that form the main structures in the spectra of the imaginary part of the permittivity in the range up to ~7 eV for III–V semiconductors (AlSb, GaSb, InSb, and InAs) is determined using electron density functional theory. It is established that intense transitions occur not only in the vicinity of the high-symmetry axes of the Brillouin zone, but also in some specific large volumes of the irreducible part of the Brillouin zone.
Structural and Optical Characteristics of Metamorphic Bulk InAsSb
2014-01-01
0.815 0.820 0.825 InAsSb 5 /a ⊥ ( Å ) 3√2/a|| (Å) 0.25 0.40 0.75 1.3 1.5 1.8 2.2 hkl = 335 GaSb Structural and Optical Characteristics of Metamorphic...Conduction- and Valence- Band Energies in Bulk InAs1−xSbx and Type II InAs1−xSbx/InAs Strained-Layer Superlattices”, J. of Electron. Mater., 42, 918...0188 3. DATES COVERED (From - To) - UU UU UU UU Approved for public release; distribution is unlimited. Structural and Optical Characteristics of
2DEGs at Perovskite Interfaces between KTaO3 or KNbO3 and Stannates
Fan, Xiaofeng; Zheng, Weitao; Chen, Xin; Singh, David J.
2014-01-01
We report density functional studies of electron rich interfaces between KTaO3 or KNbO3 and CaSnO3 or ZnSnO3 and in particular the nature of the interfacial electron gasses that can be formed. We find that depending on the details these may occur on either the transition metal or stannate sides of the interface and in the later case can be shifted away from the interface by ferroelectricity. We also present calculations for bulk KNbO3, KTaO3, CaSnO3, BaSnO3 and ZnSnO3, showing the different transport and optical properties that may be expected on the two sides of such interfaces. The results suggest that these interfaces may display a wide range of behaviors depending on conditions, and in particular the interplay with ferroelectricity suggests that electrical control of these properties may be possible. PMID:24626191
Half-metallicity at the (110) interface between a full Heusler alloy and GaAs
NASA Astrophysics Data System (ADS)
Nagao, Kazutaka; Miura, Yoshio; Shirai, Masafumi
2006-03-01
The electronic properties of Co2CrAl/GaAs interfaces are investigated by using first-principles calculations with density functional theory. It is found that spin polarization tends to remain relatively high at the (110) interface and reaches almost unity for a specific (110) interfacial structure. Furthermore, the nearly-half-metallic interface turns out to be the most stable of the (110) interfacial structures studied here. Spin polarization calculated only from the sp -projected density of states is also examined in order to eliminate the effects stemming from the localized d components. The analysis shows that the high spin polarization at the (110) interface owes little to the localized d component and, therefore, is expected to be fairly relevant to transport properties. Co2CrSi/GaAs , Co2MnSi/GaAs , and Co2MnGe/GaAs heterostructures are also investigated, and similar half-metal-like behavior at (110) interface is observed for all of them.
NASA Astrophysics Data System (ADS)
Samajdar, D. P.; Dhar, S.
2016-01-01
Valence Band Anticrossing (VBAC) Model is used to calculate the changes in band structure of Bi containing alloys such as InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix due to the incorporation of dilute concentrations of bismuth. The coupling parameter CBi which gives the magnitude of interaction of Bi impurity states with the LH, HH and SO sub bands in VBAC depends on the increase in the HH/LH related energy level EHH/LH+, location of the Bi related impurity level EBi and valence band offset ΔEVBM between the endpoint compounds in the corresponding III-V-Bi. The reduction in band gap as well as the enhancement of the spin-orbit splitting energy is well explained using this model and the calculated results are compared with the results of Virtual Crystal Approximation (VCA) and Density Functional Theory (DFT) calculations, as well as with the available experimental data and are found to have good agreement. The incorporation of Bi mainly perturbs the valence band due to the interaction of the Bi impurity states with the HH, LH and SO bands. The lowering of the conduction band minimum (CBM) due to VCA is added with the upward movement of the HH/LH bands to get the total reduction in band gap for the bismides. The valence band shifts of 31.9, 32.5, 20.8 and 12.4 meV/at%Bi for InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix respectively constitute 65, 76, 59 and 31% of the total band gap reduction and the rest is the contribution of the conduction band shift. The spin-orbit splitting energy also shows significant increase with the maximum change in InPBi and the minimum in InSbBi. The same is true for Ga containing bismides if we make a comparison with the available values for GaAsBi and GaPBi with that of GaSbBi. It has also been observed that the increase in splitting energy is greater in case of the bismides such as InAsBi, InPBi and GaAsBi than the bismides such as InSbBi and GaSbBi with the parent substrates having higher values of splitting energy. This may be due to the proximity of the Bi related impurity level EBi with the SO bands of InAs, InP and GaAs.
NASA Astrophysics Data System (ADS)
Han, Ru
This thesis focuses on the analysis of dispersed phase reinforced composite materials with perfect as well as imperfect interfaces using the Boundary Element Method (BEM). Two problems of interest are considered, namely, to determine the limitations in the use of effective properties and the analysis of failure progression at the inclusion-matrix interface. The effective moduli (effective Young's modulus, effective Poisson's ratio, effective shear modulus, and effective bulk modulus) of composite materials can be determined at the mesoscopic level using three-dimensional parallel BEM simulations. By comparing the mesoscopic BEM results and the macroscopic results based on effective properties, limitations in the effective property approach can be determined. Decohesion is an important failure mode associated with fiber-reinforced composite materials. Analysis of failure progression at the fiber-matrix interface in fiber-reinforced composite materials is considered using a softening decohesion model consistent with thermodynamic concepts. In this model, the initiation of failure is given directly by a failure criterion. Damage is interpreted by the development of a discontinuity of displacement. The formulation describing the potential development of damage is governed by a discrete decohesive constitutive equation. Numerical simulations are performed using the direct boundary element method. Incremental decohesion simulations illustrate the progressive evolution of debonding zones and the propagation of cracks along the interfaces. The effect of decohesion on the macroscopic response of composite materials is also investigated.
Ghadar, Yasaman; Clark, Aurora E
2014-06-28
Liquid:vapor and liquid:liquid interfaces exhibit complex organizational structure and dynamics at the molecular level. In the case of water and organic solvents, the hydrophobicity of the organic, its conformational flexibility, and compressibility, all influence interfacial properties. This work compares the interfacial tension, width, molecular conformations and orientations at the vapor and aqueous liquid interfaces of two solvents, n-pentane and neopentane, whose varying molecular shapes can lead to significantly different interfacial behavior. Particular emphasis has been dedicated toward understanding how the hydrogen bond network of water responds to the pentane relative to the vapor interface and the sensitivity of the network to the individual pentane isomer and system temperature. Interfacial microsolvation of the immiscible solvents has been examined using graph theoretical methods that quantify the structure and dynamics of microsolvated species (both H2O in C5H12 and C5H12 in H2O). At room temperature, interfacial water at the pentane phase boundary is found to have markedly different organization and dynamics than at the vapor interface (as indicated by the hydrogen bond distributions and hydrogen bond persistence in solution). While the mesoscale interfacial properties (e.g. interfacial tension) are sensitive to the specific pentane isomer, the distribution and persistence of microsolvated species at the interface is nearly identical for both systems, irrespective of temperature (between 273 K and 298 K). This has important implications for understanding how properties defined by the interfacial organization are related to the underlying solvation reactions that drive formation of the phase boundary.
Biotribological properties at the stem-cement interface lubricated with different media.
Zhang, H Y; Luo, J B; Zhou, M; Zhang, Y; Huang, Y L
2013-04-01
Debonding of the stem-cement interface occurs inevitably in-vivo under physiological loading, and pseudo-synovial fluid is subsequently pumped into this interface, serving as the lubricant. However, the influence of protein adsorption onto the femoral stem surface has not been well taken into consideration in previous in vitro studies. The biotribological properties at the stem-cement interface were investigated through a series of fretting frictional tests using polished stainless steel 316L stem and smooth bone cement, lubricated by three different media at body temperature, i.e. 100% calf serum, 25% calf serum, and 0.9% saline solution. The surface characterization of the femoral stem was evaluated sequentially using optical microscope, optical interferometer, scanning electron microscope, and Raman spectroscopy. The friction coefficient generally kept stable during the test, and the minimum value (0.254) was obtained when 100% calf serum was used as the lubricant. Slight scratches were detected within the contact area for the stainless steel 316L stems lubricated by 100% calf serum and 25% calf serum, which was further surrounded by the adsorbed protein film with alveolate feature. Additionally, a wear scar was present within the contact area when 0.9% saline solution was used as the lubricant. Protein adsorption onto the stainless steel 316L stem surface affected the biotribological properties at the stem-cement interface under oscillatory fretting mechanism. Generation of wear debris at the stem-cement interface may be postponed by modification of physicochemical properties of the femoral stem to promote protein adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Komissarova, T. A.; Kampert, E.; Law, J.; Jmerik, V. N.; Paturi, P.; Wang, X.; Yoshikawa, A.; Ivanov, S. V.
2018-01-01
Electrical properties of N-polar undoped and Mg-doped InN layers and In-polar undoped InN layers grown by plasma-assisted molecular beam epitaxy (PA MBE) were studied. Transport parameters of the surface and interface layers were determined from the measurements of the Hall coefficient and resistivity as well as the Shubnikov-de Haas oscillations at magnetic fields up to 60 T. Contributions of the 2D surface, 3D near-interface, and 2D interface layers to the total conductivity of the InN films were defined and discussed to be dependent on InN surface polarity, Mg doping, and PA MBE growth conditions.
NASA Astrophysics Data System (ADS)
Yang, Suyuan; Bao, Jiawei
2018-03-01
A 5083 Al/1060 Al/AZ31 composite plate was fabricated by explosive welding. The microstructure and properties of the composite plate were investigated after explosive welding. The results showed that all bonding interfaces were wavy interfaces. With an increasing distance from the detonation point, the wavelength and the amplitude also increased. The EDS results indicated that a 5-μm diffusion layer was observed at the 1060 Al/AZ31 layer, including the Mg2Al3 phase. Adiabatic shear bands and twin structures were observed in AZ31. The shear bond strength of the 5083 Al/1060 Al interface was 60 MPa, and the shear bond strength of the 1060 Al/AZ31 interface was 84 MPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Niyanth; Gussev, Maxim; Seibert, Rachel
Ultrasonic additive manufacturing (UAM) is a solid-state process, which uses ultrasonic vibrations at 20 kHz along with mechanized tape layering and intermittent milling operation, to build fully functional three-dimensional parts. In the literature, UAM builds made with low power (1.5 kW) exhibited poor tensile properties in Z-direction, i.e., normal to the interfaces. This reduction in properties is often attributed to the lack of bonding at faying interfaces. The generality of this conclusion is evaluated further in 6061 aluminum alloy builds made with very high power UAM (9 kW). Tensile deformation behavior along X and Z directions were evaluated with small-scalemore » in-situ mechanical testing equipped with high-resolution digital image correlation, as well as, multi-scale characterization of builds. Interestingly, even with complete metallurgical bonding across the interfaces without any discernable voids, poor Z-direction properties were observed. This reduction is correlated to coalescence of pre-existing shear bands at interfaces into micro voids, leading to strain localization and spontaneous failure on tensile loading.« less
NASA Astrophysics Data System (ADS)
Guo, San-Dong
2016-08-01
Binary transition-metal pnictides and chalcogenides half-metallic ferromagnetic materials with zincblende structure, being compatible with current semiconductor technology, can be used to make high-performance spintronic devices. Here, we investigate electronic structures and magnetic properties of composite structure ((CrX)2 /(YX)2 (X=As, Sb; Se, Te and Y=Ga; Zn) superlattices) of zincblende half-metallic ferromagnetism and semiconductor by using Tran and Blaha's modified Becke and Johnson (mBJ) exchange potential. Calculated results show that they all are half-metallic ferromagnets with both generalized gradient approximation (GGA) and mBJ, and the total magnetic moment per formula unit follows a Slater-Pauling-like "rule of 8". The key half-metallic gaps by using mBJ are enhanced with respect to GGA results, which is because mBJ makes the occupied minority-spin p-bands move toward lower energy, but toward higher energy for empty minority-spin Cr-d bands. When the spin-orbit coupling (SOC) is included, the spin polarization deviates from 100%, and a most reduced polarization of 98.3% for (CrSb)2 /(GaSb)2, which indicates that SOC has small effects, of the order of 1%, in the considered four kinds of superlattice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castaño-González, E.-E.; Seña, N.; Mendoza-Estrada, V.
In this paper, we carried out first-principles calculations in order to investigate the structural and electronic properties of the binary compound gallium antimonide (GaSb). This theoretical study was carried out using the Density Functional Theory within the plane-wave pseudopotential method. The effects of exchange and correlation (XC) were treated using the functional Local Density Approximation (LDA), generalized gradient approximation (GGA): Perdew–Burke–Ernzerhof (PBE), Perdew-Burke-Ernzerhof revised for solids (PBEsol), Perdew-Wang91 (PW91), revised Perdew–Burke–Ernzerhof (rPBE), Armiento–Mattson 2005 (AM05) and meta-generalized gradient approximation (meta-GGA): Tao–Perdew–Staroverov–Scuseria (TPSS) and revised Tao–Perdew–Staroverov–Scuseria (RTPSS) and modified Becke-Johnson (MBJ). We calculated the densities of state (DOS) and band structuremore » with different XC potentials identified and compared them with the theoretical and experimental results reported in the literature. It was discovered that functional: LDA, PBEsol, AM05 and RTPSS provide the best results to calculate the lattice parameters (a) and bulk modulus (B{sub 0}); while for the cohesive energy (E{sub coh}), functional: AM05, RTPSS and PW91 are closer to the values obtained experimentally. The MBJ, Rtpss and AM05 values found for the band gap energy is slightly underestimated with those values reported experimentally.« less
Theory study on the bandgap of antimonide-based multi-element alloys
NASA Astrophysics Data System (ADS)
An, Ning; Liu, Cheng-Zhi; Fan, Cun-Bo; Dong, Xue; Song, Qing-Li
2017-05-01
In order to meet the design requirements of the high-performance antimonide-based optoelectronic devices, the spin-orbit splitting correction method for bandgaps of Sb-based multi-element alloys is proposed. Based on the analysis of band structure, a correction factor is introduced in the InxGa1-xAsySb1-y bandgaps calculation with taking into account the spin-orbit coupling sufficiently. In addition, the InxGa1-xAsySb1-y films with different compositions are grown on GaSb substrates by molecular beam epitaxy (MBE), and the corresponding bandgaps are obtained by photoluminescence (PL) to test the accuracy and reliability of this new method. The results show that the calculated values agree fairly well with the experimental results. To further verify this new method, the bandgaps of a series of experimental samples reported before are calculated. The error rate analysis reveals that the α of spin-orbit splitting correction method is decreased to 2%, almost one order of magnitude smaller than the common method. It means this new method can calculate the antimonide multi-element more accurately and has the merit of wide applicability. This work can give a reasonable interpretation for the reported results and beneficial to tailor the antimonides properties and optoelectronic devices.
Computational Modeling of Interfacial Behaviors in Nanocomposite Materials
Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei
2017-01-01
Towards understanding the bulk material response in nanocomposites, an interfacial zone model was proposed to define a variety of material interface behaviors (e.g. brittle, ductile, rubber-like, elastic-perfectly plastic behavior etc.). It also has the capability to predict bulk material response though independently control of the interface properties (e.g. stiffness, strength, toughness). The mechanical response of granular nanocomposite (i.e. nacre) was investigated through modeling the “relatively soft” organic interface as an interfacial zone among “hard” mineral tablets and simulation results were compared with experimental measurements of stress-strain curves in tension and compression tests. Through modeling varies material interfaces, we found out that the bulk material response of granular nanocomposite was regulated by the interfacial behaviors. This interfacial zone model provides a possible numerical tool for qualitatively understanding of structure-property relationships through material interface design. PMID:28983123
Electronic Interfacial Effects in Epitaxial Heterostructures based on LaMnO3.
NASA Astrophysics Data System (ADS)
Christen, Hans M.; Varela, M.; Lee, H. N.; Kim, D. H.; Chisholm, M. F.; Cantoni, C.; Petit, L.; Schulthess, T. C.; Lowndes, D. H.
2006-03-01
Studies of chemically abrupt interfaces provide an ideal platform to study the effects of discontinuities and asymmetries of the electronic configuration on the transport and magnetic properties of complex oxides. In addition, the behavior of complex materials near interfaces plays the most crucial role not only in devices and nanostructures but also in complex structures in the form of composites and superlattices, including artificial multiferroics. Interfaces in the ABO3 perovskite system are particularly attractive because structurally similar oxides with fundamentally different physical properties can be integrated epitaxially. To explore the electronic effects at interfaces and to probe the physical properties that result from local electronic changes, we have synthesized structures containing LaMnO3 and insulating perovskites using pulsed laser deposition. The local electron energy loss spectroscopy (EELS) capability of a scanning transmission electron microscope (STEM) is used to probe the electronic configuration in the LaMnO3 films as a function of the distance from the interfaces. The results are compared to macroscopic measurements and theoretical predictions. Research sponsored by the U.S. Department of Energy under contract DE-AC05-00OR22725 with the Oak Ridge National Laboratory, managed by UT-Battelle, LLC.
NASA Astrophysics Data System (ADS)
Torras, Juan; Zanuy, David; Bertran, Oscar; Alemán, Carlos; Puiggalí, Jordi; Turón, Pau; Revilla-López, Guillem
2018-02-01
The study of material science has been long devoted to the disentanglement of bulk structures which mainly entails finding the inner structure of materials. That structure is accountable for a major portion of materials' properties. Yet, as our knowledge of these "backbones" enlarged so did the interest for the materials' boundaries properties which means the properties at the frontier with the surrounding environment that is called interface. The interface is thus to be understood as the sum of the material's surface plus the surrounding environment be it in solid, liquid or gas phase. The study of phenomena at this interface requires both the use of experimental and theoretical techniques and, above all, a wise combination of them in order to shed light over the most intimate details at atomic, molecular and mesostructure levels. Here, we report several cases to be used as proof of concept of the results achieved when studying interface phenomena by combining a myriad of experimental and theoretical tools to overcome the usual limitation regardind atomic detail, size and time scales and systems of complex composition. Real world examples of the combined experimental-theoretical work and new tools, software, is offered to the readers.
Kabel, Joey; Hosemann, Peter; Zayachuk, Yevhen; ...
2018-01-24
We present that ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method formore » extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ~2.5 J/m 2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. Lastly, this research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabel, Joey; Hosemann, Peter; Zayachuk, Yevhen
We present that ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method formore » extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ~2.5 J/m 2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. Lastly, this research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.« less
Simulation of interface dislocations effect on polarization distribution of ferroelectric thin films
NASA Astrophysics Data System (ADS)
Zheng, Yue; Wang, Biao; Woo, C. H.
2006-02-01
Effects of interfacial dislocations on the properties of ferroelectric thin films are investigated, using the dynamic Ginzburg-Landau equation. Our results confirm the existence of a dead layer near the film/substrate interface. Due to the combined effects of the dislocations and the near-surface eigenstrain relaxation, the ferroelectric properties of about one-third of the film volume suffers.
Electronic and chemical structure of the H 2O/GaN(0001) interface under ambient conditions
Zhang, Xueqiang; Ptasinska, Sylwia
2016-04-25
We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H 2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H 2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H 2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H 2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorptionmore » of H 2O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H 2O/GaN interface under operando conditions. In conclusion, our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/ electrode interface in a photoelectrochemical solar cell.« less
Kim, Songkil; Russell, Michael; Kulkarni, Dhaval D; Henry, Mathias; Kim, Steve; Naik, Rajesh R; Voevodin, Andrey A; Jang, Seung Soon; Tsukruk, Vladimir V; Fedorov, Andrei G
2016-01-26
Interfacial contact of two-dimensional graphene with three-dimensional metal electrodes is crucial to engineering high-performance graphene-based nanodevices with superior performance. Here, we report on the development of a rapid "nanowelding" method for enhancing properties of interface to graphene buried under metal electrodes using a focused electron beam induced deposition (FEBID). High energy electron irradiation activates two-dimensional graphene structure by generation of structural defects at the interface to metal contacts with subsequent strong bonding via FEBID of an atomically thin graphitic interlayer formed by low energy secondary electron-assisted dissociation of entrapped hydrocarbon contaminants. Comprehensive investigation is conducted to demonstrate formation of the FEBID graphitic interlayer and its impact on contact properties of graphene devices achieved via strong electromechanical coupling at graphene-metal interfaces. Reduction of the device electrical resistance by ∼50% at a Dirac point and by ∼30% at the gate voltage far from the Dirac point is obtained with concurrent improvement in thermomechanical reliability of the contact interface. Importantly, the process is rapid and has an excellent insertion potential into a conventional fabrication workflow of graphene-based nanodevices through single-step postprocessing modification of interfacial properties at the buried heterogeneous contact.
Bioactive composites with designed interfaces
NASA Astrophysics Data System (ADS)
Orefice, Rodrigo Lambert
Bioactive glasses can bond to bone and even soft tissue. However, they are usually weak, brittle and hard to process in specific shapes. The goal of this work is to produce polymer composites having bioactive materials as a reinforcing phase that would display both bioactive behavior and mechanical properties compatible to bone. Polysulfone and bioactive glass particulate were combined in composites with different volume fractions. Composites with 40 vol.% of particulate were submitted to in vitro tests in simulated body fluids. The recorded rates of hydroxy-carbonate-apatite layer deposition were close to the ones observed for pure bioactive glasses. Mechanical properties showed values of elastic modulus, strain at failure and strength within the range of cortical bone for composites with high volume fraction of particles. Fibers can usually favor higher levels of reinforcement in composites than particles. Novel multicomponent fibers were prepared by using the sol-gel method. They were determined to be bioactive in vitro and were successfully used as a reinforcing phase in polysulfone composites. Properties of the bioactive composites were modified by altering the chemistry and structure of the interfaces. Polymers with sulfonic acid and silane groups were specially designed to interact with both the silica surface and the polymer matrix. Nano-composites with a structure and chemistry in between the macrocomponents of the composite were prepared by combining a silanated polymer and silica sol-gel. When applied as interfacial agents, these nano-composites as well as the modified polymers improved the overall properties of the bioactive system. A decay in mechanical properties was observed for composites submitted to an in vitro test. The developed interfacial agents successfully reduced the degree of degradation in properties. Interactions occurring at the interfaces of bioactive composites were studied using Atomic Force Microscopy (AFM). The effect of the structure and chemistry of interfaces was correlated to physical and chemical processes occurring at the interfaces and to the overall properties of composites.
Björneholm, Olle; Hansen, Martin H; Hodgson, Andrew; Liu, Li-Min; Limmer, David T; Michaelides, Angelos; Pedevilla, Philipp; Rossmeisl, Jan; Shen, Huaze; Tocci, Gabriele; Tyrode, Eric; Walz, Marie-Madeleine; Werner, Josephina; Bluhm, Hendrik
2016-07-13
The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.
Walsh, W R; Svehla, M J; Russell, J; Saito, M; Nakashima, T; Gillies, R M; Bruce, W; Hori, R
2004-09-01
Implant surface roughness is an important parameter governing the overall mechanical properties at the implant-cement interface. This study investigated the influence of surface roughness using polymethylmethcrylate (PMMA) and a Bisphenol-a-glycidylmethacyrlate resin-hydroxyapatite cement (CAP). Mechanical fixation at the implant-cement interface was evaluated in vitro using static shear and fatigue loading with cobalt chrome alloy (CoCr) dowels with different surface roughness preparations. Increasing surface roughness improved the mechanical properties at the implant-cement interface for both types of cement. CAP cement fixation was superior to PMMA under static and dynamic loading.
NASA Astrophysics Data System (ADS)
Belov, G. V.; Dyachkov, S. A.; Levashov, P. R.; Lomonosov, I. V.; Minakov, D. V.; Morozov, I. V.; Sineva, M. A.; Smirnov, V. N.
2018-01-01
The database structure, main features and user interface of an IVTANTHERMO-Online system are reviewed. This system continues the series of the IVTANTHERMO packages developed in JIHT RAS. It includes the database for thermodynamic properties of individual substances and related software for analysis of experimental results, data fitting, calculation and estimation of thermodynamical functions and thermochemistry quantities. In contrast to the previous IVTANTHERMO versions it has a new extensible database design, the client-server architecture, a user-friendly web interface with a number of new features for online and offline data processing.
NASA Astrophysics Data System (ADS)
Vidal, F.; Busson, B.; Tadjeddine, A.
2005-02-01
We report the study of methanol electro-oxidation on Pt(1 1 0) using infrared-visible sum-frequency generation (SFG) vibrational spectroscopy. The use of this technique enables to probe the vibrational and electronic properties of the interface simultaneously in situ. We have investigated the vibrational properties of the interface in the CO ads internal stretch spectral region (1700-2150 cm -1) over a wide range of potentials. The analysis of the evolution of the C-O stretch line shape, which is related to the interference between the vibrational and electronic parts of the non-linear response, with the potential allows us to show that the onset of bulk methanol oxidation corresponds to the transition from a negatively to a positively charged surface.
Swiatkowska, Angelika; Kosman, Joanna; Juskowiak, Bernard
2016-01-05
Spectral properties and G-quadruplex folding ability of fluorescent oligonucleotide probes at the cationic dioctadecyldimethylammonium bromide (DODAB) monolayer interface are reported. Two oligonucleotides, a 19-mer bearing thrombin binding aptamer sequence and a 21-mer with human telomeric sequence, were end-labeled with fluorescent groups (FAM and TAMRA) to give FRET probes F19T and F21T, respectively. The probes exhibited abilities to fold into a quadruplex structure and to bind metal cations (Na(+) and K(+)). Fluorescence spectra of G-quadruplex FRET probes at the monolayer interface are reported for the first time. Investigations included film balance measurements (π-A isotherms) and fluorescence spectra recording using a fiber optic accessory interfaced with a spectrofluorimeter. The effect of the presence of DODAB monolayer, metal cations and the surface pressure of monolayer on spectral behavior of FRET probes were examined. Adsorption of probe at the cationic monolayer interface resulted in the FRET signal enhancement even in the absence of metal cations. Variation in the monolayer surface pressure exerted rather modest effect on the spectral properties of probes. The fluorescence energy transfer efficiency of monolayer adsorbed probes increased significantly in the presence of sodium or potassium ion in subphase, which indicated that the probes retained their cation binding properties when adsorbed at the monolayer interface. Copyright © 2015 Elsevier B.V. All rights reserved.
MOVPE of GaSb/InGaAsSb Multilayers and Fabrication of Dual Band Photodetectors
NASA Technical Reports Server (NTRS)
Xiao, Ye-Gao; Bhat, Ishwara; Refaat, Tamer F.; Abedin, M. Nurul; Shao, Qing-Hui
2005-01-01
Metalorganic vapor phase epitaxy (MOVPE) of GaSb/InGaAsSb multilayer thin films and fabrication of bias-selectable dual band photodetectors are reported. For the dual band photodetectors the short wavelength detector, or the upper p- GaSb/n-GaSb junction photodiode, is placed optically ahead of the long wavelength one, or the lower photodiode. The latter is based on latticed-matched In0.13Ga0.87As0.11Sb0.89 with bandgap near 0.6 eV. Specifically, high quality multilayer thin films are grown sequentially from top to bottom as p+-GaSb/p-GaSb/n-GaSb/n-InGaAsSb/p-InGaAsSb/p-GaSb on undoped p-type GaSb substrate, and as n-GaSb/p-GaSb/p-InGaAsSb/n-InGaAsSb/n-GaSb on Te-doped n-type GaSb substrate respectively. The multilayer thin films are characterized by optical microscope, atomic force microscope (AFM), electron microprobe analyses etc. The photodiode mesa steps are patterned by photolithography with wet chemical etching and the front metallization is carried out by e-beam evaporation with Pd/Ge/Au/Ti/Au to give ohmic contact on both n- and p-type Sb based layer surfaces. Dark I-V measurements show typical diode behavior for both the upper and lower photodiodes. The photoresponsivity measurements indicate that both the upper and lower photodiodes can sense the infrared illumination corresponding to their cutoff wavelengths respectively, comparable with the simulation results. More work is underway to bring the long wavelength band to the medium infrared wavelength region near 4 micrometers.
NASA Astrophysics Data System (ADS)
Flint, J. P.; Martinez, B.; Betz, T. E. M.; Mackenzie, J.; Kumar, F. J.; Burgess, L.
2017-02-01
Cadmium Zinc Telluride (Cd1-xZnxTe or CZT) is a compound semiconductor substrate material that has been used for infrared detector (IR) applications for many years. CZT is a perfect substrate for the epitaxial growth of Mercury Cadmium Telluride (Hg1-xCdxTe or MCT) epitaxial layers and remains the material of choice for many high performance IR detectors and focal plane arrays that are used to detect across wide IR spectral bands. Critical to the fabrication of high performance MCT IR detectors is a high quality starting CZT substrate, this being a key determinant of epitaxial layer crystallinity, defectivity and ultimately device electro-optical performance. In this work we report on a new source of substrates suitable for IR detector applications, grown using the Travelling Heater Method (THM). This proven method of crystal growth has been used to manufacture high quality IR specification CZT substrates where industry requirements for IR transmission, dislocations, tellurium precipitates and copper impurity levels have been met. Results will be presented for the chemo-mechanical (CMP) polishing of CZT substrates using production tool sets that are identical to those that are used to produce epitaxy-ready surface finishes on related IR compound semiconductor materials such as GaSb and InSb. We will also discuss the requirements to scale CZT substrate manufacture and how with a new III-V like approach to both CZT crystal growth and substrate polishing, we can move towards a more standardized product and one that can ultimately deliver a standard round CZT substrate, as is the case for competing IR materials such as GaSb, InSb and InP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jheng-Sin; Clavel, Michael B.; Hudait, Mantu K., E-mail: mantu.hudait@vt.edu
The structural, morphological, optical, and electrical transport characteristics of a metamorphic, broken-gap InAs/GaSb p-i-n tunnel diode structure, grown by molecular beam epitaxy on GaAs, were demonstrated. Precise shutter sequences were implemented for the strain-balanced InAs/GaSb active layer growth on GaAs, as corroborated by high-resolution X-ray analysis. Cross-sectional transmission electron microscopy and detailed micrograph analysis demonstrated strain relaxation primarily via the formation of 90° Lomer misfit dislocations (MDs) exhibiting a 5.6 nm spacing and intermittent 60° MDs at the GaSb/GaAs heterointerface, which was further supported by a minimal lattice tilt of 180 arc sec observed during X-ray analysis. Selective area diffraction and Fastmore » Fourier Transform patterns confirmed the full relaxation of the GaSb buffer layer and quasi-ideal, strain-balanced InAs/GaSb heteroepitaxy. Temperature-dependent photoluminescence measurements demonstrated the optical band gap of the GaSb layer. Strong optical signal at room temperature from this structure supports a high-quality material synthesis. Current–voltage characteristics of fabricated InAs/GaSb p-i-n tunnel diodes measured at 77 K and 290 K demonstrated two bias-dependent transport mechanisms. The Shockley–Read–Hall generation–recombination mechanism at low bias and band-to-band tunneling transport at high bias confirmed the p-i-n tunnel diode operation. This elucidated the importance of defect control in metamorphic InAs/GaSb tunnel diodes for the implementation of low-voltage and high-performance tunnel field effect transistor applications.« less
Characterization of the interface interaction of cobalt on top of copper- and iron-phthalocyanine.
Schmitt, Felix; Sauther, Jens; Lach, Stefan; Ziegler, Christiane
2011-05-01
The electronic structure of the interface between ferromagnetic cobalt and the organic semiconductors copper- (CuPc) and iron-phthalocyanine (FePc) was investigated by means of photoemission spectroscopy (UPS, IPES, and XPS). These metal-phthalocyanine (MePc) molecules have an open shell structure and are known to show promising properties for their use in organic spintronics. In spintronic devices, the interface between ferromagnetic electrode and the organic layer determines the spin injection properties and is hence important for the quality of, e.g., a possible spin-valve device. For this purpose, cobalt was deposited onto the MePcs, such as in devices with ferromagnetic top contacts. The reported investigations reveal a diffusion of cobalt into the organic layers and chemical reactions at the interface.
Strong modification of thin film properties due to screening across the interface
NASA Astrophysics Data System (ADS)
Altendorf, S. G.; Reisner, A.; Tam, B.; Meneghin, F.; Wirth, S.; Tjeng, L. H.
2018-04-01
We report on our investigation of the influence of screening across the interface on the properties of semiconducting thin films. Using EuO as a well-defined model material, layers of various thickness deposited on yttria-stabilized zirconia (100) substrates were covered half with Mg metal and half with the wide-band-gap insulator MgO. We observed that the Curie temperature for the thinnest films is significantly higher for the part which is interfaced with the metal compared to the part which is interfaced with the insulator. We infer that the proximity of a polarizable medium reduces the energies of virtual charge excitations and thus increases the effective exchange interactions, a strong effect that can be utilized systematically for the design of thin film and multilayer systems.
NASA Astrophysics Data System (ADS)
Einalipour Eshkalak, Kasra; Sadeghzadeh, Sadegh; Jalaly, Maisam
2018-02-01
From electronic point of view, graphene resembles a metal or semi-metal and boron nitride is a dielectric material (band gap = 5.9 eV). Hybridization of these two materials opens band gap of the graphene which has expansive applications in field-effect graphene transistors. In this paper, the effect of the interface structure on the mechanical properties of a hybrid graphene/boron nitride was studied. Young's modulus, fracture strain and tensile strength of the models were simulated. Three likely types (hexagonal, octagonal and decagonal) were found for the interface of hybrid sheet after relaxation. Although Csbnd B bonds at the interface were indicated to result in more promising electrical properties, nitrogen atoms are better choice for bonding to carbon for mechanical applications.
Superior Thermal Interface via Vertically Aligned Carbon Nanotubes Grown on Graphite Foils
2012-01-01
accepted 12 November 2012) In an attempt to study the thermal transport at the interface between nanotubes and graphene, vertically aligned multiwalled...tually increases the thermal barrier in a significant manner. On the other hand, thermal transport properties of thermal tapes and thermally conductive...aforementioned study achieved superior thermal transport properties, the processing and scale-up of the developed process would be prohibitively
Reactive metal-oxide interfaces: A microscopic view
NASA Astrophysics Data System (ADS)
Picone, A.; Riva, M.; Brambilla, A.; Calloni, A.; Bussetti, G.; Finazzi, M.; Ciccacci, F.; Duò, L.
2016-03-01
Metal-oxide interfaces play a fundamental role in determining the functional properties of artificial layered heterostructures, which are at the root of present and future technological applications. Magnetic exchange and magnetoelectric coupling, spin filtering, metal passivation, catalytic activity of oxide-supported nano-particles are just few examples of physical and chemical processes arising at metal-oxide hybrid systems, readily exploited in working devices. These phenomena are strictly correlated with the chemical and structural characteristics of the metal-oxide interfacial region, making a thorough understanding of the atomistic mechanisms responsible of its formation a prerequisite in order to tailor the device properties. The steep compositional gradient established upon formation of metal-oxide heterostructures drives strong chemical interactions at the interface, making the metal-oxide boundary region a complex system to treat, both from an experimental and a theoretical point of view. However, once properly mastered, interfacial chemical interactions offer a further degree of freedom for tuning the material properties. The goal of the present review is to provide a summary of the latest achievements in the understanding of metal/oxide and oxide/metal layered systems characterized by reactive interfaces. The influence of the interface composition on the structural, electronic and magnetic properties will be highlighted. Particular emphasis will be devoted to the discussion of ultra-thin epitaxial oxides stabilized on highly oxidizable metals, which have been rarely exploited as oxide supports as compared to the much more widespread noble and quasi noble metallic substrates. In this frame, an extensive discussion is devoted to the microscopic characterization of interfaces between epitaxial metal oxides and the Fe(001) substrate, regarded from the one hand as a prototypical ferromagnetic material and from the other hand as a highly oxidizable metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaffe, John E; Bachorz, Rafal A; Gutowski, Maciej S
2007-05-01
We have used density functional theory with the gradient corrected exchange-correlation functional PW91 to study the effect of an interfactant layer, where Fe and Cr are replaced by a different metal, on electronic and magnetic properties of an epitaxial interface between -Fe2O3 and -Cr2O3 in the hexagonal (0001) basal plane. We studied a monolayer of M2O3 (M=Al, Ga, Sc, Ti, Ni) sandwiched with 5 layers of chromia and five layers of hematite through epitaxial interfaces of two types, termed “oxygen divided” or “split metal.” We found that both the magnetic and electronic properties of the superlattice are modified by themore » interfactant monolayer. For the split metal interface, which is favored through the growth pattern of chromia and hematite, the band offset can be changed from 0.62 eV (no interfactant) up to 0.90 eV with the Sc2O3 interfactant, and down to –0.51 eV (i.e. the a-Fe2O3/a-Cr2O3 heterojunction changes from Type II to Type I) with the Ti2O3 interfactant, due to a massive interfacial charge transfer. The band gap of the system as a whole remains open for the interfactant monolayers based on Al, Ga, and Sc, but it closes for Ti. For Ni, the split-metal interface has a negative band offset and a small band gap. Thus, nanoscale engineering through layer-by-layer growth will strongly affect the macroscopic properties of this system.« less
Effect of Interface Structure on the Microstructural Evolution of Ceramics
2007-11-06
because almost all the material properties are de - pendent upon their internal microstructures. Therefore, the microstructural evolution during the...growing interface de - pends upon the density of kinks on that interface. It fol- lows that the atomically smooth interface, which is char- acterized by...grain, and its de - tailed coarsening process has been treated elsewhere.139 During liquid-phase sintering, the formation of grain boundaries between
The Mineral–Collagen Interface in Bone
2015-01-01
The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581
Effect of moisture on the traction-separation behavior of cellulose nanocrystal interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinko, Robert; Keten, Sinan, E-mail: s-keten@northwestern.edu; Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Room A136, Evanston, Illinois 60208
2014-12-15
Interfaces and stress transfer between cellulose nanocrystals (CNCs) dictate the mechanical properties of hierarchical cellulose materials such as neat films and nanocomposites. An interesting question that remains is how the behavior of these interfaces changes due to environmental stimuli, most notably moisture. We present analyses on the traction-separation behavior between Iβ CNC elementary fibrils, providing insight into how the presence of a single atomic layer of water at these interfaces can drastically change the mechanical behavior. We find that molecular water at the interface between hydrophilic CNC surfaces has a negligible effect on the tensile separation adhesion energy. However, whenmore » water cannot hydrogen bond easily to the surface (i.e., hydrophobic surface), it tends to maintain hydrogen bonds with other water molecules across the interface and form a capillary bridge that serves to increase the energy required to separate the crystals. Under shear loading, water lowers the energy barriers to sliding by reducing the atomic friction and consequently the interlayer shear modulus between crystals. Our simulations indicate that these nanoscale interfaces and physical phenomena such as interfacial adhesion, interlayer shear properties, and stick-slip friction behavior can be drastically altered by the presence of water.« less
Pierce, Jim D.; Stephens, John J.; Walker, Charles A.
1999-01-01
A method of reversibly brazing surfaces together. An interface is affixed to each surface. The interfaces can be affixed by processes such as mechanical joining, welding, or brazing. The two interfaces are then brazed together using a brazing process that does not defeat the surface to interface joint. Interfaces of materials such as Ni-200 can be affixed to metallic surfaces by welding or by brazing with a first braze alloy. The Ni-200 interfaces can then be brazed together using a second braze alloy. The second braze alloy can be chosen so that it minimally alters the properties of the interfaces to allow multiple braze, heat and disassemble, rebraze cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shutthanandan, Vaithiyalingam; Choudhury, Samrat; Manandhar, Sandeep
The interaction of radiation with materials controls the performance, reliability, and safety of many structures in nuclear power systems. Revolutionary improvements in radiation damage resistance may be attainable if methods can be found to manipulate interface properties to give optimal interface stability and point defect recombination capability. To understand how variations in interface properties such as misfit dislocation density and local chemistry affect radiation-induced defect absorption and recombination, a model system of metallic Cr xV 1-x (0 ≤ x ≤ 1) epitaxial films deposited on MgO(001) single crystal substrates has been explored in this paper. By controlling film composition, themore » lattice mismatch between the film and MgO is adjusted to vary the misfit dislocation density at the metal/oxide interface. The stability of these interfaces under various irradiation conditions is studied experimentally and theoretically. The results indicate that, unlike at metal/metal interfaces, the misfit dislocation density does not dominate radiation damage tolerance at metal/oxide interfaces. Rather, the stoichiometry and the location of the misfit dislocation extra half-plane (in the metal or the oxide) drive radiation-induced defect behavior. Finally, together, these results demonstrate the sensitivity of defect recombination to interfacial chemistry and provide new avenues for engineering radiation-tolerant nanomaterials for next-generation nuclear power plants.« less
Shutthanandan, Vaithiyalingam; Choudhury, Samrat; Manandhar, Sandeep; ...
2017-04-24
The interaction of radiation with materials controls the performance, reliability, and safety of many structures in nuclear power systems. Revolutionary improvements in radiation damage resistance may be attainable if methods can be found to manipulate interface properties to give optimal interface stability and point defect recombination capability. To understand how variations in interface properties such as misfit dislocation density and local chemistry affect radiation-induced defect absorption and recombination, a model system of metallic Cr xV 1-x (0 ≤ x ≤ 1) epitaxial films deposited on MgO(001) single crystal substrates has been explored in this paper. By controlling film composition, themore » lattice mismatch between the film and MgO is adjusted to vary the misfit dislocation density at the metal/oxide interface. The stability of these interfaces under various irradiation conditions is studied experimentally and theoretically. The results indicate that, unlike at metal/metal interfaces, the misfit dislocation density does not dominate radiation damage tolerance at metal/oxide interfaces. Rather, the stoichiometry and the location of the misfit dislocation extra half-plane (in the metal or the oxide) drive radiation-induced defect behavior. Finally, together, these results demonstrate the sensitivity of defect recombination to interfacial chemistry and provide new avenues for engineering radiation-tolerant nanomaterials for next-generation nuclear power plants.« less
Wave propagation in composite media and material characterization
NASA Technical Reports Server (NTRS)
Datta, Subhendu K.; Shah, A. H.; Karunasena, W.
1990-01-01
Characteristics of wave propagation in an undamaged composite medium are influenced by many factors, the most important of which are: microstructure, constituent properties, interfaces, residual stress fields, and ply lay-ups. Measurements of wave velocities, attenuation, and dispersion provide a powerful tool for nondestructive evaluation of these properties. Recent developments are reviewed for modeling ultrasonic wave propagation in fiber and particle-reinforced composite media. Additionally, some modeling studies are reviewed for the effects of interfaces and layering on attenuation and dispersion. These studies indicate possible ways of characterizing material properties by ultrasonic means.
Positron studies of metal-oxide-semiconductor structures
NASA Astrophysics Data System (ADS)
Au, H. L.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.
1993-03-01
Positron annihilation spectroscopy provides a new probe to study the properties of interface traps in metal-oxide semiconductors (MOS). Using positrons, we have examined the behavior of the interface traps as a function of gate bias. We propose a simple model to explain the positron annihilation spectra from the interface region of a MOS capacitor.
Selectivity in L1 Attrition: Differential Object Marking in Spanish Near-Native Speakers of English
ERIC Educational Resources Information Center
Chamorro, Gloria; Sturt, Patrick; Sorace, Antonella
2016-01-01
Previous research has shown L1 attrition to be restricted to structures at the interfaces between syntax and pragmatics, but not to occur with syntactic properties that do not involve such interfaces ("Interface Hypothesis", Sorace and Filiaci in "Anaphora resolution in near-native speakers of Italian." "Second Lang…
Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry
Abdeljawad, Fadi; Foiles, Stephen M.
2016-05-04
The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less
High thermal stability of abrupt SiO2/GaN interface with low interface state density
NASA Astrophysics Data System (ADS)
Truyen, Nguyen Xuan; Taoka, Noriyuki; Ohta, Akio; Makihara, Katsunori; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Shimizu, Mitsuaki; Miyazaki, Seiichi
2018-04-01
The effects of postdeposition annealing (PDA) on the interface properties of a SiO2/GaN structure formed by remote oxygen plasma-enhanced chemical vapor deposition (RP-CVD) were systematically investigated. X-ray photoelectron spectroscopy clarified that PDA in the temperature range from 600 to 800 °C has almost no effects on the chemical bonding features at the SiO2/GaN interface, and that positive charges exist at the interface, the density of which can be reduced by PDA at 800 °C. The capacitance-voltage (C-V) and current density-SiO2 electric field characteristics of the GaN MOS capacitors also confirmed the reduction in interface state density (D it) and the improvement in the breakdown property of the SiO2 film after PDA at 800 °C. Consequently, a high thermal stability of the SiO2/GaN structure with a low fixed charge density and a low D it formed by RP-CVD was demonstrated. This is quite informative for realizing highly robust GaN power devices.
Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdeljawad, Fadi; Foiles, Stephen M.
The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less
Positive zeta potential of a negatively charged semi-permeable plasma membrane
NASA Astrophysics Data System (ADS)
Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha
2017-08-01
The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.
NASA Astrophysics Data System (ADS)
Ferri, Nicola; Ambrosetti, Alberto; Tkatchenko, Alexandre
2017-07-01
Electronic charge rearrangements at interfaces between organic molecules and solid surfaces play a key role in a wide range of applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. It is common to utilize electrostatics and Pauli pushback to control the interface electronic properties, while the ubiquitous van der Waals (vdW) interactions are often considered to have a negligible direct contribution (beyond the obvious structural relaxation). Here, we apply a fully self-consistent Tkatchenko-Scheffler vdW density functional to demonstrate that the weak vdW interactions can induce sizable charge rearrangements at hybrid metal/organic systems (HMOS). The complex vdW correlation potential smears out the interfacial electronic density, thereby reducing the charge transfer in HMOS, changes the interface work functions by up to 0.2 eV, and increases the interface dipole moment by up to 0.3 Debye. Our results suggest that vdW interactions should be considered as an additional control parameter in the design of hybrid interfaces with the desired electronic properties.
Light trapping in thin-film solar cells with randomly rough and hybrid textures.
Kowalczewski, Piotr; Liscidini, Marco; Andreani, Lucio Claudio
2013-09-09
We study light-trapping in thin-film silicon solar cells with rough interfaces. We consider solar cells made of different materials (c-Si and μc-Si) to investigate the role of size and nature (direct/indirect) of the energy band gap in light trapping. By means of rigorous calculations we demonstrate that the Lambertian Limit of absorption can be obtained in a structure with an optimized rough interface. We gain insight into the light trapping mechanisms by analysing the optical properties of rough interfaces in terms of Angular Intensity Distribution (AID) and haze. Finally, we show the benefits of merging ordered and disordered photonic structures for light trapping by studying a hybrid interface, which is a combination of a rough interface and a diffraction grating. This approach gives a significant absorption enhancement for a roughness with a modest size of spatial features, assuring good electrical properties of the interface. All the structures presented in this work are compatible with present-day technologies, giving recent progress in fabrication of thin monocrystalline silicon films and nanoimprint lithography.
Interface-induced phenomena in magnetism
Hellman, Frances; Hoffmann, Axel; Tserkovnyak, Yaroslav; ...
2017-06-05
Our article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important conceptsmore » include spin accumulation, spin currents, spin transfer torque, and spin pumping. We provide an overview for the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. Our article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.« less
Interface-Induced Phenomena in Magnetism
Hoffmann, Axel; Tserkovnyak, Yaroslav; Beach, Geoffrey S. D.; Fullerton, Eric E.; Leighton, Chris; MacDonald, Allan H.; Ralph, Daniel C.; Arena, Dario A.; Dürr, Hermann A.; Fischer, Peter; Grollier, Julie; Heremans, Joseph P.; Jungwirth, Tomas; Kimel, Alexey V.; Koopmans, Bert; Krivorotov, Ilya N.; May, Steven J.; Petford-Long, Amanda K.; Rondinelli, James M.; Samarth, Nitin; Schuller, Ivan K.; Slavin, Andrei N.; Stiles, Mark D.; Tchernyshyov, Oleg; Thiaville, André; Zink, Barry L.
2017-01-01
This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes. PMID:28890576
The evolution of slip pulses within bimaterial interfaces with rupture velocity
NASA Astrophysics Data System (ADS)
Shlomai, H.; Fineberg, J.
2017-12-01
The most general frictional motion in nature involves bimaterial interfaces, when contacting bodies possess different elastic properties. Frictional motion occurs when the contacts composing the interface separating these bodies detach via propagating rupture fronts. Coupling between slip and normal stress variations is unique to bimaterial interfaces. Here we use high speed simultaneous measurements of slip velocities, real contact area and stresses to explicitly reveal this bimaterial coupling and its role in determining different classes of rupture modes and their structures. Our experiments study the rupture of a spatially extended interface formed by brittle plastics whose shear wave speeds differ by 30%. Any slip within a bimaterial interface will break the stress symmetry across the interface. One important result of this is that local values of normal stress variations at the interface couple to interface slip, `bimaterial coupling'. The sign of the coupling depends on the front propagation direction. When we consider ruptures propagating in the direction of motion of the more compliant material, the `positive' direction, slip reduces the normal stress. We focus on this direction. We show that, in this direction, interface ruptures develop from crack-like behavior at low rupture velocities, whose structure corresponds to theoretical predictions: As the ruptures accelerate towards their asymptotic speed, the structures of the strain and stress fields near the rupture tip deviate significantly from this crack-like form, and systematically sharpen to a pulse-like rupture mode called slip-pulses. We conclude with a description of slip-pulse properties.
Type II superlattice technology for LWIR detectors
NASA Astrophysics Data System (ADS)
Klipstein, P. C.; Avnon, E.; Azulai, D.; Benny, Y.; Fraenkel, R.; Glozman, A.; Hojman, E.; Klin, O.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nitzani, M.; Shtrichman, I.; Rappaport, N.; Snapi, N.; Weiss, E.; Tuito, A.
2016-05-01
SCD has developed a range of advanced infrared detectors based on III-V semiconductor heterostructures grown on GaSb. The XBn/XBp family of barrier detectors enables diffusion limited dark currents, comparable with MCT Rule-07, and high quantum efficiencies. This work describes some of the technical challenges that were overcome, and the ultimate performance that was finally achieved, for SCD's new 15 μm pitch "Pelican-D LW" type II superlattice (T2SL) XBp array detector. This detector is the first of SCD's line of high performance two dimensional arrays working in the LWIR spectral range, and was designed with a ~9.3 micron cut-off wavelength and a format of 640 x 512 pixels. It contains InAs/GaSb and InAs/AlSb T2SLs, engineered using k • p modeling of the energy bands and photo-response. The wafers are grown by molecular beam epitaxy and are fabricated into Focal Plane Array (FPA) detectors using standard FPA processes, including wet and dry etching, indium bump hybridization, under-fill, and back-side polishing. The FPA has a quantum efficiency of nearly 50%, and operates at 77 K and F/2.7 with background limited performance. The pixel operability of the FPA is above 99% and it exhibits a stable residual non uniformity (RNU) of better than 0.04% of the dynamic range. The FPA uses a new digital read-out integrated circuit (ROIC), and the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector. The Pelican- D LW detector is now in the final stages of qualification and transfer to production, with first prototypes already integrated into new electro-optical systems.
NASA Astrophysics Data System (ADS)
Komissarova, T. A.; Lebedev, M. V.; Sorokin, S. V.; Klimko, G. V.; Sedova, I. V.; Gronin, S. V.; Komissarov, K. A.; Calvet, W.; Drozdov, M. N.; Ivanov, S. V.
2017-04-01
A study of electronic, structural and chemical properties of GaAs/ZnSe heterovalent interfaces (HI) in dependence on molecular beam epitaxy (MBE) growth conditions and post-growth annealing was performed. Initial GaAs surface reconstructions ((2 × 4)As or c(4 × 4)As) and ZnSe growth mode (MBE or migration-enhanced epitaxy (MEE)) were varied for different undoped and n-doped heterovalent structures. Although all the structures have low extended defect density (less than 106 cm-2) and rather small (less than 5 nm) atomic interdiffusion at the HI, the structural, chemical and electronic properties of the near-interface area (short-distance interdiffusion effects, dominant chemical bonds, and valence band offset values) as well as electrical properties of the n-GaAs/n-ZnSe heterovalent structures were found to be influenced strongly by the MBE growth conditions and post-growth annealing.
Material platforms for spin-based photonic quantum technologies
NASA Astrophysics Data System (ADS)
Atatüre, Mete; Englund, Dirk; Vamivakas, Nick; Lee, Sang-Yun; Wrachtrup, Joerg
2018-05-01
A central goal in quantum optics and quantum information science is the development of quantum networks to generate entanglement between distributed quantum memories. Experimental progress relies on the quality and efficiency of the light-matter quantum interface connecting the quantum states of photons to internal states of quantum emitters. Quantum emitters in solids, which have properties resembling those of atoms and ions, offer an opportunity for realizing light-matter quantum interfaces in scalable and compact hardware. These quantum emitters require a material platform that enables stable spin and optical properties, as well as a robust manufacturing of quantum photonic circuits. Because no emitter system is yet perfect and different applications may require different properties, several light-matter quantum interfaces are being developed in various platforms. This Review highlights the progress in three leading material platforms: diamond, silicon carbide and atomically thin semiconductors.
Wierzbicki, Andrzej; Dalal, Pranav; Cheatham, Thomas E.; Knickelbein, Jared E.; Haymet, A. D. J.; Madura, Jeffry D.
2007-01-01
Antifreeze proteins (AFPs) protect many plants and organisms from freezing in low temperatures. Of the different AFPs, the most studied AFP Type I from winter flounder is used in the current computational studies to gain molecular insight into its adsorption at the ice/water interface. Employing molecular dynamics simulations, we calculate the free energy difference between the hydrophilic and hydrophobic faces of the protein interacting with ice. Furthermore, we identify three properties of Type I “antifreeze” proteins that discriminate among these two orientations of the protein at the ice/water interface. The three properties are: the “surface area” of the protein; a measure of the interaction of the protein with neighboring water molecules as determined by the number of hydrogen bond count, for example; and the side-chain orientation angles of the threonine residues. All three discriminants are consistent with our free energy results, which clearly show that the hydrophilic protein face orientations toward the ice/water interface, as hypothesized from experimental and ice/vacuum simulations, are incorrect and support the hypothesis that the hydrophobic face is oriented toward the ice/water interface. The adsorption free energy is calculated to be 2–3 kJ/mol. PMID:17526572
NASA Technical Reports Server (NTRS)
Batur, Celal
1991-01-01
The objective of this research is to control the dynamics of multizone programmable crystal growth furnaces. Due to the inevitable heat exchange among different heating zones and the transient nature of the process, the dynamics of multizone furnaces is time varying, distributed, and therefore complex in nature. Electrical power to heating zones and the translational speed of the ampoule are employed as inputs to control the dynamics. Structural properties of the crystal is the ultimate aim of this adaptive control system. These properties can be monitored in different ways. Following an order of complexity, these may include: (1) on line measurement of the material optical properties such as the refractive index of crystal; (2) on line x-ray imaging of the interface topology; (3) on line optical quantification of the interface profile such as the determination of concavity or convexity of the interface shape; and (4) on line temperature measurement at points closest to the material such as measurements of the ampoule's outside and inside surface temperatures. The research performed makes use of the temperature and optical measurements, specified in (3) and (4) as the outputs of furnace dynamics. However, if the instrumentation is available, the proposed control methodology can be extended to the measurements listed in (1) and (2).
Simulations of laser thrombolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapyak, E.J.; Godwin, R.P.
1999-03-01
The authors have shown that bubble expansion and collapse near the interface between two materials with modest property differences produces jet-like interpenetration of the two materials. The bubble dynamics at a water-viscous fluid interface is compared with that at the interface of water with a weak elastic-plastic material. The authors find that, despite rather similar behavior during bubble growth and the initial portion of bubble collapse, the terminal jetting behavior is quite different, even in direction. The elastic-plastic properties chosen realistically represent real and surrogate thrombus. Simulations using the elastic-plastic model quantitatively agree with laboratory thrombolysis mass removal experiments. Inmore » the earlier simulations of laboratory experiments, walls have been remote so as to not effect the dynamics. Here the authors present two-dimensional simulations of thrombolysis with water over elastic-plastic surrogate thrombus in a geometry representative of the clinical situation. The calculations include thin cylindrical elastic walls with properties and dimensions appropriate for arteries. The presence of these artery walls does not substantially change the interface jetting predicted in unconfined simulations.« less
NASA Astrophysics Data System (ADS)
Todoran, D.; Todoran, R.; Anitas, E. M.; Szakacs, Zs.
2017-12-01
This paper presents results concerning optical and electrical properties of galena natural mineral and of the interface layer formed between it and the potassium ethyl xanthate solution. The applied experimental method was differential optical reflectance spectroscopy over the UV-Vis/NIR spectral domain. Computations were made using the Kramers-Kronig formalism. Spectral dependencies of the electron loss functions, determined from the reflectance data obtained from the polished mineral surface, display van Hove singularities, leading to the determination of its valence band gap and electron plasma energy. Time dependent measurement of the spectral dispersion of the relative reflectance of the film formed at the interface, using the same computational formalism, leads to the dynamical determination of the spectral variation of its optical and electrical properties. We computed behaviors of the dielectric constant (dielectric permittivity), the dielectric loss function, refractive index and extinction coefficient, effective valence number and of the electron loss functions. The measurements tend to stabilize when the dynamic adsorption-desorption equilibrium is reached at the interface level.
Structures, Properties and Defects of SrTiO3/GaAs Hetero-interfaces
NASA Astrophysics Data System (ADS)
Hong, Liang; Bhatnagar, Kunal; Droopad, Ravi; Öğüt, Serdar; Klie, Robert
SrTiO3 thin film can be epitaxially grown on GaAs substrate and used as a platform for growing other oxides to create functional metal-oxide-semiconductor devices, where a high-quality SrTiO3/GaAs interface is essential. We studied the structural and electronic properties of SrTiO3/GaAs hetero-interfaces at atomic level using scanning transmission electron microscopy and first-principles calculations. Our results suggest the preferred termination of GaAs (001) is significantly dependent on the oxygen concentration in the first oxide layer. The favorable interface structure is characterized as oxygen-deficient SrO in contact with arsenic and is observed in both experiment and simulation. The electronic properties are calculated and found to be tunable by interfacial defects such as oxygen, gallium and arsenic vacancies. This work was supported by the National Science Foundation (Grant No. DMR-1408427). This work made use of instruments in the Electron Microscopy Service and the High Performance Computing Clusters at University of Illinois at Chicago.
Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo
Interfaces with subtle difference in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 (PSMO) film on SrTiO3 (STO) substrate. The variations in out-of-plane lattice constant and BO6 octahedral rotation across the PSMO/STO interface strongly depend on the thickness of PSMO films. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI’) phase is formed during the cubic-to-tetragonal phase transition of STO, apparently due to enhanced electron-phonon interaction and atomic disorder in the film.more » The transport properties of the FI’ phase in the 30-nm film are masked because of the reduced interfacial effect and smaller interface-to-volume ratio. This work demonstrates how thickness-dependent interfacial coupling leads to formation of the theoretically predicted novel ferromagnetic-polaronic insulator in systems, as illustrated in a new phase diagram, that are otherwise ferromagnetic metals (FM) in bulk form.« less
Depth-Dependent Defect Studies Using Coherent Acoustic Phonons
2014-09-29
using CAP waves as an active moving interface to induce local changes in electric, acoustic , and optical properties. This is able to generate ultrafast...the elastic strain component [6]. b) Modification of the crystal lattice due to transient strain caused by the coherent acoustic phonon wave . The...opto-electronic properties of materials. We are also using CAP waves as an active moving interface to induce local changes in electric, acoustic , and
Wang, Fang; Zhang, Yonglai; Liu, Yang; Wang, Xuefeng; Shen, Mingrong; Lee, Shuit-Tong; Kang, Zhenhui
2013-03-07
Here we show a bias-mediated electron/energy transfer process at the CQDs-TiO(2) interface for the dynamic modulation of opto-electronic properties. Different energy and electron transfer states have been observed in the CQDs-TNTs system due to the up-conversion photoluminescence and the electron donation/acceptance properties of the CQDs decorated on TNTs.
Mitropoulos, Varvara; Mütze, Annekathrin; Fischer, Peter
2014-04-01
Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates. Copyright © 2013 Elsevier B.V. All rights reserved.
Wilson, S. R.; Mendelev, M. I.
2015-01-08
Solid–liquid interface (SLI) properties of the Ni–Zr B33 phase were determined from molecular dynamics simulations. In order to perform these measurements, a new semi-empirical potential for Ni–Zr alloy was developed that well reproduces the material properties required to model SLIs in the Ni 50.0Zr 50.0 alloy. In particular, the developed potential is shown to provide that the solid phase emerging from the liquid Ni 50.0Zr 50.0alloy is B33 (apart from a small fraction of point defects), in agreement with the experimental phase diagram. The SLI properties obtained using the developed potential exhibit an extraordinary degree of anisotropy. It is observedmore » that anisotropies in both the interfacial free energy and mobility are an order of magnitude larger than those measured to date in any other metallic compound. Moreover, the [0 1 0] interface is shown to play a significant role in the observed anisotropy. Our data suggest that the [0 1 0] interface simultaneously corresponds to the lowest mobility, the lowest free energy and the highest stiffness of all inclinations in B33 Ni–Zr. This finding can be understood by taking into account a rather complicated crystal structure in this crystallographic direction.« less
Liu, Dongmei; Li, Xinzhong; Borlido, Pedro Miguel de Castro; Botti, Silvana; Schmechel, Roland; Rettenmayr, Markus
2017-01-01
Layered (Bi1−xInx)2Te3-In2Te3 (x = 0.075) composites of pronounced anisotropy in structure and thermoelectric properties were produced by zone melting and subsequent coherent precipitation of In2Te3 from a (Bi1−xInx)2Te3 (x > 0.075) matrix. Employing solid state phase transformation, the Bi2Te3/In2Te3 interface density was tuned by modifying the driving force for In2Te3 precipitation. The structure-property relationship in this strongly anisotropic material is characterized thoroughly and systematically for the first time. Unexpectedly, with increasing Bi2Te3/In2Te3 interface density, an increase in electrical conductivity and a decrease in the absolute Seebeck coefficient were found. This is likely to be due to electron accumulation layers at the Bi2Te3/In2Te3 interfaces and the interplay of bipolar transport in Bi2Te3. Significantly improved thermoelectric properties of Bi2Te3-In2Te3 composites as compared to the single phase (Bi1−xInx)2Te3 solid solution are obtained. PMID:28272541
Striations, duration, migration and tidal response in deep tremor.
Ide, Satoshi
2010-07-15
Deep tremor in subduction zones is thought to be caused by small repeating shear slip events on the plate interface with significant slow components. It occurs at a depth of about 30 kilometres and provides valuable information on deep plate motion and shallow stress accumulation on the fault plane of megathrust earthquakes. Tremor has been suggested to repeat at a regular interval, migrate at various velocities and be modulated by tidal stress. Here I show that some time-invariant interface property controls tremor behaviour, using precise location of tremor sources with event duration in western Shikoku in the Nankai subduction zone, Japan. In areas where tremor duration is short, tremor is more strongly affected by tidal stress and migration is inhibited. Where tremor lasts longer, diffusive migration occurs with a constant diffusivity of 10(4) m(2) s(-1). The control property may be the ratio of brittle to ductile areas, perhaps determined by the influence of mantle wedge serpentinization on the plate interface. The spatial variation of the controlling property seems to be characterized by striations in tremor source distribution, which follows either the current or previous plate subduction directions. This suggests that the striations and corresponding interface properties are formed through the subduction of inhomogeneous structure, such as seamounts, for periods as long as ten million years.
NASA Astrophysics Data System (ADS)
Cakoni, Fioralba; de Teresa, Irene; Monk, Peter
2018-06-01
We consider the problem of detecting whether two materials that should be in contact have separated or delaminated using electromagnetic radiation. The interface damage is modeled as a thin opening between two materials of different electromagnetic properties. To derive a reconstruction algorithm that focuses on testing for the delamination at the interface between the two materials, we use the approximate asymptotic model for the forward problem derived in de Teresa (2017 PhD Thesis University of Delaware). In this model, the differential equations in the small opening are replaced by approximate transmission conditions for the electromagnetic fields across the interface. We also assume that the undamaged or background state is known and it is desired to find where the delamination has opened. We adapt the linear sampling method to this configuration in order to locate the damaged part of the interface from a knowledge of the scattered field and the undamaged configuration, but without needing to know the electromagnetic properties of the opening. Numerical examples are presented to validate our algorithm.
Properties at the interface of graphene and Ti2C MXene
NASA Astrophysics Data System (ADS)
Paul, Pallavi; Chakraborty, Poulami; Das, Tilak; Nafday, Dhani; Saha-Dasgupta, Tanusri
2017-07-01
Employing ab initio calculations, we characterize the interfaces formed between graphene, a much discussed two-dimensional material, and MXene, another two-dimensional material of recent interest. Our study considering the specific case of Ti2C , a member of the MXene family, shows the formation of chemical bonds between Ti atoms and C atoms of graphene. This results in reconstruction of the electronic structure at the interface, making the interface metallic, though graphene is a zero-gap semiconductor and Ti2C is an antiferromagnetic insulator in their respective native form. The optical and phonon properties of the interfaces are found to be strongly dependent on the stacking arrangement, driven by the nature of chemical-bond formation. Consideration of O-passivated Ti2C is found to weaken the interaction between graphene and Ti2C substantially, making it a physisorption process rather than chemisorption in the unpassivated situation. Our first-principles study is expected to motivate future experimental investigation.
NASA Astrophysics Data System (ADS)
Wang, J.; Sannomiya, T.; Shi, J.; Nakamura, Y.
2012-04-01
The effect of interface roughness on magnetic properties of exchange coupled polycrystalline Co/CoO(tAF)/Co trilayers has been investigated by varying antiferromagnetic layer (CoO) thickness. It has been found that the upper CoO/Co interface becomes rougher with increasing CoO layer thickness, resulting in stronger exchange bias of the upper interface than the lower one. The interfacial exchange coupling is strengthened by the increase of defect-generated uncompensated antiferromagnetic spins; such spins form coupling with spins in the Co layer at the interface. As a result, the CoO layer thickness dependence of exchange bias is much enhanced for the upper Co layer. The transition from anisotropic magnetoresistance to isotropic magnetoresistance for the top Co layer has also been found. This could be attributed to the defects, probably partial thin oxide layers, between Co grains in the top Co layer that leads a switch from spin-orbit scattering related magnetoresistance to spin-dependent electron scattering dominated magnetoresistance.
Cyclotron resonance of dirac fermions in InAs/GaSb/InAs quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishtopenko, S. S.; Ikonnikov, A. V., E-mail: antikon@ipmras.ru; Maremyanin, K. V.
2017-01-15
The band structure of three-layer symmetric InAs/GaSb/InAs quantum wells confined between AlSb barriers is analyzed theoretically. It is shown that, depending on the thicknesses of the InAs and GaSb layers, a normal band structure, a gapless state with a Dirac cone at the center of the Brillouin zone, or inverted band structure (two-dimensional topological insulator) can be realized in this system. Measurements of the cyclotron resonance in structures with gapless band spectra carried out for different electron concentrations confirm the existence of massless Dirac fermions in InAs/GaSb/InAs quantum wells.
Electron Transport and Minority Carrier Lifetime in HgCdSe 2013 2-6 Workshop
2014-03-11
FOR PUBLIC RELEASE Alternative IR Material 0.54 0.56 0.58 0.60 0.62 0.64 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 HgSe HgTe MgS ZnS MgTe CdS...CdSe ZnSe ZnTe CdTe AlP GaP AlSb InP Ge Si GaSb InSbInAs AlAs GaAs MgSe Ba nd ga p En er gy (e V) Lattice Constant (nm) • HgCdSe is being
A Review of Organic and Inorganic Biomaterials for Neural Interfaces
Fattahi, Pouria; Yang, Guang; Kim, Gloria
2015-01-01
Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided first, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces. PMID:24677434
Test method research on weakening interface strength of steel - concrete under cyclic loading
NASA Astrophysics Data System (ADS)
Liu, Ming-wei; Zhang, Fang-hua; Su, Guang-quan
2018-02-01
The mechanical properties of steel - concrete interface under cyclic loading are the key factors affecting the rule of horizontal load transfer, the calculation of bearing capacity and cumulative horizontal deformation. Cyclic shear test is an effective method to study the strength reduction of steel - concrete interface. A test system composed of large repeated direct shear test instrument, hydraulic servo system, data acquisition system, test control software system and so on is independently designed, and a set of test method, including the specimen preparation, the instrument preparation, the loading method and so on, is put forward. By listing a set of test results, the validity of the test method is verified. The test system and the test method based on it provide a reference for the experimental study on mechanical properties of steel - concrete interface.
A review of organic and inorganic biomaterials for neural interfaces.
Fattahi, Pouria; Yang, Guang; Kim, Gloria; Abidian, Mohammad Reza
2014-03-26
Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided fi rst, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces.
Structure and properties of a model conductive filament/host oxide interface in HfO2-based ReRAM
NASA Astrophysics Data System (ADS)
Padilha, A. C. M.; McKenna, K. P.
2018-04-01
Resistive random-access memory (ReRAM) is a promising class of nonvolatile memory capable of storing information via its resistance state. In the case of hafnium oxide-based devices, experimental evidence shows that a conductive oxygen-deficient filament is formed and broken inside of the device by oxygen migration, leading to switching of its resistance state. However, little is known about the nature of this conductive phase, its interface with the host oxide, or the associated interdiffusion of oxygen, presenting a challenge to understanding the switching mechanism and device properties. To address these problems, we present atomic-scale first-principles simulations of a prototypical conductive phase (HfO), the electronic properties of its interface with HfO2, as well as stability with respect to oxygen diffusion across the interface. We show that the conduction-band offset between HfO and HfO2 is 1.3 eV, smaller than typical electrode-HfO2 band offsets, suggesting that positive charging and band bending should occur at the conductive filament-HfO2 interface. We also show that transfer of oxygen across the interface, from HfO2 into HfO, costs around 1.2 eV per atom and leads to a gradual opening of the HfO band gap, and hence disruption of the electrical conductivity. These results provide invaluable insights into understanding the switching mechanism for HfO2-based ReRAM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blattner, M M; Blattner, D O; Tong, Y
1999-04-01
Easy-to-use interfaces are a class of interfaces that fall between public access interfaces and graphical user interfaces in usability and cognitive difficulty. We describe characteristics of easy-to-use interfaces by the properties of four dimensions: selection, navigation, direct manipulation, and contextual metaphors. Another constraint we introduced was to include as little text as possible, and what text we have will be in at least four languages. Formative evaluations were conducted to identify and isolate these characteristics. Our application is a visual interface for a home automation system intended for a diverse set of users. The design will be expanded to accommodatemore » the visually disabled in the near future.« less
NASA Astrophysics Data System (ADS)
Pham, Tuan Anh; Li, Tianshu; Gygi, Francois; Galli, Giulia
2011-03-01
Silicon Nitride (Si3N4) is a possible candidate material to replace or be alloyed with SiO2 to form high-K dielectric films on Si substrates, so as to help prevent leakage currents in modern CMOS transistors. Building on our previous work on dielectric properties of crystalline and amorphous Si3N4 slabs, we present an analysis of the band offsets and dielectric properties of crystalline-Si/amorphous Si3N4 interfaces based on first principles calculations. We discuss shortcomings of the conventional bulk-plus line up approach in band offset calculations for systems with an amorphous component, and we present the results of band offsets obtained from calculations of local density of states. Finally, we describe the role of bonding configurations in determining band edges and dielectric constants at the interface. We acknowledge financial support from Intel Corporation.
Nam, Woo Hyun; Lim, Young Soo; Kim, Woochul; Seo, Hyeon Kook; Dae, Kyun Seong; Lee, Soonil; Seo, Won-Seon; Lee, Jeong Yong
2017-06-14
We report synergistically enhanced thermoelectric properties through the independently controlled charge and thermal transport properties in a TiO 2 -reduced graphene oxide (RGO) nanocomposite. By the consolidation of TiO 2 -RGO hybrid powder using spark plasma sintering, we prepared an interface-controlled TiO 2 -RGO nanocomposite where its grain boundaries are covered with the RGO network. Both the enhancement in electrical conductivity and the reduction in thermal conductivity were simultaneously achieved thanks to the beneficial effects of the RGO network, and detailed mechanisms are discussed. This led to the gigantic increase in the ratio of electrical to thermal conductivity by six orders of magnitude and also the synergistic enhancement in the thermoelectric figure of merit by two orders. Our results present a strategy for the realization of 'phonon-glass electron-crystals' through interface control using graphene in graphene hybrid thermoelectric materials.
Combinatorial microfluidic droplet engineering for biomimetic material synthesis
Bawazer, Lukmaan A.; McNally, Ciara S.; Empson, Christopher J.; Marchant, William J.; Comyn, Tim P.; Niu, Xize; Cho, Soongwon; McPherson, Michael J.; Binks, Bernard P.; deMello, Andrew; Meldrum, Fiona C.
2016-01-01
Although droplet-based systems are used in a wide range of technologies, opportunities for systematically customizing their interface chemistries remain relatively unexplored. This article describes a new microfluidic strategy for rapidly tailoring emulsion droplet compositions and properties. The approach uses a simple platform for screening arrays of droplet-based microfluidic devices and couples this with combinatorial selection of the droplet compositions. Through the application of genetic algorithms over multiple screening rounds, droplets with target properties can be rapidly generated. The potential of this method is demonstrated by creating droplets with enhanced stability, where this is achieved by selecting carrier fluid chemistries that promote titanium dioxide formation at the droplet interfaces. The interface is a mixture of amorphous and crystalline phases, and the resulting composite droplets are biocompatible, supporting in vitro protein expression in their interiors. This general strategy will find widespread application in advancing emulsion properties for use in chemistry, biology, materials, and medicine. PMID:27730209
Fetzer, Roman; Stadtmüller, Benjamin; Ohdaira, Yusuke; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko
2015-01-01
Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature. PMID:25702631
NASA Astrophysics Data System (ADS)
Bastos, Carlos M. O.; Sabino, Fernando P.; Sipahi, Guilherme M.; Da Silva, Juarez L. F.
2018-02-01
Despite the large number of theoretical III-V semiconductor studies reported every year, our atomistic understanding is still limited. The limitations of the theoretical approaches to yield accurate structural and electronic properties on an equal footing, is due to the unphysical self-interaction problem that mainly affects the band gap and spin-orbit splitting (SOC) in semiconductors and, in particular, III-V systems with similar magnitude of the band gap and SOC. In this work, we report a consistent study of the structural and electronic properties of the III-V semiconductors by using the screening hybrid-density functional theory framework, by fitting the α parameters for 12 different III-V compounds, namely, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, and InSb, to minimize the deviation between the theoretical and experimental values of the band gap and SOC. Structural relaxation effects were also included. Except for AlP, whose α = 0.127, we obtained α values that ranged from 0.209 to 0.343, which deviate by less than 0.1 from the universal value of 0.25. Our results for the lattice parameter and elastic constants indicate that the fitting of α does not affect those structural parameters when compared with the HSE06 functional, where α = 0.25. Our analysis of the band structure based on the k ṡ p method shows that the effective masses are in agreement with the experimental values, which can be attributed to the simultaneous fitting of the band gap and SOC. Also, we estimate the values of g-factors, extracted directly from the band structure, which are close to experimental results, which indicate that the obtained band structure produced a realistic set of k ṡ p parameters.
Misfit dislocation patterns of Mg-Nb interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Youxing; Shao, Shuai; Liu, Xiang-Yang
The role of heterogeneous interfaces in improving mechanical properties of polycrystalline aggregates and laminated composites has been well recognized with interface structure being of fundamental importance in designing composites containing multiple interfaces. In this paper, taking the Mg (hexagonal close-packed (hcp))/Nb (body-centered cubic (bcc)) interface as an example, we develop Mg-Nb interatomic potentials for predicting atomic configurations of Mg/Nb interfaces. We systematically characterize interface dislocations of Mg/Nb interfaces with Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) orientation relationships and propose a generalized procedure of characterizing interface structure by combining atomistic simulation and interface dislocation theory, which is applicable for not only hcp/bccmore » interfaces, but also other systems with complicated interface dislocation configurations.Here, in Mg/Nb, interface dislocation networks of two types of interfaces are significantly different although they originate from partial dislocations of similar character: the NW interface is composed of three sets of partial dislocations, while the KS interface is composed of four sets of interface dislocations - three sets of partial dislocations and one set of full dislocations that forms from the reaction of two close partial dislocations.« less
Aland, Sebastian; Lowengrub, John; Voigt, Axel
2012-10-01
Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.
NASA Astrophysics Data System (ADS)
Lin, Erica; Li, Yaning; Ortiz, Christine; Boyce, Mary C.
2014-12-01
Geometrically structured interfaces in nature possess enhanced, and often surprising, mechanical properties, and provide inspiration for materials design. This paper investigates the mechanics of deformation and failure mechanisms of suture interface designs through analytical models and experiments on 3D printed polymer physical prototypes. Suture waveforms with generalized trapezoidal geometries (trapezoidal, rectangular, anti-trapezoidal, and triangular) are studied and characterized by several important geometric parameters: the presence or absence of a bonded tip region, the tip angle, and the geometry. It is shown that a wide range (in some cases as great as an order of magnitude) in stiffness, strength, and toughness is achievable dependent on tip bonding, tip angle, and geometry. Suture interfaces with a bonded tip region exhibit a higher initial stiffness due to the greater load bearing by the skeletal teeth, a double peak in the stress-strain curve corresponding to the failure of the bonded tip and the failure of the slanted interface region or tooth, respectively, and an additional failure and toughening mechanism due to the failure of the bonded tip. Anti-trapezoidal geometries promote the greatest amplification of properties for suture interfaces with a bonded tip due the large tip interface area. The tip angle and geometry govern the stress distributions in the teeth and the ratio of normal to shear stresses in the interfacial layers, which together determine the failure mechanism of the interface and/or the teeth. Rectangular suture interfaces fail by simple shearing of the interfaces. Trapezoidal and triangular suture interfaces fail by a combination of shear and tensile normal stresses in the interface, leading to plastic deformation, cavitation events, and subsequent stretching of interface ligaments with mostly elastic deformation in the teeth. Anti-trapezoidal suture interfaces with small tip angles have high stress concentrations in the teeth and fail catastrophically by tooth failure, whereas larger tip angles exhibit a shear failure of the interfaces. Therefore, larger tip angles and trapezoidal or triangular geometries promote graceful failure, and smaller tip angles and anti-trapezoidal geometries promote more brittle-like failure. This dependence is reminiscent of biological systems, which exhibit a range of failure behaviors with limited materials and varied geometry. Triangular geometries uniquely exhibit uniform stress distributions in its teeth and promote the greatest amplification of mechanical properties. In both the bonded and unbonded cases, the predictions from the presented analytical models and experimental results on 3D printed prototypes show excellent agreement. This validates the analytical models and allows for the models to be used as a tool for the design of new materials and interfaces with tailored mechanical behavior.
Interfacial Charge Transfer States in Condensed Phase Systems
NASA Astrophysics Data System (ADS)
Vandewal, Koen
2016-05-01
Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified.
NASA Astrophysics Data System (ADS)
Dutcher, Cari; Metcalf, Andrew
2015-03-01
Secondary organic aerosol particles are nearly ubiquitous in the atmosphere and yet there remain large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. Interfacial properties affect the ambient aerosol morphology, or internal structure of the particle, which in turn can affect the way a particle interacts with an environment of condensable clusters and organic vapors. To improve our ability to accurately predict ambient aerosol morphology, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Unfortunately, many techniques employed to measure interfacial properties do so in bulk solutions or in the presence of a ternary (e.g. solid) phase. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface or interfacial tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred.
Interface Conditions on Postverbal Subjects: A Corpus Study of L2 English
ERIC Educational Resources Information Center
Lozano, Cristobal; Mendikoetxea, Amaya
2010-01-01
This paper investigates how syntactic knowledge interfaces with other cognitive systems by analysing the production of postverbal subjects, V(erb)-S(ubject) order, in an L1 Spanish-L2 English corpus and a comparable English native corpus. VS order in both native and L2 English is shown to be constrained by properties operating at three interfaces:…
Relaxation mechanisms, structure and properties of semi-coherent interfaces
Shao, Shuai; Wang, Jian
2015-10-15
In this work, using the Cu–Ni (111) semi-coherent interface as a model system, we combine atomistic simulations and defect theory to reveal the relaxation mechanisms, structure, and properties of semi-coherent interfaces. By calculating the generalized stacking fault energy (GSFE) profile of the interface, two stable structures and a high-energy structure are located. During the relaxation, the regions that possess the stable structures expand and develop into coherent regions; the regions with high-energy structure shrink into the intersection of misfit dislocations (nodes). This process reduces the interface excess potential energy but increases the core energy of the misfit dislocations and nodes.more » The core width is dependent on the GSFE of the interface. The high-energy structure relaxes by relative rotation and dilatation between the crystals. The relative rotation is responsible for the spiral pattern at nodes. The relative dilatation is responsible for the creation of free volume at nodes, which facilitates the nodes’ structural transformation. Several node structures have been observed and analyzed. In conclusion, the various structures have significant impact on the plastic deformation in terms of lattice dislocation nucleation, as well as the point defect formation energies.« less
Optical fingerprints of solid-liquid interfaces: a joint ATR-IR and first principles investigation
NASA Astrophysics Data System (ADS)
Yang, L.; Niu, F.; Tecklenburg, S.; Pander, M.; Nayak, S.; Erbe, A.; Wippermann, S.; Gygi, F.; Galli, G.
Despite the importance of understanding the structural and bonding properties of solid-liquid interfaces for a wide range of (photo-)electrochemical applications, there are presently no experimental techniques available to directly probe the microscopic structure of solid-liquid interfaces. To develop robust strategies to interpret experiments and validate theory, we carried out attenuated total internal reflection (ATR-IR) spectroscopy measurements and ab initio molecular dynamics (AIMD) simulations of the vibrational properties of interfaces between liquid water and well-controlled prototypical semiconductor substrates. We show the Ge(100)/H2O interface to feature a reversible potential-dependent surface phase transition between Ge-H and Ge-OH termination. The Si(100)/H2O interface is proposed as a model system for corrosion and oxidation processes. We performed AIMD calculations under finite electric fields, revealing different pathways for initial oxidation. These pathways are predicted to exhibit unique spectral signatures. A significant increase in surface specificity can be achieved utilizing an angle-dependent ATR-IR experiment, which allows to detect such signatures at the interfacial layer and consequently changes in the hydrogen bond network. Funding from DOE-BES Grant No. DE-SS0008939 and the Deutsche Forschungsgemeinschaft (RESOLV, EXC 1069) are gratefully acknowledged.
Park, Seonyoung; Kim, Seong Yeoul; Choi, Yura; Kim, Myungjun; Shin, Hyunjung; Kim, Jiyoung; Choi, Woong
2016-05-11
We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors.
Molecular Dynamics Studies of Structure and Functions of Water-Membrane Interfaces
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
A large number of essential cellular processes occur at the interfaces between water and membranes. The selectivity and dynamics of these processes are largely determined by the structural and electrical properties of the water-membrane interface. We investigate these properties by the molecular dynamics method. Over the time scales of the simulations, the membrane undergoes fluctuations described by the capillary wave model. These fluctuations produce occasional thinning defects in the membrane which provide effective pathways for passive transport of ions and small molecules across the membrane. Ions moving through the membrane markedly disrupt its structure and allow for significant water penetration into the membrane interior. Selectivity of transport, with respect to ionic charge, is determined by the interfacial electrostatic potential. Many small molecules. of potential significance in catalysis, bioenergetics and pharmacology, are shown to bind to the interface. The energetics and dynamics of this process will be discussed.
NASA Technical Reports Server (NTRS)
Averill, Ronald C.
2002-01-01
An effective and robust interface element technology able to connect independently modeled finite element subdomains has been developed. This method is based on the use of penalty constraints and allows coupling of finite element models whose nodes do not coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. A significant effort has been directed toward identifying those model characteristics (element geometric properties, material properties, and loads) that most strongly affect the required penalty parameter, and subsequently to developing simple 'formulae' for automatically calculating the proper penalty parameter for each interface constraint. This task is especially critical in composite materials and structures, where adjacent sub-regions may be composed of significantly different materials or laminates. This approach has been validated by investigating a variety of two-dimensional problems, including composite laminates.
Dynamic properties of interfaces in soft matter: Experiments and theory
NASA Astrophysics Data System (ADS)
Sagis, Leonard M. C.
2011-10-01
The dynamic properties of interfaces often play a crucial role in the macroscopic dynamics of multiphase soft condensed matter systems. These properties affect the dynamics of emulsions, of dispersions of vesicles, of biological fluids, of coatings, of free surface flows, of immiscible polymer blends, and of many other complex systems. The study of interfacial dynamic properties, surface rheology, is therefore a relevant discipline for many branches of physics, chemistry, engineering, and life sciences. In the past three to four decades a vast amount of literature has been produced dealing with the rheological properties of interfaces stabilized by low molecular weight surfactants, proteins, (bio)polymers, lipids, colloidal particles, and various mixtures of these surface active components. In this paper recent experiments are reviewed in the field of surface rheology, with particular emphasis on the models used to analyze surface rheological data. Most of the models currently used are straightforward generalizations of models developed for the analysis of rheological data of bulk phases. In general the limits on the validity of these generalizations are not discussed. Not much use is being made of recent advances in nonequilibrium thermodynamic formalisms for multiphase systems, to construct admissible models for the stress-deformation behavior of interfaces. These formalisms are ideally suited to construct thermodynamically admissible constitutive equations for rheological behavior that include the often relevant couplings to other fluxes in the interface (heat and mass), and couplings to the transfer of mass from the bulk phase to the interface. In this review recent advances in the application of classical irreversible thermodynamics, extended irreversible thermodynamics, rational thermodynamics, extended rational thermodynamics, and the general equation for the nonequilibrium reversible-irreversible coupling formalism to multiphase systems are also discussed, and shown how these formalisms can be used to generate a wide range of thermodynamically admissible constitutive models for the surface stress tensor. Some of the generalizations currently in use are shown to have only limited validity. The aim of this review is to stimulate new developments in the fields of experimental surface rheology and constitutive modeling of multiphase systems using nonequilibrium thermodynamic formalisms and to promote a closer integration of these disciplines.
Interface plasmonic properties of silver coated by ultrathin metal oxides
NASA Astrophysics Data System (ADS)
Sytchkova, A.; Zola, D.; Grilli, M. L.; Piegari, A.; Fang, M.; He, H.; Shao, J.
2011-09-01
Many fields of high technology take advantage of conductor-dielectric interface properties. Deeper knowledge of physical processes that determine the optical response of the structures containing metal-dielectric interfaces is important for improving the performance of thin film devices containing such materials. Here we present a study on optical properties of several ultrathin metal oxides deposited over thin silver layers. Some widely used materials (Al2O3, SiO2, Y2O3, HfO2) were selected for deposition by r.f. sputtering, and the created metal-dielectric structures with two of them, alumina and silica, were investigated in this work using attenuated total reflectance (ATR) technique and by variable-angle spectroscopic ellipsometry (VASE). VASE was performed with a help of a commercial ellipsometer at various incident angles and in a wide spectral range. A home-made sample holder manufactured for WVASE ellipsometer and operational in Otto configuration has been implemented for angle-resolved and spectral ATR measurements. Simultaneous analysis of data obtained by these two independent techniques allows elaboration of a representative model for plasmonic-related phenomena at metal-dielectric interface. The optical constants of the interface layers formed between metal and ultrathin oxide layers are investigated. A series of oxides chosen for this study allows a comparative analysis aimed for selection of the most appropriate materials for different applications.