Science.gov

Sample records for gaseous helium pressurant

  1. Pressure-Volume-Temperature (PVT) Gauging of an Isothermal Cryogenic Propellant Tank Pressurized with Gaseous Helium

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2014-01-01

    Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.

  2. Modelling and Experimental Verification of Pressure Wave Following Gaseous Helium Storage Tank Rupture

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Grabowski, M.; Jędrusyna, A.; Wach, J.

    Helium inventory in high energy accelerators, tokamaks and free electron lasers may exceed tens of tons. The gaseous helium is stored in steel tanks under a pressure of about 20 bar and at environment temperature. Accidental rupture of any of the tanks filled with the gaseous helium will create a rapid energy release in form of physical blast. An estimation of pressure wave distribution following the tank rupture and potential consequences to the adjacent research infrastructure and buildings is a very important task, critical in the safety aspect of the whole cryogenic system. According to the present regulations the TNT equivalent approach is to be applied to evaluate the pressure wave following a potential gas storage tank rupture. A special test stand was designed and built in order to verify experimentally the blast effects in controlled conditions. In order to obtain such a shock wave a pressurized plastic tank was used. The tank was ruptured and the resulting pressure wave was recorded using a spatially-distributed array of pressure sensors connected to a high-speed data acquisition device. The results of the experiments and the comparison with theoretical values obtained from thermodynamic model of the blast are presented. A good agreement between the simulated and measured data was obtained. Recommendations regarding the applicability of thermodynamic model of physical blast versus TNT approach, to estimate consequences of gas storage tank rupture are formulated. The laboratory scale experimental results have been scaled to ITER pressurized helium storage tanks.

  3. Thermodynamic Vent System Performance Testing with Subcooled Liquid Methane and Gaseous Helium Pressurant

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2007-01-01

    Due to its high specific impulse and favorable thermal properties for storage, liquid methane (LCH4) is being considered as a candidate propellant for exploration architectures. In order to gain an -understanding of any unique considerations involving micro-gravity pressure control with LCH4, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the performance of a spray-bar thermodynamic vent system (TVS) with subcooled LCH4 and gaseous helium (GHe) pressurant. Thirteen days of testing were performed in November 2006, with total tank heat leak conditions of about 715 W and 420 W at a fill level of approximately 90%. The TVS system was used to subcool the LCH4 to a liquid saturation pressure of approximately 55.2 kPa before the tank was pressurized with GHe to a total pressure of 165.5 kPa. A total of 23 TVS cycles were completed. The TVS successfully controlled the ullage pressure within a prescribed control band but did not maintain a stable liquid saturation pressure. This was likely. due to a TVS design not optimized for this particular propellant and test conditions, and possibly due to a large artificially induced heat input directly into the liquid. The capability to reduce liquid saturation pressure as well as maintain it within a prescribed control band, demonstrated that the TVS could be used to seek and maintain a desired liquid inlet temperature for an engine (at a cost of propellant lost through the TVS vent). One special test was conducted at the conclusion of the planned test activities. Reduction of the tank ullage pressure by opening the Joule-Thomson valve (JT) without operating the pump was attempted. The JT remained open for over 9300 seconds, resulting in an ullage pressure reduction of 30 kPa. The special test demonstrated the feasibility of using the JT valve for limited ullage pressure reduction in the event of a pump failure.

  4. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  5. Analyzing the Use of Gaseous Helium as a Pressurant with Cryogenic Propellants with Thermodynamic Venting System Modelling and Test Data

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Nelson, S.L.; Hastings, L.J.; Flachbart, R.H.; Vermillion, D.J.; Tucker, S.P.

    2007-01-01

    Cryogens are viable candidate propellants for NASA's Lunar and Mars exploration programs. To provide adequate mass flow to the system's engines and/or to prevent feed system cavitation, gaseous helium (GHe) is frequently considered as a pressurant. During low gravity operations, a Thermodynamic Venting System (TVS) is designed to maintain tank pressure during low gravity operations without propellant resettling. Therefore, a series of tests were conducted in the Multi-purpose Hydrogen Test Bed (MHTB) of Marshall Space Flight Center (MSFC) in order to evaluate the effects of GHe pressurant on pressure control performance of a TVS with liquid hydrogen (LH2) and nitrogen (LN2) as the test liquids. The TVS used in these test series consists of a recirculation pump, Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. Using a small amount of liquid extracted from the tank recirculation line, passing it through the J-T valve, and then through the heat exchanger, thermal energy is extracted from the bulk liquid and ullage thereby enabling pressure control. The LH2/GHe tests were performed at fill levels of 90%, 50%, and 25% and LN2/GHe tests were conducted at fill levels of 50% and 25%. Moreover, each test was conducted with a specified tank ullage pressure control band. A one-dimensional TVS performance program was used to analyze and correlate the test data. Predictions and comparisons with test data of ullage pressure and temperature and bulk liquid saturation pressure and temperature with test data are presented.

  6. Trace organic impurities in gaseous helium

    NASA Technical Reports Server (NTRS)

    Schehl, T. A.

    1973-01-01

    A program to determine trace organic impurities present in helium has been initiated. The impurities were concentrated in a cryogenic trap to permit detection and identification by a gas chromatographic-mass spectrometric technique. Gaseous helium (GHe) exhibited 63 GC flame ionization response peaks. Relative GC peak heights and identifications of 25 major impurities by their mass spectra are given. As an aid to further investigation, identities are proposed for 16 other components, and their mass spectra are given.

  7. Validity of the Ruff-MKW boiling point method: Vapor pressures, diffusion coefficients in argon and helium, and viscosity coefficients for gaseous cadmium and zinc

    NASA Astrophysics Data System (ADS)

    Wahlbeck, P. G.; Myers, D. L.; Truong, V. V.

    1985-09-01

    The Ruff-MKW boiling point method is used to determine equilibrium vapor pressures greater than 660 Pa (5 Torr). Samples are vaporized from a Ruff cell, which has a capillary exit, in the presence of an inert gas. Viscosity coefficients and gaseous interdiffusion coefficients may be determined also. This is a second study of the method using Cd(l) and Zn(l) as samples. For the first study with CsCl(l), see J. Chem. Phys. 81, 915 (1984). Vapor pressure data are in good agreement with previous data and gave a third-law ΔsubH0(298) for Cd(s) of 111.95±0.42 kJ/mol and for Zn(s) of 130.65±0.48 kJ/mol. Analyses of the diffusion coefficients gave atomic diameters of 4.06×10-10 m for Cd and 3.46×10-10 m for Zn; these values are somewhat larger than previously measured values. In these experiments when the equilibrium vapor pressures were greater than 13 000 Pa (100 Torr), the need to consider heat transfer from the furnace to the vaporizing sample was noted, i.e., sample cooling occured due to rapid vaporization. Validity of the MKW analysis was found.

  8. Purge Monitoring Technology for Gaseous Helium (GHe) Conservation

    NASA Technical Reports Server (NTRS)

    Dickey, Jonathan; Lansaw, John

    2010-01-01

    John C. Stennis Space Center provides rocket engine propulsion testing for the NASA space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has gone through acceptance testing before going to Kennedy Space Center for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that used Liquid Oxygen (LO2) and Liquid Hydrogen (LH2) as propellants. Due to the extremely cold cryogenic conditions of this environment, an inert gas, helium, is used as a purge for the engine and propellant lines since it can be used without freezing in the cryogenic environment. As NASA moves forward with the development of the new ARES V launch system, the main engines as well as the upper stage engine will use cryogenic propellants and will require gaseous helium during the development testing of each of these engines. The main engine for the ARES V will be similar in size to the SSME.

  9. Cryocooled Facilities for Superconducting Coils Testing in Gaseous Helium

    NASA Astrophysics Data System (ADS)

    Naumov, A. V.; Keilin, V. E.; Kovalev, I. A.; Surin, M. I.; Shcherbakov, V. I.; Shevchenko, S. A.; Ilin, A. A.

    Two superconducting coil test facilities equipped by Sumitomo SRDK-415D cryocoolers were developed, manufactured and tested. The motivation for their constructing was to make cheaper the testing (and especially training of LTS magnets) by liquid helium (LHe) saving. It is well known that the helium price increases rapidly and this tendency most probably will continue for a long time, as the demand of helium grows faster than its production. The utilization of heat-exchange gas considerably reduces many problems, that arise in the design of completely dry LTS magnets. The goal was to decrease or even completely avoid the consumption of rather expensive liquid helium for testing the laboratory size Nb-Ti and Nb3Sn coils including their training process. Several superconducting magnets were tested by using these facilities. For example, the first facility was successfully used for testing of 13 T, 60 kg coil cooled by cryocooler in helium gas (several torr pressure) heat exchange atmosphere. The precooling time was about 45 hours. The quench current (240 A at 4.2 K) was equal to that reached in the pool boiling LHe cryostat. The second facility with 420 mm wide access bore can be used for testing of corresponding size superconducting coils with very modest consumption of liquid helium with its level well below the lower flange of the coil. Each test facility is equipped by 2 pairs of HTS current leads. Design and operational experience of one of them is described.

  10. Liquid Oxygen Thermodynamic Vent System Testing with Helium Pressurization

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.

    2014-01-01

    This report presents the results of several thermodynamic vent system (TVS) tests with liquid oxygen plus a test with liquid nitrogen. In all tests, the liquid was heated above its normal boiling point to 111 K for oxygen and 100 K for nitrogen. The elevated temperature was representative of tank conditions for a candidate lunar lander ascent stage. An initial test series was conducted with saturated oxygen liquid and vapor at 0.6 MPa. The initial series was followed by tests where the test tank was pressurized with gaseous helium to 1.4 to 1.6 MPa. For these tests, the helium mole fraction in the ullage was quite high, about 0.57 to 0.62. TVS behavior is different when helium is present than when helium is absent. The tank pressure becomes the sum of the vapor pressure and the partial pressure of helium. Therefore, tank pressure depends not only on temperature, as is the case for a pure liquid-vapor system, but also on helium density (i.e., the mass of helium divided by the ullage volume). Thus, properly controlling TVS operation is more challenging with helium pressurization than without helium pressurization. When helium was present, the liquid temperature would rise with each successive TVS cycle if tank pressure was kept within a constant control band. Alternatively, if the liquid temperature was maintained within a constant TVS control band, the tank pressure would drop with each TVS cycle. The final test series, which was conducted with liquid nitrogen pressurized with helium, demonstrated simultaneous pressure and temperature control during TVS operation. The simultaneous control was achieved by systematic injection of additional helium during each TVS cycle. Adding helium maintained the helium partial pressure as the liquid volume decreased because of TVS operation. The TVS demonstrations with liquid oxygen pressurized with helium were conducted with three different fluid-mixer configurations-a submerged axial jet mixer, a pair of spray hoops in the tank

  11. Carburization of austenitic alloys by gaseous impurities in helium

    SciTech Connect

    Lai, G.Y.; Johnson, W.R.

    1980-03-01

    The carburization behavior of Alloy 800H, Inconel Alloy 617 and Hastelloy Alloy X in helium containing various amounts of H/sub 2/, CO, CH/sub 4/, H/sub 2/O and CO/sub 2/ was studied. Corrosion tests were conducted in a temperature range from 649 to 1000/sup 0/C (1200 to 1832/sup 0/F) for exposure time up to 10,000 h. Four different helium environments, identified as A, B, C, and D, were investigated. Concentrations of gaseous impurities were 1500 ..mu..atm H/sub 2/, 450 ..mu..atm CO, 50 ..mu..atm CH/sub 4/ and 50 ..mu..atm H/sub 2/O for Environment A; 200 ..mu..atm H/sub 2/, 100 ..mu..atm CO, 20 ..mu..atm CH/sub 4/, 50 ..mu..atm H/sub 2/O and 5 ..mu..atm CO/sub 2/ for Environment B; 500 ..mu..atm H/sub 2/, 50 ..mu..atm CO, 50 ..mu..atm CH/sub 4/ and < 0.5 ..mu..atm H/sub 2/O for Environment C; and 500 ..mu..atm H/sub 2/, 50 ..mu..atm CO, 50 ..mu..atm CH/sub 4/ and 1.5 ..mu..atm H/sub 2/O for Environment D. Environments A and B were characteristic of high-oxygen potential, while C and D were characteristic of low-oxygen potential. The results showed that the carburization kinetics in low-oxygen potential environments (C and D) were significantly higher, approximately an order of magnitude higher at high temperatures, than those in high-oxygen potential environments (A and B) for all three alloys. Thermodynamic analyses indicated no significant differences in the thermodynamic carburization potential between low- and high-oxygen potential environments. It is thus believed that the enhanced carburization kinetics observed in the low-oxygen potential environments were related to kinetic effects. A qualitatively mechanistic model was proposed to explain the enhanced kinetics. The present results further suggest that controlling the oxygen potential of the service environment can be an effective means of reducing carburization of alloys.

  12. Performance of thermal shields of LHD cryostat cooled by gaseous helium with parallel paths

    NASA Astrophysics Data System (ADS)

    Imagawa, S.; Tamura, H.; Yanagi, N.; Sekiguchi, H.; Mito, T.; Satow, T.

    2002-05-01

    The Large Helical Device is the largest cryogenic apparatus for a research of fusion plasma. Thermal shields are installed to reduce heat loads to the superconducting coils. Since the total area is very wide, seamless pipes were adopted to reduce the possibility of helium leakage, and parallel cooling path is indispensable to reduce the pressure drop. Temperature differences between parallel paths will be enlarged with the procedure of cool-down, but the final temperature should be determined uniquely by each heat load in the case of gaseous helium. The number of parallel paths of the thermal shields for the plasma vacuum vessel and the cryostat vessel are set to 20 and 10, respectively, to form the periodic symmetry. The pipes were attached on the segmented plates of SUS316 by metal cleats mechanically and by high conductive epoxy resin thermally. The maximum temperature difference between the outlets of the paths was enlarged with the procedure of cool-down, but it was saturated within 40% of the average temperature rise. This difference is allowable in this system, and the temperature differences are coincide the difference of area due to the irregular shape.

  13. 2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  14. Spectroscopic imagine of atmospheric-pressure helium ICP discharges

    SciTech Connect

    Montaser, A.; Boyes, A.L.M.; Cai, M.; Hsiech, C.; Zhang, H.

    1994-12-31

    Spatially-resolved information from atmospheric-pressure helium inductively coupled plasmas (He ICP) was acquired with a simple, inexpensive optical imaging spectrometer. The system uses a 35-cm focal length Czerny-Turner monochromator/spectrograph and a solid state charge-injection device (CID) or a charge coupled device (CCD), Quantitative image maps of the plasmas were produced with good resolution. For example, when the CID was used, the entire plasma image could be monitored with a spatial resolution of 0.13 and 0.10 mm in the horizontal and vertical directions. The spectral resolution was 4 mn. Lateral distributions of emission intensities were converted, using an Abel inversion routine, to radial distributions. Some unique features of the He ICP, compared to the commonly used Ar ICP, were identified at or around analytical conditions for elemental analysis of gaseous and aqueous samples.

  15. Pressure-Driven Flow of Solid Helium

    SciTech Connect

    Day, James; Beamish, John

    2006-03-17

    The recent torsional oscillator results of Kim and Chan show an anomalous mass decoupling, interpreted by the authors as a supersolid phase transition, in solid {sup 4}He. We have used a piezoelectrically driven diaphragm to study the flow of solid helium through an array of capillaries. Our measurements showed no indication of low temperature flow, placing stringent restrictions on supersolid flow in response to a pressure difference. The average flow speed at low temperatures was less than 1.2x10{sup -14} m/s, corresponding to a supersolid velocity at least 7 orders of magnitude smaller than the critical velocities inferred from the torsional oscillator measurements.

  16. Molecular dynamics study of helium bubble pressure in titanium

    NASA Astrophysics Data System (ADS)

    Zhang, Bao-Ling; Wang, Jun; Hou, Qing

    2011-03-01

    In this paper, the pressure state of the helium bubble in titanium is simulated by a molecular dynamics (MD) method. First, the possible helium/vacancy ratio is determined according to therelation between the bubble pressure and helium/vacancy ratio; then the dependences of the helium bubble pressure on the bubble radius at different temperatures are studied. It is shown that the product of the bubble pressure and the radius is approximately a constant, a result justifying the pressure-radius relation predicted by thermodynamics-based theory for gas bubble. Furthermore, a state equation of the helium bubble is established based on the MD calculations. Comparison between the results obtained by the state equation and corresponding experimental data shows that the state equation can describe reasonably the state of helium bubble and thus could be used for Monte Carlo simulations of the evolution of helium bubble in metals. Project supported by the National Natural Science Foundation of China (Grant No. 10775101) and National Magnetic Confinement Fusion Program of China (Grant No. 2009GB106004).

  17. DETAIL OF THE GASEOUS NITROGEN PRESSURIZATION AND CHECKOUT PANEL, SECOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE GASEOUS NITROGEN PRESSURIZATION AND CHECKOUT PANEL, SECOND LEVEL OF THE EXTERNAL TANK CHECK-OUT CELLS, HB-2, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  18. High-Pressure Gaseous Burner (HPGB) Facility Became Operational

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2003-01-01

    A gas-fueled high-pressure combustion facility with optical access, developed over the last 3 years, is now collecting research data in a production mode. The High-Pressure Gaseous Burner (HPGB) rig at the NASA Glenn Research Center can operate at sustained pressures up to 60 atm with a variety of gaseous fuels and liquid jet fuel. The facility is unique because it is the only continuous-flow, hydrogen-capable 60-atm rig in the world with optical access. It will provide researchers with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow s advanced aircraft engines. The facility provides optical access to the flame zone through four fused-silica optical windows, enabling the calibration of nonintrusive optical diagnostics to measure chemical species and temperature. The data from the HPGB rig enable the validation of numerical codes that simulate gas turbine combustors.

  19. Phase separation in hydrogen-helium mixtures at Mbar pressures.

    PubMed

    Morales, Miguel A; Schwegler, Eric; Ceperley, David; Pierleoni, Carlo; Hamel, Sebastien; Caspersen, Kyle

    2009-02-01

    The properties of hydrogen-helium mixtures at Mbar pressures and intermediate temperatures (4000 to 10000 K) are calculated with first-principles molecular dynamics simulations. We determine the equation of state as a function of density, temperature, and composition and, using thermodynamic integration, we estimate the Gibbs free energy of mixing, thereby determining the temperature, at a given pressure, when helium becomes insoluble in dense metallic hydrogen. These results are directly relevant to models of the interior structure and evolution of Jovian planets. We find that the temperatures for the demixing of helium and hydrogen are sufficiently high to cross the planetary adiabat of Saturn at pressures approximately 5 Mbar; helium is partially miscible throughout a significant portion of the interior of Saturn, and to a lesser extent in Jupiter. PMID:19171896

  20. Phase separation in hydrogen–helium mixtures at Mbar pressures

    PubMed Central

    Morales, Miguel A.; Schwegler, Eric; Ceperley, David; Pierleoni, Carlo; Hamel, Sebastien; Caspersen, Kyle

    2009-01-01

    The properties of hydrogen–helium mixtures at Mbar pressures and intermediate temperatures (4000 to 10000 K) are calculated with first-principles molecular dynamics simulations. We determine the equation of state as a function of density, temperature, and composition and, using thermodynamic integration, we estimate the Gibbs free energy of mixing, thereby determining the temperature, at a given pressure, when helium becomes insoluble in dense metallic hydrogen. These results are directly relevant to models of the interior structure and evolution of Jovian planets. We find that the temperatures for the demixing of helium and hydrogen are sufficiently high to cross the planetary adiabat of Saturn at pressures ≈5 Mbar; helium is partially miscible throughout a significant portion of the interior of Saturn, and to a lesser extent in Jupiter. PMID:19171896

  1. Binary gaseous diffusion coefficients. 5. Cyclooctane and trans-1,2-dimethylcyclohexane with helium, argon, methane, and sulfur hexafluoride at 1 atm and 313-343 K

    SciTech Connect

    Park, T.; Rettich, T.R.; Battino, R.; Emmerich, W.

    1987-04-01

    The binary gaseous diffusion coefficients for cyclooctane and trans-1,2-dimethylcyclohexane diffusing into helium, argon, methane, and sulfur hexafluoride were measured at about 313.15, 328.15, and 343.15K and atmospheric pressure by the capillary tube method of Stefan. The experimental results are compared with diffusion coefficients calculated via the first-order Chapman-Enskog approximation. For the gases, effective Lennard-Jones pair potential parameters were taken from recent literature; for the liquids they were obtained from an extended corresponding-states correlation.

  2. Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics

    NASA Astrophysics Data System (ADS)

    Arpaia, P.; Blanco, E.; Girone, M.; Inglese, V.; Pezzetti, M.; Piccinelli, F.; Serio, L.

    2015-07-01

    A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [http://www.samson.de (2015)] and Sereg-Schlumberger [http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves—Part 2-1: Flow capacity—sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for different pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported.

  3. Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics.

    PubMed

    Arpaia, P; Blanco, E; Girone, M; Inglese, V; Pezzetti, M; Piccinelli, F; Serio, L

    2015-07-01

    A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [ http://www.samson.de (2015)] and Sereg-Schlumberger [ http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves-Part 2-1: Flow capacity-sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for different pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported.

  4. Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics

    SciTech Connect

    Arpaia, P.; Blanco, E.; Inglese, V.; Pezzetti, M.; Serio, L.; Girone, M.; Piccinelli, F.

    2015-07-15

    A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [ http://www.samson.de (2015)] and Sereg-Schlumberger [ http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves—Part 2-1: Flow capacity—sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for different pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported.

  5. Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics.

    PubMed

    Arpaia, P; Blanco, E; Girone, M; Inglese, V; Pezzetti, M; Piccinelli, F; Serio, L

    2015-07-01

    A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [ http://www.samson.de (2015)] and Sereg-Schlumberger [ http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves-Part 2-1: Flow capacity-sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for different pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported. PMID:26233405

  6. Helium bottle pressure measurement by portable ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Olson, Alden

    1989-02-01

    The report details the application of a portable ultrasonic method to accurately check the pressure in a helium bottle. The subject helium bottle provides an initial launch boost to the Short Range Attack Missile's (SRAM-A, or AGM-69A) hydraulic flight control system. The method described would apply to any pressure vessel, with minor variations from those procedures and equipment detailed in the report. A series of tests was conducted at the Boeing Aerospace facility in Kent, Washington on a SRAM-A helium gas bottle, to determine the feasibility of measuring gas pressure within the helium bottle by ultrasonic technique. The method, based on measurement of the speed of ultrasonic waves transmitted through a medium at constant pressure and temperature, provides the ability to determine bottle pressure without the necessity of removing the bottle from the missile. This bottle had previously been used for pressurizing the Flight Control Actuation System. The ultrasonic waves were introduced into the bottle by a transducer attached to one side of the gas bottle and received by a transducer attached 180 directly opposite the input transducer. The amplitude of the ultrasonic signal decreased with decreasing pressure, proving that the method was feasible.

  7. Effect of Specimen Diameter on Tensile Properties of Austenitic Stainless Steels in Liquid Hydrogen and Gaseous Helium at 20K

    NASA Astrophysics Data System (ADS)

    Fujii, H.; Ohmiya, S.; Shibata, K.; Ogata, T.

    2006-03-01

    Tensile tests using round bar type specimens of 3, 5 and 7 mm in diameter were conducted at 20K in liquid hydrogen and also in gaseous helium at the same temperature for three major austenitic stainless steels, JIS SUS304L, 316L and 316LN, extensively used for cryogenic applications including liquid hydrogen transportation and storage vessels. Stress-strain curves were considerably different between circumstances and also specimen diameter, resulting in differences of strength and ductility. In liquid hydrogen, serrated deformation appeared after considerable work hardening and more active in specimens with larger diameter. Meanwhile serrated deformation was observed from the early stage of plastic deformation in gaseous helium at 20 K and serration was more frequent in specimens with smaller diameter. The serrated deformation behaviors were numerically simulated for 304L steel with taking thermal properties such as thermal conductivity, specific heat, heat transfer from specimens to cryogenic media into account, and some agreement with the experiments was obtained.

  8. Measurement of uranium enrichment for gaseous uranium at low pressure

    NASA Astrophysics Data System (ADS)

    Close, D. A.; Pratt, J. C.; Atwater, H. F.; Malanify, J. J.; Nixon, K. V.; Speir, L. G.

    X-ray fluorescence determines the amount of total uranium present in gaseous UF6 inside cascade header pipes of a uranium centrifuge enrichment facility. A highly collimated source, highly collimated detctor, and a very rigid, reproducible geometry are required. Two measurements of the 185.7 keV gamma ray from U-235 using two collimators determine the amount of U-235 present only in the gas phase. The ratio of the gas only U235 signal to the total uranium gas only signal is directly proportional to the enrichment of the process UF6 gas. This measurement technique is independent of the deposit that forms on a surface in contact with UF6. This measurement technique is independent of the pressure of the gaseous UF6. This technique has the required sensitivity to determine whether the process gas is of uranium enrichment less than or equal to 20% or 20%.

  9. MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN

    SciTech Connect

    Stalheim, Mr. Douglas; Boggess, Todd; San Marchi, Chris; Jansto, Steven; Somerday, Dr. B; Muralidharan, Govindarajan; Sofronis, Prof. Petros

    2010-01-01

    The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best

  10. 80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM STORAGE AND TRANSFER CONTROL SKIDS ON NORTH END OF SLC-3W FUEL APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. DETAIL OF THE HELIUM PRESSURIZATION AND CHECKOUT PANEL, SECOND LEVEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE HELIUM PRESSURIZATION AND CHECK-OUT PANEL, SECOND LEVEL OF THE EXTERNAL TANK CHECK-OUT CELLS, HB-2, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  12. Optimization of gaseous helium heater for 2 K cryogenic system for VECC’s superconducting electron linac

    NASA Astrophysics Data System (ADS)

    Ahammed, Manir; Ghosh, Siddhartha; Saha, Subrata; Singh, Sandeep Kumar; Bhattacharya, Tamal Kumar; DuttaGupta, Anjan; Pal, Gautam; Naik, Vaishali; Chakrabarti, Alok

    2014-09-01

    Niobium superconducting radiofrequency cavities are generally operated at around 2 K temperature to achieve a high quality factor by reducing residual surface losses. 2 K temperature is produce by lowering down the pressure of the helium by employing a sub-atmospheric vacuum pumping system. The cavities are immersed in liquid helium bath, maintained in the helium chamber. A special heater is optimized for warming up the helium gas coming out from the helium chamber to 300 K before it enters the pumping system. Keeping in view the uninterrupted and reliable operation of the superconducting electron linac and safe running of the liquid helium plant, a tubular heat exchanger type of heater is designed. Current is passed through the tubes of the heater so as to let the tube banks themselves act as heating element. He gas, passing through the tubes, absorbs the heat and warms up to the desired temperature. Unlike common notion, it has been observed that heater with longer length could reduce the requirement of the heater power but at the cost of extra pumping power, required to counter balance the excess pressure drop caused by the additional length of the heater. Pressure drop is kept within 50 Pa for 2 g/s helium flow rate. The whole lot of tubes, divided into 4 bundles, are electrically connected in series so that current rating of the feed-through could be kept within 750 A. This paper discusses the methodology used for optimizing the design of the heater.

  13. Heat transport of nitrogen in helium atmospheric pressure microplasma

    NASA Astrophysics Data System (ADS)

    Xu, S. F.; Zhong, X. X.

    2013-07-01

    Stable DC atmospheric pressure normal glow discharges in ambient air were produced between the water surface and the metallic capillary coupled with influx of helium gas. Multiple independent repeated trials indicated that vibrational temperature of nitrogen rises from 3200 to 4622 K, and rotational temperature of nitrogen decreases from 1270 to 570 K as gas flux increasing from 20 to 80 sccm and discharge current decreasing from 11 to 3 mA. Furthermore, it was found that the vibrational degree of the nitrogen molecule has priority to gain energy than the rotational degree of nitrogen molecule in nonequilibrium helium microplasma.

  14. Spontaneous Raman Scattering Diagnostics for High-pressure Gaseous Flames

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Reddy, D. R. (Technical Monitor)

    2002-01-01

    A high-pressure (up to 60 atm) gaseous burner facility with optical access that provides steady, reproducible flames with high precision, and the ability to use multiple fuel/oxidizer combinations has been developed. In addition, a high-performance spontaneous Raman scattering system for use in the above facility has also been developed. Together, the two systems will be used to acquire and establish a comprehensive Raman scattering spectral database for use as a quantitative high-pressure calibration of single-shot Raman scattering measurements in high-pressure combustion systems. Using these facilities, the Raman spectra of H2-Air flames were successfully measured at pressures up to 20 atm. The spectra demonstrated clear rotational and ro-vibrational Raman features of H2, N2, and H2O. theoretical Raman spectra of pure rotational H2, vibrational H2, and vibrational N2 were calculated using a classical harmonic-oscillator model with pressure broadening effects and fitted to the data. At a gas temperature of 1889 K for a phi = 1.34 H2-Air flame, the model and the data showed good agreement, confirming a ro-vibrational equilibrium temperature.

  15. Operation of a THGEM-based detector in low-pressure Helium

    NASA Astrophysics Data System (ADS)

    Cortesi, M.; Yurkon, J.; Stolz, A.

    2015-02-01

    In view of a possible application as a charge-particle track readout for an Active Target Time Projection Chamber (AT-TPC), the operating properties of THick Gaseous Electron Multipliers (THGEM) in pure low-pressure Helium were investigated. This paper includes the effective gain dependence on pressure for different detector configurations (single-, double-, triple-cascade setup), long-term gain stability and energy resolution from tracks of 5.5 MeV alpha particles. Stable operational conditions and maximum detector gains of 104-107 have been achieved in pure Helium at pressure ranging from 100 torr up to 760 torr. Energy resolution of 6.65% (FWHM) for 690 keV of energy deposited by 5.5 MeV alpha particles at 350 torr was measured. The expected energy resolution for the full track is around 2.4% (FWHM). These results, together with the robustness of THGEM electrodes against spark damage, make THGEM structures highly competitive compared to other technologies considered for TPC applications in an active target operating with pure noble gases, requiring a high dynamic range and a wide operating pressure range down to few hundred torr.

  16. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    NASA Technical Reports Server (NTRS)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  17. Contamination of liquid oxygen by pressurized gaseous nitrogen

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; King, Tracy K.; Ngo, Kim Chi

    1989-01-01

    The penetration of pressurized gaseous nitrogen (GN2) into liquid oxygen (LOX) was investigated experimentally in the 7-inch High Temperature Tunnel, the pilot tunnel for the 8-foot High Temperature Tunnel (8'HTT) at Langley Research Center. A preliminary test using a nuclear monitor revealed the extent of the liquid nitrogen (LN2) build-up at the LOX interface as a function of GN2 pressure. Then an adaptation of the differential flash vaporization technique was used to determine the binary diffusivity of the LOX-LN2 system at a temperature of 90.2 K. The measured value D equals 0.000086 sq cm/s + or - 25 percent together with two prior measurements at lower temperatures revealed an excellent fit to the Arrhenius equation, yielding a pre-exponential factor D sub 0 equals 0.0452 sq cm/s and an activation enthalpy H equals 1.08 kcal/mol. At a pressure of 1700 psi and holding time of 15 min, the penetration of LN2 into LOX (to a 1 percent contamination level) was found to be 0.9 cm, indicating but minimal impact upon 8'HTT operations.

  18. High-pressure soot formation and diffusion flame extinction characteristics of gaseous and liquid fuels

    NASA Astrophysics Data System (ADS)

    Karatas, Ahmet Emre

    High-pressure soot formation and flame stability characteristics were studied experimentally in laminar diffusion flames. For the former, radially resolved soot volume fraction and temperature profiles were measured in axisymmetric co-flow laminar diffusion flames of pre-vaporized n-heptane-air, undiluted ethylene-air, and nitrogen and carbon dioxide diluted ethylene-air at elevated pressures. Abel inversion was used to re-construct radially resolved data from the line-of-sight spectral soot emission measurements. For the latter, flame extinction strain rate was measured in counterflow laminar diffusion flames of C1-4 alcohols and hydrocarbon fuels of n-heptane, n-octane, iso-octane, toluene, Jet-A, and biodiesel. The luminous flame height, as marked by visible soot radiation, of the nitrogen- and helium-diluted n-heptane and nitrogen- and carbon dioxide-diluted ethylene flames stayed constant at all pressures. In pure ethylene flames, flame heights initially increased with pressure, but changed little above 5 atm. The maximum soot yield as a function of pressure in nitrogen-diluted n-heptane diffusion flames indicate that n-heptane flames are slightly more sensitive to pressure than gaseous alkane hydrocarbon flames at least up to 7 atm. Ethylene's maximum soot volume fractions were much higher than those of ethane and n-heptane diluted with nitrogen (fuel to nitrogen mass flow ratio is about 0.5). Pressure dependence of the peak carbon conversion to soot, defined as the percentage of fuel's carbon content converted to soot, was assessed and compared to previous measurements with other gaseous fuels. Maximum soot volume fractions were consistently lower in carbon dioxide-diluted flames between 5 and 15 atm but approached similar values to those in nitrogen-diluted flames at 20 atm. This observation implies that the chemical soot suppression effect of carbon dioxide, previously demonstrated at atmospheric pressure, is also present at elevated pressures up to 15 atm

  19. Automatic Refilling System For Liquid Helium

    NASA Technical Reports Server (NTRS)

    Serlemitsos, Aristides; Sansebastian, Mark; Geagen, Jay; Warner, Brent

    1990-01-01

    Cryogenic experiments left unattended for days. System automatically replenishes liquid helium in cryogenic experimental apparatus as liquid evaporates. Automatic filling system transfers liquid helium from storage vessel to experimental apparatus under computer control. Gaseous helium from cylinder supplies pumping pressure. Circuit senses level of liquid helium by sensing voltage across measuring resistors in series with silicon resistance thermometers (SRT's). Low voltage indicates SRT covered, while high voltage indicates uncovered.

  20. Superconducting cable cooling system by helium gas at two pressures

    DOEpatents

    Dean, John W.

    1977-01-01

    Thermally contacting, oppositely streaming, cryogenic fluid streams in the same enclosure in a closed cycle that changes the fluid from a cool high pressure helium gas to a cooler reduced pressure helium gas in an expander so as to be at different temperature ranges and pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid from a refrigerator at one end of the line as a cool gas at a temperature range T.sub.2 to T.sub.3 in the go leg, then circulating the gas through an expander at the other end of the line where the gas becomes a cooler gas at a reduced pressure and at a reduced temperature T.sub.4 and finally by circulating the cooler gas back again to the refrigerator in a return leg at a temperature range T.sub.4 to T.sub.5, while in thermal contact with the gas in the go leg, and in the same enclosure therewith for compression into a higher pressure gas at T.sub.2 in a closed cycle, where T.sub.2 >T.sub.3 and T.sub.5 >T.sub.4, the fluid leaves the enclosure in the go leg as a gas at its coldest point in the go leg, and the temperature distribution is such that the line temperature decreases along its length from the refrigerator due to the cooling from the gas in the return leg.

  1. Influence of flowing helium gas on plasma plume formation in atmospheric pressure plasma

    SciTech Connect

    Yambe, Kiyoyuki; Konda, Kohmei; Ogura, Kazuo

    2015-05-15

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and a foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. The helium gas flowing out of quartz tube mixes with air, and the flow channel is composed of the regions of flowing helium gas and air. The plasma plume length is equivalent to the reachable distance of flowing helium gas. Although the amount of helium gas on the flow channel increases by increasing the inner diameter of quartz tube at the same gas flow velocity, the plasma plume length peaks at around 8 m/s of gas flow velocity, which is the result that a flow of helium gas is balanced with the amount of gas. The plasma plume is formed at the boundary region where the flow of helium gas is kept to the wall of the air.

  2. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  3. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    NASA Astrophysics Data System (ADS)

    Vasile Nastuta, Andrei; Topala, Ionut; Grigoras, Constantin; Pohoata, Valentin; Popa, Gheorghe

    2011-03-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  4. Applying Chemical Potential and Partial Pressure Concepts to Understand the Spontaneous Mixing of Helium and Air in a Helium-Inflated Balloon

    ERIC Educational Resources Information Center

    Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim

    2005-01-01

    The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…

  5. Quartz Tuning Fork Pressure Gauge for High-Pressure Liquid Helium

    NASA Astrophysics Data System (ADS)

    Botimer, J.; Velasco, A.; Taborek, P.

    2016-08-01

    We have measured the quality factor Q and the frequency f of a 32-kHz quartz tuning fork immersed in liquid ^4 He between 0.9 and 3.0 K, over pressures ranging from the saturated vapor pressure to ≈ 25 atm. At constant pressure, as a function of temperature, the quality factor and frequency have strong features related to the temperature dependence of the superfluid fraction. At constant temperature, Q depends on the superfluid fraction, while the frequency is a smooth function of pressure. The behavior is explained using a simple hydrodynamic model. The liquid helium viscosity is obtained from measured values of Q, and together with tabulated values of the helium density as a function of pressure and temperature, the frequency shift can be parameterized as a function of temperature and pressure. The observed sensitivity is ≈ 7.8 Hz/atm. The quartz tuning fork provides a compact low power method of measuring the pressure in the bulk liquid.

  6. 75 FR 53353 - Notice of Availability of Final Interim Staff Guidance Document No. 25 “Pressure and Helium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... COMMISSION Notice of Availability of Final Interim Staff Guidance Document No. 25 ``Pressure and Helium... Guidance Document No. 25 (ISG-25) ``Pressure and Helium Leakage Testing of the Confinement Boundary of... helium leakage testing and ASME Code required pressure (hydrostatic/pneumatic) testing that is...

  7. Experimental investigation on pressurization performance of cryogenic tank during high-temperature helium pressurization process

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Yonghua, Jin; Yuan, Ma

    2015-03-01

    Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22-24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.

  8. Low temperature plasma RF capacitive discharge in helium at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hakki, A.; Fayrushin, I.; Kashapov, N.

    2016-01-01

    The paper describes Low temperature plasma RF capacitive discharge in helium at atmospheric pressure. The circuit has been done, to obtain output currentabout 90mA,and the maximum power was 100W, The frequency of the discharging was f = 40MHz.Twolamps (DУ-50) were used in power supply. Helium consumption was about 1.5l/m.

  9. Property of THGEM in Low-Pressure Deuterium for a Low-Pressure Gaseous Active Target

    NASA Astrophysics Data System (ADS)

    Lee, CheongSoo; Ota, Shinsuke; Tokieda, Hiroshi; Kojima, Reiko; Watanabe, Yuni; Saiseau, Raphael; Uesaka, Tomohiro

    A low-pressure gaseous active target called CNS Active Target (CAT) has been developed for a deuteron inelastic scattering off exotic nuclei. The CAT consists of a combination of Gas Electron Multiplier (GEM) and Time Projection Chamber (TPC) as a vertex tracker, and Si detectors as a total kinetic energy detector for a high momentum recoil particles. In order to operate CAT in low-pressure deuterium, a 400 µm-thick Thick Gas Electron Multiplier (THGEM) is used for the amplification of the TPC in low-pressure deuterium gas to achieve a gas gain of 104 at 0.4-atm. We used a triple THGEM configuration at 0.18-0.5 atm deuterium gas and the effective gas gain of more than 104 was achieved at 0.4-atm. In addition, a long-term stability at 0.4-atm deuterium was also investigated and a relaxation time of about 2-hours was observed, which is significantly shorter than our previous study.

  10. Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures.

    PubMed

    Lucianetti, Antonio; Albach, Daniel; Chanteloup, Jean-Christophe

    2011-06-20

    We illustrate the benefits of a thin, low pressure helium cell for efficient and safe heat removal in cryogenically-cooled active mirror laser amplifiers operating in the [100 J-1 kJ]/[1-10 Hz] range. A homogeneous gain medium temperature distribution averaging 160 K is obtained with a sub-mm helium-filled gap between the gain medium and a copper plate at 77 K. A significant degree of flexibility for tuning the temperature in the amplifier can be achieved by varying the pressure of the helium gas in the 10(2) to 10(5) Pa range. PMID:21716519

  11. Calibrating the Helium Pressurization System for the Space Shuttle Liquid-Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Analysis of the results from the STS-114 tanking tests and subsequent launch called into question existing thermal and mass models of helium pressurization of the liquid hydrogen tank. This hydrogen tank, which makes up the bottom two-thirds of the External Tank, is pressurized prior to launch to avoid cavitation in the Shuttle Main Engine pumps. At about 2 minutes prior to launch, the main vent valve is closed, and pressurized helium flows into the tank ullage space to achieve set point pressure. As the helium gas cools, its pressure drops, calling for additional helium. Subsequent helium flows are provided in short, timed pulses. The number of pulses is taken as a rough leak indicator. An analysis of thermal models by Marshall Space Flight Center showed considerable uncertainty in the pressure-versus-time behavior of the helium ullage space and the ability to predict the number of pulses normally expected. Kennedy Space Center proposed to calibrate the dime-sized orifice, which together with valves, controls the helium flow quantity (Figure 1). Pressure and temperature sensors were installed to provide upstream and downstream measurements necessary to compute flow rate based on the orifice discharge coefficient. An assessment of flow testing with helium indicated an extremely costly use of this critical resource. In order to reduce costs, we proposed removing the orifices from each Mobile Launcher Platform (MLP) and asking Colorado Engineering Experiment Station Inc. (CEESI) to calibrate the flow. CEESI has a high-pressure air flow system with traceable flow meters capable of handling the large flow rates. However, literature research indicated that square-edged orifices of small diameters often exhibit significant hysteresis and nonrepeatability in the vicinity of choked or sonic flow. Fortunately, the MLP orifices behaved relatively well in testing (Figure 2). Using curve fitting of the air-flow data, in conjunction with ASME orifice modeling equations, a

  12. Modeling the pressure increase in liquid helium cryostats after failure of the insulating vacuum

    SciTech Connect

    Heidt, C.; Grohmann, S.; Süßer, M.

    2014-01-29

    The pressure relief system of liquid helium cryostats requires a careful design, due to helium's low enthalpy of vaporization and due to the low operating temperature. Hazard analyses often involve the failure of the insulating vacuum in the worst-case scenario. The venting of the insulating vacuum and the implications for the pressure increase in the helium vessel, however, have not yet been fully analyzed. Therefore, the dimensioning of safety devices often requires experience and reference to very few experimental data. In order to provide a better foundation for the design of cryogenic pressure relief systems, this paper presents an analytic approach for the strongly dynamic process induced by the loss of insulating vacuum. The model is based on theoretical considerations and on differential equation modeling. It contains only few simplifying assumptions, which will be further investigated in future experiments. The numerical solutions of example calculations are presented with regard to the heat flux into the helium vessel, the helium pressure increase and the helium flow rate through the pressure relief device. Implications concerning two-phase flow and the influence of kinetic energy are discussed.

  13. Measurement of viscosity of gaseous mixtures at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Mall, G. H.; Chegini, H.

    1986-01-01

    Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.

  14. Measurement of viscosity of gaseous mixtures at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Singh, J. J.; Mall, G. H.; Chegini, H.

    1986-05-01

    Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.

  15. CFD Modeling of Helium Pressurant Effects on Cryogenic Tank Pressure Rise Rates in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Grayson, Gary; Lopez, Alfredo; Chandler, Frank; Hastings, Leon; Hedayat, Ali; Brethour, James

    2007-01-01

    A recently developed computational fluid dynamics modeling capability for cryogenic tanks is used to simulate both self-pressurization from external heating and also depressurization from thermodynamic vent operation. Axisymmetric models using a modified version of the commercially available FLOW-3D software are used to simulate actual physical tests. The models assume an incompressible liquid phase with density that is a function of temperature only. A fully compressible formulation is used for the ullage gas mixture that contains both condensable vapor and a noncondensable gas component. The tests, conducted at the NASA Marshall Space Flight Center, include both liquid hydrogen and nitrogen in tanks with ullage gas mixtures of each liquid's vapor and helium. Pressure and temperature predictions from the model are compared to sensor measurements from the tests and a good agreement is achieved. This further establishes the accuracy of the developed FLOW-3D based modeling approach for cryogenic systems.

  16. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOEpatents

    Ghate, Madhav R.; Yang, Ralph T.

    1987-01-01

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

  17. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOEpatents

    Ghate, M.R.; Yang, R.T.

    1985-10-03

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

  18. Investigation of helium injection cooling to liquid oxygen under pressurized condition

    NASA Astrophysics Data System (ADS)

    Cho, Namkyung; Kwon, Ohsung; Kim, Youngmog; Jeong, Sangkwon

    2006-11-01

    Sub-cooling of cryogenic propellant by helium injection is one of the most effective methods for suppressing bulk boiling and keeping sub-cooled liquid oxygen before rocket launch. Compared with the helium injection cooling under atmospheric condition, helium injection cooling under pressurized condition has advantage that it can greatly reduce re-warming time of the sub-cooled liquid oxygen. Helium injection cooling under pressurized condition is characterized by cooling of initially sub-cooled cryogenic liquid, which is significantly different from that of the atmospheric condition where liquid oxygen usually exists at saturated condition. In this paper, we discuss the characteristics of helium injection cooling under pressurized condition, with the associated physical understanding of the process. Experimental results are presented along the simulations of variously combined system parameters based on the finite heat transfer and instantaneous diffusion mass transfer model. A non-dimensional parameter for identifying the cooling regime is conceived. The critical values of the non-dimensional parameters and injected helium temperatures are also estimated.

  19. Recovery of purified helium or hydrogen from gas mixtures

    DOEpatents

    Merriman, J.R.; Pashley, J.H.; Stephenson, M.J.; Dunthorn, D.I.

    1974-01-15

    A process is described for the removal of helium or hydrogen from gaseous mixtures also containing contaminants. The gaseous mixture is contacted with a liquid fluorocarbon in an absorption zone maintained at superatomspheric pressure to preferentially absorb the contaminants in the fluorocarbon. Unabsorbed gas enriched in hydrogen or helium is withdrawn from the absorption zone as product. Liquid fluorocarbon enriched in contaminants is withdrawn separately from the absorption zone. (10 claims)

  20. A Study on the Heat Transfer Properties of Pressurized Helium II through Fine Channels

    SciTech Connect

    Kimura, N.; Nakai, H.; Yamamoto, A.; Murakami, M.; Shintomi, T.

    2006-04-27

    An experimental study was carried out on the heat transfer properties of pressurized superfluid helium in the Gorter-Mellink heat transfer region. By using channels of hydraulic diameter from 5.6 x 10- through 4.81 x 10-3 m, the heat transfer properties of pressurized superfluid helium were measured in the experiment. The temperature dependence of Gorter-Mellink parameter, AGM, is revealed from the experimental results. It is also proven that AGM depend only on temperature, and not on the channel size and shape. The effect of quantized vortices on heat transfer of pressurized superfluid helium is discussed in comparison of the channel diameter with the mean vortex line spacing.

  1. Design and Test of a Liquid Oxygen / Liquid Methane Thruster with Cold Helium Pressurization Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Morehead, Robert L.; Atwell, Matthew J.; Hurlbert, Eric A.

    2015-01-01

    A liquid oxygen / liquid methane 2,000 lbf thruster was designed and tested in conjuction with a nozzle heat exchanger for cold helium pressurization. Cold helium pressurization systems offer significant spacecraft vehicle dry mass savings since the pressurant tank size can be reduced as the pressurant density is increased. A heat exchanger can be incorporated into the main engine design to provide expansion of the pressurant supply to the propellant tanks. In order to study the systems integration of a cold-helium pressurization system, a 2,000 lbf thruster with a nozzle heat exchanger was designed for integration into the Project Morpheus vehicle at NASA Johnson Space Center. The testing goals were to demonstrate helium loading and initial conditioning to low temperatures, high-pressure/low temperature storage, expansion through the main engine heat exchanger, and propellant tank injection/pressurization. The helium pressurant tank was an existing 19 inch diameter composite-overwrap tank, and the targert conditions were 4500 psi and -250 F, providing a 2:1 density advantage compared to room tempatrue storage. The thruster design uses like-on-like doublets in the injector pattern largely based on Project Morpheus main engine hertiage data, and the combustion chamber was designed for an ablative chamber. The heat exchanger was installed at the ablative nozzle exit plane. Stand-alone engine testing was conducted at NASA Stennis Space Center, including copper heat-sink chambers and highly-instrumented spoolpieces in order to study engine performance, stability, and wall heat flux. A one-dimensional thermal model of the integrated system was completed. System integration into the Project Morpheus vehicle is complete, and systems demonstrations will follow.

  2. Growth of a Bacterium Under a High-Pressure Oxy-Helium Atmosphere †

    PubMed Central

    Taylor, Craig D.

    1979-01-01

    Growth of a barotolerant marine organism, EP-4, in a glutamate medium equilibrated with an oxy-helium atmosphere at 500 atmospheres (atm; total pressure) (20°C) was compared with control cultures incubated at hydrostatic pressures of 1 and 500 atm. Relative to the 1-atm control culture, incubation of EP-4 at 500 atm in the absence of an atmosphere resulted in an approximately fivefold reduction in the growth rate and a significant but time variant reduction in the rate constants for the incorporation of substrate into cell material and respiration. Distinct from the pressurized control and separate from potential effects of dissolution of helium upon decompression of subsamples, exposure of the organism to high-pressure oxy-helium resulted in either a loss of viability of a large fraction of the cells or the arrest of growth for one-third of the experimental period. After these initial effects, however, the culture grew exponentially at a rate which was three times greater than the 500-atm control culture. The rate constant for the incorporation of substrate into cell material was also enhanced twofold in the presence of high-pressure oxy-helium. Dissolved oxygen was well controlled in all of the cultures, minimizing any potential toxic effects of this gas. PMID:16345337

  3. Pressure dependence of wall relaxation in polarized {sup 3}He gaseous cells

    SciTech Connect

    Zheng, W.; Gao, H.; Ye, Q.; Zhang, Y.

    2011-06-15

    We have observed a linear pressure dependence of longitudinal relaxation time T{sub 1} at 4.2 and 295 K in gaseous {sup 3}He cells made of either bare Pyrex glass or Cs- or Rb-coated Pyrex due to paramagnetic sites in the cell wall. The paramagnetic wall relaxation is previously thought to be independent of {sup 3}He pressure. We develop a model to interpret the observed wall relaxation by taking into account the diffusion process, and our model gives a good description of the data.

  4. [High pressure processing of spices in atmosphere of helium for decrease of microbiological contamination].

    PubMed

    Windyga, Bozena; Fonberg-Broczek, Monika; Sciezyńska, Halina; Skapska, Sylwia; Górecka, Krystyna; Grochowska, Anna; Morawski, Andrzej; Szczepek, Janusz; Karłowski, Kazimierz; Porowski, Sylwester

    2008-01-01

    The aim of the study was to investigate the microbiological decontamination of coriander and caraway when HPP technology was applied in elevated temperature in helium atmosphere. The HPP and heat treatment was conducted for 30 minutes at 800 and 1 000 MPa and temperature range was 60 - 121 degrees C. Contamination with aerobic mesophilic bacteria was decreased by about 2 logarithmic cycles. Total elimination of coliform and yeast and moulds was observed. The efficacy of HPP treatment under helium atmosphere depended on the content of the water in tested samples. It can be concluded that high pressure treatment under atmosphere of helium, combination of proper high pressure and time improved the microbiological quality of spices.

  5. Effects of helium and nitrogen as pressurants in nitrogen tetroxide transfer

    NASA Technical Reports Server (NTRS)

    Bizjak, F.; Simkin, D. J.

    1967-01-01

    Study investigates effects of helium and nitrogen as pressurants in nitrogen tetroxide transfer from one vessel to another at a higher elevation. Results may contribute to creation of new environmental systems and improved oxygen solubility in water to promote fish life.

  6. Thermophysical properties of helium-4 from 4 to 3000 R with pressures to 15000 psia

    NASA Technical Reports Server (NTRS)

    Mccarty, R. D.

    1972-01-01

    Data on many of the properties of helium commonly used in engineering calculations are compiled over as wide a temperature and pressure range as is practical. These properties are presented in a form which is convenient to the engineer. All of these properties have been critically evaluated and represent the best values for that property at this time.

  7. Three electrode atmospheric pressure plasma jet in helium flow

    NASA Astrophysics Data System (ADS)

    Maletic, Dejan; Puac, Nevena; Malovic, Gordana; Petrovic, Zoran Lj.

    2015-09-01

    Plasma jets are widely used in various types of applications and lately more and more in the field of plasma medicine. However, it is not only their applicability that distinguishes them from other atmospheric plasma sources, but also the behavior of the plasma. It was shown that plasma plume is not continuous, but discrete set of plasma packages. Here we present iCCD images and current voltage characteristics of a three electrode plasma jet. Our plasma jet has a simple design with body made of glass tube and two transparent electrodes wrapped around it. The additional third metal tip electrode was positioned at 10 and 25 mm in front of the jet nozzle and connected to the same potential as the powered electrode. Power transmitted to the plasma was from 0.5 W to 4.0 W and the helium flow rate was kept constant at 4 slm. For the 10 mm configuration plasma is ignited on the metal tip in the whole period of the excitation signal and in the positive half cycle plasma ``bullet'' is propagating beyond the metal tip. In contrast to that, for the 25 mm configuration at the tip electrode plasma can be seen only in the minimum and maximum of the excitation signal, and there is no plasma ``bullet'' formation. This research has been supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, under projects ON171037 and III41011.

  8. Compression of helium to high pressures and temperatures using a ballistic piston apparatus

    NASA Technical Reports Server (NTRS)

    Roman, B. P.; Rovel, G. P.; Lewis, M. J.

    1971-01-01

    Some preliminary experiments are described which were carried out in a high enthalpy laboratory to investigate the compression of helium, a typical shock-tube driver gas, to very high pressures and temperatures by means of a ballistic piston. The purpose of these measurements was to identify any problem areas in the compression process, to determine the importance of real gas effects duDC 47355s process, and to establish the feasibility of using a ballistic piston apparatus to achieve temperatures in helium in excess of 10,000 K.

  9. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    NASA Astrophysics Data System (ADS)

    Li, Guo; Li, He-Ping; Wang, Li-Yan; Wang, Sen; Zhao, Hong-Xin; Sun, Wen-Ting; Xing, Xin-Hui; Bao, Cheng-Yu

    2008-06-01

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc.

  10. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    SciTech Connect

    Li Guo; Li Heping; Wang Sen; Sun Wenting; Bao Chengyu; Wang Liyan; Zhao Hongxin; Xing Xinhui

    2008-06-02

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc.

  11. Thermodynamics of hydrogen-helium mixtures at high pressure and finite temperature

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1972-01-01

    A technique is reviewed for calculating thermodynamic quantities for mixtures of light elements at high pressure, in the metallic state. Ensemble averages are calculated with Monte Carlo techniques and periodic boundary conditions. Interparticle potentials are assumed to be coulombic, screened by the electrons in dielectric function theory. This method is quantitatively accurate for alloys at pressures above about 10 Mbar. An alloy of equal parts hydrogen and helium by mass appears to remain liquid and mixed for temperatures above about 3000 K, at pressures of about 15 Mbar. The additive volume law is satisfied to within about 10%, but the Gruneisen equation of state gives poor results. A calculation at 1300 K shows evidence of a hydrogen-helium phase separation.

  12. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  13. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  14. High-Pressure Gaseous Burner (HPGB) Facility Completed for Quantitative Laser Diagnostics Calibration

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2002-01-01

    A gas-fueled high-pressure combustion facility with optical access, which was developed over the last 2 years, has just been completed. The High Pressure Gaseous Burner (HPGB) rig at the NASA Glenn Research Center can operate at sustained pressures up to 60 atm with a variety of gaseous fuels and liquid jet fuel. The facility is unique as it is the only continuous-flow, hydrogen-capable, 60-atm rig in the world with optical access. It will provide researchers with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow's advanced aircraft engines. The facility provides optical access to the flame zone, enabling the calibration of nonintrusive optical diagnostics to measure chemical species and temperature. The data from the HPGB rig enables the validation of numerical codes that simulate gas turbine combustors, such as the National Combustor Code (NCC). The validation of such numerical codes is often best achieved with nonintrusive optical diagnostic techniques that meet these goals: information-rich (multispecies) and quantitative while providing good spatial and time resolution. Achieving these goals is a challenge for most nonintrusive optical diagnostic techniques. Raman scattering is a technique that meets these challenges. Raman scattering occurs when intense laser light interacts with molecules to radiate light at a shifted wavelength (known as the Raman shift). This shift in wavelength is unique to each chemical species and provides a "fingerprint" of the different species present. The facility will first be used to gather a comprehensive data base of laser Raman spectra at high pressures. These calibration data will then be used to quantify future laser Raman measurements of chemical species concentration and temperature in this facility and other facilities that use Raman scattering.

  15. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S.; Tucker, S.

    2006-01-01

    In support of the development of a zero gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray bar thermodynamic vent system (TVS). Fourteen days of testing was performed in August - September 2005, with an ambient heat leak of about 70-80 watts and tank fill levels of 90%, 50%, and 25%. The TVS successfully controlled the tank pressure within a +/- 3.45 kPa (+/- 0.5 psi) band with various helium concentration levels in the ullage. Relative to pressure control with an "all hydrogen" ullage, the helium presence resulted in 10 to 30 per cent longer pressure reduction durations, depending on the fill level, during the mixing/venting phase of the control cycle. Additionally, the automated control cycle was based on mixing alone for pressure reduction until the pressure versus time slope became positive, at which time the Joule-Thomson vent was opened. Testing was also conducted to evaluate thermodynamic venting without the mixer operating, first with liquid then with vapor at the recirculation line inlet. Although ullage stratification was present, the ullage pressure was successfully controlled without the mixer operating. Thus, if vapor surrounded the pump inlet in a reduced gravity situation, the ullage pressure can still be controlled by venting through the TVS Joule Thomson valve and heat exchanger. It was evident that the spray bar configuration, which extends almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the mixer operating. Details regarding the test setup and procedures are presented in the paper. 1

  16. Floating Pressure Conversion of Two 3.5 KW, 20 K, Helium Refrigerators

    NASA Astrophysics Data System (ADS)

    Homan, J.; Ganni, V.; Sidi-Yekhlef, A.; Creel, J.; Norton, R.; Linza, R.; Vargas, G.; Lauterbach, J.; Urbin, J.; Howe, D.

    2010-04-01

    Two helium refrigerators, each rated for 3.5 KW at 20 K, are used at NASA's Johnson Space Center (JSC) in Building No. 32 to provide cryogenic-pumping within two large thermal-vacuum chambers. These refrigerators were originally commissioned in 1996. New changes to the controls of these refrigerators were recently completed. This paper describes some of the control issues that necessitated the controls change-over. It will describe the modifications and the new process control which allows the refrigerators to take advantage of the Ganni Cycle "floating pressure" control technology. The controls philosophy change-over to the floating pressure control technology was the first application on a helium gas refrigeration system. Previous implementations of the floating pressure technology have been on 4 K liquefaction and refrigeration systems, which have stored liquid helium volumes that have level indications used for varying the pressure levels (charge) in the system for capacity modulation. The upgrades have greatly improved the performance, stability, and efficiency of these two refrigerators. The upgrades have also given the operators more information and details about the operational status of the main components (compressors, expanders etc.) of the refrigerators at all operating conditions (i.e. at various loads in the vacuum chambers). The performance data of the two systems, pre and post upgrading are presented.

  17. FLOATING PRESSURE CONVERSION AND EQUIPMENT UPGRADES OF TWO 3.5KW, 20K, HELIUM REFRIGERATORS

    SciTech Connect

    J. Homan, V. Ganni, A. Sidi-Yekhlef, J. Creel, R. Norton, R. Linza, G. Vargas, J. Lauterbach, J. Urbin, D. Howe

    2010-04-01

    Two helium refrigerators, each rated for 3.5 KW at 20 K, are used at NASA's Johnson Space Center (JSC) in Building No. 32 to provide cryogenic-pumping within two large thermal-vacuum chambers. These refrigerators were originally commissioned in 1996. New changes to the controls of these refrigerators were recently completed. This paper describes some of the control issues that necessitated the controls change-over. It will describe the modifications and the new process control which allows the refrigerators to take advantage of the Ganni Cycle “floating pressure” control technology. The controls philosophy change-over to the floating pressure control technology was the first application on a helium gas refrigeration system. Previous implementations of the floating pressure technology have been on 4 K liquefaction and refrigeration systems, which have stored liquid helium volumes that have level indications used for varying the pressure levels (charge) in the system for capacity modulation. The upgrades have greatly improved the performance, stability, and efficiency of these two refrigerators. The upgrades have also given the operators more information and details about the operational status of the main components (compressors, expanders etc.) of the refrigerators at all operating conditions (i.e. at various loads in the vacuum chambers). The performance data of the two systems, pre and post upgrading are presented.

  18. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    NASA Astrophysics Data System (ADS)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  19. Hydrogen analysis in solid samples using laser-induced helium plasma at atmospheric pressure

    SciTech Connect

    Pardede, Marincan; Kurniawan, Koo Hendrik; Lie, T.J.; Hedwig, Rinda; Idris, Nasrullah; Kobayashi, Takao; Maruyama, Tadashi; Lee, Yong Inn; Kagawa, Kiichiro; Tjia, May On

    2005-08-15

    A special technique for the modification of laser-induced breakdown spectroscopy (LIBS) has been developed to improve the spectral quality of hydrogen emission from a solid sample in helium gas at atmospheric pressure. In this technique, the plasma was generated by focusing a fundamental Nd-YAG (yttrium aluminum garnet) laser into a surrounding helium gas. The helium atoms excited to their metastable states would then serve to excite the atoms of the solid material vaporized by using another Nd-YAG laser. When properly synchronized, the resulting hydrogen emission line of H I 656.2 nm shows a dramatic improvement of the emission intensity and the spectral quality over what was obtained by conventional LIBS technique. This study further reveals that this improvement is mainly due to the role of the metastable excited state in a helium atom, which allows the delayed detection to be performed at a favorable moment when the charged particles responsible for the strong Stark broadening effect in the plasma have mostly disappeared.

  20. A computational modeling study on the helium atmospheric pressure plasma needle discharge

    NASA Astrophysics Data System (ADS)

    Qian, Mu-Yang; Yang, Cong-Ying; Liu, San-Qiu; Wang, Zhen-Dong; Lv, Yan; Wang, De-Zhen

    2015-12-01

    A two-dimensional coupled model of neutral gas flow and plasma dynamics is employed to investigate the streamer dynamics in a helium plasma needle at atmospheric pressure. A parametric study of the streamer propagation as a function of needle tip curvature radius and helium gas flow rate is presented. The key chemical reactions at the He/air mixing layer which drive the streamer propagation are the direct ionization via collision with electrons, the Penning effect being not so crucial. With increasing the gas flow rate from 0.2 standard liter per minute (SLM) to 0.8 SLM, however, the emissions resulting from reactive oxygen and nitrogen species change from a solid circle to a hollow profile and the average streamer propagation velocity decreases. Air impurities (backdiffusion from ambient air) in the helium jet result in a significant increase in the streamer propagation velocity. Besides, with decreasing the tip curvature radiusfrom 200 μm to 100 μm, the electron avalanche process around the near-tip region is more pronounced. However, the spatially resolved plasma parameters distributions (electron, helium metastables, ground state atomic oxygen, etc.) remain almost the same, except that around the near-tip region where their peak values are more than doubled. Project supported partly by the National Natural Science Foundation of China (Grant No. 11465013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB212012), and in part by the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800).

  1. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    SciTech Connect

    Norberg, Seth A. Johnsen, Eric; Kushner, Mark J.

    2015-07-07

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O{sub 2} = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  2. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    SciTech Connect

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  3. Numerical Modeling and Test Data Comparison of Propulsion Test Article Helium Pressurization System

    NASA Technical Reports Server (NTRS)

    Holt, Kimberly; Majumdar, Alok; Steadman, Todd; Hedayat, Ali; Fogle, Frank R. (Technical Monitor)

    2000-01-01

    A transient model of the propulsion test article (PTA) helium pressurization system was developed using the generalized fluid system simulation program (GFSSP). The model included pressurization lines from the facility interface to the engine purge interface and liquid oxygen (lox) and rocket propellant-1 (RP-1) tanks, the propellant tanks themselves including ullage space, and propellant feed lines to their respective pump interfaces. GFSSP's capability was extended to model a control valve to maintain ullage pressure within a specified limit and pressurization processes such as heat transfer between ullage gas, propellant, and the tank wall as well as conduction in the tank wall. The purpose of the model is to predict the flow system characteristics in the entire pressurization system during 80 sec of lower feed system priming, 420 sec of fuel and lox pump priming, and 150 sec of engine firing.

  4. Pressure driven flow studies of superfluid helium-4 through single, high aspect ratio nanopipes

    NASA Astrophysics Data System (ADS)

    Botimer, Jeffrey; Taborek, Peter

    We have measured flow rates of helium-4 through high aspect ratio (>10,000) single glass nanopipes and etched nanopores under the influence of a pressure drop. The initial diameter of the glass pipes is 200nm while the initial diameter of the nanopores is approximately 80nm; the diameter of both types of nanopipe were reduced using atomic layer deposition(ALD) of Al2O3. Flow rates were measured for a wide range of temperatures (0.8K to 3.0K), pressures (up to 40 atm), and pipe lengths (0.8 mm to 30 mm). We observed flow velocities in the range of 1-6 m/s which has a power law dependence on pressure. Flow appears to be governed by turbulence at low temperatures. We have found evidence for a critical pressure above which turbulent flow is eliminated. This critical pressure appears to depend on temperature.

  5. Columnar discharge mode between parallel dielectric barrier electrodes in atmospheric pressure helium

    SciTech Connect

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge

    2014-01-15

    Using a fast-gated intensified charge-coupled device, end- and side-view photographs were taken of columnar discharge between parallel dielectric barrier electrodes in atmospheric pressure helium. Based on three-dimensional images generated from end-view photographs, the number of discharge columns increased, whereas the diameter of each column decreased as the applied voltage was increased. Side-view photographs indicate that columnar discharges exhibited a mode transition ranging from Townsend to glow discharges generated by the same discharge physics as atmospheric pressure glow discharge.

  6. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    NASA Astrophysics Data System (ADS)

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; Morales, Miguel A.

    2016-01-01

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though density-functional-theory-based first-principles methods have the potential to provide the accuracy and computational efficiency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quantification of the errors introduced. In this work, we present a quantum Monte Carlo (QMC) -based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures at thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC-based force estimators and use them to gain insight into how well the local liquid structure is captured by different density functionals. We find that TPSS, BLYP, and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative differences exhibited by the major classes of functionals, and we estimate the magnitudes of these effects when possible.

  7. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    DOE PAGES

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; Morales, Maguel A.

    2016-01-19

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures atmore » thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.« less

  8. Atmospheric pressure discharge plasma decomposition for gaseous air contaminants -- Trichlorotrifluoroethane and trichloroethylene

    SciTech Connect

    Oda, Tetsuji; Yamashita, Ryuichi; Takahashi, Tadashi; Masuda, Senichi

    1996-03-01

    The decomposition performance of gaseous environmental destructive contaminants in air by using atmospheric pressure discharged plasma including the surface discharge induced plasma chemical processing (SPCP) was examined. The main contaminants tested were chlorofluorocarbon (CFC-113) and trichloroethylene, typically. The discharge exciting frequency range studied was wide--50 Hz to 50 kHz. Results showed the low frequency discharge requires high voltage to inject high electric power in the gas and to decompose the contaminants. A Gas Chromatograph Mass Spectrometer was used to analyze discharge products of dense CFC-113 or trichloroethylene. Among the detected products were HCl, CClFO, and CHCl{sub 3}. Two different electrode configurations; the silent discharge (coaxial) electrode and the coil-electrode were also tested and compared to each other as a gas reactor.

  9. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media

    DOEpatents

    McLellan, Edward J.

    1983-01-01

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode (1) and cathode (2) to below breakdown voltage using a dc voltage source (3). An array of resistors (4) or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit (5) producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO.sub.2 laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  10. Simplified Methodology to Estimate the Maximum Liquid Helium (LHe) Cryostat Pressure from a Vacuum Jacket Failure

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Richards, W. Lance

    2015-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared astronomical observation experiments. These experiments carry sensors cooled to liquid helium temperatures. The liquid helium supply is contained in large (i.e., 10 liters or more) vacuum-insulated dewars. Should the dewar vacuum insulation fail, the inrushing air will condense and freeze on the dewar wall, resulting in a large heat flux on the dewar's contents. The heat flux results in a rise in pressure and the actuation of the dewar pressure relief system. A previous NASA Engineering and Safety Center (NESC) assessment provided recommendations for the wall heat flux that would be expected from a loss of vacuum and detailed an appropriate method to use in calculating the maximum pressure that would occur in a loss of vacuum event. This method involved building a detailed supercritical helium compressible flow thermal/fluid model of the vent stack and exercising the model over the appropriate range of parameters. The experimenters designing science instruments for SOFIA are not experts in compressible supercritical flows and do not generally have access to the thermal/fluid modeling packages that are required to build detailed models of the vent stacks. Therefore, the SOFIA Program engaged the NESC to develop a simplified methodology to estimate the maximum pressure in a liquid helium dewar after the loss of vacuum insulation. The method would allow the university-based science instrument development teams to conservatively determine the cryostat's vent neck sizing during preliminary design of new SOFIA Science Instruments. This report details the development of the simplified method, the method itself, and the limits of its applicability. The simplified methodology provides an estimate of the dewar pressure after a loss of vacuum insulation that can be used for the initial design of the liquid helium dewar vent stacks. However, since it is not an exact

  11. Comparison of measured and simulated electron energy distribution functions in low-pressure helium plasmas

    NASA Astrophysics Data System (ADS)

    Gruenwald, J.; Tskhakaya, D.; Kovačič, J.; Čerček, M.; Gyergyek, T.; Ionita, C.; Schrittwieser, R.

    2013-02-01

    Knowledge of the electron energy distribution function (EEDF) is of great interest in different branches of plasma physics ranging from laboratory to fusion plasmas. In the frame of this work systematic measurements of the EEDF in low temperature helium plasmas (Te ≈ 2 eV) at different working gas pressures and discharge currents (Idis between 1 and 2 A) will be presented and compared with numerical particle-in-cell (PIC) code simulations. The experiments were conducted in the Innsbruck double plasma machine and in the Ljubljana linear magnetic plasma device with helium as the working gas. The EEDF was obtained by the second derivative of the characteristic of a Langmuir probe. The PIC code was used to simulate the EEDF by taking into account most of the physical parameters in the plasma vessel.

  12. Detection of deuterium and hydrogen using laser-induced helium gas plasma at atmospheric pressure

    SciTech Connect

    Kurniawan, Koo Hendrik; Lie, Tjung Jie; Suliyanti, Maria Margaretha; Hedwig, Rinda; Abdulmadjid, Syahrun Nur; Pardede, Marincan; Idris, Nasrullah; Kobayashi, Takao; Kusumoto, Yoshihumi; Kagawa, Kiichiro; Tjia, May On

    2005-11-01

    An experimental study on gas analysis by means of laser-induced breakdown spectroscopy was conducted using a Nd-yttrium aluminum garnet laser (1,064 nm, 120 mJ, 8 ns) and helium host gas at atmospheric pressure on a sample of mixed water (H{sub 2}O) and heavy water (D{sub 2}O) in vapor form. It was shown that completely resolved hydrogen (H{sub {alpha}}) and deuterium (D{sub {alpha}}) emission lines that are separated by only 0.179 nm could be obtained at a properly delayed detection time when the charged particles responsible for the strong Stark broadening effect in the plasma have mostly disappeared. It is argued that the helium metastable excited state plays an important role in the hydrogen excitation process.

  13. Diagnosis of gas temperature, electron temperature, and electron density in helium atmospheric pressure plasma jet

    SciTech Connect

    Chang Zhengshi; Zhang Guanjun; Shao Xianjun; Zhang Zenghui

    2012-07-15

    The optical emission spectra of helium atmospheric pressure plasma jet (APPJ) are captured with a three grating spectrometer. The grating primary spectrum covers the whole wavelength range from 200 nm to 900 nm, with the overlapped grating secondary spectrum appearing from 500 nm to 900 nm, which has a higher resolution than that of the grating primary spectrum. So the grating secondary spectrum of OH (A{sup 2}{Sigma} {sup +}({upsilon} Prime = 0) {yields} X{sup 2}{Pi}({upsilon} Double-Prime = 0)) is employed to calculate the gas temperature (T{sub g}) of helium APPJ. Moreover, the electron temperature (T{sub e}) is deduced from the Maxwellian electron energy distribution combining with T{sub g}, and the electron density (n{sub e}) is extracted from the plasma absorbed power. The results are helpful for understanding the physical property of APPJs.

  14. Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39 µm

    NASA Astrophysics Data System (ADS)

    Klingbeil, A. E.; Jeffries, J. B.; Hanson, R. K.

    2006-07-01

    The pressure- and temperature-dependent absorption cross sections of several neat hydrocarbons and multi-component fuels are measured using a 3.39 µm helium-neon laser. Absorption cross section measurements are reported for methane, ethylene, propane, n-heptane, iso-octane, n-decane, n-dodecane, JP-10, gasoline and jet-A with an estimated uncertainty of less than 3.5%. The experimental conditions range from 298 to 673 K and from 500 to 2000 Torr with nitrogen as the bath gas. An apparatus is designed to facilitate these measurements, and specific care is taken to ensure the compositional accuracy of the hydrocarbon/N2 mixtures. The absorption cross sections of the smallest hydrocarbons, methane and ethylene, vary with temperature and pressure. The cross sections of larger hydrocarbons show negligible dependence on pressure and only a weak dependence on temperature. The reported data increase the range of conditions and the number of hydrocarbons for which cross section measurements are available at the HeNe laser wavelength.

  15. Modeling the chemical kinetics of high-pressure glow discharges in mixtures of helium with real air

    SciTech Connect

    Stalder, K.R.; Vidmar, R.J.; Nersisyan, G.; Graham, W.G.

    2006-05-01

    Atmospheric and near-atmospheric pressure glow discharges generated in both pure helium and helium-air mixtures have been studied using a plasma chemistry code originally developed for simulations of electron-beam-produced air plasmas. Comparisons are made with experimental data obtained from high-pressure glow discharges in helium-air mixtures developed by applying sinusoidal voltage wave forms between two parallel planar metallic electrodes covered by glass plates, with frequencies ranging from 10 to 50 kHz and electric field strengths up to 5 kV/cm. The code simulates the plasma chemistry following periodic pulsations of ionization in prescribed E/N environments. Many of the rate constants depend on gas temperature, electron temperature, and E/N. In helium plasmas with small amounts ({approx}850 ppm) of air added, rapid conversion of atomic helium ions to molecular helium ions dominate the positive ion kinetics and these species are strongly modulated while the radical species are not. The charged and neutral species concentrations at atmospheric pressure with air impurity levels up to 10 000 ppm are predicted. The negative ion densities are very small but increase as the air impurity level is raised, which indicates that in helium-based systems operated in open air the concentration of negative ions would be significant. If water vapor at typical humidity levels is present as one of the impurities, hydrated cluster ions eventually comprise a significant fraction of the charged species.

  16. Helium:oxygen versus air:oxygen noninvasive positive-pressure ventilation in patients exposed to sulfur mustard.

    PubMed

    Ghanei, Mostafa; Rajaeinejad, Mohsen; Motiei-Langroudi, Rouzbeh; Alaeddini, Farshid; Aslani, Jafar

    2011-01-01

    Exposure to sulfur mustard (SM) causes a variety of respiratory symptoms, such as chronic bronchitis and constrictive bronchiolitis. This study assessed the effectiveness of noninvasive positive-pressure ventilation, adjunct with 79:21 helium:oxygen instead of 79:21 air:oxygen, in 24 patients with a previous exposure to SM presenting with acute respiratory failure. Both air:oxygen and helium:oxygen significantly decreased systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse rate, respiratory rate, dyspnea, and increased oxygen saturation (P values: .007, .029, .002, <.001, <.001, <.001, and .002 for air:oxygen, respectively, and <.001, .020, .001, <.001, <.001, <.001, and .002, for helium:oxygen, respectively). Moreover, helium:oxygen more potently improved systolic pressure, mean arterial pressure, pulse rate, respiratory rate, and dyspnea (P values: .012, .048, <.001, <.001, and .012, respectively). The results of our study support the benefit of using helium:oxygen adjunct with noninvasive positive-pressure ventilation in patients exposed to SM with acute respiratory decompensation.

  17. Numerical study of the interaction of a helium atmospheric pressure plasma jet with a dielectric material

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Zheng, Yashuang; Jia, Shenli

    2016-10-01

    This is a computational modeling study of a cold atmospheric pressure helium plasma jet impinging on a dielectric surface placed normal to the jet axis. This study provides insights into the propagation mechanism of the plasma jet, the electrical properties, and the total accumulated charge density at the dielectric surface. For the radial streamer propagation along the dielectric surface, Penning ionization and the electron impact ionization of helium atoms are the major ionization reactions in the streamer head, while Penning ionization is the only dominant contributor along the streamer body. In addition, the plasma bullet velocity along the dielectric surface is 10-100 times lower than that in the plasma column. Increasing tube radius or helium flow rate lowers air entrainment in the plasma jet, leading to a decrease of the radial electric field and the accumulated charge density at the dielectric surface. Furthermore, the tube radius has weaker influence on the plasma properties as tube radius increases. For a target dielectric with lower relative permittivity, a higher radial electric field penetrates into the material, and the surface ionization wave along the dielectric surface extends farther. Higher relative permittivity of the treated dielectric results in more charging at the dielectric surface and more electron density in the plasma column.

  18. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    NASA Astrophysics Data System (ADS)

    Flesch, K.; Kremeyer, T.; Schmitz, O.; Soukhanovskii, V.; Wenzel, U.

    2016-11-01

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D2 molecules and the He ash which will be produced by deuterium-tritium fusion. To study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. Three different anode geometries have been studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.

  19. Equilibrium separation in a high pressure helium plasma and its application to the determination of temperatures

    SciTech Connect

    Rodero, A.; Garcia, M.C.; Gamero, A.

    1995-12-31

    The spectroscopy method based on the Boltzmann-plot of emission lines has been usually employed for measuring the excitation temperature (T{sub exc}) in high pressure plasmas. In the present work, it is shown that this method can produce great errors in the temperature determination when equilibrium separation exists. In this way, the suitability of this determination is tested comparing with other alternative methods in a high pressure helium plasma and also studying its separation from the equilibrium situation, via the absolute population measurements of atomic levels and the estimation of its atomic state distribution function (ASDF). We have made this study using a new excitation structure, the axial injection torch (Torche A Injection Axiale or T.I.A.), which produces a high power microwave plasma at atmospheric pressure. The measurements were carried out at the beginning of the flame (the highest line intensity zone) for a 300-900 W power range at 2.45 GHz and 71/min. of helium gas flow.

  20. Optical properties of the atmospheric pressure helium plasma jet generated by alternative current (a.c.) power supply

    NASA Astrophysics Data System (ADS)

    Ilik, Erkan; Akan, Tamer

    2016-05-01

    In this work, an atmospheric pressure plasma jet (APPJ) was produced to generate cold flowing post-discharge plasma of pure helium gas. The main aim of this study was to generate cold flowing APPJ of pure helium gas and to determine how their optical emission spectrum change influences varying different flow rates. Lengths of early, middle, and late post-discharge plasma (jet) regions and their fluctuations were determined, respectively. Then, ignition condition dependence of the post-discharge plasma for flow rate was specified at a constant voltage. Spectroscopic studies of an atmospheric pressure plasma jet of helium were presented via analyzing OH, N2, N2+, oxygen, and helium intensities for various flow rates.

  1. Operating experience with gas-bearing circulators in a high-pressure helium loop

    SciTech Connect

    Sanders, J.P.; Gat, Uri; Young, H.C.

    1987-01-01

    A high-pressure engineering test loop has been designed and constructed at the Oak Ridge National Laboratory for circulating helium through a test chamber at temperatures to 1000/sup 0/C. The purpose of this loop is to determine the thermal and structural performance of proposed components for the primary loops of gas-cooled nuclear reactors. Five MW of power is available to provide the required gas temperature at the test chamber, and an air-cooled heat exchanger, rated at 4.4 MW, serves as a heat sink. This report contains results of tests performed on gas-bearing circulators.

  2. High pressure liquid and gaseous oxygen impact sensitivity evaluation of materials for use at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.

    1976-01-01

    The sensitivity of materials in contact with gaseous oxygen (GOX) or liquid oxygen (LOX) was examined. Specifically, the reactivity of materials when in contact with GOX or LOX if subjected to such stimuli as mechanical impact, adiabatic compression (pneumatic impact), or an electrical discharge in the form of a spark were examined. Generally, materials are more sensitive in gaseous oxygen than in liquid oxygen and impact sensitivity is known to increase with increasing pressure. Materials presently being used or considered for use in oxygen systems at KSC were evaluated. Results are given in tabular form.

  3. Cold Helium Pressurization for Liquid Oxygen / Liquid Methane Propulsion Systems: Fully-Integrated Initial Hot-Fire Test Results

    NASA Technical Reports Server (NTRS)

    Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.

    2016-01-01

    A prototype cold helium active pressurization system was incorporated into an existing liquid oxygen (LOX) / liquid methane (LCH4) prototype planetary lander and hot-fire tested to collect vehicle-level performance data. Results from this hot-fire test series were used to validate integrated models of the vehicle helium and propulsion systems and demonstrate system effectiveness for a throttling lander. Pressurization systems vary greatly in complexity and efficiency between vehicles, so a pressurization performance metric was also developed as a means to compare different active pressurization schemes. This implementation of an active repress system is an initial sizing draft. Refined implementations will be tested in the future, improving the general knowledge base for a cryogenic lander-based cold helium system.

  4. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon

    DOEpatents

    Park, Jaeyoung; Henins, Ivars

    2005-06-21

    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  5. High-resolution thermal expansion measurements under helium-gas pressure

    SciTech Connect

    Manna, Rudra Sekhar; Wolf, Bernd; Souza, Mariano de; Lang, Michael

    2012-08-15

    We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K Less-Than-Or-Slanted-Equal-To T Less-Than-Or-Slanted-Equal-To 300 K and hydrostatic pressure P Less-Than-Or-Slanted-Equal-To 250 MPa. Helium ({sup 4}He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P Asymptotically-Equal-To 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu{sub 3}(CO{sub 3}){sub 2}(OH){sub 2}, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.

  6. Helium pressures in RHIC vacuum cryostats and relief valve requirements from magnet cooling line failure

    SciTech Connect

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the RHIC magnet cooling lines, similar to the LHC superconducting bus failure incident, would pressurize the insulating vacuum in the magnet and transfer line cryostats. Insufficient relief valves on the cryostats could cause a structural failure. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the vacuum cryostat and discharging via the reliefs into the RHIC tunnel, had been developed to calculate the helium pressure inside the cryostat. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces were included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Existing relief valve sizes were reviewed to make sure that the maximum stresses, caused by the calculated maximum pressures inside the cryostats, did not exceed the allowable stresses, based on the ASME Code B31.3 and ANSYS results. The conclusions are as follows: (1) The S/F simulation results show that the highest internal pressure in the cryostats, due to the magnet line failure, is {approx}37 psig (255115 Pa); (2) Based on the simulation, the temperature on the cryostat chamber, INJ Q8-Q9, could drop to 228 K, which is lower than the material minimum design temperature allowed by the Code; (3) Based on the ASME Code and ANSYS results, the reliefs on all the cryostats inside the RHIC tunnel are adequate to protect the vacuum chambers when the magnet cooling lines fail; and (4) In addition to the pressure loading, the thermal deformations, due to the temperature decrease on the cryostat chambers, could also cause a high stress on the chamber, if not properly supported.

  7. Modeling the dynamic response of pressures in a distributed helium refrigeration system

    SciTech Connect

    Brubaker, J.C.

    1997-12-01

    A mathematical model is created of the dynamic response of pressures caused by flow inputs to an existing distributed helium refrigeration system. The dynamic system studied consists of the suction and discharge pressure headers and compressor portions of the refrigeration system used to cool the superconducting magnets of the Tevatron accelerator at the Fermi National Accelerator Laboratory. The modeling method involves identifying the system from data recorded during a series of controlled tests, with effort made to detect locational differences in pressure response around the four mile accelerator circumference. A review of the fluid mechanics associated with the system indicates linear time invariant models are suitable for the identification, particularly since the governing equations of one dimensional fluid flow are approximated by linear differential equations. An outline of the experimental design and the data acquisition system are given, followed by a detailed description of the modeling, which utilized the Matlab programming language and associated System Identification Toolbox. Two representations of the system are presented. One, a black box model, provides a multi-input, multi-output description assembled from the results of single input step function testing. This description indicates definite variation in pressure response with distance from the flow input location, and also suggests subtle differences in response with the input location itself. A second system representation is proposed which details the relation between continuous flow changes and pressure response, and provides explanation of a previously unappreciated pressure feedback internal to the system.

  8. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    SciTech Connect

    Laroche, G.; Vallade, J.; Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F.; Nijnatten, P. van

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  9. Measurement of quasi-isentropic compressibility of helium and deuterium at pressures of 1500-2000 GPa

    SciTech Connect

    Mochalov, M. A. Il'kaev, R. I.; Fortov, V. E.; Mikhailov, A. L.; Makarov, Yu. M.; Arinin, V. A.; Blikov, A. O.; Baurin, A. Yu.; Komrakov, V. A.; Ogorodnikov, V. A.; Ryzhkov, A. V.; Pronin, E. A.; Yukhimchuk, A. A.

    2012-10-15

    The quasi-isentropic compressibility of helium and deuterium plasmas at pressures of up to 1500-2000 GPa has been measured using devices with spherical geometry and an X-ray diagnostic complex comprising three betatrons and a multichannel imaging system with electro-optic gamma detectors. A deuterium density of 4.5 g/cm{sup 3} and a helium density of 3.8 g/cm{sup 3} have been obtained at pressures of 2210 and 1580 GPa, respectively. The internal energy of a deuterium plasma at the indicated pressure is about 1 MJ/cm{sup 3}, which is about 100 times greater than the specific energy of condensed chemical explosives. Analysis of the obtained data shows that the degree of helium ionization under the achieved plasma compression parameters is about 0.9.

  10. Use of a torsional pendulum as a high-pressure gage and determination of viscosity of helium gas at high pressures

    NASA Technical Reports Server (NTRS)

    Maisel, J. E.; Webeler, R. W. H.; Grimes, H. H.

    1973-01-01

    Three torsional crystal parameters were examined for suitability in sensing pressure in gases up to 131 million newtons per square meter. The best parameters were found to be the change in crystal decrement at resonance and the change in crystal electrical resistance at resonance. The change in crystal resonant frequency did not appear to be a reliable pressure measuring parameter. Pure argon and pure helium gases were studied for use as working fluids. Helium functioned better over a wider pressure range. Calibration of the gage also provided a measure of the viscosity-density product of the gas as a function of pressure. These data, together with known extrapolated density data, permitted the determination of the viscosity of helium to 131 million N/square meter.

  11. Numerical Modeling of Helium Pressurization System of Propulsion Test Article (PTA)

    NASA Technical Reports Server (NTRS)

    Steadman, Todd; Majumdar, Alok; Holt, Kimberly

    2001-01-01

    A transient model of the Propulsion Test Article (PTA) Helium Pressurization System was developed using the Generalized Fluid System Simulation Program (GFSSP). The model included feed lines from the facility interface to the engine purge interface and Liquid Oxygen (LOX) and Rocket Propellant 1 (RP-1) tanks, the propellant tanks themselves including ullage space and propellant feed lines to their respective pump interfaces. GFSSP's capability was extended to model a control valve to maintain ullage pressure within a specified limit and pressurization processes such as heat transfer between ullage gas, propellant and the tank wall. The purpose of the model is to predict the flow system characteristics in the entire pressurization system during 80 seconds of lower feed system priming, 420 seconds of fuel and LOX pump priming and 150 seconds of engine firing. Subsequent to the work presented here, the PTA model has been updated to include the LOX and RP-1 pumps, while the pressurization option itself has been modified to include the effects of mass transfer. This updated model will be compared with PTA test data as it becomes available.

  12. Hydroxyl radical-PLIF measurements and accuracy investigation in high pressure gaseous hydrogen/gaseous oxygen combustion

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Aravind

    In-flow species concentration measurements in reacting flows at high pressures are needed both to improve the current understanding of the physical processes taking place and to validate predictive tools that are under development, for application to the design and optimization of a range of power plants from diesel to rocket engines. To date, non intrusive measurements have been based on calibrations determined from assumptions that were not sufficiently quantified to provide a clear understanding of the range of uncertainty associated with these measurements. The purpose of this work is to quantify the uncertainties associated with OH measurement in a oxygen-hydrogen system produced by a shear, coaxial injector typical of those used in rocket engines. Planar OH distributions are obtained providing instantaneous and averaged distribution that are required for both LES and RANS codes currently under development. This study has evaluated the uncertainties associated with OH measurement at 10, 27, 37 and 53 bar respectively. The total rms error for OH-PLIF measurements from eighteen different parameters was quantified and found as 21.9, 22.8, 22.5, and 22.9% at 10, 27, 37 and 53 bar respectively. These results are used by collaborators at Georgia Institute of Technology (LES), Pennsylvania State University (LES), University of Michigan (RANS) and NASA Marshall (RANS).

  13. Temporally, spatially, and spectrally resolved barrier discharge produced in trapped helium gas at atmospheric pressure

    SciTech Connect

    Chiper, Alina Silvia; Popa, Gheorghe

    2013-06-07

    Experimental study was made on induced effects by trapped helium gas in the pulsed positive dielectric barrier discharge (DBD) operating in symmetrical electrode configuration at atmospheric pressure. Using fast photography technique and electrical measurements, the differences in the discharge regimes between the stationary and the flowing helium are investigated. It was shown experimentally that the trapped gas atmosphere (TGA) has notable impact on the barrier discharge regime compared with the influence of the flowing gas atmosphere. According to our experimental results, the DBD discharge produced in trapped helium gas can be categorized as a multi-glow (pseudo-glow) discharge, each discharge working in the sub-normal glow regime. This conclusion is made by considering the duration of current pulse (few {mu}s), their maximum values (tens of mA), the presence of negative slope on the voltage-current characteristic, and the spatio-temporal evolution of the most representative excited species in the discharge gap. The paper focuses on the space-time distribution of the active species with a view to better understand the pseudo-glow discharge mechanism. The physical basis for these effects was suggested. A transition to filamentary discharge is suppressed in TGA mode due to the formation of supplementary source of seed electrons by surface processes (by desorption of electrons due to vibrationally excited nitrogen molecules, originated from barriers surfaces) rather than volume processes (by enhanced Penning ionisation). Finally, we show that the pseudo-glow discharge can be generated by working gas trapping only; maintaining unchanged all the electrical and constructive parameters.

  14. A study of helium atmospheric-pressure guided streamers for potential biological applications

    NASA Astrophysics Data System (ADS)

    Gazeli, K.; Noël, C.; Clément, F.; Daugé, C.; Svarnas, P.; Belmonte, T.

    2013-04-01

    The origin of differences in the rotational temperatures of various molecules and ions ( N_{2}^{+} (B), OH(A) and N2(C)) is studied in helium atmospheric-pressure guided streamers. The rotational temperature of N_{2}^{+} (B) is room temperature. It is estimated from the emission band of the first negative system at 391.4 nm, and it is governed by the temperature of N2(X) in the surrounding air. N2(X) is ionized by direct electron impact in the outer part of the plasma. N_{2}^{+} (B) is deactivated by collisions with N2 and O2. The rotational temperature of OH(A), estimated from the OH band at 306.4 nm, is slightly higher than that of N_{2}^{+} (B). OH(A) is excited by electron impact with H2O during the first 100 ns of the applied voltage pulse. Next, OH(A) is produced by electron impact with OH(X) created by the quenching of OH(A) by N2 and O2. H2O diffuses deeper than N2 into the plasma ring and the rotational temperature of OH(A) is slightly higher than that of N_{2}^{+} (B). The rotational temperature of N2(C), estimated from the emission of the second positive system at 315.9 nm, is governed by its collisions with helium. The gas temperature of helium at the beginning of the pulse is predicted to be several hundred kelvin higher than room temperature.

  15. Ignition and afterglow dynamics of a high pressure nanosecond pulsed helium micro-discharge: II. Rydberg molecules kinetics

    NASA Astrophysics Data System (ADS)

    Carbone, Emile A. D.; Schregel, Christian-Georg; Czarnetzki, Uwe

    2016-10-01

    In this paper, we discuss the experimental results presented in Schregel et al (2016 Plasma Sources Sci. Technol. 25 054003) on a high pressure micro-discharge operated in helium and driven by nanosecond voltage pulses. A simple global plasma chemistry model is developed to describe the ions, excited atomic and molecular species dynamics in the ignition and early afterglow regimes. The existing experimental data on high pressure helium kinetics is reviewed and critically discussed. It is highlighted that several inconsistencies in the branching ratio of neutral assisted associative and dissociative processes currently exist in the literature and need further clarification. The model allows to pinpoint the mechanisms responsible for the large amounts of Rydberg molecules produced in the discharge and for the helium triplet metastable state in the afterglow. The main losses of electrons are also identified. The fast quenching of excited He (n  >  3) states appears to be a significant source of Rydberg molecules which has been previously neglected. The plasma model finally draws a simplified, but still accurate description of high pressure helium discharges based on available experimental data for ion and neutral helium species.

  16. Electric field development in γ-mode radiofrequency atmospheric pressure glow discharge in helium

    NASA Astrophysics Data System (ADS)

    Navrátil, Zdeněk; Josepson, Raavo; Cvetanović, Nikola; Obradović, Bratislav; Dvořák, Pavel

    2016-06-01

    Time development of electric field strength during radio-frequency sheath formation was measured using Stark polarization spectroscopy in a helium γ-mode radio-frequency (RF, 13.56 MHz) atmospheric pressure glow discharge at high current density (3 A cm-2). A method of time-correlated single photon counting was applied to record the temporal development of spectral profile of He I 492.2 nm line with a sub-nanosecond temporal resolution. By fitting the measured profile of the line with a combination of pseudo-Voigt profiles for forbidden (2 1P-4 1F) and allowed (2 1P-4 1D) helium lines, instantaneous electric fields up to 32 kV cm-1 were measured in the RF sheath. The measured electric field is in agreement with the spatially averaged value of 40 kV cm-1 estimated from homogeneous charge density RF sheath model. The observed rectangular waveform of the electric field time development is attributed to increased sheath conductivity by the strong electron avalanches occurring in the γ-mode sheath at high current densities.

  17. The Gaseous Explosive Reaction at Constant Pressure : Further Data on the Effect of Inert Gases

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1932-01-01

    An investigation of gaseous explosive reactions is discussed in this report. Measurements were taken to calculate the maximum flame temperature attained and making correlations with existing thermal data on this reaction.

  18. Comparison of atmospheric-pressure helium and argon plasmas generated by capacitively coupled radio-frequency discharge

    SciTech Connect

    Li, S.-Z.; Lim, J.-P.; Kang, Jung G.; Uhm, Han S.

    2006-09-15

    In this paper, the electrical discharge characteristics of plasmas generated in coaxial cylindrical electrodes capacitively powered by a radio-frequency power supply at atmospheric pressure are investigated with respect to helium and argon gases. The electrical discharge parameters, voltage (V), current (I), and power (P), are measured for both helium and argon plasmas, and the electron temperatures and electron densities for them are evaluated by means of the equivalent circuit model and the power balance equation. By comparison of the discharge characteristics of the helium and argon plasmas, it is found that the discrepant macroscopic characteristics of helium and argon plasma, viz., current and voltage characteristics and current and power characteristics, are owed to their own intrinsic microscopic parameters of the helium and argon atoms, such as the first excited energy, the ionization energy, the total cross section, and the atom mass. Furthermore, the influences of the additive gas, oxygen gas, on the electrical discharge characteristics are also investigated in the helium and argon plasmas, which are closely related to the electron temperature of plasmas.

  19. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage

    NASA Astrophysics Data System (ADS)

    Adhikari, Ek R.; Ptasinska, Sylwia

    2016-09-01

    A helium atmospheric pressure plasma jet (APPJ) source with a dielectric capillary and two tubular electrodes was used to induce damage in aqueous plasmid DNA. The fraction of different types of DNA damage (i.e., intact or undamaged, double strand breaks (DSBs), and single strand breaks (SSBs)) that occurred as the result of plasma irradiation was quantified through analysis of agarose gel electrophoresis images. The total DNA damage increased with an increase in both flow rate and duration of irradiation, but decreased with an increase in distance between the APPJ and sample. The average power of the plasma was calculated and the length of APPJ was measured for various flow rates and voltages applied. The possible effects of plasma power and reactive species on DNA damage are discussed.

  20. Extending helium partial pressure measurement technology to JET DTE2 and ITER

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Biewer, T. M.; Kruezi, U.; Vartanian, S.; Douai, D.; Hillis, D. L.; Marcus, C.

    2016-11-01

    The detection limit for helium (He) partial pressure monitoring via the Penning discharge optical emission diagnostic, mainly used for tokamak divertor effluent gas analysis, is shown here to be possible for He concentrations down to 0.1% in predominantly deuterium effluents. This result from a dedicated laboratory study means that the technique can now be extended to intrinsically (non-injected) He produced as fusion reaction ash in deuterium-tritium experiments. The paper also examines threshold ionization mass spectroscopy as a potential backup to the optical technique, but finds that further development is needed to attain with plasma pulse-relevant response times. Both these studies are presented in the context of continuing development of plasma pulse-resolving, residual gas analysis for the upcoming JET deuterium-tritium campaign (DTE2) and for ITER.

  1. Helium Atmospheric Pressure Plasma Jet: Diagnostics and Application for Burned Wounds Healing

    NASA Astrophysics Data System (ADS)

    Topala, Ionut; Nastuta, Andrei

    A new field of plasma applications developed in the last years, entitled plasma medicine, has focused the attention of many peoples from plasma ­community on biology and medicine. Subjects that involve plasma physics and technology (e.g. living tissue treatment or wound healing, cancer cell apoptosis, blood coagulation, sterilization and decontamination) are nowadays in study in many laboratories. In this paper we present results on optical and electrical diagnosis of a helium ­atmospheric pressure plasma jet designed for medical use. This type of plasma jet was used for improvement of the wound healing process. We observed a more rapid macroscopic healing of the plasma treated wounds in comparison with the control group.

  2. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage

    NASA Astrophysics Data System (ADS)

    Adhikari, Ek R.; Ptasinska, Sylwia

    2016-09-01

    A helium atmospheric pressure plasma jet (APPJ) source with a dielectric capillary and two tubular electrodes was used to induce damage in aqueous plasmid DNA. The fraction of different types of DNA damage (i.e., intact or undamaged, double strand breaks (DSBs), and single strand breaks (SSBs)) that occurred as the result of plasma irradiation was quantified through analysis of agarose gel electrophoresis images. The total DNA damage increased with an increase in both flow rate and duration of irradiation, but decreased with an increase in distance between the APPJ and sample. The average power of the plasma was calculated and the length of APPJ was measured for various flow rates and voltages applied. The possible effects of plasma power and reactive species on DNA damage are discussed. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  3. Three-dimensional simulation of microwave-induced helium plasma under atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhao, G. L.; Hua, W.; Guo, S. Y.; Liu, Z. L.

    2016-07-01

    A three-dimensional model is presented to investigate helium plasma generated by microwave under atmospheric pressure in this paper, which includes the physical processes of electromagnetic wave propagation, electron and heavy species transport, gas flow, and heat transfer. The model is based on the fluid approximation calculation and local thermodynamic equilibrium assumption. The simulation results demonstrate that the maxima of the electron density and gas temperature are 4.79 × 1017 m-3 and 1667 K, respectively, for the operating conditions with microwave power of 500 W, gas flow rate of 20 l/min, and initial gas temperature of 500 K. The electromagnetic field distribution in the plasma source is obtained by solving Helmholtz equation. Electric field strength of 2.97 × 104 V/m is obtained. There is a broad variation on microwave power, gas flow rate, and initial gas temperature to obtain deeper information about the changes of the electron density and gas temperature.

  4. Driving frequency effects on the characteristics of atmospheric pressure capacitive helium discharge

    SciTech Connect

    Moon, Se Youn; Kim, D. B.; Gweon, B.; Choe, W.

    2008-12-01

    Atmospheric pressure helium discharge characteristics were investigated for varying driving radio frequencies in the range between 1.86 and 27.1 MHz. As the driving frequency is raised, both gas breakdown and {alpha}-{gamma} transition voltages decrease due to the reduction in the electron drift loss. In addition, different discharge features such as normal, abnormal, {alpha}, and {gamma} modes show certain dependences on the frequency. Using a simple circuit model, the changes in sheath thickness from 2.35 to 0.11 mm, electron density from 0.26 to 15.6x10{sup 11} cm{sup -3} was obtained by raising the frequency from 1.86 to 27.1 MHz.

  5. Extending Helium Partial Pressure Measurement Technology to JET DTE2 and ITER

    SciTech Connect

    Klepper, C Christopher; Biewer, Theodore M; Douai, D.; Hillis, Donald Lee; Marcus, Chris; Kruezi, Uron

    2016-01-01

    The detection limit for helium (He) partial pressure monitoring via the Penning discharge optical emission diagnostic, mainly used for tokamak divertor effluent gas analysis, is shown here to be possible for He concentrations down to 0.1% in predominantly deuterium effluents. This result from a dedicated laboratory study means that the technique can now be extended to intrinsically (non-injected) He produced as fusion reaction ash in deuterium-tritium experiments. The paper also examines threshold ionization mass spectroscopy as a potential backup to the optical technique, but finds that further development is needed to attain with plasma pulse-relevant response times. Both these studies are presented in the context of continuing development of plasma pulse-resolving, residual gas analysis for the upcoming JET deuterium-tritium campaign (DTE-2) and for ITER.

  6. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    SciTech Connect

    Algwari, Q. Th.; O'Connell, D.

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  7. Helium-Recycling Plant

    NASA Technical Reports Server (NTRS)

    Cook, Joseph

    1996-01-01

    Proposed system recovers and stores helium gas for reuse. Maintains helium at 99.99-percent purity, preventing water vapor from atmosphere or lubricating oil from pumps from contaminating gas. System takes in gas at nearly constant low back pressure near atmospheric pressure; introduces little or no back pressure into source of helium. Concept also extended to recycling of other gases.

  8. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet.

    PubMed

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T H; Kang, Tae-Hong

    2014-10-16

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.

  9. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    PubMed Central

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment. PMID:25319447

  10. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-10-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.

  11. Measurement of O and OH radical produced by an atmospheric-pressure helium plasma jet nearby rat skin

    NASA Astrophysics Data System (ADS)

    Yonemori, Seiya; Ono, Ryo

    2013-09-01

    Atmospheric-pressure helium plasma jet is getting much attention because it enables many kinds of plasma applications including biomedical application such as sterilization and cancer treatment. In biomedical plasma applications, it is though that active species like ions and radicals play important role. Especially, OH radical and O atom is very chemically reactive that they are deemed as major factors in cancer treatment. In this study, O and OH density distribution and its temporal behavior nearby rat skin were measured to demonstrate actual application. Plasma discharge was under AC10 kVp-p, 10 kHz with 1.5 slm (standard litter per minute) of helium gas flow. OH density was around 1 ppm and O atom density was around 10 ppm at maximum. We also measured time-evolution of OH and O atom density. Both OH and O density was almost constant between discharge pulses because lifetime of active species could be prolonged in helium. And density distribution of both species varied depending on helium flow rate and water concentration on the surface; on rat skin or on the grass surface. Those results suggest the production mechanisms and provision mechanisms of O atom and OH radical by an atmospheric-pressure helium plasma jet. This work is partially supported by the Grant-in-Aid for Science Research by the Ministry of Education, Culture, Sport, Science and Technology.

  12. CO2-helium and CO2-neon mixtures at high pressures.

    PubMed

    Mallick, B; Ninet, S; Le Marchand, G; Munsch, P; Datchi, F

    2013-01-28

    The properties of mixtures of carbon dioxide with helium or neon have been investigated as a function of CO(2) concentration and pressure up to 30 GPa at room temperature. The binary phase diagrams of these mixtures are determined over the full range of CO(2) concentrations using visual observations and Raman scattering measurements. Both diagrams are of eutectic type, with a fluid-fluid miscibility gap for CO(2) concentrations in the range [5, 75] mol. % for He and [8, 55] mol. % for Ne, and a complete separation between the two components in the solid phase. The absence of alloys or stoichiometric compounds for these two binary systems is consistent with the Hume-Rothery rules of hard sphere mixtures. The Raman spectra and x-ray diffraction patterns of solid CO(2) embedded in He or Ne for various initial concentrations have been measured up to 30 GPa and 12 GPa, respectively. The frequencies of the Raman modes and the volume of solid phase I are identical, within error bars, to those reported for 100% CO(2) samples, thus confirming the total immiscibility of CO(2) with He and Ne in the solid phase. These results demonstrate the possibility to perform high-pressure experiments on solid CO(2) under (quasi-)hydrostatic conditions using He or Ne as pressure transmitting medium.

  13. Correlation of Helium Solubility in Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2012-01-01

    A correlation has been developed for the equilibrium mole fraction of soluble gaseous helium in liquid nitrogen as a function of temperature and pressure. Experimental solubility data was compiled and provided by National Institute of Standards and Technology (NIST). Data from six sources was used to develop a correlation within the range of 0.5 to 9.9 MPa and 72.0 to 119.6 K. The relative standard deviation of the correlation is 6.9 percent.

  14. Hydrogen Absorption into Austenitic Stainless Steels Under High-Pressure Gaseous Hydrogen and Cathodic Charge in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Enomoto, Masato; Cheng, Lin; Mizuno, Hiroyuki; Watanabe, Yoshinori; Omura, Tomohiko; Sakai, Jun'ichi; Yokoyama, Ken'ichi; Suzuki, Hiroshi; Okuma, Ryuji

    2014-12-01

    Type 316L and Type 304 austenitic stainless steels, both deformed and non-deformed, were hydrogen charged cathodically in an aqueous solution as well as by exposure to high-pressure gaseous hydrogen in an attempt to identify suitable conditions of cathodic charge for simulating hydrogen absorption from gaseous hydrogen environments. Thermal desorption analysis (TDA) was conducted, and the amount of absorbed hydrogen and the spectrum shape were compared between the two charging methods. Simulations were performed by means of the McNabb-Foster model to analyze the spectrum shape and peak temperature, and understand the effects of deformation on the spectra. It was revealed that the spectrum shape and peak temperature were dependent directly upon the initial distribution of hydrogen within the specimen, which varied widely according to the hydrogen charge condition. Deformation also had a marked effect on the amount of absorbed hydrogen in Type 304 steel due to the strain-induced martensitic transformation.

  15. On the dynamic response of pressure transmission lines in the research of helium-charged free piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Miller, Eric L.; Dudenhoefer, James E.

    1989-01-01

    The signal distortion inherent to pressure transmission lines in free-piston Stirling engine research is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving the helium-charged free-piston Stirling engines. The underdamped flow regime is described, the primary resonance frequency is derived, and the pressure phase and amplitude distortion are discussed. The scope and limitation of the dynamic response analysis are considered.

  16. Thermophysical properties of Helium-4 from 0.8 to 1500 K with pressures to 2000 MPa

    NASA Technical Reports Server (NTRS)

    Arp, Vincent D.; Mccarty, Robert D.

    1989-01-01

    Tabular summary data of the thermophysical properties of fluid helium are given for temperatures from 0.8 to 1500 K, with pressures to 2000 MPa between 75 and 300 K, or to 100 MPa outside of this temperature band. Properties include density, specific heats, enthalpy, entropy, internal energy, sound velocity, expansivity, compressibility, thermal conductivity, and viscosity. The data are calculated from a computer program which is available from the National Institute of Standards and Technology. The computer program is based on carefully fitted state equations for both normal and superfluid helium.

  17. Calculation of releases of radioactive materials in gaseous and liquid effluents from pressurized water reactors (PWR-GALE Code). Revision 1

    SciTech Connect

    Chandrasekaran, T.; Lee, J.Y.; Willis, C.A.

    1985-04-01

    This report revises the original issuance of NUREG-0017, ''Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE-Code)'' (April 1976), to incorporate more recent operating data now available as well as the results of a number of in-plant measurement programs at operating pressurized water reactors. The PWR-GALE Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms). The US Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50.

  18. Protein destruction by a helium atmospheric pressure glow discharge: Capability and mechanisms

    NASA Astrophysics Data System (ADS)

    Deng, X. T.; Shi, J. J.; Kong, M. G.

    2007-04-01

    Biological sterilization represents one of the most exciting applications of atmospheric pressure glow discharges (APGD). Despite the fact that surgical instruments are contaminated by both microorganisms and proteinaceous matters, sterilization effects of APGD have so far been studied almost exclusively for microbial inactivation. This work presents the results of a detailed investigation of the capability of a helium-oxygen APGD to inactivate proteins deposited on stainless-steel surfaces. Using a laser-induced fluorescence technique for surface protein measurement, a maximum protein reduction of 4.5 logs is achieved by varying the amount of the oxygen admixture into the background helium gas. This corresponds to a minimum surface protein of 0.36 femtomole/mm2. It is found that plasma reduction of surface-borne protein is through protein destruction and degradation, and that its typically biphasic reduction kinetics is influenced largely by the thickness profile of the surface protein. Also presented is a complementary study of possible APGD protein inactivation mechanisms. By interplaying the protein inactivation kinetics with optical emission spectroscopy, it is shown that the main protein-destructing agents are excited atomic oxygen (via the 777 and 844 nm emission channels) and excited nitride oxide (via the 226, 236, and 246 nm emission channels). It is also demonstrated that the most effective protein reduction is achieved possibly through a synergistic effect between atomic oxygen and nitride oxide. This study is a useful step toward a full confirmation of the efficacy of APGD as a sterilization technology for surgical instruments contaminated by prion proteins.

  19. Protein destruction by a helium atmospheric pressure glow discharge: Capability and mechanisms

    SciTech Connect

    Deng, X. T.; Shi, J. J.; Kong, M. G.

    2007-04-01

    Biological sterilization represents one of the most exciting applications of atmospheric pressure glow discharges (APGD). Despite the fact that surgical instruments are contaminated by both microorganisms and proteinaceous matters, sterilization effects of APGD have so far been studied almost exclusively for microbial inactivation. This work presents the results of a detailed investigation of the capability of a helium-oxygen APGD to inactivate proteins deposited on stainless-steel surfaces. Using a laser-induced fluorescence technique for surface protein measurement, a maximum protein reduction of 4.5 logs is achieved by varying the amount of the oxygen admixture into the background helium gas. This corresponds to a minimum surface protein of 0.36 femtomole/mm{sup 2}. It is found that plasma reduction of surface-borne protein is through protein destruction and degradation, and that its typically biphasic reduction kinetics is influenced largely by the thickness profile of the surface protein. Also presented is a complementary study of possible APGD protein inactivation mechanisms. By interplaying the protein inactivation kinetics with optical emission spectroscopy, it is shown that the main protein-destructing agents are excited atomic oxygen (via the 777 and 844 nm emission channels) and excited nitride oxide (via the 226, 236, and 246 nm emission channels). It is also demonstrated that the most effective protein reduction is achieved possibly through a synergistic effect between atomic oxygen and nitride oxide. This study is a useful step toward a full confirmation of the efficacy of APGD as a sterilization technology for surgical instruments contaminated by prion proteins.

  20. Features of the temperature dependence of pressure of solid helium at low temperatures

    NASA Astrophysics Data System (ADS)

    Lisunov, A. A.; Maidanov, V. A.; Rubanskii, V. Y.; Rubets, S. P.; Rudavskii, E. Y.; Rybalko, A. S.; Syrkin, E. S.

    2012-06-01

    A series of experiments has been performed to investigate the conditions of formation of a disordered (glass-like) state in crystals of 3He. With the help of precise measurements of pressure at constant volume it has been established that a glass phase is formed easily in rapidly cooled crystals grown under homogeneous temperature conditions in the presence of large numbers of nucleation centers. This phase can be removed only by careful annealing. This result has been found in both 3He and 4He, and is independent of type of quantum statistics and determined mainly by crystal growth conditions. An analysis of similar measurements has been performed using a different cell where during the crystal growth a directed temperature gradient was created. In this case, additional defects created as a result of deformation of the crystal were necessary to form a glass-like phase. The degree of deformation of a crystal, achievable in the experiment, was sufficient to form a glass-like phase in solid 4He, but not in a crystal of 3He where the atoms have a large amplitude of zero-point oscillations. Analyzing a temperature dependence of pressure, a study of the features of a phonon contribution to the pressure was also carried out. It was found that in both crystals 3He and 4He at different thicknesses of samples the phonon pressure differs by several times. This effect is qualitatively explained by that that in thin samples an interaction among layers of atoms becomes stronger. This leads to decreasing the phonon contribution to the thermodynamic properties of the helium crystal at low temperatures.

  1. Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan; Linza, Robert; Garcia, Sam; Vargas, Gerardo; Lauterbach, John; Ganni, Venkatarao (Rao); Sidi-Yekhlef, Ahmed; Creel, Jonathan; Norton, Robert; Urbin, John; Howe, Don

    2008-01-01

    Two helium refrigerators, each rated for 3.5KW at 20K, are used at NASA s Johnson Space Center (JSC) in Building No. 32 to provide cryo-pumping within two large thermal-vacuum chambers. These refrigerators were originally commissioned in 1996. Equipment refurbishment and upgrades to the controls of these refrigerators were recently completed. This paper describes some of the mechanical and control issues that necessitated the equipment refurbishment and controls change-over. It will describe the modifications and the new process control which allows the refrigerators to take advantage of the Ganni Cycle "floating pressure" control technology. The upgrades -- the controls philosophy change-over to the floating pressure control technology and the newly refurbished equipment -- have greatly improved the performance, stability, and efficiency of these two refrigerators. The upgrades have also given the operators more information and details about the operational status of the main components (compressors, expanders etc.) of the refrigerators at all operating conditions (i.e.: at various loads in the vacuum chambers). Capabilities, configuration, and performance data pre, and post, upgrading will be presented.

  2. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.

    PubMed

    Brus, David; Zdímal, Vladimír; Stratmann, Frank

    2006-04-28

    Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms

  3. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.

    PubMed

    Brus, David; Zdímal, Vladimír; Stratmann, Frank

    2006-04-28

    Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms

  4. Analytical model of atmospheric pressure, helium/trace gas radio-frequency capacitive Penning discharges

    NASA Astrophysics Data System (ADS)

    Lieberman, M. A.

    2015-04-01

    Atmospheric and near-atmospheric pressure, helium/trace gas radio-frequency capacitive discharges have wide applications. An analytic equilibrium solution is developed based on a homogeneous, current-driven discharge model that includes sheath and electron multiplication effects and contains two electron populations. A simplified chemistry is used with four unknown densities: hot electrons, warm electrons, positive ions and metastables. The dominant electron-ion pair production is Penning ionization, and the dominant ion losses are to the walls. The equilibrium particle balances are used to determine a single ionization balance equation for the warm electron temperature, which is solved, both approximately within the α- and γ-modes, and exactly by conventional root-finding techniques. All other discharge parameters are found, the extinction and α-γ transitions are determined, and a similarity law is given, in which the equilibrium for a short gap at high pressure can be rescaled to a longer gap at lower pressure. Within the α-mode, we find the scaling of the discharge parameters with current density, frequency, gas density and gap width. The analytic results are compared to hybrid and particle-in-cell (PIC) results for He/0.1%N2, and to hybrid results for He/0.1%H2O. For nitrogen, a full reaction set is used for the hybrid calculations and a simplified reaction set for the PIC simulations. For the chemically complex water trace gas, a set of 209 reactions among 43 species is used. The analytic results are found to be in reasonably good agreement with the more elaborate hybrid and PIC calculations.

  5. Magnetic roller gas gate employing transonic sweep gas flow to isolate regions of differing gaseous composition or pressure

    DOEpatents

    Doehler, Joachim

    1994-12-20

    Disclosed herein is an improved gas gate for interconnecting regions of differing gaseous composition and/or pressure. The gas gate includes a narrow, elongated passageway through which substrate material is adapted to move between said regions and inlet means for introducing a flow of non-contaminating sweep gas into a central portion of said passageway. The gas gate is characterized in that the height of the passageway and the flow rate of the sweep gas therethrough provides for transonic flow of the sweep gas between the inlet means and at least one of the two interconnected regions, thereby effectively isolating one region, characterized by one composition and pressure, from another region, having a differing composition and/or pressure, by decreasing the mean-free-path length between collisions of diffusing species within the transonic flow region. The gas gate preferably includes a manifold at the juncture point where the gas inlet means and the passageway interconnect.

  6. Solubility of oxygen in a seawater medium in equilibrium with a high-pressure oxy-helium atmosphere.

    PubMed

    Taylor, C D

    1979-06-01

    The molar oxygen concentration in a seawater medium in equilibrium with a high-pressure oxygen-helium atmosphere was measured directly in pressurized subsamples, using a modified version of the Winkler oxygen analysis. At a partial pressure of oxygen of 1 atm or less, its concentration in the aqueous phase was adequately described by Henry's Law at total pressures up to 600 atm. This phenomenon, which permits a straightforward determination of dissolved oxygen within hyperbaric systems, resulted from pressure-induced compensatory alterations in the Henry's Law variables rather than from a true obedience to the Ideal Gas Law. If the partial pressure of a gas contributes significantly to the hydrostatic pressure, Henry's Law is no longer adequate for determining its solubility within the compressed medium. PMID:531994

  7. Resistor monitors transfer of liquid helium

    NASA Technical Reports Server (NTRS)

    Hesketh, W. D.

    1966-01-01

    Large resistance change of a carbon resistor at the liquid helium temperature distinguishes between the transfer of liquid helium and gaseous helium into a closed Dewar. The resistor should be physically as small as possible to reduce the heat load to the helium.

  8. On the dynamic response of pressure transmission lines in the research of helium-charged free piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Miller, Eric L.; Dudenhoefer, James E.

    1989-01-01

    In free piston Stirling engine research the integrity of both amplitude and phase of the dynamic pressure measurements is critical to the characterization of cycle dynamics and thermodynamics. It is therefore necessary to appreciate all possible sources of signal distortion when designing pressure measurement systems for this type of research. The signal distortion inherent to pressure transmission lines is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving helium-charged free piston Stirling engines. The scope and limitations of the dynamic response analysis are considered.

  9. Thermal conductivity of gaseous fluorocarbon refrigerants R 12, R 13, R 22, and R 23, under pressure

    NASA Astrophysics Data System (ADS)

    Makita, T.; Tanaka, Y.; Morimoto, Y.; Noguchi, M.; Kubota, H.

    1981-09-01

    The thermal conductivity of four gaseous fluorocarbon refrigerants has been measured by a vertical coaxial cylinder apparatus on a relative basis. The fluorocarbon refrigerants used and the ranges of temperature and pressure covered are as follows: R 12 (Dichlorodifluoromethane CCl2F2): 298.15 393.15 K, 0.1 4.28 MPa R 13 (Chlorotrifluoromethane CClF3): 283.15 373.15 K, 0.1 6.96 MPa R 22 (Chlorodifluoromethane CHClF2): 298.15 393.15 K, 0.1 5.76 MPa R 23 (Trifluoromethane CHF3): 283.15 373.15 K, 0.1 6.96 MPa The apparatus was calibrated using Ar, N2, and CO2 as the standard gases. The uncertainty of the experimental data is estimated to be within 2%, except in the critical region. The behavior of the thermal conductivity for these fluorocarbons is quite similar; thermal conductivity increases with increasing pressure. The temperature coefficient of thermal conductivity at constant pressure, ( ∂λ/ ∂T) p , is positive at low pressures and becomes negative at high pressures. Therefore, the thermal conductivity isotherms of each refrigerant intersect each other in a specific range of pressure. A steep enhancement of thermal conductivity is observed near the critical point. The experimental results are statistically analyzed and the thermal conductivities are expressed as functions of temperature and pressure and of temperature and density.

  10. Crater effects on H and D emission from laser induced low-pressure helium plasma

    SciTech Connect

    Pardede, Marincan; Lie, Tjung Jie; Kurniawan, Koo Hendrik; Maruyama, Tadashi; Kagawa, Kiichiro; Tjia, May On

    2009-09-15

    An experimental study has been performed on the effects of crater depth on the hydrogen and deuterium emission intensities measured from laser plasmas generated in low-pressure helium ambient gas from zircaloy-4 samples doped with different H and D impurity concentrations as well as a standard brass sample for comparison. The results show that aside from emission of the host atom, the emission intensities of other ablated atoms of significantly smaller masses as well as that of the He atom generally exhibit relatively rapid initial decline with increasing crater depth. This trend was found to have its origin in the decreasing laser power density arriving at the crater bottom and thereby weakened the shock wave generated in the crater. As the crater deepened, the declining trend of the intensity appeared to level off as a result of compensation of the decreasing laser power density by the enhanced plasma confinement at increasing crater depth. Meanwhile, the result also reveals the significant contribution of the He-assisted excitation process to the doped hydrogen and deuterium emission intensities, leading to similar crater-depth dependent variation patterns in contrast to that associated with the surface water, with growing dominance of this common feature at the later stage of the plasma expansion. Therefore, a carefully chosen set of gate delay and gate width which are properly adapted to the crater-depth dependent behavior of the emission intensity may produce the desired intrinsic emission data for quantitative depth profiling of H impurity trapped inside the zircaloy wall.

  11. Electron properties of the plume of an atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Adress, Wameedh; Nedanovska, Elena; Nersisyan, Gagik; Riley, David; Graham, William

    2013-09-01

    Atmospheric pressure plasma, APP, jets, are now attracting great interest because of their potential uses in many applications; for example surface modification and plasma medicine. These applications require an insight into their plasma chemistry, which is strongly influenced by the electron energy distribution function. Here we report the use of Thomson scattering to measure the electron properties in the plume created by a 20 kHz, 2mm diameter helium APP jet operating into the open air. A 532 nm Nd:YAG laser beam is focussed into the plasma plume. The temporally and spatially resolved spectra of light at 90° to the laser direction is detected. The spectra contain light from Thomson Scattering from electrons, along with Rayleigh and Raman scattering from atoms and molecules. These components are resolved in a manner similar to that described in ref 1. Our measurements reveal a ``ring-like'' radial distribution of both the electron density and temperature, with outer values of ~ 7×1013 cm-3 and 0.4 eV and inner values of ~ 2×1013 cm-3 and 0.1 eV respectively at 4 mm from the end of the quartz tube.

  12. The impingement of a kHz helium atmospheric pressure plasma jet on a dielectric surface

    NASA Astrophysics Data System (ADS)

    Guaitella, O.; Sobota, A.

    2015-06-01

    A parametric study of the impingement of a helium kHz atmospheric pressure plasma jet on a flat glass surface was performed by means of time-resolved intensified charge-coupled device imaging. The development of the plasma on the target is linked to the plasma evolution in the source and governed by the power supply. The glass surface takes part in the elongation of the plasma jet by the virtue of two mechanisms: the local enhancement of the electric field and the supply of pre-deposited charge. The evidence for the pre-deposited charge is the formation of a sheath on the glass surface, and the faint discharge formed on the glass surface during the negative voltage slope starting at the maximum of the negative current peak. The influence of the gas flow dynamics taking into account various gas flows, incident angles and distances is more important for the behaviour of the discharge on the surface than the voltage amplitude or the geometry of the source. The capacitance of the target strongly modifies the interaction with the plasma jet and increases the deposited surface charge density, featuring a streamer-like propagation mechanism in the case of high electric field enhancement at the surface.

  13. Array of surface-confined glow discharges in atmospheric pressure helium: Modes and dynamics

    SciTech Connect

    Li, D.; Liu, D. X. E-mail: mglin5g@gmail.com; Nie, Q. Y.; Li, H. P.; Chen, H. L.; Kong, M. G. E-mail: mglin5g@gmail.com

    2014-05-19

    Array of atmospheric pressure surface discharges confined by a two-dimensional hexagon electrode mesh is studied for its discharge modes and temporal evolution so as to a theoretical underpinning to their growing applications in medicine, aerodynamic control, and environmental remediation. Helium plasma surface-confined by one hexagon-shaped rim electrode is shown to evolve from a Townsend mode to a normal and abnormal glow mode, and its evolution develops from the rim electrodes as six individual microdischarges merging in the middle of the hexagon mesh element. Within one hexagon element, microdischarges remain largely static with the mesh electrode being the instantaneous cathode, but move towards the hexagon center when the electrode is the instantaneous anode. On the entire array electrode surface, plasma ignition is found to beat an unspecific hexagon element and then spreads to ignite surrounding hexagon elements. The spreading of microdischarges is in the form of an expanding circle at a speed of about 3 × 10{sup 4} m/s, and their quenching starts in the location of the initial plasma ignition. Plasma modes influence how input electrical power is used to generate and accelerate electrons and as such the reaction chemistry, whereas plasma dynamics are central to understand and control plasma instabilities. The present study provides an important aspect of plasma physics of the atmospheric surface-confined discharge array and a theoretical underpinning to its future technological innovation.

  14. Helium Pressure Shift of the Hyperfine Clock Transition in Hg-201(+)

    NASA Technical Reports Server (NTRS)

    Larigani, S. Taghavi; Burt, E. A.; Tjoelker, R. L.

    2010-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave atomic clock: Hg-199(+) and Hg-201(+). We are investigating the viability of a trapped ion clock based on Hg-201(+) in a configuration that uses a buffer gas to increase ion loading efficiency and counter ion heating from rf trapping fields. Traditionally, either helium or neon is used as the buffer gas at approx. 10(exp -5) torr to confine mercury ions near room temperature. In addition to the buffer gas, other residual background gasses such as H2O, N2, O2, CO, CO2, and CH2 may be present in trace quantities. Collisions between trapped ions and buffer gas or background gas atoms/molecules produce a momentary shift of the ion clock transition frequency and constitute one of the largest systematic effects in this type of clock. Here we report an initial measurement of the He pressure shift in Hg-201(+) and compare this to Hg-199(+).

  15. Acoustic microscopy and nonlinear effects in pressurized superfluid helium. Technical report

    SciTech Connect

    Moulthrop, A.A.; Muha, M.S.; Kozlowski, G.C.; Silva, C.P.; Hadimioglu, B.

    1993-08-31

    The operation of an acoustic microscope having a resolution of 15 nm has been demonstrated. It uses as a coupling medium superfluid 4He colder than 0.9 K and pressurized to greater than 20 bar. The microscope is now being used to image objects that show little or no contrast on a scanning electron microscope. In addition, the acoustic microscope is being used to study the properties of sound propagation in the coupling fluid. At low acoustic intensities, the coupling fluid has very low acoustic attenuation at the microscope's operating frequency (15.3 GHz), but near the focal point the acoustic intensity can be high enough that the helium behaves with extreme nonlinearity. In fact, this medium is capable of entering new regimes of nonlinear interaction. Plots of the received signal versus input power display a nearly complete pump depletion at certain input power levels and a reconversion to the pump frequency at higher power levels. Such behavior has never before been observed. The authors present arguments that the process underlying this nonlinear behavior is harmonic generation. Cryogenic microscopy, Harmonic generation, Nonlinear acoustics.

  16. Heat transfer through Rutherford superconducting cable with novel pattern of polyimide electrical insulation in pressurized superfluid helium environment

    NASA Astrophysics Data System (ADS)

    Chorowski, Maciej; Polinski, Jaroslaw; Strychalski, Michal

    2012-06-01

    Future LHC accelerator luminosity upgrade will increase a beam losses heat deposition in the superconducting magnet coils. Main barrier of the heat evacuation from the coils made of Rutherford type cables is a cable electrical insulation. The insulation is made of polyimide tapes wrapped around the cable in a special configuration. Presently used insulation wrapping schemes constitute very good electrical insulation with relatively low heat transport ability. Therefore a new insulation wrapping schemes with enhanced helium permeability and adequate dielectric properties have been developed at CERN. An experimental comparative study of heat transfer perpendicular to the Rutherford type cable, for an old and new insulation wrapping schemes have been accomplished at Wroclaw University of Technology. The tests have been performed in pressurized superfluid helium conditions, and at 60 MPa of the sample applied external pressure simulating the Lorentz forces. This paper presents the measurements methodology and gives experimental results.

  17. Simulation of Oxygen Disintegration and Mixing With Hydrogen or Helium at Supercritical Pressure

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Taskinoglu, Ezgi

    2012-01-01

    The simulation of high-pressure turbulent flows, where the pressure, p, is larger than the critical value, p(sub c), for the species under consideration, is relevant to a wide array of propulsion systems, e.g. gas turbine, diesel, and liquid rocket engines. Most turbulence models, however, have been developed for atmospheric-p turbulent flows. The difference between atmospheric-p and supercritical-p turbulence is that, in the former situation, the coupling between dynamics and thermodynamics is moderate to negligible, but for the latter it is very significant, and can dominate the flow characteristics. The reason for this stems from the mathematical form of the equation of state (EOS), which is the perfect-gas EOS in the former case, and the real-gas EOS in the latter case. For flows at supercritical pressure, p, the large eddy simulation (LES) equations consist of the differential conservation equations coupled with a real-gas EOS. The equations use transport properties that depend on the thermodynamic variables. Compared to previous LES models, the differential equations contain not only the subgrid scale (SGS) fluxes, but also new SGS terms, each denoted as a correction. These additional terms, typically assumed null for atmospheric pressure flows, stem from filtering the differential governing equations, and represent differences between a filtered term and the same term computed as a function of the filtered flow field. In particular, the energy equation contains a heat-flux correction (q-correction) that is the difference between the filtered divergence of the heat flux and the divergence of the heat flux computed as a function of the filtered flow field. In a previous study, there was only partial success in modeling the q-correction term, but in this innovation, success has been achieved by using a different modeling approach. This analysis, based on a temporal mixing layer Direct Numerical Simulation database, shows that the focus in modeling the q

  18. Viscosity of Gaseous Mixtures of HCFC-22 + HCFC-142b at Pressures to 6.3 MPa

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Tomida, D.; Yokoyama, C.

    2009-06-01

    The gaseous viscosity of non-azeotropic mixtures of HCFC-22 and HCFC-142b was measured by an oscillating disk viscometer of the Maxwell type from 298.15 K to 423.15 K and at pressures up to 6.3 MPa. The viscosity at approximately atmospheric pressure was predicted with a maximum deviation of 1.84 % and an average deviation of 0.61 % by the Sutherland-Thiesen equation, coefficients of which were determined by the Brokaw method. An empirical equation was developed for the viscosity as a function of composition, temperature, and density. This equation reproduced the observed viscosity with a maximum deviation of 5.61 % and an average deviation of 1.14 %.

  19. The carbon-based structures synthesized through nuclear reactions in helium at 1.1 kbar pressure under irradiation with braking γ-rays of 10 MeV threshold energy

    NASA Astrophysics Data System (ADS)

    Didyk, A. Yu.; Wisniewski, R.; Wilczynska-Kitowska, T.

    2015-01-01

    A helium high-pressure chamber (HeHPC), made from beryllium bronze, filled with gaseous helium at an initial pressure of about 1.1 kbar was irradiated by braking γ-rays of 10 MeV threshold energy during 1.0×105 \\text{s} at an electron beam current 22\\text-24 μ \\text{A} . Before opening of the chamber, the residual pressure inside was equal to 430 bar. Synthesized foils of black colour and other multiple objects were found inside the HeHPC at the inner surfaces of the reaction chamber made of high-purity copper, at the entrance window for γ-rays of beryllium bronze, and at the copper collector of nuclear and chemical reaction products. The element analysis using scanning electron microscopy (SEM) and microprobe roentgen analysis (MPRA) allowed us to establish that the foils were predominantly made of carbon and smaller quantities of other elements from carbon to iron. The developed approach agrees well with a series of studies carried out by the authors where dense hydrogen and deuterium gases are acted on by γ-rays in the presence or absence of metals in the reaction chamber.

  20. Effects of metastable species in helium and argon atmospheric pressure plasma jets (APPJs) on inactivation of periodontopathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Young; Kim, Kyoung-Hwa; Seol, Yang-Jo; Kim, Su-Jeong; Bae, Byeongjun; Huh, Sung-Ryul; Kim, Gon-Ho

    2016-05-01

    The helium and argon have been widely used as discharge gases in atmospheric pressure plasma jets (APPJs) for bacteria inactivation. The APPJs show apparent different in bullet propagation speed and bacteria inactivation rate apparently vary with discharge gas species. This work shows that these two distinctive features of APPJs can be linked through one factor, the metastable energy level. The effects of helium and argon metastable species on APPJ discharge mechanism for reactive oxygen nitrogen species (RONS) generation in APPJs are investigated by experiments and numerical estimation. The discharge mechanism is investigated by using the bullet velocity from the electric field which is obtained with laser induced fluorescence (LIF) measurement. The measured electric field also applied on the estimation of RONS generation, as electron energy source term in numerical particle reaction. The estimated RONS number is verified by comparing NO and OH densities to the inactivation rate of periodontitis bacteria. The characteristic time for bacteria inactivation of the helium-APPJ was found to be 1.63 min., which is significantly less than that of the argon-APPJ, 12.1 min. In argon-APPJ, the argon metastable preserve the energy due to the lack of the Penning ionization. Thus the surface temperature increase is significantly higher than helium-APPJ case. It implies that the metastable energy plays important role in both of APPJ bullet propagation and bacteria inactivation mechanism.

  1. Liquid Hydrogen Regulated Low Pressure High Flow Pneumatic Panel AFT Arrow Analysis

    NASA Technical Reports Server (NTRS)

    Jones, Kelley, M.

    2013-01-01

    Project Definition: Design a high flow pneumatic regulation panel to be used with helium and hydrogen. The panel will have two circuits, one for gaseous helium (GHe) supplied from the GHe Movable Storage Units (MSUs) and one for gaseous hydrogen (GH2) supplied from an existing GH2 Fill Panel. The helium will supply three legs; to existing panels and on the higher pressure leg and Simulated Flight Tanks (SFTs) for the lower pressure legs. The hydrogen line will pressurize a 33,000 gallon vacuum jacketed vessel.

  2. Helium jet dispersion to atmosphere

    NASA Technical Reports Server (NTRS)

    Khan, Hasna J.

    1986-01-01

    On the event of loss of vacuum guard of superinsulated helium dewar, high rate of heat transfer into the tank occurs. The rapid boiling of liquid helium causes the burst disk to rupture at four atmospheres and consequently the helium passes to the atmosphere through vent lines. The gaseous helium forms a vertical buoyant jet as it exits the vent line into a stagnant environment. Characterization of the gaseous jet is achieved by detailed analysis of the axial and radial dependence of the flow parameters.

  3. Hydrogen-helium mixtures at megabar pressures: implications for jupiter and saturn.

    PubMed

    Klepeis, J E; Schafer, K J; Barbee, T W; Ross, M

    1991-11-15

    Models of Jupiter and Saturn postulate a central rock core surrounded by a fluid mixture of hydrogen and helium. These models suggest that the mixture is undergoing phase separation in Saturn but not Jupiter. State-of-the-art total energy calculations of the enthalpy of mixing for ordered alloys of hydrogen and helium confirm that at least partial phase separation has occurred in Saturn and predict that this process has also begun in Jupiter.

  4. Afterglow chemistry of atmospheric-pressure helium-oxygen plasmas with humid air impurity

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2014-04-01

    The formation of reactive species in the afterglow of a radio-frequency-driven atmospheric-pressure plasma in a fixed helium-oxygen feed gas mixture (He+0.5%O2) with humid air impurity (a few hundred ppm) is investigated by means of an extensive global plasma chemical kinetics model. As an original objective, we explore the effects of humid air impurity on the biologically relevant reactive species in an oxygen-dependent system. After a few milliseconds in the afterglow environment, the densities of atomic oxygen (O) decreases from 1015 to 1013 cm-3 and singlet delta molecular oxygen (O2(1D)) of the order of 1015 cm-3 decreases by a factor of two, while the ozone (O3) density increases from 1014 to 1015 cm-3. Electrons and oxygen ionic species, initially of the order of 1011 cm-3, recombine much faster on the time scale of some microseconds. The formation of atomic hydrogen (H), hydroxyl radical (OH), hydroperoxyl (HO2), hydrogen peroxide (H2O2), nitric oxide (NO) and nitric acid (HNO3) resulting from the humid air impurity as well as the influence on the afterglow chemistry is clarified with particular emphasis on the formation of dominant reactive oxygen species (ROS). The model suggests that the reactive species predominantly formed in the afterglow are major ROS O2(1D) and O3 (of the order of 1015 cm-3) and rather minor hydrogen- and nitrogen-based reactive species OH, H2O2, HNO3 and NO2/NO3, of which densities are comparable to the O-atom density (of the order of 1013 cm-3). Furthermore, the model quantitatively reproduces the experimental results of independent O and O3 density measurements.

  5. The role of high pressure experiment and theory in our understanding of gaseous and icy planets

    NASA Technical Reports Server (NTRS)

    Stevenson, David J.

    1988-01-01

    High pressure experiments provide essential data for modeling planetary structure. Shock wave experiments are often especially suitable because they sample the same region of pressure-temperature space that is achieved naturally within the planet during its evolution. A very brief overview of planetary properties is given, followed by a summary of the issues of current interest: the behavior of hydrogen and hydrogen-rich mixtures; C, N, and O at high pressure, and rock-ice mixtures.

  6. Ignition and afterglow dynamics of a high pressure nanosecond pulsed helium micro-discharge: I. Electron, Rydberg molecules and He (23S) densities

    NASA Astrophysics Data System (ADS)

    Schregel, Christian-Georg; Carbone, Emile A. D.; Luggenhölscher, Dirk; Czarnetzki, Uwe

    2016-10-01

    This work presents the results of Thomson scattering measurements, optical emission spectroscopy and laser absorption spectroscopy applied to a high pressure nanosecond pulsed helium micro-discharge. All data are recorded with high temporal resolution, giving an insight into the processes determining the discharge dynamics. From Thomson scattering measurements, the electron velocity distribution function is determined. Photo-ionization of helium Rydberg molecules presents a complication for the direct measurement of the electron density by Thomson scattering. Laser pulse energy variation measurements however allow to obtain absolute Rydberg state densities to be obtained. For the first time, the electron velocity distribution function and total Rydberg molecules density for a high-pressure pure helium discharge are reported in this paper. These measurements provide new insights into high pressure pure helium discharge chemical pathways.

  7. The gaseous explosive reaction at constant pressure : the reaction order and reaction rate

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1931-01-01

    The data given in this report covers the explosive limits of hydrocarbon fuels. Incidental to the purpose of the investigation here reported, the explosive limits will be found to be expressed for the condition of constant pressure, in the fundamental terms of concentrations (partial pressures) of fuel and oxygen.

  8. A theoretical and experimental study of pressure broadening of the oxygen A-band by helium

    SciTech Connect

    Grimminck, Dennis L. A. G.; Spiering, Frans R.; Janssen, Liesbeth M. C.; Avoird, Ad van der; Zande, Wim J. van der; Groenenboom, Gerrit C.

    2014-05-28

    The rotationally resolved magnetic dipole absorption spectrum of the oxygen A-band b{sup 1}Σ{sub g}{sup +}(v=0)←X{sup 3}Σ{sub g}{sup −}(v=0) perturbed by collisions with helium was studied theoretically using the impact approximation. To calculate the relaxation matrix, scattering calculations were performed on a newly computed helium-oxygen (b{sup 1}Σ{sub g}{sup +}) interaction potential as well as on a helium-oxygen (X{sup 3}Σ{sub g}{sup −}) interaction potential from the literature. The calculated integrated line cross sections and broadening coefficients are in good agreement with experimental results from the literature. Additionally, cavity ring-down experiments were performed in the wings of the spectral lines for a quantitative study of line-mixing, i.e., the redistribution of rotational line intensities by helium-oxygen collisions. It is shown that inclusion of line-mixing in the theory is required to reproduce the experimentally determined absolute absorption strengths as a function of the density of the helium gas.

  9. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures.

    PubMed

    Razus, Domnina; Movileanua, Codina; Oancea, Dumitru

    2007-01-01

    The maximum rates of pressure rise of propylene-air explosions at various initial pressures and various fuel/oxygen ratios in three closed vessels (a spherical vessel with central ignition and two cylindrical vessels with central or with top ignition) are reported. It was found that in explosions of quiescent mixtures the maximum rates of pressure rise are linear functions on total initial pressure, at constant initial temperature and fuel/oxygen ratio. The slope and intercept of found correlations are greatly influenced by vessel's volume and shape and by the position of the ignition source--factors which determine the amount of heat losses from the burned gas in a closed vessel explosion. Similar data on propylene-air inert mixtures are discussed in comparison with those referring to propylene-air, revealing the influence of nature and amount of inert additive. The deflagration index KG of centrally ignited explosions was also calculated from maximum rates of pressure rise. PMID:16876946

  10. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures.

    PubMed

    Razus, Domnina; Movileanua, Codina; Oancea, Dumitru

    2007-01-01

    The maximum rates of pressure rise of propylene-air explosions at various initial pressures and various fuel/oxygen ratios in three closed vessels (a spherical vessel with central ignition and two cylindrical vessels with central or with top ignition) are reported. It was found that in explosions of quiescent mixtures the maximum rates of pressure rise are linear functions on total initial pressure, at constant initial temperature and fuel/oxygen ratio. The slope and intercept of found correlations are greatly influenced by vessel's volume and shape and by the position of the ignition source--factors which determine the amount of heat losses from the burned gas in a closed vessel explosion. Similar data on propylene-air inert mixtures are discussed in comparison with those referring to propylene-air, revealing the influence of nature and amount of inert additive. The deflagration index KG of centrally ignited explosions was also calculated from maximum rates of pressure rise.

  11. Virial equations of state for gaseous ammonia, water, carbon dioxide, and their mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Voronin, G. F.; Genkin, M. V.; Kutsenok, I. B.

    2015-11-01

    The available reference and experimental data on densities of the gaseous solutions, NH3-CO2, NH3-H2O, CO2-H2O, NH3-CO2-H2O and their components, NH3, CO2, H2O have been described as accurately as possible by virial equations of state in the temperature range from ~150 to 300°C and pressure range from 1 to 280 bar. More accurate and reliable values of the gas compressibility for the ternary NH3-CO2-H2O system and new data on the virial coefficients have been obtained. It was concluded that the obtained results are of interest for physical chemical simulations of many natural and technological processes particularly in the production of carbamide and other substances on the basis of urea.

  12. Microballoon pressure sensors for particle imaging manometry in liquid and gaseous media.

    PubMed

    Banerjee, N; Mastrangelo, C H

    2016-02-21

    We present the fabrication and testing of engineered microballoon particles that expand and contract under external pressure changes hence serving as microscopic pressure sensors. The particles consist of 12 μm hollow flexible 0.4 μm-thick parylene-C shells with and without a coating of ultrathin Al2O3 diffusion barriers, and the changes in the particle radius are measured from the particle spectral reflectivity. The microballoons display radial pressure sensitivities of 0.64 nm psi(-1) and 0.44 nm psi(-1), respectively in agreement with theoretical estimates. The microballoon devices were used for mapping the internal pressure drop within microfluidic chips. These devices experience nearly spherical symmetry which could make them potential flow-through sensors for the augmentation of particle-based flow characterization methodologies extending today's capabilities of particle imaging velocimetry.

  13. Use of Heated Helium to Simulate Surface Pressure Fluctuations on the Launch Abort Vehicle During Abort Motor Firing

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; James, George H.; Burnside, Nathan J.; Fong, Robert; Fogt, Vincent A.

    2011-01-01

    The solid-rocket plumes from the Abort motor of the Multi-Purpose Crew Vehicle (MPCV, also know as Orion) were simulated using hot, high pressure, Helium gas to determine the surface pressure fluctuations on the vehicle in the event of an abort. About 80 different abort situations over a wide Mach number range, (0.3< or =M< or =1.2) and vehicle attitudes (+/-15deg) were simulated inside the NASA Ames Unitary Plan, 11-Foot Transonic Wind Tunnel. For each abort case, typically two different Helium plume and wind tunnel conditions were used to bracket different flow matching critera. This unique, yet cost-effective test used a custom-built hot Helium delivery system, and a 6% scale model of a part of the MPCV, known as the Launch Abort Vehicle. The test confirmed the very high level of pressure fluctuations on the surface of the vehicle expected during an abort. In general, the fluctuations were found to be dominated by the very near-field hydrodynamic fluctuations present in the plume shear-layer. The plumes were found to grow in size for aborts occurring at higher flight Mach number and altitude conditions. This led to an increase in the extent of impingement on the vehicle surfaces; however, unlike some initial expectations, the general trend was a decrease in the level of pressure fluctuations with increasing impingement. In general, the highest levels of fluctuations were found when the outer edges of the plume shear layers grazed the vehicle surface. At non-zero vehicle attitudes the surface pressure distributions were found to become very asymmetric. The data from these wind-tunnel simulations were compared against data collected from the recent Pad Abort 1 flight test. In spite of various differences between the transient flight situation and the steady-state wind tunnel simulations, the hot-Helium data were found to replicate the PA1 data fairly reasonably. The data gathered from this one-of-a-kind wind-tunnel test fills a gap in the manned-space programs

  14. On the influence of low initial pressure and detonation stochastic nature on Mach reflection of gaseous detonation waves

    NASA Astrophysics Data System (ADS)

    Wang, C. J.; Guo, C. M.

    2014-09-01

    The two-dimensional, time-dependent and reactive Navier-Stokes equations were solved to obtain an insight into Mach reflection of gaseous detonation in a stoichiometric hydrogen-oxygen mixture diluted by 25 % argon. This mixture generates a mode-7 detonation wave under an initial pressure of 8.00 kPa. Chemical kinetics was simulated by an eight-species, forty-eight-reaction mechanism. It was found that a Mach reflection mode always occurs for a planar detonation wave or planar air shock wave sweeping over wedges with apex angles ranging from to . However, for cellular detonation waves, regular reflection always occurs first, which then transforms into Mach reflection. This phenomenon is more evident for detonations ignited under low initial pressure. Low initial pressure may lead to a curved wave front, that determines the reflection mode. The stochastic nature of boundary shape and transition distance, during deflagration-to-detonation transition, leads to relative disorder of detonation cell location and cell shape. Consequently, when a detonation wave hits the wedge apex, there appears a stochastic variation of triple point origin and variation of the angle between the triple point trajectory and the wedge surface. As the wedge apex angle increases, the distance between the triple point trajectory origin and the wedge apex increases, and the angle between the triple point trajectory and the wedge surface decreases exponentially.

  15. Evaluation of gaseous fluorocarbon adsorption isotherms on porous adsorbents under high pressure

    SciTech Connect

    Kaliappan, S.; Furuya, E.G.; Noll, K.E.; Chang, H.T.; Wang, H.C.

    1996-11-01

    In this study data have been collected to aid in the design of a control system that will remove fluorocarbons by adsorbing onto porous adsorbents. A bench scale experimental adsorption system had been designed using high accuracy MKS pressure transducers of 10,000 torr (two nos.) and a 100 torr connected to digital readout units. Tetrafluoromethane (CF{sub 4}) one of the fluorinated carbon family has been selected to evaluate the adsorption characteristics on porous adsorbents. The CF{sub 4} was charged to a sample reservoir in the test system at 200 psig pressure and at 22 C was allowed into an adsorption chamber at small increment of pressure rise. The pressure drop, using a Valydine PS 309 differential pressure gauge from the sample reservoir and the pressure buildup in the adsorption chamber were measured and the amount of CF{sub 4} adsorbed onto the adsorbents was calculated using ideal gas law. Various adsorbents, molecular sieve 13X, Silicagel (14 x 20), Beads Activated Carbon, Granular Activated Carbons PCB 6 x 16, BPL 4 x 10, F300, and F400 had been studied. It has been found that GAC-PCB 6 x 16 has the highest adsorbing capacity of 0.51 gm/gm at the conditions established. GAC-F300 had the second highest adsorbing capacity of 0.413 gm/gm, among all the adsorbents tested. The isotherms were analyzed using several equations employing both two parameters and three parameters. The relationship between the constants and physical properties of adsorbent solids and adsorbate molecules is discussed. The result of this study will be utilized to design a pressure swing fluorocarbon adsorption system that can be economically (using recycle of the collected fluorocarbons) applied to fluorocarbon removal in the electronic industry.

  16. Functional evaluation of rat hearts transplanted after preservation in a high-pressure gaseous mixture of carbon monoxide and oxygen

    PubMed Central

    Hatayama, Naoyuki; Inubushi, Masayuki; Naito, Munekazu; Hirai, Shuichi; Jin, Yong-Nan; Tsuji, Atsushi B.; Seki, Kunihiro; Itoh, Masahiro; Saga, Tsuneo; Li, Xiao-Kang

    2016-01-01

    We recently succeeded in resuscitating an extracted rat heart following 24–48 hours of preservation in a high-pressure gaseous mixture of carbon monoxide (CO) and oxygen (O2). This study aimed to examine the function of rat hearts transplanted after being preserved in the high-pressure CO and O2 gas mixture. The hearts of donor rats were preserved in a chamber filled with CO and O2 under high pressure for 24 h (CO24h) or 48 h at 4 °C. For the positive control (PC) group, hearts immediately extracted from donor rats were used for transplantation. The preserved hearts were transplanted into recipient rats by heterotopic cervical heart transplantation. CO toxicity does not affect the grafts or the recipients. Light microscopy and [18F]-fluorodeoxyglucose positron emission tomography revealed that there were no significant differences in the size of the myocardial infarction or apoptosis of myocardial cells in post-transplant hearts between the PC and CO24h groups. Furthermore, at 100 days after the transplantation, the heart rate, weight and histological staining of the post-transplanted hearts did not differ significantly between the PC and CO24h groups. These results indicate that the function of rat hearts is well preserved after 24 hours of high-pressure preservation in a CO and O2 gas mixture. Therefore, high-pressure preservation in a gas mixture can be a useful method for organ preservation. PMID:27562456

  17. Gas Temperature Determination in Argon-Helium Plasma at Atmospheric Pressure using van der Waals Broadening

    SciTech Connect

    Munoz, Jose; Yubero, Cristina; Calzada, Maria Dolores; Dimitrijevic, Milan S.

    2008-10-22

    The use of the van der Waals broadening of Ar atomic lines to determine the gas temperature in Ar-He plasmas, taking into account both argon and helium atoms as perturbers, has been analyzed. The values of the gas temperature inferred from this broadening have been compared with those obtained from the spectra of the OH molecular species in the discharge.

  18. D0 Silicon Upgrade: Gas Helium Storage Tank Pressure Vessel Engineering Note

    SciTech Connect

    Rucinski, Russ; /Fermilab

    1996-11-11

    This is to certify that Beaird Industries, Inc. has done a white metal blast per SSPC-SP5 as required per specifications on the vessel internal. Following the blast, a black light inspection was performed by Beaird Quality Control personnel to assure that all debris, grease, etc. was removed and interior was clean prior to closing vessel for helium test.

  19. Slush hydrogen pressurized expulsion studies at the NASA K-Site Facility

    NASA Technical Reports Server (NTRS)

    Whalen, Margaret V.; Hardy, Terry L.

    1992-01-01

    An experiment test series of the slush hydrogen (SLH2) project at the NASA LeRC Plum Brook K-Site Facility was completed. This testing was done as part of the characterization and technology database development on slush hydrogen required for the National Aero-Space Plane (NASP) Program. The primary objective of these experiments was to investigate tank thermodynamic parameters during the pressurized expulsion of slush hydrogen. To accomplish this, maintenance of tank pressure control was investigated during pressurized expulsion of slush hydrogen using gaseous hydrogen and gaseous helium pressurant. In addition, expulsion tests were performed using gaseous helium for initial pressurization, then gaseous hydrogen during expulsion. These tests were conducted with and without mixing of the slush hydrogen. Results from the testing included an evaluation of tank pressure control, pressurant requirements, SLH2 density change, and system mass and energy balances.

  20. Slush hydrogen pressurized expulsion studies at the NASA K-Site Facility

    NASA Astrophysics Data System (ADS)

    Whalen, Margaret V.; Hardy, Terry L.

    1992-07-01

    An experiment test series of the slush hydrogen (SLH2) project at the NASA LeRC Plum Brook K-Site Facility was completed. This testing was done as part of the characterization and technology database development on slush hydrogen required for the National Aero-Space Plane (NASP) Program. The primary objective of these experiments was to investigate tank thermodynamic parameters during the pressurized expulsion of slush hydrogen. To accomplish this, maintenance of tank pressure control was investigated during pressurized expulsion of slush hydrogen using gaseous hydrogen and gaseous helium pressurant. In addition, expulsion tests were performed using gaseous helium for initial pressurization, then gaseous hydrogen during expulsion. These tests were conducted with and without mixing of the slush hydrogen. Results from the testing included an evaluation of tank pressure control, pressurant requirements, SLH2 density change, and system mass and energy balances.

  1. Voltage and pressure scaling of streamer dynamics in a helium plasma jet with N{sub 2} co-flow

    SciTech Connect

    Leiweke, Robert J.; Ganguly, Biswa N.; Scofield, James D.

    2014-08-15

    Positive polarity applied voltage and gas pressure dependent scaling of cathode directed streamer propagation properties in helium gas flow guided capillary dielectric barrier discharge have been quantified from streamer velocity, streamer current, and streamer optical diameter measurements. All measurements of the non-stochastic streamer properties have been performed in a variable gas pressure glass cell with N{sub 2} co-flow and under self-consistent Poisson electric field dominated conditions to permit data comparison with 2-D streamer dynamics models in air/nitrogen. The streamer optical diameter was found to be nearly independent of both gas pressures, from 170 Torr up to 760 Torr, and also for applied voltages from 6 to 11 kV at 520 Torr. The streamer velocity was found to increase quadratically with increased applied voltage. These observed differences in the 2-D scaling properties of ionization wave sustained cathode directed streamer propagation in helium flow channel with N{sub 2} annular co-flow compared to the streamer propagation in air or nitrogen have been shown to be caused by the remnant ionization distribution due to large differences in the dissociative recombination rates of He{sub 2}{sup +} versus N{sub 4}{sup +} ions, for this 5 kHz repetition rate applied voltage pulse generated streamers.

  2. Voltage and pressure scaling of streamer dynamics in a helium plasma jet with N2 co-flow

    NASA Astrophysics Data System (ADS)

    Leiweke, Robert J.; Ganguly, Biswa N.; Scofield, James D.

    2014-08-01

    Positive polarity applied voltage and gas pressure dependent scaling of cathode directed streamer propagation properties in helium gas flow guided capillary dielectric barrier discharge have been quantified from streamer velocity, streamer current, and streamer optical diameter measurements. All measurements of the non-stochastic streamer properties have been performed in a variable gas pressure glass cell with N2 co-flow and under self-consistent Poisson electric field dominated conditions to permit data comparison with 2-D streamer dynamics models in air/nitrogen. The streamer optical diameter was found to be nearly independent of both gas pressures, from 170 Torr up to 760 Torr, and also for applied voltages from 6 to 11 kV at 520 Torr. The streamer velocity was found to increase quadratically with increased applied voltage. These observed differences in the 2-D scaling properties of ionization wave sustained cathode directed streamer propagation in helium flow channel with N2 annular co-flow compared to the streamer propagation in air or nitrogen have been shown to be caused by the remnant ionization distribution due to large differences in the dissociative recombination rates of He2+ versus N4+ ions, for this 5 kHz repetition rate applied voltage pulse generated streamers.

  3. System and process for capture of acid gasses at elevated pressure from gaseous process streams

    DOEpatents

    Heldebrant, David J.; Koech, Phillip K.; Linehan, John C.; Rainbolt, James E.; Bearden, Mark D.; Zheng, Feng

    2016-09-06

    A system, method, and material that enables the pressure-activated reversible chemical capture of acid gasses such as CO.sub.2 from gas volumes such as streams, flows or any other volume. Once the acid gas is chemically captured, the resulting product typically a zwitterionic salt, can be subjected to a reduced pressure whereupon the resulting product will release the captures acid gas and the capture material will be regenerated. The invention includes this process as well as the materials and systems for carrying out and enabling this process.

  4. Development of a High-Pressure Gaseous Burner for Calibrating Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    In this work-in-progress report, we show the development of a unique high-pressure burner facility (up to 60 atm) that provides steady, reproducible premixed flames with high precision, while having the capability to use multiple fuel/oxidizer combinations. The highpressure facility has four optical access ports for applying different laser diagnostic techniques and will provide a standard reference flame for the development of a spectroscopic database in high-pressure/temperature conditions. Spontaneous Raman scattering (SRS) was the first diagnostic applied, and was used to successfully probe premixed hydrogen-air flames generated in the facility using a novel multi-jet micro-premixed array burner element. The SRS spectral data include contributions from H2, N2, O2, and H2O and were collected over a wide range of equivalence ratios ranging from 0.16 to 4.9 at an initial pressure of 10-atm via a spatially resolved point SRS measurement with a high-performance optical system. Temperatures in fuel-lean to stoichiometric conditions were determined from the ratio of the Stokes to anti-Stokes scattering of the Q-branch of N2, and those in fuel-rich conditions via the rotational temperature of H2. The SRS derived temperatures using both techniques were consistent and indicated that the flame temperature was approximately 500 K below that predicted by adiabatic equilibrium, indicating a large amount of heat-loss at the measurement zone. The integrated vibrational SRS signals show that SRS provides quantitative number density data in high-pressure H2-air flames.

  5. The Effect of Gaseous Additives on Dynamic Pressure Output and Ignition Sensitivity of Nanothermites

    NASA Astrophysics Data System (ADS)

    Puszynski, Jan; Doorenbos, Zac; Walters, Ian; Redner, Paul; Kapoor, Deepak; Swiatkiewicz, Jacek

    2011-06-01

    This contribution addresses important combustion characteristics of nanothermite systems. In this research the following nanothermites were investigated: a) Al-Bi2O3, b)Al-Fe2O3 and c)Al-Bi2O3-Fe2O3. The effect of various gasifying additives (such as nitrocellulose (NC) and cellulose acetate butyrate (CAB)) as well as reactant stoichiometry, reactant particle size and shape on processability, ignition delay time and dynamic pressure outputs at different locations in a combustion chamber will be presented. In addition, this contribution will report electrostatic and friction sensitivities of standard and modified nanothermites.

  6. Production of water mist from electrolyte surface in contact with atmospheric-pressure dc helium glow plasma

    NASA Astrophysics Data System (ADS)

    Sasaki, K.; Ishigame, H.; Nishiyama, S.

    2015-09-01

    Plasma-liquid interaction is a new subject which has been opened by developments of atmospheric-pressure plasma sources. In this work, we adopted laser Mie scattering to examine an atmospheric-pressure dc helium glow plasma in contact with NaCl solution. The plasma was produced by applying a dc voltage between a stainless-steel gas nozzle and the electrolyte via a register of 100 k Ω. The gap distance between the electrolyte surface and the electrode was 4 mm. Helium as a working gas was fed from the nozzle toward the electrolyte surface. The discharge space was illuminated using a cw laser beam at a wavelength of 457 nm, and the scattered laser light was captured using a high-speed camera with an image intensifier via an interference filter at the laser wavelength. The scattered laser light told us the existence of particulates or water mists in the discharge space. The water mists were produced from the electrolyte surface explosively as well as randomly. The trajectories of the mists were basically parabolic. We sometimes observed the expansion of the mist size in the gas phase. The expansion was followed by the disappearance of the mist. This may be due to the evaporation of the mist, and is considered to be the production mechanism of Na in the gas phase.

  7. Fatigue Crack Growth under High Pressure of Gaseous Hydrogen in a 15-5PH Martensitic Stainless Steel: Influence of Pressure and Loading Frequency

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Moriconi, C.; Benoit, G.; Halm, D.; Henaff, G.

    2013-03-01

    In this study, the effect of gaseous hydrogen pressure in relation with the loading frequency on the fatigue crack growth behavior of a precipitation-hardened martensitic stainless steel is investigated. It is found that increasing the hydrogen pressure from 0.09 to 9 MPa induces an enhancement of the fatigue crack growth rates. This enhancement is pronounced particularly at higher stress intensity factor amplitudes at 9 MPa. Meanwhile, decreasing the frequency from 20 to 0.2 Hz under 0.9 MPa of hydrogen reveals a significant increase in the crack growth rates that tends to join the curve obtained under 9 MPa at 20 Hz, but with a different cracking mode. However, it is shown that the degradation in fatigue crack growth behavior derives from a complex interaction between the fatigue damage and the amount of hydrogen enriching the crack tip, which is dependent on the hydrogen pressure, loading frequency, and stress intensity factor level. Scanning electron microscope (SEM) observations of the fracture surfaces are used to support the explanations proposed to account for the observed phenomena.

  8. Combustion of 316 stainless steel in high-pressure gaseous oxygen

    NASA Technical Reports Server (NTRS)

    Benz, Frank; Steinberg, Theodore A.; Janoff, Dwight

    1989-01-01

    Upward combustion of 316 stainless steel (SS) rods is discussed and a combustion model is presented. The effects of varying oxygen pressure and rod diameter on the rate limiting processes for combustion of 316 SS are evaluated. The rate-limiting steps for combustion up 316 SS rods are shown to be dependent on the incorporation and mass transport of oxygen in the molten mass, and heat transfer between the molten mass and rod. Both these rate-limiting steps are shown to be dependent on rod diameter. Small (d/r/ = 0.051 cm) 316 SS rods are shown to be dependent on convective heat transfer, and larger rods (d/r/ not less than 0.32 cm) are shown to be dependent on oxygen incorporation and mass transport in the molten mass.

  9. Thermal performance of gaseous-helium-purged tank-mounted multilayer insulation system during ground-hold and space-hold thermal cycling and exposure to water vapor

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.

    1978-01-01

    An experimental investigation was conducted to determine (1) the ground-hold and space-hold thermal performance of a multilayer insulation (MLI) system mounted on a spherical, liquid-hydrogen propellant tank and (2) the degradation to the space-hold thermal performance of the insulation system that resulted from both thermal cycling and exposure to moisture. The propellant tank had a diameter of 1.39 meters (4.57ft). The MLI consisted of two blankets of insulation; each blanket contained 15 double-aluminized Mylar radiation shields separated by double silk net spacers. Nineteen tests simulating basic cryogenic spacecraft thermal (environmental) conditions were conducted. These tests typically included initial helium purge, liquid-hydrogen fill and ground-hold, ascent, space-hold, and repressurization. No significant degradation of the space-hold thermal performance due to thermal cycling was noted.

  10. High-pressure phase diagram and equation of state of solid helium from single-crystal X-ray diffraction to 23.3 GPa

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Hemley, R. J.; Jephcoat, A. P.; Finger, L. W.; Wu, Y.

    1988-01-01

    Single-crystal X-ray diffraction measurements have been performed on solid He-4 from 15.6 to 23.3 GPa at 300 K with synchrotron radiation. The diffraction patterns demonstrate that the structure of the solid is hexagonal close packed over this pressure-temperature range, contrary to both the interpretation of high-pressure optical studies and to theoretical predictions. The solid is more compressible than is indicated by equations of state calculated with recently determined helium pair potentials. The results suggest that a significant revision of current views of the phase diagram and energetics of dense solid helium is in order.

  11. The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium.

    PubMed

    Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki

    2006-06-14

    Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.

  12. The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium.

    PubMed

    Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki

    2006-06-14

    Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons. PMID:16784271

  13. Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Tan, Zhenyu; Pan, Jie; Chen, Xinxian

    2016-08-01

    In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He2+ and O2-, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture. supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)

  14. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  15. Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Tan, Zhenyu; Pan, Jie; Chen, Xinxian

    2016-08-01

    In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He2+ and O2‑, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture. supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)

  16. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    SciTech Connect

    Zhang, Cheng; Shao, Tao Wang, Ruixue; Yan, Ping; Zhou, Zhongsheng; Zhou, Yixiao

    2014-10-15

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs.

  17. Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Nicula, Cosmina

    2013-06-01

    In this work, we have applied optical emission spectroscopy diagnostics to investigate the characteristics of a non-thermal atmospheric pressure helium plasma jet. The discharge characteristics in the active and afterglow region of the plasma jet, that are critical for biomedical applications, have been investigated. The voltage-current characteristics of the plasma discharge were analyzed and the average plasma power was measured to be around 18 W. The effect of addition of small fractions of oxygen at 0.1%-0.5% on the plasma jet characteristics was studied. The addition of oxygen resulted in a decrease in plasma plume length due to the electronegativity property of oxygen. Atomic and molecular lines of selected reactive plasma species that are considered to be useful to induce biochemical reactions such as OH transitions A2Σ+(ν=0,1)→X2Π(Δν =0) at 308 nm and A2Σ+(ν=0,1)→X2Π(Δν =1) at 287 nm, O I transitions 3p5P→3s5S0 at 777.41 nm, and 3p3P→3s3S0 at 844.6 nm, N2(C-B) second positive system with electronic transition C3Πu→B3Πg in the range of 300-450 nm and N2+(B-X) first negative system with electronic transition B2Σu+→X2Σg+(Δν =0) at 391.4 nm have been studied. The atomic emission lines of helium were identified, including the He I transitions 3p3P0→2s3S at 388.8 nm, 3p1P0→ 2s1S at 501.6 nm, 3d3D→2p3P0 at 587.6 nm, 3d1D→2p1P0 at 667.8 nm, 3s3S1→2p3P0 at 706.5 nm, 3s1S0→2p1P0 at 728.1 nm, and Hα transition 2p-3d at 656.3 nm. Using a spectral fitting method, the OH radicals at 306-312 nm, the rotational and vibrational temperatures equivalent to gas temperatures of the discharge was measured and the effective non-equilibrium nature of the plasma jet was demonstrated. Our results show that, in the entire active plasma region, the gas temperature remains at 310 ± 25 K and 340 ± 25 K and it increases to 320 ± 25 K and 360 ± 25 K in the afterglow region of the plasma jet for pure helium and helium/oxygen (0.1%) mixture

  18. Use of a low pressure helium/water vapor discharge as a mercury-free source of ultraviolet emission

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Shuaibov, Alexander; Shevera, Igor; Gritzak, Roksolana; Tsymbaliuk, Alexander

    2014-09-01

    This paper presents the results of study of the longitudinal low-pressure glow discharge in a helium/water mixture. This discharge is proposed for use as a mercury-free source of ultraviolet emission. The emission spectra in the ultraviolet range are recorded by a monochromator and analyzed. In order to interpret the experimental results, the numerical modeling is carried out using global model for 46 species and 577 plasma chemical reactions between them. This model allows us to define the main reactions responsible for the generation and quenching of the excited species, which emit in the ultraviolet range. The optimal conditions are found when the lines with wavelengths of 309 nm OH(A-X) and 150-190 nm OH(X-C,B) have the largest intensity.

  19. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  20. Gaseous diffusion system

    DOEpatents

    Garrett, George A.; Shacter, John

    1978-01-01

    1. A gaseous diffusion system comprising a plurality of diffusers connected in cascade to form a series of stages, each of said diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof.

  1. PS1 satellite refrigerator heat exchanger: Failure of the LN2 heat exchanger to low pressure helium

    SciTech Connect

    Squires, B.

    1992-11-01

    The PS1 heat exchanger is one of three prototype heat exchangers built by Atomic Welders before Meyer was given the contract to build the Satellite Refrigerator Heat Exchanger components. This heat exchanger was first put into operation in July 1983. In November 1991, this heat exchanger experienced a failure in the shell of heat exchanger 1 causing nitrogen to contaminate the helium in the refrigerator. The resulting contamination plugged heat exchanger 3. The break occurred at a weld that connects a 0.25 inch thick ring to heat exchanger 1. The failure appears to be a fatigue of the shell due to temperature oscillations. The flow rate through the break was measured to be 1.0 scfm for a pressure drop over the crack of 50 psi. An ANSYS analysis of the failure area indicates that the stress would be 83,000 psi if the metal did not yield. This is based on cooling down the shell to 80K from 300K with the shell side helium on the outside of the shell at 300K. This is the largest change in temperature that occurs during operation. During normal operations, the temperature swings are not nearly this large, however temperatures down to 80K are not unusual (LN2 overflowing pot). The highest temperatures are typically 260K. The analysis makes no attempt to estimate the stress concentration factor at this weld but there is no doubt that it is greater than 1. No estimate as to the number of cycles to cause failure was calculated nor any estimate as to the actual number of cycles was made.

  2. A high-pressure van der Waals compound in solid nitrogen-helium mixtures

    NASA Technical Reports Server (NTRS)

    Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A.

    1992-01-01

    A detailed diamond anvil-cell study using synchrotron X-ray diffraction, Raman scattering, and optical microscopy has been conducted for the He-N system, with a view to the weakly-bound van der Waals molecule interactions that can be formed in the gas phase. High pressure is found to stabilize the formation of a stoichiometric, solid van der Waals compound of He(N2)11 composition which may exemplify a novel class of compounds found at high pressures in the interiors of the outer planets and their satellites.

  3. Polarization of the light from the 3P(1)-2S(1) transition in proton beam excited helium. Ph.D. Thesis; [target gas pressure effects

    NASA Technical Reports Server (NTRS)

    Weinhous, M. S.

    1973-01-01

    Measurements of the polarization of the light from the 3 1p-2 1s transition in proton beam excited Helium have shown both a proton beam energy and Helium target gas pressure dependence. Results for the linear polarization fraction range from +2.6% at 100 keV proton energy to -5.5% at 450 keV. The zero crossover occurs at approximately 225 keV. This is in good agreement with other experimental work in the field, but in poor agreement with theoretical predictions. Measurements at He target gas pressures as low as .01 mtorr show that the linear polarization fraction is still pressure dependent at .01 mtorr.

  4. Transitions between various diffuse discharge modes in atmospheric-pressure helium in the medium-frequency range

    NASA Astrophysics Data System (ADS)

    Boisvert, J.-S.; Margot, J.; Massines, F.

    2016-08-01

    In this paper, we investigate DBDs in the medium frequency range (MF, 0.3-3 MHz). More precisely, for a 2 inter-dielectric gap in helium at atmospheric pressure, the frequency is varied from 1.0 to 2.7 MHz. The generated discharge shows similarities with both the low-frequency atmospheric-pressure glow discharge (APGD) and the atmospheric pressure capacitively coupled radio-frequency (CCRF) discharge. In the frequency range under investigation, two diffuse discharge modes can be observed depending on the voltage applied between the electrodes. At low applied voltage, the discharge emissions are barely visible and are concentrated in the center of the gas gap similarly to CCRF discharges in the Ω mode where the electron density is concentrated in the bulk. Ohmic heating is the main power transfer mechanism. At higher applied voltage, the discharge emissions are 10 times more intense and are closer to the dielectric surfaces similarly to the more common radio-frequency α mode. These two discharge modes can be observed in the same experimental conditions with the amplitude of the applied voltage as sole control parameter. The gas temperature obtained from N2 impurities rotational spectrum increases from room temperature to about 500 K while the power density rises from 10-1 to 101 W cm-3 when the applied voltage is increased. In addition, when the discharge transits back and forth from the Ω to the α mode, a hysteresis is observed. The transition from the Ω to the α mode occurs abruptly with a large RMS current increase while the transition from the α to the Ω mode is rather smooth with no significant discontinuity in the RMS current.

  5. Transitions between various diffuse discharge modes in atmospheric-pressure helium in the medium-frequency range

    NASA Astrophysics Data System (ADS)

    Boisvert, J.-S.; Margot, J.; Massines, F.

    2016-08-01

    In this paper, we investigate DBDs in the medium frequency range (MF, 0.3–3 MHz). More precisely, for a 2 inter-dielectric gap in helium at atmospheric pressure, the frequency is varied from 1.0 to 2.7 MHz. The generated discharge shows similarities with both the low-frequency atmospheric-pressure glow discharge (APGD) and the atmospheric pressure capacitively coupled radio-frequency (CCRF) discharge. In the frequency range under investigation, two diffuse discharge modes can be observed depending on the voltage applied between the electrodes. At low applied voltage, the discharge emissions are barely visible and are concentrated in the center of the gas gap similarly to CCRF discharges in the Ω mode where the electron density is concentrated in the bulk. Ohmic heating is the main power transfer mechanism. At higher applied voltage, the discharge emissions are 10 times more intense and are closer to the dielectric surfaces similarly to the more common radio-frequency α mode. These two discharge modes can be observed in the same experimental conditions with the amplitude of the applied voltage as sole control parameter. The gas temperature obtained from N2 impurities rotational spectrum increases from room temperature to about 500 K while the power density rises from 10‑1 to 101 W cm‑3 when the applied voltage is increased. In addition, when the discharge transits back and forth from the Ω to the α mode, a hysteresis is observed. The transition from the Ω to the α mode occurs abruptly with a large RMS current increase while the transition from the α to the Ω mode is rather smooth with no significant discontinuity in the RMS current.

  6. Design and development of a helium injection system to improve external leakage detection during liquid nitrogen immersion tests

    NASA Astrophysics Data System (ADS)

    Townsend, Andrew; Mishra, Rakesh

    2016-10-01

    The testing of assemblies for use in cryogenic systems commonly includes evaluation at or near operating (therefore cryogenic) temperature. Typical assemblies include valves and pumps for use in liquid oxygen-liquid hydrogen rocket engines. One frequently specified method of cryogenic external leakage testing requires the assembly, pressurized with gaseous helium (GHe), be immersed in a bath of liquid nitrogen (LN2) and allowed to thermally stabilize. Component interfaces are then visually inspected for leakage (bubbles). Unfortunately the liquid nitrogen will be boiling under normal, bench-top, test conditions. This boiling tends to mask even significant leakage. One little known and perhaps under-utilized property of helium is the seemingly counter-intuitive thermodynamic property that when ambient temperature helium is bubbled through boiling LN2 at a temperature of -195.8 °C, the temperature of the liquid nitrogen will reduce. This paper reports on the design and testing of a novel proof-of-concept helium injection control system confirming that it is possible to reduce the temperature of an LN2 bath below boiling point through the controlled injection of ambient temperature gaseous helium and then to efficiently maintain a reduced helium flow rate to maintain a stabilized liquid temperature, enabling clear visual observation of components immersed within the LN2. Helium saturation testing is performed and injection system sizing is discussed.

  7. Characteristics in the jet region of helium radio-frequency atmospheric-pressure glow discharge with array generators

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Bin; Nie, Qiu-Yue

    2015-09-01

    The two-dimensional spatially extended atmospheric plasma arrays by many parallel radio-frequency glow discharge plasma jets packed densely, represent a feature option of large-scale low-temperature atmospheric plasma technologies with distinct capability of directed delivery of reactive species and good insusceptibility to sample variations. However, it is still a challenge to form plasma jet with large area of uniform active species on a downstream substrate due to the complex interactions between individual jets. This paper proposes to numerically study the strategy and mechanism of control/modulation for the array discharge to produce two-dimensional plasma uniformity in the downstream working area. In this work, a two dimensional fluid model is employed to investigate the characteristics in the jet region of helium radio-frequency atmospheric-pressure glow discharge (RF APGD) with array generators. The influences of upstream discharge characteristics, gas flow and their cooperative effects on the distribution of species densities, gas temperatures and the uniformity of active species in the material treating area is studied, and the essential strategy for the modulation method is acquired. The results will be significant for deep understanding of coupling behaviors of multiple plasma plumes in the RF APGD array and applications of the technology.

  8. Investigating the effect of additional gases in an atmospheric-pressure helium plasma jet using ambient mass spectrometry

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Furuta, Hiroshi; Hatta, Akimitsu; Bradley, James W.

    2015-01-01

    Using ambient mass spectrometry, positive and negative ions created in an atmospheric-pressure plasma jet have been detected for a variation of different traces gases (Ar, N2, and O2) added to the flow, downstream of the main helium discharge plasma. We find that such additions can change the chemistry in the outflow plasma plume. For instance, small amounts of O2 increases the formation of positive ion clusters, e.g., water clusters H+(H2O)n (with n up to 5) through hydration reactions, but decreases the intensity of heavy negative ions detected. With the addition of Ar and N2 we see a marked decrease in the intensity of negative ions in the plume but with increased Ar+ and nitrous oxide ions (e.g., N2O+) for the two cases respectively. From broadband optical emission measurements of the glowing plasma we see that the relative emission intensity of OH radical were changed with addition of the four different gases but the emission spectra were not changed. A calculation of rotational temperature of OH radicals, indicates that the gas temperatures is about 290 K for the four different gas mixture cases.

  9. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  10. Density distributions of OH, Na, water vapor, and water mist in atmospheric-pressure dc helium glow plasmas in contact with NaCl solution

    NASA Astrophysics Data System (ADS)

    Sasaki, Koichi; Ishigame, Hiroaki; Nishiyama, Shusuke

    2015-07-01

    This paper reports the density distributions of OH, Na, water vapor and water mist in atmospheric-pressure dc helium glow plasmas in contact with NaCl solution. The densities of OH, Na and H2O had different spatial distributions, while the Na density had a similar distribution to mist, suggesting that mist is the source of Na in the gas phase. When the flow rate of helium toward the electrolyte surface was increased, the distributions of all the species densities concentrated in the neighboring region to the electrolyte surface more significantly. The densities of all the species were sensitive to the electric polarity of the power supply. In particular, we never detected Na and mist when the electrolyte worked as the anode of the dc discharge. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  11. Time evolution of nanosecond runaway discharges in air and helium at atmospheric pressure

    SciTech Connect

    Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-12-15

    Time- and space-resolved fast framing photography was employed to study the discharge initiated by runaway electrons in air and He gas at atmospheric pressure. Whereas in the both cases, the discharge occurs in a nanosecond time scale and its front propagates with a similar velocity along the cathode-anode gap, the later stages of the discharge differ significantly. In air, the main discharge channels develop and remain in the locations with the strongest field enhancement. In He gas, the first, diode 'gap bridging' stage, is similar to that obtained in air; however, the development of the discharge that follows is dictated by an explosive electron emission from micro-protrusions on the edge of the cathode. These results allow us to draw conclusions regarding the different conductivity of the plasma produced in He and air discharges.

  12. Diagnostics and active species formation in an atmospheric pressure helium sterilization plasma source

    NASA Astrophysics Data System (ADS)

    Simon, A.; Anghel, S. D.; Papiu, M.; Dinu, O.

    2009-01-01

    Systematic spectroscopic studies and diagnostics of an atmospheric pressure radiofrequency (13.56 MHz) He plasma is presented. The discharge is an intrinsic part of the resonant circuit of the radiofrequency oscillator and was obtained using a monoelectrode type torch, at various gas flow-rates (0.1-6.0 l/min) and power levels (0-2 W). As function of He flow-rate and power the discharge has three developing stages: point-like plasma, spherical plasma and ellipsoidal plasma. The emission spectra of the plasma were recorded and investigated as function of developing stages, flow-rates and plasma power. The most important atomic and molecular components were identified and their evolution was studied as function of He flow-rate and plasma power towards understanding basic mechanisms occurring in this type of plasma. The characteristic temperatures (vibrational Tvibr, rotational Trot and excitation Texc) and the electron number density (ne) were determined.

  13. Toward quantitative deuterium analysis with laser-induced breakdown spectroscopy using atmospheric-pressure helium gas

    SciTech Connect

    Hedwig, Rinda; Lie, Zener Sukra; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2010-01-15

    An experimental study has been carried out for the development of quantitative deuterium analysis using the neodymium doped yttrium aluminum garnet laser-induced breakdown spectroscopy (LIBS) with atmospheric pressure surrounding He gas by exploring the appropriate experimental condition and special sample cleaning technique. The result demonstrates the achievement of a full resolution between the D and H emission lines from zircaloy-4 samples, which is prerequisite for the desired quantitative analysis. Further, a linear calibration line with zero intercept was obtained for the emission intensity of deuterium from a number of zircaloy samples doped with predetermined concentrations of deuterium. The result is obtained by setting a +4 mm defocusing position for the laser beam, 6 {mu}s detection gating time, and 7 mm imaging position of the plasma for the detection, which is combined with a special procedure of repeated laser cleaning of the samples. This study has thus provided the basis for the development of practical quantitative deuterium analysis by LIBS.

  14. Helium atmospheric pressure plasma jets interacting with wet cells: delivery of electric fields

    NASA Astrophysics Data System (ADS)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2016-05-01

    The use of atmospheric pressure plasma jets (APPJs) in plasma medicine have produced encouraging results in wound treatment, surface sterilization, deactivation of bacteria, and treatment of cancer cells. It is known that many of the reactive oxygen and nitrogen species produced by the APPJ are critical to these processes. Other key components to treatment include the ion and photon fluxes, and the electric fields produced in cells by the ionization wave of the APPJ striking in the vicinity of the cells. These relationships are often complicated by the cells being covered by a thin liquid layer—wet cells. In this paper, results from a computational investigation of the interaction of APPJs with tissue beneath a liquid layer are discussed. The emphasis of this study is the delivery of electric fields by an APPJ sustained in He/O2  =  99.8/0.2 flowing into humid air to cells lying beneath water with thickness of 200 μm. The water layer represents the biological fluid typically covering tissue during treatment. Three voltages were analyzed—two that produce a plasma effluent that touches the surface of the water layer and one that does not touch. The effect of the liquid layer thickness, 50 μm to 1 mm, was also examined. Comparisons were made of the predicted intracellular electric fields to those thresholds used in the field of bioelectronics.

  15. Why Helium Ends in "-Ium"

    ERIC Educational Resources Information Center

    Jensen, William B.; Holme, Thomas; Cooper, Melanie; White, Carol

    2004-01-01

    Edward Frankland and Norman Lockyer researched upon a gaseous spectra in relation to the physical constitution of the sun and named it as "helium" (from Greek "helios" meaning "sun"). Since Lockyer apparently never formally proposed the name in print, it is not known why he chose to use a metallic end "ium".

  16. Selective fibronectin adsorption against albumin and enhanced stem cell attachment on helium atmospheric pressure glow discharge treated titanium

    NASA Astrophysics Data System (ADS)

    Han, Inho; Vagaska, Barbora; Joo Park, Bong; Lee, Mi Hee; Jin Lee, Seung; Park, Jong-Chul

    2011-06-01

    Successful tissue integration of implanted medical devices depends on appropriate initial cellular response. In this study, the effect of helium atmospheric pressure glow discharge (He-APGD) treatment of titanium on selective protein adsorption and the initial attachment processes and focal adhesion formation of osteoprogenitor cells and stem cells were examined. Titanium disks were treated in a self-designed He-APGD system. Initial attachment of MC3T3-E1 mouse pre-osteoblasts and human mesenchymal stem cells (MSCs) was evaluated by MTT assay and plasma membrane staining followed by morphometric analysis. Fibronectin adsorption was investigated by Enzyme-Linked ImmunoSorbant Assay. MSCs cell attachment to treated and non-treated titanium disks coated with different proteins was verified also in serum-free culture. Organization of actin cytoskeleton and focal adhesions was evaluated microscopically. He-APGD treatment effectively modified the titanium surfaces by creating a super-hydrophilic surface, which promoted selectively higher adsorption of fibronectin, a protein of critical importance for cell/biomaterial interaction. In two different types of cells, the He-APGD treatment enhanced the number of attaching cells as well as their attachment area. Moreover, cells had higher organization of actin cytoskeleton and focal adhesions. Faster acceptance of the material by the progenitor cells in the early phases of tissue integration after the implantation may significantly reduce the overall healing time; therefore, titanium treatment with He-APGD seems to be an effective method of surface modification of titanium for improving its tissue inductive properties.

  17. Hydroformylation of Cyclohexene with Carbon Dioxide and Hydrogen Using Ruthenium Carbonyl Catalyst: Influence of Pressures of Gaseous Components

    PubMed Central

    Fujita, Shin-ichiro; Okamura, Shuhei; Akiyama, Yoshinari; Arai, Masahiko

    2007-01-01

    Hydroformylation of cyclohexene was studied with a catalyst system of Ru3(CO)12 and LiCl using H2 and CO2 instead of CO in NMP. The influence of H2 and CO2 pressures on the total conversion and the product distribution was examined. It was shown that increasing total pressure of H2 and CO2 promoted the reverse water gas shift reaction and increased the yield of cyclohexanecarboxaldehyde. Its hydrogenation to cyclohexanemethanol was promoted with increasing H2 pressure but suppressed with increasing CO2 pressure. Cyclohexane was also formed along with those products and this direct hydrogenation was suppressed with increasing CO2 pressure. The roles of CO2 as a promoter as well as a reactant were further examined by phase behavior observations and high pressure FTIR measurements.

  18. The Gaseous Explosive Reaction : the Effect of Pressure on the Rate of Propagation of the Reaction Zone and upon the Rate of Molecular Transformation

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1932-01-01

    This study of gaseous explosive reaction has brought out a number of important fundamental characteristics of the explosive reaction indicating that the basal processes of the transformation are much simpler and corresponds more closely to the general laws and principles of ordinary transformations than is usually supposed. The report calls attention to the point that the rate of molecular transformation within the zone was found in all cases to be proportional to pressure, that the transformation within the zone is the result of binary impacts. This result is of unusual interest in the case of the reaction of heavy hydrocarbon fuels and the reaction mechanism proposed by the recent kinetic theory of chain reactions.

  19. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media. [CO/sub 2/ laser oscillator and pulse smoother

    DOEpatents

    McLellan, E.J.

    1980-10-17

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode and cathode to below breakdown voltage using a dc voltage source. An array of resistors or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO/sub 2/ laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  20. Potential Danger of Pre-Pump Clamping on Negative Pressure-Associated Gaseous Microemboli Generation During Extracorporeal Life Support--An In Vitro Study.

    PubMed

    Wang, Shigang; Chin, Brian J; Gentile, Frank; Kunselman, Allen R; Palanzo, David; Ündar, Akif

    2016-01-01

    The objectives of this study were to investigate the relationship between revolution speed of a conventional centrifugal pump and negative pressure at the inlet of the pump by clamping the tubing upstream of the pump, and to verify whether negative pressure leads to gaseous microemboli (GME) production in a simulated adult extracorporeal life support (ECLS) system. The experimental circuit, including a Maquet Rotaflow centrifugal pump and a Medos Hilite 7000 LT polymethyl-pentene membrane oxygenator, was primed with packed red blood cells (hematocrit 35%). Negative pressure was created in the circuit by clamping the tubing upstream of the pump for 10 s, and then releasing the clamp. An emboli detection and classification quantifier was used to record GME volume and count at pre-oxygenator and post-oxygenator sites, and pressure and flow rate data were collected using a custom-based data acquisition system. All trials were conducted at 36°C at revolution speeds of 2000-4000 rpm (500 rpm increment). The flow rates were 1092.5-4708.4 mL/min at the revolution speeds of 2000-4000 rpm. Higher revolution speed generated higher negative pressure at the pre-pump site when clamping the tubing upstream of the pump (-108.3 ± 0.1 to -462.0 ± 0.5 mm Hg at 2000-4000 rpm). Moreover, higher negative pressure was associated with a larger number and volume of GME at pre-oxygenator site after de-clamp (GME count 10,573 ± 271 at pre-oxygenator site at 4000 rpm). The results showed that there was a potential danger of delivering GME to the patient when clamping pre-pump tubing during ECLS using a centrifugal pump. Our results warrant further clinical studies to investigate this phenomenon.

  1. Pressures, forces, moments and shock shapes for a geometrically matched sphere-cone and hyperboloid at Mach 20.3 in helium. [22-inch aerodynamics leg of the Langley hypersonic helium tunnel facility

    NASA Technical Reports Server (NTRS)

    Calloway, R. L.

    1983-01-01

    An investigation was conducted to compare measured and predicted pressure distributions, forces and moments, and shock shapes on a geometrically matched sphere-cone and hyperboloid. A hyperboloid with a nose radius of 0.5276 in. and an asymptotic angle of 39.9871 deg was matched to a sphere-cone with a nose radius of 0.750 in. and a cone half-angle of 45 deg. Experimental results in helium at a free-stream Mach number of 20.3 and a free-stream unit Reynolds number of 6.83 x 10 to the 6th power per foot were combined with predicted results from a theoretical method to compare the two shapes. Comparisons of experimental results showed small differences in the two shapes, but the prediction method provided better results for the hyperboloid than for the sphere-cone.

  2. Flux of OH and O radicals onto a surface by an atmospheric-pressure helium plasma jet measured by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Yonemori, Seiya; Ono, Ryo

    2014-03-01

    The atmospheric-pressure helium plasma jet is of emerging interest as a cutting-edge biomedical device for cancer treatment, wound healing and sterilization. Reactive oxygen species such as OH and O radicals are considered to be major factors in the application of biological plasma. In this study, density distribution, temporal behaviour and flux of OH and O radicals on a surface are measured using laser-induced fluorescence. A helium plasma jet is generated by applying pulsed high voltage of 8 kV with 10 kHz using a quartz tube with an inner diameter of 4 mm. To evaluate the relation between the surface condition and active species production, three surfaces are used: dry, wet and rat skin. When the helium flow rate is 1.5 l min-1, radial distribution of OH density on the rat skin surface shows a maximum density of 1.2 × 1013 cm-3 at the centre of the plasma-mediated area, while O atom density shows a maximum of 1.0 × 1015 cm-3 at 2.0 mm radius from the centre of the plasma-mediated area. Their densities in the effluent of the plasma jet are almost constant during the intervals of the discharge pulses because their lifetimes are longer than the pulse interval. Their density distribution depends on the helium flow rate and the surface humidity. With these results, OH and O production mechanisms in the plasma jet and their flux onto the surface are discussed.

  3. Comparative results of autogenous ignition temperature measurements by ASTM G 72 and pressurized scanning calorimetry in gaseous oxygen

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Lowrie, R.

    1986-01-01

    The autogenous ignition temperature of four materials was determined by ASTM (G 72) and pressurized differential scanning calorimetry at 0.68-, 3.4-, and 6.8-MPa oxygen pressure. All four materials were found to ignite at lower temperatures in the ASTM method. The four materials evaluated in this program were Neoprene, Vespel SP-21, Fluorel E-2160, and nylon 6/6.

  4. Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Mansour, M.S.

    2009-07-15

    The principal burning characteristics of a laminar flame comprise the fuel vapour pressure, the laminar burning velocity, ignition delay times, Markstein numbers for strain rate and curvature, the stretch rates for the onset of flame instabilities and of flame extinction for different mixtures. With the exception of ignition delay times, measurements of these are reported and discussed for ethanol-air mixtures. The measurements were in a spherical explosion bomb, with central ignition, in the regime of a developed stable, flame between that of an under or over-driven ignition and that of an unstable flame. Pressures ranged from 0.1 to 1.4 MPa, temperatures from 300 to 393 K, and equivalence ratios were between 0.7 and 1.5. It was important to ensure the relatively large volume of ethanol in rich mixtures at high pressures was fully evaporated. The maximum pressure for the measurements was the highest compatible with the maximum safe working pressure of the bomb. Many of the flames soon became unstable, due to Darrieus-Landau and thermo-diffusive instabilities. This effect increased with pressure and the flame wrinkling arising from the instabilities enhanced the flame speed. Both the critical Peclet number and the, more rational, associated critical Karlovitz stretch factor were evaluated at the onset of the instability. With increasing pressure, the onset of flame instability occurred earlier. The measured values of burning velocity are expressed in terms of their variations with temperature and pressure, and these are compared with those obtained by other researchers. Some comparisons are made with the corresponding properties for iso-octane-air mixtures. (author)

  5. HeFlow: A program for calculating pressure and temperature of helium in forced-flow superconductors: Part 1, Numerical solutions and Part 2, HeFlow user's manual

    SciTech Connect

    Keller, M.W.

    1988-03-01

    HeFlow, a program to calculate the pressure and temperature of supercritical helium flowing in a heated channel, has been used to model the flow in the Westinghouse (WH) Large Coil Program (LCP) coil. The passage of the helium both at normal operating conditions and near the critical point has been shown to be isenthalpic to better than 1 or 2 parts in 1000. The effect of changing the sign of the Joule-Thomson (J-T) coefficient is duscussed, and a useful approximation for temperature changes in helium flow is developed.

  6. The effect of interstitial gaseous pressure on the thermal conductivity of a simulated Apollo 12 lunar soil sample

    NASA Technical Reports Server (NTRS)

    Horai, K.-I.

    1981-01-01

    The thermal conductivity of a simulated Apollo 12 soil sample is measured as a function of interstitial gas density, and implications for the thermal properties of lunar and Martian regolith are discussed. Measurements were performed for samples consisting of a mixture of Knippa and Berkely basalt powders with a grain size distribution identical to that of Apollo 12 lunar soil samples by the needle probe technique at interstitial pressures of He, N2, Ar and CO2 from 133,000 to 0.0133 Pa. It is shown that sample thermal conductivity decreases with decreasing interstitial gas pressure down to 1.0 Pa, due to the decreasing effective thermal conductivity of interstitial gas with decreasing gas pressure. Constant thermal conductivity values of 8.8 mW/m per K and 10.9 mW/m per K are obtained for sample densities of 1.70 and 1.85 g/cu cm, respectively, in agreement with in situ lunar regolith measurements. The results, which are greater than those obtained in previous soil studies, are explained by the dense packing of soil particles and enhanced intergranular thermal contact in the present experimental configuration, rather than the influence of interstitial gas pressure. The differences in conductivity between loose soils and packed regolith may also be used to account for the two peaks observed in Martian surface thermal inertia data.

  7. Multipurpose top for liquid helium Dewar

    NASA Technical Reports Server (NTRS)

    Murphy, R. S.; Anderholm, J. R.

    1972-01-01

    Multipurpose top was fabricated for liquid helium Dewar flask which guards against flash vaporization of liquid helium and allows boiling temperature of liquid helium to be lowered by reduction of ambient pressure in Dewar flask. Device is rugged and simple, and does not require frequent calibrations or adjustments.

  8. Low temperature uses of helium

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1970-01-01

    Helium is used for purging and pressurizing cryogenic rocket propellants, welding, atmosphere control, leak detection, and refrigeration. It provides the lowest possible liquid-bath temperature and produces superconductivity in certain materials. Its superfluid effects are used in superconducting magnets.

  9. Fluid helium at conditions of giant planetary interiors

    PubMed Central

    Stixrude, Lars; Jeanloz, Raymond

    2008-01-01

    As the second most-abundant chemical element in the universe, helium makes up a large fraction of giant gaseous planets, including Jupiter, Saturn, and most extrasolar planets discovered to date. Using first-principles molecular dynamics simulations, we find that fluid helium undergoes temperature-induced metallization at high pressures. The electronic energy gap (band gap) closes at 20,000 K at a density half that of zero-temperature metallization, resulting in electrical conductivities greater than the minimum metallic value. Gap closure is achieved by a broadening of the valence band via increased s–p hydridization with increasing temperature, and this influences the equation of state: The Grüneisen parameter, which determines the adiabatic temperature–depth gradient inside a planet, changes only modestly, decreasing with compression up to the high-temperature metallization and then increasing upon further compression. The change in electronic structure of He at elevated pressures and temperatures has important implications for the miscibility of helium in hydrogen and for understanding the thermal histories of giant planets.

  10. Simulation of a non-equilibrium helium plasma bullet emerging into oxygen at high pressure (250-760 Torr) and interacting with a substrate

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Economou, Demetre J.

    2016-09-01

    A two-dimensional computational study of a plasma bullet emanating from a helium gas jet in oxygen ambient at high pressure (250-760 Torr) was performed, with emphasis on the bullet interaction with a substrate. Power was applied in the form of a trapezoidal +5 kV pulse lasting 150 ns. A neutral gas transport model was employed to predict the concentration distributions of helium and oxygen in the system. These were then used in a plasma dynamics model to investigate the characteristics of the plasma bullet during its propagation and interaction with a substrate. Upon ignition, the discharge first propagated as a surface wave along the inner wall of the containing tube, and then exited the tube with a well-defined ionization front (streamer or plasma bullet). The plasma bullet evolved from a hollow (donut-shaped) feature to one where the maximum of ionization was on axis. The bullet propagated in the gap between the tube exit and the substrate with an average speed of ˜2 × 105 m/s. Upon encountering a metal substrate, the bullet formed a conductive channel to the substrate. Upon encountering a dielectric substrate, the bullet turned into an ionization wave propagating radially along the substrate surface. For a conductive substrate, the radial species fluxes to the surface peaked on the symmetry axis. For a dielectric substrate, a ring-shaped flux distribution was observed. The "footprint" of plasma-surface interaction increased either by decreasing the gap between tube exit and substrate, decreasing the relative permittivity of an insulating substrate, or decreasing pressure. As the system pressure was lowered from 760 to 250 Torr, the discharge was initiated earlier, and the plasma bullet propagation speed increased. A reverse electric field developed during the late stages of the ramp-down of the pulse, which accelerated electrons forming a brief backward discharge.

  11. Thermal Decomposition of Gaseous Ammonium Nitrate at Low Pressure: Kinetic Modeling of Product Formation and Heterogeneous Decomposition of Nitric Acid

    NASA Astrophysics Data System (ADS)

    Park, J.; Lin, M. C.

    2009-10-01

    The thermal decomposition of ammonium nitrate, NH4NO3 (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH4NO3 at 423 K was proposed to produce equal amounts of NH3 and HNO3, followed by the decomposition reaction of HNO3, HNO3 + M → OH + NO2 + M (where M = third-body and reactor surface). The absolute yields of N2, N2O, H2O, and NH3, which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH3-NO2 (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO3 itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO3 in our kinetic modeling. The heterogeneous decomposition rate of HNO3, HNO3 + (B2O3/SiO2) → OH + NO2 + (B2O3/SiO2), was determined by varying its rate to match the modeled result to the measured concentrations of NH3 and H2O; the rate could be represented by k2b = 7.91 × 107 exp(-12 600/T) s-1, which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO3 decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  12. Density and virial coefficients of gaseous butane from 265 to 450 K at pressures to 3.3 MPa

    SciTech Connect

    Gupta, D.; Eubank, P.T.

    1997-09-01

    The Burnett-isochoric (B-I) method has been used to measure gas densities and virial coefficients for butane from 265 to 450 K. Two independent B-I runs were performed but both with a base isotherm of 450 K, which is well above the critical temperature of 425 K. Significant physical adsorption of butane molecules onto the highly-polished, stainless steel cell walls was found below 75 K in agreement with conclusions reached by Ewing and associates in comparing their sonic-velocity-based density virial coefficients with those from the P-V-T literature. The data below 375 K were then corrected for adsorption errors by previously published procedures developed by this laboratory for highly polar gases. Using statistical weighting of two B-I runs, recommended density second virial coefficients B(T) are reported from 265 to 450 K whereas third virial coefficients C(T) are reported only from 325 to 450 K as values below 325 K are too uncertain due to the vapor pressure dropping under 300 kPa. However, then the virial equation of state truncated after B(T) is sufficient to represent the gas densities. At the lower temperatures of this investigation, B(T) values lie between those from sonic velocities and the more negative values from the P-V-T literature, which are uncorrected for adsorption errors; the authors are closer to the values from sonic velocities and about 1/4 of the way between the two sets. At the higher temperatures, the authors agree very closely with the better P-V-T measurements whereas the sonic-velocity-based values become increasingly more negative.

  13. Electron density change of atmospheric-pressure plasmas in helium flow depending on the oxygen/nitrogen ratio of the surrounding atmosphere

    NASA Astrophysics Data System (ADS)

    Tomita, Kentaro; Urabe, Keiichiro; Shirai, Naoki; Sato, Yuta; Hassaballa, Safwat; Bolouki, Nima; Yoneda, Munehiro; Shimizu, Takahiro; Uchino, Kiichiro

    2016-06-01

    Laser Thomson scattering was applied to an atmospheric-pressure plasma produced in a helium (He) gas flow for measuring the spatial profiles of electron density (n e) and electron temperature (T e). Aside from the He core flow, the shielding gas flow of N2 or synthesized air (\\text{N}2:\\text{O}2 = 4:1) surrounding the He flow was introduced to evaluate the effect of ambient gas components on the plasma parameters, eliminating the effect of ambient humidity. The n e at the discharge center was 2.7 × 1021 m‑3 for plasma generated with N2/O2 shielding gas, 50% higher than that generated with N2 shielding.

  14. Electron density change of atmospheric-pressure plasmas in helium flow depending on the oxygen/nitrogen ratio of the surrounding atmosphere

    NASA Astrophysics Data System (ADS)

    Tomita, Kentaro; Urabe, Keiichiro; Shirai, Naoki; Sato, Yuta; Hassaballa, Safwat; Bolouki, Nima; Yoneda, Munehiro; Shimizu, Takahiro; Uchino, Kiichiro

    2016-06-01

    Laser Thomson scattering was applied to an atmospheric-pressure plasma produced in a helium (He) gas flow for measuring the spatial profiles of electron density (n e) and electron temperature (T e). Aside from the He core flow, the shielding gas flow of N2 or synthesized air (\\text{N}2:\\text{O}2 = 4:1) surrounding the He flow was introduced to evaluate the effect of ambient gas components on the plasma parameters, eliminating the effect of ambient humidity. The n e at the discharge center was 2.7 × 1021 m-3 for plasma generated with N2/O2 shielding gas, 50% higher than that generated with N2 shielding.

  15. Growth process of hydrogenated amorphous carbon films synthesized by atmospheric pressure plasma enhanced CVD using nitrogen and helium as a dilution gas

    NASA Astrophysics Data System (ADS)

    Mori, Takanori; Sakurai, Takachika; Sato, Taiki; Shirakura, Akira; Suzuki, Tetsuya

    2016-04-01

    Hydrogenated amorphous carbon films with various thicknesses were synthesized by dielectric barrier discharge-based plasma deposition under atmospheric pressure diluted with nitrogen (N2) and helium (He) at various pulse frequencies. The C2H2/N2 film showed cauliflower-like-particles that grew bigger with the increase in film’s thickness. At 5 kHz, the film with a thickness of 2.7 µm and smooth surface was synthesized. On the other hand, the films synthesized from C2H2/He had a smooth surface and was densely packed with domed particles. The domed particles extended with the increase in the film thickness, enabling it to grow successfully to 37 µm with a smooth surface.

  16. Two-dimensional numerical study of two counter-propagating helium plasma jets in air at atmospheric pressure

    SciTech Connect

    Yan, Wen; Sang, Chaofeng; Wang, Dezhen; Liu, Fucheng

    2014-06-15

    In this paper, a computational study of two counter-propagating helium plasma jets in ambient air is presented. A two-dimensional fluid model is applied to investigate the physical processes of the two plasma jets interaction (PJI) driven by equal and unequal voltages, respectively. In all studied cases, the PJI results in a decrease of both plasma bullets propagation velocity. When the two plasma jets are driven by equal voltages, they never merge but rather approach each other around the middle of the gas gap at a minimum approach distance, and the minimal distance decreases with the increase of both the applied voltages and initial electron density, but increases with the increase of the relative permittivity. When the two plasma jets are driven by unequal voltages, we observe the two plasma jets will merge at the position away from the middle of the gas gap. The effect of applied voltage difference on the PJI is also studied.

  17. Analysis and design of helium-buffered face seals for the SSME high-pressure oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur

    1990-01-01

    One form of a gas-buffered seal consists of two opposed fluid-film face seals, each mating against a single collar. The buffer fluid is introduced at the OD and flows through the radial clearances of each seal to opposite and separate environments at the IDs. This arrangement was investigated for the helium buffer seals applied to the oxidizer pump of the Space Shuttle Main Engine (SSME). A variety of face configurations were considered, and the self-energized-hydrostatic and spiral-groove geometries were selected for detailed evaluation. Fluid-film performance, dynamic response, and thermoelastic distortions were determined. Because of very high temperature gradients, distortions of the turbine-side seal ring were excessive. Otherwise, performance was excellent in all respects.

  18. Temporal and spatial profiles of emission intensities in atmospheric pressure helium plasma jet driven by microsecond pulse: Experiment and simulation

    SciTech Connect

    Wang, Ruixue; Zhang, Cheng; Yan, Ping; Shao, Tao; Shen, Yuan; Zhu, Weidong; Babaeva, Natalia Yu.; Naidis, George V.

    2015-09-28

    A needle-circular electrode structure helium plasma jet driven by microsecond pulsed power is studied. Spatially resolved emission results show that the emission intensity of He(3{sup 3}S{sub 1}) line decreases monotonically along the axial direction, while those of N{sub 2}(C{sup 3}Π{sub u}), N{sub 2}{sup +}(B{sup 2}∑{sup +}{sub u}), and O(3p{sup 5}P) reach their maxima at 3 cm, 2.6 cm, and 1.4 cm, respectively. The plasma plume of the four species shows different characteristics: The N{sub 2} emission plume travels at a fast speed along the entire plasma jet; the N{sub 2}{sup +} emission plume is composed of a bright head and relatively weak tail and travels a shorter distance than the N{sub 2} emission plume; the He emission plume travels at a slower speed for only a very short distance; propagation of the O emission plume is not observed. Results of calculation of radiation fluxes emitted by positive streamers propagating along helium plasma jets are presented. It is shown, in agreement with the results of the present experiment and with other available experimental data, that the intensities of radiation of N{sub 2}(C{sup 3}Π{sub u}) molecules and He(3{sup 3}S{sub 1}) atoms vary with time (along the plasma jet) quite differently. The factors resulting in this difference are discussed.

  19. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  20. Maximum Expected Wall Heat Flux and Maximum Pressure After Sudden Loss of Vacuum Insulation on the Stratospheric Observatory for Infrared Astronomy (SOFIA) Liquid Helium (LHe) Dewars

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2014-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.

  1. Measuring scattering lengths of gaseous samples

    NASA Astrophysics Data System (ADS)

    Huber, M. G.; Black, T. C.; Haun, R.; Pushin, D. A.; Shahi, C. B.; Weitfeldt, F. E.

    2016-03-01

    Neutron interferometry represents one of the most precise techniques for measuring the coherent scattering lengths (bc) of particular nuclear isotopes. Currently bc for helium-4 is known only to 1% relative uncertainty; a factor of ten higher than precision measurements of other light isotopes. Scattering lengths are measured using a neutron interferometer and by comparing the phase shift a neutron acquires as it passes through a gaseous sample relative to that of a neutron passing through vacuum. The density of the gas is determined by continuous monitoring of the sample's temperature and pressure. Challenges for these types of experiments include achieving the necessary long-term phase stability and accurate determination of the phase shift caused by the aluminum cell used to hold the gas; a phase shift many times greater than that of the sample. The present status on the effort to measure the n-4He scattering length at the NIST center for Neutron Research will be given. Financial support provided by the NSERC `Create' and `Discovery' programs, CERC, NIST and NSF Grant PHY-1205342.

  2. Tensile properties of V-Cr-Ti alloys after exposure in helium and low-partial-pressure oxygen environments

    SciTech Connect

    Natesan, K.; Soppet, W.K.

    1997-04-01

    A test program is in progress to evaluate the effect of oxygen at low pO{sub 2} on the tensile properties of V-(4-5)wt% Cr-(4-5)wt% Ti alloys. Some of the tensile specimens were precharged with oxygen at low pO{sub 2} at 500{degrees}C and reannealed in vacuum at 500{degrees}C in environments with various pO{sub 2} levels and subsequently tensile tested at room temperature. The preliminary results indicate that both approaches are appropriate for evaluating the effect of oxygen uptake on the tensile properties of the alloys. The data showed that in the relatively short-time tests conducted thus far, the maximum engineering stress slightly increased after oxygen exposure but the uniform and total elongation values exhibited significant decrease after exposure in oxygen-containing environments. The data for a specimen exposed to a helium environment were similar to those obtained in low pO{sub 2} environments.

  3. Use of lung pressure-volume curves and helium-sulphur hexafluoride washout to detect emphysema in subjects with mild airflow obstruction

    PubMed Central

    Pereira, R Petrik; Hunter, D; Pride, N B

    1981-01-01

    Mild abnormalities of peripheral lung function can be detected by simple methods, but it remains difficult to determine when these changes are the result of emphysema rather than disease of the airways. We have compared the value of measurements of lung distensibility and a multibreath test of helium (He) and sulphur hexafluoride (SF6) washout in distinguishing between six men with mild impairment of airway function caused by asthma (group A) and six men with similar airway function but probable widespread emphysema (group E). In group E there were striking abnormalities in the static pressure-volume curve of the lungs (reduced lung recoil pressures, increased chord compliance, increased shape factor) and the relation between maximum expiratory flow and lung recoil pressure fell within the normal range. In group A there were only minor abnormalities in lung distensibility and maximum expiratory flow was reduced at a standard lung recoil pressure. In addition carbon monoxide transfer coefficient was reduced in group E but normal in group A. Normal values for He-SF6 washout were similar to those previously described. Differences in He-SF6 washout between group A and group E men were small and in part accounted for by differences in functional residual capacity. In subjects with lung disease, end-tidal He and SF6 concentrations during washout were erratic and it was sometimes impossible to define a crossover point. We conclude that in our hands this technique is less useful for detecting acinar disease than are measurements of lung distensibility or carbon monoxide transfer. Considerable changes in lung distensibility may occur at an early stage in the natural history of emphysema and are readily distinguishable from the small changes that occur in mild asthma. Images PMID:7292378

  4. Influence of gaseous hydrogen on the mechanical properties of high temperature alloys

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Tensile tests of six nickel-base and one cobalt-base alloy were conducted in 34.5 MN/sq m helium and hydrogen environments at temperatures from 297 K to 1,088 K. Mechanical properties tests of the nickel-base alloy MAR M-246 (Hf modified), in two cast conditions, were conducted in gaseous environments at temperatures from 297 K to 1,144 K and pressures from one atmosphere to 34.5 MN/sq m. The objective of this program was to obtain the mechanical properties of the various alloys proposed for use in space propulsion systems in a pure hydrogen environment at different temperatures and to compare with the mechanical properties in helium at the same conditions. All testing was conducted on solid specimens exposed to external gaseous pressure. Smooth and notched tensile properties were determined using ASTM tensile testing techniques, and creep-rupture life was determined using ASTM creep-rupture techniques. Low-cycle fatigue life was established by constant total strain and constant stress testing using smooth specimens and a closed-loop test machine.

  5. High-temperature helium-loop facility

    SciTech Connect

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

  6. Effect of discharge polarity on the propagation of atmospheric-pressure helium plasma jets and the densities of OH, NO, and O radicals.

    PubMed

    Yonemori, Seiya; Ono, Ryo

    2015-06-01

    The atmospheric-pressure helium plasma jet is an emerging technology for plasma biomedical applications. In this paper, the authors focus on the effect of discharge polarity on propagation of the discharge and the densities of OH, NO, and O radicals. The plasma jet is applied to a glass surface placed on a grounded metal plate. Positive or negative voltage pulses with 25 μs duration, 8 kV amplitude, and 10 kpps repetition rate are used for the plasma jet. The plasma propagation is measured using a short-gated ICCD camera. The light emission intensity of the discharge generated at the rising phase of the voltage pulse is approximately equivalent for both polarities, while that generated during the falling phase is much higher for the negative discharge than the positive one. The shape of the discharge changes with the discharge polarity. The OH, NO, and O densities in the plasma jet are also measured for both polarities. It is found that the OH density is almost the same regardless the discharge polarity. Conversely, the negative discharge produces more O atoms and the positive discharge produces more NO molecules. These results indicate that the polarity of the discharge affects the densities of some reactive species produced in the plasma jet.

  7. Sensitive analysis of carbon, chromium and silicon in steel using picosecond laser induced low pressure helium plasma

    NASA Astrophysics Data System (ADS)

    Abdulmadjid, Syahrun Nur; Idris, Nasrullah; Pardede, Marincan; Jobiliong, Eric; Hedwig, Rinda; Lie, Zener Sukra; Suyanto, Hery; Tjia, May On; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2015-12-01

    An experimental study has been performed on the gas pressure and laser energy dependent variations of plasma emission intensities in Ar, He and N2 ambient gases induced by picosecond (ps) Nd-YAG laser irradiation on low alloy steel (JSS) samples. The study is aimed to demonstrate distinct advantage of using low pressure He ambient gas in combination with ps laser for the sensitive ppm level detection of C, Si and Cr emission lines in the UV-VIS spectral region. The much shorter pulses of ps laser are chosen for the effective ablation at much lower energy and for the benefit of reducing the undesirable long heating of the sample surface. It is found that the C I 247.8 nm, Fe I 253.5 nm, and Si I 251.4 nm emission lines induced by the ps laser at 15 mJ are readily detected with He ambient gas of 2.6 kPA, featuring generally sharp spectral signals with very low background. The following experimental results using samples with various concentrations of C, Si and Cr impurities are shown to produce for each of those elements a linear calibration line with extrapolated zero intercept, demonstrating the applicability for their quantitative analyses, with a preliminary estimated detection limits of 20 μg/g, 15 μg/g, and 5 μg/g, for C, Si, and Cr, respectively. The possibility of applying the same setup for concentration depth profiling is also demonstrated.

  8. LOX Tank Helium Removal for Propellant Scavenging

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2009-01-01

    System studies have shown a significant advantage to reusing the hydrogen and oxygen left in these tanks after landing on the Moon in fuel cells to generate power and water for surface systems. However in the current lander concepts, the helium used to pressurize the oxygen tank can substantially degrade fuel cell power and water output by covering the reacting surface with inert gas. This presentation documents an experimental investigation of methods to remove the helium pressurant while minimizing the amount of the oxygen lost. This investigation demonstrated that significant quantities of Helium (greater than 90% mole fraction) remain in the tank after draining. Although a single vent cycle reduced the helium quantity, large amounts of helium remained. Cyclic venting appeared to be more effective. Three vent cycles were sufficient to reduce the helium to small (less than 0.2%) quantities. Two vent cycles may be sufficient since once the tank has been brought up to pressure after the second vent cycle the helium concentration has been reduced to the less than 0.2% level. The re-pressurization process seemed to contribute to diluting helium. This is as expected since in order to raise the pressure liquid oxygen must be evaporated. Estimated liquid oxygen loss is on the order of 82 pounds (assuming the third vent cycle is not required).

  9. Development of a high vacuum sample preparation system for helium mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Das, N. K.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    A high vacuum sample preparation system for the 3He/4He ratio mass spectrometer (Helix SFT) has been developed to remove all the gaseous constituents excluding helium from the field gases. The sample preparation system comprises of turbo molecular pump, ion pump, zirconium getter, pipettes and vacuum gauges with controller. All these are fitted with cylindrical SS chamber using all metal valves. The field samples are initially treated with activated charcoal trap immersed in liquid nitrogen to cutoff major impurities and moisture present in the sample gas. A sample of 5 ml is collected out of this stage at a pressure of 10-2 mbar. This sample is subsequently purified at a reduced pressure of 10-7 mbar before it is injected into the ion source of the mass spectrometer. The sample pressure was maintained below 10-7 mbar with turbo molecular vacuum pumps and ion pumps. The sample gas passes through several getter elements and a cold finger with the help of manual high vacuum valves before it is fed to the mass spectrometer. Thus the high vacuum sample preparation system introduces completely clean, dry and refined helium sample to the mass spectrometer for best possible analysis of isotopic ratio of helium.

  10. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system.

    PubMed

    Uchida, Masaki; Natsume, Hideshi; Kobayashi, Daisuke; Sugibayashi, Kenji; Morimoto, Yasunori

    2002-05-01

    We investigated the effects of the particle size of indomethacin-loaded poly-L-lactic acid microspheres (IDM-loaded PLA MS), the helium pressure used to accelerate the particles, and the bombardment dose of PLA MS on the plasma concentration of IDM after bombarding with IDM-loaded PLA MS of different particle size ranges, 20-38, 44-53 and 75-100 microm, the abdomen of hairless rats using the Helios gene gun system (Helios gun system). Using larger particles and a higher helium pressure, produced an increase in the plasma IDM concentration and the area under the plasma concentration-time curve (AUC) and resultant F (relative bioavailability with respect to intracutaneous injection) of IDM increased by an amount depending on the particle size and helium pressure. Although a reduction in the bombardment dose led to a decrease in C(max) and AUC, F increased on decreasing the bombardment dose. In addition, a more efficient F was obtained after bombarding with IDM-loaded PLA MS of 75-100 microm in diameter at each low dose in different sites of the abdomen compared with that after bolus bombardment with a high dose (dose equivalent). These results suggest that the bombardment injection of drug-loaded microspheres by the Helios gun system is a very useful tool for delivering a variety of drugs in powder form into the skin and systemic circulation.

  11. Properties of carbon-based structures synthesized in nuclear reactions induced by bremsstrahlung γ quanta with threshold energy of 10 MeV at helium pressure of 1.1 kbar

    NASA Astrophysics Data System (ADS)

    Didyk, A. Yu.; Wiśniewski, R.

    2016-07-01

    Helium gas with an initial pressure of about 1.1 kbar inside a high-pressure chamber (HeHPC) has been irradiated by bremsstrahlung γ quanta with a threshold energy of 10 MeV for 1.0 × 105 s produced by an electron-beam current of 22-24 μA. After opening the HeHPC, the residual pressure of helium is equal to 430 bar. Synthesized black foils with a variety of other objects are found inside the HeHPC. They are located on the inner surfaces of the reaction chamber made of high-purity copper (99.99%), the entrance the window of γ quanta made of beryllium bronze and a copper container of nuclear and chemical reaction products. Elemental analysis with the use of scanning electron microscopy and X-ray microprobe analysis has revealed that the foils contain predominantly carbon and small quantities of other elements from carbon to iron. The results are in good agreement with the cycle of investigations of the authors devoted to the γ-quanta irradiation of dense hydrogen and helium gases in the presence (absence) of metals in a reaction chamber.

  12. Measurement of plasma-generated RONS in the cancer cells exposed by atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Baek, Eun Jeong; Kim, Sun Ja; Chung, Tae Hun

    2015-09-01

    The plasma-induced reactive oxygen and nitrogen species (RONS) could result in cellular responses including DNA damages and apoptotic cell death. These chemical species, O, O2-,OH, NO, and NO2-,exhibit strong oxidative stress and/or trigger signaling pathways in biological cells. Each plasma-generated chemical species having biological implication should be identified and quantitatively measured. For quantitative measurement of RONS, this study is divided into three stages; plasma diagnostics, plasma-liquid interactions, plasma-liquid-cell interactions. First, the optical characteristics of the discharges were obtained by optical emission spectroscopy to identify various excited plasma species. And the characteristics of voltage-current waveforms, gas temperature, and plume length with varying control parameters were measured. Next, atmospheric pressure plasma jet was applied on the liquid. The estimated OH radical densities were obtained by ultraviolet absorption spectroscopy at the liquid surface. And NO2-is detected by Griess test and compared between the pure liquid and the cell-containing liquid. Finally, bio-assays were performed on plasma treated human lung cancer cells (A549). Intracellular ROS production was measured using DCF-DA. Among these RONS, productions of NO and OH within cells were measured by DAF-2DA and APF, respectively. The data are very suggestive that there is a strong correlation among the production of RONS in the plasmas, liquids, and cells.

  13. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nygren, D. R.; Oliveira, C. A. B.; Renner, J.

    2016-03-01

    The gaseous Xenon(Xe) time projection chamber (TPC) is an attractive detector technique for neutrinoless double beta decay and WIMP dark matter searches. While it is less dense compared to Liquid Xe detectors, it has intrinsic advantages in tracking capability and better energy resolution. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which is expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). In order to test the feasibility of the performance improvements with TMA, we made the first direct measurement of Penning and fluorescence transfer efficiency with gaseous mixtures of Xe and TMA. While we observed a Penning transfer efficiency up to ~35%, we found strong suppression of primary scintillation light with TMA. We also found that the primary scintillation light with Xe and TMA mixture can be well characterized by ~3% fluorescence transfer from Xe to TMA, with further suppression due to TMA self-quenching. No evidence of the scintillation light produced by recombination of TMA ions was found. This strong suppression of scintillation light makes dark matter searches quite challenging, while the possibility of improved neutrinoless double beta decay searches remains open. This work has been carried out within the context of the NEXT collaboration.

  14. Helium-flow measurement using ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Sondericker, J. H.

    1983-08-01

    The ideal cryogenic instrumentation for the colliding beam accelerator helium distribution system does not add pressure drop to the system, functions over the entire temperature range, has high resolution, and delivers accurate mass flow measurement data. The design and testing of an ultrasonic flowmeter which measures helium flow under different temperatures are described.

  15. Planar Reflection of Gaseous Detonations

    NASA Astrophysics Data System (ADS)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  16. Pressurant requirements for discharge of liquid methane from a 1.52-meter-(5-ft-) diameter spherical tank under both static and slosh conditions

    NASA Technical Reports Server (NTRS)

    Dewitt, R. L.; Mcintire, T. O.

    1974-01-01

    Pressurized expulsion tests were conducted to determine the effect of various physical parameters on the pressurant gas (methane, helium, hydrogen, and nitrogen) requirements during the expulsion of liquid methane from a 1.52-meter-(5-ft-) diameter spherical tank and to compare results with those predicted by an analytical program. Also studied were the effects on methane, helium, and hydrogen pressurant requirements of various slosh excitation frequencies and amplitudes, both with and without slosh suppressing baffles in the tank. The experimental results when using gaseous methane, helium, and hydrogen show that the predictions of the analytical program agreed well with the actual pressurant requirements for static tank expulsions. The analytical program could not be used for gaseous nitrogen expulsions because of the large quantities of nitrogen which can dissolve in liquid methane. Under slosh conditions, a pronounced increase in gaseous methane requirements was observed relative to results obtained for the static tank expulsions. Slight decreases in the helium and hydrogen requirements were noted under similar test conditions.

  17. Dielectric Barrier Discharges in Helium at Atmospheric Pressure: Experiments and Model in the Needle-Plane Geometry

    NASA Astrophysics Data System (ADS)

    Radu, Ion; Bartnikas, Raymond; Wertheimer, Michael

    2002-10-01

    We present an experimental and theoretical modeling study of "dielectric barrier discharges" (DBD) at atmospheric pressure in a needle-plane configuration. Synchronous, Ultra High Speed Imaging (UHSI, using a Princeton Instruments PI-MAX 512RB Digital ICCD Camera System) and real-time dual detection (optical-electrical) diagnostics have been carried out in a flow of He. A phase-resolved synchronizing circuit was used to trigger the ICCD camera's shutter for durations varying from 2 ns up to 100 ms. All diagnostics, including the PI-MAX images, could be precisely synchronized and processed on a PC computer. The high voltage electrode was a steel needle with a sharp point of precisely-machined radius, while a thin (1.6 mm) ceramic (Al2O3) plate with a metallized bottom surface was used as the ground electrode. Three different situations have been studied, namely (i) the bare Al2O3, and with an ultra-thin coatings of (ii) graphite (a semiconductor) or (iii) metal, the latter two at floating potential. The purpose of these experiments was to investigate possible effects of surface charging on the discharge behavior [1]. The axial [y(t)] and radial [x(t)] time evolutions of the discharge have been measured by UHSI, plotted, and found to differ very significantly among cases (i) to (iii). In the needle-plane configuration (like in the plane-plane case), the DBD is characterized by a single pulse per half-period of the applied voltage. A two-dimensional model of the needle-plane discharge, based upon the continuity equations for electrons, ions, excited particles, and the Poisson equation, is developed; it assumes a low degree of ionization, so that the transport coefficients of the gas are uniquely determined by the local electric field [2]. In order to determine the electric field and the electrical potential in the (hyperboloidal) needle-plane geometry, the finite element method is used. We have found excellent agreement between measured and calculated [y(t)] and [x

  18. Thermal conductivity of graphene nanoribbons in noble gaseous environments

    SciTech Connect

    Zhong, Wei-Rong Xu, Zhi-Cheng; Zheng, Dong-Qin; Ai, Bao-Quan

    2014-02-24

    We investigate the thermal conductivity of suspended graphene nanoribbons in noble gaseous environments using molecular dynamics simulations. It is reported that the thermal conductivity of perfect graphene nanoribbons decreases with the gaseous pressure. The decreasing is more obvious for the noble gas with large atomic number. However, the gaseous pressure cannot change the thermal conductivity of defective graphene nanoribbons apparently. The phonon spectra of graphene nanoribbons are also provided to give corresponding supports.

  19. Properties of materials in high pressure hydrogen at room and elevated temperatures

    NASA Technical Reports Server (NTRS)

    Harris, J. A., Jr.

    1972-01-01

    Experimental efforts in this program for this period. Mechanical property tests of wrought and cast nickel-base alloys and one wrought cobalt-base alloy were conducted in 34.5 MN/sq m (5000-psig) helium and hydrogen or hydrogen mixtures. Comparison of test results was made to determine degradation of properties due to the hydrogen environments. All testing was conducted on solid specimens exposed to external gaseous pressure. Specific mechanical properties determined and the testing methods used are summarized.

  20. Properties of materials in high pressure hydrogen at cryogenic, room, and elevated temperatures

    NASA Technical Reports Server (NTRS)

    Harris, J. A., Jr.; Vanwanderham, M. C.

    1973-01-01

    Various tests were conducted to determine the mechanical properties of 12 alloys that are commonly used or proposed for use in pressurized gaseous hydrogen or hydrogen containing environments. Properties determined in the hydrogen environments were compared to properties determined in a pure helium environment at the same conditions to establish environmental degradation. The specific mechanical properties tested include: high-cycle fatigue, low-cycle fatigue, fracture mechanics, creep-rupture, and tensile.

  1. Assessment of Remote Sensing Technologies for Location of Hydrogen and Helium Leaks

    NASA Technical Reports Server (NTRS)

    Sellar, R. Glenn; Wang, Danli

    2000-01-01

    The objective of this initial phase of this research effort is to: 1) Evaluate remote sensing technologies for location of leaks of gaseous molecular hydrogen (H2) and gaseous helium (He) in air, for space transportation applications; and 2) Develop a diffusion model that predicts concentration of H2 or He gas as a function of leak rate and distance from the leak.

  2. Calculated Regenerator Performance at 4 K with HELIUM-4 and HELIUM-3

    NASA Astrophysics Data System (ADS)

    Radebaugh, Ray; Huang, Yonghua; O'Gallagher, Agnes; Gary, John

    2008-03-01

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transport properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies.

  3. Gemini helium closed cycle cooling system

    NASA Astrophysics Data System (ADS)

    Lazo, Manuel; Galvez, Ramon; Rogers, Rolando; Solis, Hernan; Tapia, Eduardo; Maltes, Diego; Collins, Paul; White, John; Cavedoni, Chas; Yamasaki, Chris; Sheehan, Michael P.; Walls, Brian

    2008-07-01

    The Gemini Observatory presents the Helium Closed Cycle Cooling System that provides cooling capacity at cryogenic temperatures for instruments and detectors. It is implemented by running three independent helium closed cycle cooling circuits with several banks of compressors in parallel to continuously supply high purity helium gas to cryocoolers located about 100-120 meters apart. This poster describes how the system has been implemented, the required helium pressures and gas flow to reach cryogenic temperature, the performance it has achieved, the helium compressors and cryocoolers in use and the level of vibration the cryocoolers produce in the telescope environment. The poster also describes the new technology for cryocoolers that Gemini is considering in the development of new instruments.

  4. Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions

    NASA Technical Reports Server (NTRS)

    Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.

    1992-01-01

    The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in.), a fence height of 0.0635 cm (0.025 in.), and 1800 bristles/cm circumference (4500 bristles/in. circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approximately the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.

  5. Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions

    NASA Technical Reports Server (NTRS)

    Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.

    1992-01-01

    The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results are included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in), a fence height of 0.0635 cm (0.025 in), and 1800 bristles/cm circumference (4500 bristles/in circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approx. the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.

  6. Gaseous leak detector

    DOEpatents

    Juravic, Jr., Frank E.

    1988-01-01

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  7. Improved gaseous leak detector

    DOEpatents

    Juravic, F.E. Jr.

    1983-10-06

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  8. Solid and Gaseous Fuels.

    ERIC Educational Resources Information Center

    Schultz, Hyman; And Others

    1989-01-01

    This review covers methods of sampling, analyzing, and testing coal, coke, and coal-derived solids and methods for the chemical, physical, and instrumental analyses of gaseous fuels. The review covers from October 1986, to September 1988. (MVL)

  9. Newly developed gaseous photomultiplier

    NASA Astrophysics Data System (ADS)

    Tokanai, Fuyuki; Moriya, Toru; Takeyama, Mirei; Sakurai, Hirohisa; Gunji, Shuichi; Sumiyoshi, Takayuki; Ito, Takayuki; Sugiyama, Hirioyuki; Okada, Teruyuki; Ohishi, Noboru; Kishimoto, Syunji

    2014-12-01

    A new micromesh gas (Micromegas) detector has been developed for a gaseous photomultiplier tube (PMT) with a bialkali photocathode. A basic performance test of the Micromegas detector was carried out for a Ne (90%) + CF4 (10%) gas mixture using an X-ray beam. We constructed gaseous PMTs with a bialkali photocathode and Micromegas detectors. The photoelectron collection efficiencies in several gases and the suppression of ion feedback were investigated.

  10. Characterization and antimicrobial efficacy against E. coli of a helium/air plasma at atmospheric pressure created in a plastic package

    NASA Astrophysics Data System (ADS)

    Connolly, J.; Valdramidis, V. P.; Byrne, E.; Karatzas, K. A.; Cullen, P. J.; Keener, K. M.; Mosnier, J. P.

    2013-01-01

    A plasma source, sustained by the application of a floating high voltage (±15 kV) to parallel-plate electrodes at 50 Hz, has been achieved in a helium/air mixture at atmospheric pressure (P = 105 Pa) contained in a zip-locked plastic package placed in the electrode gap. Some of the physical and antimicrobial properties of this apparatus were established with a view to ascertain its performance as a prototype for the disinfection of fresh produce. The current-voltage (I-V) and charge-voltage (Q-V) characteristics of the system were measured as a function of gap distance d, in the range (3 × 103 ⩽ Pd ⩽ 1.0 × 104 Pa m). The electrical measurements showed this plasma source to exhibit the characteristic behaviour of a dielectric barrier discharge in the filamentary mode and its properties could be accurately interpreted by the two-capacitance in series model. The power consumed by the discharge and the reduced field strength were found to decrease quadratically from 12.0 W to 4.5 W and linearly from 140 Td to 50 Td, respectively, in the range studied. Emission spectra of the discharge were recorded on a relative intensity scale and the dominant spectral features could be assigned to strong vibrational bands in the 2+ and 1- systems of N2 and N_2^+ , respectively, with other weak signatures from the NO and OH radicals and the N+, He and O atomic species. Absolute spectral intensities were also recorded and interpreted by comparison with the non-equilibrium synthetic spectra generated by the computer code SPECAIR. At an inter-electrode gap of 0.04 m, this comparison yielded typical values for the electron, vibrational and translational (gas) temperatures of (4980 ± 100) K, (2700 ± 200) K and (300 ± 100) K, respectively and an electron density of 1.0 × 1017 m-3. A Boltzmann plot also provided a value of (3200 ± 200 K) for the vibrational temperature. The antimicrobial efficacy was assessed by studying the resistance of both Escherichia coli K12 its isogenic

  11. Helium refrigeration considerations for cryomodule design

    SciTech Connect

    Ganni, V.; Knudsen, P.

    2014-01-29

    Many of the present day accelerators are based on superconducting radio frequency (SRF) cavities, packaged in cryo-modules (CM), which depend on helium refrigeration at sub-atmospheric pressures, nominally 2 K. These specialized helium refrigeration systems are quite cost intensive to produce and operate. Particularly as there is typically no work extraction below the 4.5-K supply, it is important that the exergy loss between this temperature level and the CM load temperature(s) be minimized by the process configuration choices. This paper will present, compare and discuss several possible helium distribution process arrangements to support the CM loads.

  12. Theoretical determination of the polarizability dispersion and the refractive index of helium

    NASA Astrophysics Data System (ADS)

    Puchalski, Mariusz; Piszczatowski, Konrad; Komasa, Jacek; Jeziorski, Bogumił; Szalewicz, Krzysztof

    2016-03-01

    The refractive index n of gaseous helium can be measured by optical interferometry so accurately that it can be used to establish a pressure standard which is expected to be superior to the current standard based on the height of a mercury column. The new standard requires knowledge of the dynamic polarizability of helium atom with accuracy significantly higher than obtainable in the best experiments, but possible to achieve computationally. Calculations of this quantity are presented at relativistic and quantum electrodynamics levels of theory including relativistic nuclear recoil effects. The uncertainties of the results are carefully estimated. Our recommended value of the dynamic polarizability at the He-Ne laser wavelength of 6329.908 Å, equal 1.39181197(14) a.u., has uncertainty at least two orders of magnitude smaller than that of recent measurements and is sufficiently accurate to establish a new pressure standard. Purely ab initio values of the refraction coefficient n are computed using our polarizability, literature values of magnetic susceptibility, and dielectric virial coefficients. It is shown that n -1 can be predicted by theory as a function of density and temperature with uncertainty of 1 ppm for pressures up to 3 MPa.

  13. Analysis and Design of the NASA Langley Cryogenic Pressure Box

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Stevens, Jonathan C.; Vause, R. Frank; Winn, Peter M.; Maguire, James F.; Driscoll, Glenn C.; Blackburn, Charles L.; Mason, Brian H.

    1999-01-01

    A cryogenic pressure box was designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 72 in. x 60 in. curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20K) with 54 psig maximum pressure on the concave side, and elevated temperatures and atmospheric pressure on the convex surface. The internal surface of the panel is cooled by high pressure helium as that is cooled to -423 F by liquid helium heat exchangers. An array of twelve independently controlled fans circulate the high pressure gaseous helium to provide uniform cooling on the panel surface. The load introduction structure, consisting of four stainless steel load plates and numerous fingers attaching the load plates to the test panel, is designed to introduce loads into the test panel that represent stresses that will he observed in the actual tank structure. The load plates are trace cooled with liquid nitrogen to reduce thermal gradients that may result in bending the load plates, and thus additional stresses in the test panel. The design of the cryogenic systems, load introduction structure, and control system are discussed in this report.

  14. Superfluid Helium Heat Pipe

    NASA Astrophysics Data System (ADS)

    Gully, P.

    This paper reports on the development and the thermal tests of three superfluid helium heat pipes. Two of them are designed to provide a large transport capacity (4 mW at 1.7 K). They feature a copper braid located inside a 6 mm outer diameter stainless tube fitted with copper ends for mechanical anchoring. The other heat pipe has no copper braid and is designed to get much smaller heat transport capacity (0.5 mW) and to explore lower temperature (0.7 - 1 K). The copper braid and the tube wall is the support of the Rollin superfluid helium film in which the heat is transferred. The low filling pressure makes the technology very simple with the possibility to easily bend the tube. We present the design and discuss the thermal performance of the heat pipes tested in the 0.7 to 2.0 K temperature range. The long heat pipe (1.2 m with copper braid) and the short one (0.25 m with copper braid) have similar thermal performance in the range 0.7 - 2.0 K. At 1.7 K the long heat pipe, 120 g in weight, reaches a heat transfer capacity of 6.2 mW and a thermal conductance of 600 mW/K for 4 mW transferred power. Due to the pressure drop of the vapor flow and Kapitza thermal resistance, the conductance of the third heat pipe dramatically decreases when the temperature decreases. A 3.8 mW/K is obtained at 0.7 K for 0.5 mW transferred power.

  15. Experimental Evaluation of a Subscale Gaseous Hydrogen/Gaseous Oxygen Coaxial Rocket Injector

    NASA Astrophysics Data System (ADS)

    Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert

    2002-11-01

    The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.

  16. Experimental Evaluation of a Subscale Gaseous Hydrogen/gaseous Oxygen Coaxial Rocket Injector

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert

    2002-01-01

    The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.

  17. Gaseous hydrogen embrittlement of high strength steels

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1977-01-01

    The effects of temperature, hydrogen pressure, stress intensity, and yield strength on the kinetics of gaseous hydrogen assisted crack propagation in 18Ni maraging steels were investigated experimentally. It was found that crack growth rate as a function of stress intensity was characterized by an apparent threshold for crack growth, a stage where the growth rate increased sharply, and a stage where the growth rate was unchanged over a significant range of stress intensity. Cracking proceeded on load application with little or no detectable incubation period. Gaseous hydrogen embrittlement susceptibility increased with increasing yield strength.

  18. Helium technology issues

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1987-01-01

    A number of future space missions require liquid helium for cooling scientific payloads. These missions will require the long term storage and resupply of liquid helium at temperatures of 1.4 - 2.1 Kelvin. In addition, some of the proposed instruments will require refrigeration to temperatures as low as 50 mK. A variety of liquid helium based refrigerator systems could provide this subkelvin cooling. The status of helium storage and refrigeration technologies and of several alternative technologies is presented here along with areas where further research and development are needed. (Helium resupply technologies are the topic of another presentation at this symposium). The technologies covered include passive and dynamic liquid helium storage, alternatives to liquid helium storage, He -3 refrigerators, He -3/He -4 dilution refrigerators, and alternative sub-kelvin coolers.

  19. Cryogenic adsorber design in a helium refrigeration system

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  20. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  1. Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic LADs

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John; Chato, Daniel J.

    2014-01-01

    This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K - 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  2. Warm Pressurant Gas Effects on the Bubble Point Pressure for Cryogenic LADs

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2014-01-01

    This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  3. Equation of state of metallic helium

    SciTech Connect

    Shvets, V. T.

    2013-01-15

    The effective ion-ion interaction, free energy, pressure, and electric resistance of metallic liquid helium have been calculated in wide density and temperature ranges using perturbation theory in the electron-ion interaction potential. In the case of conduction electrons, the exchange interaction has been taken into account in the random-phase approximation and correlations have been taken into account in the local-field approximation. The solid-sphere model has been used for the nuclear subsystem. The diameter of these spheres is the only parameter of this theory. The diameter and density of the system at which the transition of helium from the singly ionized to doubly ionized state occurs have been estimated by analyzing the pair effective interaction between helium atoms. The case of doubly ionized helium atoms has been considered. Terms up to the third order of perturbation theory have been taken into account in the numerical calculations. The contribution of the third-order term is significant in all cases. The electric resistance and its temperature dependence for metallic helium are characteristic of simple divalent metals in the liquid state. The thermodynamic parameters-temperature and pressure densities-are within the ranges characteristic of the central regions of giant planets. This makes it possible to assume the existence of helium in the metallic state within the solar system.

  4. Vorticity matching in superfluid helium

    NASA Astrophysics Data System (ADS)

    Samuels, David C.

    1991-12-01

    Recent experiments have rekindled interest in high Reynolds number flows using superfluid helium. In a continuing series of experiments, the flow of helium II through various devices (smooth pipes, corrugated pipes, valves, venturies, turbine flowmeters, and coanda flowmeters for example) was investigated. In all cases, the measured values (typically, mass flow rates and pressure drops) were found to be well described by classical relations for high Reynolds flows. This is unexpected since helium II consists of two interpenetrating fluids; one fluid with nonzero viscosity (the normal fluid) and one with zero viscosity (the superfluid). Only the normal fluid component should directly obey classical relations. Since the experiments listed above only measure the external behavior of the flow (i.e., pressure drops over devices), there is a great deal of room for interpretation of their results. One possible interpretation is that in turbulent flows the normal fluid and the superfluid velocity fields are somehow 'locked' together, presumably by the mutual friction force between the superfluid vortex filaments and the normal fluid. We refer to this locking together of the two fluids as 'vorticity matching.'

  5. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Center Director Roy Bridges addresses the audience at the commissioning of a new high-pressure helium pipeline at Kennedy Space Center that will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile- long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS); Col. Samuel Dick, representative of the 45th Space Wing; Ramon Lugo, acting executive director, JPMO; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS.

  6. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jerry Jorgensen welcomes the audience to the commissioning of a new high-pressure helium pipeline at Kennedy Space Center. Jorgensen, with Space Gateway Support (SGS), is the pipeline project manager. To the right is Ramon Lugo, acting executive director, JPMO. Others at the ceremony were Center Director Roy Bridges; Col. Samuel Dick, representative of the 45th Space Wing; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad.

  7. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, Ramon Lugo, acting executive director, JPMO , presents a plaque to Center Director Roy Bridges. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS); Col. Samuel Dick, representative of the 45th Space Wing; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad.

  8. Confined helium on Lagrange meshes.

    PubMed

    Baye, D; Dohet-Eraly, J

    2015-12-21

    The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than 10(-10). For larger radii up to 10, they progressively decrease to 10(-3), still improving the best literature results.

  9. Barometric pressure

    NASA Technical Reports Server (NTRS)

    Billings, C. E.

    1973-01-01

    The effects of alterations in barometric pressure on human beings are described. Human tolerances for gaseous environments and low and high barometric pressure are discussed, including effects on specific areas, such as the ear, lungs, teeth, and sinuses. Problems due to trapped gas within the body, high dynamic pressures on the body, and blasts are also considered.

  10. Helium Diffusion in Olivine

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.

    2011-12-01

    Diffusion of helium has been characterized in natural Fe-bearing olivine (~Fo90) and synthetic forsterite. Polished, oriented slabs of olivine were implanted with 3He, at 100 keV at a dose of 5x1015/cm2 or at 3.0 MeV at a dose of 1x1016/cm2. A set of experiments on the implanted olivine were run in 1-atm furnaces. In addition to the one-atm experiments, experiments on implanted samples were also run at higher pressures (2.6 and 2.7 GPa) to assess the potential effects of pressure on He diffusion and the applicability of the measured diffusivities in describing He transport in the mantle. The high-pressure experiments were conducted in a piston-cylinder apparatus using an "ultra-soft" pressure cell, with the diffusion sample directly surrounded by AgCl. 3He distributions following experiments were measured with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. This direct profiling method permits us to evaluate anisotropy of diffusion, which cannot be easily assessed using bulk-release methods. For diffusion in forsterite parallel to c we obtain the following Arrhenius relation over the temperatures 250-950°C: D = 3.91x10-6exp(-159 ± 4 kJ mol-1/RT) m2/sec. The data define a single Arrhenius line spanning more than 7 orders of magnitude in D and 700°C in temperature. Diffusion parallel to a appears slightly slower, yielding an activation energy for diffusion of 135 kJ/mol and a pre-exponential factor of 3.73x10-8 m2/sec. Diffusion parallel to b is slower than diffusion parallel to a (by about two-thirds of a log unit); for this orientation an activation energy of 138 kJ/mol and a pre-exponential factor of 1.34x10-8 m2/sec are obtained. This anisotropy is broadly consistent with observations for diffusion of Ni and Fe-Mg in olivine. Diffusion in Fe-bearing olivine (transport parallel to b) agrees within uncertainty with findings for He diffusion in forsterite. The higher-pressure experiments yield diffusivities in agreement with those from the 1-atm

  11. Acoustic Resonances in Helium Fluids Excited by Quartz Tuning Forks

    NASA Astrophysics Data System (ADS)

    Salmela, A.; Tuoriniemi, J.; Rysti, J.

    2011-03-01

    Ordinary quartz tuning fork resonators, operated at about 30 or 200 kHz frequency, couple to acoustic first and second sound resonances in helium fluids under certain conditions. We have studied acoustic resonances in supercritical 4He, normal and superfluid 4He, and in isotopic mixtures of helium. Suggestive temperature, pressure, and concentration dependences are given. Furthermore, we propose a thermometric reference point device based on second sound resonances in helium mixtures, and indicate possible differences in the nature of second sound resonances in superfluid 4He and helium mixtures.

  12. Simplified Helium Refrigerator Cycle Analysis Using the `Carnot Step'

    SciTech Connect

    P. Knudsen; V. Ganni

    2006-05-01

    An analysis of the Claude form of an idealized helium liquefier for the minimum input work reveals the ''Carnot Step'' for helium refrigerator cycles. As the ''Carnot Step'' for a multi-stage polytropic compression process consists of equal pressure ratio stages; similarly for an idealized helium liquefier the ''Carnot Step'' consists of equal temperature ratio stages for a given number of expansion stages. This paper presents the analytical basis and some useful equations for the preliminary examination of existing and new Claude helium refrigeration cycles.

  13. GASEOUS DISPOSAL PROCESS

    DOEpatents

    Ryan, R.F.; Thomasson, F.R.; Hicks, J.H.

    1963-01-22

    A method is described of removing gaseous radioactive Xe and Kr from water containing O. The method consists in stripping the gases from the water stream by means of H flowing countercurrently to the stream. The gases are then heated in a deoxo bed to remove O. The carrier gas is next cooled and passed over a charcoal adsorbent bed maintained at a temperature of about --280 deg F to remove the Xe and Kr. (AEC)

  14. Sonic helium detectors in the Fermilab Tevatron

    SciTech Connect

    Bossert, R.J.; /Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  15. Helium liquefaction with a 4 K pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Wang, Chao

    2001-07-01

    Helium liquefaction with a two-stage 4 K pulse tube cryocooler is introduced in this paper. The helium liquefier has a feature of precooling helium gas to be liquefied by using inefficiency of the second stage regenerator in the pulse tube cryocooler. This process reduces enthalpy of the incoming helium gas when entering the condenser and significantly increases the condensation rate. Numerical analysis predicts the precooling heat load on the second stage regenerator, decreases the PTC second stage cooling capacity by only 11% of the heat actually absorbed into the regenerator. A prototype pulse tube helium liquefier was built, which has two precooling heat exchangers on the first stage cold head and the second stage regenerator. It continuously liquefies helium with a rate of 4.8 l/day under normal pressure while consumes 4.6 kW power input.

  16. Correlation and prediction of gaseous diffusion coefficients.

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  17. Superfluid Helium Tanker (SFHT) study

    NASA Technical Reports Server (NTRS)

    Eberhardt, Ralph N.; Dominick, Sam M.; Anderson, John E.; Gille, John P.; Martin, Tim A.; Marino, John S.; Paynter, Howard L.; Traill, R. Eric; Herzl, Alfred; Gotlib, Sam

    1988-01-01

    Replenishment of superfluid helium (SFHe) offers the potential of extending the on-orbit life of observatories, satellite instruments, sensors and laboratories which operate in the 2 K temperature regime. A reference set of resupply customers was identified as representing realistic helium servicing requirements and interfaces for the first 10 years of superfluid helium tanker (SFHT) operations. These included the Space Infrared Telescope Facility (SIRTF), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (Astromag), and the Microgravity and Materials Processing Sciences Facility (MMPS)/Critical Point Phenomena Facility (CPPF). A mixed-fleet approach to SFHT utilization was considered. The tanker permits servicing from the Shuttle cargo bay, in situ when attached to the OMV and carried to the user spacecraft, and as a depot at the Space Station. A SFHT Dewar ground servicing concept was developed which uses a dedicated ground cooling heat exchanger to convert all the liquid, after initial fill as normal fluid, to superfluid for launch. This concept permits the tanker to be filled to a near full condition, and then cooled without any loss of fluid. The final load condition can be saturated superfluid with any desired ullage volume, or the tank can be totally filed and pressurized. The SFHT Dewar and helium plumbing system design has sufficient component redundancy to meet fail-operational, fail-safe requirements, and is designed structurally to meet a 50 mission life usage requirement. Technology development recommendations were made for the selected SFHT concept, and a Program Plan and cost estimate prepared for a phase C/D program spanning 72 months from initiation through first launch in 1997.

  18. Investigations of levitated helium drops

    NASA Astrophysics Data System (ADS)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  19. Helium in Earth's Early Core

    NASA Astrophysics Data System (ADS)

    Jephcoat, A. P.; Bouhifd, M. A.; Heber, V.; Kelley, S. P.

    2006-12-01

    The high 3He/4He ratios for some ocean-island basalts, and more recent observations for solar components of the other rare gases (Ne, Ar and possibly Xe), continue to raise questions on primordial source reservoirs as well as on accretionary and incorporation processes of rare gases. A number of geochemical mantle models have been made to explain the observed 3He/4He ratios, the most popular of which has been an undegassed primordial reservoir. Isotope systematics of other radiogenic elements do not support such an isolated source and changes in the accepted models of mantle convection style have made it harder to rely on the deep mantle as a reservoir. The core has remained a particularly unfavourable location either because of difficulty in constructing a retention mechanism during planetary accretion or simply because of a lack of data: Partitioning studies at pressure are rare and complicated by the difficulty in reproducing not only absolute concentrations, but confinement of gas in high-pressure apparatus and post-run analysis. We present experiments on helium solubility and partitioning between molten silicates and Fe-rich metal liquids up to 16 GPa and 3000 K, with the laser-heated diamond-anvil cell, and the quenched run products analysed by ultra-violet laser ablation mass spectrometry (UVLAMP). Our results indicate a significantly higher partition coefficient for He between molten silicates and Fe-rich alloy liquids of about 10-2 at 16 GPa and 3000~K -- two orders of magnitude more helium is measured in the metal phase compared to the only previous data of Matsuda et al., (1993). The solubility mechanism is varied and involves a distinguishable bulk component and an apparent surface signature (that may be the result of the quench process). Whether surface effects are included or not, the early Earth's core would have incorporated non-negligible amounts of primordial helium if its segregation took place under mid-depth, magma-ocean conditions. The process

  20. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  1. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  2. Shock compression of liquid helium to 56 GPa (560 kbar)

    NASA Technical Reports Server (NTRS)

    Nellis, W. J.; Holmes, N. C.; Mitchell, A. C.; Governo, G. K.; Ross, M.; Young, D. A.; Trainor, R. J.

    1984-01-01

    Shock-wave data are presented for liquid helium which has been compressed to densities up to five times greater than the normal liquid. The helium was heated to temperatures up to 21,000 K, while the maximum pressure attained was 56 GPa. The properties of helium and hydrogen are important for modeling the giant planets Saturn and Jupiter where these elements are the major constituents. Conditions on Saturn are of particular interest because studies have suggested that this planet has an internal energy source which is associated with unmixing and gravitational separation of the hydrogen-helium fluid at pressures below 1 TPa. The existence of this phase transition depends very sensitively on the hydrogen and helium equation of state. In the experiments, strong shock waves were generated by the impact of planar projectiles into cryogenic specimen holders.

  3. Shock Compression of Liquid Helium to 56 GPa (560) Kbar

    NASA Technical Reports Server (NTRS)

    Nellis, W. J.; Holmes, N. C.; Mitchell, A. C.; Trainor, R. J.; Governo, G. K.; Ross, M.; Young, D. A.

    1985-01-01

    Shock-wave data are presented for liquid helium which has been compressed to densities up to five times greater than the normal liquid. The helium was heated to temperatures up to 21,000 K, while the maximum pressure attained was 56 GPa. The properties of helium and hydrogen are important for modeling the giant planets Saturn and Jupiter where these elements are the major constituents. Conditions on Saturn are of particular interest because studies have suggested that this planet has an internal energy source which is associated with unmixing and gravitational separation the hydrogen-helium fluid at pressures below 1 TPa. The existence of this phase transition depends very sensitively on the hydrogen and helium equation of state. In the experiments, strong shock waves were generated by the impact of planar projectiles into cryogenic specimen holders.

  4. Energy Distribution of Electrons in Radiation Induced-Helium Plasmas. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lo, R. H.

    1972-01-01

    Energy distribution of high energy electrons as they slow down and thermalize in a gaseous medium is studied. The energy distribution in the entire energy range from source energies down is studied analytically. A helium medium in which primary electrons are created by the passage of heavy-charged particles from nuclear reactions is emphasized. A radiation-induced plasma is of interest in a variety of applications, such as radiation pumped lasers and gaseous core nuclear reactors.

  5. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    DOEpatents

    Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  6. Gaseous Fuel Injection Modeling using a Gaseous Sphere Injection Methodology

    SciTech Connect

    Hessel, R P; Aceves, S M; Flowers, D L

    2006-03-06

    The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.

  7. Electrostatic Precipitation in Nearly Pure Gaseous Nitrogen

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Cox, Bobby; Ritz, Mindy

    2008-01-01

    Electrostatic precipitation was performed in a nearly pure gaseous nitrogen system as a possible remedy for black dust contaminant from high pressure 6000 psi lines at the NASA Kennedy Space Center. The results of a prototype electrostatic precipitator that was built and tested using nitrogen gas at standard atmospheric pressures is presented. High voltage pulsed waveforms are generated using a rotating spark gap system at 30 Hz. A unique dust delivery system utilizing the Venturi effect was devised that supplies a given amount of dust per unit time for testing purposes.

  8. Effect of boundary conditions on the kinetics of helium release from structural materials

    NASA Astrophysics Data System (ADS)

    Zaluzhnyi, A. G.

    2015-11-01

    Gaseous products of nuclear reactions (specifically, helium) play a significant part in altering the material properties upon irradiation. It is known that atoms of inert gases promote the generation and growth of pores in irradiated materials and affect phenomena such as swelling, high-temperature irradiation embrittlement, etc. Therefore, a study of the behavior of helium (its production, accumulation, retention, and release) within structural materials is fairly topical. In order to validate the methods of express imitation of accumulation and retention of helium within structural materials under reactor irradiation, we perform a comparative analysis of the spectra of the rate of gas release from samples of austenitic steel 0Kh16N15M3B that were saturated with helium in different ways, i.e., through irradiation in a cyclotron, a magnetic massseparation setup, the IRT-2000 reactor, the BOR-60 reactor, and using the so-called tritium trick technique. The effect of the presence of dislocations and grain boundaries on the release of helium from materials is evaluated. The results of the research conducted show that the kinetics of helium release from samples saturated with helium through the bombardment with alpha particles of different energies, which ensures the simultaneous introduction of helium and radiation defects (in wide ranges of helium concentration and radiation damage) into the material lattice, is similar to the kinetics of helium release from samples irradiated in reactors.

  9. Liquid vapour spinodal of pure helium 4

    NASA Astrophysics Data System (ADS)

    Imre, Attila R.; Kraska, Thomas

    2008-10-01

    Unlike gases, liquids can be overheated or stretched only up to a limit. The determination of the mean-field thermodynamic stability limit-the so-called spinodal-is a very difficult theoretical and a more-or-less impossible experimental task. Based on a recent semi-empirical method, the spinodal pressure of helium-4 at given temperature is determined, using liquid-vapour surface tension, interface thickness and vapour pressure data.

  10. Combined cold compressor/ejector helium refrigerator

    DOEpatents

    Brown, Donald P.

    1985-01-01

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  11. Combined cold compressor/ejector helium refrigerator

    DOEpatents

    Brown, D.P.

    1984-06-05

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  12. Experiments with single electrons in liquid helium

    SciTech Connect

    Guo, W.; Jin, D.; Seidel, G. M.; Maris, H. J.

    2009-02-01

    We describe experiments we have performed in which we are able to image the motion of individual electrons moving in liquid helium 4. Electrons in helium form bubbles of radius {approx}19 A. We use the negative pressure produced by a sound wave to expand these bubbles to a radius of about 10 {mu}m. The bubbles are then illuminated with light from a flash lamp and their position recorded. We report on several interesting phenomena that have been observed in these experiments. It appears that the majority of the electrons that we detect result from cosmic rays passing through the experimental cell. We discuss this mechanism for electron production.

  13. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  14. Downhole gaseous liquid flow agitator

    SciTech Connect

    Kamilos, N.; Kennedy, D.D.; Lederhos, L.J. Jr.

    1989-03-14

    An apparatus is described for agitating and mixing of a gaseous phase and a liquid phase comprising: a first tube having non-blocking internal threads within the first tube to agitate a liquid phase adhering thereto with a gaseous phase passing therethrough, whereby a uniform gaseous phase and liquid phase mixture is formed; and a second tube connected to an end of the first tube having non-blocking internal threads of opposite handedness.

  15. Variation in Atmospheric Helium Isotopes

    NASA Astrophysics Data System (ADS)

    Mabry, J. C.; Marty, B.; Burnard, P.; Blard, P.

    2010-12-01

    Anthropogenic activity such as oil and gas exploitation releases crustal helium, which has excess 4He compared to atmospheric helium. This may give rise to both spatial and temporal variations in the atmospheric 3He/4He. Helium is present in trace quantities in the air (5 ppm) and has a very low ratio (3He/4Heair = 1.38 x 10-6), consequently high precision measurements of atmospheric He presents a significant analytical challenge. Recent work by Sano et al. [1] has endeavored to experimentally quantify these potential variations in the atmospheric 3He/4He by measuring the helium isotopes from air samples collected around the globe and from samples of ancient trapped atmosphere. Their results indicate an increase in the atmospheric 3He/4He from northern to southern latitudes of the order 2 - 4 ‰, which they attribute to greater use of fossil fuels in the northern hemisphere. However, since most of their data points overlap at the 2-3 ‰ (2σ) level, additional measurements (with increased precision if possible) are needed. We have constructed an automated extraction line dedicated to measuring He in samples of air which can rapidly switch between measuring aliquots of sample with standards. It additionally features an adjustable bellows on the sample aliquot volume that enables us to adjust the size of a sample aliquot to precisely match the standard, eliminating biases arising from nonlinear pressure effects in the mass spectrometer. The measurements are made using a Helix SFT multi-collector mass spectrometer. At present, repeat measurements of 3He/4He from our standard (purified air) have a reproducibility of 2‰ (2σ), while measurements of local (Nancy, France) air samples have a reproducibility of 3He/4He of 3‰ (2σ), which are at a similar level to the uncertainties reported by Sano. Modifications are underway to improve 3He measurements which are the principal source of error. We have collected atmospheric samples from around the globe over a wide

  16. Core helium flash

    SciTech Connect

    Cole, P.W.; Deupree, R.G.

    1980-01-01

    The role of convection in the core helium flash is simulated by two-dimensional eddies interacting with the thermonuclear runaway. These eddies are followed by the explicit solution of the 2D conservation laws with a 2D finite difference hydrodynamics code. Thus, no phenomenological theory of convection such as the local mixing length theory is required. The core helium flash is violent, producing a deflagration wave. This differs from the detonation wave (and subsequent disruption of the entire star) produced in previous spherically symmetric violent core helium flashes as the second dimension provides a degree of relief which allows the expansion wave to decouple itself from the burning front. Our results predict that a considerable amount of helium in the core will be burned before the horizontal branch is reached and that some envelope mass loss is likely.

  17. The Descending Helium Balloon

    ERIC Educational Resources Information Center

    Helseth, Lars Egil

    2014-01-01

    I describe a simple and fascinating experiment wherein helium leaks out of a rubber balloon, thereby causing it to descend. An estimate of the volumetric leakage rate is made by measuring its rate of descent.

  18. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium. Final report

    SciTech Connect

    Misencik, J.A.; Titran, R.H.

    1984-10-01

    Sixteen commercial tubing alloys were endurance tested at 820/sup 0/ C, 15 MPa in a diesel-fuel fired Stirling engine simulator materials test rig: iron-base N-155, A-286, Incoloy 800, 19-9DL, CG-27, W-545, 12RN72, 253MA, Sanicro 31H and Sanicro 32; nickel-base Inconel 601, Inconel 625, Inconel 718, Inconel 750 and Pyromet 901; and cobalt-base HS-188. The iron-nickel alloys CG-27 and Pyromet 901 exhibited superior oxidation/corrosion resistance to the diesel-fuel combustion products and surpassed the design criterias' 3500 h creep-rupture endurance life. Three other alloys, Inconel 625, W-545, and 12RN72, had creep-rupture failures after 2856, 2777, and 1598 h, respectively. Hydrogen permeability coefficients determined after 250 h of rig exposure show that Pyromet 901 had the lowest Phi value, 0.064x10/sup -6/ cm/sup 2//s MPa/sup 1///sup 2/. The next five hairpin tubes, CG-27, Inconel 601, Inconel 718(wd), Inconel 750, and 12RN72(cw) all had Phi values below 0.2x10/sup -6/ more than a decade lower than the design criteria. Based upon its measured high strength and low hydrogen permeation, CG-27 was selected for 3500 h endurance testing at 21 MPa gas pressure and 820/sup 0/C. Results of the high pressure, 21 MPa, CG-27 endurance test demonstrated that the 1.0 vol % C0/sub 2/ dopant is an effective deterrent to hydrogen permeation. The 21 MPa hydrogen gas pressure apparent permeability coefficient at 820/sup 0/C approached 0.1x10/sup -6/ cm/sup 2/sec MPa/sup 1///sup 2/ after 500 hr, the same as the 15 MPa test. Even at this higher gas pressure and comparable permeation rate, CG-27 passed the 3500 hr endurance test without creep-rupture failures. It is concluded that the CG-27 alloy, in the form of thin wall tubing is suitable for Stirling engine applications at 820/sup 0/C and gas pressures up to 21 MPa.

  19. Advances in Helium Cryogenics

    NASA Astrophysics Data System (ADS)

    Sciver, S. W. Van

    This review provides a survey of major advances that have occurred in recent years in the area of helium cryogenics. Helium-temperature cryogenics is the enabling technology for a substantial and growing number of low-temperature systems from superconducting magnets to space-based experimental facilities. In recent years there have been many advances in the technology of low-temperature helium, driven mostly by new applications. However, to keep the review from being too broad, this presentation focuses mainly on three of the most significant advances. These are: (1) the development of large-scale recuperative refrigeration systems mainly for superconducting magnet applications in accelerators and other research facilities; (2) the use of stored superfluid helium (He II) as a coolant for spacebased astrophysics experiments; and (3) the application of regenerative cryocoolers operating at liquid helium temperatures primarily for cooling superconducting devices. In each case, the reader should observe that critical technologies were developed to facilitate these applications. In addition to these three primary advances, other significant helium cryogenic technologies are briefly reviewed at the end of this chapter, along with some vision for future developments in these areas.

  20. Gaseous trace impurity analyzer and method

    DOEpatents

    Edwards, Jr., David; Schneider, William

    1980-01-01

    Simple apparatus for analyzing trace impurities in a gas, such as helium or hydrogen, comprises means for drawing a measured volume of the gas as sample into a heated zone. A segregable portion of the zone is then chilled to condense trace impurities in the gas in the chilled portion. The gas sample is evacuated from the heated zone including the chilled portion. Finally, the chilled portion is warmed to vaporize the condensed impurities in the order of their boiling points. As the temperature of the chilled portion rises, pressure will develop in the evacuated, heated zone by the vaporization of an impurity. The temperature at which the pressure increase occurs identifies that impurity and the pressure increase attained until the vaporization of the next impurity causes a further pressure increase is a measure of the quantity of the preceding impurity.

  1. Effect of gaseous ammonia on nicotine sorption

    SciTech Connect

    Webb, A.M.; Singer, B.C.; Nazaroff, W.W.

    2002-06-01

    Nicotine is a major constituent of environmental tobacco smoke. Sorptive interactions of nicotine with indoor surfaces can substantially alter indoor concentrations. The phenomenon is poorly understood, including whether sorption is fully reversible or partially irreversible. They hypothesize that acid-base chemistry on indoor surfaces might contribute to the apparent irreversibility of nicotine sorption under some circumstances. Specifically, they suggest that nicotine may become protonated on surfaces, markedly reducing its vapor pressure. If so, subsequent exposure of the surface to gaseous ammonia, a common base, could raise the surface pH, causing deprotonation and desorption of nicotine from surfaces. A series of experiments was conducted to explore the effect of ammonia on nicotine sorption to and reemission from surfaces. The results indicate that, under some conditions, exposure to gaseous ammonia can substantially increase the rate of desorption of previously sorbed nicotine from common indoor surface materials.

  2. Use of Helium Production to Screen Glow Discharges for Low Energy Nuclear Reactions (LENR)

    NASA Astrophysics Data System (ADS)

    Passell, Thomas O.

    2011-03-01

    My working hypothesis of the conditions required to observe low energy nuclear reactions (LENR) follows: 1) High fluxes of deuterium atoms through interfaces of grains of metals that readily accommodate movement of hydrogen atoms interstitially is the driving variable that produces the widely observed episodes of excess heat above the total of all input energy. 2) This deuterium atom flux has been most often achieved at high electrochemical current densities on highly deuterium-loaded palladium cathodes but is clearly possible in other experimental arrangements in which the metal is interfacing gaseous deuterium, as in an electrical glow discharge. 3) Since the excess heat episodes must be producing the product(s) of some nuclear fusion reaction(s) screening of options may be easier with measurement of those ``ashes'' than the observance of the excess heat. 4) All but a few of the exothermic fusion reactions known among the first 5 elements produce He-4. Hence helium-4 appearance in an experiment may be the most efficient indicator of some fusion reaction without commitment on which reaction is occurring. This set of hypotheses led me to produce a series of sealed tubes of wire electrodes of metals known to absorb hydrogen and operate them for 100 days at the 1 watt power level using deuterium gas pressures of ~ 100 torr powered by 40 Khz AC power supplies. Observation of helium will be by measurement of helium optical emission lines through the glass envelope surrounding the discharge. The results of the first 18 months of this effort will be described.

  3. Frequency of collisions between ion and neutral particles from the cloning characteristics of filamentary currents in an atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Qi, Bing; Zhang, Mengdie; Pan, Lizhu; Zhou, Qiujiao; Huang, Jianjun; Liu, Ying

    2015-02-01

    In this paper, a cold He atmospheric pressure plasma jet that is generated using a dielectric barrier discharge configuration device is presented. This device is equipped with double-grounded ring electrodes that are driven by a sinusoidal excitation voltage. The properties of the cloning of filamentous current are studied. The frequency of the collisions between the ion and the neutral particles is calculated by measuring the current phase difference between the filamentous current and its corresponding clone. The frequency of the collisions between the ion and the neutral particles is of the order of 108 Hz.

  4. Suprathermal electron energy spectrum and nonlocally affected plasma-wall interaction in helium/air micro-plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Adams, S. F.; Miles, J. A.; Koepke, M. E.; Kurlyandskaya, I. P.

    2016-10-01

    Details of ground-state and excited-state neutral atoms and molecules in an atmospheric-pressure micro-discharge plasma may be obtained by plasma electron spectroscopy (PLES), based on a wall probe. The presence and transport of energetic (suprathermal) electrons, having a nonlocal origin, are responsible for electrostatic charging of the plasma boundary surfaces to potentials many times that associated with the ambient electron kinetic energy. The energy-flux distribution function is shown to be controllable for applications involving analysis of composition and processes taking place in a multiphase (plasma-gas-solid), chemically reactive, interaction region.

  5. BASG thermomechanical pump helium 2 transfer tests

    NASA Technical Reports Server (NTRS)

    Mills, G. L.; Newell, D. A.; Urbach, A. R.

    1990-01-01

    The purpose of the effort described was to perform experiments and calculations related to using a thermomechanical pump in the space-based resupply of the Space Infrared Telescope Facility (SIRTF) with Helium 2. Thermomechanical (fountain effect) pumps have long been suggested as a means for pumping large quantities of Helium 2. The unique properties of Helium 2 have made it useful for cooling space instruments. Several space science missions, including SIRTF, are now being planned which would benefit greatly from on-orbit resupply of Helium 2. A series of experiments were performed to demonstrate that large volumes of Helium 2 can be transferred with a thermomechanical pump at high flow rates and at high efficiency from one dewar to another through valves and lines that are similar to the plumbing arrangement that would be necessary to accomplish such a transfer on-orbit. In addition, temperature, pressure, and flow rate data taken during the tests were used to verify and refine a computer model which was developed.

  6. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants cut the lines to helium-filled balloons. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO.

  7. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants watch as helium-filled balloons take to the sky after their lines were cut. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO.

  8. Tribology in Gaseous Hydrogen

    NASA Astrophysics Data System (ADS)

    Sawae, Yoshinori; Sugimura, Joich

    Hydrogen is expected as a clean and renewable energy carrier for future environment-friendly society. Many machine elements in hydrogen energy systems should be operating within hydrogen gas and tribological behavior, such as friction and wear, of bearings and seals are affected by the hydrogen environment through some interactions between material surfaces and gaseous hydrogen, i.e., physisorption of hydrogen molecules and following chemisorptions of dissociated atoms on metal surfaces, formation of metal hydride and reduction of metal oxide layer by hydrogen atoms diffused into bulk. Therefore, friction and wear characteristics of tribomaterials in the hydrogen environment should be appropriately understood to establish a design guideline for reliable hydrogen utilizing systems. This paper reviews the current knowledge about the effect of hydrogen on friction and wear of materials, and then describes our recent progress of hydrogen research in the tribology field.

  9. In situ controlled modification of the helium density in single helium-filled nanobubbles

    SciTech Connect

    David, M.-L. Pailloux, F.; Alix, K.; Mauchamp, V.; Pizzagalli, L.; Couillard, M.; Botton, G. A.

    2014-03-28

    We demonstrate that the helium density and corresponding pressure can be modified in single nano-scale bubbles embedded in semiconductors by using the electron beam of a scanning transmission electron microscope as a multifunctional probe: the measurement probe for imaging and chemical analysis and the irradiation source to modify concomitantly the pressure in a controllable way by fine tuning of the electron beam parameters. The control of the detrapping rate is achieved by varying the experimental conditions. The underlying physical mechanisms are discussed; our experimental observations suggest that the helium detrapping from bubbles could be interpreted in terms of direct ballistic collisions, leading to the ejection of the helium atoms from the bubble.

  10. Method for removing acid gases from a gaseous stream

    DOEpatents

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  11. Helium detection in gas mixtures by laser-induced breakdown spectroscopy.

    PubMed

    Eseller, Kemal E; Yueh, Fang-Yu; Singh, Jagdish P; Melikechi, Noureddine

    2012-03-01

    Laser-induced breakdown spectroscopy (LIBS) has been evaluated as a tool for monitoring trace levels of helium in gas mixtures consisting mostly of hydrogen. Calibration data for helium in hydrogen was investigated at different helium concentration levels. At high concentrations of helium (>7.25%), the LIBS signal is quenched due to Penning ionization. The hydrogen alpha line (656.28 nm) was observed to broaden as the concentration of helium impurities in the hydrogen gas mixture increased. The helium line at 587.56 nm was selected as the analyte line for helium impurity detection. The effects of laser energy, the delay time between the laser pulse and data acquisition, and the gas pressure on the LIBS signal of helium were investigated to determine the optimum conditions for helium detection. The LIBS signal from the helium line at 587.56 nm shows good linear correlation with helium concentration for He concentrations below 1%. Thus, LIBS can be reliably used to detect the low levels of helium. The limit of detection for helium was found to be 78 ppm.

  12. Dislocation Interactions with Voids and Helium Bubbles in FCC Metals

    SciTech Connect

    Robertson, I; Robach, J; Wirth, B; Young, J

    2003-11-18

    The formation of a high number density of helium bubbles in FCC metals irradiated within the fusion energy environment is well established. Yet, the role of helium bubbles in radiation hardening and mechanical property degradation of these steels remains an outstanding issue. In this paper, we present the results of a combined molecular dynamics simulation and in-situ straining transmission electron microscopy study, which investigates the interaction mechanisms between glissile dislocations and nanometer-sized helium bubbles. The molecular dynamics simulations, which directly account for dislocation core effects through semi-empirical interatomic potentials, provide fundamental insight into the effect of helium bubble size and internal gas pressure on the dislocation/bubble interaction and bypass mechanisms. The combination of simulation and in-situ straining experiments provides a powerful approach to determine the atomic to microscopic mechanisms of dislocation-helium bubble interactions, which govern the mechanical response of metals irradiated within the fusion environment.

  13. Helium-refrigeration system

    SciTech Connect

    Specht, J.R.; Millar, B.; Sutherland, A.

    1995-08-01

    The design, procurement, and preliminary construction was completed for adding two more wet expansion engines to two helium refrigerators. These will be added in mid-year FY 1995. In addition a variable speed drive will be added to an existing helium compressor. This is part of an energy conservation upgrade project to reduce operating costs from the use of electricity and liquid nitrogen. This project involves the replacement of Joule-Thompson valves in the refrigerators with expansion engines resulting in system efficiency improvements of about 30% and improved system reliability.

  14. Gaseous-fuel engine technology

    SciTech Connect

    1995-12-31

    This publication contains three distinct groups of papers covering gaseous-fuel injection and control, gaseous-fuel engine projects, and gaseous-fuel engine/vehicle applications. Contents include: ultra rapid natural gas port injection; a CNG specific fuel injector using latching solenoid technology; development of an electronically-controlled natural gas-fueled John Deere PowerTech 8.1L engine; adapting a Geo Metro to run on natural gas using fuel-injection technology; behavior of a closed loop controlled air valve type mixer on a natural gas fueled engine under transient operation; and a turbocharged lean-burn 4.3 liter natural gas engine.

  15. Is solid helium a supersolid?

    SciTech Connect

    Hallock, Robert

    2015-05-15

    Recent experiments suggest that helium-4 atoms can flow through an experimental cell filled with solid helium. But that incompletely understood flow is quite different from the reported superfluid-like motion that so excited physicists a decade ago.

  16. Superfluid Helium On-Orbit Transfer (SHOOT) operatons

    NASA Technical Reports Server (NTRS)

    Kittel, P.; Dipirro, M. J.

    1988-01-01

    The in-flight tests and the operational sequences of the Superfluid Helium On-Orbit Transfer (SHOOT) experiment are outlined. These tests include the transfer of superfluid helium at a variety of rates, the transfer into cold and warm receivers, the operation of an extravehicular activity coupling, and tests of a liquid acquisition device. A variety of different types of instrumentation will be required for these tests. These include pressure sensors and liquid flow meters that must operate in liquid helium, accurate thermometry, two types of quantity gauges, and liquid-vapor sensors.

  17. Temperature dependence of helium diffusion through common epoxies

    NASA Astrophysics Data System (ADS)

    Lovinger, D. J.; Hallock, R. B.

    2012-12-01

    Helium gas at room temperature is known to diffuse through the epoxies commonly used in various low temperature applications, which can complicate leak detection. The helium flux typically decreases with decreasing temperature. We have measured the flux of helium that passes though thin sections of as-cast clear Stycast 1266, Stycast 2850FT (black) and TRA-BOND 2151 (blue) epoxies as a function of temperature in the range 130K < T < 300K. We analyze the data to create normalized (to constant sample thickness and pressure differential) data for comparison. We report the preliminary temperature-dependent fluxes we have measured, which show significant differences among the epoxies studied.

  18. Cavitation in flowing superfluid helium

    NASA Technical Reports Server (NTRS)

    Daney, D. E.

    1988-01-01

    Flowing superfluid helium cavitates much more readily than normal liquid helium, and there is a marked difference in the cavitation behavior of the two fluids as the lambda point is traversed. Examples of cavitation in a turbine meter and centrifugal pump are given, together with measurements of the cavitation strength of flowing superfluid helium. The unusual cavitation behavior of superfluid helium is attributed to its immense thermal conductivity .

  19. Evaluation of US demo helium-cooled blanket options

    SciTech Connect

    Wong, C.P.C.; McQuillan, B.W.; Schleicher, R.W.

    1995-10-01

    A He-V-Li blanket design was developed as a candidate for the U.S. fusion demonstration power plant. This paper presents an 18 MPa helium-cooled, lithium breeder, V-alloy design that can be coupled to the Brayton cycle with a gross efficiency of 46%. The critical issue of designing to high gas pressure and the compatibility between helium impurities and V-alloy are addressed.

  20. How to make Raman-inactive helium visible in Raman spectra of tritium-helium gas mixtures

    SciTech Connect

    Schloesser, M.; Pakari, O.; Rupp, S.; Mirz, S.; Fischer, S.

    2015-03-15

    Raman spectroscopy, a powerful method for the quantitative compositional analysis of molecular gases, e.g. mixtures of hydrogen isotopologues, is not able to detect monoatomic species like helium. This deficit can be overcome by using radioluminescence emission from helium atoms induced by β-electrons from tritium decay. We present theoretical considerations and combined Raman/radioluminescence spectra. Furthermore, we discuss the linearity of the method together with validation measurements for determining the pressure dependence. Finally, we conclude how this technique can be used for samples of helium with traces of tritium, and vice versa. (authors)

  1. Characteristics of the Interstellar Helium by the He I 58.4-nm Optical Observation

    NASA Astrophysics Data System (ADS)

    Yamazaki, A.; Yoshikawa, I.; Shiomi, K.; Nakamura, M.; Miyake, W.

    2001-05-01

    There is a region with high-density helium gas in shape of a corn in the solar system, which is called the helium cone. The helium atoms originate from the local interstellar medium (LISM), and are injected into the heliosphere with the interstellar wind. The solar gravity force and radiation pressure decide the helium density distribution in the helium cone. Therefore the velocity, the density, and the temperature of the interstellar helium is estimated from the helium density distribution in the helium cone. An eXtreme Ultra-Violet (XUV) scanner has been built for Japanese first Mars Explorer, Planet-B. The scanner has detected the He I 58.4-nm emission resonantly scattered by the helium atoms in the helium cone on the Planet-B's cruise orbit to Mars. The He I emission rate is estimated from the helium cone formation model under the condition that the velocity vector of the interstellar wind and the loss rate (ionization rate) of helium atom in the interplanetary space are constant. The best agreement between the observation and the model gives the LISM parameters.

  2. Gaseous Emissions from Wastewater Facilities.

    PubMed

    Koh, Sock-Hoon; Shaw, Andrew R

    2016-10-01

    A review of the literature published in 2015 on topics relating to gaseous emissions from wastewater facilities is presented. This review is divided into the following sections: odorant emissions from wastewater treatment plants (WWTPs); greenhouse gas (GHG) emissions from WWTPs; gaseous emissions from wastewater collection systems; physiochemical odor/emissions control methods; biological odor/emissions control methods; odor characterization/monitoring; and odor impacts/ risk assessments. PMID:27620089

  3. Development of a Flexible Seal for a 60 psi Cryogenic Pressure Box

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1998-01-01

    A cryogenic pressure box test facility has been designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 5 ft x 6 ft curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20 K) with 54 psig maximum pressure. The key challenge in the design and fabrication of the pressure box was the development of a seal that could remain flexible at -423 F and contain 60 psi gaseous helium as the pressurization gas. A C-shaped seal was developed using a Gore-tex woven fabric. Mechanical testing of the fabric at room and elevated temperature, liquid nitrogen temperature, and liquid helium temperature demonstrated the strength and creep resistance of the material over the desired operating range. A small scale cryogenic pressure box was used to test prototype seals at cryogenic temperatures up to 60 psi. Preliminary tests indicated that excessive leakage was present through the seal. As a result, an aluminized mylar liner was placed inside the Gore-tex seal to reduce leakage through the seal. The final seal configuration resulted in minimal pressure loss during seal testing.

  4. Tables of thermodynamic properties of helium magnet coolant. Revision A

    SciTech Connect

    McAshan, M.

    1992-07-01

    The most complete treatment of the thermodynamic properties of helium at the present time is the monograph by McCarty: ``Thermodynamic Properties of Helium 4 from 2 to 1500 K at Pressures to 10{sup 8} Pa``, Robert D. McCarty, Journal of Physical and Chemical Reference Data, Vol. 2, page 923--1040 (1973). In this work the complete range of data on helium is examined and the P-V-T surface is described by an equation of state consisting of three functions P(r,T) covering different regions together with rules for making the transition from one region to another. From this thermodynamic compilation together with correlations of the transport properties of helium was published the well-known NBS Technical Note: ``Thermophysical Properties of Helium 4 from 2 to 1500 K with pressures to 1000 Atmospheres``, Robert D. McCarty, US Department of Commerce, National Bureau of Standards Technical Note 631 (1972). This is the standard reference for helium cryogenics. The NBS 631 tables cover a wide range of temperature and pressure, and as a consequence, the number of points tabulated in the region of the single phase coolant for the SSC magnets are relatively few. The present work sets out to cover the range of interest in more detail in a way that is consistent with NBS 631. This new table is essentially identical to the older one and can be used as an auxiliary to it.

  5. Tables of thermodynamic properties of helium magnet coolant

    SciTech Connect

    McAshan, M.

    1992-07-01

    The most complete treatment of the thermodynamic properties of helium at the present time is the monograph by McCarty: Thermodynamic Properties of Helium 4 from 2 to 1500 K at Pressures to 10{sup 8} Pa'', Robert D. McCarty, Journal of Physical and Chemical Reference Data, Vol. 2, page 923--1040 (1973). In this work the complete range of data on helium is examined and the P-V-T surface is described by an equation of state consisting of three functions P(r,T) covering different regions together with rules for making the transition from one region to another. From this thermodynamic compilation together with correlations of the transport properties of helium was published the well-known NBS Technical Note: Thermophysical Properties of Helium 4 from 2 to 1500 K with pressures to 1000 Atmospheres'', Robert D. McCarty, US Department of Commerce, National Bureau of Standards Technical Note 631 (1972). This is the standard reference for helium cryogenics. The NBS 631 tables cover a wide range of temperature and pressure, and as a consequence, the number of points tabulated in the region of the single phase coolant for the SSC magnets are relatively few. The present work sets out to cover the range of interest in more detail in a way that is consistent with NBS 631. This new table is essentially identical to the older one and can be used as an auxiliary to it.

  6. Tables of thermodynamic properties of helium magnet coolant, revision A

    NASA Astrophysics Data System (ADS)

    McAshan, M.

    1992-07-01

    The most complete treatment of the thermodynamic properties of helium at the present time is the monograph by McCarty: 'Thermodynamic Properties of Helium 4 from 2 to 1500 K at Pressures to 10(exp 8) Pa', Robert D. McCarty, Journal of Physical and Chemical Reference Data, Vol. 2, page 923-1040 (1973). In this work the complete range of data on helium is examined and the P-V-T surface is described by an equation of state consisting of three functions P(r,T) covering different regions together with rules for making the transition from one region to another. From this thermodynamic compilation together with correlations of the transport properties of helium was published the well-known NBS Technical Note: 'Thermophysical Properties of Helium 4 from 2 to 1500 K with pressures to 1000 Atmospheres', Robert D. McCarty, US Department of Commerce, National Bureau of Standards Technical Note 631 (1972). This is the standard reference for helium cryogenics. The NBS 631 tables cover a wide range of temperature and pressure, and as a consequence, the number of points tabulated in the region of the single phase coolant for the SSC magnets are relatively few. The present work sets out to cover the range of interest in more detail in a way that is consistent with NBS 631. This new table is essentially identical to the older one and can be used as an auxiliary to it.

  7. Multipurpose closed-cycle cryocooler for liquefying hydrogen, helium-4 or helium-3

    NASA Astrophysics Data System (ADS)

    Winter, Calvin

    1990-08-01

    A cryogenic refrigerator utilizing helium-4 gas in closed-cycle Gifford-McMahon and Joule-Thomson cooling loops was built and achieves continuous operating temperatures of 2.8R. The object cooled is a thin walled (0.1mm) seamless electroformed nickel target sample cell with a volume of 160m1. Room temperature hydrogen, helium-4 or helium-3 gas, supplied at a pressure slightly above atmospheric, is liquefied by the cryocooler and fills the cell. Unusual features include: horizontal operation; a long narrow extension on the vacuum shroud (900mm long, 76mm diameter) and special valves to select an operating temperature appropriate to the sample gas and maximize the cooling power available at that temperature.

  8. Superconducting cable cooling system by helium gas and a mixture of gas and liquid helium

    DOEpatents

    Dean, John W.

    1977-01-01

    Thermally contacting, oppositely streaming cryogenic fluid streams in the same enclosure in a closed cycle that changes from a cool high pressure helium gas to a cooler reduced pressure helium fluid comprised of a mixture of gas and boiling liquid so as to be near the same temperature but at different pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid in a go leg from a refrigerator at one end of the line as a high pressure helium gas near the normal boiling temperature of helium; then circulating the gas through an expander at the other end of the line where the gas becomes a mixture of reduced pressure gas and boiling liquid at its boiling temperature; then by circulating the mixture in a return leg that is separated from but in thermal contact with the gas in the go leg and in the same enclosure therewith; and finally returning the resulting low pressure gas to the refrigerator for compression into a high pressure gas at T.sub.2 is a closed cycle, where T.sub.1 >T.sub.2, the temperature distribution is such that the line temperature is nearly constant along its length from the refrigerator to the expander due to the boiling of the liquid in the mixture. A heat exchanger between the go and return lines removes the gas from the liquid in the return leg while cooling the go leg.

  9. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS) presents an award of appreciation to H.T. Everett, KSC Propellants manager, at the commissioning of a new high-pressure helium pipeline at Kennedy Space Center. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Center Director Roy Bridges;); Col. Samuel Dick, representative of the 45th Space Wing; Ramon Lugo, acting executive director, JPMO; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS.

  10. Pressurized gas filled tendons

    SciTech Connect

    Silcox, W. H.

    1985-06-04

    Pressurized gas filled tubular tendons provide a means for detecting leaks therein. Filling the tendon with a gaseous fluid provides increased buoyancy and reduces the weight supported by the buoyant structure. The use of a corrosion inhibiting gaseous fluid reduces the corrosion of the interior tendon wall.

  11. Producing and imaging a thin line of He*₂ molecular tracers in helium-4.

    PubMed

    Gao, J; Marakov, A; Guo, W; Pawlowski, B T; Van Sciver, S W; Ihas, G G; McKinsey, D N; Vinen, W F

    2015-09-01

    Cryogenic helium-4 has long been recognized as a useful material in fluids research. The unique properties of helium-4 in the gaseous phase and the normal liquid phase allow for the generation of turbulent flows with exceptionally high Reynolds and Rayleigh numbers. In the superfluid phase, helium-4 exhibits two-fluid hydrodynamics and possesses fascinating properties due to its quantum nature. However, studying the flows in helium-4 has been very challenging largely due to the lack of effective visualization and velocimetry techniques. In this article, we discuss the development of novel instrumentation for flow-visualization in helium based on the generation and imaging of thin lines of metastable He*₂ tracer molecules. These molecular tracers are created via femtosecond-laser field-ionization of helium atoms and can be imaged using a laser-induced fluorescence technique. By observing the displacement and distortion of the tracer lines in helium, quantitative information about the flow field can be extracted. We present experimental results in the study of thermal counterflow in superfluid helium that validate the concept of this technique. We also discuss anticipated future developments of this powerful visualization technique.

  12. Formation of Positively Charged Liquid Helium Clusters in Supercritical Helium and their Solidification upon Compression.

    PubMed

    Tarchouna, Hejer Gharbi; Bonifaci, Nelly; Aitken, Frédéric; Mendoza Luna, Luis Guillermo; von Haeften, Klaus

    2015-08-01

    Positively charged ions were produced in supercritical helium at temperatures from 6 to 10 K and up to 2 MPa using a corona discharge. Their mobility was measured via current-voltage curves, and the hydrodynamic radius was derived using Stokes law. An initial increase and subsequent decrease of hydrodynamic radius was observed and interpreted in terms of growth, compression and solidification of ion clusters. The mobility was modeled using a van der Waals-type thermodynamic state equation for the ion-in-helium mixed system and a temperature-dependent Millikan-Cunningham factor, describing experimental data both in the Knudsen and the Stokes flow region. Regions of maximum hydrodynamic radius and large compressibility were interpreted as boiling points. These points were modeled over a large range of pressures and found to match the Frenkel line of pure helium up to 0.7 MPa, reflecting similarity of density fluctuations in pure supercritical helium and gas-liquid phase transitions of ionic helium clusters. PMID:26267199

  13. Formation of Positively Charged Liquid Helium Clusters in Supercritical Helium and their Solidification upon Compression.

    PubMed

    Tarchouna, Hejer Gharbi; Bonifaci, Nelly; Aitken, Frédéric; Mendoza Luna, Luis Guillermo; von Haeften, Klaus

    2015-08-01

    Positively charged ions were produced in supercritical helium at temperatures from 6 to 10 K and up to 2 MPa using a corona discharge. Their mobility was measured via current-voltage curves, and the hydrodynamic radius was derived using Stokes law. An initial increase and subsequent decrease of hydrodynamic radius was observed and interpreted in terms of growth, compression and solidification of ion clusters. The mobility was modeled using a van der Waals-type thermodynamic state equation for the ion-in-helium mixed system and a temperature-dependent Millikan-Cunningham factor, describing experimental data both in the Knudsen and the Stokes flow region. Regions of maximum hydrodynamic radius and large compressibility were interpreted as boiling points. These points were modeled over a large range of pressures and found to match the Frenkel line of pure helium up to 0.7 MPa, reflecting similarity of density fluctuations in pure supercritical helium and gas-liquid phase transitions of ionic helium clusters.

  14. Atomistic simulations of the elastic properties of helium bubble embedded aluminum

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Yan; Zhu, Wen-Jun; Liu, Shao-Jun; Song, Zhen-Fei; Deng, Xiao-Liang; Chen, Xiang-Rong; He, Hong-Liang

    2009-03-01

    The helium bubble has significant consequence to the mechanical properties of irradiated materials. The influence of embedded helium bubble to the elastic properties of aluminum has been investigated by molecular dynamics (MD) simulations. The interaction between aluminum atoms and the interaction between helium atoms are described by an embedded-atom-method (EAM) many-body potential and a pair potential, respectively. Another pair potential, which is parameterized based on ab initio calculation, is used to describe the interaction between aluminum and helium atoms, and its validation under pressure up to 10 GPa is reasonable demonstrated by the electron density calculation. For the composite system consisting of 62,500 aluminum atoms and one helium bubble with various diameters, its elastic constants are calculated properly by stress-strain relation rather than by energy-strain relation. The results show that elastic constants c11, c12 and c44 decrease with increasing of the volume of the helium bubble, and remain almost invariable with the internal pressure of the helium bubble. The main reason is under high-pressure the helium is softer than aluminum, and the soft effect overwhelms the hard effect of internal pressure of helium bubble.

  15. Production of carbon monoxide-free hydrogen and helium from a high-purity source

    DOEpatents

    Golden, Timothy Christopher; Farris, Thomas Stephen

    2008-11-18

    The invention provides vacuum swing adsorption processes that produce an essentially carbon monoxide-free hydrogen or helium gas stream from, respectively, a high-purity (e.g., pipeline grade) hydrogen or helium gas stream using one or two adsorber beds. By using physical adsorbents with high heats of nitrogen adsorption, intermediate heats of carbon monoxide adsorption, and low heats of hydrogen and helium adsorption, and by using vacuum purging and high feed stream pressures (e.g., pressures of as high as around 1,000 bar), pipeline grade hydrogen or helium can purified to produce essentially carbon monoxide -free hydrogen and helium, or carbon monoxide, nitrogen, and methane-free hydrogen and helium.

  16. Helium solubility in SON68 nuclear waste glass

    SciTech Connect

    Fares, Toby; Peuget, Sylvain; Bouty, Olivier; Broudic, Veronique; Maugeri, Emilio; Bes, Rene; Jegou, Christophe; Chamssedine, Fadel; Sauvage, Thierry; Deschanels, Xavier

    2012-12-15

    Helium behavior in a sodium borosilicate glass (SON68) dedicated to the immobilization of high-level nuclear waste is examined. Two experimental approaches on nonradioactive glass specimens are implemented: pressurized helium infusion experiments and {sup 3}He ion implantation experiments. The temperature variation of helium solubility in SON68 glass was determined and analyzed with the harmonic oscillator model to determine values of the energy of interaction E(0) at the host sites (about -4000 J/mol), the vibration frequency (about 1.7 x 10{sup 11} s{sup -1}), and the density of solubility sites (2.2 x 10{sup 21} sites cm{sup -3}). The implantation experiments show that a non diffusive transport phenomenon (i.e., athermal diffusion) is involved in the material when the helium concentration exceeds 2.3 x 10{sup 21} He cm{sup -3}, and thus probably as soon as it exceeds the density of solubility sites accessible to helium in the glass. We propose that this transport mechanism could be associated with the relaxation of the stress gradient induced by the implanted helium profile, which is favored by the glass damage. Microstructural characterization by TEM and ESEM of glass specimens implanted with high helium concentrations showed a homogeneous microstructure free of bubbles, pores, or cracking at a scale of 10 nm. (authors)

  17. Applications of Groundwater Helium

    USGS Publications Warehouse

    Kulongoski, Justin T.; Hilton, David R.

    2011-01-01

    Helium abundance and isotope variations have widespread application in groundwater-related studies. This stems from the inert nature of this noble gas and the fact that its two isotopes ? helium-3 and helium-4 ? have distinct origins and vary widely in different terrestrial reservoirs. These attributes allow He concentrations and 3He/4He isotope ratios to be used to recognize and quantify the influence of a number of potential contributors to the total He budget of a groundwater sample. These are atmospheric components, such as air-equilibrated and air-entrained He, as well as terrigenic components, including in situ (aquifer) He, deep crustal and/or mantle He and tritiogenic 3He. Each of these components can be exploited to reveal information on a number of topics, from groundwater chronology, through degassing of the Earth?s crust to the role of faults in the transfer of mantle-derived volatiles to the surface. In this review, we present a guide to how groundwater He is collected from aquifer systems and quantitatively measured in the laboratory. We then illustrate the approach of resolving the measured He characteristics into its component structures using assumptions of endmember compositions. This is followed by a discussion of the application of groundwater He to the types of topics mentioned above using case studies from aquifers in California and Australia. Finally, we present possible future research directions involving dissolved He in groundwater.

  18. Education in Helium Refrigeration

    SciTech Connect

    Gistau Baguer, G. M.

    2004-06-23

    On the one hand, at the end of the time I was active in helium refrigeration, I noticed that cryogenics was stepping into places where it was not yet used. For example, a conventional accelerator, operating at room temperature, was to be upgraded to reach higher particle energy. On the other hand, I was a little bit worried to let what I had so passionately learned during these years to be lost. Retirement made time available, and I came gradually to the idea to teach about what was my basic job. I thought also about other kinds of people who could be interested in such lessons: operators of refrigerators or liquefiers who, often by lack of time, did not get a proper introduction to their job when they started, young engineers who begin to work in cryogenics... and so on.Consequently, I have assembled a series of lessons about helium refrigeration. As the audiences have different levels of knowledge in the field of cryogenics, I looked for a way of teaching that is acceptable for all of them. The course is split into theory of heat exchangers, refrigeration cycles, technology and operation of main components, process control, and helium purity.

  19. Morphological changes of tungsten surfaces by low-flux helium plasma treatment and helium incorporation via magnetron sputtering.

    PubMed

    Iyyakkunnel, Santhosh; Marot, Laurent; Eren, Baran; Steiner, Roland; Moser, Lucas; Mathys, Daniel; Düggelin, Marcel; Chapon, Patrick; Meyer, Ernst

    2014-07-23

    The effect of helium on the tungsten microstructure was investigated first by exposure to a radio frequency driven helium plasma with fluxes of the order of 1 × 10(19) m(-2) s(-1) and second by helium incorporation via magnetron sputtering. Roughening of the surface and the creation of pinholes were observed when exposing poly- and nanocrystalline tungsten samples to low-flux plasma. A coating process using an excess of helium besides argon in the process gas mixture leads to a porous thin film and a granular surface structure whereas gas mixture ratios of up to 50% He/Ar (in terms of their partial pressures) lead to a dense structure. The presence of helium in the deposited film was confirmed with glow-discharge optical emission spectroscopy and thermal desorption measurements. Latter revealed that the highest fraction of the embedded helium atoms desorb at approximately 1500 K. Identical plasma treatments at various temperatures showed strongest modifications of the surface at 1500 K, which is attributed to the massive activation of helium singly bond to a single vacancy inside the film. Thus, an efficient way of preparing nanostructured tungsten surfaces and porous tungsten films at low fluxes was found. PMID:24960311

  20. Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium

    DOE PAGES

    Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; Stewart, Kenneth D.

    2015-09-26

    Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that canmore » determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.« less

  1. Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium

    SciTech Connect

    Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; Stewart, Kenneth D.

    2015-09-26

    Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that can determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.

  2. A self-circulation helium liquefaction system with five 4 K G-M cryocoolers

    NASA Astrophysics Data System (ADS)

    Xu, Dong; Gong, Linghui; Li, Laifeng; Xu, Xiangdong; Xie, Zuqi; Zhao, Hongwei; Guo, Xiaohong

    2011-06-01

    A self-circulation helium liquefaction system (SCHLS) with five 4 K G-M cryocoolers is developed to supply liquid helium (LHe) for SECRAL (a superconducting ECR ion source used in Lanzhou city, China). LHe is vaporized in SECRAL and warmed up to room temperature. SCHLS will re-liquefy the helium gas at a rate of 83.2 L/day under normal atmosphere pressure. With SCHLS, SECRAL system can run online without any interruption of refilling LHe.

  3. Helium-cold induced hypothermia in the white rat.

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Jacobs, M.

    1973-01-01

    Hypothermia was induced in white rats by exposing them to low ambient temperatures (about 0 C) and a gaseous atmosphere of 80% helium and 20% oxygen (helox). Biological survival, in which revival from hypothermia to normothermia is achieved, and clinical survival, in which one or more functional attributes are monitored in the hypothermic animal until it dies, are examined. The helium-cold method appears to produce a hypothermic state in the rat quite similar to that resulting from such techniques as ice water immersion or hypercapnia + hypoxia. There is a direct relationship between body weight and percent survival. Despite the fact that they require a longer period to become hypothermic, the heavier animals are better able to survive.

  4. Helium anion formation inside helium droplets

    NASA Astrophysics Data System (ADS)

    Maalouf, Elias Jabbour Al; Reitshammer, Julia; Ribar, Anita; Scheier, Paul; Denifl, Stephan

    2016-07-01

    The formation of He∗- is examined with improved electron energy resolution of about 100 meV utilizing a hemispherical electron monochromator. The work presented provides a precise determination of the three previously determined resonance peak positions that significantly contribute to the formation of He∗- inside helium nanodroplets in the energy range from 20 eV to 29.5 eV. In addition, a new feature is identified located at 27.69 ± 0.18 eV that we assign to the presence of O2 as a dopant inside the droplet. With increasing droplet size a small blue shift of the resonance positions is observed. Also for the relatively low electron currents used in the present study (i.e., 15-70 nA) a quadratic dependence of the He∗- ion yield on the electron current is observed. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  5. Characteristics of response factors of coaxial gaseous rocket injectors

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Daniel, B. R.; Zinn, B. T.

    1975-01-01

    The results of an experimental investigation undertaken to determine the frequency dependence of the response factors of various gaseous propellant rocket injectors subject to axial instabilities are presented. The injector response factors were determined, using the modified impedance-tube technique, under cold-flow conditions simulating those observed in unstable rocket motors. The tested injectors included a gaseous-fuel injector element, a gaseous-oxidizer injector element and a coaxial injector with both fuel and oxidizer elements. Emphasis was given to the determination of the dependence of the injector response factor upon the open-area ratio of the injector, the length of the injector orifice, and the pressure drop across the injector orifices. The measured data are shown to be in reasonable agreement with the corresponding injector response factor data predicted by the Feiler and Heidmann model.

  6. Helium enrichment during convective carbon dioxide dissolution

    NASA Astrophysics Data System (ADS)

    Larson, T.; Hesse, M. A.

    2013-12-01

    Motivated by observed variations of the CO2/He ratios in natural carbon dioxide (CO2) reservoirs, such as the Bravo Dome field in northeastern New Mexico, we have performed laboratory experiments equilibrating gas mixtures containing Helium (He) and CO2 with water, at close to ambient conditions in a closed system. The experimental design allows for continuous measurement of headspace pressure as well as timed interval measurements of the CO2/He ratios and the δ13C value of CO2 in the headspace. Results from three dissolution experiments are reported: 1) pure Helium system, 2) 98% CO2 + 2% Nitrogen system, and 3) 97% CO2 and 3% Helium. Final equilibrated experimental results are compared to theoretical results obtained using Henry's Law relationships. The evolution of the amount of dissolved CO2 computed from gas pressure and gas compositions are in good agreement with Henry's Law relationships. For example, the CO2 + N2 system was initially pressurized with pure CO2 to 1323 mbar and after six days it equilibrated to a measured headspace pressure of 596 mbar. This compares very well with a calculated equilibrium headspace pressure of 592 mbar for this system. The CO2 + He system was pressurized to 1398 mbar CO2 and after six days equilibrated to a measured headspace pressure of 397 mbar. This measured pressure is slightly higher than the predicted equilibrated headspace pressure of 341 mbar, indicating a possible leak in the system during this particular experiment. In both experiments the initial pH of the water was 9.3 and the final equilibrated pH was 5.4. The δ13C value of equilibrated headspace CO2 was within 0.25‰ of its starting δ13C value, demonstrating insignificant carbon isotope fractionation at low pH. Measured Helium/ CO2 ratios throughout the CO2+Helium experiment preserve a non-linear trend of increasing He/ CO2 ratios through time that correlate very well with the measured pressure drop from CO2 dissolution. This indicates that gas composition

  7. Operating experience using venturi flow meters at liquid helium temperature

    SciTech Connect

    Wu, K.C.

    1992-01-01

    Experiences using commercial venturi to measure single phase helium flow near 4 K (degree Kelvin) for cooling superconducting magnets have been presented. The mass flow rate was calculated from the differential pressure and the helium density evaluated from measured pressure and temperature. The venturi flow meter, with a full range of 290 g/s (0.29 Kg/s) at design conditions, has been found to be reliable and accurate. The flow measurements have been used, with great success, for evaluating the performance of a cold centrifugal compressor, the thermal acoustic heat load of a cryogenic system and the cooling of a superconducting magnet after quench.

  8. Operating experience using venturi flow meters at liquid helium temperature

    SciTech Connect

    Wu, K.C.

    1992-06-01

    Experiences using commercial venturi to measure single phase helium flow near 4 K (degree Kelvin) for cooling superconducting magnets have been presented. The mass flow rate was calculated from the differential pressure and the helium density evaluated from measured pressure and temperature. The venturi flow meter, with a full range of 290 g/s (0.29 Kg/s) at design conditions, has been found to be reliable and accurate. The flow measurements have been used, with great success, for evaluating the performance of a cold centrifugal compressor, the thermal acoustic heat load of a cryogenic system and the cooling of a superconducting magnet after quench.

  9. Vacancy-induced flow of solid helium

    NASA Astrophysics Data System (ADS)

    Benedek, Giorgio; Kalinin, Anton; Nieto, Pablo; Toennies, J. Peter

    2016-03-01

    The pulsed flow of solid 4He through a narrow capillary in a flow system which issues into vacuum is investigated at temperatures between 1.64 and 2.66 K and pressures between 54 and 104 bars. After each pulse three different capillary flow regimes are observed as the upstream pressure decreases: an oscillatory [mini-geyser (MG)] regime, a constant flow (CF) regime with a linearly decreasing pressure difference, and a nonresistant (NR) regime. A quantitative analysis of the three regimes suggests that the flow of solid 4He is driven by a counterflow of excess vacancies, which are injected downstream of the capillary at the solid/liquid interface near the micrometric orifice exposed to vacuum. The CF regime, where the flow velocity is found to be independent of the pressure difference, and the NR regime, where the solid flows as a Bernoulli fluid, suggest a new dynamic phase of solid helium induced by a steady influx of vacancies.

  10. Helium cryopumping for fusion applications

    SciTech Connect

    Sedgley, D.W.; Batzer, T.H.; Call, W.R.

    1988-05-01

    Large quantities of helium and hydrogen isotopes will be exhausted continuously from fusion power reactors. This paper summarizes two development programs undertaken to address vacuum pumping for this application: (i) A continuous duty cryopump for pumping helium and/or hydrogen species using charcoal sorbent and (ii) a cryopump configuration with an alternative shielding arrangement using charcoal sorbent or argon spray. A test program evaluated automatic pumping of helium, helium pumping by charcoal cryosorption and with argon spray, and cryosorption of helium/hydrogen mixtures. The continuous duty cryopump pumped helium continuously and conveniently. Helium pumping speed was 7.7 l/s/cm/sup 2/ of charcoal, compared to 5.8 l/s/cm/sup 2/ for the alternative pump. Helium speed using argon spray was 18% of that obtained by charcoal cryosorption in the same (W-panel) pump. During continuous duty cryopump mixture tests with helium and hydrogen copumped on charcoal, gas was released sporadically. Testing was insufficient to explain this unacceptable event.

  11. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  12. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  13. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2014) (a)...

  14. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  15. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  16. Stabilizing a gaseous optical laser

    NASA Technical Reports Server (NTRS)

    Jauan, A.; Shimoda, K.

    1974-01-01

    Frequency of gaseous optical laser can be stabilized by sinusoidally modulating the geometry of the cavity. Fabry-Perot dielectric mirrors are mounted in two Invar blocks that are connected by four magnetorestrictive bars. Each bar has three coils to sinusoidally modulate system. Ac establishes frequency, and dc the average value; both are supplied to coil from control system.

  17. A gasdynamic gun driven by gaseous detonation.

    PubMed

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels. PMID:26827358

  18. A gasdynamic gun driven by gaseous detonation.

    PubMed

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels.

  19. A gasdynamic gun driven by gaseous detonation

    NASA Astrophysics Data System (ADS)

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels.

  20. Comparison of helium leak test and vacuum leak test using canned foods: collaborative study.

    PubMed

    Rhea, U S; Gilchrist, J E; Peeler, J T; Shah, D B

    1984-01-01

    Two can leak tests were compared by 7 collaborators. In the helium leak test, pressurized helium is applied to the outside of the container, and a headspace gas sample from the can is then analyzed for the presence of helium. The vacuum test is described in the Bacteriological Analytical Manual. Ninety No. 303 cans of creamed-style corn, green beans, carrots, fruit cocktail, and whole-kernel corn were shipped in 3 groups. Two groups of 30 cans had 10 dented flat cans, 5 flat controls (nondented), 10 dented swollen cans, and 5 swollen control cans (nondented). The third group had 10 dented swollen cans and 5 swollen control cans. Of 600 cans analyzed, 37 (6.2%) were deleted from the analysis because results were not available for both tests. One laboratory was constrained by scheduling to analyze 15 of 45 swollen cans. The helium leak test found 12 (13%) positives of 92 nondented swollen cans. One pressurization test yielded 7 of those 12 positives. Of the 400 dented cans sent as possible leakers, the helium test found 267 positives, and the vacuum test found 181. Five of the 7 analysts had significantly (alpha = 0.05) higher percent positive helium results. One analyst found more leakers by the vacuum leak test. Both tests found fewer positives in the swollen dented cans than in the flat dented cans. After exposure to pressurized helium, all cans with greater than 8 psi headspace pressure were positive helium leakers. The method was adopted official first action.

  1. The use of Vacutainer tubes for collection of soil samples for helium analysis

    USGS Publications Warehouse

    Hinkle, Margaret E.; Kilburn, James E.

    1979-01-01

    Measurements of the helium concentration of soil samples collected and stored in Vacutainer-brand evacuated glass tubes show that Vacutainers are reliable containers for soil collection. Within the limits of reproducibility, helium content of soils appears to be independent of variations in soil temperature, barometric pressure, and quantity of soil moisture present in the sample.

  2. Liquid Helium Acoustic Microscope.

    NASA Astrophysics Data System (ADS)

    Steer, Andrew Paul

    Available from UMI in association with The British Library. In an acoustic microscope, images are generated by monitoring the intensity of the ultrasonic reflection, or echo, from the surface of a sample. In order to achieve this a pulse of acoustic energy is produced by the excitation of a thin film transducer. The pulse thus generated propagates through a crystal and is incident upon the acoustic lens surface, which is the boundary between the crystal and an acoustic coupling liquid. The acoustic lens is a converging element, and brings the ultrasonic beam to a focus within the liquid. A sample, placed at the focus, can act as a reflector, and the returned pulse then contains information regarding the acoustic reflectivity of this specimen. Acoustic pulses are repeatedly launched and detected while the acoustic lens is scanned over the surface of the sample. In this manner an acoustic image is constructed. Acoustic losses in room temperature liquid coupling media represent a considerable source of difficulty in the recovery of acoustic echo signals. At the frequencies of operation required in a microscope which is capable of high resolution, the ultrasonic attenuation is not only large but increases with the square of frequency. In superfluid liquid helium at temperatures below 0.1 K, however, the ultrasonic attenuation becomes negligible. Furthermore, the low sound velocity in liquid helium results in an increase in resolution, since the acoustic wavelength is proportional to velocity. A liquid helium acoustic microscope has been designed and constructed. Details of the various possible detection methods are given, and comparisons are made between them. Measurements of the performance of the system that was adopted are reported. The development of a cooled preamplifier is also described. The variation of reflected signal with object distance has been measured and compared with theoretical predictions. This variation is important in the analysis of acoustic

  3. Effects of pressure on thermal transport in plutonium oxide powder.

    SciTech Connect

    Bielenberg, P.; Prenger, F. C.; Veirs, D. K.; Jones, J.

    2004-01-01

    Radial temperature profiles in plutonium oxide (PuO{sub 2}) powder were measured in a cylindrical vessel over a pressure range of 0.055 to 334.4 kPa with two different fill gases, helium and argon. The fine PuO{sub 2} powder provides a very uniform self-heating medium amenable to relatively simple mathematical descriptions. At low pressures (<0.1 kPa), the effective thermal conductivity of the powder bed was approximately the same with either helium or argon since the dominant mechanisms are thermal radiation between particles and solid-solid conduction pathways. At high pressures, the effective thermal conductivity of the powder bed is typically assumed in the literature to be dominated by the gas thermal conductivities. However, from experimental measurements at high pressures, the effective thermal conductivity of the powder bed with argon as a fill gas is approximately three times higher than would be predicted from the gas thermal conductivities. Additionally, a significant pressure dependence was measured at pressures greater than atmospheric where the gas thermal conductivity would typically be assumed to be in the continuum limit and independent of pressure. An analytical model was developed for heat conduction in the fine ceramic powder with conduction pathways in parallel and in series through the gaseous and solid components. Many analytical models in the literature were unsuitable for this system because they make limiting assumptions about the particle dimensions and shape and are developed for packed beds with higher packing fractions. PuO{sub 2} powder has small particle sizes (on the order of 1 to 10 {mu}m), random particle shapes, and high porosity so a more general model was required for this system. The model correctly predicts the temperature profiles of the powder over the wide pressure range for both argon and helium as fill gases. The effective thermal conductivity of the powder bed exhibits a pressure dependence at higher pressures because

  4. Method and means for helium/hydrogen ratio measurement by alpha scattering

    NASA Technical Reports Server (NTRS)

    Whitehead, A. B.; Tombrello, T. A. (Inventor)

    1980-01-01

    An apparatus for determining helium to hydrogen ratios in a gaseous sample is presented. The sample is bombarded with alpha particles created by a self contained radioactive source and scattering products falling within a predetermined forward scattering angular range impact a detector assembly. Two detectors are mounted in tandem, the first completely blocking the second with respect to incident scattering products. Alpha particle/hydrogen or alpha particle/helium collisions are identified by whether scattering product impacts occur simultaneously in both detectors or only in the first detector. Relative magnitudes of the two pulses can be used to further discriminate against other effects such as noise and cosmic ray events.

  5. Radiation-induced electrical breakdown of helium in fusion reactor superconducting magnet systems

    SciTech Connect

    Perkins, L.J.

    1983-12-02

    A comprehensive theoretical study has been performed on the reduction of the electrical breakdown potential of liquid and gaseous helium under neutron and gamma radiation. Extension of the conventional Townsend breakdown theory indicates that radiation fields at the superconducting magnets of a typical fusion reactor are potentially capable of significantly reducing currently established (i.e., unirradiated) helium breakdown voltages. Emphasis is given to the implications of these results including future deployment choices of magnet cryogenic methods (e.g., pool-boiling versus forced-flow), the possible impact on magnet shielding requirements and the analogous situation for radiation-induced electrical breakdown in fusion RF transmission systems.

  6. Influence of gaseous hydrogen on metals

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Chandler, W. T.

    1973-01-01

    Tensile, fracture toughness, threshold stress intensity for sustained-load crack growth, and cyclic and sustained load crack growth rate measurements were performed on a number of alloys in high-pressure hydrogen and helium environments. The results of tensile tests performed in 34.5 MN/m2 (5000 psi) hydrogen indicated that Inconel 625 was considerable embrittled at ambient temperature but was not embrittled at 144 K (-200 F). The tensile properties of AISI 321 stainless steel were slightly reduced at ambient temperature and 144 K (-200 F). The tensile properties of Ti-5Al-2.5 Sn ELI were essentially unaffected by hydrogen at 144 K (-200 F). OFHC copper was not embrittled by hydrogen at ambient temperature or at 144 K (-200 F).

  7. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    NASA Technical Reports Server (NTRS)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  8. Reotemp Pressure Indicator Local Pressure Indication to Monitor the SCHE Supply Bottle Pressure

    SciTech Connect

    VAN KATWIJK, C.

    1999-07-01

    These 0-3000 psig range pressure indicators are located in the SCHe helium supply lines at the pressure bottles and upstream of the PRV. These accident monitoring local pressure indicators monitor the SCHe supply bottle pressure. There is one pressure indicator for each SCHe supply (4).

  9. External tank gaseous oxygen line simulated lightning tests

    NASA Technical Reports Server (NTRS)

    Smith, H. E.; Avery, R. M.

    1976-01-01

    Tests were made to evaluate the effects of lightning strikes on the shuttle external tank gaseous oxygen pressurization line. This line, designed to conduct gaseous oxygen may also act as a lightning conductor. Questions have been raised as to the potential hazard of this line as a lightning conductor with speculation as to the damage that might occur to the pressurization line, and the adjacent thermal protective surfaces, from a lightning strike. The region of investigation was from above the cone of the launch tower lightning protection to 15.24 km (50, 000 ft) altitude. Tests were performed on samples of thin wall stainless steel tubing filled with gaseous oxygen under simulated flight conditions. No specimen malfunctions occurred when the tests were conducted according to JSC specifications. Based on the JSC specifications and the results of these tests, it is concluded that a lightning strike will not cause a malfunction of the shuttle external tank gaseous oxygen line made of the representative material tested.

  10. Argon metastable production in argon-helium microplasmas

    NASA Astrophysics Data System (ADS)

    Hoskinson, Alan R.; Gregorío, José; Hopwood, Jeffrey; Galbally-Kinney, Kristin; Davis, Steven J.; Rawlins, Wilson T.

    2016-06-01

    Microwave resonator-driven microplasmas are a promising technology for generating the high density of rare-gas metastable states required for optically pumped rare gas laser systems. We measure the density of argon 1s5 states (Paschen notation) in argon-helium plasmas between 100 Torr and atmospheric pressure using diode laser absorption. The metastable state density is observed to rise with helium mole fraction at lower pressures but to instead fall slightly when tested near atmospheric pressure. A 0-D model of the discharge suggests that these distinct behaviors result from the discharge being diffusion-controlled at lower pressures, but with losses occurring primarily through dissociative recombination at high pressures. In all cases, the argon metastable density falls sharply when the neutral argon gas fraction is reduced below approximately 2%.

  11. The evolution of US helium-cooled blankets

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.; Cheng, E. T.; Schultz, K. R.

    1991-08-01

    This paper reviews and compares four helium-cooled fusion reactor blanket designs. These designs represent generic configurations of using helium to cool fusion reactor blankets that were studied over the past 20 years in the United States of America. These configurations are the pressurized module design, the pressurized tube design, the solid particulate and gas mixture design, and the nested shell design. Among these four designs, the nested shell design, which was invented for the ARIES study, is the simplest in configuration and has the least number of critical issues. Both metallic and ceramic-composite structural materials can be used for this design. It is believed that the nested shell design can be the most suitable blanket confirmation for helium-cooled fusion power and experimental reactors.

  12. Helium dilution refrigeration system

    DOEpatents

    Roach, Patrick R.; Gray, Kenneth E.

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  13. Helium dilution refrigeration system

    DOEpatents

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  14. Mass separation of deuterium and helium with conventional quadrupole mass spectrometer by using varied ionization energy

    NASA Astrophysics Data System (ADS)

    Yu, Yaowei; Hu, Jiansheng; Wan, Zhao; Wu, Jinhua; Wang, Houyin; Cao, Bin

    2016-03-01

    Deuterium pressure in deuterium-helium mixture gas is successfully measured by a common quadrupole mass spectrometer (model: RGA200) with a resolution of ˜0.5 atomic mass unit (AMU), by using varied ionization energy together with new developed software and dedicated calibration for RGA200. The new software is developed by using MATLAB with the new functions: electron energy (EE) scanning, deuterium partial pressure measurement, and automatic data saving. RGA200 with new software is calibrated in pure deuterium and pure helium 1.0 × 10-6-5.0 × 10-2 Pa, and the relation between pressure and ion current of AMU4 under EE = 25 eV and EE = 70 eV is obtained. From the calibration result and RGA200 scanning with varied ionization energy in deuterium and helium mixture gas, both deuterium partial pressures (PD2) and helium partial pressure (PHe) could be obtained. The result shows that deuterium partial pressure could be measured if PD2 > 10-6 Pa (limited by ultimate pressure of calibration vessel), and helium pressure could be measured only if PHe/PD2 > 0.45, and the measurement error is evaluated as 15%. This method is successfully employed in EAST 2015 summer campaign to monitor deuterium outgassing/desorption during helium discharge cleaning.

  15. Mass separation of deuterium and helium with conventional quadrupole mass spectrometer by using varied ionization energy.

    PubMed

    Yu, Yaowei; Hu, Jiansheng; Wan, Zhao; Wu, Jinhua; Wang, Houyin; Cao, Bin

    2016-03-01

    Deuterium pressure in deuterium-helium mixture gas is successfully measured by a common quadrupole mass spectrometer (model: RGA200) with a resolution of ∼0.5 atomic mass unit (AMU), by using varied ionization energy together with new developed software and dedicated calibration for RGA200. The new software is developed by using MATLAB with the new functions: electron energy (EE) scanning, deuterium partial pressure measurement, and automatic data saving. RGA200 with new software is calibrated in pure deuterium and pure helium 1.0 × 10(-6)-5.0 × 10(-2) Pa, and the relation between pressure and ion current of AMU4 under EE = 25 eV and EE = 70 eV is obtained. From the calibration result and RGA200 scanning with varied ionization energy in deuterium and helium mixture gas, both deuterium partial pressures (P(D2)) and helium partial pressure (P(He)) could be obtained. The result shows that deuterium partial pressure could be measured if P(D2) > 10(-6) Pa (limited by ultimate pressure of calibration vessel), and helium pressure could be measured only if P(He)/P(D2) > 0.45, and the measurement error is evaluated as 15%. This method is successfully employed in EAST 2015 summer campaign to monitor deuterium outgassing/desorption during helium discharge cleaning.

  16. Fuel enrichment apparatus and method for gaseous fuel mixers

    SciTech Connect

    Fox, C.D.

    1981-08-25

    A fuel enrichment apparatus and method is shown for a gaseous fuel carburetor of either a fixed venturi or air valve type. The apparatus provides fuel enriching at the starting and wide open throttle conditions of the carburetor when the pressure drop in the induction passage is at a minimum. The apparatus also economizes on fuel usage by being closed to fuel transfer at idle speed and normal engine speed. The apparatus operates from the fuel supply line to the carburetor with only the fuel pressure available in that line, thereby obviating the need for either a second fuel line or a high pressure fuel line.

  17. The Gaseous Explosive Reaction : The Effect of Inert Gases

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1928-01-01

    Attention is called in this report to previous investigations of gaseous explosive reactions carried out under constant volume conditions, where the effect of inert gases on the thermodynamic equilibrium was determined. The advantage of constant pressure methods over those of constant volume as applied to studies of the gaseous explosive reaction is pointed out and the possibility of realizing for this purpose a constant pressure bomb mentioned. The application of constant pressure methods to the study of gaseous explosive reactions, made possible by the use of a constant pressure bomb, led to the discovery of an important kinetic relation connecting the rate of propagation of the zone of explosive reaction within the active gases, with the initial concentrations of those gases: s = K(sub 1)(A)(sup n1)(B)(sup n2)(C)(sup n3)------. By a method analogous to that followed in determining the effect of inert gases on the equilibrium constant K, the present paper records an attempt to determine their kinetic effect upon the expression given above.

  18. Test program, helium II orbital resupply coupling

    NASA Astrophysics Data System (ADS)

    Hyatt, William S.

    1991-12-01

    The full scope of this program was to have included development tests, design and production of custom test equipment and acceptance and qualification testing of prototype and protoflight coupling hardware. This program was performed by Ball Aerospace Systems Division, Boulder, Colorado until its premature termination in May 1991. Development tests were performed on cryogenic face seals and flow control devices at superfluid helium (He II) conditions. Special equipment was developed to allow quantified leak detection at large leak rates up to 8.4 x 10(exp -4) SCCS. Two major fixtures were developed and characterized: The Cryogenic Test Fixture (CTF) and the Thermal Mismatch Fixture (Glovebox). The CTF allows the coupling hardware to be filled with liquid nitrogen (LN2), liquid helium (LHe) or sub-cooled liquid helium when hardware flow control valves are either open or closed. Heat leak measurements, internal and external helium leakage measurements, cryogenic proof pressure tests and external load applications are performed in this fixture. Special reusable MLI closures were developed to provide repeatable installations in the CTF. The Thermal Mismatch Fixture allows all design configurations of coupling hardware to be engaged and disengaged while measuring applied forces and torques. Any two hardware components may be individually thermally preconditioned within the range of 117 deg K to 350 deg K prior to engage/disengage cycling. This verifies dimensional compatibility and operation when thermally mismatched. A clean, dry GN2 atmosphere is maintained in the fixture at all times. The first shipset of hardware was received, inspected and cycled at room temperature just prior to program termination.

  19. Gaseous Nitrogen Orifice Mass Flow Calculator

    NASA Technical Reports Server (NTRS)

    Ritrivi, Charles

    2013-01-01

    The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.

  20. Photon detectors with gaseous amplification

    SciTech Connect

    Va`vra, J.

    1996-08-01

    Gaseous photon detectors, including very large 4{pi}-devices such as those incorporated in SLD and DELPHI, are finally delivering physics after many years of hard work. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photoelectrons. Among detector builders, there is hardly anybody who did not make mistakes in this area, and who does not have a healthy respect for the problems involved. This point is stressed in this paper, and it is suggested that only a very small operating phase space is available for running gaseous photon detectors in a very large system with good efficiency and few problems. In this paper the authors discuss what was done correctly or incorrectly in first generation photon detectors, and what would be their recommendations for second generation detectors. 56 refs., 11 figs.

  1. Gaseous fuel nuclear reactor research

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  2. Large-eddy simulation of shock-cooling-film interaction at helium and hydrogen injection

    NASA Astrophysics Data System (ADS)

    Konopka, Martin; Meinke, Matthias; Schröder, Wolfgang

    2013-10-01

    Laminar helium and hydrogen films at a Mach number 1.3 are injected through a slot into a fully turbulent freestream air flow at a Mach number 2.44. To numerically study by large-eddy simulations the impact of an impinging shock on various cooling films, first, reference solutions without shock impingement are computed and then, the helium and hydrogen cooling films interacting with an oblique shock at a pressure ratio of p3/p1 = 2.5 are analyzed. The comparison of the helium and hydrogen injections without shock shows the hydrogen injection to have a 1.14-fold better cooling effectiveness at 60% of the blowing rate of the helium injection. The shock-cooling-film interaction causes a massive separation bubble that is 23% larger at the hydrogen than at the helium injection. Nevertheless, the shock influenced cooling effectiveness at the hydrogen injection is only 30% reduced compared to a 40% decrease at the helium injection 100 slot heights downstream of the injection. The intense mixing in the shock-cooling-film interaction region shows a more rapid reduction of the helium and hydrogen mass fractions than in the zero-pressure gradient reference configurations. Overall, the cooling effectiveness of the hydrogen film is superior to that of the helium film independent from the streamwise pressure gradient.

  3. Recent work on gaseous detonations

    NASA Astrophysics Data System (ADS)

    Nettleton, M. A.

    The paper reviews recent progress in the field of gaseous detonations, with sections on shock diffraction and reflection, the transition to detonation, hybrid, spherically-imploding, and galloping and stuttering fronts, their structure, their transmission and quenching by additives, the critical energy for initiation and detonation of more unusual fuels. The final section points out areas where our understanding is still far from being complete and contains some suggestions of ways in which progress might be made.

  4. Accurate Determination of the Volume of an Irregular Helium Balloon

    ERIC Educational Resources Information Center

    Blumenthal, Jack; Bradvica, Rafaela; Karl, Katherine

    2013-01-01

    In a recent paper, Zable described an experiment with a near-spherical balloon filled with impure helium. Measuring the temperature and the pressure inside and outside the balloon, the lift of the balloon, and the mass of the balloon materials, he described how to use the ideal gas laws and Archimedes' principal to compute the average molecular…

  5. The Electrical Conductivity Of Partly Ionized Helium Plasma

    SciTech Connect

    Sreckovic, Vladimir A.; Ignjatovic, Ljubinko; Mihajlov, A. A.

    2007-04-23

    In this paper we analyzed atoms influence on electro conductivity, partially ionized helium plasma, in temperature region 5 000 K - 40 000 K and pressure 0.1 - 10 atm. Electro conductivity was calculated using 'Frost like' formula and Random Phase Approximation method and Semi-Classical (SC) approximation.

  6. High Pressure Composite Overwrapped Pressure Vessel (COPV) Development Tests at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Ray, David M.; Greene, Nathanael J.; Revilock, Duane; Sneddon, Kirk; Anselmo, Estelle

    2008-01-01

    Development tests were conducted to evaluate the performance of 2 COPV designs at cryogenic temperatures. This allows for risk reductions for critical components for a Gaseous Helium (GHe) Pressurization Subsystem for an Advanced Propulsion System (APS) which is being proposed for NASA s Constellation project and future exploration missions. It is considered an advanced system since it uses Liquid Methane (LCH4) as the fuel and Liquid Oxygen (LO2) as the oxidizer for the propellant combination mixture. To avoid heating of the propellants to prevent boil-off, the GHe will be stored at subcooled temperatures equivalent to the LO2 temperature. Another advantage of storing GHe at cryogenic temperatures is that more mass of the pressurized GHe can be charged in to a vessel with a smaller volume, hence a smaller COPV, and this creates a significant weight savings versus gases at ambient temperatures. The major challenge of this test plan is to verify that a COPV can safely be used for spacecraft applications to store GHe at a Maximum Operating Pressure (MOP) of 4,500 psig at 140R to 160R (-320 F to -300 F). The COPVs for these tests were provided by ARDE , Inc. who developed a resin system to use at cryogenic conditions and has the capabilities to perform high pressure testing with LN2.

  7. Design and Use of a Large-Scale Liquid Helium Conversion System

    NASA Technical Reports Server (NTRS)

    Knudsen, P. N.

    1999-01-01

    A large-scale liquid helium (LHe) to high-pressure (HP) gas conversion system has been implemented at the John F. Kennedy Space Center (KSC). Helium is used by the Space Shuttle, Titan, Atlas, and Delta programs for prelaunch processing, during launch count-down, and for postlaunch securing. The first phase of modifications to the Compressor Converter Facility (CCF), operational in April 1998, allowed the facility to accept bulk liquid helium from tanker containers and to off-load the helium at super-critical pressures. The second phase of modifications, planned to be operational by January 2001, will implement a 227-cubic-meter (m(sup 3)) on-site liquid helium storage system. This paper describes the design and operation of the current system and discusses the design and implementation for the second phase system.

  8. Precision spectroscopy of Helium

    SciTech Connect

    Cancio, P.; Giusfredi, G.; Mazzotti, D.; De Natale, P.; De Mauro, C.; Krachmalnicoff, V.; Inguscio, M.

    2005-05-05

    Accurate Quantum-Electrodynamics (QED) tests of the simplest bound three body atomic system are performed by precise laser spectroscopic measurements in atomic Helium. In this paper, we present a review of measurements between triplet states at 1083 nm (23S-23P) and at 389 nm (23S-33P). In 4He, such data have been used to measure the fine structure of the triplet P levels and, then, to determine the fine structure constant when compared with equally accurate theoretical calculations. Moreover, the absolute frequencies of the optical transitions have been used for Lamb-shift determinations of the levels involved with unprecedented accuracy. Finally, determination of the He isotopes nuclear structure and, in particular, a measurement of the nuclear charge radius, are performed by using hyperfine structure and isotope-shift measurements.

  9. Influence of gaseous hydrogen on the mechanical properties of incoloy 903. [gas-metal interactions/iron alloys

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Solid specimens of the alloy Inconel 903 (iron based alloy) were exposed to four gaseous environments and high temperatures. Air, pure helium, pure hydrogen, and hydrogen and water vapor combined were the gaseous environments employed, and the temperature was 1400 F. Various mechanical property tests (low cycle fatigue, creep-rupture, tensile properties) were performed on the alloy. Results indicate that the hydrogen and water vapor environment cause a sharp reduction in the mechanical properties of the alloy. Photographs of the test equipment used and the microstructure of the tested alloy are included.

  10. Emergency relief venting of the infrared telescope liquid helium dewar

    NASA Astrophysics Data System (ADS)

    Urban, E. W.

    1980-03-01

    An analysis is made of the emergency relief venting of the liquid helium dewar of the Spacelab 2 infrared telescope experiment in the event of a massive failure of the dewar guard vacuum. Such a failure, resulting from a major accident, could cause rapid heating and pressurization of the liquid helium in the dewar and lead to relief venting through the emergency relief system. The heat input from an accident is estimated for various fluid conditions in the dewar and the relief process as it takes place through one or both of the emergency relief paths is considered. It is shown that under all reasonable circumstances the dewar will safely relieve itself, and the pressure will not exceed 85 percent of the proof pressure or 63 percent of the burst pressure.

  11. Emergency relief venting of the infrared telescope liquid helium dewar

    NASA Technical Reports Server (NTRS)

    Urban, E. W.

    1980-01-01

    An analysis is made of the emergency relief venting of the liquid helium dewar of the Spacelab 2 infrared telescope experiment in the event of a massive failure of the dewar guard vacuum. Such a failure, resulting from a major accident, could cause rapid heating and pressurization of the liquid helium in the dewar and lead to relief venting through the emergency relief system. The heat input from an accident is estimated for various fluid conditions in the dewar and the relief process as it takes place through one or both of the emergency relief paths is considered. It is shown that under all reasonable circumstances the dewar will safely relieve itself, and the pressure will not exceed 85 percent of the proof pressure or 63 percent of the burst pressure.

  12. Resource Letter SH-1: Superfluid Helium.

    ERIC Educational Resources Information Center

    Hallock, Robert B.

    1982-01-01

    Provides an annotated list of books, textbooks, and films on superfluid helium. Also lists research reports/reviews arranged by category, including among others, early history, microscopic understanding, ions in helium, helium in rotation, vortices and quantization, helium films and constricted geometrics, persistence flow, and superfluid helium…

  13. Properties of Moving Electron Bubbles in Superfluid Helium

    SciTech Connect

    Guo Wei; Maris, Humphrey J.

    2006-09-07

    It is well known that the Bernoulli effect modifies the shape of gas bubbles moving through a liquid. In this paper we investigate the influence of the Bernoulli pressure on the shape of electron bubbles moving through superfluid helium. We show that an electron bubble moving through liquid at zero pressure becomes unstable when its velocity reaches approximately 47 m s-1. In addition, the change in shape contributes significantly to the variation of the bubble mobility with velocity.

  14. Alternatives for Helium-3 in Multiplicity Counters

    SciTech Connect

    Ely, James H.; Siciliano, Edward R.; Lintereur, Azaree T.; Swinhoe, Martyn T.

    2013-04-01

    Alternatives to helium-3 are being actively pursued due to the shortage and rising costs of helium-3. For safeguards applications, there are a number of ongoing investigations to find alternatives that provide the same capability in a cost-effective manner. One of the greatest challenges is to find a comparable alternative for multiplicity counters, since they require high efficiency and short collection or die-away times. Work has been progressing on investigating three commercially available alternatives for high efficiency multiplicity counters: boron trifluoride (BF3) filled proportional tubes, boron-lined proportional tubes, and lithium fluoride with zinc sulfide coated light guides. The baseline multiplicity counter used for the investigation is the Epithermal Neutron Multiplicity Counter with 121 helium-3 filled tubes at 10 atmosphere pressure, which is a significant capability to match. The primary tool for the investigation has been modeling and simulation using the Monte Carlo N-Particle eXtended (MCNPX) radiation transport program, with experiments to validate the models. To directly calculate the coincidence rates in boron-lined (and possibly other) detectors, the MCNPX code has been enhanced to allow the existing coincidence tally to be used with energy deposition rather than neutron capture reactions. This allows boron-lined detectors to be modeled more accurately. Variations of tube number and diameter along with variations in the amount of inter-tube moderator have been conducted for the BF3 and boron-lined cases. Tube pressure was investigated for BF3, up to two atmospheres, as well as optimal boron thickness in the boron-lined tubes. The lithium fluoride was modeled as sheets of material with light guides in between, and the number and thickness of the sheets investigated. The amount of light guide, which in this case doubles as a moderator, was also optimized. The results of these modeling and simulation optimization investigations are described

  15. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Haight, Harlan; Kegley, Jeff; Bourdreaux, Meghan

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives usually involve simulation of an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Cryogenic Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  16. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives are to simulate an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Calibration Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  17. Accurate Determination of the Volume of an Irregular Helium Balloon

    NASA Astrophysics Data System (ADS)

    Blumenthal, Jack; Bradvica, Rafaela; Karl, Katherine

    2013-02-01

    In a recent paper, Zable described an experiment with a near-spherical balloon filled with impure helium. Measuring the temperature and the pressure inside and outside the balloon, the lift of the balloon, and the mass of the balloon materials, he described how to use the ideal gas laws and Archimedes' principal to compute the average molecular mass and density of the impure helium. This experiment required that the volume of the near-spherical balloon be determined by some approach, such as measuring the girth. The accuracy of the experiment was largely determined by the balloon volume, which had a reported uncertainty of about 4%.

  18. Helium process cycle

    SciTech Connect

    Ganni, Venkatarao

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  19. Helium process cycle

    SciTech Connect

    Ganni, Venkatarao

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  20. Radiation source for helium magnetometers

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E. (Inventor)

    1991-01-01

    A radiation source (12) for optical magnetometers (10) which use helium isotopes as the resonance element (30) includes an electronically pumped semiconductor laser (12) which produces a single narrow line of radiation which is frequency stabilized to the center frequency of the helium resonance line to be optically pumped. The frequency stabilization is accomplished using electronic feedback (34, 40, 42, 44) to control a current sources (20) thus eliminating the need for mechanical frequency tuning.

  1. Purification and Liquefacttion of Neon Using a Helium Refrigeration Cycle

    NASA Astrophysics Data System (ADS)

    Boeck, S.

    2010-04-01

    The cryogenic plant developed by Linde Kryotechnik is used to extract neon out of a crude gas flow coming from an air separation plant. The crude gas is cooled down by a two stage helium refrigeration process using the Linde Kryotechnik dynamic gas bearing turbines. After the first cooling stage, nitrogen is liquefied and separated from the crude gas. The Cryogenic adsorbers located at a temperature level below 80 K clean the crude gas from remaining nitrogen traces before the neon-helium mixture enters the final cooling stage. In the second cooling stage neon is liquefied and separated from the helium. The final product quality will be achieved within a rectification column at low pressure level.

  2. A helium gas probe for use in cryosurgery.

    PubMed

    Bald, W B

    1984-10-01

    The design and testing of a prototype cryosurgical probe utilizing helium gas precooled with liquid nitrogen are described. An 8-mm-diameter probe produced an ice ball with a diameter of 28 mm after 10 min freezing using a helium gas flow rate of 42 liter/min. This indicated a surface heat transfer coefficient of 0.34 W/cm2 degrees K and temperature of -138 degrees C at the probe tip. Improved performance figures can be achieved using higher gas pressures and flow rates. A helium gas flow system schematic for use with this new type of cryoprobe is also presented. It is claimed that this system will overcome the problems of developing both multiple-tipped probes and small-diameter needle probes for use in cryoanalgesia. PMID:6499503

  3. Analysis of a low-temperature magnetic helium pump

    NASA Astrophysics Data System (ADS)

    Prenger, Coyne; Stewart, Walter

    In an effort to improve reliability of cryocoolers, concepts involving no moving parts are being investigated. One concept utilizes an Active Magnetic Regenerator, AMR, to produce refrigeration. However, circulation of the helium working fluid is required for operation of the device. Currently available helium pumps have moving parts and; therefore, result in poor reliability. We propose a magnetically driven pump to provide the helium circulation for the AMR. The pump utilizes the magnetocaloric effect to produce an oscillatory helium flow and; has no moving parts. An analytical model has been developed to analyze the pump's performance in conjunction with an AMR operating between 7 and 20 K. At a frequency of 1 Hz a 0.5 liter pump can produce a 0.75 g/s flow rate at 20 K at an operating pressure of 5 atm. At the liquid helium temperature a two-phase version of this pump would perform substantially better than the single-phase version. A design concept has been developed and will be presented along with the model results.

  4. Hydrogen and Gaseous Fuel Safety and Toxicity

    SciTech Connect

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  5. Effect of Helium Accumulation on the Spent Fuel Microstructure

    SciTech Connect

    Ferry, Cecile; Piron, Jean-Paul; Stout, Ray

    2007-07-01

    In a nuclear spent fuel repository, the aqueous rapid release of radio-activity from exposed spent fuel surfaces will depend on the pellet microstructure at the arrival time of water into the disposal container. Research performed on spent fuel evolution in a closed system has shown that the evolution of microstructure under disposal conditions should be governed by the cumulated {alpha}-decay damage and the subsequent helium behavior. The evolution of fission gas bubble characteristics under repository conditions has to be assessed. In UO{sub 2} fuels with a burnup of 47.5 GWd/t, the pressure in fission gas bubbles, including the pressure increase from {alpha}-decay helium atoms, is not expected to reach the critical bubble pressure that will cause failure, thus micro-cracking in UO{sub 2} spent fuel grains is not expected. (authors)

  6. Applicability of Henry's Law to helium solubility in olivine

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Parman, S. W.; Kelley, S. P.; Cooper, R. F.

    2013-12-01

    Applicability of Henry's Law to helium solubility in olivine We have experimentally determined helium solubility in San Carlos olivine across a range of helium partial pressures (PHe) with the goal of quantifying how noble gases behave during partial melting of peridotite. Helium solubility in olivine correlates linearly with PHe between 55 and 1680 bar. This linear relationship suggests Henry's Law is applicable to helium dissolution into olivine up to 1680 bar PHe, providing a basis for extrapolation of solubility relationships determined at high PHe to natural systems. This is the first demonstration of Henry's Law for helium dissolution into olivine. Averaging all the data of the PHe series yields a Henry's coefficient of 3.8(×3.1)×10-12 mol g-1 bar-1. However, the population of Henry's coefficients shows a positive skew (skewness = 1.17), i.e. the data are skewed to higher values. This skew is reflected in the large standard deviation of the population of Henry's coefficients. Averaging the median values from each experiment yields a lower Henry's coefficient and standard deviation: 3.2(× 2.3)×10-12 mol g-1 bar-1. Combining the presently determined helium Henry's coefficient for olivine with previous determinations of helium Henry's coefficients for basaltic melts (e.g. 1) yields a partition coefficient of ~10-4. This value is similar to previous determinations obtained at higher PHe (2). The applicability of Henry's Law here suggests helium is incorporated onto relatively abundant sites within olivine that are not saturated by 1680 bar PHe or ~5×10-9 mol g-1. Large radius vacancies, i.e. oxygen vacancies, are energetically favorable sites for noble gas dissolution (3). However, oxygen vacancies are not abundant enough in San Carlos olivine to account for this solubility (e.g. 4), suggesting the 3x10-12 mol g-1 bar-1 Henry's coefficient is associated with interstitial dissolution of helium. Helium was dissolved into olivine using an externally heated

  7. Observation of a helium ion energy threshold for retention in tungsten exposed to hydrogen/helium mixture plasma

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Deslandes, A.; Morgan, T. W.; Elliman, R. G.; De Temmerman, G.; Kluth, P.; Riley, D.; Corr, C. S.

    2016-10-01

    Helium retention is measured in tungsten samples exposed to mixed H/He plasma in the Magnum-PSI linear plasma device. It is observed that there is very little He retention below helium ion impact energies of 9.0+/- 1.4 eV, indicating the existence of a potential barrier which must be overcome for implantation to occur. The helium retention in samples exposed to plasma at temperatures  >1000 K is strongly correlated with nano-bubble formation measured using grazing incidence small-angle x-ray scattering. The diameters of nano-bubbles were not found to increase with increasing helium concentration, indicating that additional helium must be accommodated by increasing the bubble concentration or an increase in bubble pressure. For some samples pre-irradiation with heavy ions of 2.0 MeV energy is investigated to simulate the effects of neutron damage. It is observed that nano-bubble sizes are comparable between samples pre-irradiated with heavy-ions, and those without heavy-ion pre-irradiation.

  8. Helium-Based Soundwave Chiller: Trillium: A Helium-Based Sonic Chiller- Tons of Freezing with 0 GWP Refrigerants

    SciTech Connect

    2010-09-01

    BEETIT Project: Penn State is designing a freezer that substitutes the use of sound waves and environmentally benign refrigerant for synthetic refrigerants found in conventional freezers. Called a thermoacoustic chiller, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the chiller is able to isolate the hot and cold regions of the sound waves. Penn State’s chiller uses helium gas to replace synthetic refrigerants. Because helium does not burn, explode or combine with other chemicals, it is an environmentally-friendly alternative to other polluting refrigerants. Penn State is working to apply this technology on a large scale.

  9. Gaseous sodium sulfate formation in flames and flowing gas environments

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Miller, R. A.; Kohl, F. J.; Fryburg, G. C.

    1977-01-01

    Formation of Na2SO4(g) in flames and hot flowing gas systems was studied by high pressure, free-jet expansion, modulated molecular beam mass spectrometric sampling. Fuel-lean CH4-O2 flames doped with SO2, H2O and NaCl yielded the gaseous Na2SO4 molecule in residence times of less than one millisecond. Intermediate species NaSO2(g) and NaSO3(g) were also observed and measured. Composition profiles were obtained for all reaction products. Nonflame flowing gas experiments showed that Na2SO4 and NaSO3 gaseous molecules were formed at 1140 C in mixtures of O2, H2O(g), SO2 and NaCl(g). Experimental results are compared with calculated equilibrium thermodynamic predictions.

  10. Effect of the gaseous medium in the process of rolling on the microhardness of aluminum and iron

    NASA Astrophysics Data System (ADS)

    Klyavin, O. V.; Aruev, N. N.; Derkachenko, L. I.; Fedorov, V. Yu.; Chernov, Yu. M.; Shpeizman, V. V.

    2016-04-01

    The load dependence of the microhardness of polycrystalline aluminum and iron specimens produced by rolling in a nitrogen, helium, or air medium has been investigated. It has been found that nitrogen and helium have different effects on the microhardness of these metals in the low-load range. This difference is associated with the specific features in the intensity of dynamic penetration of nitrogen and helium into the surface layer of aluminum and iron, which depends on the initial defect crystal structure of the metals, as well as on the type of bonding of helium atoms and nitrogen molecules with metal atoms. It has been shown that the effect of the gaseous medium of the rolling on the microhardness manifests itself only in a very thin surface layer of metal specimens, where the microhardness exhibits a size effect, and an increase in the microhardness indentation depth remains unchanged with an increase in the load and does not depend on the gaseous medium of the prerolling of the specimens.

  11. Gaseous Absorption and Dispersion of Sound in a Resonant Cylindrical Cavity: AN Acoustic and Photoacoustic Study

    NASA Astrophysics Data System (ADS)

    Beckwith, Clyfe Gordon

    This research investigated the feasibility of accurately measuring Virial coefficients in an acoustically resonant cylindrical cavity. Gases studied were: Argon, Helium, Nitrogen, Carbon Dioxide, and Methane. Parameters considered were: resonant frequencies (f_ {rm r}- also a measure of speed of sound), quality factors (Q), and signal amplitudes. We studied the longitudinal modes smaller than 2000 Hz, at room temperature and at pressures of 200, 500, and 800 mm of Hg. The choice of the longitudinal modes was predetermined by our wish to compare acoustic and photoacoustic resonance techniques of the same mode. The acoustic excitation is limited to the longitudinal modes and is achieved by placing a loudspeaker close to one end of the cavity. Photoacoustically we excite a small concentration of molecular Iodine, mixed in with the buffer gases, by a periodically interrupted Xenon light beam. By increasing the length of the cavity we could decrease the space between the modes of frequency. Our observations focused on the behaviors that (a) f_{rm r} shifted with pressure, (b) the f_{rm r} deviated from the simple laws of harmonics, and (c) the amplitudes for the two techniques varied differently with frequency. Effect (a) is due to the fact that the gases are not "ideal", and due to the presence of boundary layers caused by thermal conduction and viscosity gradients. Effect (b) arises because of the f_{rm r}'s mode dependence, caused by the wave scattering due to imperfect geometrical symmetries. Effect (c) is governed by the coupling factors. All measurements could theoretically be justified to within instrumental error, the only noted discrepancy is the lack of a theoretical mode dependence. We conclude that it is feasible to study the accuracy of Virial coefficients of simple gases provided that the boundary layer loss effects and the mode dependent wave scattering can be quantified; in regions of high pressures and high frequencies the Virial effects dominate the

  12. Electronic structure and enthalpy of hydrogen and helium mixtures

    NASA Astrophysics Data System (ADS)

    Ross, M.; Klepeis, J. E.; Schafer, K. J.; Barbee, T. W., III

    1992-11-01

    The first local density approximation (LDA) calculations of the electronic structure, equation of state, and enthalpy of mixing were carried out for a number of different compositions of hydrogen and helium in bcc and fcc lattices. These are fully quantum mechanical, self-consistent calculations utilizing state-of-the-art methods of electron band theory, which make no assumptions regarding pressure ionization. The major approximation in the LDA method is that the exchange and correlation energy is given by a free electron functional in terms of the local electron density. The majority of previous mixture calculations start with the assumption that both hydrogen and helium are pressure-ionized so that the electronic structure is approximately that of free or weakly screened electrons in the presence of positive ions. Stevenson used a hard-sphere mixture model for the ions with an ion-ion pseudopotential to account for electron screening and predicted that a mixture containing 7% helium by number, the composition believed to be present in Jupiter and Saturn, would phase separate at a temperature of about 7000 K at 8 Mbar. Subsequent calculations carried out for the fully ionized mixture and for a mixture of screened ions (linear response theory) have all arrived at predictions similar to those of Stevenson. MacFarlane and Hubbard performed Thomas-Fermi-Dirac calculations for mixing enthalpies of hydrogen and helium in bcc and fcc lattices and predicted that phase separation would not occur at any temperature.

  13. Helium Pot System for Maintaining Sample Temperature after Cryocooler Deactivation

    SciTech Connect

    Haid, B J

    2005-01-26

    A system for maintaining a sample at a constant temperature below 10K after deactivating the cooling source is demonstrated. In this system, the cooling source is a GM cryocooler that is joined with the sample through an adaptor that consists of a helium pot and a resistive medium. Upon deactivating the cryocooler, the power applied to a heater located on the sample side of the resistive medium is decreased gradually to maintain an appropriate temperature rise across the resistive medium as the helium pot warms. The temperature is held constant in this manner without the use of solid or liquid cryogens and without mechanically disconnecting the sample from the cooler. Shutting off the cryocooler significantly reduces sample motion that results from vibration and expansion/contraction of the cold head housing. The reduction in motion permits certain processes that are very sensitive to sample position stability, but are not performed throughout the duration that the sample is at low-temperature. An apparatus was constructed to demonstrate this technique using a 4K GM cryocooler. Experimental and theoretical predictions indicate that when the helium pot is pressurized to the working pressure of the cryocooler's helium supply, a sample with continuous heat dissipation of several-hundred milliwatts can be maintained at 7K for several minutes when using an extension that increases the cold head length by less than 50%.

  14. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  15. Butanol formation from gaseous substrates.

    PubMed

    Dürre, Peter

    2016-03-01

    Mostly, butanol is formed as a product by saccharolytic anaerobes, employing the so-called ABE fermentation (for acetone-butanol-ethanol). However, this alcohol can also be produced from gaseous substrates such as syn(thesis) gas (major components are carbon monoxide and hydrogen) by autotrophic acetogens. In view of economic considerations, a biotechnological process based on cheap and abundant gases such as CO and CO2 as a carbon source is preferable to more expensive sugar or starch fermentation. In addition, any conflict for use of substrates that can also serve as human nutrition is avoided. Natural formation of butanol has been found with, e.g. Clostridium carboxidivorans, while metabolic engineering for butanol production was successful using, e.g. C. ljungdahlii. Production of butanol from CO2 under photoautotrophic conditions was also possible by recombinant DNA construction of a respective cyanobacterial Synechococcus sp. PCC 7942 strain. PMID:26903012

  16. Ashcroft Pressure Switch Monitor for Low SCHe Supply Bottle Pressure

    SciTech Connect

    VAN KATWIJK, C.

    2000-06-21

    These pressure switches are located in the SCHe helium supply lines at the pressure bottles and upstream of the PRV. The switches monitor the SCHe supply bottle pressure and are set to alarm at 2200 psig. There is one switch for each SCHe supply (4). Electronic output signal is NON-SAFETY (GS).

  17. Aschroft Pressure Switch Monitor for Low SCHe Supply Bottle Pressure

    SciTech Connect

    VAN KATWIJK, C.

    2000-09-03

    These pressure switches are located in the SCHe helium supply lines at the pressure bottles and upstream of the PRV. The switches monitor the SCHe supply bottle pressure and are set to alarm at 2200 psig. There is one switch for each SCHe supply (4). Electronic output signal is NON-SAFETY (GS).

  18. Use of the tritium trick for analysis of the influence that hydrogen and helium exert on the mechanical properties of radiation-resistant precipitation-hardening FCC steels

    SciTech Connect

    Goshchitskii, B.N.; Sagaradze, V.V.; Arbuzov, V.L.; Zuev, Y.N.; Markelov, N.N.; Zimin, A.V.

    1995-10-01

    The aging austenitic stainless steel Crl6Nil5Mo3Til is shown to possess a high resistance to the radiation void formation under irradiation with fast neutrons (60 dpa, 753K). The influence of tritium introduced from the gaseous phase and radiogenic helium on the mechanical properties is analysed. 3 refs., 3 tabs.

  19. Automated gaseous criteria pollutant audits

    SciTech Connect

    Watson, J.P.

    1998-12-31

    The Quality Assurance Section (QAS) of the California Air Resources Board (CARB) began performing automated gaseous audits of its ambient air monitoring sites in July 1996. The concept of automated audits evolved from the constant streamlining of the through-the-probe audit process. Continual audit van development and the desire to utilize advanced technology to save time and improve the accuracy of the overall audit process also contributed to the concept. The automated audit process is a computer program which controls an audit van`s ambient gas calibration system, isolated relay and analog to digital cards, and a monitoring station`s data logging system. The program instructs the audit van`s gas calibration system to deliver specified audit concentrations to a monitoring station`s instruments through their collection probe inlet. The monitoring station`s responses to the audit concentrations are obtained by the program polling the station`s datalogger through its RS-232 port. The program calculates relevant audit statistics and stores all data collected during an audit in a relational database. Planning for the development of an automated gaseous audit system began in earnest in 1993, when the CARB purchased computerized ambient air calibration systems which could be remotely controlled by computer through their serial ports. After receiving all the required components of the automated audit system, they were individually tested to confirm their correct operation. Subsequently, a prototype program was developed to perform through-the-probe automated ozone audits. Numerous simulated ozone audits documented the program`s ability to control audit equipment and extract data from a monitoring station`s data logging system. The program was later modified to incorporate the capability to perform audits for carbon monoxide, total hydrocarbons, methane, nitrogen dioxide, sulfur dioxide, and hydrogen sulfide.

  20. Gaseous emissions from waste combustion.

    PubMed

    Werther, Joachim

    2007-06-18

    An overview is given on methods and technologies for limiting the gaseous emissions from waste combustion. With the guideline 2000/76/EC recent European legislation has set stringent limits not only for the mono-combustion of waste in specialized incineration plants but also for co-combustion in coal-fired power plants. With increased awareness of environmental issues and stepwise decrease of emission limits and inclusion of more and more substances into the network of regulations a multitude of emission abatement methods and technologies have been developed over the last decades. The result is the state-of-the-art waste incinerator with a number of specialized process steps for the individual components in the flue gas. The present work highlights some new developments which can be summarized under the common goal of reducing the costs of flue gas treatment by applying systems which combine the treatment of several noxious substances in one reactor or by taking new, simpler routes instead of the previously used complicated ones or - in the case of flue gas desulphurisation - by reducing the amount of limestone consumption. Cost reduction is also the driving force for new processes of conditioning of nonhomogenous waste before combustion. Pyrolysis or gasification is used for chemical conditioning whereas physical conditioning means comminution, classification and sorting processes. Conditioning yields a fuel which can be used in power plants either as a co-fuel or a mono-fuel and which will burn there under much better controlled conditions and therefore with less emissions than the nonhomogeneous waste in a conventional waste incinerator. Also for cost reasons, co-combustion of wastes in coal-fired power stations is strongly pressing into the market. Recent investigations reveal that the co-firing of waste can also have beneficial effects on the operating behavior of the boiler and on the gaseous emissions. PMID:17339077

  1. From Liquid Helium to Granular Materials

    NASA Astrophysics Data System (ADS)

    Behringer, Robert P.

    2016-11-01

    This article provides a brief history of work that I have either carried out with Horst Meyer, or that was connected in some way with experiences reaching back to the laboratory known as LTM for low temperature [physics] Meyer, at Duke University. It is not intended as a complete review of all relevant work, but rather to hit highlights. My work with Horst started with studies of critical phenomena in liquid helium. This system provided an extremely rich and diverse testing ground for then newly emerging theories of static and dynamic critical phenomena. A key aspect of the experimental work with Horst was high-precision measurements of temperature and pressure. The ability to measure thermal properties with exceptional precision was at the core of this work. It also provided a natural springboard for entirely different investigations of Rayleigh-Bénard convection, which had just been initiated by Guenter Ahlers. My postdoc with Guenter provided a whole new set of experiences involving convection, dynamical instabilities, and chaos, where again the special properties, measurement techniques, and creative approaches to research associated with liquid helium were critical. In fact, later, knowledge of these techniques allowed me to start a whole new research direction in granular materials, which is a primary focus of my current research.

  2. Fiber-Cavity Optomechanics with Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Flowers-Jacobs, Nathan E.; Kashkanova, Anna D.; Shkarin, Alexey B.; Hoch, Scott W.; Deutsch, Christian; Reichel, Jakob; Harris, Jack G. E.

    2014-03-01

    In a typical optomechanical device, the resonance frequency of a cavity is coupled to mechanical motion through the radiation pressure force. To date, experimental cavities have predominately coupled to a resonant mechanical mode of a solid structure, often a lithographically-defined beam or membrane. We will describe our progress towards realizing an optomechanical device in which an optical fiber-cavity couples to the acoustic modes of superfluid helium. In this system, the optical modes and the acoustic modes of the superfluid are co-located between the mirrored ends of two fiber optic cables. Changes in the density of the superfluid change the effective length of the cavity which results in a standard, linear optomechanical coupling between the 300 MHz acoustic resonances and the 200 THz optical resonances. This type of device is motivated by the self-aligning nature of the acoustic and optical modes (which eases the difficulties of operating at cryogenic temperatures) and by the low optical and mechanical losses of superfluid helium. Although we expect the mechanical quality factor to be limited by acoustic radiation into the glass fiber, we will describe a proposal to realize a dual-band Bragg mirror to confine the optical and acoustic modes more efficiently. Supported by NSF Grant #1106110, ARO Grant #W911NF-13-1-0104, and the DARPA/MTO ORCHID program through a grant from AFOSR.

  3. Predicting helium and neon adsorption and separation on carbon nanotubes by Monte Carlo simulation.

    PubMed

    Bolboli Nojini, Zabiollah; Abbas Rafati, Amir; Majid Hashemianzadeh, Seyed; Samiee, Sepideh

    2011-04-01

    The adsorption of helium and neon mixtures on single-walled carbon nanotubes (SWCNTs) was investigated at various temperatures (subcritical and supercritical) and pressures using canonical Monte Carlo (CMC) simulation. Adsorption isotherms were obtained at different temperatures (4, 40, 77 and 130 K) and pressures ranging from 1 to 16 MPa. Separation factors and isosteric enthalpies of adsorption were also calculated. Moreover, the adsorption isotherms were obtained at constant specific temperatures (4 and 40 K) and pressures (0.2 and 1.0 MPa) as a function of the amount adsorbed. All of the adsorption isotherms for an equimolar mixture of helium and neon have a Langmuir shape, indicating that no capillary condensation occurs. Both the helium and the neon adsorption isotherms exhibit similar behavior, and slightly more of the helium and neon mixture is adsorbed on the inner surfaces of the SWCNTs than on their outer surfaces. More neon is adsorbed than helium within the specified pressure range. The data obtained show that the isosteric enthalpies for the adsorption of neon are higher than those for helium under the same conditions, which means that adsorption of neon preferentially occurs by (15, 15) SWCNTs. Furthermore, the isosteric enthalpies of adsorption of both gases decrease with increasing temperature.

  4. Elements of radiative interactions in gaseous systems

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N.

    1991-01-01

    Basic formulations, analyses, and numerical procedures are presented to study radiative interactions in gray as well as nongray gases under different physical and flow conditions. After preliminary fluid-dynamical considerations, essential governing equations for radiative transport are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions. Auxiliary relations for relaxation times and spectral absorption model are also provided. For specific applications, several simple gaseous systems are analyzed. The first system considered consists of a gas bounded by two parallel plates having the same temperature. For this system, both vibrational nonequilibrium effects and radiation conduction interactions are studied. The second system consists of fully developed laminar flow and heat transfer in a parallel plate duct under the boundary condition of a uniform surface heat flux. For this system, effects of gray surface emittance are studied. With the single exception of a circular geometry, the third system is identical to the second system. Here, the influence of nongray walls is also studied, and a correlation between the parallel plates and circular tube results is presented. The particular gases selected are CO, CO2, H2O, CH4, N2O, NH3, OH, and NO. The temperature and pressure range considered are 300 to 2000 K, and 0.1 to 100 atmosphere, respectively. Illustrative results obtained for different cases are discussed and some specific conclusions are provided.

  5. Measurements of reactive gaseous rocket injector admittances

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Daniel, B. R.; Bell, W. A.; Zinn, B. T.

    1979-01-01

    The paper describes the results of an experimental study of the quantitative determination of the capabilities of the combustion processes associated with coaxial gaseous propellant rocket injectors to drive combustor pressure oscillations. The data, obtained by employing the modified impedance tube technique with compressed air as the oxidizer and acetylene gas as the fuel, describe the frequency dependence of the admittance of the combined injector-combustion process. The measured data are compared with the predictions of the Feiler and Heidmann analytical model utilizing different values for the characteristic combustion time tau sub b. The values of tau sub b which result in a best fit between the measured and predicted data are indicated for different equivalence ratios. It is shown that for the coaxial injector investigated in this study the tau sub b varies between 0.7 and 1.2 msec for equivalence ratios in the range of 0.57 to 1.31. In addition, the experimental data indicate that the tested injector system could drive combustion instabilities over a frequency range that is in qualitative agreement with the predictions of the Feiler and Heidmann model.

  6. Numerical Simulation of Cold Helium Safety Discharges into a Long Relief Line

    NASA Astrophysics Data System (ADS)

    Andersson, R.; Fydrych, J.; Weisend, J. G.

    All existing and currently constructed large superconducting particle accelerators use liquid or supercritical helium for transferring cooling power from the cryogenic plant to the accelerator magnets and cavities. These accelerators have extremely elongated structures and therefore require widespread cryogenic distribution systems as well as advanced gas management systems. The design and operation of their cryogenic system are strongly affected by the requirements of high reliability and operating cost minimization. This strongly influences pressure equipment safety strategies. Becauseaccidental helium discharges from the accelerator cryostats and cryomodules cannot be excluded, possibilities of recovering helium releases from safety devices are taken into consideration. Collecting discharged helium and transferring it back to the cryoplant via a long recovery line is not only an option, but also a must. Usually the baseline design choice for the helium recovery system is a set of safety valves connected to a bare relief line that ends in a gas bag. However, rapid and fast discharges of cold helium into warm relief lines can result in significantly unsteady, compressible and thermal flows. Therefore the proper designing and sizing of the recovery system have to be supported by detailed analyses of all expected fluid dynamics and thermodynamics phenomena. This paper describes the numerical simulations of cold helium discharges into a long, warm safety relief line. The simulations have been done for the helium recovery system of the superconducting proton accelerator that is under construction at ESS in Lund, Sweden. The paper discusses the model assumptions and presents some example results.

  7. Experimental investigation of the heat transfer characteristics of a helium cryogenic thermosyphon

    NASA Astrophysics Data System (ADS)

    Long, Z. Q.; Zhang, P.

    2013-10-01

    The heat transfer performance of a cryogenic thermosyphon filled with helium as the working fluid is investigated experimentally with a G-M cryocooler as the heat sink in this study. The cryogenic thermosyphon acts as a thermal link between the cryocooler and the cooled target (the copper evaporator with a large mass). Helium is charged in different filling ratios, and the cooling down process and the heat transfer characteristics of the cryogenic thermosyphon are investigated. The cooling down process of the cooled target can be significantly accelerated by the presence of helium in the cryogenic thermosyphon and the cooling down period can be further shortened by the increase of filling ratio. The heat transfer mode changes from the liquid-vapor phase change to natural convection as the increase of the heating power applied on the evaporator. The heat transfer limit and thermal resistance are discussed for the liquid-vapor phase change heat transfer, and they can be estimated by empirical correlations. For the natural convection heat transfer, it can be enhanced by increasing the filling ratio, and the natural convection of supercritical helium is much stronger than that of gaseous helium.

  8. Curious Fluid Flows: From Complex Fluid Breakup to Helium Wetting

    NASA Astrophysics Data System (ADS)

    Huisman, Fawn Mitsu

    This work encompasses three projects; pinch-off dynamics in non-Newtonian fluids; helium wetting on alkali metals; and the investigation of quartz tuning forks as cryogenic pressure transducers. Chapter 1 discusses the breakup of a non-Newtonian yield stress fluid bridge. We measured the minimum neck radius, hmin, as a function of time and fit it to a power law with exponent n 1. We then compare n1 to exponent n2, obtained from a rotational rheometer using a Herschel-Bulkley model. We confirm n1=n2 for the widest variety of non-Newtonian fluids to date. When these fluids are diluted with a Newtonian fluid n1 does not equal n2. No current models predict that behavior, identifying a new class of fluid breakup. Chapter 2 presents the first chemical potential-temperature phase diagram of helium on lithium, sodium and gold, using a novel pressure measurement system. The growth and superfluid transition of a helium film on these substrates is measured via an oscillator for isotherms (fixed temperature, varying amount of helium gas), and quenches (fixed amount of helium gas, varying temperature). The chemical potential-temperature plot is similar for gold, lithium and sodium despite the large difference in the substrate binding energies. No signs of a 2-D liquid-vapor transition were seen. Chapter 3 discusses the creation of a 32.768 kHz quartz tuning fork in situ pressure transducer. Tuning forks are used to measure pressure at room temperature, but no work addresses their potential as cryogenic pressure transducers. We mapped out the behavior of a tuning fork as a function of pressure at 298, 7.0, 2.5, 1.6, 1.0 and 0.7 K by measuring the quality factor. The fork is sensitive to pressures above 0.1 mTorr, limiting its use as a pressure gauge at 0.6 K and below. The experimental curves were compared to a theoretical Q(P, T) function that was refined using the 298 K data. At cryogenic temperatures the formula breaks down in the viscous region and becomes inaccurate. The

  9. Counting Electrons on Liquid Helium

    NASA Astrophysics Data System (ADS)

    Glasson, Phillip

    2004-03-01

    Electrons on liquid helium, localised in an array of quantum dots, have been proposed as condensed matter qubits [M.I.Dykman et al. Phys.Rev. B 67, 155402 (2003)]. The ground and first excited Rydberg states in the vertical potential well on the helium surface would represent |0> and |1>. This requires (a) novel electronic devices on helium using microstructured substrates, (b) excitation of Rydberg states using millimetric microwaves and (c) detection of individual electrons and their quantum states. Progress in meeting these challenges will be presented. An AC-coupled Field Effect Transistor (FET) has been made on GaAs, using free electrons on suspended liquid helium microchannels, 16 micron wide and 1.6 microns deep [P.Glasson et al, Phys.Rev.Lett. 87 176802 (2001)]. The microwave absorption to the first excited Rydberg state near 200 GHz has been measured below 1 K [E.Collin et al. Phys.Rev.Lett. 89, 245301 (2002)], where the temperature-dependent contribution to the linewidth is small. High values of the ratio of the Rabi frequency to the linewidth are obtained. Electrons are trapped on a 5 micron diameter pool of superfluid helium, above a single-electron-transistor (SET) as a detector. The pool is charged from a surface electron reservoir and we count the electrons into and out of the trap. Individual electrons can be stored, detected and counted: the next stage is quantum state detection. The prospects for qubits and quantum information processing with electrons on helium will be assessed.

  10. ASRDI oxygen technology survey. Volume 8: Pressure measurement

    NASA Technical Reports Server (NTRS)

    Arvidson, J. M.; Brennan, J. A.

    1975-01-01

    Pressure transducers and their current uses with gaseous or liquid oxygen are reviewed. All transducer types such as strain gage, capacitance, potentiometric, piezoelectric, etc., are included. Topics covered include: cryogenic pressure measurement; material compatibility with gaseous and liquid oxygen; cleaning procedures; pressure tap connections; transducer types and descriptions; and calibration techniques.

  11. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  12. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  13. Incorporation of Helium Demixing in Interior Structure Models of Saturn

    NASA Astrophysics Data System (ADS)

    Tian, Bob; Stanley, Sabine; Valencia, Diana

    2015-04-01

    Experiments and ab initio calculations of hydrogen-helium mixtures predict a phase separation at pressure-temperature conditions relevant to Saturn's interior. At depths where this occurs, droplets of helium form out of the mixture and sink towards the deep interiors where it re-mixes again, thereby depleting the helium above the layer over time while enriching the concentration below the layer. In dynamo modelling, the axisymmetric nature of Saturn's magnetic field is so far best explained by the inclusion of a stably stratified layer just below the depth at which hydrogen metallizes (approximately 0.65RS). Stable stratification at that depth could occur if the compositional gradients produced by the helium rain process described above is great enough to suppress convection in the de-mixing layers. Thus, we first developed a range of interior structure models consistent with available constraints of the gravity field and atmospheric composition. The hydrogen-helium de-mixing curve was then incorporated in calculations of some of these models to assess its feasibility in compositionally stratifying the top of the dynamo source region. We found that when helium rain is taken into account, a stably stratified layer approximately 0.1 - 0.15RS in thickness can exist atop the dynamo source region, consistent with thicknesses needed in dynamo models to axisymmetrize the observable magnetic field. Furthermore, inertial gravity waves could be excited in such thick stably stratified regions. These may be detectable by asteroseismology techniques, or by analysis of wave modes' gravitational interaction with Saturn's ring particles. Thus, profiles of sound speed and Brunt-Vaisala frequencies were also calculated for all of the interior structures models studied to be used for comparison with possible seismic studies in the future.

  14. Helium release during shale deformation: Experimental validation

    NASA Astrophysics Data System (ADS)

    Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.

    2016-07-01

    This work describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measured using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.

  15. Incident shock-wave characteristics in air, argon, carbon dioxide, and helium in a shock tube with unheated helium driver

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Jones, J. J.

    1975-01-01

    Incident shock-wave velocities were measured in the Langley 6-inch expansion tube, operated as a shock tube, with air, argon, carbon dioxide, and helium as test gases. Unheated helium was used as the driver gas and most data were obtained at pressures of approximately 34 and 54 MN/sq m. A range of pressure ratio across the diaphragm was obtained by varying the quiescent test-gas pressure, for a given driver pressure, from 0.0276 to 34.5 kN/sq m. Single- and double-diaphragm modes of operation were employed and diaphragms of various materials tested. Shock velocity was determined from microwave interferometer measurements, response of pressure transducers positioned along interferometer measurements, response of pressure transducers positioned along the driven section (time-of-arrival gages), and to a lesser extent, measured tube-wall pressure. Velocities obtained from these methods are compared and limitations of the methods discussed. The present results are compared with theory and the effects of diaphragm mode (single or double diaphragm), diaphragm material, heating of the driver gas upon pressurization of the driver section, diaphragm opening time, interface mixing, and two-dimensional (nonplanar) flow are discussed.

  16. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOEpatents

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  17. Effect of two types of helium circulators on the performance of a subsonic nuclear powered airplane

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1971-01-01

    Two types of helium circulators are analytically compared on the bases of their influence on airplane payload and on propulsion system variables. One type of circulator is driven by the turbofan engines with power takeoff shafting while the other, a turbocirculator, is powered by a turbine placed in the helium loop between the nuclear reactor and the helium-to-air heat exchangers inside the engines. Typical results show that the turbocirculator yields more payload for circulator efficiencies greater than 0.82. Optimum engine and heat exchanger temperatures and pressures are significantly lower in the turbocirculator case compared to the engine-driven circulator scheme.

  18. Study of Injection of Helium into Supersonic Air Flow Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seaholtz, Richard G.; Buggele, Alvin E.

    1997-01-01

    A study of the transverse injection of helium into a Mach 3 crossflow is presented. Filtered Rayleigh scattering is used to measure penetration and helium mole fraction in the mixing region. The method is based on planar molecular Rayleigh scattering using an injection-seeded, frequency-doubled ND:YAG pulsed laser and a cooled CCD camera. The scattered light is filtered with an iodine absorption cell to suppress stray laser light. Preliminary data are presented for helium mole fraction and penetration. Flow visualization images obtained with a shadowgraph and wall static pressure data in the vicinity of the injection are also presented.

  19. Crystal structure and density of helium to 232 kbar

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.

    1988-01-01

    The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.

  20. Phase separation of metallic hydrogen-helium alloys

    NASA Technical Reports Server (NTRS)

    Straus, D. M.; Ashcroft, N. W.; Beck, H.

    1976-01-01

    Calculations are presented for the thermodynamic functions and phase separation boundaries of solid metallic hydrogen helium alloys at temperatures between 0 K and 19,000 K and at pressures between 15 and 90 megabars. Expressions for the band structure energy of a randomly disordered alloy (including third order in the electron ion interaction) are derived and evaluated. Short and long range order are included by the quasi-chemical method, and lattice dynamics in the virtual crystal harmonic approximation. We conclude that at temperatures below 4,000 K there is complete phase separation of hydrogen helium alloys, and that a miscibility gap remains at the highest temperatures and pressures considered. The relevance of these results to models of the deep interior of Jupiter is briefly discussed.

  1. Hydrodynamics of superfluid helium in a single nanohole.

    PubMed

    Savard, M; Dauphinais, G; Gervais, G

    2011-12-16

    The flow of liquid helium through a single nanohole with radius smaller than 25 nm was studied. Mass flow was induced by applying a pressure difference of up to 1.4 bar across a 50 nm thick Si(3)N(4) membrane and was measured directly by means of mass spectrometry. In liquid He I, we experimentally show that the fluid is not clamped by the short pipe with diameter-to-length ratio D/L≃1, despite the small diameter of the nanohole. This viscous flow is quantitatively understood by making use of a model of flow in short pipes. In liquid He II, a two-fluid model for mass flow is used to extract the superfluid velocity in the nanohole for different pressure heads at temperatures close to the superfluid transition. These velocities compare well to existing data for the critical superflow of liquid helium in other confined systems. PMID:22243081

  2. Competitive Deprotonation and Superoxide [O2 -•] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions

    NASA Astrophysics Data System (ADS)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B.

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O•) preferentially form superoxide radical-anion (O2 -•) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2 -•) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2 -• adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O•) to generate the superoxide radical-anion ( m/z 32) or the deprotonated amide [ m/z (M - H)-], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  3. Competitive Deprotonation and Superoxide [O₂⁻•)] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions.

    PubMed

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O(•)) preferentially form superoxide radical-anion (O2(-•)) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2(-•)) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2(-•) adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O(•)) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)(-)], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions. PMID:26545766

  4. Calculation and measurement of helium generation and solid transmutations in Cu-Zn-Ni alloys

    SciTech Connect

    Greenwood, L.R.; Oliver, B.M.; Garner, F.A.; Muroga, T.

    1998-03-01

    A method was recently proposed by Garner and Greenwood that would allow the separation of the effects of solid and gaseous transmutation for Cu-Zn-Ni alloys. Pure copper produces zinc and nickel during neutron irradiation. {sup 63}Cu transmutes to {sup 64}Ni and {sup 64}Zn, in about a 2-to-1 ratio, and {sup 65}Cu transmutes to {sup 66}Zn. The {sup 64}Zn further transmutes to {sup 65}Zn which has been shown to have a high thermal neutron (n,{alpha}) cross-section. Since a three-step reaction sequence is required for natural copper, the amount of helium produced is much smaller than would be produced for the two-step, well-known {sup 58}Ni (n,{gamma}) {sup 59}Ni (n,{alpha}) reaction sequence. The addition of natural Zn and Ni to copper leads to greatly increased helium production in neutron spectra with a significant thermal component. Using a suitable Cu-Zn-Ni alloy matrix and comparative irradiation of thermal neutron-shielded and unshielded specimens, it should be possible to distinguish the separate influences of the solid and gaseous transmutants. Whereas helium generation rates have been previously measured for natural nickel and copper, they have not been measured for natural Zn or Cu-Ni-Zn alloys. The (N,{alpha}) cross section for {sup 65}Zn was inferred from helium measurements made with natural copper. By comparing helium production in Cu and Cu-Zn alloys, this cross section can be determined more accurately. In the current study, both the solid and helium transmutants were measured for Cu, Cu-5Ni, Cu-3.5Zn and Cu-5Ni-2Zn, irradiated in each of two positions in the HFIR JP-23 test. Highly accurate helium measurements were performed on these materials by isotope dilution mass spectrometry using a facility that was recently moved from Rockwell International to PNNL. It is shown that both the helium and solid transmutants for Cu-zn-Ni alloys can be calculated with reasonable certainty, allowing the development of a transmutation experiment as proposed by

  5. 21 CFR 582.1355 - Helium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Helium. 582.1355 Section 582.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Helium. (a) Product. Helium. (b) Conditions of use. This substance is generally recognized as safe...

  6. 43 CFR 3100.1 - Helium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Helium. 3100.1 Section 3100.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE... Helium. The ownership of and the right to extract helium from all gas produced from lands leased...

  7. 43 CFR 3100.1 - Helium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Helium. 3100.1 Section 3100.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE... Helium. The ownership of and the right to extract helium from all gas produced from lands leased...

  8. 21 CFR 582.1355 - Helium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Helium. 582.1355 Section 582.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Helium. (a) Product. Helium. (b) Conditions of use. This substance is generally recognized as safe...

  9. 21 CFR 582.1355 - Helium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Helium. 582.1355 Section 582.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Helium. (a) Product. Helium. (b) Conditions of use. This substance is generally recognized as safe...

  10. 30 CFR 556.11 - Helium.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Helium. 556.11 Section 556.11 Mineral Resources... § 556.11 Helium. (a) Each lease issued or continued under these regulations shall be subject to a... helium from all gas produced from the leased area. (b) In case the United States elects to take...

  11. 30 CFR 556.11 - Helium.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Helium. 556.11 Section 556.11 Mineral Resources... § 556.11 Helium. (a) Each lease issued or continued under these regulations shall be subject to a... helium from all gas produced from the leased area. (b) In case the United States elects to take...

  12. 43 CFR 3100.1 - Helium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Helium. 3100.1 Section 3100.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE... Helium. The ownership of and the right to extract helium from all gas produced from lands leased...

  13. 30 CFR 556.11 - Helium.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Helium. 556.11 Section 556.11 Mineral Resources... § 556.11 Helium. (a) Each lease issued or continued under these regulations shall be subject to a... helium from all gas produced from the leased area. (b) In case the United States elects to take...

  14. Applying the helium ionization detector in chromatography

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; Andrawes, F. F.; Brazell, R. S.

    1981-01-01

    High noise levels and oversensitivity of helium detector make flame-ionization and thermal-conductivity detectors more suitable for chromotography. Deficiencies are eliminated by modifying helium device to operate in saturation rather than multiplication mode. Result is low background current, low noise, high stability, and high sensitivity. Detector analyzes halocarbons, hydrocarbons, hydrogen cyanide, ammonia, and inorganics without requiring expensive research-grade helium.

  15. 21 CFR 582.1355 - Helium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Helium. 582.1355 Section 582.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Helium. (a) Product. Helium. (b) Conditions of use. This substance is generally recognized as safe...

  16. 21 CFR 582.1355 - Helium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Helium. 582.1355 Section 582.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Helium. (a) Product. Helium. (b) Conditions of use. This substance is generally recognized as safe...

  17. 43 CFR 3100.1 - Helium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Helium. 3100.1 Section 3100.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE... Helium. The ownership of and the right to extract helium from all gas produced from lands leased...

  18. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1996-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  19. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1997-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  20. Thermal vacancies and phase separation in bcc mixtures of helium-3 and helium-4

    SciTech Connect

    Fraass, Benedick Andrew

    1980-01-01

    Thermal vacancy concentrations in crystals of /sup 3/He-/sup 4/He mixtures have been determined. A new x-ray diffractometer-position sensitive detector system is used to make measurements of the absolute lattice parameter of the helium crystals with an accuracy of 300 ppM, and measurements of changes in lattice parameters to better than 60 ppM. The phase separation of the concentrated /sup 3/He-/sup 4/He mixtures has been studied in detail with the x-ray measurements. Vacancy concentrations in crystals with 99%, 51%, 28%, 12%, and 0% /sup 3/He have been determined. Phase separation has been studied in mixed crystals with concentrations of 51%, 28%, and 12% /sup 3/He and melting pressures between 3.0 and 6.1 MPa. The phase separation temperatures determined in this work are in general agreement with previous work. The pressure dependence of T/sub c/, the phase separation temperature for a 50% mixture, is found to be linear: dT/sub c//dP = -34 mdeg/MPa. The x-ray measurements are used to make several comments on the low temperature phase diagram of the helium mixtures.

  1. Vortex Rings in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Alamri, Sultan Z.; Barenghi, Carlo F.

    2008-11-01

    We present results of numerical simulations of large-scale vortex rings in superfluid helium. These large-scale vortex rings consists of many discrete (quantized) vortex filaments which interact with each other moving according to the Biot-Savart law. Lifetime, structural stability and speed of large-scale vortex rings will be discussed and compared to experimental results.

  2. Helium diffusion in the sun

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Pinsonneault, M. H.

    1992-01-01

    We calculate improved standard solar models using the new Livermore (OPAL) opacity tables, an accurate (exportable) nuclear energy generation routine which takes account of recent measurements and analyses, and the recent Anders-Grevesse determination of heavy element abundances. We also evaluate directly the effect of the diffusion of helium with respect to hydrogen on the calculated neutrino fluxes, on the primordial solar helium abundance, and on the depth of the convective zone. Helium diffusion increases the predicted event rates by about 0.8 SNU, or 11 percent of the total rate, in the chlorine solar neutrino experiment, by about 3.5 SNU, or 3 percent, in the gallium solar neutrino experiments, and by about 12 percent in the Kamiokande and SNO solar neutrino experiments. The best standard solar model including helium diffusion and the most accurate nuclear parameters, element abundances, and radiative opacity predicts a value of 8.0 SNU +/- 3.0 SNU for the C1-37 experiment and 132 +21/-17 SNU for the Ga - 71 experiment, where the uncertainties include 3 sigma errors for all measured input parameters.

  3. Geomagnetically trapped energetic helium nuclei

    SciTech Connect

    Chen, J.; Gregory Guzik, T.; Wefel, J.P.; Roger Pyle, K.; Cooper, J.F.

    1996-07-01

    Geomagnetically trapped helium nuclei, at high energy ({approximately}40{endash}100 MeV/nucleon), have been measured by the ONR-604 instrument during the 1990/1991 CRRES mission. The ONR-604 instrument resolved the isotopes of helium with a mass resolution of 0.1 amu. The energetic helium observed at {ital L}{lt}2.3 have a pitch angle distribution peaking perpendicular to the local magnetic field, which is characteristic of a trapped population. Both the trapped {sup 3}He and {sup 4}He show two peaks at {ital L}=1.2 and 1.9. Each isotope{close_quote}s flux, in each peak, can be characterized by a power law energy spectrum. The energy spectrum of the {sup 3}He is different from that of {sup 4}He, indicating that the {sup 3}He/{sup 4}He ratio is energy dependent. Over the energy range of 51{endash}86 MeV/nucleon, the {sup 3}He/{sup 4}He ratio is 8.7{plus_minus}3.1 at {ital L}=1.1{endash}1.5 and is 2.4{plus_minus}0.6 at {ital L}=1.5{endash}2.3. The trapped helium counting rates decrease gradually with time during the CRRES mission, when the anomalous component is excluded from the inner heliosphere, indicating that these high energy ions were not injected by flares during this time period. The decrease in intensity is attributed mainly to the events around {ital L}=1.9. The helium around {ital L}=1.2, dominated by {sup 3}He, does not show a significant temporal evolution, which implies a long-term energetic trapped {sup 3}He population. Two possible origins of the geomagnetically trapped helium isotopes are the interactions of energetic protons with the upper atmosphere and/or the inward diffusion and acceleration of helium ions due to electric-field fluctuations. {copyright} {ital 1996 American Institute of Physics.}

  4. Gaseous phase coal surface modification

    SciTech Connect

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  5. Combination free-electron and gaseous laser

    SciTech Connect

    Brau, C.A.; Rockwood, S.D.; Stein, W.E.

    1981-06-08

    A multiple laser having one or more gaseous laser stages and one or more free electron stages is described. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  6. Combination free electron and gaseous laser

    DOEpatents

    Brau, Charles A.; Rockwood, Stephen D.; Stein, William E.

    1980-01-01

    A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  7. Viscosity and thermal conductivity coefficients of gaseous and liquid oxygen

    NASA Technical Reports Server (NTRS)

    Hanley, H. J. M.; Mccarty, R. D.; Sengers, J. V.

    1974-01-01

    Equations and tables are presented for the viscosity and thermal conductivity coefficients of gaseous and liquid oxygen at temperatures between 80 K and 400 K for pressures up to 200 atm. and at temperatures between 80 K and 2000 K for the dilute gas. A description of the anomalous behavior of the thermal conductivity in the critical region is included. The tabulated coefficients are reliable to within about 15% except for a region in the immediate vicinity of the critical point. Some possibilities for future improvements of this reliability are discussed.

  8. Leakage predictions for Rayleigh-step, helium-purge seals

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    1988-01-01

    Rayleigh-step, helium purge, annular shaft seals, studied for use in liquid oxygen turbopumps, generate a hydrodynamic force that enables the seal to follow shaft perturbations. Hence, smaller clearances can be used to reduce seal leakage. FLOWCAL, a computer code developed by Mechanical Technology Incorporated, predicts gas flow rate through an annular seal with an axial pressure gradient. Analysis of a 50-mm Rayleigh-step, helium-purge, annular seal showed the flow rate increased axial pressure gradient, downstream pressure, and eccentricity ratio. Increased inlet temperature reduced leakage. Predictions made at maximum and minimum clearances (due to centrifugal and thermal growths, machining tolerances and + or - 2 percent uncertainty in the clearance measurement) placed wide boundaries on expected flow rates. The widest boundaries were set by thermal growth conditions. Predicted flow rates for a 50-mm Rayleigh-step, helium-purge, annular seal underestimated measured flow rates by three to seven times. However, the analysis did accurately predict flow rates for choked gas flow through annular seals when compared to flow rates measured in two other independent studies.

  9. Laminar-flow torch for helium inductively coupled plasma spectrometry

    SciTech Connect

    Tan, H.; Chan, S.K.; Montaser, A.

    1988-11-15

    Helium inductively coupled plasmas (He ICPs) operated at atmospheric pressure, possess two advantages compared to Ar ICPs for atomic emission spectrometry (AES) and mass spectrometry (MS). First, for the elements tested so far, the detection powers for the He ICPs are superior to those for an Ar discharge. Second, the emission background spectra of the He ICPs are quite simple in the red and the near-infrared regions, thus reducing the spectral interference problems encountered with the determination of halogens and other nonmetals. Relatedly, certain mass spectral interferences noted in the detection of monoisotopic elements are eliminated when helium is used as the plasma gas instead of argon. For the most recent studies of He ICPs, the authors used a tangential-flow torch to form an annular plasma at forward power of 1500 W with a total helium gas flow of 8 L/min. The present study is concerned with the formation and preliminary characterization of a He ICP using a laminar-flow torch. The total helium gas flow for this torch is less than 2 L/min. Studies of plasmas formed in laminar-flow torches are important because of the possibility to reduce one major source of noise resulting from the rotation of the plasma gas in tangential-flow torches.

  10. Numerical simulation of losses along a natural circulation helium loop

    NASA Astrophysics Data System (ADS)

    Knížat, Branislav; Urban, František; Mlkvik, Marek; RidzoÅ, František; Olšiak, Róbert

    2016-06-01

    A natural circulation helium loop appears to be a perspective passive method of a nuclear reactor cooling. When designing this device, it is important to analyze the mechanism of an internal flow. The flow of helium in the loop is set in motion due to a difference of hydrostatic pressures between cold and hot branch. Steady flow at a requested flow rate occurs when the buoyancy force is adjusted to resistances against the flow. Considering the fact that the buoyancy force is proportional to a difference of temperatures in both branches, it is important to estimate the losses correctly in the process of design. The paper deals with the calculation of losses in branches of the natural circulation helium loop by methods of CFD. The results of calculations are an important basis for the hydraulic design of both exchangers (heater and cooler). The analysis was carried out for the existing model of a helium loop of the height 10 m and nominal heat power 250 kW.

  11. Time-resolved vacuum-ultraviolet emission (λ  =  60-120 nm) from a high pressure DBD-excited helium plasma: formation mechanisms of the fast component

    NASA Astrophysics Data System (ADS)

    Carman, R. J.; Ganesan, R.; Kane, D. M.

    2016-03-01

    We report time and wavelength resolved studies of the vacuum-ultraviolet (VUV) emission from a windowless dielectric barrier discharge (DBD) in helium. Short-pulse voltage excitation is utilised to clearly resolve the fast and slow temporal components of the Hopfield continuum between λ  =  60-120 nm. Experimental results and theoretical modelling of the spectral distributions indicate that the two components of the VUV emission must originate from the same radiating molecular state—\\text{He}2\\ast≤ft({{\\text{A}}1}Σ\\text{u}+\\right) , and that two distinct pumping mechanisms populate this state. The time evolution of the fast component is found to correlate with that from the (0,0) molecular transition \\text{He}2\\ast≤ft({{\\text{E}}1}{{\\Pi}\\text{g}}-~{{\\text{A}}1}Σ\\text{u}+\\right) (λ  =  513.4 nm). Thus the \\text{He}2\\ast≤ft({{\\text{A}}1}{}Σ\\text{u}+\\right) state is initially rapidly pumped via radiative cascade from higher \\text{He}2\\ast(n=3) molecular states. In addition, the observed band emissions from the molecular \\text{He}2\\ast≤ft({{\\text{E}}1}{{\\Pi}\\text{g}}\\right) v=0 and \\text{He}2\\ast≤ft({{\\text{F}}1}Σ\\text{u}+\\right) v=0 states and the line emissions from the atomic He*(n  =  3) states all exhibit similar temporal behaviour during the discharge excitation period. Our results are consistent with the recent report of Frost et al (J. Phys. B 34 1569 2001) concerning the existence of a so-called ‘neglected channel’ to fast \\text{He}2\\ast production from He*(n  =  3) atomic state precursors.

  12. Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.

    1996-01-01

    A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable-launch-vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable-launch-vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.

  13. Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.

    1996-01-01

    A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable launch vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable launch vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.

  14. Production of gaseous radiotracers for industrial applications.

    PubMed

    Sharma, V K; Pant, H J; Goswami, Sunil; Jagadeesan, K C; Anand, S; Chitra, S; Rana, Y S; Sharma, Archana; Singh, Tej; Gujar, H G; Dash, Ashutosh

    2016-10-01

    This paper describes prerequisite tests, analysis and the procedure for irradiation of gaseous targets and production of gaseous radioisotopes i.e. argon-41 ((41)Ar) and krypton-79 ((79)Kr) in a 100MWTh DHRUVA reactor located at Bhabha Atomic Research Center (BARC), Trombay, Mumbai, India. The produced radioisotopes will be used as radiotracers for tracing gas phase in industrial process systems. Various details and prequalification tests required for irradiation of gaseous targets are discussed. The procedure for regular production of (41)Ar and (79)Kr, and assay of their activity were standardized. Theoretically estimated and experimentally produced amounts of activities of the two radioisotopes, irradiated at identical conditions, were compared and found to be in good agreement. Based on the various tests, radiological safety analysis and standardization of the irradiation procedure, necessary approval was obtained from the competent reactor operating and safety authorities for regular production of gaseous radiotracers in DHRUVA reactor. PMID:27518216

  15. Approximating the Helium Wavefunction in Positronium-Helium Scattering

    NASA Technical Reports Server (NTRS)

    DiRienzi, Joseph; Drachman, Richard J.

    2003-01-01

    In the Kohn variational treatment of the positronium- hydrogen scattering problem the scattering wave function is approximated by an expansion in some appropriate basis set, but the target and projectile wave functions are known exactly. In the positronium-helium case, however, a difficulty immediately arises in that the wave function of the helium target atom is not known exactly, and there are several ways to deal with the associated eigenvalue in formulating the variational scattering equations to be solved. In this work we will use the Kohn variational principle in the static exchange approximation to d e t e e the zero-energy scattering length for the Ps-He system, using a suite of approximate target functions. The results we obtain will be compared with each other and with corresponding values found by other approximation techniques.

  16. Gaseous Vortices in Barred Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    England, Martin N.; Hunter, James H., Jr.

    1995-01-01

    During the course of examining many two-dimensional, as well as a smaller sample of three-dimensional, models of gas flows in barred spiral galaxies, we have been impressed by the ubiquitous presence fo vortex pairs, oriented roughly perpendicular to their bars, with one vortex on each side. The vortices are obvious only when viewed in the bar frame, and the centers of their velocity fields usually are near Lagrangian points L(sub 4,5). In all models that we have studied, the vortices form on essentially the same time scale as that for the development of gaseous spiral arms, typically two bar rotations. Usually the corotation radius, r(sub c), lies slightly beyond the end of the bar. Depending upon the mass distributions of the various components, gas spirals either into, or out of, the vortices: In the former case, the vortices become regions of high density, whereas the opposite is true if the gas spirals out of a vortex. The models described in this paper have low-density vortices, as do most of the models we have studied. Moreover, usually the vortex centers lie approximately within +/- 15 deg of L(sub 4,5). In the stellar dynamic limit, when pressure and viscous forces are absent, short-period orbits exist, centered on L(sub 4,5). These orbits need not cross and therefore their morphology is that of gas streamlines, that is, vortices. We believe that the gas vortices in our models are hydrodynamic analogues of closed, short-period, libration orbits centered on L(sub 4,5).

  17. Tensile properties of ADI material in water and gaseous environments

    SciTech Connect

    Rajnovic, Dragan; Balos, Sebastian; Sidjanin, Leposava; Eric Cekic, Olivera; Grbovic Novakovic, Jasmina

    2015-03-15

    Austempered ductile iron (ADI) is an advanced type of heat treated ductile iron, having comparable mechanical properties as forged steels. However, it was found that in contact with water the mechanical properties of austempered ductile irons decrease, especially their ductility. Despite considerable scientific attention, the cause of this phenomenon remains unclear. Some authors suggested that hydrogen or small atom chemisorption causes the weakening of the surface atomic bonds. To get additional reliable data of that phenomenon, in this paper, two different types of austempered ductile irons were tensile tested in various environments, such as: argon, helium, hydrogen gas and water. It was found that only the hydrogen gas and water gave a statistically significant decrease in mechanical properties, i.e. cause embrittlement. Furthermore, the fracture surface analysis revealed that the morphology of the embrittled zone near the specimen surface shares similarities to the fatigue micro-containing striation-like lines, which indicates that the morphology of the brittle zone may be caused by cyclic local-chemisorption, micro-embrittlement and local-fracture. - Highlights: • In contact with water and other liquids the ADI suddenly exhibits embrittlement. • The embrittlement is more pronounced in water than in the gaseous hydrogen. • The hydrogen chemisorption into ADI surface causes the formation of a brittle zone. • The ADI austempered at lower temperatures (300 °C) is more resistant to embrittlement.

  18. Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads

    NASA Technical Reports Server (NTRS)

    Kogut, Alan; James, Bryan; Fixsen, Dale

    2013-01-01

    Astrophysical observations at millimeter wavelengths require large (2-to-5- meter diameter) telescopes carried to altitudes above 35 km by scientific research balloons. The scientific performance is greatly enhanced if the telescope is cooled to temperatures below 10 K with no emissive windows between the telescope and the sky. Standard liquid helium bucket dewars can contain a suitable telescope for telescope diameter less than two meters. However, the mass of a dewar large enough to hold a 3-to-5-meter diameter telescope would exceed the balloon lift capacity. The solution is to separate the functions of cryogen storage and in-flight thermal isolation, utilizing the unique physical conditions at balloon altitudes. Conventional dewars are launched cold: the vacuum walls necessary for thermal isolation must also withstand the pressure gradient at sea level and are correspondingly thick and heavy. The pressure at 40 km is less than 0.3% of sea level: a dewar designed for use only at 40 km can use ultra thin walls to achieve significant reductions in mass. This innovation concerns new construction and operational techniques to produce a lightweight liquid helium bucket dewar. The dewar is intended for use on high-altitude balloon payloads. The mass is low enough to allow a large (3-to-5-meter) diameter dewar to fly at altitudes above 35 km on conventional scientific research balloons without exceeding the lift capability of the balloon. The lightweight dewar has thin (250- micron) stainless steel walls. The walls are too thin to support the pressure gradient at sea level: the dewar launches warm with the vacuum space vented continuously during ascent to eliminate any pressure gradient across the walls. A commercial 500-liter storage dewar maintains a reservoir of liquid helium within a minimal (hence low mass) volume. Once a 40-km altitude is reached, the valve venting the vacuum space of the bucket dewar is closed to seal the vacuum space. A vacuum pump then

  19. Chemical reactions studied at ultra-low temperature in liquid helium clusters

    NASA Astrophysics Data System (ADS)

    Huisken, Friedrich; Krasnokutski, Serge A.

    2012-11-01

    Low-temperature reaction rates are important ingredients for astrophysical reaction networks modeling the formation of interstellar matter in molecular clouds. Unfortunately, such data is difficult to obtain by experimental means. In an attempt to study low-temperature reactions of astrophysical interest, we have investigated relevant reactions at ultralow temperature in liquid helium droplets. Being prepared by supersonic expansion of helium gas at high pressure through a nozzle into a vacuum, large helium clusters in the form of liquid droplets constitute nano-sized reaction vessels for the study of chemical reactions at ultra-low temperature. If the normal isotope 4He is used, the helium droplets are superfluid and characterized by a constant temperature of 0.37 K. Here we present results obtained for Mg, Al, and Si reacting with O2. Mass spectrometry was employed to characterize the reaction products. As it may be difficult to distinguish between reactions occurring in the helium droplets before they are ionized and ion-molecule reactions taking place after the ionization, additional techniques were applied to ensure that the reactions actually occurred in the helium droplets. This information was provided by measuring the chemiluminescence light emitted by the products, the evaporation of helium atoms by the release of the reaction heat, or by laser-spectroscopic identification of the reactants and products.

  20. Chemical reactions studied at ultra-low temperature in liquid helium clusters

    SciTech Connect

    Huisken, Friedrich; Krasnokutski, Serge A.

    2012-11-27

    Low-temperature reaction rates are important ingredients for astrophysical reaction networks modeling the formation of interstellar matter in molecular clouds. Unfortunately, such data is difficult to obtain by experimental means. In an attempt to study low-temperature reactions of astrophysical interest, we have investigated relevant reactions at ultralow temperature in liquid helium droplets. Being prepared by supersonic expansion of helium gas at high pressure through a nozzle into a vacuum, large helium clusters in the form of liquid droplets constitute nano-sized reaction vessels for the study of chemical reactions at ultra-low temperature. If the normal isotope {sup 4}He is used, the helium droplets are superfluid and characterized by a constant temperature of 0.37 K. Here we present results obtained for Mg, Al, and Si reacting with O{sub 2}. Mass spectrometry was employed to characterize the reaction products. As it may be difficult to distinguish between reactions occurring in the helium droplets before they are ionized and ion-molecule reactions taking place after the ionization, additional techniques were applied to ensure that the reactions actually occurred in the helium droplets. This information was provided by measuring the chemiluminescence light emitted by the products, the evaporation of helium atoms by the release of the reaction heat, or by laser-spectroscopic identification of the reactants and products.