Science.gov

Sample records for gaseous helium pressurant

  1. Pressure-Volume-Temperature (PVT) Gauging of an Isothermal Cryogenic Propellant Tank Pressurized with Gaseous Helium

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2014-01-01

    Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.

  2. Modelling and Experimental Verification of Pressure Wave Following Gaseous Helium Storage Tank Rupture

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Grabowski, M.; Jędrusyna, A.; Wach, J.

    Helium inventory in high energy accelerators, tokamaks and free electron lasers may exceed tens of tons. The gaseous helium is stored in steel tanks under a pressure of about 20 bar and at environment temperature. Accidental rupture of any of the tanks filled with the gaseous helium will create a rapid energy release in form of physical blast. An estimation of pressure wave distribution following the tank rupture and potential consequences to the adjacent research infrastructure and buildings is a very important task, critical in the safety aspect of the whole cryogenic system. According to the present regulations the TNT equivalent approach is to be applied to evaluate the pressure wave following a potential gas storage tank rupture. A special test stand was designed and built in order to verify experimentally the blast effects in controlled conditions. In order to obtain such a shock wave a pressurized plastic tank was used. The tank was ruptured and the resulting pressure wave was recorded using a spatially-distributed array of pressure sensors connected to a high-speed data acquisition device. The results of the experiments and the comparison with theoretical values obtained from thermodynamic model of the blast are presented. A good agreement between the simulated and measured data was obtained. Recommendations regarding the applicability of thermodynamic model of physical blast versus TNT approach, to estimate consequences of gas storage tank rupture are formulated. The laboratory scale experimental results have been scaled to ITER pressurized helium storage tanks.

  3. Thermodynamic Vent System Performance Testing with Subcooled Liquid Methane and Gaseous Helium Pressurant

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2007-01-01

    Due to its high specific impulse and favorable thermal properties for storage, liquid methane (LCH4) is being considered as a candidate propellant for exploration architectures. In order to gain an -understanding of any unique considerations involving micro-gravity pressure control with LCH4, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the performance of a spray-bar thermodynamic vent system (TVS) with subcooled LCH4 and gaseous helium (GHe) pressurant. Thirteen days of testing were performed in November 2006, with total tank heat leak conditions of about 715 W and 420 W at a fill level of approximately 90%. The TVS system was used to subcool the LCH4 to a liquid saturation pressure of approximately 55.2 kPa before the tank was pressurized with GHe to a total pressure of 165.5 kPa. A total of 23 TVS cycles were completed. The TVS successfully controlled the ullage pressure within a prescribed control band but did not maintain a stable liquid saturation pressure. This was likely. due to a TVS design not optimized for this particular propellant and test conditions, and possibly due to a large artificially induced heat input directly into the liquid. The capability to reduce liquid saturation pressure as well as maintain it within a prescribed control band, demonstrated that the TVS could be used to seek and maintain a desired liquid inlet temperature for an engine (at a cost of propellant lost through the TVS vent). One special test was conducted at the conclusion of the planned test activities. Reduction of the tank ullage pressure by opening the Joule-Thomson valve (JT) without operating the pump was attempted. The JT remained open for over 9300 seconds, resulting in an ullage pressure reduction of 30 kPa. The special test demonstrated the feasibility of using the JT valve for limited ullage pressure reduction in the event of a pump failure.

  4. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  5. Analyzing the Use of Gaseous Helium as a Pressurant with Cryogenic Propellants with Thermodynamic Venting System Modelling and Test Data

    NASA Astrophysics Data System (ADS)

    Hedayat, A.; Nelson, S. L.; Hastings, L. J.; Flachbart, R. H.; Vermilion, D. J.; Tucker, S. P.

    2008-03-01

    Cryogens are viable candidate propellants for NASA's Lunar and Mars exploration programs. To provide adequate mass flow to the system's engines and/or prevent feed system cavitation, gaseous helium (GHe) is frequently considered as a pressurant. A Thermodynamic Venting System (TVS) is designed to maintain tank pressure during low gravity operations without propellant resettling. Tests were conducted in the Marshall Space Flight Center (MSFC) Multi-purpose Hydrogen Test Bed (MHTB) to evaluate the effects of GHe pressurant on pressure control performance of a TVS with liquid hydrogen (LH2) and nitrogen (LN2) test liquids. The TVS used comprises a recirculation pump, a Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. A small amount of liquid extracted from the tank recirculation line was passed through the J-T valve and then through the heat exchanger, extracting thermal energy from the bulk liquid and ullage and thereby enabling pressure control. The LH2/GHe tests were performed at fill levels of 90%, 50%, and 25%, and LN2/GHe tests were conducted at fill levels of 50% and 25%. Moreover, each test was conducted with a specified tank ullage pressure control band. A one-dimensional TVS performance program was used to analyze and correlate the test data. Predictions were compared with test data of ullage pressure and temperature and bulk liquid saturation pressure and temperature.

  6. Analyzing the Use of Gaseous Helium as a Pressurant with Cryogenic Propellants with Thermodynamic Venting System Modelling and Test Data

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Nelson, S.L.; Hastings, L.J.; Flachbart, R.H.; Vermillion, D.J.; Tucker, S.P.

    2007-01-01

    Cryogens are viable candidate propellants for NASA's Lunar and Mars exploration programs. To provide adequate mass flow to the system's engines and/or to prevent feed system cavitation, gaseous helium (GHe) is frequently considered as a pressurant. During low gravity operations, a Thermodynamic Venting System (TVS) is designed to maintain tank pressure during low gravity operations without propellant resettling. Therefore, a series of tests were conducted in the Multi-purpose Hydrogen Test Bed (MHTB) of Marshall Space Flight Center (MSFC) in order to evaluate the effects of GHe pressurant on pressure control performance of a TVS with liquid hydrogen (LH2) and nitrogen (LN2) as the test liquids. The TVS used in these test series consists of a recirculation pump, Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. Using a small amount of liquid extracted from the tank recirculation line, passing it through the J-T valve, and then through the heat exchanger, thermal energy is extracted from the bulk liquid and ullage thereby enabling pressure control. The LH2/GHe tests were performed at fill levels of 90%, 50%, and 25% and LN2/GHe tests were conducted at fill levels of 50% and 25%. Moreover, each test was conducted with a specified tank ullage pressure control band. A one-dimensional TVS performance program was used to analyze and correlate the test data. Predictions and comparisons with test data of ullage pressure and temperature and bulk liquid saturation pressure and temperature with test data are presented.

  7. Trace organic impurities in gaseous helium

    NASA Technical Reports Server (NTRS)

    Schehl, T. A.

    1973-01-01

    A program to determine trace organic impurities present in helium has been initiated. The impurities were concentrated in a cryogenic trap to permit detection and identification by a gas chromatographic-mass spectrometric technique. Gaseous helium (GHe) exhibited 63 GC flame ionization response peaks. Relative GC peak heights and identifications of 25 major impurities by their mass spectra are given. As an aid to further investigation, identities are proposed for 16 other components, and their mass spectra are given.

  8. Characterization of gaseous helium jet dispersion to atmosphere

    NASA Astrophysics Data System (ADS)

    Khan, H. J.; Figueroa, O.; Rhee, M.

    A major ground-based experiment to be performed for the Superfluid Helium On Orbit Transfer (SHOOT) program is the accidental loss of the vacuum guard of the super-insulated dewar. The design of the dewar vent-path requires adequate mass removal after a preset pressure is reached due to external heat transfer. The existing helium creates a turbulent buoyant jet, expanding in air with entrainment of the jet interface to the surrounding. Transient analysis is performed for axial and radial jet temperature prediction using the self-similarity assumption applied to mass, momentum, and the energy-balance equations of helium. The predicted jet temperature profiles with vertical and radial expansion up to 1.6 and 1.0 m, respectively, demonstrate the low temperature core established by gaseous helium. For all time steps, the axial and radial temperature predictions are observed to be within 8 and 20 percent, respectively.

  9. Validity of the Ruff-MKW boiling point method: Vapor pressures, diffusion coefficients in argon and helium, and viscosity coefficients for gaseous cadmium and zinc

    NASA Astrophysics Data System (ADS)

    Wahlbeck, P. G.; Myers, D. L.; Truong, V. V.

    1985-09-01

    The Ruff-MKW boiling point method is used to determine equilibrium vapor pressures greater than 660 Pa (5 Torr). Samples are vaporized from a Ruff cell, which has a capillary exit, in the presence of an inert gas. Viscosity coefficients and gaseous interdiffusion coefficients may be determined also. This is a second study of the method using Cd(l) and Zn(l) as samples. For the first study with CsCl(l), see J. Chem. Phys. 81, 915 (1984). Vapor pressure data are in good agreement with previous data and gave a third-law ΔsubH0(298) for Cd(s) of 111.95±0.42 kJ/mol and for Zn(s) of 130.65±0.48 kJ/mol. Analyses of the diffusion coefficients gave atomic diameters of 4.06×10-10 m for Cd and 3.46×10-10 m for Zn; these values are somewhat larger than previously measured values. In these experiments when the equilibrium vapor pressures were greater than 13 000 Pa (100 Torr), the need to consider heat transfer from the furnace to the vaporizing sample was noted, i.e., sample cooling occured due to rapid vaporization. Validity of the MKW analysis was found.

  10. Purge Monitoring Technology for Gaseous Helium (GHe) Conservation

    NASA Technical Reports Server (NTRS)

    Dickey, Jonathan; Lansaw, John

    2010-01-01

    John C. Stennis Space Center provides rocket engine propulsion testing for the NASA space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has gone through acceptance testing before going to Kennedy Space Center for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that used Liquid Oxygen (LO2) and Liquid Hydrogen (LH2) as propellants. Due to the extremely cold cryogenic conditions of this environment, an inert gas, helium, is used as a purge for the engine and propellant lines since it can be used without freezing in the cryogenic environment. As NASA moves forward with the development of the new ARES V launch system, the main engines as well as the upper stage engine will use cryogenic propellants and will require gaseous helium during the development testing of each of these engines. The main engine for the ARES V will be similar in size to the SSME.

  11. Liquid Oxygen Thermodynamic Vent System Testing with Helium Pressurization

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.

    2014-01-01

    This report presents the results of several thermodynamic vent system (TVS) tests with liquid oxygen plus a test with liquid nitrogen. In all tests, the liquid was heated above its normal boiling point to 111 K for oxygen and 100 K for nitrogen. The elevated temperature was representative of tank conditions for a candidate lunar lander ascent stage. An initial test series was conducted with saturated oxygen liquid and vapor at 0.6 MPa. The initial series was followed by tests where the test tank was pressurized with gaseous helium to 1.4 to 1.6 MPa. For these tests, the helium mole fraction in the ullage was quite high, about 0.57 to 0.62. TVS behavior is different when helium is present than when helium is absent. The tank pressure becomes the sum of the vapor pressure and the partial pressure of helium. Therefore, tank pressure depends not only on temperature, as is the case for a pure liquid-vapor system, but also on helium density (i.e., the mass of helium divided by the ullage volume). Thus, properly controlling TVS operation is more challenging with helium pressurization than without helium pressurization. When helium was present, the liquid temperature would rise with each successive TVS cycle if tank pressure was kept within a constant control band. Alternatively, if the liquid temperature was maintained within a constant TVS control band, the tank pressure would drop with each TVS cycle. The final test series, which was conducted with liquid nitrogen pressurized with helium, demonstrated simultaneous pressure and temperature control during TVS operation. The simultaneous control was achieved by systematic injection of additional helium during each TVS cycle. Adding helium maintained the helium partial pressure as the liquid volume decreased because of TVS operation. The TVS demonstrations with liquid oxygen pressurized with helium were conducted with three different fluid-mixer configurations-a submerged axial jet mixer, a pair of spray hoops in the tank

  12. Characterization of gaseous helium jet dispersion to atmosphere. [due to accidental loss of vacuum guard of superinsulated dewar shuttle payload

    NASA Technical Reports Server (NTRS)

    Khan, H. J.; Figueroa, O.; Rhee, M.

    1992-01-01

    A major ground-based experiment to be performed for the Superfluid Helium On Orbit Transfer (SHOOT) program is the accidental loss of the vacuum guard of the super-insulated dewar. The design of the dewar vent-path requires adequate mass removal after a preset pressure is reached due to external heat transfer. The existing helium creates a turbulent buoyant jet, expanding in air with entrainment of the jet interface to the surrounding. Transient analysis is performed for axial and radial jet temperature prediction using the self-similarity assumption applied to mass, momentum, and the energy-balance equations of helium. The predicted jet temperature profiles with vertical and radial expansion up to 1.6 and 1.0 m, respectively, demonstrate the low temperature core established by gaseous helium. For all time steps, the axial and radial temperature predictions are observed to be within 8 and 20 percent, respectively.

  13. Carburization of austenitic alloys by gaseous impurities in helium

    SciTech Connect

    Lai, G.Y.; Johnson, W.R.

    1980-03-01

    The carburization behavior of Alloy 800H, Inconel Alloy 617 and Hastelloy Alloy X in helium containing various amounts of H/sub 2/, CO, CH/sub 4/, H/sub 2/O and CO/sub 2/ was studied. Corrosion tests were conducted in a temperature range from 649 to 1000/sup 0/C (1200 to 1832/sup 0/F) for exposure time up to 10,000 h. Four different helium environments, identified as A, B, C, and D, were investigated. Concentrations of gaseous impurities were 1500 ..mu..atm H/sub 2/, 450 ..mu..atm CO, 50 ..mu..atm CH/sub 4/ and 50 ..mu..atm H/sub 2/O for Environment A; 200 ..mu..atm H/sub 2/, 100 ..mu..atm CO, 20 ..mu..atm CH/sub 4/, 50 ..mu..atm H/sub 2/O and 5 ..mu..atm CO/sub 2/ for Environment B; 500 ..mu..atm H/sub 2/, 50 ..mu..atm CO, 50 ..mu..atm CH/sub 4/ and < 0.5 ..mu..atm H/sub 2/O for Environment C; and 500 ..mu..atm H/sub 2/, 50 ..mu..atm CO, 50 ..mu..atm CH/sub 4/ and 1.5 ..mu..atm H/sub 2/O for Environment D. Environments A and B were characteristic of high-oxygen potential, while C and D were characteristic of low-oxygen potential. The results showed that the carburization kinetics in low-oxygen potential environments (C and D) were significantly higher, approximately an order of magnitude higher at high temperatures, than those in high-oxygen potential environments (A and B) for all three alloys. Thermodynamic analyses indicated no significant differences in the thermodynamic carburization potential between low- and high-oxygen potential environments. It is thus believed that the enhanced carburization kinetics observed in the low-oxygen potential environments were related to kinetic effects. A qualitatively mechanistic model was proposed to explain the enhanced kinetics. The present results further suggest that controlling the oxygen potential of the service environment can be an effective means of reducing carburization of alloys.

  14. Primary helium heater for propellant pressurization systems

    NASA Technical Reports Server (NTRS)

    Reichmuth, D. M.; Nguyen, T. V.; Pieper, J. L.

    1991-01-01

    The primary helium heater is a unique design that provides direct heating of pressurant gas for large pressure fed propulsion systems. It has been conceptually designed to supply a heated (800-1000 R) pressurization gas to both a liquid oxygen and an RP-1 propellant tank. This pressurization gas is generated within the heater by mixing super critical helium (40-300 R and 3000-1600 psi) with an appropriate amount of combustion products from a 4:1 throttling stoichiometric LO2/LH2 combustor. This simple, low cost and reliable mixer utilizes the large quantity of helium to provide stoichiometric combustor cooling, extend the throttling limits and enhance the combustion stability margin. Preliminary combustion, thermal, and CFD analyses confirm that this low-pressure-drop direct helium heater can provide the constant-temperature pressurant suitable for tank pressurization of both fuel and oxidizer tanks of large pressure fed vehicles.

  15. 2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  16. Pressure-Driven Flow of Solid Helium

    NASA Astrophysics Data System (ADS)

    Day, James; Beamish, John

    2006-03-01

    The recent torsional oscillator results of Kim and Chan show an anomalous mass decoupling, interpreted by the authors as a supersolid phase transition, in solid He4. We have used a piezoelectrically driven diaphragm to study the flow of solid helium through an array of capillaries. Our measurements showed no indication of low temperature flow, placing stringent restrictions on supersolid flow in response to a pressure difference. The average flow speed at low temperatures was less than 1.2×10-14m/s, corresponding to a supersolid velocity at least 7 orders of magnitude smaller than the critical velocities inferred from the torsional oscillator measurements.

  17. Molecular dynamics study of helium bubble pressure in tungsten

    NASA Astrophysics Data System (ADS)

    Cui, Jiechao; Li, Min; Wang, Jun; Hou, Qing

    2015-06-01

    Molecular dynamics simulations were performed to calculate the stress field in a tungsten matrix containing a nano-scale helium bubble. A helium bubble in tungsten is found to consist of a core and an interface of finite thickness of approximately 0.6 nm. The core contains only helium atoms that are uniformly distributed. The interface is composed of both helium and tungsten atoms. In the periphery region of the helium bubble, the stress filed is found to follow the stress formula based on the elasticity theory of solid. The pressure difference between both sides of the interface can be well described by the Young-Laplace equation for the core size of a helium bubble as small as 0.48 nm. A comparison was performed between the pressure in the helium bubble core and the pressure in pure helium. For a core size larger than 0.3 nm, the pressure in the core of a helium bubble is in good agreement with the pressure in pure helium of the same helium density. These results provide guidance to larger scale simulation methods, such as in kinetic Monte Carlo methods and rate theory.

  18. Diagnostics of a High Pressure Helium Microplasma

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Koleva, Ivanka; Economou, Demetre; Donnelly, Vincent

    2004-09-01

    Gas and plasma diagnostics were performed in a slot-type DC microplasma (200 microns gap) discharge at high pressures. The gas temperature in a helium discharge was estimated by adding small quantities of nitrogen (<100 ppm) into the gas feed. Specific rotational bands of the N2 second positive system were carefully selected to avoid interference with emission from He atoms and He2 excimer. At 250 Torr pressure and 200 mA/cm2 current density, the gas temperature was Tg = 350 +/- 25 K. The measured gas temperature was almost independent (to within experimental uncertainty) of pressure (in the range of 150 Torr - 600 Torr), and current density (in the range of 100 mA/cm2 - 400 mA/cm2). These measurements were consistent with a simple heat transfer model. Spatially resolved measurements of electron temperature were also performed using trace rare gas optical emission actinometry (TRG-OES). These measurements are greatly complicated by collisional quenching at the high operating pressures. Electron density and electron temperature profiles was deduced by comparing emission intensities from the Paschen 2px (x = 1-10) manifold of Ne, Ar, Kr and Xe trace gases. Results suggested that the electron temperature peaks in the cathode sheath region, while the plasma density peaks away from the cathode sheath. A self-consistent fluid model of a DC helium microdischarge was in agreement with the experimental data. The model was used to study the dependence of discharge characteristics on operating conditions (pressure, gap spacing, current density, etc.).

  19. Method to deliver ultra high purity helium gas to a use point

    SciTech Connect

    Graczk, L.S.; Francis, A.W.

    1988-08-30

    This patent describes a method to deliver helium gas to a use point comprising: (A) providing gaseous helium from a high pressure cylinder or tube into a storage container containing liquid helium; (B) passing the gaseous helium in heat exchange relation with the liquid helium to: (i) vaporize liquid helium, (ii) increase or maintain the helium pressure, and (iii) condense and/or solidify impurities out of the gaseous helium; (C) withdrawing ultra high purity helium gas comprising resulting vaporized helium and cleaned gaseous helium from the storage container; and (D) providing ultra high purity helium gas to a use point without need for further pressurization, the helium gas containing less than 10 ppm impurities.

  20. High-Pressure Gaseous Burner (HPGB) Facility Became Operational

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2003-01-01

    A gas-fueled high-pressure combustion facility with optical access, developed over the last 3 years, is now collecting research data in a production mode. The High-Pressure Gaseous Burner (HPGB) rig at the NASA Glenn Research Center can operate at sustained pressures up to 60 atm with a variety of gaseous fuels and liquid jet fuel. The facility is unique because it is the only continuous-flow, hydrogen-capable 60-atm rig in the world with optical access. It will provide researchers with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow s advanced aircraft engines. The facility provides optical access to the flame zone through four fused-silica optical windows, enabling the calibration of nonintrusive optical diagnostics to measure chemical species and temperature. The data from the HPGB rig enable the validation of numerical codes that simulate gas turbine combustors.

  1. SIGN, a WIMP detector based on high pressure gaseous neon

    NASA Astrophysics Data System (ADS)

    White, J. T.; Gao, J.; Maxin, J.; Miller, J.; Salinas, G.; Wang, H.

    A new WIMP detector concept based on the measurement of Scintillation and Ionization in Gaseous Neon (SIGN) is presented. The detector employs room temperature gaseous neon at a pressure of ≥100 bars as the WIMP target. The ionization is readout using either charge gain or electrofluorescence or both in a modified cylindrical proportional chamber geometry. The primary scintillation is detected by placing a CsI photocathode on the inside wall of the cylindrical chamber. The neon is doped with xenon (≤0.5%) for signal enhancement. Theoretical considerations suggest that the measurement of both scintillation and ionization will provide discrimination between nuclear and electron recoils in this gas mixture.

  2. Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics

    SciTech Connect

    Arpaia, P.; Blanco, E.; Inglese, V.; Pezzetti, M.; Serio, L.; Girone, M.; Piccinelli, F.

    2015-07-15

    A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [ http://www.samson.de (2015)] and Sereg-Schlumberger [ http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves—Part 2-1: Flow capacity—sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for different pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported.

  3. Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics.

    PubMed

    Arpaia, P; Blanco, E; Girone, M; Inglese, V; Pezzetti, M; Piccinelli, F; Serio, L

    2015-07-01

    A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [ http://www.samson.de (2015)] and Sereg-Schlumberger [ http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves-Part 2-1: Flow capacity-sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for different pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported.

  4. Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics

    NASA Astrophysics Data System (ADS)

    Arpaia, P.; Blanco, E.; Girone, M.; Inglese, V.; Pezzetti, M.; Piccinelli, F.; Serio, L.

    2015-07-01

    A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [http://www.samson.de (2015)] and Sereg-Schlumberger [http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves—Part 2-1: Flow capacity—sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for different pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported.

  5. Reaction control system helium pressure regulator filter failure

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The failure analysis of the command module reaction control system helium pressure regulators revealed that the filter element end caps were bulged by the helium pressure surge during activation. Some end caps may bulge and also some wire separation may occur during command module reaction control system activations; however, system performance should not be affected. The reaction control system design is acceptable and no change in hardware, system, or activation procedures is required.

  6. Phase separation in hydrogen–helium mixtures at Mbar pressures

    PubMed Central

    Morales, Miguel A.; Schwegler, Eric; Ceperley, David; Pierleoni, Carlo; Hamel, Sebastien; Caspersen, Kyle

    2009-01-01

    The properties of hydrogen–helium mixtures at Mbar pressures and intermediate temperatures (4000 to 10000 K) are calculated with first-principles molecular dynamics simulations. We determine the equation of state as a function of density, temperature, and composition and, using thermodynamic integration, we estimate the Gibbs free energy of mixing, thereby determining the temperature, at a given pressure, when helium becomes insoluble in dense metallic hydrogen. These results are directly relevant to models of the interior structure and evolution of Jovian planets. We find that the temperatures for the demixing of helium and hydrogen are sufficiently high to cross the planetary adiabat of Saturn at pressures ≈5 Mbar; helium is partially miscible throughout a significant portion of the interior of Saturn, and to a lesser extent in Jupiter. PMID:19171896

  7. Effect of dynamic diffusion of air, nitrogen, and helium gaseous media on the microhardness of ionic crystals with juvenile surfaces

    NASA Astrophysics Data System (ADS)

    Klyavin, O. V.; Fedorov, V. Yu.; Chernov, Yu. M.; Shpeizman, V. V.

    2015-09-01

    The load dependences of the microhardness of surface layers of NaCl and LiF ionic single crystals with juvenile surfaces and surfaces exposed to air for a long time measured in the air, nitrogen, and helium gaseous media have been investigated. It has been found that there is a change in the sign of the derivative of the microhardness as a function of the load for LiF crystals indented in helium and after their aging in air, as well as a weaker effect of the nitrogen and air gaseous media on the studied dependences as compared to NaCl crystals. It has also been found that, after the aging of the surface of NaCl crystals in air, there is a change in the sign of the derivative of the microhardness in the nitrogen and air gaseous media, as well as a pronounced change in the microhardness as a function of the time of aging the samples in air as compared to the weaker effect of the gaseous medium for LiF crystals. The obtained data have been analyzed in terms of the phenomenon of dislocation-dynamic diffusion of particles from the external medium into crystalline materials during their plastic deformation along the nucleating and moving dislocations. It has been shown that this phenomenon affects the microhardness through changes in the intensity of dislocation multiplication upon the formation of indentation rosettes in different gaseous media. The performed investigation of the microhardness of the juvenile surface of NaCl and LiF crystals in different gaseous media has revealed for the first time a different character of dislocation-dynamic diffusion of these media in a "pure" form.

  8. Measurement of uranium enrichment for gaseous uranium at low pressure

    NASA Astrophysics Data System (ADS)

    Close, D. A.; Pratt, J. C.; Atwater, H. F.; Malanify, J. J.; Nixon, K. V.; Speir, L. G.

    X-ray fluorescence determines the amount of total uranium present in gaseous UF6 inside cascade header pipes of a uranium centrifuge enrichment facility. A highly collimated source, highly collimated detctor, and a very rigid, reproducible geometry are required. Two measurements of the 185.7 keV gamma ray from U-235 using two collimators determine the amount of U-235 present only in the gas phase. The ratio of the gas only U235 signal to the total uranium gas only signal is directly proportional to the enrichment of the process UF6 gas. This measurement technique is independent of the deposit that forms on a surface in contact with UF6. This measurement technique is independent of the pressure of the gaseous UF6. This technique has the required sensitivity to determine whether the process gas is of uranium enrichment less than or equal to 20% or 20%.

  9. Optimization of gaseous helium heater for 2 K cryogenic system for VECC’s superconducting electron linac

    NASA Astrophysics Data System (ADS)

    Ahammed, Manir; Ghosh, Siddhartha; Saha, Subrata; Singh, Sandeep Kumar; Bhattacharya, Tamal Kumar; DuttaGupta, Anjan; Pal, Gautam; Naik, Vaishali; Chakrabarti, Alok

    2014-09-01

    Niobium superconducting radiofrequency cavities are generally operated at around 2 K temperature to achieve a high quality factor by reducing residual surface losses. 2 K temperature is produce by lowering down the pressure of the helium by employing a sub-atmospheric vacuum pumping system. The cavities are immersed in liquid helium bath, maintained in the helium chamber. A special heater is optimized for warming up the helium gas coming out from the helium chamber to 300 K before it enters the pumping system. Keeping in view the uninterrupted and reliable operation of the superconducting electron linac and safe running of the liquid helium plant, a tubular heat exchanger type of heater is designed. Current is passed through the tubes of the heater so as to let the tube banks themselves act as heating element. He gas, passing through the tubes, absorbs the heat and warms up to the desired temperature. Unlike common notion, it has been observed that heater with longer length could reduce the requirement of the heater power but at the cost of extra pumping power, required to counter balance the excess pressure drop caused by the additional length of the heater. Pressure drop is kept within 50 Pa for 2 g/s helium flow rate. The whole lot of tubes, divided into 4 bundles, are electrically connected in series so that current rating of the feed-through could be kept within 750 A. This paper discusses the methodology used for optimizing the design of the heater.

  10. MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN

    SciTech Connect

    Stalheim, Mr. Douglas; Boggess, Todd; San Marchi, Chris; Jansto, Steven; Somerday, Dr. B; Muralidharan, Govindarajan; Sofronis, Prof. Petros

    2010-01-01

    The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best

  11. On the role of helium molecules in atmospheric pressure discharges

    NASA Astrophysics Data System (ADS)

    Carbone, Emile; Schregel, Christian; Luggenhölscher, Dirk; Czarnetzki, Uwe

    2016-09-01

    Despite their intrinsic simplicity, helium plasma kinetics are still not fully understood and quantitatively described. This is particularly the case at high pressures when various molecular helium species (i.e. ions, excimer(s) and Rydberg states) are formed. In this contribution, the absolute density of helium Rydberg molecules is measured for the first time by a combination of laser photo-ionization and Thomson scattering experiments. The experiments are performed on a parallel plate, nanosecond pulsed, DC discharge at 700 mbar. The results are combined with electron and helium metastable densities measurements and compared with a kinetic model of the discharge. The source of He2 molecules in the discharge and afterglow phases are identified and discussed. The present experimental data and kinetic model solve several inconsistencies between reaction paths proposed in the literature.

  12. The thermodynamical instability induced by pressure ionization in fluid helium

    NASA Astrophysics Data System (ADS)

    Li, Qiong; Liu, Hai-Feng; Zhang, Gong-Mu; Zhao, Yan-Hong; Lu, Guo; Tian, Ming-Feng; Song, Hai-Feng

    2016-11-01

    A systematic study of pressure ionization is carried out in the chemical picture by the example of fluid helium. By comparing the variants of the chemical model, it is demonstrated that the behavior of pressure ionization depends on the construction of the free energy function. In the chemical model with the Coulomb free energy described by the Padé interpolation formula, thermodynamical instability induced by pressure ionization is found to be manifested by a discontinuous drop or a continuous fall and rise along the pressure-density curve as well as the pressure-temperature curve, which is very much like the first order liquid-liquid phase transition of fluid hydrogen from the first principles simulations. In contrast, in the variant chemical model with the Coulomb free energy term empirically weakened, no thermodynamical instability is induced when pressure ionization occurs, and the resulting equation of state achieves a good agreement with the first principles simulations of fluid helium.

  13. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Astrophysics Data System (ADS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S.

    2008-03-01

    In support of the development of a micro-gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center (MSFC) with the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray-bar thermodynamic vent system (TVS). The testing, with an ambient heat leak of about 70 W and tank fill levels of 90, 50, and 25%, was performed for 14 days during August and September 2005. The TVS successfully controlled the tank pressure within a ±3.45 kPa band with various gaseous helium (GHe) masses in the ullage. Relative to pressure control with an "all hydrogen" ullage, the GHe presence resulted in 37 to 68% longer pressure reduction cycle durations, depending on the fill level, during the mixing/venting phase of the control cycle. Testing was also conducted to evaluate thermodynamic venting without the recirculation pump operating, at a very low fill level. Although ullage stratification was present, the ullage pressure was successfully controlled without the pump. It was evident that the spray-bar and heat exchanger configuration, which extended almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the pump operating.

  14. Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.

    2017-01-01

    To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.

  15. 80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM STORAGE AND TRANSFER CONTROL SKIDS ON NORTH END OF SLC-3W FUEL APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Spontaneous Raman Scattering Diagnostics for High-pressure Gaseous Flames

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Reddy, D. R. (Technical Monitor)

    2002-01-01

    A high-pressure (up to 60 atm) gaseous burner facility with optical access that provides steady, reproducible flames with high precision, and the ability to use multiple fuel/oxidizer combinations has been developed. In addition, a high-performance spontaneous Raman scattering system for use in the above facility has also been developed. Together, the two systems will be used to acquire and establish a comprehensive Raman scattering spectral database for use as a quantitative high-pressure calibration of single-shot Raman scattering measurements in high-pressure combustion systems. Using these facilities, the Raman spectra of H2-Air flames were successfully measured at pressures up to 20 atm. The spectra demonstrated clear rotational and ro-vibrational Raman features of H2, N2, and H2O. theoretical Raman spectra of pure rotational H2, vibrational H2, and vibrational N2 were calculated using a classical harmonic-oscillator model with pressure broadening effects and fitted to the data. At a gas temperature of 1889 K for a phi = 1.34 H2-Air flame, the model and the data showed good agreement, confirming a ro-vibrational equilibrium temperature.

  17. Measurements of the principal Hugoniots of dense gaseous deuterium-helium mixtures: Combined multi-channel optical pyrometry, velocity interferometry, and streak optical pyrometry measurements

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Guo; Chen, Qi-Feng; Gu, Yun-Jun; Zheng, Jun; Chen, Xiang-Rong

    2016-10-01

    The accurate hydrodynamic description of an event or system that addresses the equations of state, phase transitions, dissociations, ionizations, and compressions, determines how materials respond to a wide range of physical environments. To understand dense matter behavior in extreme conditions requires the continual development of diagnostic methods for accurate measurements of the physical parameters. Here, we present a comprehensive diagnostic technique that comprises optical pyrometry, velocity interferometry, and time-resolved spectroscopy. This technique was applied to shock compression experiments of dense gaseous deuterium-helium mixtures driven via a two-stage light gas gun. The advantage of this approach lies in providing measurements of multiple physical parameters in a single experiment, such as light radiation histories, particle velocity profiles, and time-resolved spectra, which enables simultaneous measurements of shock velocity, particle velocity, pressure, density, and temperature and expands understanding of dense high pressure shock situations. The combination of multiple diagnostics also allows different experimental observables to be measured and cross-checked. Additionally, it implements an accurate measurement of the principal Hugoniots of deuterium-helium mixtures, which provides a benchmark for the impedance matching measurement technique.

  18. Pressure drop in the SHOOT superfluid helium acquisition system. [Superfluid Helium On-Orbit Transfer system

    NASA Technical Reports Server (NTRS)

    Nissen, J. A.; Maytal, B.; Van Sciver, S. W.

    1990-01-01

    Central to the upcoming Superfield Helium On-Orbit Transfer (SHOOT) demonstration is the fluid acquisition system. The main component of the system is a rectangular cross-section gallery area with one side fabricated from a fine mesh screen. He II enters through the screen and is delivered to a fountain effect pump. A model is proposed to predict the pressure drop as fluid flows through the screen and an expression is derived for the required gallery arm length as a function of flow rate demand. The model is compared with measurement of pressure drop in a full scale SHOOT gallery arm operated with flow rates of up to 850 cu dm/hr. The tests were conducted in the University of Wisconsin horizontal liquid helium flow facility to minimize gravitational effects.

  19. Measurement of uranium enrichment for gaseous uranium at low pressure

    SciTech Connect

    Close, D.A.; Pratt, J.C.; Atwater, H.F.; Malanify, J.J.; Nixon, K.V.; Speir, L.G.

    1985-01-01

    X-ray fluoresence determines the amount of total uranium present in gaseous UF/sub 6/ inside cascade header pipes of a uranium centrifuge enrichment facility. A highly collimated source, highly collimated detector, and a very rigid, reproducible geometry are required. Two measurements of the 185.7-keV gamma ray from /sup 235/U using two collimators determine the amount of /sup 235/U present only in the gas phase. The ratio of the gas-only /sup 235/U signal to the total uranium gas-only signal is directly proportional to the enrichment of the process UF/sub 6/ gas. This measurement technique is independent of the deposit that forms on a surface in contact with UF/sub 6/. This measurement technique is independent of the pressure of the gaseous UF/sub 6/. This technique has the required sensitivity to determine whether the process gas is of uranium enrichment less than or equal to 20% or >20%. 6 refs., 4 figs., 4 tabs.

  20. Anomalous behavior of cristobalite in helium under high pressure

    NASA Astrophysics Data System (ADS)

    Sato, Tomoko; Takada, Hiroto; Yagi, Takehiko; Gotou, Hirotada; Okada, Taku; Wakabayashi, Daisuke; Funamori, Nobumasa

    2013-01-01

    We have investigated the high-pressure behavior of cristobalite in helium by powder X-ray diffraction. Cristobalite transformed to a new phase at about 8 GPa. This phase is supposed to have a molar volume of about 30 % larger than cristobalite, suggesting the dissolution of helium atoms in its interstitial voids. On further compression, the new phase transformed to a different phase which showed an X-ray diffraction pattern similar to cristobalite X-I at about 21 GPa. On the other hand, when the new phase was decompressed, it transformed to another new phase at about 7 GPa, which is also supposed to have a molar volume of about 25 % larger than cristobalite. On further decompression, the second new phase transformed to cristobalite II at about 2 GPa. In contrast to cristobalite, quartz did not show anomalous behavior in helium. The behavior of cristobalite in helium was also consistent with that in other mediums up to about 8 GPa, where the volume of cristobalite became close to that of quartz. These results suggest that dissolution of helium may be controlled not only by the density (amount of voids) but also by the network structure of SiO4 tetrahedra (topology of voids).

  1. A stable compound of helium and sodium at high pressure

    DOE PAGES

    Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; ...

    2017-02-06

    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes this materialmore » insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na8 cubes. As a result, we also predict the existence of Na2HeO with a similar structure at pressures above 15 GPa.« less

  2. A stable compound of helium and sodium at high pressure

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; Stavrou, Elissaios; Lobanov, Sergey; Saleh, Gabriele; Qian, Guang-Rui; Zhu, Qiang; Gatti, Carlo; Deringer, Volker L.; Dronskowski, Richard; Zhou, Xiang-Feng; Prakapenka, Vitali B.; Konôpková, Zuzana; Popov, Ivan A.; Boldyrev, Alexander I.; Wang, Hui-Tian

    2017-05-01

    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes this material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na8 cubes. We also predict the existence of Na2HeO with a similar structure at pressures above 15 GPa.

  3. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    NASA Technical Reports Server (NTRS)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  4. High-pressure soot formation and diffusion flame extinction characteristics of gaseous and liquid fuels

    NASA Astrophysics Data System (ADS)

    Karatas, Ahmet Emre

    High-pressure soot formation and flame stability characteristics were studied experimentally in laminar diffusion flames. For the former, radially resolved soot volume fraction and temperature profiles were measured in axisymmetric co-flow laminar diffusion flames of pre-vaporized n-heptane-air, undiluted ethylene-air, and nitrogen and carbon dioxide diluted ethylene-air at elevated pressures. Abel inversion was used to re-construct radially resolved data from the line-of-sight spectral soot emission measurements. For the latter, flame extinction strain rate was measured in counterflow laminar diffusion flames of C1-4 alcohols and hydrocarbon fuels of n-heptane, n-octane, iso-octane, toluene, Jet-A, and biodiesel. The luminous flame height, as marked by visible soot radiation, of the nitrogen- and helium-diluted n-heptane and nitrogen- and carbon dioxide-diluted ethylene flames stayed constant at all pressures. In pure ethylene flames, flame heights initially increased with pressure, but changed little above 5 atm. The maximum soot yield as a function of pressure in nitrogen-diluted n-heptane diffusion flames indicate that n-heptane flames are slightly more sensitive to pressure than gaseous alkane hydrocarbon flames at least up to 7 atm. Ethylene's maximum soot volume fractions were much higher than those of ethane and n-heptane diluted with nitrogen (fuel to nitrogen mass flow ratio is about 0.5). Pressure dependence of the peak carbon conversion to soot, defined as the percentage of fuel's carbon content converted to soot, was assessed and compared to previous measurements with other gaseous fuels. Maximum soot volume fractions were consistently lower in carbon dioxide-diluted flames between 5 and 15 atm but approached similar values to those in nitrogen-diluted flames at 20 atm. This observation implies that the chemical soot suppression effect of carbon dioxide, previously demonstrated at atmospheric pressure, is also present at elevated pressures up to 15 atm

  5. Contamination of liquid oxygen by pressurized gaseous nitrogen

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; King, Tracy K.; Ngo, Kim Chi

    1989-01-01

    The penetration of pressurized gaseous nitrogen (GN2) into liquid oxygen (LOX) was investigated experimentally in the 7-inch High Temperature Tunnel, the pilot tunnel for the 8-foot High Temperature Tunnel (8'HTT) at Langley Research Center. A preliminary test using a nuclear monitor revealed the extent of the liquid nitrogen (LN2) build-up at the LOX interface as a function of GN2 pressure. Then an adaptation of the differential flash vaporization technique was used to determine the binary diffusivity of the LOX-LN2 system at a temperature of 90.2 K. The measured value D equals 0.000086 sq cm/s + or - 25 percent together with two prior measurements at lower temperatures revealed an excellent fit to the Arrhenius equation, yielding a pre-exponential factor D sub 0 equals 0.0452 sq cm/s and an activation enthalpy H equals 1.08 kcal/mol. At a pressure of 1700 psi and holding time of 15 min, the penetration of LN2 into LOX (to a 1 percent contamination level) was found to be 0.9 cm, indicating but minimal impact upon 8'HTT operations.

  6. Process to recover tritium from high-pressure helium

    SciTech Connect

    Finn, P.A.; Sze, D.K.

    1986-01-01

    A coolant that has gained increased prominence in fusion reactor designs is high-pressure (greater than or equal to 50 atm) helium. One of the major problems to be resolved with this coolant is effective tritium removal and recovery so that environmental losses are minimized but the efficiency of the plant is not compromised. Since the worse case situation is one in which the high-pressure helium coolant is used not only as a coolant but also as the main tritium recovery route, we directed our attention to designing a tritium recovery system that could handle this worst case, as well as simpler cases. The design that evolved was a system in which a liquid getter (sodium is our example case) is used to strip all tritium, deuterium, and oxygen species from the high-pressure helium. The hydrogen species are removed from the sodium either by using a cold trap or by contacting the sodium with a molten salt. The tritium can be recovered from the molten salt by electrolysis. Impurities, including oxygen, are removed from the sodium through the use of a cold trap on a small fraction (less than or equal to 10%) of the total sodium flow.

  7. An advanced regulator for the helium pressurization systems of the Space Shuttle OMS and RCS

    NASA Technical Reports Server (NTRS)

    Wichmann, H.

    1973-01-01

    The Space Shuttle Orbit Maneuvering System and Reaction Control System are pressure-fed rocket propulsion systems utilizing earth storable hypergolic propellants and featuring engines of 6000 lbs and 900 lbs thrust, respectively. The helium pressurization system requirements for these propulsion systems are defined and the current baseline pressurization systems are described. An advanced helium pressure regulator capable of meeting both OMS and RCS helium pressurization system requirements is presented and its operating characteristics and predicted performance characteristics are discussed.

  8. The physiological effects of hydrostatic pressure are not equivalent to those of helium pressure on Rana pipiens.

    PubMed Central

    Dodson, B A; Furmaniuk, Z W; Miller, K W

    1985-01-01

    The effects of helium pressure and hydrostatic pressure on Rana pipiens were compared. Both agents caused paralysis at pressures greater than 135 atmospheres (1 atm = 101.325 kPa), but the median pressure for hydrostatic-pressure-induced paralysis was 35 atm less than that for helium pressure. When the ability of both pressurizing agents to reverse urethane-induced anaesthesia was compared, it was found that hydrostatic pressure raised the median dose for anaesthesia 2.2-fold more per atmosphere than did helium pressure. Animals that were lightly anaesthetized by urethane at 110 atm hydrostatic pressure became more deeply anaesthetized when helium was admitted isobarically into the pressure chamber. This difference in depth of anaesthesia between hydrostatic pressure and helium pressure is consistent with helium possessing an inherent anaesthetic effect. The abilities of other gases to pressure-reverse urethane anaesthesia were also determined. The degree of attenuation of the full pressure reversal effect observed with hydrostatic pressure was proportional to the lipid solubility of the gases, increasing in the order helium, neon, hydrogen, nitrogen and argon. Our data on the difference between hydrostatic and helium pressure are consistent with the critical volume hypothesis. PMID:3874954

  9. Pressure dependent line shifts of atoms in superfluid helium

    NASA Astrophysics Data System (ADS)

    Putlitz, Gisbert Zu; Baumann, I.; Foerste, M.; Jungmann, K.; Tabbert, B.; Wiebe, J.; Zühlke, C.

    1998-05-01

    Defect atoms and ions in superfluid helium open the possibility to study the nature of the defect with respect to its environment. Depending on the electronic structure and charge of the foreign particles two forms of defects are built: so-called "bubbles" and "snowballs"(B. Tabbert, H. Günther and G. zu Putlitz, J. Low. Temp. Phys.) 109, 653 (1997). Defect ions are produced by laser sputtering, they can recombine with electrons from a field emission tip(I. Baumann, M. Foerste, K. Layer, G. zu Putlitz, B. Tabbert and C. Zühlke, J. Low. Temp. Phys.) 110, 213 (1998). The spectral lines observed are shifted and broadened compared to the free atomic transitions. The radius and the shape of the defect structure are supposed to be pressure dependent. Consequently we employ a pressure cell which allows for the spectroscopic measurements up to external pressures of 40 bar. Since liquid helium solidifies above 25 bar a study of the phase transition from the liquid to the solid can be made.

  10. Separation of helium-methane mixtures by pressure swing adsorption

    SciTech Connect

    Cheng, H.C.; Hill, F.B.

    1985-01-01

    The separation of mixtures of helium and methane using a single column of activated carbon in a pressure swing adsorption process was studied experimentally. Process performance was predicted with an average error of 10% or less by a local-equilibrium well-stirred cell model in which dead volumes at the feed and product ends of the column were accounted for. Systematic differences between experiment and model were ascribed to omission from the model of flow resistance and heat release. 17 references, 8 figures, 1 table.

  11. Superconducting cable cooling system by helium gas at two pressures

    DOEpatents

    Dean, John W.

    1977-01-01

    Thermally contacting, oppositely streaming, cryogenic fluid streams in the same enclosure in a closed cycle that changes the fluid from a cool high pressure helium gas to a cooler reduced pressure helium gas in an expander so as to be at different temperature ranges and pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid from a refrigerator at one end of the line as a cool gas at a temperature range T.sub.2 to T.sub.3 in the go leg, then circulating the gas through an expander at the other end of the line where the gas becomes a cooler gas at a reduced pressure and at a reduced temperature T.sub.4 and finally by circulating the cooler gas back again to the refrigerator in a return leg at a temperature range T.sub.4 to T.sub.5, while in thermal contact with the gas in the go leg, and in the same enclosure therewith for compression into a higher pressure gas at T.sub.2 in a closed cycle, where T.sub.2 >T.sub.3 and T.sub.5 >T.sub.4, the fluid leaves the enclosure in the go leg as a gas at its coldest point in the go leg, and the temperature distribution is such that the line temperature decreases along its length from the refrigerator due to the cooling from the gas in the return leg.

  12. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    NASA Astrophysics Data System (ADS)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  13. Real-time portal imaging devices operating on high-pressure gaseous electronic principles

    NASA Astrophysics Data System (ADS)

    Giakos, George C.; Richardson, Donna B.; Ghotra, P.; Pillai, Bindu; Seetharaman, Lakshmi; Passalaqua, Anthony M.; DiBianca, Frank A.; Endorf, Robert J.; Devidas, Sreenivas

    1995-05-01

    A novel real-time portal imaging scanning detector, based on high-pressure gaseous electronics principles and operating up to 60 atmospheres, is presented and the predicted performance of this detector is analyzed. The idea is to utilize high pressure gaseous electronics imaging detectors operating in the saturation regime, aimed at improving image performance characteristics in real time portal imaging. As a result, beam localization errors are controlled, identified and corrected accurately and the patient radiotherapy treatment becomes more effective.

  14. Influence of flowing helium gas on plasma plume formation in atmospheric pressure plasma

    SciTech Connect

    Yambe, Kiyoyuki; Konda, Kohmei; Ogura, Kazuo

    2015-05-15

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and a foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. The helium gas flowing out of quartz tube mixes with air, and the flow channel is composed of the regions of flowing helium gas and air. The plasma plume length is equivalent to the reachable distance of flowing helium gas. Although the amount of helium gas on the flow channel increases by increasing the inner diameter of quartz tube at the same gas flow velocity, the plasma plume length peaks at around 8 m/s of gas flow velocity, which is the result that a flow of helium gas is balanced with the amount of gas. The plasma plume is formed at the boundary region where the flow of helium gas is kept to the wall of the air.

  15. Refraction of cylindrical converging shock wave at an air/helium gaseous interface

    NASA Astrophysics Data System (ADS)

    Zhai, Zhigang; Li, Wei; Si, Ting; Luo, Xisheng; Yang, Jiming; Lu, Xiyun

    2017-01-01

    Refraction of a cylindrical converging shock wave at an inclined air/helium interface is investigated. Experimentally, based on the shock dynamics theory, a special wall profile is designed to generate a perfectly cylindrical converging shock wave. A soap film technique is developed to form an inclined discontinuous air/helium interface, and high-speed schlieren photography is adopted to capture the flow. Numerical simulations are also performed to compare with the experimental counterparts and to show details of refraction. In this work, two initial incident angles (45° and 60°) are considered. As the incident shock converges inward, the shock intensity increases while the incident angle decreases, causing possible transitions among the wave patterns. For the case of 45°, an irregular refraction of free precursor refraction (FPR) first occurs and gradually transits into regular refraction, while for the case of 60°, various irregular refractions of twin von Neumann refraction (TNR), twin regular refraction (TRR), free precursor von Neumann refraction (FNR), and FPR occur in sequence. The transition sequences do not belong to any groups described in the planar counterpart, indicating that the classification of the refraction phenomenon in the planar case is not exhaustive or cannot be applied to the converging case. It is also the first time to observe the transition from FNR to FPR, providing an experimental evidence for the previous numerical results. It is deemed that the difference between the velocities of the incident and transmitted shocks propagating along the interface is the primary factor that induces the transitions among wave patterns.

  16. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  17. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    NASA Astrophysics Data System (ADS)

    Vasile Nastuta, Andrei; Topala, Ionut; Grigoras, Constantin; Pohoata, Valentin; Popa, Gheorghe

    2011-03-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  18. Applying Chemical Potential and Partial Pressure Concepts to Understand the Spontaneous Mixing of Helium and Air in a Helium-Inflated Balloon

    ERIC Educational Resources Information Center

    Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim

    2005-01-01

    The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…

  19. Applying Chemical Potential and Partial Pressure Concepts to Understand the Spontaneous Mixing of Helium and Air in a Helium-Inflated Balloon

    ERIC Educational Resources Information Center

    Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim

    2005-01-01

    The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…

  20. Study of a Helium Atmospheric Pressure Dielectric Barrier Discharge at 100 kHz

    DTIC Science & Technology

    2003-07-20

    model. The calculations agree well with the experiment when a small admixture of nitrogen is assumed and the destruction of the helium excimers is... excimer molecule to the radiating state via collision with a helium atom. The destructionfrequency in our model is taken to be l06’s". The financial...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014961 TITLE: Study of a Helium Atmospheric Pressure Dielectric Barrier

  1. 75 FR 53353 - Notice of Availability of Final Interim Staff Guidance Document No. 25 “Pressure and Helium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... COMMISSION Notice of Availability of Final Interim Staff Guidance Document No. 25 ``Pressure and Helium... Guidance Document No. 25 (ISG-25) ``Pressure and Helium Leakage Testing of the Confinement Boundary of... helium leakage testing and ASME Code required pressure (hydrostatic/pneumatic) testing that is...

  2. Future nuclear plants could put pressure on helium supply

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2009-05-01

    The next generation of nuclear power stations could put extra demands on the world's supply of helium gas, researchers said at a meeting last month in Cambridge, UK, on the future of helium. The new power stations, which each would require several hundred tonnes of helium in their lifetimes to cool the reactor core, could increase the cost of the gas and make life harder for researchers who need to buy it for magnetic resonance imaging (MRI) experiments and low-temperature physics.

  3. Quartz Tuning Fork Pressure Gauge for High-Pressure Liquid Helium

    NASA Astrophysics Data System (ADS)

    Botimer, J.; Velasco, A.; Taborek, P.

    2017-01-01

    We have measured the quality factor Q and the frequency f of a 32-kHz quartz tuning fork immersed in liquid ^4He between 0.9 and 3.0 K, over pressures ranging from the saturated vapor pressure to ≈ 25 atm. At constant pressure, as a function of temperature, the quality factor and frequency have strong features related to the temperature dependence of the superfluid fraction. At constant temperature, Q depends on the superfluid fraction, while the frequency is a smooth function of pressure. The behavior is explained using a simple hydrodynamic model. The liquid helium viscosity is obtained from measured values of Q, and together with tabulated values of the helium density as a function of pressure and temperature, the frequency shift can be parameterized as a function of temperature and pressure. The observed sensitivity is ≈ 7.8 Hz/atm. The quartz tuning fork provides a compact low power method of measuring the pressure in the bulk liquid.

  4. Experimental investigation on pressurization performance of cryogenic tank during high-temperature helium pressurization process

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Yonghua, Jin; Yuan, Ma

    2015-03-01

    Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22-24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.

  5. Low temperature plasma RF capacitive discharge in helium at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hakki, A.; Fayrushin, I.; Kashapov, N.

    2016-01-01

    The paper describes Low temperature plasma RF capacitive discharge in helium at atmospheric pressure. The circuit has been done, to obtain output currentabout 90mA,and the maximum power was 100W, The frequency of the discharging was f = 40MHz.Twolamps (DУ-50) were used in power supply. Helium consumption was about 1.5l/m.

  6. The pressure rise simulation when helium pipes are broken in the ITER cryostat

    SciTech Connect

    Nishida, K.; Honda, T.; Hamada, K.; Matsui, K.

    1996-12-31

    The superconducting coil has a potential risk of its cryostat pressure rising as a result of cold helium leaked from coolant pipes. If the cryostat pressure rapidly rises until all inventory helium expands to room temperature in a narrow cryostat space. All components inside of the cryostat must be designed for the saturated pressure. The cryostat pressure rise caused by helium leakage may be slower than ideal heat input to inventory helium. Thus, it is necessary to estimate the case when the pipes are broken in the ITER cryostat as the worst fault for safety aspects. A computer simulation code has been developed to calculate the pressure and temperature rise for the above fault conditions so that safety measures can be adopted.

  7. Kinetics of high pressure argon-helium pulsed gas discharge

    NASA Astrophysics Data System (ADS)

    Emmons, D. J.; Weeks, D. E.

    2017-05-01

    Simulations of a pulsed direct current discharge are performed for a 7% argon in helium mixture at a pressure of 270 Torr using both zero- and one-dimensional models. Kinetics of species relevant to the operation of an optically pumped rare-gas laser are analyzed throughout the pulse duration to identify key reaction pathways. Time dependent densities, electron temperatures, current densities, and reduced electric fields in the positive column are analyzed over a single 20 μs pulse, showing temporal agreement between the two models. Through the use of a robust reaction rate package, radiation trapping is determined to play a key role in reducing A r (1 s5) metastable loss rates through the reaction sequence A r (1 s5)+e-→A r (1 s4)+e- followed by A r (1 s4)→A r +ℏω . Collisions with He are observed to be responsible for A r (2 p9) mixing, with nearly equal rates to A r (2 p10) and A r (2 p8) . Additionally, dissociative recombination of A r2+ is determined to be the dominant electron loss mechanism for the simulated discharge conditions and cavity size.

  8. Contrasting pressure-support ventilation and helium-oxygen during exercise in severe COPD.

    PubMed

    Hussain, Omar; Collins, Eileen G; Adiguzel, Nalan; Langbein, W Edwin; Tobin, Martin J; Laghi, Franco

    2011-03-01

    Helium-oxygen mixtures and pressure-support ventilation have been used to unload the respiratory muscles and increase exercise tolerance in COPD. Considering the different characteristics of these techniques, we hypothesized that helium-oxygen would be more effective in reducing exercise-induced dynamic hyperinflation than pressure-support. We also hypothesized that patients would experience greater increases in respiratory rate and minute ventilation with helium-oxygen than with pressure-support. The hypotheses were tested in ten patients with severe COPD (FEV(1) = 28 ± 3% predicted [mean ± SE]) during constant-load cycling (80% maximal workrate) while breathing 30% oxygen-alone, helium-oxygen, and pressure-support in randomized order. As hypothesized, helium-oxygen had greater impact on dynamic hyperinflation than did pressure-support (end-exercise; p = 0.03). For the most part of exercise, respiratory rate and minute ventilation were greater with helium-oxygen than with pressure-support (p ≤ 0.008). During the initial phases of exercise, helium-oxygen caused less rib-cage muscle recruitment than did pressure-support (p < 0.03), and after the start of exercise it caused greater reduction in inspiratory reserve volume (p ≤ 0.02). Despite these different responses, helium-oxygen and pressure-support caused similar increases in exercise duration (oxygen-alone: 6.9 ± 0.8 min; helium-oxygen: 10.7 ± 1.4 min; pressure-support: 11.2 ± 1.6 min; p = 0.003) and similar decreases in inspiratory effort (esophageal pressure-time product), respiratory drive, pulmonary resistance, dyspnea and leg effort (p < 0.03). In conclusion, helium-oxygen reduced exercise-induced dynamic hyperinflation by improving the relationship between hyperinflation and minute ventilation. In contrast, pressure-support reduced hyperinflation solely as a result of lowering ventilation. Helium-oxygen was more effective in reducing exercise-induced dynamic hyperinflation in severe COPD, and was

  9. Transfer of gaseous oxygen from high-pressure containers and the Joule-Thomson inversion

    NASA Technical Reports Server (NTRS)

    Schumann, E. R.

    1974-01-01

    From the experiments performed in study, it was determined that oxygen transferred at ambient temperature and pressures up to 10,000 psig consistently dropped in temperature. All results therefore indicate that gaseous oxygen transferred at ambient temperature does not exhibit Joule-Thomson inversion below 10,000 psig.

  10. Miscibility of hydrogen and helium mixtures at megabar pressures

    SciTech Connect

    Klepeis, J.E.; Schafer, K.J.; Barbee, T.W. III; Ross, M.

    1991-09-01

    Models of Jupiter and Saturn postulate a central rock core surrounded by a fluid mixture of hydrogen and helium. These models suggest that the mixture is undergoing phase separation in Saturn but not Jupiter. State-of-the-art total energy calculations of the enthalpy of mixing for ordered alloys of hydrogen and helium confirm that at least partial phase separation has occurred in Saturn and predict that this process has also begun in Jupiter. 15 refs., 2 figs.

  11. Microwave capillary plasmas in helium at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Santos, M.; Noël, C.; Belmonte, T.; Alves, L. L.

    2014-07-01

    This work uses both simulations and experiments to study helium plasmas (99.999% purity), sustained by surface-wave discharges (2.45 GHz frequency) in capillary tubes (3 mm in-radius) at atmospheric pressure. The simulations use a self-consistent homogeneous and stationary collisional-radiative model (CRM) that solves the rate balance equations for the different species present in the plasma (electrons, He+ and He_2^+ ions, He(n ⩽ 6) excited states and He_2^* excimers) and the gas thermal balance equation, coupled with the two-term electron Boltzmann equation (including direct and stepwise inelastic and superelastic collisions as well as electron-electron collisions). The experiments use optical emission spectroscopy diagnostics to measure the electron density ne (from the Hβ Stark broadening), the gas temperature Tg (from the ro-vibrational transitions of OH, present at trace concentrations) and the populations of excited states in the energy region 22.7-24.2 eV, whose spectrum allows determining the excitation temperature Texc. Measurements yield ne ≃ (2.45 ± 1.4) × 1013 cm-3, Tg ≃ 1700 ± 100 K and Texc ≃ 2793 ± 116 K, for a ˜180 ± 10 W power coupled and ˜1 cm length plasma column. The model predictions at ne = 1.7 × 1013 cm-3 are in very good agreement with measurements yielding Tg = 1800 K, Texc = 2792 K (for ˜30% average relative error between calculated and measured excited-state densities), and a power absorbed by the plasma per unit length of 165 W cm-1. The model results depend strongly on ne, and hence on the plasma conductivity and on the power coupled to the plasma. The coupling of a thermal module to the CRM has been shown to be crucial. Increasing the electron density leads to very high gas temperature values, which limits the variation range of (ne, Tg) as input parameters to the model.

  12. Calibrating the Helium Pressurization System for the Space Shuttle Liquid-Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Analysis of the results from the STS-114 tanking tests and subsequent launch called into question existing thermal and mass models of helium pressurization of the liquid hydrogen tank. This hydrogen tank, which makes up the bottom two-thirds of the External Tank, is pressurized prior to launch to avoid cavitation in the Shuttle Main Engine pumps. At about 2 minutes prior to launch, the main vent valve is closed, and pressurized helium flows into the tank ullage space to achieve set point pressure. As the helium gas cools, its pressure drops, calling for additional helium. Subsequent helium flows are provided in short, timed pulses. The number of pulses is taken as a rough leak indicator. An analysis of thermal models by Marshall Space Flight Center showed considerable uncertainty in the pressure-versus-time behavior of the helium ullage space and the ability to predict the number of pulses normally expected. Kennedy Space Center proposed to calibrate the dime-sized orifice, which together with valves, controls the helium flow quantity (Figure 1). Pressure and temperature sensors were installed to provide upstream and downstream measurements necessary to compute flow rate based on the orifice discharge coefficient. An assessment of flow testing with helium indicated an extremely costly use of this critical resource. In order to reduce costs, we proposed removing the orifices from each Mobile Launcher Platform (MLP) and asking Colorado Engineering Experiment Station Inc. (CEESI) to calibrate the flow. CEESI has a high-pressure air flow system with traceable flow meters capable of handling the large flow rates. However, literature research indicated that square-edged orifices of small diameters often exhibit significant hysteresis and nonrepeatability in the vicinity of choked or sonic flow. Fortunately, the MLP orifices behaved relatively well in testing (Figure 2). Using curve fitting of the air-flow data, in conjunction with ASME orifice modeling equations, a

  13. Recovery of purified helium or hydrogen from gas mixtures

    DOEpatents

    Merriman, J.R.; Pashley, J.H.; Stephenson, M.J.; Dunthorn, D.I.

    1974-01-15

    A process is described for the removal of helium or hydrogen from gaseous mixtures also containing contaminants. The gaseous mixture is contacted with a liquid fluorocarbon in an absorption zone maintained at superatomspheric pressure to preferentially absorb the contaminants in the fluorocarbon. Unabsorbed gas enriched in hydrogen or helium is withdrawn from the absorption zone as product. Liquid fluorocarbon enriched in contaminants is withdrawn separately from the absorption zone. (10 claims)

  14. Measurement of viscosity of gaseous mixtures at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Mall, G. H.; Chegini, H.

    1986-01-01

    Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.

  15. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOEpatents

    Ghate, M.R.; Yang, R.T.

    1985-10-03

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

  16. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOEpatents

    Ghate, Madhav R.; Yang, Ralph T.

    1987-01-01

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

  17. Modeling the pressure increase in liquid helium cryostats after failure of the insulating vacuum

    SciTech Connect

    Heidt, C.; Grohmann, S.; Süßer, M.

    2014-01-29

    The pressure relief system of liquid helium cryostats requires a careful design, due to helium's low enthalpy of vaporization and due to the low operating temperature. Hazard analyses often involve the failure of the insulating vacuum in the worst-case scenario. The venting of the insulating vacuum and the implications for the pressure increase in the helium vessel, however, have not yet been fully analyzed. Therefore, the dimensioning of safety devices often requires experience and reference to very few experimental data. In order to provide a better foundation for the design of cryogenic pressure relief systems, this paper presents an analytic approach for the strongly dynamic process induced by the loss of insulating vacuum. The model is based on theoretical considerations and on differential equation modeling. It contains only few simplifying assumptions, which will be further investigated in future experiments. The numerical solutions of example calculations are presented with regard to the heat flux into the helium vessel, the helium pressure increase and the helium flow rate through the pressure relief device. Implications concerning two-phase flow and the influence of kinetic energy are discussed.

  18. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops.

    PubMed

    Guan, Yulong; Palanzo, David; Kunselman, Allen; Undar, Akif

    2009-11-01

    An increasing amount of evidence points to cerebral embolization during cardiopulmonary bypass (CPB) as the principal etiologic factor of neurologic complications. In this study, the capability of capturing and classification of gaseous emboli and pressure drop of three different membrane oxygenators (Sorin Apex, Terumo Capiox SX25, Maquet QUADROX) were measured in a simulated adult model of CPB using a novel ultrasound detection and classification quantifier system. The circuit was primed with 1000 mL heparinized human packed red blood cells and 1000 mL lactated Ringer's solution (total volume 2000 mL, corrected hematocrit 26-28%). After the injection of 5 mL air into the venous line, an Emboli Detection and Classification Quantifier was used to simultaneously record microemboli counts at post-pump, post-oxygenator, and post-arterial filter sites. Trials were conducted at normothermic (35 degrees C) and hypothermic (25 degrees C) conditions. Pre-oxygenator and post-oxygenator pressure were recorded in real time and pressure drop was calculated. Maquet QUADROX membrane oxygenator has the lowest pressure drops compared to the other two oxygenators (P < 0.001). The comparison among the three oxygenators indicated better capability of capturing gaseous emboli with the Maquet QUADROX and Terumo Capiox SX25 membrane oxygenator and more emboli may pass through the Sorin Apex membrane oxygenator. Microemboli counts uniformly increased with hypothermic perfusion (25 degrees C). Different types of oxygenators and reservoirs have different capability of capturing gaseous emboli and transmembrane pressure drop. Based on this investigation, Maquet QUADROX membrane oxygenator has the lowest pressure drop and better capability for capturing gaseous microemboli.

  19. Compression of single-crystal magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure media

    SciTech Connect

    Jacobsen, S.D.; Holl, C.M.; Adams, K.A.; Fischer, R.A.; Martin, E.S.; Bina, C.R.; Lin, J.-F.; Prakapenka, V.B.; Kubo, A.; Dera, P.

    2008-11-13

    The pressure-volume equation of state (EoS) of single-crystal MgO has been studied in diamond-anvil cells loaded with helium to 118 GPa and in a non-hydrostatic KCl pressure medium to 87 GPa using monochromatic synchrotron X-ray diffraction. A third-order Birch-Murnaghan fit to the non-hydrostatic P-V data (KCl medium) yields typical results for the initial volume, V{sub 0} = 74.698(7) {angstrom}{sup 3}, bulk modulus, K{sub T0} = 164(1) GPa, and pressure derivative, K' = 4.05(4), using the non-hydrostatic ruby pressure gauge of Mao et al. (1978). However, compression of MgO in helium yields V{sub 0} = 74.697(6) {angstrom}{sup 3}, K{sub T0} = 159.6(6) GPa, and K' = 3.74(3) using the quasi-hydrostatic ruby gauge of Mao et al. (1986). In helium, the fitted equation of state of MgO underdetermines the pressure by 8% at 100 GPa when compared with the primary MgO pressure scale of Zha et al. (2000), with K{sub T0} = 160.2 GPa and K' = 4.03. The results suggest that either the compression mechanism of MgO changes above 40 GPa (in helium), or the ruby pressure gauge requires adjsutment for the softer helium pressure medium. We propose a ruby pressure gauge for helium based on shift of the ruby-R{sub 1} fluorescence line ({Delta}{lambda}/{lambda}{sub 0}) and the primary MgO pressure scale, with P (GPa) = A/B{l_brace}[1 + ({Delta}{lambda}/{lambda}{sub 0})]B - 1{r_brace}, where A is fixed to 1904 GPa and B = 10.32(7).

  20. CFD Modeling of Helium Pressurant Effects on Cryogenic Tank Pressure Rise Rates in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Grayson, Gary; Lopez, Alfredo; Chandler, Frank; Hastings, Leon; Hedayat, Ali; Brethour, James

    2007-01-01

    A recently developed computational fluid dynamics modeling capability for cryogenic tanks is used to simulate both self-pressurization from external heating and also depressurization from thermodynamic vent operation. Axisymmetric models using a modified version of the commercially available FLOW-3D software are used to simulate actual physical tests. The models assume an incompressible liquid phase with density that is a function of temperature only. A fully compressible formulation is used for the ullage gas mixture that contains both condensable vapor and a noncondensable gas component. The tests, conducted at the NASA Marshall Space Flight Center, include both liquid hydrogen and nitrogen in tanks with ullage gas mixtures of each liquid's vapor and helium. Pressure and temperature predictions from the model are compared to sensor measurements from the tests and a good agreement is achieved. This further establishes the accuracy of the developed FLOW-3D based modeling approach for cryogenic systems.

  1. Electrical Properties for Capacitively Coupled Radio Frequency Discharges of Helium and Neon at Low Pressure

    NASA Astrophysics Data System (ADS)

    Tanisli, Murat; Sahin, Neslihan; Demir, Suleyman

    2016-10-01

    In this study, the symmetric radio frequency (RF) electrode discharge is formed between the two electrodes placing symmetric parallel. The electrical properties of symmetric capacitive RF discharge of pure neon and pure helium have been obtained from current and voltage waveforms. Calculations are done according to the homogeneous discharge model of capacitively coupled radio frequency (CCRF) using with the data in detail. Electrical properties of bulk plasma and sheath capacitance are also investigated at low pressure with this model. This study compares the electrical characteristics and sheath capacitance changes with RF power and pressure for helium and neon discharges. Also, the aim of the study is to see the differences between helium and neon discharges' current and voltage values. Their root-mean-square voltages and currents are obtained from Tektronix 3052C oscilloscope. Modified homogeneous discharge model of CCRF is used for low pressure discharges and the calculations are done using experimental results. It is seen that homogeneous discharge model of CCRF is usable with modification and then helium and neon discharge's electrical properties are investigated and presented with a comparison. Helium discharge's voltage and current characteristic have smaller values than neon's. It may be said that neon discharge is a better conductor than helium discharge. It is seen that the sheath capacitance is inversely correlation with sheath resistance.

  2. Voltage and Pressure Scaling of Streamer Dynamics in a Helium Plasma Jet With N2 CO-Flow (Postprint)

    DTIC Science & Technology

    2014-08-14

    AFRL-RQ-WP-TP-2014-0242 VOLTAGE AND PRESSURE SCALING OF STREAMER DYNAMICS IN A HELIUM PLASMA JET WITH N2 CO- FLOW (POSTPRINT) Robert J...4. TITLE AND SUBTITLE VOLTAGE AND PRESSURE SCALING OF STREAMER DYNAMICS IN A HELIUM PLASMA JET WITH N2 CO-FLOW (POSTPRINT) 5a. CONTRACT NUMBER...pressure dependent scaling of cathode directed streamer propagation properties in helium gas flow guided capillary dielectric barrier discharge have

  3. Compression of single-crystal magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure media

    NASA Astrophysics Data System (ADS)

    Jacobsen, S. D.; Holl, C. M.; Adams, K. A.; Fischer, R. A.; Martin, E. S.; Bina, C. R.; Lin, J.; Prakapenka, V. B.; Kubo, A.; Dera, P.

    2008-12-01

    Magnesium oxide (MgO, periclase) is among the most widely studied standard materials for testing experimental and theoretical methods of determining elastic properties. Because of its simple structure and geophysical relevance, knowledge of accurate elastic properties of MgO pertains to problems ranging from experimental pressure scales to interpreting Earth's seismic structure. The pressure-volume equation of state (EoS) of single-crystal MgO has been studied in diamond-anvil cells loaded with helium to 118 GPa and in a non-hydrostatic KCl pressure medium to 87 GPa using monochromatic synchrotron X-ray diffraction at GSECARS (Sector 13, APS). A third-order Birch-Murnaghan fit to the non-hydrostatic P-V data (KCl medium) yields typical results for the initial volume, V0=74.698(7)Å3, bulk modulus, KT0=164(1)GPa, and pressure derivative, K'=4.05(4) using the non-hydrostatic ruby pressure gauge of Mao et al. (1978). However, compression of MgO in helium yields V0=74.697(6)Å3, KT0=159.6(6)GPa, and K'=3.74(3) using the quasi-hydrostatic ruby gauge of Mao et al. (1986). In helium, the fitted equation of state of MgO underdetermines the pressure by 8% at 100 GPa when compared with the primary MgO pressure scale of Zha et al. (2000), with KT0=160.2GPa and K'=4.03. The results suggest that either the compression mechanism of MgO changes above 40 GPa (in helium), or the ruby pressure gauge requires adjustment for the softer helium pressure medium. We provide a revised ruby pressure gauge for helium pressure media against the primary MgO pressure scale, which will be useful for future high-pressure crystallographic studies of minerals compressed with helium in the 25-140 GPa range of the lower mantle.

  4. Thermodynamic analysis of helium boil-off experiments with pressure variations

    NASA Astrophysics Data System (ADS)

    Cha, Y. S.; Niemann, R. C.; Hull, J. R.

    A thermodynamic analysis by calorimetric experiments in a system with changing pressure is presented. A general equation is derived for use in calculating the rate of heat loss from measured mass flow rate. The results show that the largest contribution from pressure variation is the sensible heat of liquid helium in a Dewar. A dimensionless parameter that was identified provides an indication of the importance of pressure variation relative to the latent heat of vaporization during an experiment. This dimensionless parameter is a function of system pressure land the thermodynamic properties of helium), rate of change of system pressure, liquid helium inventory in the Dewar and measured mass flow rate. In the special case when the effect of pressure variation is small compared to the latent heat of vaporization, the heat loss rate is the product of the measured mass flow rate and the latent heat of vaporization, multiplied by a correction factor that is a function of the ratio of vapour density to liquid density. This correction factor is significant for helium at pressures near or above 1 atm and should always be included in the calculation.

  5. Bronchomotor response to cold air or helium-oxygen at normal and high ambient pressures.

    PubMed

    Jammes, Y; Burnet, H; Cosson, P; Lucciano, M

    1988-05-01

    Effects of inhalation of cold air or helium-oxygen mixture on lung resistance (RL) were studied in anesthetized and tracheotomized rabbits under normal ambient pressure and in human volunteers under normo- and hyperbaric conditions. In artificially ventilated rabbits, an increase in RL occurred when the tracheal temperature fell to 10 degrees C. This effect was more than double with helium breathing compared to air, despite a lower respiratory heat loss by convection (Hc) with helium. In 3 normal humans, inhalation of cold air (mouth temperature = 8 degrees C) at sea level had no effect on RL value. However, with a helium-nitrogen-oxygen mixture, a weak but significant increase in RL due to cold gas breathing was measured in 1 subject at 2 ATA and in 2 individuals at 3.5 ATA. The density of inhaled gas mixture (air or He-N2-O2) was near the same in the three circumstances (1, 2, and 3.5 ATA) but Hc value increased with helium. At 8 ATA a 30-55% increase in RL occurred in the 3 divers during inhalation of cold gas (Hc was multiplied by 6 compared to air at sea level) and at 25 ATA the cold-induced bronchospasm ranged between 38 and 95% (Hc multiplied by 27). Thus, in rabbits and humans helium breathing enhanced the cold-induced increase in RL at normal or elevated ambient pressure, and this effect was interpreted as resulting from different mechanisms in the two circumstances.

  6. Design and Test of a Liquid Oxygen / Liquid Methane Thruster with Cold Helium Pressurization Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Morehead, Robert L.; Atwell, Matthew J.; Hurlbert, Eric A.

    2015-01-01

    A liquid oxygen / liquid methane 2,000 lbf thruster was designed and tested in conjuction with a nozzle heat exchanger for cold helium pressurization. Cold helium pressurization systems offer significant spacecraft vehicle dry mass savings since the pressurant tank size can be reduced as the pressurant density is increased. A heat exchanger can be incorporated into the main engine design to provide expansion of the pressurant supply to the propellant tanks. In order to study the systems integration of a cold-helium pressurization system, a 2,000 lbf thruster with a nozzle heat exchanger was designed for integration into the Project Morpheus vehicle at NASA Johnson Space Center. The testing goals were to demonstrate helium loading and initial conditioning to low temperatures, high-pressure/low temperature storage, expansion through the main engine heat exchanger, and propellant tank injection/pressurization. The helium pressurant tank was an existing 19 inch diameter composite-overwrap tank, and the targert conditions were 4500 psi and -250 F, providing a 2:1 density advantage compared to room tempatrue storage. The thruster design uses like-on-like doublets in the injector pattern largely based on Project Morpheus main engine hertiage data, and the combustion chamber was designed for an ablative chamber. The heat exchanger was installed at the ablative nozzle exit plane. Stand-alone engine testing was conducted at NASA Stennis Space Center, including copper heat-sink chambers and highly-instrumented spoolpieces in order to study engine performance, stability, and wall heat flux. A one-dimensional thermal model of the integrated system was completed. System integration into the Project Morpheus vehicle is complete, and systems demonstrations will follow.

  7. Equation of State and Electrical Conductivity of Helium at High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    McWilliams, R. S.; Eggert, J. H.; Loubeyre, P.; Brygoo, S.; Collins, G.; Jeanloz, R.

    2004-12-01

    Helium, the second-most abundant element in the universe and giant planets, is expected to metallize at much higher pressures and temperatures than the most abundant element, hydrogen. The difference in chemical-bonding character, between insulator and metal, is expected to make hydrogen-helium mixtures immiscible throughout large fractions of planetary interiors, and therefore subject to gravitational separation contributing significantly to the internal dynamics of giant planets. Using laser-driven shock waves on samples pre-compressed in high-pressure cells, we have obtained the first measurements of optical reflectivity from the shock front in helium to pressures of 146 GPa. The reflectivity exceeds 5% above \\ensuremath{\\sim} 100 GPa, indicating high electrical conductivity. By varying the initial pressure (hence density) of the sample, we can access a much wider range of final pressure-temperature conditions than is possible in conventional Hugoniot experiments. Our work increases by nine-fold the pressure range of single-shock measurements, in comparison with gas-gun experiments, and yields results in agreement with the Saumon, Chabrier and Van Horn (1994) equation of state for helium. This changes the internal structures inferred for Jupiter-size planets, relative to models based on earlier equations of state (e. g., SESAME).

  8. Freezing and Pressure-Driven Flow of Solid Helium in Vycor

    NASA Astrophysics Data System (ADS)

    Day, James; Herman, Tobias; Beamish, John

    2005-07-01

    The recent torsional oscillator results of Kim and Chan suggest a supersolid phase transition in solid 4He confined in Vycor. We have used a capacitive technique to directly monitor density changes for helium confined in Vycor at low temperature and have used a piezoelectrically driven diaphragm to study the pressure-induced flow of solid helium into the Vycor pores. Our measurements showed no indication of a mass redistribution in the Vycor that could mimic supersolid decoupling and put an upper limit of about 0.003 μm/s on any pressure-induced supersolid flow in the pores of Vycor.

  9. The Effects of Gaseous Atmospheres on the Performance Characteristics of Aluminum-Sodium Nitrate Flares

    DTIC Science & Technology

    1981-08-01

    CHARACTERISTICS OF ALUMINUM-SODIUM NTRAn FURES PATRICIA L. FARNELL FRANCIS R. TAYLOR ANTHONY J. BEARDELL AUGUST 1981 US ARMY ARMAMENT RESEARCH...composition and of atmospheric content. Also studied were the -^^-^^^ f loading pressure upon the combustion process. The gaseous_ atmospheres... combustion process. The gaseous atmospheres Investigated were mixtures of oxygen and nitrogen, argon, or helium. For all systems, except those in which

  10. [High pressure processing of spices in atmosphere of helium for decrease of microbiological contamination].

    PubMed

    Windyga, Bozena; Fonberg-Broczek, Monika; Sciezyńska, Halina; Skapska, Sylwia; Górecka, Krystyna; Grochowska, Anna; Morawski, Andrzej; Szczepek, Janusz; Karłowski, Kazimierz; Porowski, Sylwester

    2008-01-01

    The aim of the study was to investigate the microbiological decontamination of coriander and caraway when HPP technology was applied in elevated temperature in helium atmosphere. The HPP and heat treatment was conducted for 30 minutes at 800 and 1 000 MPa and temperature range was 60 - 121 degrees C. Contamination with aerobic mesophilic bacteria was decreased by about 2 logarithmic cycles. Total elimination of coliform and yeast and moulds was observed. The efficacy of HPP treatment under helium atmosphere depended on the content of the water in tested samples. It can be concluded that high pressure treatment under atmosphere of helium, combination of proper high pressure and time improved the microbiological quality of spices.

  11. Numerical Investigation of Thermal Distribution and Pressurization Behavior in Helium Pressurized Cryogenic Tank by Introducing a Multi-component Model

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Zhan, Liu; Kang, Zhu

    An improved CFD model involving a multi-component gas mixturein the ullage is constructed to predict the pressurization behavior of a cryogenic tank considering the existence of pressurizing helium.A temperature difference between the local fluid and its saturation temperature corresponding to the vapor partial pressure is taken as the phase change driving force. As practical application of the model, hydrogen and oxygen tanks with helium pressurization arenumerically simulated by using themulti-component gas model. The results presentthat the improved model produce higher ullage temperature and pressure and lower wall temperaturethan those without multi-component consideration. The phase change has a slight influence on thepressurization performance due to the small quantities involved.

  12. Thermophysical properties of helium-4 from 4 to 3000 R with pressures to 15000 psia

    NASA Technical Reports Server (NTRS)

    Mccarty, R. D.

    1972-01-01

    Data on many of the properties of helium commonly used in engineering calculations are compiled over as wide a temperature and pressure range as is practical. These properties are presented in a form which is convenient to the engineer. All of these properties have been critically evaluated and represent the best values for that property at this time.

  13. Dynamics of liquid helium boil-off experiments with a step change in pressure

    NASA Astrophysics Data System (ADS)

    Cha, Y. S.; Niemann, R. C.; Hull, J. R.

    The results of dynamic analysis of the effect of pressure variations during helium boil-off experiments are presented. A general solution of the diffusion equation with a time-dependent boundary condition is employed to describe the dynamic response of the liquid helium system under variable pressure conditions, and a solution is obtained for the special case when the system is subjected to a step change in pressure. The calculated temperature response of the liquid indicates that most of the experiments were not likely to have reached equilibrium as a result of the low thermal diffusivity of liquid helium. The initial rate of evaporation or condensation is large, and the rate decreases sharply with time. A method is proposed to account for the transient effect that is observed during calculation of the heat loss rate from a helium boil-off experiment. By assuming that there is no mixing at all, the present analysis provides an estimate of the upper (condensation) or lower (evaporation) bound of the heat loss rate as a result of a pressure increase or decrease in the system. A previously reported equilibrium analysis is expected to apply to situations where complete mixing occurred in the bulk liquid and provides the opposite limits.

  14. Phase equilibria in molecular hydrogen-helium mixtures at high pressures

    NASA Technical Reports Server (NTRS)

    Streett, W. B.

    1973-01-01

    Experiments on phase behavior in hydrogen-helium mixtures have been carried out at pressures up to 9.3 kilobars, at temperatures from 26 to 100 K. Two distinct fluid phases are shown to exist at supercritical temperatures and high pressures. Both the trend of the experimental results and an analysis based on the van der Waals theory of mixtures suggest that this fluid-fluid phase separation persists at temperatures and pressures beyond the range of these experiments, perhaps even to the limits of stability of the molecular phases. The results confirm earlier predictions concerning the form of the hydrogen-helium phase diagram in the region of pressure-induced solidification of the molecular phases at supercritical temperatures. The implications of this phase diagram for planetary interiors are discussed.

  15. Compression of helium to high pressures and temperatures using a ballistic piston apparatus

    NASA Technical Reports Server (NTRS)

    Roman, B. P.; Rovel, G. P.; Lewis, M. J.

    1971-01-01

    Some preliminary experiments are described which were carried out in a high enthalpy laboratory to investigate the compression of helium, a typical shock-tube driver gas, to very high pressures and temperatures by means of a ballistic piston. The purpose of these measurements was to identify any problem areas in the compression process, to determine the importance of real gas effects duDC 47355s process, and to establish the feasibility of using a ballistic piston apparatus to achieve temperatures in helium in excess of 10,000 K.

  16. Study on the Property Evolution of Atmospheric Pressure Plasma Jets in Helium

    NASA Astrophysics Data System (ADS)

    Chang, Zhengshi; Yao, Congwei; Mu, Haibao; Zhang, Guanjun

    2014-01-01

    Nowadays atmospheric pressure plasma jets (APPJs) are being widely applied to many fields and have received growing interests from cold plasma community. A helium APPJ with co-axial double ring electrode configuration is driven by an AC high voltage power with an adjustable frequency of 1-60 kHz. Experiments are conducted for acquiring the electrical and optical properties of APPJ, including the discharge mode, current peak's phase and APPJ's length, etc. Moreover, the actions of Penning effect on APPJ are discussed by adding impurity nitrogen into highly pure helium. The results may contribute to further research and applications of APPJs.

  17. Pressure Gradients and Annealing Effects in Solid Helium-4

    NASA Astrophysics Data System (ADS)

    Suhel, Md. Abdul Halim

    The Kim and Chan experiment in 2004 gave the first experimental evidence of a possible supersolid state. Even though the origin of this state is not clear yet, several experimental and theoretical investigations suggest defects are responsible for this curious phase. We have used heat pulses and thermal quenching to study pressure gradients and annealing mechanisms in solid 4He crystals. Large pressure gradients exist in crystals grown at constant volume. These can be enhanced by phase transitions, thermal quenching or by partial melting. Annealing reduces defect densities and hence pressure gradients in crystals. Our measurements show that the pressure at different points in a crystal can behave differently, even if there is little change in the crystal's average pressure. We measured the activation energy that is associated with the annealing process.

  18. Cold Helium Pressurization for Liquid Oxygen/Liquid Methane Propulsion Systems: Fully-Integrated Hot-Fire Test Results

    NASA Technical Reports Server (NTRS)

    Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.

    2016-01-01

    Hot-fire test demonstrations were successfully conducted using a cold helium pressurization system fully integrated into a liquid oxygen (LOX) / liquid methane (LCH4) propulsion system (Figure 1). Cold helium pressurant storage at near liquid nitrogen (LN2) temperatures (-275 F and colder) and used as a heated tank pressurant provides a substantial density advantage compared to ambient temperature storage. The increased storage density reduces helium pressurant tank size and mass, creating payload increases of 35% for small lunar-lander sized applications. This degree of mass reduction also enables pressure-fed propulsion systems for human-rated Mars ascent vehicle designs. Hot-fire test results from the highly-instrumented test bed will be used to demonstrate system performance and validate integrated models of the helium and propulsion systems. A pressurization performance metric will also be developed as a means to compare different active pressurization schemes.

  19. Three electrode atmospheric pressure plasma jet in helium flow

    NASA Astrophysics Data System (ADS)

    Maletic, Dejan; Puac, Nevena; Malovic, Gordana; Petrovic, Zoran Lj.

    2015-09-01

    Plasma jets are widely used in various types of applications and lately more and more in the field of plasma medicine. However, it is not only their applicability that distinguishes them from other atmospheric plasma sources, but also the behavior of the plasma. It was shown that plasma plume is not continuous, but discrete set of plasma packages. Here we present iCCD images and current voltage characteristics of a three electrode plasma jet. Our plasma jet has a simple design with body made of glass tube and two transparent electrodes wrapped around it. The additional third metal tip electrode was positioned at 10 and 25 mm in front of the jet nozzle and connected to the same potential as the powered electrode. Power transmitted to the plasma was from 0.5 W to 4.0 W and the helium flow rate was kept constant at 4 slm. For the 10 mm configuration plasma is ignited on the metal tip in the whole period of the excitation signal and in the positive half cycle plasma ``bullet'' is propagating beyond the metal tip. In contrast to that, for the 25 mm configuration at the tip electrode plasma can be seen only in the minimum and maximum of the excitation signal, and there is no plasma ``bullet'' formation. This research has been supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, under projects ON171037 and III41011.

  20. Gaseous electron multiplier gain characteristics using low-pressure Ar/CO2

    NASA Astrophysics Data System (ADS)

    Rogers, T.; McEntaffer, R.; Schultz, T.; McCoy, J.; Miles, D.; Tutt, J.

    2017-03-01

    Gaseous Electron Multiplier detectors, or GEMs, show promise for use on space-based X-ray missions. Operating pressure strongly affects the gain of the detector and must be optimized for best performance. We have measured the gain characteristics of a GEM detector at various pressures below atmosphere using a mixture of Ar:CO2 with the goal of maximizing gain to push GEM capabilities to the lowest energies possible. This paper discusses our tests, results, and their implications for choosing a detector pressure. We found that at any operating pressure the detector voltage can be adjusted to achieve roughly the same maximum gain prior to the onset of electrical discharges. We also find that the gain varies substantially by spatial location across the detector, but this variation is insensitive to changes in pressure allowing it to be calibrated and corrected if necessary. The detector pressure can therefore be optimized in the interest of other performance parameters such as leak rate, window stress, power requirements, or quantum efficiency without concern for negatively affecting the gain. These results can inform the choice of operating pressure and voltage for GEMs used onboard future space missions.

  1. Gaseous electron multiplier gain characteristics using low-pressure Ar/CO2

    NASA Astrophysics Data System (ADS)

    Rogers, T.; McEntaffer, R.; Schultz, T.; McCoy, J.; Miles, D.; Tutt, J.

    2017-04-01

    Gaseous Electron Multiplier detectors, or GEMs, show promise for use on space-based X-ray missions. Operating pressure strongly affects the gain of the detector and must be optimized for best performance. We have measured the gain characteristics of a GEM detector at various pressures below atmosphere using a mixture of Ar:CO2 with the goal of maximizing gain to push GEM capabilities to the lowest energies possible. This paper discusses our tests, results, and their implications for choosing a detector pressure. We found that at any operating pressure the detector voltage can be adjusted to achieve roughly the same maximum gain prior to the onset of electrical discharges. We also find that the gain varies substantially by spatial location across the detector, but this variation is insensitive to changes in pressure allowing it to be calibrated and corrected if necessary. The detector pressure can therefore be optimized in the interest of other performance parameters such as leak rate, window stress, power requirements, or quantum efficiency without concern for negatively affecting the gain. These results can inform the choice of operating pressure and voltage for GEMs used onboard future space missions.

  2. High-Pressure Gaseous Burner (HPGB) Facility Completed for Quantitative Laser Diagnostics Calibration

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2002-01-01

    A gas-fueled high-pressure combustion facility with optical access, which was developed over the last 2 years, has just been completed. The High Pressure Gaseous Burner (HPGB) rig at the NASA Glenn Research Center can operate at sustained pressures up to 60 atm with a variety of gaseous fuels and liquid jet fuel. The facility is unique as it is the only continuous-flow, hydrogen-capable, 60-atm rig in the world with optical access. It will provide researchers with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow's advanced aircraft engines. The facility provides optical access to the flame zone, enabling the calibration of nonintrusive optical diagnostics to measure chemical species and temperature. The data from the HPGB rig enables the validation of numerical codes that simulate gas turbine combustors, such as the National Combustor Code (NCC). The validation of such numerical codes is often best achieved with nonintrusive optical diagnostic techniques that meet these goals: information-rich (multispecies) and quantitative while providing good spatial and time resolution. Achieving these goals is a challenge for most nonintrusive optical diagnostic techniques. Raman scattering is a technique that meets these challenges. Raman scattering occurs when intense laser light interacts with molecules to radiate light at a shifted wavelength (known as the Raman shift). This shift in wavelength is unique to each chemical species and provides a "fingerprint" of the different species present. The facility will first be used to gather a comprehensive data base of laser Raman spectra at high pressures. These calibration data will then be used to quantify future laser Raman measurements of chemical species concentration and temperature in this facility and other facilities that use Raman scattering.

  3. Nonequilibrium gaseous heat transfer in pressure-driven plane Poiseuille flow.

    PubMed

    John, Benzi; Gu, Xiao-Jun; Emerson, David R

    2013-07-01

    Nonequilibrium heat and mass transfer in a pressure-driven plane Poiseuille flow is investigated using the direct simulation Monte Carlo method from the early slip to the free molecular regime. Our investigations reveal several nonintuitive, nonequilibrium thermal flow patterns, including expansion cooling near the walls, a nonconstant pressure profile, and counter-gradient heat transfer along the channel center-line. A bimodal trend in the tangential heat flux is found in the slip and the early transition regime. In the upper transition and free molecular regime, the net heat flow in the entire channel is largely unidirectional and in the opposite direction of mass flow. However, in the slip and the early transition regime, a two-way heat flow is observed in the channel as the normal heat flux profile plays a key role in determining the net gaseous heat flow direction. Moreover, the heat flow rate profile exhibits a maximum value at an intermediate value of Knudsen number. The effects of incomplete surface accommodation on nonequilibrium heat flow are also investigated in this work. It is shown that for very low values of the accommodation coefficient, the gaseous heat flow direction is reversed and is consistently in the direction of mass flow.

  4. Thermodynamics of hydrogen-helium mixtures at high pressure and finite temperature

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1972-01-01

    A technique is reviewed for calculating thermodynamic quantities for mixtures of light elements at high pressure, in the metallic state. Ensemble averages are calculated with Monte Carlo techniques and periodic boundary conditions. Interparticle potentials are assumed to be coulombic, screened by the electrons in dielectric function theory. This method is quantitatively accurate for alloys at pressures above about 10 Mbar. An alloy of equal parts hydrogen and helium by mass appears to remain liquid and mixed for temperatures above about 3000 K, at pressures of about 15 Mbar. The additive volume law is satisfied to within about 10%, but the Gruneisen equation of state gives poor results. A calculation at 1300 K shows evidence of a hydrogen-helium phase separation.

  5. Measured pressure distributions of large-angle cones in hypersonic flows of tetrafluoromethane, air, and helium

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Hunt, J. L.

    1973-01-01

    An experimental study of surface pressure distributions on a family of blunt and sharp large angle cones was made in hypersonic flows of helium, air, and tetrafluoromethane. The effective isentropic exponents of these flows were 1.67, 1.40, and 1.12. Thus, the effect of large shock density ratios such as might be encountered during planetary entry because of real-gas effects could be studied by comparing results in tetrafluoromethane with those in air and helium. It was found that shock density ratio had a large effect on both shock shape and pressure distribution. The differences in pressure distribution indicate that for atmospheric flight at high speed where real-gas effects produce large shock density ratios, large-angle cone vehicles can be expected to experience different trim angles of attack, drag coefficient, and lift-drag ratios than those for ground tests in air wind tunnels.

  6. Pressure drop measurements on supercritical helium cooled cable in conduit conductors

    SciTech Connect

    Daugherty, M.A.; Huang, Y.; Van Sciver, S.W. . Applied Superconductivity Center)

    1989-03-01

    Forced flow cable-in-conduit conductors with large cooled surface areas provide excellent stability margins at the price of high frictional losses and large pumping power requirements. For extensive projects such as the International Thermonuclear Experimental Reactor design cooperation it is essential to know the pressure drops to be expected from different conductor geometries and operating conditions. To measure these pressure drops a flow loop was constructed to circulate supercritical helium through different conductors. The loop is surrounded by a 5 K radiation shield to allow for stable operation at the required temperatures. A coil heat exchanger immersed in a helium bath is used to remove the heat generated by the pump. Pressure drops are measured across 1 meter lengths of the conductors for various mass flow rates. Friction factor versus Reynolds number plots are used to correlate the data.

  7. Pressure drop measurements on supercritical helium cooled cable in conduit conductors

    SciTech Connect

    Daugherty, M.A.; Huang, Y.; Van Sciver, S.W.

    1988-01-01

    Forced flow cable-in-conduit conductors with large cooled surface areas provide excellent stability margins at the price of high frictional losses and large pumping power requirements. For extensive projects such as the International Thermonuclear Experimental Reactor design cooperation it is essential to know the pressure drops to be expected from different conductor geometries and operating conditions. To measure these pressure drops a flow loop was constructed to circulate supercritical helium through different conductors. The loop is surrounded by a 5 K radiation shield to allow for stable operation at the required temperatures. A coil heat exchanger immersed in a helium bath is used to remove the heat generated by the pump. Pressure drops are measured across 1 meter lengths of the conductors for various mass flow rates. Friction factor versus Reynolds number plots are used to correlate the data. 12 refs., 4 figs. 1 tab.

  8. The Role of Helium Metastable States in Radio-Frequency Helium-Oxygen Atmospheric Pressure Plasma Jets: Measurement and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Niemi, Kari; Waskoenig, Jochen; Sadeghi, Nader; Gans, Timo; O'Connell, Deborah

    2011-10-01

    Absolute densities of metastable He atoms were measured line-of sight integrated along the plasma channel of a capacitively-coupled radio-frequency driven atmospheric pressure plasma jet operated in helium oxygen mixtures by tunable diode-laser absorption spectroscopy. Dependencies of the He metastable density with oxygen admixtures up to 1 percent were investigated. Results are compared to a 1-d numerical simulation, which includes a semi-kinetical treatment of the electron dynamics and the complex plasma chemistry (20 species, 184 reactions), and very good agreement is found. The main formation mechanisms for the helium metastables are identified and analyzed, including their pronounced spatio-temporal dynamics. Penning ionization through helium metastables is found to be significant for plasma sustainment, while it is revealed that helium metastables are not an important energy carrying species into the jet effluent and therefore will not play a direct role in remote surface treatments.

  9. Methods to improve pressure, temperature and velocity accuracies of filtered Rayleigh scattering measurements in gaseous flows

    NASA Astrophysics Data System (ADS)

    Doll, Ulrich; Burow, Eike; Stockhausen, Guido; Willert, Christian

    2016-12-01

    Frequency scanning filtered Rayleigh scattering is able to simultaneously provide time-averaged measurements of pressure, temperature and velocity in gaseous flows. By extending the underlying mathematical model, a robust alternative to existing approaches is introduced. Present and proposed model functions are then characterized during a detailed uncertainty analysis. Deviations between the analytical solution of a jet flow experiment and measured results could be related to laser-induced background radiation as well as the Rayleigh scattering’s spectral distribution. In applying a background correction method and by replacing the standard lineshape model by an empirical formulation, detrimental effects on pressure, temperature and velocity accuracies could be reduced below 15 hPa, 2.5 K and 2.7 m s-1.

  10. Melting Pressure Thermometry and Magnetically Ordered Solid HELIUM-3.

    NASA Astrophysics Data System (ADS)

    Ni, Wenhai

    In this thesis, two separate experiments on solid ^3He are presented. In the first experiment, the ^3He melting pressure has been measured precisely from 500 murm K to 25 mK. Temperatures were determined from a ^{60 }Co nuclear orientation (NO) primary thermometer and Pt NMR, calibrated against the NO thermometer, as a secondary thermometer. The values for the fixed points on the melting curve are: the superfluid ^3He A transition T_{A }=2.505 mK, the A-B transition T_ {AB}=1.948 mK, and the solid ordering temperature T_{N}=0.934 mK. The functional form for P(T) relative to the solid ordering transition pressure P_ {N} is provided. In the second experiment, the melting pressures of ^3He across the various magnetic ordering transitions and in magnetic fields up to 0.65 T have been measured. A precise magnetic phase diagram B-T of solid ^3He is obtained. The transitions from the low field phase (LFP) to the high field phase (HFP) and to the paramagnetic disordered phase (PP) are first order. The phase transition from the HFP to PP is identified as first order from the triple point of the phase diagram to about 0.65 T, above which it is second order phase. The solid ^3He entropy and the magnetization are determined from the Clausius-Clapeyron equations. In the LFP, the melting pressure is proportional to T^4 up to the phase boundary, with a constant spin wave velocity of about 7.8 cm/s, indicating a roughly temperature -independent magnetization at each field. In the HFP, the melting pressure deviates from the T^4 dependence very near the HFP-PP transition, resulting in a very rapid entropy change. From the analysis of the melting pressure data, a very shallow molar-volume minimum was found at the ordering transition T_ {N}..

  11. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  12. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  13. Pressure broadening of phosphine by hydrogen and helium

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.; Poynter, R. L.; Cohen, E. A.

    1981-01-01

    The line widths, pressure-induced shifts, and center frequency of the J = 1-0, K = 0 phosphine transition at 266.9 GHz have been determined. The widths and shifts are reported for collisions with phosphine, H2, and He.

  14. High pressure real gas effects for helium and nitrogen

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1969-01-01

    Critical flow factor is calculated that permits the isentropic mass-flow rate of the gases through critical flow nozzles to be calculated from plenum conditions. Results include nozzle throat velocity, compressibility factor, entropy, enthalpy, specific heat, and ratios of throat to plenum pressure, density, and temperature.

  15. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S.; Tucker, S.

    2006-01-01

    In support of the development of a zero gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray bar thermodynamic vent system (TVS). Fourteen days of testing was performed in August - September 2005, with an ambient heat leak of about 70-80 watts and tank fill levels of 90%, 50%, and 25%. The TVS successfully controlled the tank pressure within a +/- 3.45 kPa (+/- 0.5 psi) band with various helium concentration levels in the ullage. Relative to pressure control with an "all hydrogen" ullage, the helium presence resulted in 10 to 30 per cent longer pressure reduction durations, depending on the fill level, during the mixing/venting phase of the control cycle. Additionally, the automated control cycle was based on mixing alone for pressure reduction until the pressure versus time slope became positive, at which time the Joule-Thomson vent was opened. Testing was also conducted to evaluate thermodynamic venting without the mixer operating, first with liquid then with vapor at the recirculation line inlet. Although ullage stratification was present, the ullage pressure was successfully controlled without the mixer operating. Thus, if vapor surrounded the pump inlet in a reduced gravity situation, the ullage pressure can still be controlled by venting through the TVS Joule Thomson valve and heat exchanger. It was evident that the spray bar configuration, which extends almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the mixer operating. Details regarding the test setup and procedures are presented in the paper. 1

  16. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S.; Tucker, S.

    2006-01-01

    In support of the development of a zero gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray bar thermodynamic vent system (TVS). Fourteen days of testing was performed in August - September 2005, with an ambient heat leak of about 70-80 watts and tank fill levels of 90%, 50%, and 25%. The TVS successfully controlled the tank pressure within a +/- 3.45 kPa (+/- 0.5 psi) band with various helium concentration levels in the ullage. Relative to pressure control with an "all hydrogen" ullage, the helium presence resulted in 10 to 30 per cent longer pressure reduction durations, depending on the fill level, during the mixing/venting phase of the control cycle. Additionally, the automated control cycle was based on mixing alone for pressure reduction until the pressure versus time slope became positive, at which time the Joule-Thomson vent was opened. Testing was also conducted to evaluate thermodynamic venting without the mixer operating, first with liquid then with vapor at the recirculation line inlet. Although ullage stratification was present, the ullage pressure was successfully controlled without the mixer operating. Thus, if vapor surrounded the pump inlet in a reduced gravity situation, the ullage pressure can still be controlled by venting through the TVS Joule Thomson valve and heat exchanger. It was evident that the spray bar configuration, which extends almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the mixer operating. Details regarding the test setup and procedures are presented in the paper. 1

  17. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Storey, Andrew P.; Zeiri, Offer M.; Ray, Steven J.; Hieftje, Gary M.

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data.

  18. Innovative Method for Developing a Helium Pressurant Tank Suitable for the Upper Stage Flight Experiment

    NASA Technical Reports Server (NTRS)

    DeLay, Tom K.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The AFRL USFE project is an experimental test bed for new propulsion technologies. It will utilize ambient temperature fuel and oxidizers (Kerosene and Hydrogen peroxide). The system is pressure fed, not pump fed, and will utilize a helium pressurant tank to drive the system. Mr. DeLay has developed a method for cost effectively producing a unique, large pressurant tank that is not commercially available. The pressure vessel is a layered composite structure with an electroformed metallic permeation barrier. The design/process is scalable and easily adaptable to different configurations with minimal cost in tooling development 1/3 scale tanks have already been fabricated and are scheduled for testing. The full-scale pressure vessel (50" diameter) design will be refined based on the performance of the sub-scale tank. The pressure vessels have been designed to operate at 6,000 psi. a PV/W of 1.92 million is anticipated.

  19. FLOATING PRESSURE CONVERSION AND EQUIPMENT UPGRADES OF TWO 3.5KW, 20K, HELIUM REFRIGERATORS

    SciTech Connect

    J. Homan, V. Ganni, A. Sidi-Yekhlef, J. Creel, R. Norton, R. Linza, G. Vargas, J. Lauterbach, J. Urbin, D. Howe

    2010-04-01

    Two helium refrigerators, each rated for 3.5 KW at 20 K, are used at NASA's Johnson Space Center (JSC) in Building No. 32 to provide cryogenic-pumping within two large thermal-vacuum chambers. These refrigerators were originally commissioned in 1996. New changes to the controls of these refrigerators were recently completed. This paper describes some of the control issues that necessitated the controls change-over. It will describe the modifications and the new process control which allows the refrigerators to take advantage of the Ganni Cycle “floating pressure” control technology. The controls philosophy change-over to the floating pressure control technology was the first application on a helium gas refrigeration system. Previous implementations of the floating pressure technology have been on 4 K liquefaction and refrigeration systems, which have stored liquid helium volumes that have level indications used for varying the pressure levels (charge) in the system for capacity modulation. The upgrades have greatly improved the performance, stability, and efficiency of these two refrigerators. The upgrades have also given the operators more information and details about the operational status of the main components (compressors, expanders etc.) of the refrigerators at all operating conditions (i.e. at various loads in the vacuum chambers). The performance data of the two systems, pre and post upgrading are presented.

  20. Investigation of atmospheric pressure glow microdischarge between flat cathode and needle anode in helium and argon

    NASA Astrophysics Data System (ADS)

    Astafiev, Alexander; Belyaev, Vladimir; Zamchii, Roman; Kudryavtsev, Anatoly; Stepanova, Olga; Chen, Zhaoquan

    2016-09-01

    DC atmospheric-pressure glow microdischarge was generated between a flat cathode and needle anode with a diameter of 100 μm in a special chamber with helium or argon. Dependences of discharge parameters on an interelectrode gap was investigated with an original experimental setup based on a movable arm on the hinge joint which allowed changing the gap with a step of 5 μm. The gap was varied from 5 to 700 μm. Discharge current was 1-21 mA. Such discharge cell has a very low interelectrode capacitance and provides increasing the stability of the discharge against arc formation (transition to RC oscillations mode) at low currents of 1 mA. A weak dependence of discharge voltage across the gap was revealed in helium at 100-250 μm between the electrodes (normal discharge). In contrast to this, glow microdischarge in argon has a descending current-voltage characteristic and unstable nature. The discharge voltage depending on the gap changes significantly slower than in helium. According to our estimations, the strength of electrical field of positive glow in argon is 5 times lower than in helium. Saint Petersburg State University (Grant No. 0.37.218.2016).

  1. A computational modeling study on the helium atmospheric pressure plasma needle discharge

    NASA Astrophysics Data System (ADS)

    Qian, Mu-Yang; Yang, Cong-Ying; Liu, San-Qiu; Wang, Zhen-Dong; Lv, Yan; Wang, De-Zhen

    2015-12-01

    A two-dimensional coupled model of neutral gas flow and plasma dynamics is employed to investigate the streamer dynamics in a helium plasma needle at atmospheric pressure. A parametric study of the streamer propagation as a function of needle tip curvature radius and helium gas flow rate is presented. The key chemical reactions at the He/air mixing layer which drive the streamer propagation are the direct ionization via collision with electrons, the Penning effect being not so crucial. With increasing the gas flow rate from 0.2 standard liter per minute (SLM) to 0.8 SLM, however, the emissions resulting from reactive oxygen and nitrogen species change from a solid circle to a hollow profile and the average streamer propagation velocity decreases. Air impurities (backdiffusion from ambient air) in the helium jet result in a significant increase in the streamer propagation velocity. Besides, with decreasing the tip curvature radiusfrom 200 μm to 100 μm, the electron avalanche process around the near-tip region is more pronounced. However, the spatially resolved plasma parameters distributions (electron, helium metastables, ground state atomic oxygen, etc.) remain almost the same, except that around the near-tip region where their peak values are more than doubled. Project supported partly by the National Natural Science Foundation of China (Grant No. 11465013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB212012), and in part by the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800).

  2. Atmospheric pressure discharge plasma decomposition for gaseous air contaminants -- Trichlorotrifluoroethane and trichloroethylene

    SciTech Connect

    Oda, Tetsuji; Yamashita, Ryuichi; Takahashi, Tadashi; Masuda, Senichi

    1996-03-01

    The decomposition performance of gaseous environmental destructive contaminants in air by using atmospheric pressure discharged plasma including the surface discharge induced plasma chemical processing (SPCP) was examined. The main contaminants tested were chlorofluorocarbon (CFC-113) and trichloroethylene, typically. The discharge exciting frequency range studied was wide--50 Hz to 50 kHz. Results showed the low frequency discharge requires high voltage to inject high electric power in the gas and to decompose the contaminants. A Gas Chromatograph Mass Spectrometer was used to analyze discharge products of dense CFC-113 or trichloroethylene. Among the detected products were HCl, CClFO, and CHCl{sub 3}. Two different electrode configurations; the silent discharge (coaxial) electrode and the coil-electrode were also tested and compared to each other as a gas reactor.

  3. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media

    DOEpatents

    McLellan, Edward J.

    1983-01-01

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode (1) and cathode (2) to below breakdown voltage using a dc voltage source (3). An array of resistors (4) or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit (5) producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO.sub.2 laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  4. Room temperature thermal conductivity measurements of neat MOF-5 compacts with high pressure hydrogen and helium

    DOE PAGES

    Semelsberger, Troy Allen; Veenstra, Mike; Dixon, Craig

    2016-02-09

    Metal-organic frameworks (MOFs) are a highly porous crystalline material with potential in various applications including on-board vehicle hydrogen storage for fuel cell vehicles. The thermal conductivity of MOFs is an important parameter in the design and ultimate performance of an on-board hydrogen storage system. However, in-situ thermal conductivity measurements have not been previously reported. The present study reports room temperature thermal conductivity and thermal diffusivity measurements performed on neat MOF-5 cylindrical compacts (ρ = 0.4 g/mL) as a function of pressure (0.27–90 bar) and gas type (hydrogen and helium). The transient plane source technique was used to measure both themore » non-directional thermal properties (isotropic method) and the directional thermal properties (anisotropic method). High pressure measurements were made using our in-house built low-temperature, high pressure thermal conductivity sample cell. The intrinsic thermal properties of neat MOF-5 measured under vacuum were—Isotropic: kisotropic = 0.1319 W/m K, αisotropic = 0.4165 mm2/s; Anisotropic: kaxial = 0.1477 W/m K, kradial = 0.1218 W/m K, αaxial = 0.5096 mm2/s, and αradial = 0.4232 mm2/s. The apparent thermal properties of neat MOF-5 increased with increasing hydrogen and helium pressure, with the largest increase occurring in the narrow pressure range of 0–10 bar and then monotonically asymptoting with increasing pressures up to around 90 bar. On average, a greater than two-fold enhancement in the apparent thermal properties was observed with neat MOF-5 in the presence of helium and hydrogen compared to the intrinsic values of neat MOF-5 measured under vacuum. The apparent thermal properties of neat MOF-5 measured with hydrogen were higher than those measured with helium, which were directly related to the gas-specific thermal properties of helium and hydrogen. Neat MOF-5 exhibited a small degree of anisotropy under all conditions measured with thermal

  5. Room temperature thermal conductivity measurements of neat MOF-5 compacts with high pressure hydrogen and helium

    SciTech Connect

    Semelsberger, Troy Allen; Veenstra, Mike; Dixon, Craig

    2016-02-09

    Metal-organic frameworks (MOFs) are a highly porous crystalline material with potential in various applications including on-board vehicle hydrogen storage for fuel cell vehicles. The thermal conductivity of MOFs is an important parameter in the design and ultimate performance of an on-board hydrogen storage system. However, in-situ thermal conductivity measurements have not been previously reported. The present study reports room temperature thermal conductivity and thermal diffusivity measurements performed on neat MOF-5 cylindrical compacts (ρ = 0.4 g/mL) as a function of pressure (0.27–90 bar) and gas type (hydrogen and helium). The transient plane source technique was used to measure both the non-directional thermal properties (isotropic method) and the directional thermal properties (anisotropic method). High pressure measurements were made using our in-house built low-temperature, high pressure thermal conductivity sample cell. The intrinsic thermal properties of neat MOF-5 measured under vacuum were—Isotropic: kisotropic = 0.1319 W/m K, αisotropic = 0.4165 mm2/s; Anisotropic: kaxial = 0.1477 W/m K, kradial = 0.1218 W/m K, αaxial = 0.5096 mm2/s, and αradial = 0.4232 mm2/s. The apparent thermal properties of neat MOF-5 increased with increasing hydrogen and helium pressure, with the largest increase occurring in the narrow pressure range of 0–10 bar and then monotonically asymptoting with increasing pressures up to around 90 bar. On average, a greater than two-fold enhancement in the apparent thermal properties was observed with neat MOF-5 in the presence of helium and hydrogen compared to the intrinsic values of neat MOF-5 measured under vacuum. The apparent thermal properties of neat MOF-5 measured with hydrogen were higher than those measured with helium, which were directly related to the gas-specific thermal properties of helium and hydrogen. Neat

  6. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    SciTech Connect

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  7. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    NASA Astrophysics Data System (ADS)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  8. Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39 µm

    NASA Astrophysics Data System (ADS)

    Klingbeil, A. E.; Jeffries, J. B.; Hanson, R. K.

    2006-07-01

    The pressure- and temperature-dependent absorption cross sections of several neat hydrocarbons and multi-component fuels are measured using a 3.39 µm helium-neon laser. Absorption cross section measurements are reported for methane, ethylene, propane, n-heptane, iso-octane, n-decane, n-dodecane, JP-10, gasoline and jet-A with an estimated uncertainty of less than 3.5%. The experimental conditions range from 298 to 673 K and from 500 to 2000 Torr with nitrogen as the bath gas. An apparatus is designed to facilitate these measurements, and specific care is taken to ensure the compositional accuracy of the hydrocarbon/N2 mixtures. The absorption cross sections of the smallest hydrocarbons, methane and ethylene, vary with temperature and pressure. The cross sections of larger hydrocarbons show negligible dependence on pressure and only a weak dependence on temperature. The reported data increase the range of conditions and the number of hydrocarbons for which cross section measurements are available at the HeNe laser wavelength.

  9. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    SciTech Connect

    Norberg, Seth A. Johnsen, Eric; Kushner, Mark J.

    2015-07-07

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O{sub 2} = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  10. Columnar discharge mode between parallel dielectric barrier electrodes in atmospheric pressure helium

    SciTech Connect

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge

    2014-01-15

    Using a fast-gated intensified charge-coupled device, end- and side-view photographs were taken of columnar discharge between parallel dielectric barrier electrodes in atmospheric pressure helium. Based on three-dimensional images generated from end-view photographs, the number of discharge columns increased, whereas the diameter of each column decreased as the applied voltage was increased. Side-view photographs indicate that columnar discharges exhibited a mode transition ranging from Townsend to glow discharges generated by the same discharge physics as atmospheric pressure glow discharge.

  11. Pressure driven flow studies of superfluid helium-4 through single, high aspect ratio nanopipes

    NASA Astrophysics Data System (ADS)

    Botimer, Jeffrey; Taborek, Peter

    We have measured flow rates of helium-4 through high aspect ratio (>10,000) single glass nanopipes and etched nanopores under the influence of a pressure drop. The initial diameter of the glass pipes is 200nm while the initial diameter of the nanopores is approximately 80nm; the diameter of both types of nanopipe were reduced using atomic layer deposition(ALD) of Al2O3. Flow rates were measured for a wide range of temperatures (0.8K to 3.0K), pressures (up to 40 atm), and pipe lengths (0.8 mm to 30 mm). We observed flow velocities in the range of 1-6 m/s which has a power law dependence on pressure. Flow appears to be governed by turbulence at low temperatures. We have found evidence for a critical pressure above which turbulent flow is eliminated. This critical pressure appears to depend on temperature.

  12. Numerical Modeling and Test Data Comparison of Propulsion Test Article Helium Pressurization System

    NASA Technical Reports Server (NTRS)

    Holt, Kimberly; Majumdar, Alok; Steadman, Todd; Hedayat, Ali; Fogle, Frank R. (Technical Monitor)

    2000-01-01

    A transient model of the propulsion test article (PTA) helium pressurization system was developed using the generalized fluid system simulation program (GFSSP). The model included pressurization lines from the facility interface to the engine purge interface and liquid oxygen (lox) and rocket propellant-1 (RP-1) tanks, the propellant tanks themselves including ullage space, and propellant feed lines to their respective pump interfaces. GFSSP's capability was extended to model a control valve to maintain ullage pressure within a specified limit and pressurization processes such as heat transfer between ullage gas, propellant, and the tank wall as well as conduction in the tank wall. The purpose of the model is to predict the flow system characteristics in the entire pressurization system during 80 sec of lower feed system priming, 420 sec of fuel and lox pump priming, and 150 sec of engine firing.

  13. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    SciTech Connect

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; Morales, Maguel A.

    2016-01-19

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures at thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.

  14. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    DOE PAGES

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; ...

    2016-01-19

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures atmore » thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.« less

  15. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    SciTech Connect

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; Morales, Maguel A.

    2016-01-19

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures at thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.

  16. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    DOE PAGES

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; ...

    2016-01-19

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures atmore » thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.« less

  17. Reactive species in atmospheric pressure helium-oxygen plasmas with humid air impurities

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2012-10-01

    In most applications helium-based plasma jets operate in an open air environment. The presence of humid-air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in rf driven atmospheric-pressure helium-oxygen mixture plasmas (helium with 5000 ppm admixture of oxygen) for wide air impurity levels of 0-500 ppm with relative humidities of from 0 to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively- and negatively-charged ions (and its clusters). Effects of the air impurity containing water humidity on electronegativity and chemical activity are clarified with particular emphasis on reactive oxygen species.

  18. Implementing and Evaluating a Sequence of Instruction on Gaseous Pressure with Pre-Service Primary School Student Teachers.

    ERIC Educational Resources Information Center

    Taylor, Neil; Lucas, Keith B.

    2000-01-01

    Describes a teaching sequence on gaseous pressure implemented in a group of pre-service primary teachers in Fiji that provides subjects with a strong visual model of particle behavior which they then applied to a series of collaborative science activities for which they attempted to construct explanations. Suggests that this teaching sequence…

  19. Simplified Methodology to Estimate the Maximum Liquid Helium (LHe) Cryostat Pressure from a Vacuum Jacket Failure

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Richards, W. Lance

    2015-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared astronomical observation experiments. These experiments carry sensors cooled to liquid helium temperatures. The liquid helium supply is contained in large (i.e., 10 liters or more) vacuum-insulated dewars. Should the dewar vacuum insulation fail, the inrushing air will condense and freeze on the dewar wall, resulting in a large heat flux on the dewar's contents. The heat flux results in a rise in pressure and the actuation of the dewar pressure relief system. A previous NASA Engineering and Safety Center (NESC) assessment provided recommendations for the wall heat flux that would be expected from a loss of vacuum and detailed an appropriate method to use in calculating the maximum pressure that would occur in a loss of vacuum event. This method involved building a detailed supercritical helium compressible flow thermal/fluid model of the vent stack and exercising the model over the appropriate range of parameters. The experimenters designing science instruments for SOFIA are not experts in compressible supercritical flows and do not generally have access to the thermal/fluid modeling packages that are required to build detailed models of the vent stacks. Therefore, the SOFIA Program engaged the NESC to develop a simplified methodology to estimate the maximum pressure in a liquid helium dewar after the loss of vacuum insulation. The method would allow the university-based science instrument development teams to conservatively determine the cryostat's vent neck sizing during preliminary design of new SOFIA Science Instruments. This report details the development of the simplified method, the method itself, and the limits of its applicability. The simplified methodology provides an estimate of the dewar pressure after a loss of vacuum insulation that can be used for the initial design of the liquid helium dewar vent stacks. However, since it is not an exact

  20. Modeling the chemical kinetics of high-pressure glow discharges in mixtures of helium with real air

    NASA Astrophysics Data System (ADS)

    Stalder, K. R.; Vidmar, R. J.; Nersisyan, G.; Graham, W. G.

    2006-05-01

    Atmospheric and near-atmospheric pressure glow discharges generated in both pure helium and helium-air mixtures have been studied using a plasma chemistry code originally developed for simulations of electron-beam-produced air plasmas. Comparisons are made with experimental data obtained from high-pressure glow discharges in helium-air mixtures developed by applying sinusoidal voltage wave forms between two parallel planar metallic electrodes covered by glass plates, with frequencies ranging from 10 to 50 kHz and electric field strengths up to 5 kV/cm. The code simulates the plasma chemistry following periodic pulsations of ionization in prescribed E/N environments. Many of the rate constants depend on gas temperature, electron temperature, and E/N. In helium plasmas with small amounts (~850 ppm) of air added, rapid conversion of atomic helium ions to molecular helium ions dominate the positive ion kinetics and these species are strongly modulated while the radical species are not. The charged and neutral species concentrations at atmospheric pressure with air impurity levels up to 10 000 ppm are predicted. The negative ion densities are very small but increase as the air impurity level is raised, which indicates that in helium-based systems operated in open air the concentration of negative ions would be significant. If water vapor at typical humidity levels is present as one of the impurities, hydrated cluster ions eventually comprise a significant fraction of the charged species.

  1. Experimental studies on thermoacoustic engine with gaseous mixtures

    NASA Astrophysics Data System (ADS)

    Ushir, V.; Desai, K. P.; Naik, H. B.; Atrey, M. D.

    2014-01-01

    Thermoacoustic devices have drawn considerable attention of researchers due to their several advantages like simplicity of construction, maintenance free operation etc. It is known that the working gas for these systems should have lower prandtl number for their better performance. Gaseous mixtures are found to be more suitable due to their lower value of prandtl number compared to that for pure noble gases. A standing wave type half wavelength thermoacoustic engine is developed for 300 Hz resonating frequency with helium as working gas. In the present work experimental investigations are carried out with a few gaseous mixtures of helium, nitrogen, argon and carbon dioxide on a standing a wave type thermoacoustic prime engine. Acoustic amplifier is used for amplification of the pressure ratio generated. Parametric investigations are carried out in terms of charging pressure and heat input temperature. Performance of the engine with these gaseous mixtures is reported.

  2. High pressure liquid and gaseous oxygen impact sensitivity evaluation of materials for use at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.

    1976-01-01

    The sensitivity of materials in contact with gaseous oxygen (GOX) or liquid oxygen (LOX) was examined. Specifically, the reactivity of materials when in contact with GOX or LOX if subjected to such stimuli as mechanical impact, adiabatic compression (pneumatic impact), or an electrical discharge in the form of a spark were examined. Generally, materials are more sensitive in gaseous oxygen than in liquid oxygen and impact sensitivity is known to increase with increasing pressure. Materials presently being used or considered for use in oxygen systems at KSC were evaluated. Results are given in tabular form.

  3. Measurements on Melting Pressure, Metastable Solid Phases, and Molar Volume of Univariant Saturated Helium Mixture

    NASA Astrophysics Data System (ADS)

    Rysti, J.; Manninen, M. S.; Tuoriniemi, J.

    2014-06-01

    A concentration-saturated helium mixture at the melting pressure consists of two liquid phases and one or two solid phases. The equilibrium system is univariant, whose properties depend uniquely on temperature. Four coexisting phases can exist on singular points, which are called quadruple points. As a univariant system, the melting pressure could be used as a thermometric standard. It would provide some advantages compared to the current reference, namely pure He, especially at the lowest temperatures below 1 mK. We have extended the melting pressure measurements of the concentration-saturated helium mixture from 10 to 460 mK. The density of the dilute liquid phase was also recorded. The effect of the equilibrium crystal structure changing from hcp to bcc was clearly seen at mK at the melting pressure MPa. We observed the existence of metastable solid phases around this point. No evidence was found for the presence of another, disputed, quadruple point at around 400 mK. The experimental results agree well with our previous calculations at low temperatures, but deviate above 200 mK.

  4. Helium:oxygen versus air:oxygen noninvasive positive-pressure ventilation in patients exposed to sulfur mustard.

    PubMed

    Ghanei, Mostafa; Rajaeinejad, Mohsen; Motiei-Langroudi, Rouzbeh; Alaeddini, Farshid; Aslani, Jafar

    2011-01-01

    Exposure to sulfur mustard (SM) causes a variety of respiratory symptoms, such as chronic bronchitis and constrictive bronchiolitis. This study assessed the effectiveness of noninvasive positive-pressure ventilation, adjunct with 79:21 helium:oxygen instead of 79:21 air:oxygen, in 24 patients with a previous exposure to SM presenting with acute respiratory failure. Both air:oxygen and helium:oxygen significantly decreased systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse rate, respiratory rate, dyspnea, and increased oxygen saturation (P values: .007, .029, .002, <.001, <.001, <.001, and .002 for air:oxygen, respectively, and <.001, .020, .001, <.001, <.001, <.001, and .002, for helium:oxygen, respectively). Moreover, helium:oxygen more potently improved systolic pressure, mean arterial pressure, pulse rate, respiratory rate, and dyspnea (P values: .012, .048, <.001, <.001, and .012, respectively). The results of our study support the benefit of using helium:oxygen adjunct with noninvasive positive-pressure ventilation in patients exposed to SM with acute respiratory decompensation. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Numerical study of the interaction of a helium atmospheric pressure plasma jet with a dielectric material

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Zheng, Yashuang; Jia, Shenli

    2016-10-01

    This is a computational modeling study of a cold atmospheric pressure helium plasma jet impinging on a dielectric surface placed normal to the jet axis. This study provides insights into the propagation mechanism of the plasma jet, the electrical properties, and the total accumulated charge density at the dielectric surface. For the radial streamer propagation along the dielectric surface, Penning ionization and the electron impact ionization of helium atoms are the major ionization reactions in the streamer head, while Penning ionization is the only dominant contributor along the streamer body. In addition, the plasma bullet velocity along the dielectric surface is 10-100 times lower than that in the plasma column. Increasing tube radius or helium flow rate lowers air entrainment in the plasma jet, leading to a decrease of the radial electric field and the accumulated charge density at the dielectric surface. Furthermore, the tube radius has weaker influence on the plasma properties as tube radius increases. For a target dielectric with lower relative permittivity, a higher radial electric field penetrates into the material, and the surface ionization wave along the dielectric surface extends farther. Higher relative permittivity of the treated dielectric results in more charging at the dielectric surface and more electron density in the plasma column.

  6. Optical properties of the atmospheric pressure helium plasma jet generated by alternative current (a.c.) power supply

    SciTech Connect

    Ilik, Erkan Akan, Tamer

    2016-05-15

    In this work, an atmospheric pressure plasma jet (APPJ) was produced to generate cold flowing post-discharge plasma of pure helium gas. The main aim of this study was to generate cold flowing APPJ of pure helium gas and to determine how their optical emission spectrum change influences varying different flow rates. Lengths of early, middle, and late post-discharge plasma (jet) regions and their fluctuations were determined, respectively. Then, ignition condition dependence of the post-discharge plasma for flow rate was specified at a constant voltage. Spectroscopic studies of an atmospheric pressure plasma jet of helium were presented via analyzing OH, N{sub 2}, N{sub 2}{sup +}, oxygen, and helium intensities for various flow rates.

  7. Pressure drop of two-phase helium along long cryogenic flexible transfer lines to support a superconducting RF operation at its cryogenic test stand.

    PubMed

    Chang, M H; Tsai, M H; Wang, Ch; Lin, M C; Chung, F T; Yeh, M S; Chang, L H; Lo, C H; Yu, T C; Chen, L J; Liu, Z K

    2016-01-01

    Establishing a stand-alone cryogenic test stand is of vital importance to ensure the highly reliable and available operation of superconducting radio-frequency module in a synchrotron light source. Operating a cryogenic test stand relies strongly on a capability to deliver two-phase helium along long cryogenic transfer lines. A newly constructed cryogenic test stand with flexible cryogenic transfer lines of length 220 m at National Synchrotron Radiation Research Center is required to support a superconducting radio-frequency module operated at 126.0 kPa with a 40-W dynamic load for a long-term reliability test over weeks. It is designed based on a simple analytical approach with the introduction of a so-called tolerance factor that serves to estimate the pressure drops in transferring a two-phase helium flow with a substantial transfer cryogenic heat load. Tolerance factor 1.5 is adopted based on safety factor 1.5 commonly applied in cryogenic designs to estimate the total mass flow rate of liquid helium demanded. A maximum 60-W dynamic load is verified with experiment measured with heater power 60 W instead after the cryogenic test stand has been installed. Aligning the modeled cryogenic accumulated static heat load with the results measured in situ, actual tolerance factor 1.287 is obtained. The feasibility and validity of our simple analytical approach with actual tolerance factor 1.287 have been scrutinized by using five test cases with varied operating conditions. Calculated results show the discrepancies of the pressure drops between the estimated and measured values for both liquid helium and cold gaseous helium transfer lines have an underestimate 0.11 kPa and an overestimate 0.09 kPa, respectively. A discrepancy is foreseen, but remains acceptable for engineering applications from a practical point of view. The simple analytical approach with the introduction of a tolerance factor can provide not only insight into optimizing the choice of each lossy

  8. The tensile strength of helium II

    SciTech Connect

    Xiong, Quan.

    1991-01-01

    The study of the negative pressure required to produce cavitation in liquid helium (i.e. the tensile strength of helium) has been of continuing interest for two reasons. Since all other elements have freezing temperatures of 14 K or higher, helium can be prepared free of gaseous impurities which can serve as centers for heterogeneous nucleation of bubbles which will reduce the tensile strength of the liquid. Secondly, helium remains a liquid even down to the absolute zero of temperature. Consequently, it has been considered that at sufficiently low temperatures there is the possibility that the rate of nucleation of bubbles is dominated by quantum tunneling. In this thesis, the authors reexamined the theory of homogeneous nucleation and made an estimate of the equation of state for negative pressure in helium. He found that the earlier theories were incorrect in that they took no account of the equation of state of liquid helium in the negative pressure regime. The tensile strength of helium at T = 0 K should be around [minus]9 bars instead of [minus]17 bars predicted by the standard theory.

  9. Equilibrium separation in a high pressure helium plasma and its application to the determination of temperatures

    SciTech Connect

    Rodero, A.; Garcia, M.C.; Gamero, A.

    1995-12-31

    The spectroscopy method based on the Boltzmann-plot of emission lines has been usually employed for measuring the excitation temperature (T{sub exc}) in high pressure plasmas. In the present work, it is shown that this method can produce great errors in the temperature determination when equilibrium separation exists. In this way, the suitability of this determination is tested comparing with other alternative methods in a high pressure helium plasma and also studying its separation from the equilibrium situation, via the absolute population measurements of atomic levels and the estimation of its atomic state distribution function (ASDF). We have made this study using a new excitation structure, the axial injection torch (Torche A Injection Axiale or T.I.A.), which produces a high power microwave plasma at atmospheric pressure. The measurements were carried out at the beginning of the flame (the highest line intensity zone) for a 300-900 W power range at 2.45 GHz and 71/min. of helium gas flow.

  10. SHOOT flowmeter and pressure transducers. [for Superfluid Helium On-Orbit Transfer system

    NASA Technical Reports Server (NTRS)

    Kashani, A.; Wilcox, R. A.; Spivak, A. L.; Daney, D. E.; Woodhouse, C. E.

    1990-01-01

    A venturi flowmeter has been designed and constructed for the Superfluid Helium On-Orbit Transfer (SHOOT) experiment. The calibration results obtained from the SHOOT venturi demonstrate the ability of the flowmeter to meet the requirements of the SHOOT experiment. Flow rates as low as 20 cu dm/h and as high as 800 cu dm/h have been measured. Performances of the SHOOT differential and absolute pressure transducers, which have undergone calibration and vibration tests, are also included. Throughout the tests, the responses of the transducers remained linear and repeatable to within + or - 1 percent of the full scales of the transducers.

  11. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    SciTech Connect

    Flesch, K.; Kremeyer, T.; Schmitz, O.; Soukhanovskii, V.; Wenzel, U.

    2016-08-18

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.

  12. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    SciTech Connect

    Flesch, K. Kremeyer, T.; Schmitz, O.; Soukhanovskii, V.; Wenzel, U.

    2016-11-15

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D{sub 2} molecules and the He ash which will be produced by deuterium-tritium fusion. To study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. Three different anode geometries have been studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.

  13. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    DOE PAGES

    Flesch, K.; Kremeyer, T.; Schmitz, O.; ...

    2016-08-18

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least onemore » order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less

  14. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    NASA Astrophysics Data System (ADS)

    Flesch, K.; Kremeyer, T.; Schmitz, O.; Soukhanovskii, V.; Wenzel, U.

    2016-11-01

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D2 molecules and the He ash which will be produced by deuterium-tritium fusion. To study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. Three different anode geometries have been studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.

  15. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution.

    PubMed

    Laroche, G; Vallade, J; Bazinette, R; van Nijnatten, P; Hernandez, E; Hernandez, G; Massines, F

    2012-10-01

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm × 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45° beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  16. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    SciTech Connect

    Laroche, G.; Vallade, J.; Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F.; Nijnatten, P. van

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  17. Variable Temperature Setup for Scanning Electron Microscopy in Liquids and Atmospheric Pressure Gaseous Environments

    NASA Astrophysics Data System (ADS)

    Al-Asadi, Ahmed; Zhang, Jie; Li, Jianbo; Denault, Lauraine; Potyrailo, Radislav; Kolmakov, Andrei

    2014-03-01

    A thermoelectric cooling / heating setup for commercial Quantomix QX WETSEM scanning electron microscopy environmental cells was designed and tested. This addition allows extending ambient pressure in situ studies to be conducted in a wide temperature range both in liquid and gaseous environments. Instead of cooling/heating the entire body of QX-WETCELL, ultrathin polyimide electron transparent membrane window supported by metal mesh on the top of the cell has been used as an agent for heat transfer to/ from the Pelltier element. A butterfly wing of Morph sulkowskyi has been used as a model object in the QX-WETCELL's chamber due to its unique micro/nanostructure and peculiar wettability behavior. The dynamics of the water desorption, condensation and freezing processes were observed complementary using both optical microscopy and Scanning Electron Microscopy in vivo. The observations revel that the initial droplet formation were most likely taking place on the top of the wing ridges due to the waxy component of its surface. In addition, The SEM observation showed that the high intensity electron beam can heat the butterfly wing locally delaying the water condensation and freezing processes.

  18. Cold Helium Pressurization for Liquid Oxygen / Liquid Methane Propulsion Systems: Fully-Integrated Initial Hot-Fire Test Results

    NASA Technical Reports Server (NTRS)

    Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.

    2016-01-01

    A prototype cold helium active pressurization system was incorporated into an existing liquid oxygen (LOX) / liquid methane (LCH4) prototype planetary lander and hot-fire tested to collect vehicle-level performance data. Results from this hot-fire test series were used to validate integrated models of the vehicle helium and propulsion systems and demonstrate system effectiveness for a throttling lander. Pressurization systems vary greatly in complexity and efficiency between vehicles, so a pressurization performance metric was also developed as a means to compare different active pressurization schemes. This implementation of an active repress system is an initial sizing draft. Refined implementations will be tested in the future, improving the general knowledge base for a cryogenic lander-based cold helium system.

  19. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon

    DOEpatents

    Park, Jaeyoung; Henins, Ivars

    2005-06-21

    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  20. Pressure driven flows of superfluid helium-4 through a single nanopipe

    NASA Astrophysics Data System (ADS)

    Velasco, Angel; Siwy, Zuzanna; Taborek, Peter

    2015-03-01

    We have measured flow rates of helium-4 through a single etched nanopore of 31 nm diameter in mica with a mass spectrometer. Flow rates were measured as a function of pressure at constant temperature and at saturated vapor pressures along the coexistence curve between 0.5 K and 3.5 K. Due to the constraint of the mass spectrometer the low pressure side was maintained at P =0 creating an intrinsic superfluid/vapor interface which forms inside the pipe or at its exit. We observed two flow regimes at low temperatures with velocities in the range of 6 and 11 m/s consistent with Feynman's vortex critical velocity and a thermal vortex nucleation model respectively. The velocity in a laminar, viscous flow is proportional to the pressure drop while in superfluid flows to zeroth order the velocity is independent of the pressure. A first order correction shows a linear dependence on the pressure with the slope continuously varying from a positive to a negative value near the lambda point. We have also measured flow rates in the normal state and found rates in exact agreement with conventional viscous theory that incorporates the Laplace pressure and a zero slip length. Supported by NSF DMR-0907495.

  1. Hydroxyl radical-PLIF measurements and accuracy investigation in high pressure gaseous hydrogen/gaseous oxygen combustion

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Aravind

    In-flow species concentration measurements in reacting flows at high pressures are needed both to improve the current understanding of the physical processes taking place and to validate predictive tools that are under development, for application to the design and optimization of a range of power plants from diesel to rocket engines. To date, non intrusive measurements have been based on calibrations determined from assumptions that were not sufficiently quantified to provide a clear understanding of the range of uncertainty associated with these measurements. The purpose of this work is to quantify the uncertainties associated with OH measurement in a oxygen-hydrogen system produced by a shear, coaxial injector typical of those used in rocket engines. Planar OH distributions are obtained providing instantaneous and averaged distribution that are required for both LES and RANS codes currently under development. This study has evaluated the uncertainties associated with OH measurement at 10, 27, 37 and 53 bar respectively. The total rms error for OH-PLIF measurements from eighteen different parameters was quantified and found as 21.9, 22.8, 22.5, and 22.9% at 10, 27, 37 and 53 bar respectively. These results are used by collaborators at Georgia Institute of Technology (LES), Pennsylvania State University (LES), University of Michigan (RANS) and NASA Marshall (RANS).

  2. The role of helium metastable states in radio-frequency driven helium-oxygen atmospheric pressure plasma jets: measurement and numerical simulation

    NASA Astrophysics Data System (ADS)

    Niemi, K.; Waskoenig, J.; Sadeghi, N.; Gans, T.; O'Connell, D.

    2011-10-01

    Absolute densities of metastable He(23S1) atoms were measured line-of-sight integrated along the discharge channel of a capacitively coupled radio-frequency driven atmospheric pressure plasma jet operated in technologically relevant helium-oxygen mixtures by tunable diode-laser absorption spectroscopy. The dependences of the He(23S1) density in the homogeneous-glow-like α-mode plasma with oxygen admixtures up to 1% were investigated. The results are compared with a one-dimensional numerical simulation, which includes a semi-kinetical treatment of the pronounced electron dynamics and the complex plasma chemistry (in total 20 species and 184 reactions). Very good agreement between measurement and simulation is found. The main formation mechanisms for metastable helium atoms are identified and analyzed, including their pronounced spatio-temporal dynamics. Penning ionization through helium metastables is found to be significant for plasma sustainment, while it is revealed that helium metastables are not an important energy carrying species into the jet effluent and therefore will not play a direct role in remote surface treatments.

  3. Helium pressures in RHIC vacuum cryostats and relief valve requirements from magnet cooling line failure

    SciTech Connect

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the RHIC magnet cooling lines, similar to the LHC superconducting bus failure incident, would pressurize the insulating vacuum in the magnet and transfer line cryostats. Insufficient relief valves on the cryostats could cause a structural failure. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the vacuum cryostat and discharging via the reliefs into the RHIC tunnel, had been developed to calculate the helium pressure inside the cryostat. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces were included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Existing relief valve sizes were reviewed to make sure that the maximum stresses, caused by the calculated maximum pressures inside the cryostats, did not exceed the allowable stresses, based on the ASME Code B31.3 and ANSYS results. The conclusions are as follows: (1) The S/F simulation results show that the highest internal pressure in the cryostats, due to the magnet line failure, is {approx}37 psig (255115 Pa); (2) Based on the simulation, the temperature on the cryostat chamber, INJ Q8-Q9, could drop to 228 K, which is lower than the material minimum design temperature allowed by the Code; (3) Based on the ASME Code and ANSYS results, the reliefs on all the cryostats inside the RHIC tunnel are adequate to protect the vacuum chambers when the magnet cooling lines fail; and (4) In addition to the pressure loading, the thermal deformations, due to the temperature decrease on the cryostat chambers, could also cause a high stress on the chamber, if not properly supported.

  4. Metastable densities in rf-driven atmospheric pressure microplasma jets in argon and helium

    NASA Astrophysics Data System (ADS)

    Boeke, Marc; Spiekermeier, Stefan; Winter, Joerg

    2016-09-01

    Rf-driven atmospheric pressure microplasma jets (μ-APPJ) are usually operated in the homogeneous glow mode (α-mode). At higher powers the glow discharge becomes unstable due to thermal instabilities and turns into a constricted γ-like discharge (constricted mode), which can damage the jet due to the significantly increased temperature in this operation mode. To prevent these instabilities, rf-driven μ-APPJs are predominantly operated in helium since it provides a better thermal conductivity than argon. However, since argon is much more cost-effective, it is worthwhile to achieve a stable operation of the μ-APPJ using argon as feed gas. Metastable atoms play an important role in the stability of atmospheric pressure discharges, since they pose an important source of electrons via stepwise ionization and penning ionization. To understand the basic processes that lead to the transition from α- to the constricted mode, helium and argon metastable densities have been determined in the μ-APPJ in different operation modes using tunable diode laser absorption spectroscopy (TDLAS). Supported by DFG within (FOR1123).

  5. The effects of high pressure helium and nitrogen on the release of acetylcholine from the guinea-pig ileum

    PubMed Central

    Little, Hilary J.; Paton, W.D.M.

    1979-01-01

    1 The effects of high pressures of helium and of nitrogen on acetylcholine release were tested using the guinea-pig ileum as a model preparation. A superfusion system was designed in which this tissue could be maintained under physiological conditions in a high pressure chamber. 2 Helium, at a pressure of 136 atm slightly increased the spontaneous output of acetylcholine but produced no significant changes at 68 atm (136 atm is close to the lethal pressure for small mammals). 3 The acetylcholine release evoked by electrical stimulation or by 55 mM potassium was not altered by 136 atm of helium. Effects on tetrodotoxin-treated tissues were not consistent. 4 Nitrogen, which in contrast to helium possesses general anaesthetic properties, caused considerable increases in spontaneous and in electrically evoked acetylcholine output at pressures which produce anaesthesia. These increases were not changed when helium was used to increase the total pressure to 136 atm, although this reverses the general anaesthetic actions of nitrogen in vivo. 5 The increases in rate of acetylcholine release produced by nitrogen were observed in tetrodotoxintreated tissues and in tissues from reserpine-treated animals. In a calcium-free medium the increases were considerably smaller. 6 The conclusions from these results are that while high pressures of helium caused little or no change in acetylcholine release rates, nitrogen produced large changes, which were not due to effects on axonal conduction. The effect of nitrogen is not apparently related to its general anaesthetic actions. Differences such as these in transmitter release would be likely to contribute to the differing physiological effects of these two gases. PMID:40648

  6. The Gaseous Explosive Reaction at Constant Pressure : Further Data on the Effect of Inert Gases

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1932-01-01

    An investigation of gaseous explosive reactions is discussed in this report. Measurements were taken to calculate the maximum flame temperature attained and making correlations with existing thermal data on this reaction.

  7. Measurement of quasi-isentropic compressibility of helium and deuterium at pressures of 1500-2000 GPa

    SciTech Connect

    Mochalov, M. A. Il'kaev, R. I.; Fortov, V. E.; Mikhailov, A. L.; Makarov, Yu. M.; Arinin, V. A.; Blikov, A. O.; Baurin, A. Yu.; Komrakov, V. A.; Ogorodnikov, V. A.; Ryzhkov, A. V.; Pronin, E. A.; Yukhimchuk, A. A.

    2012-10-15

    The quasi-isentropic compressibility of helium and deuterium plasmas at pressures of up to 1500-2000 GPa has been measured using devices with spherical geometry and an X-ray diagnostic complex comprising three betatrons and a multichannel imaging system with electro-optic gamma detectors. A deuterium density of 4.5 g/cm{sup 3} and a helium density of 3.8 g/cm{sup 3} have been obtained at pressures of 2210 and 1580 GPa, respectively. The internal energy of a deuterium plasma at the indicated pressure is about 1 MJ/cm{sup 3}, which is about 100 times greater than the specific energy of condensed chemical explosives. Analysis of the obtained data shows that the degree of helium ionization under the achieved plasma compression parameters is about 0.9.

  8. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients.

    PubMed

    Qiu, Feng; Guan, Yulong; Su, Xiaowei; Kunselman, Allen; Undar, Akif

    2010-11-01

    A series of studies performed at our center demonstrates that gaseous microemboli (GME) remain a challenge in cardiac surgical procedures. Evaluation of novel oxygenators must address hemodynamic parameters and microemboli capture capability. The objective of this study is to compare two neonatal membrane oxygenators, the Quadrox-i (MAQUET Cardiopulmonary AG, Hirrlingen, Germany) and the Capiox RX05 (Terumo Corporation, Tokyo, Japan), with respect to GME capture and hemodynamic energy delivery. The experimental circuit included a Maquet HL-20 heart-lung machine, a Heater-Cooler Unit HCU 30 (MAQUET Cardiopulmonary AG), a membrane oxygenator (Quadrox-i Neonatal or Capiox RX05), and ¼-inch tubing from the COBE Heart/Lung Perfusion Pack (COBE Cardiovascular, Inc., Arvada, CO, USA). A Capiox cardiotomy reservoir CX*CR10NX (Terumo Corporation) acted as a pseudopatient. The circuit was primed with human packed red blood cells and lactated Ringer's solution and de-aired according to clinical priming procedure. Heparin (5000IU) was added into the circuit. The total volume was 400mL and hematocrit was 30%. Pump flow rate was maintained at 500 or 1000mL/min under both pulsatile and nonpulsatile modes. All trials were conducted under 100mm Hg of circuit pressure at normothermia (35°C). In each trial, bolus air (0.5mL) was injected into the circuit at the prepump site over 5s. Total emboli counts and total emboli volume were significantly reduced by the Quadrox-i Neonatal membrane oxygenator compared to the Capiox RX05 membrane oxygenator. Classification and quantification of GME detected at the postoxygenator site at two different flow rates indicated that the Quadrox-i Neonatal captures the majority of microemboli larger than 40µm in diameter. The Quadrox-i Neonatal membrane oxygenator had a higher transmembrane pressure drop at 500mL/min, whereas it had a lower pressure drop at 1000mL/min compared to the Capiox Baby RX05 oxygenator. Additionally, the Quadrox-i Neonatal

  9. Use of a torsional pendulum as a high-pressure gage and determination of viscosity of helium gas at high pressures

    NASA Technical Reports Server (NTRS)

    Maisel, J. E.; Webeler, R. W. H.; Grimes, H. H.

    1973-01-01

    Three torsional crystal parameters were examined for suitability in sensing pressure in gases up to 131 million newtons per square meter. The best parameters were found to be the change in crystal decrement at resonance and the change in crystal electrical resistance at resonance. The change in crystal resonant frequency did not appear to be a reliable pressure measuring parameter. Pure argon and pure helium gases were studied for use as working fluids. Helium functioned better over a wider pressure range. Calibration of the gage also provided a measure of the viscosity-density product of the gas as a function of pressure. These data, together with known extrapolated density data, permitted the determination of the viscosity of helium to 131 million N/square meter.

  10. Correlation of Helium Solubility in Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2012-01-01

    A correlation has been developed for the equilibrium mole fraction of soluble gaseous helium in liquid nitrogen as a function of temperature and pressure. Experimental solubility data was compiled and provided by National Institute of Standards and Technology (NIST). Data from six sources was used to develop a correlation within the range of 0.5 to 9.9 MPa and 72.0 to 119.6 K. The relative standard deviation of the correlation is 6.9 percent.

  11. Temporally, spatially, and spectrally resolved barrier discharge produced in trapped helium gas at atmospheric pressure

    SciTech Connect

    Chiper, Alina Silvia; Popa, Gheorghe

    2013-06-07

    Experimental study was made on induced effects by trapped helium gas in the pulsed positive dielectric barrier discharge (DBD) operating in symmetrical electrode configuration at atmospheric pressure. Using fast photography technique and electrical measurements, the differences in the discharge regimes between the stationary and the flowing helium are investigated. It was shown experimentally that the trapped gas atmosphere (TGA) has notable impact on the barrier discharge regime compared with the influence of the flowing gas atmosphere. According to our experimental results, the DBD discharge produced in trapped helium gas can be categorized as a multi-glow (pseudo-glow) discharge, each discharge working in the sub-normal glow regime. This conclusion is made by considering the duration of current pulse (few {mu}s), their maximum values (tens of mA), the presence of negative slope on the voltage-current characteristic, and the spatio-temporal evolution of the most representative excited species in the discharge gap. The paper focuses on the space-time distribution of the active species with a view to better understand the pseudo-glow discharge mechanism. The physical basis for these effects was suggested. A transition to filamentary discharge is suppressed in TGA mode due to the formation of supplementary source of seed electrons by surface processes (by desorption of electrons due to vibrationally excited nitrogen molecules, originated from barriers surfaces) rather than volume processes (by enhanced Penning ionisation). Finally, we show that the pseudo-glow discharge can be generated by working gas trapping only; maintaining unchanged all the electrical and constructive parameters.

  12. Quality improvement of environmental secondary electron detector signal using helium gas in variable pressure scanning electron microscopy.

    PubMed

    Oho, Eisaku; Suzuki, Kazuhiko; Yamazaki, Sadao

    2007-01-01

    The quality of the image signal obtained from the environmental secondary electron detector (ESED) employed in a variable pressure (VP) SEM can be dramatically improved by using helium gas. The signal-to-noise ratio (SNR) increases gradually in the range of the pressures that can be used in our modified SEM. This method is especially useful in low-voltage VP SEM as well as in a variety of SEM operating conditions, because helium gas can more or less maintain the amount of unscattered primary electrons. In order to measure the SNR precisely, a digital scan generator system for obtaining two images with identical views is employed as a precondition.

  13. Numerical Modeling of Helium Pressurization System of Propulsion Test Article (PTA)

    NASA Technical Reports Server (NTRS)

    Steadman, Todd; Majumdar, Alok; Holt, Kimberly

    2001-01-01

    A transient model of the Propulsion Test Article (PTA) Helium Pressurization System was developed using the Generalized Fluid System Simulation Program (GFSSP). The model included feed lines from the facility interface to the engine purge interface and Liquid Oxygen (LOX) and Rocket Propellant 1 (RP-1) tanks, the propellant tanks themselves including ullage space and propellant feed lines to their respective pump interfaces. GFSSP's capability was extended to model a control valve to maintain ullage pressure within a specified limit and pressurization processes such as heat transfer between ullage gas, propellant and the tank wall. The purpose of the model is to predict the flow system characteristics in the entire pressurization system during 80 seconds of lower feed system priming, 420 seconds of fuel and LOX pump priming and 150 seconds of engine firing. Subsequent to the work presented here, the PTA model has been updated to include the LOX and RP-1 pumps, while the pressurization option itself has been modified to include the effects of mass transfer. This updated model will be compared with PTA test data as it becomes available.

  14. Helium-Recycling Plant

    NASA Technical Reports Server (NTRS)

    Cook, Joseph

    1996-01-01

    Proposed system recovers and stores helium gas for reuse. Maintains helium at 99.99-percent purity, preventing water vapor from atmosphere or lubricating oil from pumps from contaminating gas. System takes in gas at nearly constant low back pressure near atmospheric pressure; introduces little or no back pressure into source of helium. Concept also extended to recycling of other gases.

  15. Effects of the air pressure on the wave-packet dynamics of gaseous iodine molecules at room temperature

    NASA Astrophysics Data System (ADS)

    Fan, Rongwei; He, Ping; Chen, Deying; Xia, Yuanqin; Yu, Xin; Wang, Jialing; Jiang, Yugang

    2013-02-01

    Based on ultrafast laser pulses, time-resolved resonance enhancement coherent anti-Stokes Raman scattering (RE-CARS) is applied to investigate wave-packet dynamics in gaseous iodine. The effects of air pressure on the wave-packet dynamics of iodine molecules are studied at pressures ranging from 1.5 Torr to 750 Torr. The RE-CARS signals are recorded in a gas cell filled with a mixture of about 0.3 Torr iodine in air buffer gas at room temperature. The revivals and fractional revival structures in the wave-packet signal are found to gradually disappear with rising air pressure up to 750 Torr, and the decay behaviors of the excited B-state and ground X-state become faster with increasing air pressure, which is due to the collision effects of the molecules and the growing complexity of the spectra at high pressures.

  16. Probe measurements of electron energy spectrum in Helium/air micro-plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Adams, S. F.; Miles, J. A.; Koepke, M. E.; Kurlyandskaya, I. P.; Hensley, A. L.; Tolson, B. A.

    2016-09-01

    It is experimentally demonstrated that a wall probe may be a useful instrument for interpretation of electron energy spectrum in a micro-plasma with a nonlocal electron distribution function at atmospheric pressure. Two micro-plasma devices were fabricated with three layers of molybdenum metal foils with thickness of 0.1 mm separated by two sheets of mica insulation with thickness of 0.11 mm. In one device a hole with the diameter of 0.2 mm formed a cylindrical discharge cavity that passed through the entire five layers. In the second device the hole has the diameter of 0.065 mm. In both devices the inner molybdenum layer formed a wall probe, while the outer layers of molybdenum served as the hollow cathode and anode. The discharge was open into air with flow of helium gas. It is found that the wall probe I-V trace is sensitive to the presence of helium metastable atoms. The first derivative of the probe current with respect to the probe potential shows peaks revealing fast electrons at specific energies arising due to plasma chemical reactions. The devices may be applicable for developing analytical sensors for extreme environments, including high radiation and vibration levels and high temperatures. This work was performed while VID held a NRC Research Associateship Award at AFRL.

  17. Study of spatial distributions of highly ionized nonequilibrium helium plasma at atmospheric pressures

    NASA Astrophysics Data System (ADS)

    Chinnov, V. F.; Kavyrshin, D. I.; Ageev, A. G.; Korshunov, O. V.; Sargsyan, M. A.; Efimov, A. V.

    2016-11-01

    Experimental study of helium plasma in the state of quasistationary heating under atmospheric pressure was made. The plasma state is shown to fail to be described by Saha- Boltzmann approximation at high ionization levels α i = 0.5-0.9, temperatures 2.5-4.0 eV and electron concentrations about 1017 cm-3. The deviation from the equilibrium state of the plasma is caused by lack of spatial uniformity due to charged particles loss by ambipolar diffusion. In order to thoroughly study the temporal changes of plasma radiation characteristics, spectroscopic analysis was carried out with DFS-452 spectrometer and high-speed CMOS camera Andor iStar attached to its output. The system yields the spatial resolution of 30-50 μm and temporal resolution of 5-50 μs. Electron concentration ne was measured from the half-width of the local Hei spectrum line contours having dominant quadruple Stark effect with well-known constants. In order to determine the temperature of heavy particles, Doppler component of HeI line triplet at 1083 nm was studied. The temporal evolution of the following important characteristics has been determined for helium plasma during pulsed heating: current power, intensities of a number of HeI and HeII spectral lines, electron temperatures and concentrations.

  18. Electric field development in γ-mode radiofrequency atmospheric pressure glow discharge in helium

    NASA Astrophysics Data System (ADS)

    Navrátil, Zdeněk; Josepson, Raavo; Cvetanović, Nikola; Obradović, Bratislav; Dvořák, Pavel

    2016-06-01

    Time development of electric field strength during radio-frequency sheath formation was measured using Stark polarization spectroscopy in a helium γ-mode radio-frequency (RF, 13.56 MHz) atmospheric pressure glow discharge at high current density (3 A cm-2). A method of time-correlated single photon counting was applied to record the temporal development of spectral profile of He I 492.2 nm line with a sub-nanosecond temporal resolution. By fitting the measured profile of the line with a combination of pseudo-Voigt profiles for forbidden (2 1P-4 1F) and allowed (2 1P-4 1D) helium lines, instantaneous electric fields up to 32 kV cm-1 were measured in the RF sheath. The measured electric field is in agreement with the spatially averaged value of 40 kV cm-1 estimated from homogeneous charge density RF sheath model. The observed rectangular waveform of the electric field time development is attributed to increased sheath conductivity by the strong electron avalanches occurring in the γ-mode sheath at high current densities.

  19. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    NASA Astrophysics Data System (ADS)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  20. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry.

    PubMed

    Storey, Andrew P; Zeiri, Offer M; Ray, Steven J; Hieftje, Gary M

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data. Graphical Abstract ᅟ.

  1. Observation of the stratified glow mode in helium/argon gas-confined barrier discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Wu, Shuqun; Dong, Xi; Mao, Wenhao; Jiang, Jun; Yue, Yuanfu; Lu, Xinpei; Zhang, Chaohai

    2017-09-01

    A diffuse He gas-confined barrier discharge insulated by an Ar gas layer instead of a solid dielectric is reported for the first time. It is unexpected to observe that the diffuse Ar plasma attached to the electrode is generated along with the He plasma. The Ar/He/Ar plasma layers with diffuse appearance are visually separated by dark space and thus form the stratified glow. The presence of the stratified mode is largely dependent on the applied voltage, the Ar flow rate and the diameter of the helium gas flow. As the diameter of the helium gas flow decreases from 2.5 mm to 0.9 mm, the discharge mode transits from a stratified glow to filamentary with the amplitude of the discharge current increasing from 0.28 mA to 3.8 A. High-speed photographs of the stratified glow show that the plasma is ignited at the He/Ar gaseous interface, and then expands uniformly towards both the He and Ar gas layers. After the plasma front in He gas layer is quenched at the opposite gaseous interface, the plasma volume starts expanding towards the periphery of the electrode, similar to the dielectric barrier glow discharge.

  2. Heat flow and arc efficiency at high pressures in argon and helium tungsten arcs

    SciTech Connect

    Katsaounis, A. )

    1993-09-01

    For control of welding underwater robotic systems, the arc characteristics and the heat quotation in cathode, arc column and anode (weld) were measured in GTAW with argon and helium shielding gas using the calorimetric method. The measurements were performed mainly in a pressure chamber. The pressure, the current and the arc length were varied from 0.1-6.0 MPa, 50-300 A and 2-11 mm, respectively. It was observed that the welding voltage is strongly dependent on system pressure for both shielding gases and an explicit minimum voltage/current was obtained for the argon arc characteristics at approximately 100 A. Furthermore, the field strength and the heat emission from the arc column increased exponentially with the pressure. A simple relation was developed to predict heat emission from the arc column and, consequently, for the arc efficiency. In addition, a calculation model for engineering use was derived based on the Ellenbaas-Heller equation to calculate the-heat flux from the arc to the weld (for both gases).

  3. Hydrogen Absorption into Austenitic Stainless Steels Under High-Pressure Gaseous Hydrogen and Cathodic Charge in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Enomoto, Masato; Cheng, Lin; Mizuno, Hiroyuki; Watanabe, Yoshinori; Omura, Tomohiko; Sakai, Jun'ichi; Yokoyama, Ken'ichi; Suzuki, Hiroshi; Okuma, Ryuji

    2014-12-01

    Type 316L and Type 304 austenitic stainless steels, both deformed and non-deformed, were hydrogen charged cathodically in an aqueous solution as well as by exposure to high-pressure gaseous hydrogen in an attempt to identify suitable conditions of cathodic charge for simulating hydrogen absorption from gaseous hydrogen environments. Thermal desorption analysis (TDA) was conducted, and the amount of absorbed hydrogen and the spectrum shape were compared between the two charging methods. Simulations were performed by means of the McNabb-Foster model to analyze the spectrum shape and peak temperature, and understand the effects of deformation on the spectra. It was revealed that the spectrum shape and peak temperature were dependent directly upon the initial distribution of hydrogen within the specimen, which varied widely according to the hydrogen charge condition. Deformation also had a marked effect on the amount of absorbed hydrogen in Type 304 steel due to the strain-induced martensitic transformation.

  4. Calculation of releases of radioactive materials in gaseous and liquid effluents from pressurized water reactors (PWR-GALE Code). Revision 1

    SciTech Connect

    Chandrasekaran, T.; Lee, J.Y.; Willis, C.A.

    1985-04-01

    This report revises the original issuance of NUREG-0017, ''Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE-Code)'' (April 1976), to incorporate more recent operating data now available as well as the results of a number of in-plant measurement programs at operating pressurized water reactors. The PWR-GALE Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms). The US Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50.

  5. Extending Helium Partial Pressure Measurement Technology to JET DTE2 and ITER

    SciTech Connect

    Klepper, C Christopher; Biewer, Theodore M; Douai, D.; Hillis, Donald Lee; Marcus, Chris; Kruezi, Uron

    2016-01-01

    The detection limit for helium (He) partial pressure monitoring via the Penning discharge optical emission diagnostic, mainly used for tokamak divertor effluent gas analysis, is shown here to be possible for He concentrations down to 0.1% in predominantly deuterium effluents. This result from a dedicated laboratory study means that the technique can now be extended to intrinsically (non-injected) He produced as fusion reaction ash in deuterium-tritium experiments. The paper also examines threshold ionization mass spectroscopy as a potential backup to the optical technique, but finds that further development is needed to attain with plasma pulse-relevant response times. Both these studies are presented in the context of continuing development of plasma pulse-resolving, residual gas analysis for the upcoming JET deuterium-tritium campaign (DTE-2) and for ITER.

  6. Extending helium partial pressure measurement technology to JET DTE2 and ITER

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Biewer, T. M.; Kruezi, U.; Vartanian, S.; Douai, D.; Hillis, D. L.; Marcus, C.

    2016-11-01

    The detection limit for helium (He) partial pressure monitoring via the Penning discharge optical emission diagnostic, mainly used for tokamak divertor effluent gas analysis, is shown here to be possible for He concentrations down to 0.1% in predominantly deuterium effluents. This result from a dedicated laboratory study means that the technique can now be extended to intrinsically (non-injected) He produced as fusion reaction ash in deuterium-tritium experiments. The paper also examines threshold ionization mass spectroscopy as a potential backup to the optical technique, but finds that further development is needed to attain with plasma pulse-relevant response times. Both these studies are presented in the context of continuing development of plasma pulse-resolving, residual gas analysis for the upcoming JET deuterium-tritium campaign (DTE2) and for ITER.

  7. Helium Atmospheric Pressure Plasma Jet: Diagnostics and Application for Burned Wounds Healing

    NASA Astrophysics Data System (ADS)

    Topala, Ionut; Nastuta, Andrei

    A new field of plasma applications developed in the last years, entitled plasma medicine, has focused the attention of many peoples from plasma ­community on biology and medicine. Subjects that involve plasma physics and technology (e.g. living tissue treatment or wound healing, cancer cell apoptosis, blood coagulation, sterilization and decontamination) are nowadays in study in many laboratories. In this paper we present results on optical and electrical diagnosis of a helium ­atmospheric pressure plasma jet designed for medical use. This type of plasma jet was used for improvement of the wound healing process. We observed a more rapid macroscopic healing of the plasma treated wounds in comparison with the control group.

  8. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage

    NASA Astrophysics Data System (ADS)

    Adhikari, Ek R.; Ptasinska, Sylwia

    2016-09-01

    A helium atmospheric pressure plasma jet (APPJ) source with a dielectric capillary and two tubular electrodes was used to induce damage in aqueous plasmid DNA. The fraction of different types of DNA damage (i.e., intact or undamaged, double strand breaks (DSBs), and single strand breaks (SSBs)) that occurred as the result of plasma irradiation was quantified through analysis of agarose gel electrophoresis images. The total DNA damage increased with an increase in both flow rate and duration of irradiation, but decreased with an increase in distance between the APPJ and sample. The average power of the plasma was calculated and the length of APPJ was measured for various flow rates and voltages applied. The possible effects of plasma power and reactive species on DNA damage are discussed.

  9. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    PubMed Central

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment. PMID:25319447

  10. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet.

    PubMed

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T H; Kang, Tae-Hong

    2014-10-16

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.

  11. Measurement of O and OH radical produced by an atmospheric-pressure helium plasma jet nearby rat skin

    NASA Astrophysics Data System (ADS)

    Yonemori, Seiya; Ono, Ryo

    2013-09-01

    Atmospheric-pressure helium plasma jet is getting much attention because it enables many kinds of plasma applications including biomedical application such as sterilization and cancer treatment. In biomedical plasma applications, it is though that active species like ions and radicals play important role. Especially, OH radical and O atom is very chemically reactive that they are deemed as major factors in cancer treatment. In this study, O and OH density distribution and its temporal behavior nearby rat skin were measured to demonstrate actual application. Plasma discharge was under AC10 kVp-p, 10 kHz with 1.5 slm (standard litter per minute) of helium gas flow. OH density was around 1 ppm and O atom density was around 10 ppm at maximum. We also measured time-evolution of OH and O atom density. Both OH and O density was almost constant between discharge pulses because lifetime of active species could be prolonged in helium. And density distribution of both species varied depending on helium flow rate and water concentration on the surface; on rat skin or on the grass surface. Those results suggest the production mechanisms and provision mechanisms of O atom and OH radical by an atmospheric-pressure helium plasma jet. This work is partially supported by the Grant-in-Aid for Science Research by the Ministry of Education, Culture, Sport, Science and Technology.

  12. CO2-helium and CO2-neon mixtures at high pressures

    NASA Astrophysics Data System (ADS)

    Mallick, B.; Ninet, S.; Le Marchand, G.; Munsch, P.; Datchi, F.

    2013-01-01

    The properties of mixtures of carbon dioxide with helium or neon have been investigated as a function of CO2 concentration and pressure up to 30 GPa at room temperature. The binary phase diagrams of these mixtures are determined over the full range of CO2 concentrations using visual observations and Raman scattering measurements. Both diagrams are of eutectic type, with a fluid-fluid miscibility gap for CO2 concentrations in the range [5, 75] mol. % for He and [8, 55] mol. % for Ne, and a complete separation between the two components in the solid phase. The absence of alloys or stoichiometric compounds for these two binary systems is consistent with the Hume-Rothery rules of hard sphere mixtures. The Raman spectra and x-ray diffraction patterns of solid CO2 embedded in He or Ne for various initial concentrations have been measured up to 30 GPa and 12 GPa, respectively. The frequencies of the Raman modes and the volume of solid phase I are identical, within error bars, to those reported for 100% CO2 samples, thus confirming the total immiscibility of CO2 with He and Ne in the solid phase. These results demonstrate the possibility to perform high-pressure experiments on solid CO2 under (quasi-)hydrostatic conditions using He or Ne as pressure transmitting medium.

  13. Surface Pressures and Heat Transfer on Unswept Blunt Plates in Helium at High Mach Numbers

    NASA Technical Reports Server (NTRS)

    Marvin, Joseph G.

    1961-01-01

    Pressure distributions and local convective heat-transfer coefficients on a flat plate at zero angle of attack were measured in helium. Data were obtained with various amounts of leading-edge bluntness at Mach numbers of 12.5 and 14.7. The pressures on a sharp leading-edged plate were not influenced by the leading edge and were predicted by the first-order, hypersonic, weak-interaction theory. Pressures on blunt plates were correlated by introducing the leading-edge Reynolds number as a parameter. Measured heat-transfer coefficients on the sharp plate agreed with predictions obtained form existing exact solutions for hear transfer across the laminar boundary layer. For the blunt plates a comparison of theory with experiment indicated that more knowledge of the flow field between the sock wave and plate surface is necessary before an adequate prediction of convective heat transfer can be made. Shock-wave shapes for the blun plates at a Mach number 12.5 and zero angle of attack were measured. At distances between 2 and 60 leading-edge thicknesses from the shock vertex, the shock-wave shapes were found to be represented by a modified form of the blast-wave analogy.

  14. CO2-helium and CO2-neon mixtures at high pressures.

    PubMed

    Mallick, B; Ninet, S; Le Marchand, G; Munsch, P; Datchi, F

    2013-01-28

    The properties of mixtures of carbon dioxide with helium or neon have been investigated as a function of CO(2) concentration and pressure up to 30 GPa at room temperature. The binary phase diagrams of these mixtures are determined over the full range of CO(2) concentrations using visual observations and Raman scattering measurements. Both diagrams are of eutectic type, with a fluid-fluid miscibility gap for CO(2) concentrations in the range [5, 75] mol. % for He and [8, 55] mol. % for Ne, and a complete separation between the two components in the solid phase. The absence of alloys or stoichiometric compounds for these two binary systems is consistent with the Hume-Rothery rules of hard sphere mixtures. The Raman spectra and x-ray diffraction patterns of solid CO(2) embedded in He or Ne for various initial concentrations have been measured up to 30 GPa and 12 GPa, respectively. The frequencies of the Raman modes and the volume of solid phase I are identical, within error bars, to those reported for 100% CO(2) samples, thus confirming the total immiscibility of CO(2) with He and Ne in the solid phase. These results demonstrate the possibility to perform high-pressure experiments on solid CO(2) under (quasi-)hydrostatic conditions using He or Ne as pressure transmitting medium.

  15. Thermophysical properties of Helium-4 from 0.8 to 1500 K with pressures to 2000 MPa

    NASA Technical Reports Server (NTRS)

    Arp, Vincent D.; Mccarty, Robert D.

    1989-01-01

    Tabular summary data of the thermophysical properties of fluid helium are given for temperatures from 0.8 to 1500 K, with pressures to 2000 MPa between 75 and 300 K, or to 100 MPa outside of this temperature band. Properties include density, specific heats, enthalpy, entropy, internal energy, sound velocity, expansivity, compressibility, thermal conductivity, and viscosity. The data are calculated from a computer program which is available from the National Institute of Standards and Technology. The computer program is based on carefully fitted state equations for both normal and superfluid helium.

  16. On the dynamic response of pressure transmission lines in the research of helium-charged free piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Miller, Eric L.; Dudenhoefer, James E.

    1989-01-01

    The signal distortion inherent to pressure transmission lines in free-piston Stirling engine research is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving the helium-charged free-piston Stirling engines. The underdamped flow regime is described, the primary resonance frequency is derived, and the pressure phase and amplitude distortion are discussed. The scope and limitation of the dynamic response analysis are considered.

  17. Protein destruction by a helium atmospheric pressure glow discharge: Capability and mechanisms

    SciTech Connect

    Deng, X. T.; Shi, J. J.; Kong, M. G.

    2007-04-01

    Biological sterilization represents one of the most exciting applications of atmospheric pressure glow discharges (APGD). Despite the fact that surgical instruments are contaminated by both microorganisms and proteinaceous matters, sterilization effects of APGD have so far been studied almost exclusively for microbial inactivation. This work presents the results of a detailed investigation of the capability of a helium-oxygen APGD to inactivate proteins deposited on stainless-steel surfaces. Using a laser-induced fluorescence technique for surface protein measurement, a maximum protein reduction of 4.5 logs is achieved by varying the amount of the oxygen admixture into the background helium gas. This corresponds to a minimum surface protein of 0.36 femtomole/mm{sup 2}. It is found that plasma reduction of surface-borne protein is through protein destruction and degradation, and that its typically biphasic reduction kinetics is influenced largely by the thickness profile of the surface protein. Also presented is a complementary study of possible APGD protein inactivation mechanisms. By interplaying the protein inactivation kinetics with optical emission spectroscopy, it is shown that the main protein-destructing agents are excited atomic oxygen (via the 777 and 844 nm emission channels) and excited nitride oxide (via the 226, 236, and 246 nm emission channels). It is also demonstrated that the most effective protein reduction is achieved possibly through a synergistic effect between atomic oxygen and nitride oxide. This study is a useful step toward a full confirmation of the efficacy of APGD as a sterilization technology for surgical instruments contaminated by prion proteins.

  18. Protein destruction by a helium atmospheric pressure glow discharge: Capability and mechanisms

    NASA Astrophysics Data System (ADS)

    Deng, X. T.; Shi, J. J.; Kong, M. G.

    2007-04-01

    Biological sterilization represents one of the most exciting applications of atmospheric pressure glow discharges (APGD). Despite the fact that surgical instruments are contaminated by both microorganisms and proteinaceous matters, sterilization effects of APGD have so far been studied almost exclusively for microbial inactivation. This work presents the results of a detailed investigation of the capability of a helium-oxygen APGD to inactivate proteins deposited on stainless-steel surfaces. Using a laser-induced fluorescence technique for surface protein measurement, a maximum protein reduction of 4.5 logs is achieved by varying the amount of the oxygen admixture into the background helium gas. This corresponds to a minimum surface protein of 0.36 femtomole/mm2. It is found that plasma reduction of surface-borne protein is through protein destruction and degradation, and that its typically biphasic reduction kinetics is influenced largely by the thickness profile of the surface protein. Also presented is a complementary study of possible APGD protein inactivation mechanisms. By interplaying the protein inactivation kinetics with optical emission spectroscopy, it is shown that the main protein-destructing agents are excited atomic oxygen (via the 777 and 844 nm emission channels) and excited nitride oxide (via the 226, 236, and 246 nm emission channels). It is also demonstrated that the most effective protein reduction is achieved possibly through a synergistic effect between atomic oxygen and nitride oxide. This study is a useful step toward a full confirmation of the efficacy of APGD as a sterilization technology for surgical instruments contaminated by prion proteins.

  19. High-Pressure Liquid and Gaseous Oxygen Impact Sensitivity Evaluation of Materials For Use At Kennedy Space Center.

    DTIC Science & Technology

    1976-02-01

    High-Pressure Gaseous Oxygen Mechanical Impact Tests 17 Krytox 2 4 0AC 17 Teflon TFE 17 Garlock 8573 17 Fluorogreen E600 18 Rulon A 18...TRADE NAME 6061-T6 Alloy Fluorel E2160 Viton PLV 5010B Krytox 24 0AC Nylon 6/6 Alloy Kel-F-81 Ves’pel SP-21 Teflon TFE Fluorogold SOURCE... Krytox 24 0AC, which was tested as received) were cleaned in the Technical Services Department operated at KSC by the Bendix Launch Support Division

  20. An estimate of the outgassing of space payloads, their internal pressures, contaminations and gaseous influences on the environment

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1985-01-01

    Experimentally measured outgassing as a function of time is presented for 14 space systems including several spacecraft instruments, spacecraft, the shuttle bay, and a spent solid fuel motor. The weights, volumes, and some of the scientific functions of the instruments involved are indicated. The methods used to obtain the data are briefly described. General indications on how to use the data to obtain the internal pressure versus time for a payload, its self-contamination, the gaseous flow in its vicinity, the column densities in its field of view, and other environmental parameters which are dependent on the outgassing of a payload are provided.

  1. Pressure sensor based on an all-fiber Fabry-Pérot interferometer for different gaseous environments

    NASA Astrophysics Data System (ADS)

    Silva, Susana; Coelho, L.; Frazão, O.

    2013-05-01

    This work describes an all-fiber Fabry-Pérot interferometer (FFPI) that is sensitive to gas pressure variations. The geometry of the air cavity consists on splicing a small section of silica rod with a large offset in between two singlemode fibers. It is shown that the FFPI sensor is sensitive to gas pressure variation and when submitted to different gaseous environments, namely carbon dioxide, nitrogen and oxygen, it presented different sensitivities of 6.2, 4.1 and 3.6 nm/MPa, respectively. This result is obtained due to refractive index difference between gases. The refractive index change on nitrogen environment by means of the gas pressure variation resulted in a sensitivity of 1526 nm/RIU. The response of the sensing device to temperature in air was also determined and a sensitivity of -14 pm/°C was attained.

  2. Magnetic roller gas gate employing transonic sweep gas flow to isolate regions of differing gaseous composition or pressure

    DOEpatents

    Doehler, Joachim

    1994-12-20

    Disclosed herein is an improved gas gate for interconnecting regions of differing gaseous composition and/or pressure. The gas gate includes a narrow, elongated passageway through which substrate material is adapted to move between said regions and inlet means for introducing a flow of non-contaminating sweep gas into a central portion of said passageway. The gas gate is characterized in that the height of the passageway and the flow rate of the sweep gas therethrough provides for transonic flow of the sweep gas between the inlet means and at least one of the two interconnected regions, thereby effectively isolating one region, characterized by one composition and pressure, from another region, having a differing composition and/or pressure, by decreasing the mean-free-path length between collisions of diffusing species within the transonic flow region. The gas gate preferably includes a manifold at the juncture point where the gas inlet means and the passageway interconnect.

  3. Kinetic study on the photoabsorption process of gaseous O 2 dimol at 630 nm in a wide pressure range

    NASA Astrophysics Data System (ADS)

    Ida, Akira; Furui, Eiji; Akai, Nobuyuki; Kawai, Akio; Shibuya, Kazuhiko

    2010-03-01

    The visible light absorption of gaseous O 2 dimol at 630 nm was measured in the pressure region of 0.04-90 atm. The intensities measured at high pressures did not agree with the values extrapolated from the data obtained at low pressures. A kinetic analysis assuming the equilibrium between the dimol and free O 2 monomers was performed. All the data are well reproduced by the model using the 630 nm absorption cross-section of (5.6 ± 3.3) × 10 -24 cm 2 molecule -1 and the dissociation equilibrium constant of (6.8 ± 4.2) × 10 21 molecules cm -3. The critical distance between the O 2 molecules in the dimol is discussed on the basis of the equilibrium constant determined.

  4. Influence of dielectric materials on radial uniformity in non-equilibrium atmospheric pressure helium plasma

    NASA Astrophysics Data System (ADS)

    Oda, Akinori; Komori, Kyohei

    2015-09-01

    Non-equilibrium atmospheric pressure plasma has been utilized for various technological applications such as surface treatment, materials processing, bio-medical and bio-logical applications. For optimum control of the plasma for the above applications, numerous experimental and theoretical investigations on the plasma have been reported. Especially, controlling radial uniformity of the plasma are very important for utilizing materials processing. In this paper, an axially-symmetric three-dimensional fluid model, which is composed of the continuity equation for charged and neutral species, the Poisson equation, and the energy conservation equation for electrons, of non-equilibrium atmospheric pressure helium plasma has been developed. Then, influence of dielectric properties (e.g. relative permittivity, secondary electron emission coefficient, etc.) of dielectric materials on radial plasma uniformity (i.e. radial distributions of electron density, ion density, electric field in the plasma) was examined. This work was partly supported by KAKENHI (No. 26420247), and a ``Grant for Advanced Industrial Technology Development (No. 11B06004d)'' in 2011 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

  5. Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan; Linza, Robert; Garcia, Sam; Vargas, Gerardo; Lauterbach, John; Ganni, Venkatarao (Rao); Sidi-Yekhlef, Ahmed; Creel, Jonathan; Norton, Robert; Urbin, John; hide

    2008-01-01

    Two helium refrigerators, each rated for 3.5KW at 20K, are used at NASA s Johnson Space Center (JSC) in Building No. 32 to provide cryo-pumping within two large thermal-vacuum chambers. These refrigerators were originally commissioned in 1996. Equipment refurbishment and upgrades to the controls of these refrigerators were recently completed. This paper describes some of the mechanical and control issues that necessitated the equipment refurbishment and controls change-over. It will describe the modifications and the new process control which allows the refrigerators to take advantage of the Ganni Cycle "floating pressure" control technology. The upgrades -- the controls philosophy change-over to the floating pressure control technology and the newly refurbished equipment -- have greatly improved the performance, stability, and efficiency of these two refrigerators. The upgrades have also given the operators more information and details about the operational status of the main components (compressors, expanders etc.) of the refrigerators at all operating conditions (i.e.: at various loads in the vacuum chambers). Capabilities, configuration, and performance data pre, and post, upgrading will be presented.

  6. Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan; Linza, Robert; Garcia, Sam; Vargas, Gerardo; Lauterbach, John; Ganni, Venkatarao (Rao); Sidi-Yekhlef, Ahmed; Creel, Jonathan; Norton, Robert; Urbin, John; Howe, Don

    2008-01-01

    Two helium refrigerators, each rated for 3.5KW at 20K, are used at NASA s Johnson Space Center (JSC) in Building No. 32 to provide cryo-pumping within two large thermal-vacuum chambers. These refrigerators were originally commissioned in 1996. Equipment refurbishment and upgrades to the controls of these refrigerators were recently completed. This paper describes some of the mechanical and control issues that necessitated the equipment refurbishment and controls change-over. It will describe the modifications and the new process control which allows the refrigerators to take advantage of the Ganni Cycle "floating pressure" control technology. The upgrades -- the controls philosophy change-over to the floating pressure control technology and the newly refurbished equipment -- have greatly improved the performance, stability, and efficiency of these two refrigerators. The upgrades have also given the operators more information and details about the operational status of the main components (compressors, expanders etc.) of the refrigerators at all operating conditions (i.e.: at various loads in the vacuum chambers). Capabilities, configuration, and performance data pre, and post, upgrading will be presented.

  7. Influence of excitation frequency on helium metastable density in atmospheric pressure DBD

    NASA Astrophysics Data System (ADS)

    Boisvert, J.-S.; Sadeghi, N.; Margot, J.; Massines, F.

    2016-09-01

    Diffuse dielectric barrier discharges in atmospheric-pressure helium was sustained over a wide range of excitation frequencies (50 kHz to 15 MHz). Emission spectroscopy and resonant absorption and laser absorption on He(23S) metastable atoms have been used to characterize different plasma regimes, which with increasing frequency changes from a low pressure glow discharge (APGD) to Townsend-like mode (TL) and finally to a continuously sustained plasma. This later can be in Ω mode (with uniform E-field) or RF- α mode (with sheath formation). Depending on applied power, the time-averaged He(23S) density remains below 3 1016 m-3 in TL and Ω modes, can reach 7 1016 m-3 in APGD and RF- α modes and up to 4 1017 m-3 in a combination of APGD and RF- α modes (Hybrid). Time-resolved He(23S) densities show an overshoot on the ignition phase, which in RF- α mode can be attributed to a secondary source of ionization involving metastable atoms.

  8. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.

    PubMed

    Brus, David; Zdímal, Vladimír; Stratmann, Frank

    2006-04-28

    Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms

  9. Collisional-radiative model of helium microwave discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Santos, M.; Alves, L. L.; Gadonna, K.; Belmonte, T.

    2011-10-01

    This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n <= 6) excited states and the He2*excimers, to the two-term homogeneous and stationary electron Boltzmann equation,. The latter is solved using a coherent set of electron cross sections, adjusted to ensure good predictions of the swarm parameters and the Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together with diffusion and dissociative recombination. The He2*is produced by a 3-body reaction involving the 23P states and by the electron-stabilized recombination of He2+and is lost by electron dissociation. This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n <= 6) excited states and the He2*excimers, to the two-term homogeneous and stationary electron Boltzmann equation,. The latter is solved using a coherent set of electron cross sections, adjusted to ensure good predictions of the swarm parameters and the Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together

  10. Helium jet dispersion to atmosphere

    NASA Astrophysics Data System (ADS)

    Khan, Hasna J.

    On the event of loss of vacuum guard of superinsulated helium dewar, high rate of heat transfer into the tank occurs. The rapid boiling of liquid helium causes the burst disk to rupture at four atmospheres and consequently the helium passes to the atmosphere through vent lines. The gaseous helium forms a vertical buoyant jet as it exits the vent line into a stagnant environment. Characterization of the gaseous jet is achieved by detailed analysis of the axial and radial dependence of the flow parameters.

  11. Analytical model of atmospheric pressure, helium/trace gas radio-frequency capacitive Penning discharges

    NASA Astrophysics Data System (ADS)

    Lieberman, M. A.

    2015-04-01

    Atmospheric and near-atmospheric pressure, helium/trace gas radio-frequency capacitive discharges have wide applications. An analytic equilibrium solution is developed based on a homogeneous, current-driven discharge model that includes sheath and electron multiplication effects and contains two electron populations. A simplified chemistry is used with four unknown densities: hot electrons, warm electrons, positive ions and metastables. The dominant electron-ion pair production is Penning ionization, and the dominant ion losses are to the walls. The equilibrium particle balances are used to determine a single ionization balance equation for the warm electron temperature, which is solved, both approximately within the α- and γ-modes, and exactly by conventional root-finding techniques. All other discharge parameters are found, the extinction and α-γ transitions are determined, and a similarity law is given, in which the equilibrium for a short gap at high pressure can be rescaled to a longer gap at lower pressure. Within the α-mode, we find the scaling of the discharge parameters with current density, frequency, gas density and gap width. The analytic results are compared to hybrid and particle-in-cell (PIC) results for He/0.1%N2, and to hybrid results for He/0.1%H2O. For nitrogen, a full reaction set is used for the hybrid calculations and a simplified reaction set for the PIC simulations. For the chemically complex water trace gas, a set of 209 reactions among 43 species is used. The analytic results are found to be in reasonably good agreement with the more elaborate hybrid and PIC calculations.

  12. Solubility of oxygen in a seawater medium in equilibrium with a high-pressure oxy-helium atmosphere.

    PubMed

    Taylor, C D

    1979-06-01

    The molar oxygen concentration in a seawater medium in equilibrium with a high-pressure oxygen-helium atmosphere was measured directly in pressurized subsamples, using a modified version of the Winkler oxygen analysis. At a partial pressure of oxygen of 1 atm or less, its concentration in the aqueous phase was adequately described by Henry's Law at total pressures up to 600 atm. This phenomenon, which permits a straightforward determination of dissolved oxygen within hyperbaric systems, resulted from pressure-induced compensatory alterations in the Henry's Law variables rather than from a true obedience to the Ideal Gas Law. If the partial pressure of a gas contributes significantly to the hydrostatic pressure, Henry's Law is no longer adequate for determining its solubility within the compressed medium.

  13. Liquid Hydrogen Regulated Low Pressure High Flow Pneumatic Panel AFT Arrow Analysis

    NASA Technical Reports Server (NTRS)

    Jones, Kelley, M.

    2013-01-01

    Project Definition: Design a high flow pneumatic regulation panel to be used with helium and hydrogen. The panel will have two circuits, one for gaseous helium (GHe) supplied from the GHe Movable Storage Units (MSUs) and one for gaseous hydrogen (GH2) supplied from an existing GH2 Fill Panel. The helium will supply three legs; to existing panels and on the higher pressure leg and Simulated Flight Tanks (SFTs) for the lower pressure legs. The hydrogen line will pressurize a 33,000 gallon vacuum jacketed vessel.

  14. On the dynamic response of pressure transmission lines in the research of helium-charged free piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Miller, Eric L.; Dudenhoefer, James E.

    1989-01-01

    In free piston Stirling engine research the integrity of both amplitude and phase of the dynamic pressure measurements is critical to the characterization of cycle dynamics and thermodynamics. It is therefore necessary to appreciate all possible sources of signal distortion when designing pressure measurement systems for this type of research. The signal distortion inherent to pressure transmission lines is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving helium-charged free piston Stirling engines. The scope and limitations of the dynamic response analysis are considered.

  15. Helium Pressure Shift of the Hyperfine Clock Transition in Hg-201(+)

    NASA Technical Reports Server (NTRS)

    Larigani, S. Taghavi; Burt, E. A.; Tjoelker, R. L.

    2010-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave atomic clock: Hg-199(+) and Hg-201(+). We are investigating the viability of a trapped ion clock based on Hg-201(+) in a configuration that uses a buffer gas to increase ion loading efficiency and counter ion heating from rf trapping fields. Traditionally, either helium or neon is used as the buffer gas at approx. 10(exp -5) torr to confine mercury ions near room temperature. In addition to the buffer gas, other residual background gasses such as H2O, N2, O2, CO, CO2, and CH2 may be present in trace quantities. Collisions between trapped ions and buffer gas or background gas atoms/molecules produce a momentary shift of the ion clock transition frequency and constitute one of the largest systematic effects in this type of clock. Here we report an initial measurement of the He pressure shift in Hg-201(+) and compare this to Hg-199(+).

  16. Array of surface-confined glow discharges in atmospheric pressure helium: Modes and dynamics

    SciTech Connect

    Li, D.; Liu, D. X. E-mail: mglin5g@gmail.com; Nie, Q. Y.; Li, H. P.; Chen, H. L.; Kong, M. G. E-mail: mglin5g@gmail.com

    2014-05-19

    Array of atmospheric pressure surface discharges confined by a two-dimensional hexagon electrode mesh is studied for its discharge modes and temporal evolution so as to a theoretical underpinning to their growing applications in medicine, aerodynamic control, and environmental remediation. Helium plasma surface-confined by one hexagon-shaped rim electrode is shown to evolve from a Townsend mode to a normal and abnormal glow mode, and its evolution develops from the rim electrodes as six individual microdischarges merging in the middle of the hexagon mesh element. Within one hexagon element, microdischarges remain largely static with the mesh electrode being the instantaneous cathode, but move towards the hexagon center when the electrode is the instantaneous anode. On the entire array electrode surface, plasma ignition is found to beat an unspecific hexagon element and then spreads to ignite surrounding hexagon elements. The spreading of microdischarges is in the form of an expanding circle at a speed of about 3 × 10{sup 4} m/s, and their quenching starts in the location of the initial plasma ignition. Plasma modes influence how input electrical power is used to generate and accelerate electrons and as such the reaction chemistry, whereas plasma dynamics are central to understand and control plasma instabilities. The present study provides an important aspect of plasma physics of the atmospheric surface-confined discharge array and a theoretical underpinning to its future technological innovation.

  17. Helium Pressure Shift of the Hyperfine Clock Transition in Hg-201(+)

    NASA Technical Reports Server (NTRS)

    Larigani, S. Taghavi; Burt, E. A.; Tjoelker, R. L.

    2010-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave atomic clock: Hg-199(+) and Hg-201(+). We are investigating the viability of a trapped ion clock based on Hg-201(+) in a configuration that uses a buffer gas to increase ion loading efficiency and counter ion heating from rf trapping fields. Traditionally, either helium or neon is used as the buffer gas at approx. 10(exp -5) torr to confine mercury ions near room temperature. In addition to the buffer gas, other residual background gasses such as H2O, N2, O2, CO, CO2, and CH2 may be present in trace quantities. Collisions between trapped ions and buffer gas or background gas atoms/molecules produce a momentary shift of the ion clock transition frequency and constitute one of the largest systematic effects in this type of clock. Here we report an initial measurement of the He pressure shift in Hg-201(+) and compare this to Hg-199(+).

  18. Three-dimensional simulation of microwave-induced helium plasma under atmospheric pressure

    SciTech Connect

    Zhao, G. L.; Hua, W. Guo, S. Y.; Liu, Z. L.

    2016-07-15

    A three-dimensional model is presented to investigate helium plasma generated by microwave under atmospheric pressure in this paper, which includes the physical processes of electromagnetic wave propagation, electron and heavy species transport, gas flow, and heat transfer. The model is based on the fluid approximation calculation and local thermodynamic equilibrium assumption. The simulation results demonstrate that the maxima of the electron density and gas temperature are 4.79 × 10{sup 17 }m{sup −3} and 1667 K, respectively, for the operating conditions with microwave power of 500 W, gas flow rate of 20 l/min, and initial gas temperature of 500 K. The electromagnetic field distribution in the plasma source is obtained by solving Helmholtz equation. Electric field strength of 2.97 × 10{sup 4 }V/m is obtained. There is a broad variation on microwave power, gas flow rate, and initial gas temperature to obtain deeper information about the changes of the electron density and gas temperature.

  19. Electron properties of the plume of an atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Adress, Wameedh; Nedanovska, Elena; Nersisyan, Gagik; Riley, David; Graham, William

    2013-09-01

    Atmospheric pressure plasma, APP, jets, are now attracting great interest because of their potential uses in many applications; for example surface modification and plasma medicine. These applications require an insight into their plasma chemistry, which is strongly influenced by the electron energy distribution function. Here we report the use of Thomson scattering to measure the electron properties in the plume created by a 20 kHz, 2mm diameter helium APP jet operating into the open air. A 532 nm Nd:YAG laser beam is focussed into the plasma plume. The temporally and spatially resolved spectra of light at 90° to the laser direction is detected. The spectra contain light from Thomson Scattering from electrons, along with Rayleigh and Raman scattering from atoms and molecules. These components are resolved in a manner similar to that described in ref 1. Our measurements reveal a ``ring-like'' radial distribution of both the electron density and temperature, with outer values of ~ 7×1013 cm-3 and 0.4 eV and inner values of ~ 2×1013 cm-3 and 0.1 eV respectively at 4 mm from the end of the quartz tube.

  20. Electron heating and particle fluxes in dual frequency atmospheric-pressure helium capacitive discharge

    NASA Astrophysics Data System (ADS)

    Liu, Dingxin; Yang, Aijun; Wang, Xiaohua; Chen, Chen; Rong, Mingzhe; Kong, Michael G.

    2016-12-01

    In this letter, a 1D fluid model has been used to study the electron heating and particle transport in dual frequency atmospheric-pressure helium capacitive discharge with a high-frequency (HF) voltage of 10 MHz and a low-frequency (LF) voltage of 1 MHz. The electric field is decoupled to three components: the HF, the LF and the direct current (DC) ones, and they have much different effects on the plasmas. The eletrons in plasma bulk are mainly heated by the HF electric field, while in plasma sheath they are heated and cooled by the LF and DC electric fields, respectively. With a fixed total input power, the increase of LF power leads to great enhancement of the electrode fluxes of electrons and ions, especially for the energetic electrons of T e  >  2 eV, because more power is dissipated in the vicinity of electrodes and the inelastic collision is more pronounced. Therefore, the particle transport on the treated sample can be greatly enhanced without additional gas heating in dual frequency plasmas, which meets the application requirements more compared to the single frequency plasmas.

  1. Production and provision mechanisms of OH radical of an atmospheric-pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Yonemori, Seiya; Ono, Ryo; Oda, Tetsuji

    2012-10-01

    An atmospheric-pressure helium plasma jet is getting much attention because of its low heat load. It is known that active species such as OH radical play important role in many plasma processes, for example, in plasma medical care or in plasma sterilization. When using the plasma jet for surface treatment, it is important that the amount of OH radical provided into objectives. We measured OH density in the vicinity of the surface of objectives using laser induced fluorescence (LIF). The plasma jet was generated when AC 8 kHz, 10 kV was applied. When the plasma jet extended onto the dry glass surface, the maximum OH density was 0.2 ppm. On the other hand, the maximum OH density was 1 ppm when the plasma jet extended onto the wet surface. In addition, time-evolution of OH density between two successive voltage pulses was measured. On the edge of the plasma jet, OH density was at maximum and rapidly decreased between two pulses. Those results suggest that there are three ways of OH production; first, the dissociation of H2O included in discharge gas; secondly, the dissociation of H2O included in the ambient air; finally, the dissociation of H2O evaporates from the wet surface.

  2. Numerical simulation of a direct current glow discharge in atmospheric pressure helium

    NASA Astrophysics Data System (ADS)

    Yin, Zeng-Qian; Wang, Yan; Zhang, Pan-Pan; Zhang, Qi; Li, Xue-Chen

    2016-12-01

    Characteristics of a direct current (DC) discharge in atmospheric pressure helium are numerically investigated based on a one-dimensional fluid model. The results indicate that the discharge does not reach its steady state till it takes a period of time. Moreover, the required time increases and the current density of the steady state decreases with increasing the gap width. Through analyzing the spatial distributions of the electron density, the ion density and the electric field at different discharge moments, it is found that the DC discharge starts with a Townsend regime, then transits to a glow regime. In addition, the discharge operates in a normal glow mode or an abnormal glow one under different parameters, such as the gap width, the ballast resistors, and the secondary electron emission coefficients, judged by its voltage-current characteristics. Project supported by the National Natural Science Foundation of China (Grant Nos. 11575050 and 10805013), the Midwest Universities Comprehensive Strength Promotion Project, the Natural Science Foundation of Hebei Province, China (Grant Nos. A2016201042 and A2015201092), and the Research Foundation of Education Bureau of Hebei Province, China (Grant No. LJRC011).

  3. The dielectric properties of gaseous cryogen mixtures of He, H2, Ne, and N2 in a temperature range of 50-80 K at pressures up to 2.0 MPa

    NASA Astrophysics Data System (ADS)

    Park, Chanyeop; Graber, Lukas; Pamidi, Sastry

    2017-02-01

    This study investigates the dielectric properties of various mixtures of potential gaseous cryogens containing helium (He), hydrogen (H2), neon (Ne), and nitrogen (N2) under extended temperature and pressure ranges for high-temperature superconducting applications. We present the results of the Boltzmann analysis on a variety of binary and ternary gas mixtures in terms of the electron energy distribution function and the coefficients that represent the electron kinetic process, including the density-reduced ionization coefficient ( α / N ), the density-reduced attachment coefficient ( η / N ), the density-reduced effective ionization coefficient ( ( α - η ) / N ), and the density-reduced critical electric field ( ( E / N ) c r ). The study provides insights into the important characteristics and correlations that lead to the enhanced dielectric strength of gas mixtures and predicts further enhancements in the dielectric strengths of He-H2 mixtures by introducing the ternary mixtures of He-H2-N2. The study results recommend the potential ternary gas mixtures suitable for various cryogenic operating conditions and aid in the development of superconducting applications incorporating gaseous cryogens.

  4. Comment on "The thermodynamical instability induced by pressure ionization in fluid helium" [Phys. Plasmas 23, 112709 (2016)

    NASA Astrophysics Data System (ADS)

    Quan, W. L.

    2017-06-01

    In a recent paper, Li et al. [Phys. Plasmas 23, 112709 (2016)] reported the instability induced by pressure ionization in fluid helium based on minimization of Helmholtz free energy within chemical picture. Here, I argue that their calculations may have some bugs directly resulting in the so-called instability, because a problematic iterative strategy also produces a similar, but mathematically incorrect instability that can be removed by improving iterative strategy.

  5. Simulation of Oxygen Disintegration and Mixing With Hydrogen or Helium at Supercritical Pressure

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Taskinoglu, Ezgi

    2012-01-01

    The simulation of high-pressure turbulent flows, where the pressure, p, is larger than the critical value, p(sub c), for the species under consideration, is relevant to a wide array of propulsion systems, e.g. gas turbine, diesel, and liquid rocket engines. Most turbulence models, however, have been developed for atmospheric-p turbulent flows. The difference between atmospheric-p and supercritical-p turbulence is that, in the former situation, the coupling between dynamics and thermodynamics is moderate to negligible, but for the latter it is very significant, and can dominate the flow characteristics. The reason for this stems from the mathematical form of the equation of state (EOS), which is the perfect-gas EOS in the former case, and the real-gas EOS in the latter case. For flows at supercritical pressure, p, the large eddy simulation (LES) equations consist of the differential conservation equations coupled with a real-gas EOS. The equations use transport properties that depend on the thermodynamic variables. Compared to previous LES models, the differential equations contain not only the subgrid scale (SGS) fluxes, but also new SGS terms, each denoted as a correction. These additional terms, typically assumed null for atmospheric pressure flows, stem from filtering the differential governing equations, and represent differences between a filtered term and the same term computed as a function of the filtered flow field. In particular, the energy equation contains a heat-flux correction (q-correction) that is the difference between the filtered divergence of the heat flux and the divergence of the heat flux computed as a function of the filtered flow field. In a previous study, there was only partial success in modeling the q-correction term, but in this innovation, success has been achieved by using a different modeling approach. This analysis, based on a temporal mixing layer Direct Numerical Simulation database, shows that the focus in modeling the q

  6. Effects of metastable species in helium and argon atmospheric pressure plasma jets (APPJs) on inactivation of periodontopathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Young; Kim, Kyoung-Hwa; Seol, Yang-Jo; Kim, Su-Jeong; Bae, Byeongjun; Huh, Sung-Ryul; Kim, Gon-Ho

    2016-05-01

    The helium and argon have been widely used as discharge gases in atmospheric pressure plasma jets (APPJs) for bacteria inactivation. The APPJs show apparent different in bullet propagation speed and bacteria inactivation rate apparently vary with discharge gas species. This work shows that these two distinctive features of APPJs can be linked through one factor, the metastable energy level. The effects of helium and argon metastable species on APPJ discharge mechanism for reactive oxygen nitrogen species (RONS) generation in APPJs are investigated by experiments and numerical estimation. The discharge mechanism is investigated by using the bullet velocity from the electric field which is obtained with laser induced fluorescence (LIF) measurement. The measured electric field also applied on the estimation of RONS generation, as electron energy source term in numerical particle reaction. The estimated RONS number is verified by comparing NO and OH densities to the inactivation rate of periodontitis bacteria. The characteristic time for bacteria inactivation of the helium-APPJ was found to be 1.63 min., which is significantly less than that of the argon-APPJ, 12.1 min. In argon-APPJ, the argon metastable preserve the energy due to the lack of the Penning ionization. Thus the surface temperature increase is significantly higher than helium-APPJ case. It implies that the metastable energy plays important role in both of APPJ bullet propagation and bacteria inactivation mechanism.

  7. Fetoscopy under gas amniodistension: pressure-dependent influence of helium vs nitrous oxide on fetal goats.

    PubMed

    Till, Holger; Yeung, Chung Kwong; Bower, Wendy; Shi, Yimin; Tian, Q; Chu, W; Yip, H Y; Tse, J

    2007-07-01

    Recently, gas amniodistension has been advocated for fetoscopic surgery to employ ergonomics similar to laparoscopy. However, neither the optimal type of gas nor its physiological influence on the fetus have been clearly outlined yet. This study investigates the impact of helium (HE) vs nitrous oxide (N2O) on fetal goats during fetoscopy. We insufflated either HE or N2O in 12 pregnant goats (15 fetuses; HE = 7, N2O = 8), then increased the pressures from 0, 4, 7, to 10 mm Hg in 30-minute intervals and recorded the fetal and maternal vital parameters. Finally, whole-body computed tomography to asses for intracorporeal gas was performed. All fetuses survived. Mean fetal vital signs showed no significant differences between HE or N2O at specific pressure levels. In detail, HE/N2O at 0 vs 10 mm Hg caused a fetal temperature decrease (32.9 degrees C/33.2 degrees C vs 32 degrees C/32.5 degrees C), heart rate increase in the N2O group (100/102 vs 102/121 beats per minute), and no significant change in arterial pressure (45.8/48.3 vs 53.7/46.7 mm Hg). The PO2 was adequate (3.7/3.3 vs 3.7/2.9 kPa), whereas the pH remained unchanged (7.4/7.3 vs 7.3/7.3). However, fetal pCO2 was elevated in the N2O group before insufflation (5.5/7.2 vs 6.8/8.0 kPa) owing to maternal hypoventilation (maternal PCO2: 4.9/5.8 vs 5.0/5.4 kPa), correction of which was slower in the fetus than in the maternal animal. Computed tomography ruled out intracorporeal gas accumulation. Neither HE nor N2O impose significant physiological harm for the fetus. Heating of the gas and maternal anesthesia seem essential. Considering the potential teratogenicity of N2O, however, HE could be the favorable environment for fetoscopic procedures under gas amniodistension.

  8. Plasma action on helium flow in cold atmospheric pressure plasma jet experiments

    NASA Astrophysics Data System (ADS)

    Darny, T.; Pouvesle, J.-M.; Fontane, J.; Joly, L.; Dozias, S.; Robert, E.

    2017-10-01

    In this work, helium flow modifications, visualized by schlieren imaging, induced by the plasma generated in a plasma jet have been studied in conditions used for biomedical treatments (jet being directed downwards with a low helium flow rate). It has been shown that the plasma action can shift up to few centimeters downstream the effects of buoyancy, which allows to the helium flow to reach a target below in conditions for which it is not the case when the plasma is off. This study reveals the critical role of large and long lifetime negative ions during repetitive operations in the kHz regime, inducing strong modifications in the gas propagation. The cumulative added streamwise momentum transferred to ambient air surrounding molecules resulting from a series of applied voltage pulses induces a gradual built up of a helium channel on tens of millisecond timescale. In some conditions, a remarkable stable cylindrical helium channel can be generated to the target with plasma supplied by negative polarity voltage pulses whereas a disturbed flow results from positive polarity operation. This has a direct effect on air penetration in the helium channel and then on the reactive species production over the target which is of great importance for biomedical applications. It has also been shown that with an appropriate combination of negative and positive polarity pulses, it is possible to benefit from both polarity features in order to optimize the plasma plume propagation and plasma delivery to a target.

  9. Investigation of the threshold intensity versus gas pressure in the breakdown of helium by 248 nm laser radiation

    NASA Astrophysics Data System (ADS)

    Gamal, Yosr E. E.-D.; Abdellatif, Galila

    2014-10-01

    An investigation of the unexpectedly strong dependence of the threshold intensity on the gas pressure in the experimental study on the breakdown of He by short laser wavelength (Turcu et al., in Opt Commun, 134:66-68, 1997) is presented. A modified electron cascade model is applied (Evans and Gamal, in J Phys D Appl Phys, 13:1447-1458, 1980). Computations revealed reasonable agreement between the calculated thresholds and the measured ones. Moreover, the calculated electron energy distribution function and its parameters proved that multiphoton ionization of ground and excited atoms is the main source for the seed electrons, which contributes to the breakdown of helium. The effect of diffusion losses over pressures <1,000 Torr elucidated the origin of the strong dependence of the threshold intensity on the gas pressure. Collisional ionization dominates only at high pressures. No evidence for recombination losses is observed for pressures up to 3,000 Torr.

  10. Virial equations of state for gaseous ammonia, water, carbon dioxide, and their mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Voronin, G. F.; Genkin, M. V.; Kutsenok, I. B.

    2015-11-01

    The available reference and experimental data on densities of the gaseous solutions, NH3-CO2, NH3-H2O, CO2-H2O, NH3-CO2-H2O and their components, NH3, CO2, H2O have been described as accurately as possible by virial equations of state in the temperature range from ~150 to 300°C and pressure range from 1 to 280 bar. More accurate and reliable values of the gas compressibility for the ternary NH3-CO2-H2O system and new data on the virial coefficients have been obtained. It was concluded that the obtained results are of interest for physical chemical simulations of many natural and technological processes particularly in the production of carbamide and other substances on the basis of urea.

  11. The breakdown process in an atmospheric pressure nanosecond parallel-plate helium/argon mixture discharge

    NASA Astrophysics Data System (ADS)

    Huang, Bang-Dou; Takashima, Keisuke; Zhu, Xi-Ming; Pu, Yi-Kang

    2016-02-01

    The breakdown process in an atmospheric pressure nanosecond helium/argon mixture discharge with parallel-plate electrodes is investigated by temporally and spatially resolved optical emission spectroscopy (OES). The spatially resolved electric field is obtained from the Stark splitting of the He i 492.1 nm line. Using the emissions from the He ii 468.6 nm, He i 667.8 nm, and Ar i 750.4 nm lines and a collisional-radiative model, the spatially resolved T e, high and T e, low (representing the effective T e in the high energy and low energy part of the EEDF, respectively) are obtained. It is found that, compared with the average electric field provided by the external pulser, the electric field is greatly enhanced at certain location and is significantly weakened at other places. This observation shows the effect of the ionization wave propagation, as predicted in [1, 2]. The value of T e, high is much larger than that of T e, low, which indicates that an elevated high energy tail in the EEDF is built up under the influence of strong electric field during the breakdown process. Initially, the spatial distribution of the T e, low and the T e, high generally follows that of the electric field. However, at the end of the breakdown period, the location of the highest T e, low and T e, high is shifted away from the cathode sheath, where the electric field is strongest. This indicates the existence of a non-local effect and is supported by the result from a simple Monte-Carlo simulation.

  12. Afterglow chemistry of atmospheric-pressure helium-oxygen plasmas with humid air impurity

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2014-04-01

    The formation of reactive species in the afterglow of a radio-frequency-driven atmospheric-pressure plasma in a fixed helium-oxygen feed gas mixture (He+0.5%O2) with humid air impurity (a few hundred ppm) is investigated by means of an extensive global plasma chemical kinetics model. As an original objective, we explore the effects of humid air impurity on the biologically relevant reactive species in an oxygen-dependent system. After a few milliseconds in the afterglow environment, the densities of atomic oxygen (O) decreases from 1015 to 1013 cm-3 and singlet delta molecular oxygen (O2(1D)) of the order of 1015 cm-3 decreases by a factor of two, while the ozone (O3) density increases from 1014 to 1015 cm-3. Electrons and oxygen ionic species, initially of the order of 1011 cm-3, recombine much faster on the time scale of some microseconds. The formation of atomic hydrogen (H), hydroxyl radical (OH), hydroperoxyl (HO2), hydrogen peroxide (H2O2), nitric oxide (NO) and nitric acid (HNO3) resulting from the humid air impurity as well as the influence on the afterglow chemistry is clarified with particular emphasis on the formation of dominant reactive oxygen species (ROS). The model suggests that the reactive species predominantly formed in the afterglow are major ROS O2(1D) and O3 (of the order of 1015 cm-3) and rather minor hydrogen- and nitrogen-based reactive species OH, H2O2, HNO3 and NO2/NO3, of which densities are comparable to the O-atom density (of the order of 1013 cm-3). Furthermore, the model quantitatively reproduces the experimental results of independent O and O3 density measurements.

  13. Influence of voltage magnitude on the dynamic behavior of a stable helium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Ning, Wenjun; Wang, Lijun; Wu, Chen; Jia, Shenli

    2014-08-01

    Effects of voltage magnitude on the development of a stable helium atmospheric pressure plasma jet are investigated by current measurements and high temporal-resolution streak images. Generated by a coaxial dielectric barrier discharge structure, the entire discharge can be classified into three regions: discharges in the tube gap, downstream jet, and up-streamer. The discharge morphologies of each region are analyzed. In the positive discharge phase, there are two discharges in the tube gap between the electrodes; the first one is ignited as corona and then developed into streamer corona, and the second one is similar with positive glow. The downstream jet is ignited independently from the discharge in the tube gap. Referred as "plasma bullet," the dynamic behavior of the jet can be well described as a positive streamer. Under specific applied voltage, the jet is found to be composed by double bullets in which case the jet length decreases since that less charge is carried by the first bullet. The up-streamer can be captured as long as the discharge in the tube gap is activated. Propagating with velocity of ˜4 km/s, the up-streamer can be regarded as the extension of the first discharge in the tube gap. In the negative discharge phase, the discharge is confined in the tube gap with nearly symmetrical morphology with the positive one. Besides, with the rising of voltage, the negative discharge is initially intensified and then turns weaker after surpassing certain voltage, which may provide suitable condition for the occurrence of double-bullet phenomenon.

  14. Helium tables.

    NASA Technical Reports Server (NTRS)

    Havill, Clinton H

    1928-01-01

    These tables are intended to provide a standard method and to facilitate the calculation of the quantity of "Standard Helium" in high pressure containers. The research data and the formulas used in the preparation of the tables were furnished by the Research Laboratory of Physical Chemistry, of the Massachusetts Institute of Technology.

  15. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures.

    PubMed

    Razus, Domnina; Movileanua, Codina; Oancea, Dumitru

    2007-01-02

    The maximum rates of pressure rise of propylene-air explosions at various initial pressures and various fuel/oxygen ratios in three closed vessels (a spherical vessel with central ignition and two cylindrical vessels with central or with top ignition) are reported. It was found that in explosions of quiescent mixtures the maximum rates of pressure rise are linear functions on total initial pressure, at constant initial temperature and fuel/oxygen ratio. The slope and intercept of found correlations are greatly influenced by vessel's volume and shape and by the position of the ignition source--factors which determine the amount of heat losses from the burned gas in a closed vessel explosion. Similar data on propylene-air inert mixtures are discussed in comparison with those referring to propylene-air, revealing the influence of nature and amount of inert additive. The deflagration index KG of centrally ignited explosions was also calculated from maximum rates of pressure rise.

  16. Chemical kinetics and reactive species in atmospheric pressure helium-oxygen plasmas with humid-air impurities

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2013-02-01

    In most applications helium-based plasma jets operate in an open-air environment. The presence of humid air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in radio frequency (rf)-driven atmospheric-pressure helium-oxygen mixture plasmas (He-O2, helium with 5000 ppm admixture of oxygen) for wide air impurity levels of 0-500 ppm with relative humidities of from 0% to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf-driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. These suggest that the plausible air impurity level is not more than hundreds of ppm in such systems. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively and negatively charged ions (and their clusters). Effects of the air impurity containing water humidity on electronegativity and overall plasma reactivity are clarified with particular emphasis on reactive oxygen species.

  17. Noncavitating Pump For Liquid Helium

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael; Swift, Walter; Sixsmith, Herbert

    1996-01-01

    Immersion pump features high efficiency in cryogenic service. Simple and reliable centrifugal pump transfers liquid helium with mass-transfer efficiency of 99 percent. Liquid helium drawn into pump by helical inducer, which pressurizes helium slightly to prevent cavitation when liquid enters impeller. Impeller then pressurizes liquid. Purpose of pump to transfer liquid helium from supply to receiver vessel, or to provide liquid helium flow for testing and experimentation.

  18. The effects of added hydrogen on a helium atmospheric-pressure plasma jet ambient desorption/ionization source.

    PubMed

    Wright, Jonathan P; Heywood, Matthew S; Thurston, Glen K; Farnsworth, Paul B

    2013-03-01

    We present mass spectrometric data demonstrating the effect that hydrogen has on a helium-based dielectric-barrier discharge (DBD) atmospheric-pressure plasma jet used as an ambient desorption/ionization (ADI) source. The addition of 0.9 % hydrogen to the helium support gas in a 35-W plasma jet increased signals for a range of test analytes, with enhancement factors of up to 68, without proportional increases in background levels. The changes in signal levels result from a combination of changes in the desorption kinetics from the surface and increased ion production in the gas phase. The enhancement in ADI-MS performance despite the quenching of key plasma species reported in earlier studies suggests that ionization with a H2/He plasma jet is the result of an alternate mechanism involving the direct generation of ionized hydrogen.

  19. Influence of nitrogen impurities on the population of plasma species in atmospheric-pressure helium microwave plasmas

    NASA Astrophysics Data System (ADS)

    Muñoz, J.; Margot, J.; Benhacene-Boudam, M. K.

    2012-02-01

    The characteristics of a helium microwave plasma produced at atmospheric pressure have been studied by means of laser induced fluorescence and emission spectroscopy. The influence of nitrogen impurities on discharge parameters (electron density and gas temperature) has been studied together with the variation of the He metastable (23S and 21S) populations. A strong decrease of the He metastable densities for nitrogen concentrations as small as 1% was found. The dependence of the populations of nitrogen molecular and atomic species has been examined as a function of the electron density and nitrogen concentration in helium. Comparison with a theoretical model accounting for the presence of nitrogen in the discharge shows that Penning ionization by both atomic and molecular nitrogen play an important role on the metastable quenching.

  20. Impact sensitivity of materials in contact with liquid and gaseous oxygen at high pressure

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1972-01-01

    As a result of the Apollo 13 incident, increased emphasis is being placed on materials compatibility in a high pressure GOX environment. It is known that in addition to impact sensitivity of materials, approximately adiabatic compression conditions can contrive to induce materials reactivity. Test runs at high pressure using the ABMA tester indicate the following: (1) The materials used in the tests showed an inverse relationship between thickness and impact sensitivity. (2) Several materials tested exhibited greater impact sensitivity in GOX than in LOX. (3) The impact sensitivity of the materials tested in GOX, at the pressures tested, showed enhanced impact sensitivity with higher pressure. (4) The rank ordering of the materials tested in LOX up to 1000 psia is the same as the rank ordering resulting from tests in LOX at 14.7 psia.

  1. A theoretical and experimental study of pressure broadening of the oxygen A-band by helium

    SciTech Connect

    Grimminck, Dennis L. A. G.; Spiering, Frans R.; Janssen, Liesbeth M. C.; Avoird, Ad van der; Zande, Wim J. van der; Groenenboom, Gerrit C.

    2014-05-28

    The rotationally resolved magnetic dipole absorption spectrum of the oxygen A-band b{sup 1}Σ{sub g}{sup +}(v=0)←X{sup 3}Σ{sub g}{sup −}(v=0) perturbed by collisions with helium was studied theoretically using the impact approximation. To calculate the relaxation matrix, scattering calculations were performed on a newly computed helium-oxygen (b{sup 1}Σ{sub g}{sup +}) interaction potential as well as on a helium-oxygen (X{sup 3}Σ{sub g}{sup −}) interaction potential from the literature. The calculated integrated line cross sections and broadening coefficients are in good agreement with experimental results from the literature. Additionally, cavity ring-down experiments were performed in the wings of the spectral lines for a quantitative study of line-mixing, i.e., the redistribution of rotational line intensities by helium-oxygen collisions. It is shown that inclusion of line-mixing in the theory is required to reproduce the experimentally determined absolute absorption strengths as a function of the density of the helium gas.

  2. Functional evaluation of rat hearts transplanted after preservation in a high-pressure gaseous mixture of carbon monoxide and oxygen

    PubMed Central

    Hatayama, Naoyuki; Inubushi, Masayuki; Naito, Munekazu; Hirai, Shuichi; Jin, Yong-Nan; Tsuji, Atsushi B.; Seki, Kunihiro; Itoh, Masahiro; Saga, Tsuneo; Li, Xiao-Kang

    2016-01-01

    We recently succeeded in resuscitating an extracted rat heart following 24–48 hours of preservation in a high-pressure gaseous mixture of carbon monoxide (CO) and oxygen (O2). This study aimed to examine the function of rat hearts transplanted after being preserved in the high-pressure CO and O2 gas mixture. The hearts of donor rats were preserved in a chamber filled with CO and O2 under high pressure for 24 h (CO24h) or 48 h at 4 °C. For the positive control (PC) group, hearts immediately extracted from donor rats were used for transplantation. The preserved hearts were transplanted into recipient rats by heterotopic cervical heart transplantation. CO toxicity does not affect the grafts or the recipients. Light microscopy and [18F]-fluorodeoxyglucose positron emission tomography revealed that there were no significant differences in the size of the myocardial infarction or apoptosis of myocardial cells in post-transplant hearts between the PC and CO24h groups. Furthermore, at 100 days after the transplantation, the heart rate, weight and histological staining of the post-transplanted hearts did not differ significantly between the PC and CO24h groups. These results indicate that the function of rat hearts is well preserved after 24 hours of high-pressure preservation in a CO and O2 gas mixture. Therefore, high-pressure preservation in a gas mixture can be a useful method for organ preservation. PMID:27562456

  3. Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air.

    PubMed

    Martin, Andrew R; Katz, Ira M; Jenöfi, Katharina; Caillibotte, Georges; Brochard, Laurent; Texereau, Joëlle

    2012-10-03

    Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort. In addition, breathing He/O2 alone may

  4. Viscosity of gaseous nitrous oxide from 298.15 K to 398.15 K at pressure sup to 25 MPa

    SciTech Connect

    Takahashi, Mitsuo; Shibasaki-Kitakawa, Naomi; Yokoyama, Chiaki; Takahashi, Shinji

    1996-11-01

    The viscosity of gaseous nitrous oxide was measured using an oscillating disk viscometer of the Maxwell type from 298.15 K to 398.15 K at pressures up to 25 MPa. The results were fitted to an empirical equation as a function of temperature and density. The Chung and Lee-Thodos correlations were tested to fit the experimental viscosity values.

  5. Analysis of gaseous toxic industrial compounds and chemical warfare agent simulants by atmospheric pressure ionization mass spectrometry.

    PubMed

    Cotte-Rodríguez, Ismael; Justes, Dina R; Nanita, Sergio C; Noll, Robert J; Mulligan, Christopher C; Sanders, Nathaniel L; Cooks, R Graham

    2006-04-01

    The suitability of atmospheric pressure chemical ionization mass spectrometry as sensing instrumentation for the real-time monitoring of low levels of toxic compounds is assessed, especially with respect to public safety applications. Gaseous samples of nine toxic industrial compounds, NH3, H2S, Cl2, CS2, SO2, C2H4O, HBr, C6H6 and AsH3, and two chemical warfare agent simulants, dimethyl methylphosphonate (DMMP) and methyl salicylate (MeS), were studied. API-MS proves highly suited to this application, with speedy analysis times (<30 seconds), high sensitivity, high selectivity towards analytes, good precision, dynamic range and accuracy. Tandem MS methods were implemented in selected cases for improved selectivity, sensitivity, and limits of detection. Limits of detection in the parts-per-billion and parts-per-trillion range were achieved for this set of analytes. In all cases detection limits were well below the compounds' permissible exposure limits (PELs), even in the presence of added complex mixtures of alkanes. Linear responses, up to several orders of magnitude, were obtained over the concentration ranges studied (sub-ppb to ppm), with relative standard deviations less than 3%, regardless of the presence of alkane interferents. Receiver operating characteristic (ROC) curves are presented to show the performance trade-off between sensitivity, probability of correct detection, and false positive rate. A dynamic sample preparation system for the production of gas phase analyte concentrations ranging from 100 pptr to 100 ppm and capable of admixing gaseous matrix compounds and control of relative humidity and temperature is also described.

  6. System and process for capture of acid gasses at elevated pressure from gaseous process streams

    SciTech Connect

    Heldebrant, David J.; Koech, Phillip K.; Linehan, John C.; Rainbolt, James E.; Bearden, Mark D.; Zheng, Feng

    2016-09-06

    A system, method, and material that enables the pressure-activated reversible chemical capture of acid gasses such as CO.sub.2 from gas volumes such as streams, flows or any other volume. Once the acid gas is chemically captured, the resulting product typically a zwitterionic salt, can be subjected to a reduced pressure whereupon the resulting product will release the captures acid gas and the capture material will be regenerated. The invention includes this process as well as the materials and systems for carrying out and enabling this process.

  7. Thermodynamics of dense molecular hydrogen-helium mixtures at high pressure

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.; Hubbard, William B.

    1988-01-01

    Effective intermolecular pair potentials derived from liquid hydrogen and helium shock wave experiments are presently used in Monte Carlo simulations of mixtures of hydrogen and helium, at densities of up to 1.2 g/cu cm. The model interaction Helmholtz free energy derived accurately reproduces both the Monte Carlo calculation results and the experimental data obtained for densities of up to about 0.6 g/cu cm. An equation of state is derived from the free energy expression that could be useful in interior models of such Jovian planets as Saturn.

  8. Use of Heated Helium to Simulate Surface Pressure Fluctuations on the Launch Abort Vehicle During Abort Motor Firing

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; James, George H.; Burnside, Nathan J.; Fong, Robert; Fogt, Vincent A.

    2011-01-01

    The solid-rocket plumes from the Abort motor of the Multi-Purpose Crew Vehicle (MPCV, also know as Orion) were simulated using hot, high pressure, Helium gas to determine the surface pressure fluctuations on the vehicle in the event of an abort. About 80 different abort situations over a wide Mach number range, (0.3< or =M< or =1.2) and vehicle attitudes (+/-15deg) were simulated inside the NASA Ames Unitary Plan, 11-Foot Transonic Wind Tunnel. For each abort case, typically two different Helium plume and wind tunnel conditions were used to bracket different flow matching critera. This unique, yet cost-effective test used a custom-built hot Helium delivery system, and a 6% scale model of a part of the MPCV, known as the Launch Abort Vehicle. The test confirmed the very high level of pressure fluctuations on the surface of the vehicle expected during an abort. In general, the fluctuations were found to be dominated by the very near-field hydrodynamic fluctuations present in the plume shear-layer. The plumes were found to grow in size for aborts occurring at higher flight Mach number and altitude conditions. This led to an increase in the extent of impingement on the vehicle surfaces; however, unlike some initial expectations, the general trend was a decrease in the level of pressure fluctuations with increasing impingement. In general, the highest levels of fluctuations were found when the outer edges of the plume shear layers grazed the vehicle surface. At non-zero vehicle attitudes the surface pressure distributions were found to become very asymmetric. The data from these wind-tunnel simulations were compared against data collected from the recent Pad Abort 1 flight test. In spite of various differences between the transient flight situation and the steady-state wind tunnel simulations, the hot-Helium data were found to replicate the PA1 data fairly reasonably. The data gathered from this one-of-a-kind wind-tunnel test fills a gap in the manned-space programs

  9. Gas Temperature Determination in Argon-Helium Plasma at Atmospheric Pressure using van der Waals Broadening

    SciTech Connect

    Munoz, Jose; Yubero, Cristina; Calzada, Maria Dolores; Dimitrijevic, Milan S.

    2008-10-22

    The use of the van der Waals broadening of Ar atomic lines to determine the gas temperature in Ar-He plasmas, taking into account both argon and helium atoms as perturbers, has been analyzed. The values of the gas temperature inferred from this broadening have been compared with those obtained from the spectra of the OH molecular species in the discharge.

  10. D0 Silicon Upgrade: Gas Helium Storage Tank Pressure Vessel Engineering Note

    SciTech Connect

    Rucinski, Russ; /Fermilab

    1996-11-11

    This is to certify that Beaird Industries, Inc. has done a white metal blast per SSPC-SP5 as required per specifications on the vessel internal. Following the blast, a black light inspection was performed by Beaird Quality Control personnel to assure that all debris, grease, etc. was removed and interior was clean prior to closing vessel for helium test.

  11. Development of a High-Pressure Gaseous Burner for Calibrating Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    In this work-in-progress report, we show the development of a unique high-pressure burner facility (up to 60 atm) that provides steady, reproducible premixed flames with high precision, while having the capability to use multiple fuel/oxidizer combinations. The highpressure facility has four optical access ports for applying different laser diagnostic techniques and will provide a standard reference flame for the development of a spectroscopic database in high-pressure/temperature conditions. Spontaneous Raman scattering (SRS) was the first diagnostic applied, and was used to successfully probe premixed hydrogen-air flames generated in the facility using a novel multi-jet micro-premixed array burner element. The SRS spectral data include contributions from H2, N2, O2, and H2O and were collected over a wide range of equivalence ratios ranging from 0.16 to 4.9 at an initial pressure of 10-atm via a spatially resolved point SRS measurement with a high-performance optical system. Temperatures in fuel-lean to stoichiometric conditions were determined from the ratio of the Stokes to anti-Stokes scattering of the Q-branch of N2, and those in fuel-rich conditions via the rotational temperature of H2. The SRS derived temperatures using both techniques were consistent and indicated that the flame temperature was approximately 500 K below that predicted by adiabatic equilibrium, indicating a large amount of heat-loss at the measurement zone. The integrated vibrational SRS signals show that SRS provides quantitative number density data in high-pressure H2-air flames.

  12. Thermal performance of gaseous-helium-purged tank-mounted multilayer insulation system during ground-hold and space-hold thermal cycling and exposure to water vapor

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.

    1978-01-01

    An experimental investigation was conducted to determine (1) the ground-hold and space-hold thermal performance of a multilayer insulation (MLI) system mounted on a spherical, liquid-hydrogen propellant tank and (2) the degradation to the space-hold thermal performance of the insulation system that resulted from both thermal cycling and exposure to moisture. The propellant tank had a diameter of 1.39 meters (4.57ft). The MLI consisted of two blankets of insulation; each blanket contained 15 double-aluminized Mylar radiation shields separated by double silk net spacers. Nineteen tests simulating basic cryogenic spacecraft thermal (environmental) conditions were conducted. These tests typically included initial helium purge, liquid-hydrogen fill and ground-hold, ascent, space-hold, and repressurization. No significant degradation of the space-hold thermal performance due to thermal cycling was noted.

  13. Voltage and pressure scaling of streamer dynamics in a helium plasma jet with N{sub 2} co-flow

    SciTech Connect

    Leiweke, Robert J.; Ganguly, Biswa N.; Scofield, James D.

    2014-08-15

    Positive polarity applied voltage and gas pressure dependent scaling of cathode directed streamer propagation properties in helium gas flow guided capillary dielectric barrier discharge have been quantified from streamer velocity, streamer current, and streamer optical diameter measurements. All measurements of the non-stochastic streamer properties have been performed in a variable gas pressure glass cell with N{sub 2} co-flow and under self-consistent Poisson electric field dominated conditions to permit data comparison with 2-D streamer dynamics models in air/nitrogen. The streamer optical diameter was found to be nearly independent of both gas pressures, from 170 Torr up to 760 Torr, and also for applied voltages from 6 to 11 kV at 520 Torr. The streamer velocity was found to increase quadratically with increased applied voltage. These observed differences in the 2-D scaling properties of ionization wave sustained cathode directed streamer propagation in helium flow channel with N{sub 2} annular co-flow compared to the streamer propagation in air or nitrogen have been shown to be caused by the remnant ionization distribution due to large differences in the dissociative recombination rates of He{sub 2}{sup +} versus N{sub 4}{sup +} ions, for this 5 kHz repetition rate applied voltage pulse generated streamers.

  14. Centrifuge for separating helium from natural gas

    SciTech Connect

    Theyse, F.H.; Kelling, F.E.T.

    1980-01-08

    Ultra Centrifuge Nederland N.V.'s improved centrifuge for separating helium from natural gas comprises a hollow cylindrical rotor, designated as a separating drum, within a stationary housing. Natural gas liquids that condense under pressure in the separating drum pass through openings in the drum into the space between the drum and housing. In this space, a series of openings, or throttling restrictors, allows the liquids to expand and return to gas. The gaseous component that does not liquefy in the drum remains separate for drawing off.

  15. The Effect of Gaseous Additives on Dynamic Pressure Output and Ignition Sensitivity of Nanothermites

    NASA Astrophysics Data System (ADS)

    Puszynski, Jan; Doorenbos, Zac; Walters, Ian; Redner, Paul; Kapoor, Deepak; Swiatkiewicz, Jacek

    2011-06-01

    This contribution addresses important combustion characteristics of nanothermite systems. In this research the following nanothermites were investigated: a) Al-Bi2O3, b)Al-Fe2O3 and c)Al-Bi2O3-Fe2O3. The effect of various gasifying additives (such as nitrocellulose (NC) and cellulose acetate butyrate (CAB)) as well as reactant stoichiometry, reactant particle size and shape on processability, ignition delay time and dynamic pressure outputs at different locations in a combustion chamber will be presented. In addition, this contribution will report electrostatic and friction sensitivities of standard and modified nanothermites.

  16. Fatigue Crack Growth under High Pressure of Gaseous Hydrogen in a 15-5PH Martensitic Stainless Steel: Influence of Pressure and Loading Frequency

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Moriconi, C.; Benoit, G.; Halm, D.; Henaff, G.

    2013-03-01

    In this study, the effect of gaseous hydrogen pressure in relation with the loading frequency on the fatigue crack growth behavior of a precipitation-hardened martensitic stainless steel is investigated. It is found that increasing the hydrogen pressure from 0.09 to 9 MPa induces an enhancement of the fatigue crack growth rates. This enhancement is pronounced particularly at higher stress intensity factor amplitudes at 9 MPa. Meanwhile, decreasing the frequency from 20 to 0.2 Hz under 0.9 MPa of hydrogen reveals a significant increase in the crack growth rates that tends to join the curve obtained under 9 MPa at 20 Hz, but with a different cracking mode. However, it is shown that the degradation in fatigue crack growth behavior derives from a complex interaction between the fatigue damage and the amount of hydrogen enriching the crack tip, which is dependent on the hydrogen pressure, loading frequency, and stress intensity factor level. Scanning electron microscope (SEM) observations of the fracture surfaces are used to support the explanations proposed to account for the observed phenomena.

  17. Ignition of nonmetallic materials by impact of high-pressure gaseous oxygen

    NASA Technical Reports Server (NTRS)

    Moffett, Gary E.; Pedley, Michael D.; Schmidt, Naomi; Williams, Ralph E.; Hirsch, David; Benz, Frank J.

    1988-01-01

    The sources of variability in the pneumatic impact test commonly used to screen nonmetallic materials for oxygen service and to rank batches or lots of particular materials were investigated together with the mechanism of ignition. Tests were conducted at the NASA/White Sands Test Facility in which the standard test chamber was replaced by an instrumented chamber to obtain information on the rates of pressurization, specimen heating, and time to ignition. Results showed that much of the variability in test data could be traced to the variability in system cleanliness and in the opening time of the high-speed valve. The prinicipal mechanism of ignition in the test is considered to be the heating of the gas initially in the test chamber by adiabatic compression; the presence of voids in the test materials may also be important.

  18. Combustion of 316 stainless steel in high-pressure gaseous oxygen

    NASA Technical Reports Server (NTRS)

    Benz, Frank; Steinberg, Theodore A.; Janoff, Dwight

    1989-01-01

    Upward combustion of 316 stainless steel (SS) rods is discussed and a combustion model is presented. The effects of varying oxygen pressure and rod diameter on the rate limiting processes for combustion of 316 SS are evaluated. The rate-limiting steps for combustion up 316 SS rods are shown to be dependent on the incorporation and mass transport of oxygen in the molten mass, and heat transfer between the molten mass and rod. Both these rate-limiting steps are shown to be dependent on rod diameter. Small (d/r/ = 0.051 cm) 316 SS rods are shown to be dependent on convective heat transfer, and larger rods (d/r/ not less than 0.32 cm) are shown to be dependent on oxygen incorporation and mass transport in the molten mass.

  19. Safety aspects of atmospheric pressure helium plasma jet operation on skin: In vivo study on mouse skin.

    PubMed

    Kos, Spela; Blagus, Tanja; Cemazar, Maja; Filipic, Gregor; Sersa, Gregor; Cvelbar, Uros

    2017-01-01

    Biomedical applications of plasma require its efficacy for specific purposes and equally importantly its safety. Herein the safety aspects of cold plasma created with simple atmospheric pressure plasma jet produced with helium gas and electrode discharge are evaluated in skin damage on mouse, at different duration of exposure and gas flow rates. The extent of skin damage and treatments are systematically evaluated using stereomicroscope, labelling with fluorescent dyes, histology, infrared imaging and optical emission spectroscopy. The analyses reveal early and late skin damages as a consequence of plasma treatment, and are attributed to direct and indirect effects of plasma. The results indicate that direct skin damage progresses with longer treatment time and increasing gas flow rates which reflect changes in plasma properties. With increasing flow rates, the temperature on treated skin grows and the RONS formation rises. The direct effects were plasma treatment dependent, whereas the disclosed late-secondary effects were more independent on discharge parameters and related to diffusion of RONS species. Thermal effects and skin heating are related to plasma-coupling properties and are separated from the effects of other RONS. It is demonstrated that cumulative topical treatment with helium plasma jet could lead to skin damage. How these damages can be mitigated is discussed in order to provide guidance, when using atmospheric pressure plasma jets for skin treatments.

  20. Stabilities of filled ice II structure of hydrogen and helium hydrates at low temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Hirai, H.; Umeda, A.; Fujii, T.; Machida, S.; Shinozaki, A.; Kawamura, T.; Yamamoto, Y.; Yagi, T.

    2011-12-01

    Hydrogen hydrate is expected to be a hydrogen storage material, because it can contain relatively high hydrogen and its synthetic condition is mild comparable to industrial production. Three phases of hydrogen hydrate have been known so for. One is a clathrate hydrate sII [1], and others are filled ice II structure and filled ice Ic structure [2]. The ratio of water to hydrogen molecules for these phases are1:3, 1:6, 1:1, respectively. The clathrate sII containing only hydrogen molecules is stable only in a lower temperature region. At room temperature, above about 0.8 GPa filled ice II and above 2.5 GPa filled ice Ic are formed. The latter one survives at least up to 90 GPa [3]. However, investigations in low temperature and high pressure region have been limited. In this study, low temperature and high pressure experiments were performed by using diamond anvil cells and a helium-refrigeration cryostat in a region of 0.2 to 4.5 GPa and 130 to 300 K. X-ray diffractometry (XRD) showed a series of phase change from sII to filled ice Ic via filled ice II. For example, at 220K, sII transformed to filled ice II at approximately 0.7 GPa and further transformed to filled ice Ic structure at about 2.0 GPa. The present results experimentally confirmed the previously predicted phase boundaries. For filled ice II structure, Raman spectroscopy revealed that pressure dependency of vibration mode of guest hydrogen molecules and OH stretching mode of host water molecules changed at approximately 2.5 GPa. The XRD also showed change in axial ratio at the same pressure. These result suggested that state of filled ice II structure changed at about 2.5 GPa. Helium hydrate is known to form filled ice II structure [4], but high pressure study has not been yet fully performed. Similar experiments were carried out in a region of 0.2 to 5.0 GPa and 200 to 300 K. The results showed that the filled ice II structure did not transformed to filled ice Ic structure, but decomposed into helium

  1. Numerical Modeling of the Atmospheric-Pressure Helium Plasma Formed During Spark-to-Glow Discharge Transition

    NASA Astrophysics Data System (ADS)

    Demkin, V. P.; Melnichuk, S. V.

    2017-06-01

    Results of numerical experiment on modeling of the atmospheric-pressure plasma formed during the spark-to-glow discharge transition in helium in low-current non-stationary plasmatron are presented. The numerical experiment is performed using the developed 2D physical and mathematical plasma model in the drift-diffusion approximation. Results of numerical calculation of the dynamics of discharge evolution are confirmed by the experimental data on the atmospheric-pressure plasma dynamics formed in the plasmatron during the spark-to-glow discharge transition. It is demonstrated that with preset initial conditions characteristic for spark breakdown, further discharge evolution leads to the formation of the near-cathode zone of the potential drop and the pulsed behavior of the electric current of the discharge. After the current pulse, the discharge transforms into the quasi-stationary mode with parameters characteristic for the glow discharge with monotonically increasing electric current and transverse dimensions of the plasma column.

  2. Steady state boiling crisis in a helium vertically heated natural circulation loop - Part 2: Friction pressure drop lessening

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2016-01-01

    Experiments were conducted on a 2-m high two-phase helium natural circulation loop operating at 4.2 K and 1 atm. Two heated sections with different internal diameter (10 and 6 mm) were tested. The power applied on the heated section wall was controlled in increasing and decreasing sequences, and temperature along the section, mass flow rate and pressure drop evolutions were registered. The post-CHF regime was studied watching simultaneously the evolution of boiling crisis onset along the test section and the evolution of pressure drop and mass flow rate. A significant lessening of friction was observed simultaneous to the development of the post-CHF regime, accompanied by a mass flow rate increase, which lets suppose that the vapor film in the film boiling regime acts as a lubricant. A model was created based on this idea and on heat transfer considerations. The predictions by this model are satisfactory for the low quality post-CHF regime.

  3. Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air

    PubMed Central

    2012-01-01

    Background Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Methods Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Results Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. Conclusions The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort

  4. High-pressure phase diagram and equation of state of solid helium from single-crystal X-ray diffraction to 23.3 GPa

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Hemley, R. J.; Jephcoat, A. P.; Finger, L. W.; Wu, Y.

    1988-01-01

    Single-crystal X-ray diffraction measurements have been performed on solid He-4 from 15.6 to 23.3 GPa at 300 K with synchrotron radiation. The diffraction patterns demonstrate that the structure of the solid is hexagonal close packed over this pressure-temperature range, contrary to both the interpretation of high-pressure optical studies and to theoretical predictions. The solid is more compressible than is indicated by equations of state calculated with recently determined helium pair potentials. The results suggest that a significant revision of current views of the phase diagram and energetics of dense solid helium is in order.

  5. High-pressure phase diagram and equation of state of solid helium from single-crystal X-ray diffraction to 23.3 GPa

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Hemley, R. J.; Jephcoat, A. P.; Finger, L. W.; Wu, Y.

    1988-01-01

    Single-crystal X-ray diffraction measurements have been performed on solid He-4 from 15.6 to 23.3 GPa at 300 K with synchrotron radiation. The diffraction patterns demonstrate that the structure of the solid is hexagonal close packed over this pressure-temperature range, contrary to both the interpretation of high-pressure optical studies and to theoretical predictions. The solid is more compressible than is indicated by equations of state calculated with recently determined helium pair potentials. The results suggest that a significant revision of current views of the phase diagram and energetics of dense solid helium is in order.

  6. Gaseous diffusion system

    DOEpatents

    Garrett, George A.; Shacter, John

    1978-01-01

    1. A gaseous diffusion system comprising a plurality of diffusers connected in cascade to form a series of stages, each of said diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof.

  7. Influence of the excitation frequency on the density of helium metastable atoms in an atmospheric pressure dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Boisvert, J.-S.; Sadeghi, N.; Margot, J.; Massines, F.

    2017-01-01

    Diffuse dielectric barrier discharges in atmospheric-pressure helium can be sustained over a wide range of excitation frequencies (from, but not restricted, 25 kHz to 15 MHz). The aim of the present paper is to identify the specific characteristics of the discharge modes that can be sustained in this frequency range, namely, the atmospheric-pressure Townsend-like discharge (APTD-L) mode, the atmospheric-pressure glow discharge (APGD) mode, the Ω mode, the hybrid mode, and the RF-α mode. This is achieved experimentally, by measuring the density of helium metastable atoms, which are known to play a driving role on the discharge kinetics. This density is measured by means of two absorption spectroscopy methods, one using a spectral lamp and the other one using a diode laser as a light source. The first one provides the time-averaged atom densities in the singlet He(21S) and triplet He(23S) metastable states, while with the second one we access the time-resolved density of He(23S) atoms. Time-averaged measurements indicate that the He(23S) density is relatively low in the APTD-L, the Ω and the RF-α modes ( <4 ×1016 m-3 ) slightly higher in the APGD mode ( 2 -7 ×1016 m-3 ), and still higher ( >1 ×1017 m-3 ) in the hybrid mode. The hybrid mode is exclusively observed for frequencies from 0.2 to 3 MHz. However, time-resolved density measurement shows that at 1 MHz and below, the hybrid mode is not continuously sustained. Instead, the discharge oscillates between the Ω and the hybrid mode with a switching frequency about the kilohertz. This explains the significantly lower power required to sustain the plasma as compared to above 1 MHz.

  8. The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium.

    PubMed

    Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki

    2006-06-14

    Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.

  9. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    SciTech Connect

    Zhang, Cheng; Shao, Tao Wang, Ruixue; Yan, Ping; Zhou, Zhongsheng; Zhou, Yixiao

    2014-10-15

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs.

  10. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    NASA Astrophysics Data System (ADS)

    Hasan, Nusair; Antao, Dion S.; Farouk, Bakhtier

    2014-06-01

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift-diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current-voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current-voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire.

  11. Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Tan, Zhenyu; Pan, Jie; Chen, Xinxian

    2016-08-01

    In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He2+ and O2-, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture. supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)

  12. Experimental Determination of Spatial and Temporal Discharge Parameters for an Ambient Pressure Dielectric Barrier Discharge in Helium

    NASA Astrophysics Data System (ADS)

    Bures, Brian; Bourham, Mohamed

    2004-11-01

    Ambient pressure Dielectric Barrier Discharges (DBD's) are studied for a number of applications. Barrier discharges composed primarily of inert gases are potentially useful for the production of intense excimer light, sterilization of thermally sensitive materials and control of insects for quarantine. The neutral bremsstrahlung technique is used to determine spatial variations of electron density and electron temperature in a parallel plate, helium (99.9% by vol) dielectric barrier discharge operated at an average power density between 50 and 75 mW/cm^3. The applied frequency is varied between 2 kHz and 6 kHz. The time average electron density suggests a more intense discharge near the surface of the electrodes than the bulk of the discharge for all frequencies and power densities. When moving parallel to the electrodes, the electron temperature remains constant, while the electron density is constant within 20% of the average value. A monochromator tuned to a nitrogen ion line (391.4 nm) and a helium line (706.5 nm) has a more intense emission when the electrode is negatively biased.

  13. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  14. Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Nicula, Cosmina

    2013-06-01

    In this work, we have applied optical emission spectroscopy diagnostics to investigate the characteristics of a non-thermal atmospheric pressure helium plasma jet. The discharge characteristics in the active and afterglow region of the plasma jet, that are critical for biomedical applications, have been investigated. The voltage-current characteristics of the plasma discharge were analyzed and the average plasma power was measured to be around 18 W. The effect of addition of small fractions of oxygen at 0.1%-0.5% on the plasma jet characteristics was studied. The addition of oxygen resulted in a decrease in plasma plume length due to the electronegativity property of oxygen. Atomic and molecular lines of selected reactive plasma species that are considered to be useful to induce biochemical reactions such as OH transitions A2Σ+(ν=0,1)→X2Π(Δν =0) at 308 nm and A2Σ+(ν=0,1)→X2Π(Δν =1) at 287 nm, O I transitions 3p5P→3s5S0 at 777.41 nm, and 3p3P→3s3S0 at 844.6 nm, N2(C-B) second positive system with electronic transition C3Πu→B3Πg in the range of 300-450 nm and N2+(B-X) first negative system with electronic transition B2Σu+→X2Σg+(Δν =0) at 391.4 nm have been studied. The atomic emission lines of helium were identified, including the He I transitions 3p3P0→2s3S at 388.8 nm, 3p1P0→ 2s1S at 501.6 nm, 3d3D→2p3P0 at 587.6 nm, 3d1D→2p1P0 at 667.8 nm, 3s3S1→2p3P0 at 706.5 nm, 3s1S0→2p1P0 at 728.1 nm, and Hα transition 2p-3d at 656.3 nm. Using a spectral fitting method, the OH radicals at 306-312 nm, the rotational and vibrational temperatures equivalent to gas temperatures of the discharge was measured and the effective non-equilibrium nature of the plasma jet was demonstrated. Our results show that, in the entire active plasma region, the gas temperature remains at 310 ± 25 K and 340 ± 25 K and it increases to 320 ± 25 K and 360 ± 25 K in the afterglow region of the plasma jet for pure helium and helium/oxygen (0.1%) mixture

  15. Cryogenic filter method produces super-pure helium and helium isotopes

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  16. Helium permeability of different structure pyrolytic carbon coatings on graphite prepared at low temperature and atmosphere pressure

    NASA Astrophysics Data System (ADS)

    Song, Jinliang; Zhao, Yanling; Zhang, Wenting; He, Xiujie; Zhang, Dongsheng; He, Zhoutong; Gao, Yantao; Jin, Chan; Xia, Huihao; Wang, Jianqiang; Huai, Ping; Zhou, Xingtai

    2016-01-01

    Low density isotropic pyrolytic carbon (IPyC) and high density anisotropic pyrolytic carbon (APyC) coatings have been prepared at low temperature and atmosphere pressure. Helium gas permeabilities of nuclear graphite coated with IPyC and APyC of different thickness are studied using a vacuum apparatus. Both the permeation rates of the treated graphite gradually decrease with the increasing thickness of the coatings. The IPyC and APyC coatings can reduce the gas permeability coefficient of the samples by three and five orders of magnitude, respectively. The permeability difference is related to the microscopic structure, i.e., pores, as confirmed by scanning electron microscopy, mercury injection and X-ray tomography experiments. The changes of the permeability owing to heat cycles are observed to be negligible.

  17. Measurements of heat transfer to helium II at atmospheric pressure in a confined geometry

    SciTech Connect

    Warren, R.P.; Caspi, S.

    1981-08-01

    Recently the enhanced heat removal capability of unsaturated superfluid helium II has been exploited in fusion and accelerator dipole magnets. In superfluid the internal convection mechanism dominates the heat removal process and orientation with respect to gravity becomes of secondary importance. Heat transfer, however, can be influenced by the thermodynamic state of the liquid, especially with regard to possible phase transformations. The transformation from non-saturated He II must involve an He I state before the film boiling transition is experienced. Some steady state measurements of heat transfer to non-saturated He II have been previously reported. In typical magnet designs, cooling passages between turns result from gaps between the electrical insulation, and are typically on the order of a fraction of a millimeter. The purpose of the work reported here is to measure the attenuation of the heat transfer within such a restrictive geometry.

  18. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  19. Gaseous detonations

    SciTech Connect

    Nettleton, M.A.

    1987-01-01

    Focusing predominantly on safety problems in handling combustible gas or dust mixtures with air or oxygen, the book is a reference on gaseous detonations. Topics covered include: unidimensional models, structure of detonation fronts, and interaction of a detonation with confinement.

  20. Design and development of a helium injection system to improve external leakage detection during liquid nitrogen immersion tests

    NASA Astrophysics Data System (ADS)

    Townsend, Andrew; Mishra, Rakesh

    2016-10-01

    The testing of assemblies for use in cryogenic systems commonly includes evaluation at or near operating (therefore cryogenic) temperature. Typical assemblies include valves and pumps for use in liquid oxygen-liquid hydrogen rocket engines. One frequently specified method of cryogenic external leakage testing requires the assembly, pressurized with gaseous helium (GHe), be immersed in a bath of liquid nitrogen (LN2) and allowed to thermally stabilize. Component interfaces are then visually inspected for leakage (bubbles). Unfortunately the liquid nitrogen will be boiling under normal, bench-top, test conditions. This boiling tends to mask even significant leakage. One little known and perhaps under-utilized property of helium is the seemingly counter-intuitive thermodynamic property that when ambient temperature helium is bubbled through boiling LN2 at a temperature of -195.8 °C, the temperature of the liquid nitrogen will reduce. This paper reports on the design and testing of a novel proof-of-concept helium injection control system confirming that it is possible to reduce the temperature of an LN2 bath below boiling point through the controlled injection of ambient temperature gaseous helium and then to efficiently maintain a reduced helium flow rate to maintain a stabilized liquid temperature, enabling clear visual observation of components immersed within the LN2. Helium saturation testing is performed and injection system sizing is discussed.

  1. Discharge physics and influence of the modulation on helium DBD modes in the medium-frequency range at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Boisvert, Jean-Sébastien; Margot, Joëlle; Massines, Françoise

    2017-04-01

    In this paper the recently reported hybrid mode (a dielectric barrier discharge (DBD) excited by an electric field oscillating at about 1 MHz) is investigated using space and time-resolved imaging together with electrical measurements. In contrast with the helium low-frequency DBD, at 1.6 MHz the light emission is desynchronized with the discharge current. It rather depends on the enhanced rate of stepwise excitation resulting from the massive secondary emission occurring 0.15Ƭ after the discharge current maximum (Ƭ is the excitation wave period). The consequence of ion impacts on the dielectric surfaces is a higher gas and dielectric temperatures as compared to typical helium DBDs. The electrical behavior and the gas temperature of a pulsed dielectric-barrier discharge operated at 1.6 MHz are also described in this paper as a function of the repetition rate (varying from 1 Hz to 10 kHz). The gas temperature is reduced when repetition rates higher or equal to 10 Hz is used. This is related to the gas renewal rate of 8.3 Hz, i.e., gas residence time of 120 ms in our conditions. In addition, due to the memory effect in the gas, the gas gap voltage decreases as the repetition rate increases. However, beyond 100 Hz, the power decreases and the gas gap voltage increases again. As a consequence, for a given power density, the optimal repetition rate is 100 Hz which minimizes the gas temperature without reducing the power density. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  2. Gas flow rate dependence of the discharge characteristics of a helium atmospheric pressure plasma jet interacting with a substrate

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Economou, Demetre J.

    2017-10-01

    A 2D (axisymmetric) computational study of the discharge characteristics of an atmospheric pressure plasma jet as a function of gas flow rate was performed. The helium jet emerged from a dielectric tube, with an average gas flow velocity in the range 2.5–20 m s‑1 (1 atm, 300 K) in a nitrogen ambient, and impinged on a substrate a short distance dowstream. The effect of the substrate conductivity (conductror versus insulator) was also studied. Whenever possible, simulation predictions were compared with published experimental observations. Discharge ignition and propagation in the dielectric tube were hardly affected by the He gas flow velocity. Most properties of the plasma jet, however, depended sensitively on the He gas flow velocity, which determined the concentration distributions of helium and nitrogen in the mixing layer forming in the gap between the tube exit and the substrate. At low gas flow velocity, the plasma jet evolved from a hollow (donut-shaped) feature to one where the maximum of electron density was on axis. When the gas flow velocity was high, the plasma jet maintained its hollow structure until it struck the substrate. For a conductive substrate, the radial ion fluxes to the surface were relatively uniform over a radius of ~0.4–0.8 mm, and the dominant ion flux was that of He+. For a dielectric substrate, the radial ion fluxes to the surface peaked on the symmetry axis at low He gas flow velocity, but a hollow ion flux distribution was observed at high gas flow velocity. At the same time, the main ion flux switched from N2+ to He2+ as the He gas flow velocity increased from a low to a high value. The diameter of the plasma ‘footprint’ on the substrate first increased with increasing He gas flow velocity, and eventually saturated with further increases in velocity.

  3. Formation of Pyrylium from Aromatic Systems with a Helium:Oxygen Flowing Atmospheric Pressure Afterglow (FAPA) Plasma Source

    NASA Astrophysics Data System (ADS)

    Badal, Sunil P.; Ratcliff, Tyree D.; You, Yi; Breneman, Curt M.; Shelley, Jacob T.

    2017-06-01

    The effects of oxygen addition on a helium-based flowing atmospheric pressure afterglow (FAPA) ionization source are explored. Small amounts of oxygen doped into the helium discharge gas resulted in an increase in abundance of protonated water clusters by at least three times. A corresponding increase in protonated analyte signal was also observed for small polar analytes, such as methanol and acetone. Meanwhile, most other reagent ions (e.g., O2 +·, NO+, etc.) significantly decrease in abundance with even 0.1% v/v oxygen in the discharge gas. Interestingly, when analytes that contained aromatic constituents were subjected to a He:O2-FAPA, a unique (M + 3)+ ion resulted, while molecular or protonated molecular ions were rarely detected. Exact-mass measurements revealed that these (M + 3)+ ions correspond to (M - CH + O)+, with the most likely structure being pyrylium. Presence of pyrylium-based ions was further confirmed by tandem mass spectrometry of the (M + 3)+ ion compared with that of a commercially available salt. Lastly, rapid and efficient production of pyrylium in the gas phase was used to convert benzene into pyridine. Though this pyrylium-formation reaction has not been shown before, the reaction is rapid and efficient. Potential reactant species, which could lead to pyrylium formation, were determined from reagent-ion mass spectra. Thermodynamic evaluation of reaction pathways was aided by calculation of the formation enthalpy for pyrylium, which was found to be 689.8 kJ/mol. Based on these results, we propose that this reaction is initiated by ionized ozone (O3 +·), proceeds similarly to ozonolysis, and results in the neutral loss of the stable CHO2 · radical. [Figure not available: see fulltext.

  4. Excitation Mechanism of H, He, C, and F Atoms in Metal-Assisted Atmospheric Helium Gas Plasma Induced by Transversely Excited Atmospheric-Pressure CO2 Laser Bombardment

    NASA Astrophysics Data System (ADS)

    Lie, Zener Sukra; Khumaeni, Ali; Kurihara, Kazuyoshi; Kurniawan, Koo Hendrik; Lee, Yong Inn; Fukumoto, Ken-ichi; Kagawa, Kiichiro; Niki, Hideaki

    2011-12-01

    To clarify the excitation mechanism of hydrogen in transversely excited atmospheric-pressure (TEA) CO2 laser-induced helium gas plasma, atomic emission characteristics of H, C, F, and He were studied using a Teflon sheet (thickness of 2 mm) attached to a metal subtarget. The TEA CO2 laser (750 mJ, 200 ns) was focused on the Teflon sheet in the surrounding He gas at 1 atm. Atomic emissions of H, C, F, and He occurred with a long lifetime, a narrow spectrum width, and a low-background spectrum. The correlation emission intensity curves of H--He and F--He indicated a parabolic functions. To explain the emission characteristics, we offered a model in which helium metastable atoms (He*) play an important role in the excitation processes; namely, atoms collide with helium metastable atoms (He*) to be ionized by the Penning effect, and then recombine with electrons to produce excited states, from which atomic emissions occur.

  5. Excitation Mechanism of H, He, C, and F Atoms in Metal-Assisted Atmospheric Helium Gas Plasma Induced by Transversely Excited Atmospheric-Pressure CO2 Laser Bombardment

    NASA Astrophysics Data System (ADS)

    Sukra Lie, Zener; Khumaeni, Ali; Kurihara, Kazuyoshi; Hendrik Kurniawan, Koo; Inn Lee, Yong; Fukumoto, Ken-ichi; Kagawa, Kiichiro; Niki, Hideaki

    2011-12-01

    To clarify the excitation mechanism of hydrogen in transversely excited atmospheric-pressure (TEA) CO2 laser-induced helium gas plasma, atomic emission characteristics of H, C, F, and He were studied using a Teflon sheet (thickness of 2 mm) attached to a metal subtarget. The TEA CO2 laser (750 mJ, 200 ns) was focused on the Teflon sheet in the surrounding He gas at 1 atm. Atomic emissions of H, C, F, and He occurred with a long lifetime, a narrow spectrum width, and a low-background spectrum. The correlation emission intensity curves of H-He and F-He indicated a parabolic functions. To explain the emission characteristics, we offered a model in which helium metastable atoms (He*) play an important role in the excitation processes; namely, atoms collide with helium metastable atoms (He*) to be ionized by the Penning effect, and then recombine with electrons to produce excited states, from which atomic emissions occur.

  6. Turbulent mixing of multiple, co-axial helium jets in a supersonic air stream

    NASA Technical Reports Server (NTRS)

    Lorber, A. K.; Schetz, J. A.

    1973-01-01

    An experimental study of a strut-mounted, five-port, coaxial gaseous fuel injector assembly in a Mach 4 air stream with P sub o = 145 psia and T sub o = 546 R was conducted. Helium was used as the injectant, and the interjet spacing was the main parameter varied. The principal data are in the form of helium concentration profiles at six axial stations and pitot pressure profiles at two axial stations. Schlieren photographs are also presented. The slight sensitivity of the mixing rate to decreased interjet spacing was determined in the range 3.5 or = to S/D or = to 5.0.

  7. Comments on "Sensitive analysis of carbon, chromium and silicon in steel using picosecond laser induced low pressure helium plasma"

    NASA Astrophysics Data System (ADS)

    Zaytsev, Sergey M.; Popov, Andrey M.; Zorov, Nikita B.; Labutin, Timur A.

    2016-04-01

    In the paper "Sensitive analysis of carbon, chromium and silicon in steel using picosecond laser induced low pressure helium plasma" by Syahrun Nur Abdulmadjid, Nasrullah Idris, Marincan Pardede, Eric Jobiliong, Rinda Hedwig, Zener Sukra Lie, Hery Suyanto, May On Tjia, Koo Hendrik Kurniawan and Kiichiro Kagawa [Spectrochim. Acta Part B 114 (2015) 1-6], the authors presented experimental study to demonstrate the sensitive detection of C, Cr and Si in low-alloy steels under low pressure He atmosphere. Although the use of only UV-VIS spectral range for determination of these elements seems to be a beneficial, the point that needs to be commented is the result of carbon determination with the use of C I 247.856 nm line. Thermodynamic modeling based on the NIST and R. Kurucz data for the different excitation conditions in plasma demonstrates that it is hardly possible to distinguish any carbon signal due to significantly intensive iron line Fe II 247.857 nm. Authors are kindly requested to re-consider this part of their study.

  8. Pressure - Density Isotherms of HELIUM-3 Gas Below 1.3 K.

    NASA Astrophysics Data System (ADS)

    Cameron, James Allen

    The second virial coefficient of He('3) gas and the absolute temperature of the gas were determined at five different temperatures below 1.3 K. The technique used involved measuring pressure and density simultaneously at different points along on isotherm and using the virial equation to determine the temperature and the second virial coefficient. The results are in good agreement with empirical calculations of the second virial coefficient which are based on measurements made at higher temperatures. The measurements of temperature, while only known to within (+OR-)1.5 mK, confirm the widespread belief that the T(,62) temperature scale is in error by several mK. Pressure and density were measured in-situ, using superconducting microwave cavities. These eliminate many sources of error which have in the past made measurements inaccurate below 1.5 K. The density and pressure could be related to changes in the resonant frequencies of the cavities. The frequency of one cavity, which contained the He('3) gas was proportional to the dielectric constant of the gas. The Clausius-Mossotti relationship was used to determine the density as a function of the dielectric constant. The pressure was measured using a reentrant cavity with a flexible diaphragm forming one end wall. The pressure of the gas flexed this diaphragm, changing the frequency of the cavity. A room temperature mercury manometer was used to provide a frequency vs. pressure calibration of this cavity.

  9. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...

    2015-06-24

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons). This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes thismore » species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.« less

  10. Polarization of the light from the 3P(1)-2S(1) transition in proton beam excited helium. Ph.D. Thesis; [target gas pressure effects

    NASA Technical Reports Server (NTRS)

    Weinhous, M. S.

    1973-01-01

    Measurements of the polarization of the light from the 3 1p-2 1s transition in proton beam excited Helium have shown both a proton beam energy and Helium target gas pressure dependence. Results for the linear polarization fraction range from +2.6% at 100 keV proton energy to -5.5% at 450 keV. The zero crossover occurs at approximately 225 keV. This is in good agreement with other experimental work in the field, but in poor agreement with theoretical predictions. Measurements at He target gas pressures as low as .01 mtorr show that the linear polarization fraction is still pressure dependent at .01 mtorr.

  11. A high-pressure van der Waals compound in solid nitrogen-helium mixtures

    NASA Technical Reports Server (NTRS)

    Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A.

    1992-01-01

    A detailed diamond anvil-cell study using synchrotron X-ray diffraction, Raman scattering, and optical microscopy has been conducted for the He-N system, with a view to the weakly-bound van der Waals molecule interactions that can be formed in the gas phase. High pressure is found to stabilize the formation of a stoichiometric, solid van der Waals compound of He(N2)11 composition which may exemplify a novel class of compounds found at high pressures in the interiors of the outer planets and their satellites.

  12. Why Helium Ends in "-Ium"

    ERIC Educational Resources Information Center

    Jensen, William B.; Holme, Thomas; Cooper, Melanie; White, Carol

    2004-01-01

    Edward Frankland and Norman Lockyer researched upon a gaseous spectra in relation to the physical constitution of the sun and named it as "helium" (from Greek "helios" meaning "sun"). Since Lockyer apparently never formally proposed the name in print, it is not known why he chose to use a metallic end "ium".

  13. Why Helium Ends in "-Ium"

    ERIC Educational Resources Information Center

    Jensen, William B.; Holme, Thomas; Cooper, Melanie; White, Carol

    2004-01-01

    Edward Frankland and Norman Lockyer researched upon a gaseous spectra in relation to the physical constitution of the sun and named it as "helium" (from Greek "helios" meaning "sun"). Since Lockyer apparently never formally proposed the name in print, it is not known why he chose to use a metallic end "ium".

  14. Numerical Simulations of Pressure Spikes within a Cylindrical Launch Tube due to a Bursting Helium Flask

    DTIC Science & Technology

    2011-11-09

    objective of these tests was to determine the failure mode of the hydrogen fuel flask and the extent of fragmentation damage. The test demonstrated that...the hydrogen fuel flask and the extent of fragmentation damage. The test demonstrated that the fragmentation damage to the XFC launcher tube was...Above 50 atm pressure, the system deviates from ideal gas law behavior as shown by the red curve. This curve was obtained using the Cheetah 6.0

  15. Pressure-broadening of water transitions near 7180 cm-1 by helium isotopes

    NASA Astrophysics Data System (ADS)

    Campbell, H. M.; Havey, D. K.

    2013-05-01

    In this study, pressure-broadening parameters for several H2O transitions near 7180 cm-1 are obtained which describe collisions with 3He and 4He. The sensitivity of those parameters to choice of theoretical line profile (Galatry vs. Voigt) is investigated. H2O is an important species in atmospheric chemistry and astronomy. Because of this, basic fundamental research, which explores the nature of the H2O spectrum in the presence of different gases of varying physical properties, can provide useful reference data which can be applied in the fields of atmospheric and planetary remote sensing. Measurements were made using an intensity-modulated laser photoacoustic spectrometer. Results from the present work show that Galatry line profiles, with a constrained narrowing parameter, more accurately describe experimental spectra than Voigt profiles over a wide range of experimental pressure conditions. Average pressure-broadening parameters were found to be 0.0216 cm-1/atm and 0.0209 cm-1/atm for H2O in 3He and 4He, respectively, and were compared to a literature model for the mass-dependence of line broadening. Specific values were obtained for each transition with nominal combined uncertainties of 2-6%.

  16. Pressure-broadening of water transitions near 7180 cm(-1) by helium isotopes.

    PubMed

    Campbell, H M; Havey, D K

    2013-05-15

    In this study, pressure-broadening parameters for several H2O transitions near 7180 cm(-1) are obtained which describe collisions with (3)He and (4)He. The sensitivity of those parameters to choice of theoretical line profile (Galatry vs. Voigt) is investigated. H2O is an important species in atmospheric chemistry and astronomy. Because of this, basic fundamental research, which explores the nature of the H2O spectrum in the presence of different gases of varying physical properties, can provide useful reference data which can be applied in the fields of atmospheric and planetary remote sensing. Measurements were made using an intensity-modulated laser photoacoustic spectrometer. Results from the present work show that Galatry line profiles, with a constrained narrowing parameter, more accurately describe experimental spectra than Voigt profiles over a wide range of experimental pressure conditions. Average pressure-broadening parameters were found to be 0.0216 cm(-1)/atm and 0.0209 cm(-1)/atm for H2O in (3)He and (4)He, respectively, and were compared to a literature model for the mass-dependence of line broadening. Specific values were obtained for each transition with nominal combined uncertainties of 2-6%. Copyright © 2013. Published by Elsevier B.V.

  17. Dielectric barrier discharges in helium at atmospheric pressure: experiments and model in the needle-plane geometry

    NASA Astrophysics Data System (ADS)

    Radu, I.; Bartnikas, R.; Wertheimer, M. R.

    2003-06-01

    We present an experimental and numerical modelling study of dielectric barrier discharges in pure, flowing helium at atmospheric pressure, in a 3.0 mm length needle-plane gap. Ultra-high speed imaging and synchronous, real-time dual detection (optical-electrical) diagnostics have been carried out. The high-voltage electrode was a hyperboloidal steel needle with a sharp point of 40 mum radius, while the grounded electrode was covered with 1.6 mm of Al2O3. The surface of the latter was either bare (case 1) or coated with ~20 nm of semiconducting graphite (case 2) or metallic aluminium (case 3), all at floating potential. Axial [z(t)] and radial [r(t)] time-evolutions (leq2 mus) of discharge propagation across the gap were found to depend very strongly upon surface charging or conduction (cases 1-3). A two-dimensional model of the needle-plane discharge, based on coupled solution of the continuity equations for electrons, ions and excited neutral particles and of Poisson's equation, was found to agree very well with the observed [r,z](t) behaviour.

  18. Interacting kinetics of neutral and ionic species in an atmospheric-pressure helium-oxygen plasma with humid air impurities

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2013-08-01

    We unravel the complex chemistry in both the neutral and ionic systems of a radio-frequency-driven atmospheric-pressure plasma in a helium-oxygen mixture (He-0.5% O2) with air impurity levels from 0 to 500 ppm of relative humidity from 0% to 100% using a zero-dimensional, time-dependent global model. Effects of humid air impurity on absolute densities and the dominant production and destruction pathways of biologically relevant reactive neutral species are clarified. A few hundred ppm of air impurity crucially changes the plasma from a simple oxygen-dependent plasma to a complex oxygen-nitrogen-hydrogen plasma. The density of reactive oxygen species decreases from 1016 to 1015 cm-3, which in turn results in a decrease in the overall chemical reactivity. Reactive nitrogen species (1013 cm-3), atomic hydrogen and hydroxyl radicals (1011-1014 cm-3) are generated in the plasma. With 500 ppm of humid air impurity, the densities of positively charged ions and negatively charged ions slightly increase and the electron density slightly decreases (to the order of 1011 cm-3). The electronegativity increases up to 2.3 compared with 1.5 without air admixture. Atomic hydrogen, hydroxyl radicals and oxygen ions significantly contribute to the production and destruction of reactive oxygen and reactive nitrogen species.

  19. Space and time structure of helium pulsed surface-wave discharges at intermediate pressures (5-50 Torr)

    NASA Astrophysics Data System (ADS)

    Hamdan, Ahmad; Valade, Fabrice; Margot, Joëlle; Vidal, François; Matte, Jean-Pierre

    2017-01-01

    In this paper, the ignition and development of a plasma created by pulsed surface wave discharges (PSWDs) was experimentally investigated using time-resolved imaging techniques and optical spectroscopy in helium at intermediate gas pressures between 5 and 50 Torr. We found that the ionization front moves at a few km s-1 during the ignition phase and decreases to hundreds of m s-1 after only some tens of µs. Once the plasma has reached a sufficient length, a standing wave pattern is observed in the light emission of the discharge. We attribute its formation to the reflection of the surface wave on the ionization front, which results in a pattern of nodes and antinodes. We have also determined the time and space evolution of the gas temperature. It is shown that the gas temperature increases from the room temperature value to a plateau at several hundreds of degrees over a short time (typically 100 µs). These results supports those obtained by light emission imaging and also show that the standing wave pattern does not affect the gas temperature.

  20. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  1. The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations.

    PubMed

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas

    2007-04-04

    Ionic liquids are attracting growing interest as alternatives to conventional molecular solvents. Experimental values of vapor pressure, enthalpy of vaporization, and enthalpy of formation of ionic liquids are the key thermodynamic quantities, which are required for the validation and development of the molecular modeling and ab initio methods toward this new class of solvents. In this work, the molar enthalpy of formation of the liquid 1-butyl-3-methylimidazolium dicyanamide, 206.2 +/- 2.5 kJ.mol-1, was measured by means of combustion calorimetry. The molar enthalpy of vaporization of 1-butyl-3-methylimidazolium dicyanamide, 157.2 +/- 1.1 kJ.mol-1, was obtained from the temperature dependence of the vapor pressure measured using the transpiration method. The latter method has been checked with measurements of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, where data are available from the effusion technique. The first experimental determination of the gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide, 363.4 +/- 2.7 kJ.mol-1, from thermochemical measurements (combustion and transpiration) is presented. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for 1-butyl-3-methylimidazolium dicyanamide using the G3MP2 theory. Excellent agreement with experimental results has been observed. The method developed opens a new way to obtain thermodynamic properties of ionic liquids which have not been available so far.

  2. The prediction of helium gas viscosity under high pressure and high temperature with the Chapman-Enskog solution and excess viscosity

    NASA Astrophysics Data System (ADS)

    Yusibani, Elin; Takata, Yasuyuki; Suud, Zaki; Irwanto, Dwi

    2017-01-01

    The purpose of this work is to predict a helium gas viscosity under high pressure and high temperature for practical industrial uses. The suitable force constants and a collision integral for the Chapman-Enskog solution to estimate viscosity in the limit of zero density were recommended by the present author. At high density, modification of the Arp and McCarty extrapolation equation for excess viscosity was applied. A combination of the Chapman-Enskog solution and modification of the Arp and McCarty excess viscosity gives an estimation of helium gas viscosity within 2 to 5 % deviation from the existing experimental data under high-temperature and high-pressure region.

  3. Wound helium pressurant tank development for 2nd stage of Ariane 4 launcher

    NASA Astrophysics Data System (ADS)

    Valy, Y.; Coquet, P.

    1990-06-01

    The manufacture of a wound pressurant tank for the second stage of the Ariane 4 launcher is described. The goal of the manufacturing process is to save 26 kg per tank resulting in an overall savings of 78 kg for the second stage. This is equivalent to an extra mass payload of about 20 kg. The technical requirements of the tank are described. Development requirements and approach are outlined. Qualification standards of the design and qualification tests are described. Tank behavior is checked using acoustic emission and ultrasonic inspection.

  4. Time evolution of nanosecond runaway discharges in air and helium at atmospheric pressure

    SciTech Connect

    Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-12-15

    Time- and space-resolved fast framing photography was employed to study the discharge initiated by runaway electrons in air and He gas at atmospheric pressure. Whereas in the both cases, the discharge occurs in a nanosecond time scale and its front propagates with a similar velocity along the cathode-anode gap, the later stages of the discharge differ significantly. In air, the main discharge channels develop and remain in the locations with the strongest field enhancement. In He gas, the first, diode 'gap bridging' stage, is similar to that obtained in air; however, the development of the discharge that follows is dictated by an explosive electron emission from micro-protrusions on the edge of the cathode. These results allow us to draw conclusions regarding the different conductivity of the plasma produced in He and air discharges.

  5. Discharge instabilities in high-pressure helium-fluorine laser gas mixtures

    NASA Astrophysics Data System (ADS)

    Mathew, D.; Bastiaens, H. M. J.; Peters, Peter J. M.; Boller, Klaus-Jochen

    2005-03-01

    Discharge instabilities in F2 based excimer gas lasers are investigated using a small-scale discharge system. After preionizing the gas volume, a fast rising voltage pulse initiates the discharge. The temporal development of the discharge is monitored via its fluorescence by an intensified CCD camera with a gating time of 10 ns. Homogeneous discharges are produced in gas mixtures of He/1mbar F2 and He/1mbar F2/30mbar Xe at a total pressure of 2 bar for pump pulse duratins up to 70 ns (FWHM). The addition of Xe to He/F2 mixture does not lead to discharge instabilities while the introduction of more F2 results in hotspot and filament formation.

  6. Time evolution of nanosecond runaway discharges in air and helium at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-12-01

    Time- and space-resolved fast framing photography was employed to study the discharge initiated by runaway electrons in air and He gas at atmospheric pressure. Whereas in the both cases, the discharge occurs in a nanosecond time scale and its front propagates with a similar velocity along the cathode-anode gap, the later stages of the discharge differ significantly. In air, the main discharge channels develop and remain in the locations with the strongest field enhancement. In He gas, the first, diode "gap bridging" stage, is similar to that obtained in air; however, the development of the discharge that follows is dictated by an explosive electron emission from micro-protrusions on the edge of the cathode. These results allow us to draw conclusions regarding the different conductivity of the plasma produced in He and air discharges.

  7. Diagnostics and active species formation in an atmospheric pressure helium sterilization plasma source

    NASA Astrophysics Data System (ADS)

    Simon, A.; Anghel, S. D.; Papiu, M.; Dinu, O.

    2009-01-01

    Systematic spectroscopic studies and diagnostics of an atmospheric pressure radiofrequency (13.56 MHz) He plasma is presented. The discharge is an intrinsic part of the resonant circuit of the radiofrequency oscillator and was obtained using a monoelectrode type torch, at various gas flow-rates (0.1-6.0 l/min) and power levels (0-2 W). As function of He flow-rate and power the discharge has three developing stages: point-like plasma, spherical plasma and ellipsoidal plasma. The emission spectra of the plasma were recorded and investigated as function of developing stages, flow-rates and plasma power. The most important atomic and molecular components were identified and their evolution was studied as function of He flow-rate and plasma power towards understanding basic mechanisms occurring in this type of plasma. The characteristic temperatures (vibrational Tvibr, rotational Trot and excitation Texc) and the electron number density (ne) were determined.

  8. Bedside assessment of the effects of positive end-expiratory pressure on lung inflation and recruitment by the helium dilution technique and electrical impedance tomography.

    PubMed

    Mauri, Tommaso; Eronia, Nilde; Turrini, Cecilia; Battistini, Marta; Grasselli, Giacomo; Rona, Roberto; Volta, Carlo Alberto; Bellani, Giacomo; Pesenti, Antonio

    2016-10-01

    Higher positive end-expiratory pressure might induce lung inflation and recruitment, yielding enhanced regional lung protection. We measured positive end-expiratory pressure-related lung volume changes by electrical impedance tomography and by the helium dilution technique. We also used electrical impedance tomography to assess the effects of positive end-expiratory pressure on regional determinants of ventilator-induced lung injury. A prospective randomized crossover study was performed on 20 intubated adult patients: 12 with acute hypoxemic respiratory failure and 8 with acute respiratory distress syndrome. Each patient underwent protective controlled ventilation at lower (7 [7, 8] cmH2O) and higher (12 [12, 13] cmH2O) positive end-expiratory pressures. At the end of each phase, we collected ventilation, helium dilution, and electrical impedance tomography data. Positive end-expiratory pressure-induced changes in lung inflation and recruitment measured by electrical impedance tomography and helium dilution showed close correlations (R (2) = 0.78, p < 0.001 and R (2) = 0.68, p < 0.001, respectively) but with relatively variable limits of agreement. At higher positive end-expiratory pressure, recruitment was evident in all lung regions (p < 0.01) and heterogeneity of tidal ventilation distribution was reduced by increased tidal volume distending the dependent lung (p < 0.001); in the non-dependent lung, on the other hand, compliance decreased (p < 0.001) and tidal hyperinflation significantly increased (p < 0.001). In the subgroup of ARDS patients (but not in the whole study population) tidal hyperinflation in the dependent lung regions decreased at higher positive end-expiratory pressure (p = 0.05), probably indicating higher potential for recruitment. Close correlations exist between bedside assessment of positive end-expiratory pressure-induced changes in lung inflation and recruitment by the helium dilution and electrical impedance tomography

  9. Helium atmospheric pressure plasma jets interacting with wet cells: delivery of electric fields

    NASA Astrophysics Data System (ADS)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2016-05-01

    The use of atmospheric pressure plasma jets (APPJs) in plasma medicine have produced encouraging results in wound treatment, surface sterilization, deactivation of bacteria, and treatment of cancer cells. It is known that many of the reactive oxygen and nitrogen species produced by the APPJ are critical to these processes. Other key components to treatment include the ion and photon fluxes, and the electric fields produced in cells by the ionization wave of the APPJ striking in the vicinity of the cells. These relationships are often complicated by the cells being covered by a thin liquid layer—wet cells. In this paper, results from a computational investigation of the interaction of APPJs with tissue beneath a liquid layer are discussed. The emphasis of this study is the delivery of electric fields by an APPJ sustained in He/O2  =  99.8/0.2 flowing into humid air to cells lying beneath water with thickness of 200 μm. The water layer represents the biological fluid typically covering tissue during treatment. Three voltages were analyzed—two that produce a plasma effluent that touches the surface of the water layer and one that does not touch. The effect of the liquid layer thickness, 50 μm to 1 mm, was also examined. Comparisons were made of the predicted intracellular electric fields to those thresholds used in the field of bioelectronics.

  10. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; Nygren, D.; Oliveira, C.; Renner, J.

    2015-11-01

    Liquid Xe TPCs are among the most popular choices for double beta decay and WIMP dark matter searches. Gaseous Xe has intrinsic advantages when compared to Liquid Xe, specifically, tracking capability and better energy resolution for double beta decay searches. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which are expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). These features may provide better tracking and energy resolution for double-beta decay searches. They are also expected to enhance columnar recombination for nuclear recoils, which can be used for searches for WIMP dark matter with directional sensitivity. We constructed a test ionization chamber and successfully measured scintillation and ionization yields at high precision with various Xe and TMA mixtures and pressures. We observed the Penning effect and an increase in recombination with the addition of TMA. However, many undesired features for dark matter searches, such as strong suppression of the scintillation light and no sign of recombination light, were also found. This work has been carried out within the context of the NEXT collaboration.

  11. Two modes of interfacial pattern formation by atmospheric pressure helium plasma jet-ITO interactions under positive and negative polarity

    NASA Astrophysics Data System (ADS)

    Liu, Zhijie; Liu, Dingxin; Xu, Dehui; Cai, Haifeng; Xia, Wenjie; Wang, Bingchuan; Li, Qiaosong; Kong, Michael G.

    2017-05-01

    In this paper, we report the observation of an interfacial pattern formation on the ITO surface by atmospheric pressure helium plasma jet-ITO interactions. By changing the voltage polarity of positive and negative pulses, the interfacial phenomenon displays two different pattern modes, i.e. a double ring pattern with a combination of homogeneous and filamentous modes as well as a single ring pattern with a homogeneous mode. The reasons may mainly be attributed to the spread of a radially outward traveling surface ionization wave that would cause electric field distributions and charge accumulations on the ITO surface. The spatial-temporal distribution of \\text{N}2+≤ft({{B}2}{\\sum}\\text{u}+\\right) , He(3s3S), and O(3p5P) emissions are diagnosed to better understand the formation mechanism and the differences of plasma jet patterns under positive and negative polarities. Results show that the distribution of \\text{N}2+≤ft({{B}2}{\\sum}\\text{u}+\\right) emission is the main contributor for generating the filament structure in a double ring pattern for positive polarity, the homogeneous mode pattern mainly depends on the distribution of O(3p5P) emission for positive and negative polarity. Additionally, in order to further systematically understand the behaviors of plasma jet patterns, some parametric results, such as behaviors versus pulse peak voltage, dielectric material, pulse repetition rate, and flow rate are investigated. Some interesting phenomena and additional insights for the plasma jet pattern are found with different parametric conditions. This study might help to better understand effects of plasma jets in interaction with surfaces, or its application in the medical sector.

  12. Selective fibronectin adsorption against albumin and enhanced stem cell attachment on helium atmospheric pressure glow discharge treated titanium

    NASA Astrophysics Data System (ADS)

    Han, Inho; Vagaska, Barbora; Joo Park, Bong; Lee, Mi Hee; Jin Lee, Seung; Park, Jong-Chul

    2011-06-01

    Successful tissue integration of implanted medical devices depends on appropriate initial cellular response. In this study, the effect of helium atmospheric pressure glow discharge (He-APGD) treatment of titanium on selective protein adsorption and the initial attachment processes and focal adhesion formation of osteoprogenitor cells and stem cells were examined. Titanium disks were treated in a self-designed He-APGD system. Initial attachment of MC3T3-E1 mouse pre-osteoblasts and human mesenchymal stem cells (MSCs) was evaluated by MTT assay and plasma membrane staining followed by morphometric analysis. Fibronectin adsorption was investigated by Enzyme-Linked ImmunoSorbant Assay. MSCs cell attachment to treated and non-treated titanium disks coated with different proteins was verified also in serum-free culture. Organization of actin cytoskeleton and focal adhesions was evaluated microscopically. He-APGD treatment effectively modified the titanium surfaces by creating a super-hydrophilic surface, which promoted selectively higher adsorption of fibronectin, a protein of critical importance for cell/biomaterial interaction. In two different types of cells, the He-APGD treatment enhanced the number of attaching cells as well as their attachment area. Moreover, cells had higher organization of actin cytoskeleton and focal adhesions. Faster acceptance of the material by the progenitor cells in the early phases of tissue integration after the implantation may significantly reduce the overall healing time; therefore, titanium treatment with He-APGD seems to be an effective method of surface modification of titanium for improving its tissue inductive properties.

  13. DC-driven plasma gun: self-oscillatory operation mode of atmospheric-pressure helium plasma jet comprised of repetitive streamer breakdowns

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Shashurin, Alexey

    2017-02-01

    This paper presents and studies helium atmospheric pressure plasma jet comprised of a series of repetitive streamer breakdowns, which is driven by pure DC high voltage (self-oscillatory behavior). The repetition frequency of the breakdowns is governed by the geometry of discharge electrodes/surroundings and gas flow rate. Each next streamer is initiated when the electric field on the anode tip recovers after the previous breakdown and reaches the breakdown threshold value of about 2.5 kV cm-1. One type of the helium plasma gun designed using this operational principle is demonstrated. The gun operates on about 3 kV DC high voltage and is comprised of the series of the repetitive streamer breakdowns at a frequency of about 13 kHz.

  14. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media. [CO/sub 2/ laser oscillator and pulse smoother

    DOEpatents

    McLellan, E.J.

    1980-10-17

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode and cathode to below breakdown voltage using a dc voltage source. An array of resistors or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO/sub 2/ laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  15. The Gaseous Explosive Reaction : the Effect of Pressure on the Rate of Propagation of the Reaction Zone and upon the Rate of Molecular Transformation

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1932-01-01

    This study of gaseous explosive reaction has brought out a number of important fundamental characteristics of the explosive reaction indicating that the basal processes of the transformation are much simpler and corresponds more closely to the general laws and principles of ordinary transformations than is usually supposed. The report calls attention to the point that the rate of molecular transformation within the zone was found in all cases to be proportional to pressure, that the transformation within the zone is the result of binary impacts. This result is of unusual interest in the case of the reaction of heavy hydrocarbon fuels and the reaction mechanism proposed by the recent kinetic theory of chain reactions.

  16. Potential Danger of Pre-Pump Clamping on Negative Pressure-Associated Gaseous Microemboli Generation During Extracorporeal Life Support--An In Vitro Study.

    PubMed

    Wang, Shigang; Chin, Brian J; Gentile, Frank; Kunselman, Allen R; Palanzo, David; Ündar, Akif

    2016-01-01

    The objectives of this study were to investigate the relationship between revolution speed of a conventional centrifugal pump and negative pressure at the inlet of the pump by clamping the tubing upstream of the pump, and to verify whether negative pressure leads to gaseous microemboli (GME) production in a simulated adult extracorporeal life support (ECLS) system. The experimental circuit, including a Maquet Rotaflow centrifugal pump and a Medos Hilite 7000 LT polymethyl-pentene membrane oxygenator, was primed with packed red blood cells (hematocrit 35%). Negative pressure was created in the circuit by clamping the tubing upstream of the pump for 10 s, and then releasing the clamp. An emboli detection and classification quantifier was used to record GME volume and count at pre-oxygenator and post-oxygenator sites, and pressure and flow rate data were collected using a custom-based data acquisition system. All trials were conducted at 36°C at revolution speeds of 2000-4000 rpm (500 rpm increment). The flow rates were 1092.5-4708.4 mL/min at the revolution speeds of 2000-4000 rpm. Higher revolution speed generated higher negative pressure at the pre-pump site when clamping the tubing upstream of the pump (-108.3 ± 0.1 to -462.0 ± 0.5 mm Hg at 2000-4000 rpm). Moreover, higher negative pressure was associated with a larger number and volume of GME at pre-oxygenator site after de-clamp (GME count 10,573 ± 271 at pre-oxygenator site at 4000 rpm). The results showed that there was a potential danger of delivering GME to the patient when clamping pre-pump tubing during ECLS using a centrifugal pump. Our results warrant further clinical studies to investigate this phenomenon.

  17. Investigation on streamers propagating into a helium jet in air at atmospheric pressure: Electrical and optical emission analysis

    NASA Astrophysics Data System (ADS)

    Gazeli, K.; Svarnas, P.; Vafeas, P.; Papadopoulos, P. K.; Gkelios, A.; Clément, F.

    2013-09-01

    The plasma produced due to streamers guided by a dielectric tube and a helium jet in atmospheric air is herein studied electrically and optically. Helium streamers are produced inside the dielectric tube of a coaxial dielectric-barrier discharge and, upon exiting the tube, they propagate into the helium jet in air. The axisymmetric velocity field of the neutral helium gas while it penetrates the air is approximated with the PISO algorithm. At the present working conditions, turbulence helium flow is avoided. The system is driven by sinusoidal high voltage of variable amplitude (0-11 kV peak-to-peak) and frequency (5-20 kHz). It is clearly shown that a prerequisite for streamer development is a continuous flow of helium, independently of the sustainment or not of the dielectric-barrier discharge. A parametric study is carried out by scanning the range of the operating parameters of the system and the optimal operational window for the longest propagation path of the streamers in air is determined. For this optimum, the streamer current impulses and the spatiotemporal progress of the streamer UV-visible emission are recorded. The streamer mean propagation velocity is as well measured. The formation of copious reactive emissive species is then considered (in terms of intensity and rotational temperatures), and their evolution along the streamer propagation path is mapped. The main claims of the present work contribute to the better understanding of the physicochemical features of similar systems that are currently applied to various interdisciplinary engineering fields, including biomedicine and material processing.

  18. Promoted combustion of nine structural metals in high-pressure gaseous oxygen - A comparison of ranking methods

    NASA Technical Reports Server (NTRS)

    Steinberg, Theodore A.; Rucker, Michelle A.; Beeson, Harold D.

    1989-01-01

    The 316, 321, 440C, and 17-4 PH stainless steels, as well as Inconel 600, Inconel 718, Waspaloy, Monel 400, and Al 2219, have been evaluated for relative nonflammability in a high-pressure oxygen environment with a view to the comparative advantages of four different flammability-ranking methods. The effects of changes in test pressure, sample diameter, promoter type, and sample configuration on ranking method results are evaluated; ranking methods employing velocity as the primary ranking criterion are limited by diameter effects, while those which use extinguishing pressure are nonselective for metals with similar flammabilities.

  19. Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Mansour, M.S.

    2009-07-15

    The principal burning characteristics of a laminar flame comprise the fuel vapour pressure, the laminar burning velocity, ignition delay times, Markstein numbers for strain rate and curvature, the stretch rates for the onset of flame instabilities and of flame extinction for different mixtures. With the exception of ignition delay times, measurements of these are reported and discussed for ethanol-air mixtures. The measurements were in a spherical explosion bomb, with central ignition, in the regime of a developed stable, flame between that of an under or over-driven ignition and that of an unstable flame. Pressures ranged from 0.1 to 1.4 MPa, temperatures from 300 to 393 K, and equivalence ratios were between 0.7 and 1.5. It was important to ensure the relatively large volume of ethanol in rich mixtures at high pressures was fully evaporated. The maximum pressure for the measurements was the highest compatible with the maximum safe working pressure of the bomb. Many of the flames soon became unstable, due to Darrieus-Landau and thermo-diffusive instabilities. This effect increased with pressure and the flame wrinkling arising from the instabilities enhanced the flame speed. Both the critical Peclet number and the, more rational, associated critical Karlovitz stretch factor were evaluated at the onset of the instability. With increasing pressure, the onset of flame instability occurred earlier. The measured values of burning velocity are expressed in terms of their variations with temperature and pressure, and these are compared with those obtained by other researchers. Some comparisons are made with the corresponding properties for iso-octane-air mixtures. (author)

  20. Comparative results of autogenous ignition temperature measurements by ASTM G 72 and pressurized scanning calorimetry in gaseous oxygen

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Lowrie, R.

    1986-01-01

    The autogenous ignition temperature of four materials was determined by ASTM (G 72) and pressurized differential scanning calorimetry at 0.68-, 3.4-, and 6.8-MPa oxygen pressure. All four materials were found to ignite at lower temperatures in the ASTM method. The four materials evaluated in this program were Neoprene, Vespel SP-21, Fluorel E-2160, and nylon 6/6.

  1. Comparative results of autogenous ignition temperature measurements by ASTM G 72 and pressurized scanning calorimetry in gaseous oxygen

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Lowrie, R.

    1986-01-01

    The autogenous ignition temperature of four materials was determined by ASTM (G 72) and pressurized differential scanning calorimetry at 0.68-, 3.4-, and 6.8-MPa oxygen pressure. All four materials were found to ignite at lower temperatures in the ASTM method. The four materials evaluated in this program were Neoprene, Vespel SP-21, Fluorel E-2160, and nylon 6/6.

  2. Generation of reactive oxygen and nitrogen species and its effects on DNA damage in lung cancer cells exposed to atmospheric pressure helium/oxygen plasma jets

    NASA Astrophysics Data System (ADS)

    Chung, Tae Hun; Joh, Hea Min; Kim, Sun Ja; Choi, Ji Ye; Kang, Tae-Hong

    2016-09-01

    We investigated the effects of the operating parameters on the generation of reactive oxygen and nitrogen species (RONS) in the gas and liquid phases exposed to atmospheric pressure a pulsed-dc helium plasma jets. The densities of reactive species including OH radicals were obtained at the plasma-liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. And the nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of RONS in the plasmas and liquids. Exposure of plasma to cancer cells increases the cellular levels of RONS, which has been linked to apoptosis and the damage of cellular proteins, and may also indirectly cause structural damage to DNA. To identify the correlation between the production of RONS in cells and plasmas, various assay analyses were performed on plasma treated human lung cancer cells (A549) cells. In addition, the effect of additive oxygen gas on the plasma-induced oxidative stress in cancer cells was investigated. It was observed that DNA damage was significantly increased with helium/oxygen plasma compared to with pure helium plasma.

  3. Flux of OH and O radicals onto a surface by an atmospheric-pressure helium plasma jet measured by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Yonemori, Seiya; Ono, Ryo

    2014-03-01

    The atmospheric-pressure helium plasma jet is of emerging interest as a cutting-edge biomedical device for cancer treatment, wound healing and sterilization. Reactive oxygen species such as OH and O radicals are considered to be major factors in the application of biological plasma. In this study, density distribution, temporal behaviour and flux of OH and O radicals on a surface are measured using laser-induced fluorescence. A helium plasma jet is generated by applying pulsed high voltage of 8 kV with 10 kHz using a quartz tube with an inner diameter of 4 mm. To evaluate the relation between the surface condition and active species production, three surfaces are used: dry, wet and rat skin. When the helium flow rate is 1.5 l min-1, radial distribution of OH density on the rat skin surface shows a maximum density of 1.2 × 1013 cm-3 at the centre of the plasma-mediated area, while O atom density shows a maximum of 1.0 × 1015 cm-3 at 2.0 mm radius from the centre of the plasma-mediated area. Their densities in the effluent of the plasma jet are almost constant during the intervals of the discharge pulses because their lifetimes are longer than the pulse interval. Their density distribution depends on the helium flow rate and the surface humidity. With these results, OH and O production mechanisms in the plasma jet and their flux onto the surface are discussed.

  4. Thermodynamics of a solar mixture of molecular hydrogen and helium at high pressure. [for Jupiter atmospheric model

    NASA Technical Reports Server (NTRS)

    Slattery, W. L.; Hubbard, W. B.

    1976-01-01

    The thermodynamic properties of a model molecular hydrogen and helium mixture are calculated in the strongly interacting region of 0.005 to 0.3 per cu cm for a range of temperatures that are of interest for the envelopes of the Jovian planets. Computed adiabats fit the gravity data and boundary conditions from model atmospheres of Jupiter.

  5. Behavior of metallic materials between 550 and 870/sup 0/C in high-temperature gas-cooled reactor helium under pressures of 2 and 50 bar

    SciTech Connect

    Cappelaere, M.; Perrot, M.; Sannier, J.

    1984-08-01

    In order to estimate the influence of the helium pressure on the corrosion of ferritic and austenitic materials, tests were carried out under 2 absolute bar in a circuit without helium recirculation and under 50 bar in the AIDA loop. In both cases the partial pressures of impurities were 1.500, 50, 450, and 50 ..mu..atm for H/sub 2/, H/sub 2/O, CO, and CH/sub 4/, respectively. The interruption of the French high-temperature gas-cooled reactor RandD program has only produced limited results: 1. At 650/sup 0/C the behavior of 11% chromium ferritic steel HT 9, Types 304 and 316 austenitic steels, and Incoloy Alloy 800H is excellent; the oxidation rates are low and decrease with time. 2. At 750 and 870/sup 0/C, Hastelloy-X offers better resistance to external and intergranular oxidation than alloys 800H and Inconel-617. 3. At these three temperatures, the oxidation kinetics are appreciably faster under a pressure of 50 bar than under 2 bar. 4. Whereas carbon steel is subject to decarburization at 550/sup 0/C, a carburization phenomenon is observed for alloys 800H, Inconel-617, and Hastelloy-X at 750 and especially at 870/sup 0/C. 5. As for the influence of the initial surface preparation, mechanically polished specimens generally present a lower oxidation rate than those polished electrochemically.

  6. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  7. Laminar Heat-Transfer and Pressure-Distribution Studies on a Series of Reentry Nose Shapes at a Mach Number of 19.4 in Helium

    NASA Technical Reports Server (NTRS)

    Wagner, Richard D., Jr.; Pine, W. Clint; Henderson, Arthur, Jr.

    1961-01-01

    An experimental investigation has been conducted in the 2-inch helium tunnel at the Langley Research Center at a Mach number of 19.4 to determine the pressure distributions and heat-transfer characteristics of a family of reentry nose shapes. The pressure and heat-transfer-rate distributions on the nose shapes are compared with theoretical predictions to ascertain the limitations and validity of the theories at hypersonic speeds. The experimental results were found to be adequately predicted by existing theories. Two of the nose shapes were tested with variable-length flow-separation spikes. The results obtained by previous investigators of spike-nose bodies were found to prevail at the higher Mach number of the present investigation.

  8. Helium cryogenics

    SciTech Connect

    Van Sciver, S.W.

    1986-01-01

    The goal of this work is to bridge the gap between physics and engineering aspects of helium fluids to encourage their use and enhance their usefulness in low-temperature systems. Topics covered include thermodynamic laws, electrical and thermal conductivities, spin systems, virial expansion, liquid He I, transport properties, density of helium as a quantum fluid, vortices and turbulence in He II, Kapitza conductance, acoustic mismatch theory, nucleate boiling heta transfer, surface effects, general considerations of internal flow, ideal liquefaction, stirling cycle, and the helium-3 isotope.

  9. Evaluation of Capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line.

    PubMed

    Qiu, Feng; Peng, Sophia; Kunselman, Allen; Ündar, Akif

    2010-11-01

    Gaseous microemboli (GME) remain a challenge for cardiopulmonary bypass (CPB) because there is a positive correlation between microemboli exposure during CPB and postoperative neurological injury. Thus, minimizing the number of GME delivered to pediatric patients undergoing CPB procedures would lead to better clinical outcomes. In this study, we used a simulated CPB model to evaluate the effectiveness of capturing GME and the degree of membrane pressure drop for a new membrane oxygenator, Capiox Baby FX05 (Terumo Corporation,Tokyo, Japan), which has an integrated arterial filter with open and closed purge line.We used identical components in this study as our clinical CPB circuit. Three emboli detection and classification quantifier transducers were placed at prepump, preoxygenator, and postoxygenator sites in the circuit.Two flow probes as well as three pressure transducers were placed upstream and downstream of the oxygenator. The system was primed with human blood titrated to 30% hematocrit with Lactated Ringer’s solution.A bolus of air (1 mL) was injected in the prepump site under nonpulsatile perfusion mode at three flow rates (500,750, and 1000 mL/min) and with the purge line either open or closed. Six trials were performed for each unique set-up for a total of 36 trials.All trials were conducted at 35°C. The circuit pressure was kept constant at 100 mm Hg. Both the size and quantity of microemboli detected at postoxygenator site were recorded for 5 min postair injection. It was found that total counts of GME were significantly reduced with the purge line open when compared to keeping the purge line closed (P < 0.0001 at 1000 mL/min). At all flow rates, most of the GME were under 20 microns in size. In terms of microemboli greater than 40 microns, the counts were significantly higher with the purge line closed compared to keeping the purge line open at flow rates of 750 mL/min and 1000 mL/min (P < 0.01). At all flow rates,there is a tiny difference of less

  10. Thermal Decomposition of Gaseous Ammonium Nitrate at Low Pressure: Kinetic Modeling of Product Formation and Heterogeneous Decomposition of Nitric Acid

    NASA Astrophysics Data System (ADS)

    Park, J.; Lin, M. C.

    2009-10-01

    The thermal decomposition of ammonium nitrate, NH4NO3 (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH4NO3 at 423 K was proposed to produce equal amounts of NH3 and HNO3, followed by the decomposition reaction of HNO3, HNO3 + M → OH + NO2 + M (where M = third-body and reactor surface). The absolute yields of N2, N2O, H2O, and NH3, which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH3-NO2 (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO3 itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO3 in our kinetic modeling. The heterogeneous decomposition rate of HNO3, HNO3 + (B2O3/SiO2) → OH + NO2 + (B2O3/SiO2), was determined by varying its rate to match the modeled result to the measured concentrations of NH3 and H2O; the rate could be represented by k2b = 7.91 × 107 exp(-12 600/T) s-1, which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO3 decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  11. Thermal decomposition of gaseous ammonium nitrate at low pressure: kinetic modeling of product formation and heterogeneous decomposition of nitric acid.

    PubMed

    Park, J; Lin, M C

    2009-12-03

    The thermal decomposition of ammonium nitrate, NH(4)NO(3) (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH(4)NO(3) at 423 K was proposed to produce equal amounts of NH(3) and HNO(3), followed by the decomposition reaction of HNO(3), HNO(3) + M --> OH + NO(2) + M (where M = third-body and reactor surface). The absolute yields of N(2), N(2)O, H(2)O, and NH(3), which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH(3)-NO(2) (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO(3) itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO(3) in our kinetic modeling. The heterogeneous decomposition rate of HNO(3), HNO(3) + (B(2)O(3)/SiO(2)) --> OH + NO(2) + (B(2)O(3)/SiO(2)), was determined by varying its rate to match the modeled result to the measured concentrations of NH(3) and H(2)O; the rate could be represented by k(2b) = 7.91 x 10(7) exp(-12 600/T) s(-1), which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO(3) decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  12. Measuring scattering lengths of gaseous samples

    NASA Astrophysics Data System (ADS)

    Huber, M. G.; Black, T. C.; Haun, R.; Pushin, D. A.; Shahi, C. B.; Weitfeldt, F. E.

    2016-03-01

    Neutron interferometry represents one of the most precise techniques for measuring the coherent scattering lengths (bc) of particular nuclear isotopes. Currently bc for helium-4 is known only to 1% relative uncertainty; a factor of ten higher than precision measurements of other light isotopes. Scattering lengths are measured using a neutron interferometer and by comparing the phase shift a neutron acquires as it passes through a gaseous sample relative to that of a neutron passing through vacuum. The density of the gas is determined by continuous monitoring of the sample's temperature and pressure. Challenges for these types of experiments include achieving the necessary long-term phase stability and accurate determination of the phase shift caused by the aluminum cell used to hold the gas; a phase shift many times greater than that of the sample. The present status on the effort to measure the n-4He scattering length at the NIST center for Neutron Research will be given. Financial support provided by the NSERC `Create' and `Discovery' programs, CERC, NIST and NSF Grant PHY-1205342.

  13. Simulation of a non-equilibrium helium plasma bullet emerging into oxygen at high pressure (250-760 Torr) and interacting with a substrate

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Economou, Demetre J.

    2016-09-01

    A two-dimensional computational study of a plasma bullet emanating from a helium gas jet in oxygen ambient at high pressure (250-760 Torr) was performed, with emphasis on the bullet interaction with a substrate. Power was applied in the form of a trapezoidal +5 kV pulse lasting 150 ns. A neutral gas transport model was employed to predict the concentration distributions of helium and oxygen in the system. These were then used in a plasma dynamics model to investigate the characteristics of the plasma bullet during its propagation and interaction with a substrate. Upon ignition, the discharge first propagated as a surface wave along the inner wall of the containing tube, and then exited the tube with a well-defined ionization front (streamer or plasma bullet). The plasma bullet evolved from a hollow (donut-shaped) feature to one where the maximum of ionization was on axis. The bullet propagated in the gap between the tube exit and the substrate with an average speed of ˜2 × 105 m/s. Upon encountering a metal substrate, the bullet formed a conductive channel to the substrate. Upon encountering a dielectric substrate, the bullet turned into an ionization wave propagating radially along the substrate surface. For a conductive substrate, the radial species fluxes to the surface peaked on the symmetry axis. For a dielectric substrate, a ring-shaped flux distribution was observed. The "footprint" of plasma-surface interaction increased either by decreasing the gap between tube exit and substrate, decreasing the relative permittivity of an insulating substrate, or decreasing pressure. As the system pressure was lowered from 760 to 250 Torr, the discharge was initiated earlier, and the plasma bullet propagation speed increased. A reverse electric field developed during the late stages of the ramp-down of the pulse, which accelerated electrons forming a brief backward discharge.

  14. Mechanism of bullet-to-streamer transition in water surface incident helium atmospheric pressure plasma jet (APPJ)

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Young; Kim, Gon-Ho; Kim, Su-Jeong; Bae, Byeongjun; Kim, Seong Bong; Ryu, Seungmin; Yoo, Suk Jae

    2016-09-01

    The mechanism of bullet to streamer transition of helium-APPJ bullet on the electrolyte surface was investigated. The APPJ was discharged in pin-to-ring DBD reactor system with helium gas by applying the ac-driven voltage at a frequency of 10 kHz. The water evaporation was controlled via saline temperature. The temporal- and 2-dimensional spatially- resolved plasma properties are monitored by optical diagnostics. During the APPJ bullet propagation from reactor to electrolyte surface, the transition of bullet from streamer was recognized from the high speed image, hydrogen beta emission line, and bullet propagation speed. The He metastable species density profiles from the tunable diode laser absorption spectroscopy (TDLAS) showed the metastable lost the energy near electrolyte surface. It is found that the bullet transited to streamer when the water fraction reached to 29%. This can be fascinating result to study the plasma physics liquid surface, non-fixed boundary. Acknowledgements: This work was partly supported by R&D Program of `Plasma Advanced Technology for Agriculture and Food (Plasma Farming)' through the National Fusion Research Institute of Korea (NFRI) funded by the Government fund was carried out as part.

  15. Influence of gaseous hydrogen on the mechanical properties of high temperature alloys

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Tensile tests of six nickel-base and one cobalt-base alloy were conducted in 34.5 MN/sq m helium and hydrogen environments at temperatures from 297 K to 1,088 K. Mechanical properties tests of the nickel-base alloy MAR M-246 (Hf modified), in two cast conditions, were conducted in gaseous environments at temperatures from 297 K to 1,144 K and pressures from one atmosphere to 34.5 MN/sq m. The objective of this program was to obtain the mechanical properties of the various alloys proposed for use in space propulsion systems in a pure hydrogen environment at different temperatures and to compare with the mechanical properties in helium at the same conditions. All testing was conducted on solid specimens exposed to external gaseous pressure. Smooth and notched tensile properties were determined using ASTM tensile testing techniques, and creep-rupture life was determined using ASTM creep-rupture techniques. Low-cycle fatigue life was established by constant total strain and constant stress testing using smooth specimens and a closed-loop test machine.

  16. Practical protein removal using atmospheric-pressure helium plasma for densely packed gold nanoparticle arrays assembled by ferritin-based encapsulation/transport system

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuya; Zettsu, Nobuyuki; Zheng, Bin; Fukuta, Megumi; Yamashita, Ichiro; Uraoka, Yukiharu; Watanabe, Heiji

    2012-08-01

    We propose using atmospheric-pressure helium (AP He) plasma to efficiently remove the ferritin protein shells surrounding gold nanoparticles (GNPs). The high density GNPs assembled on a substrate by using a ferritin-based encapsulation/transport system were exposed to He radicals with a high internal energy to decompose their outer protein shells. In contrast to the conventional methods, AP-plasma treatment was found to suppress the aggregation of adjacent GNPs and produce densely packed and isolated GNP arrays. Consequently, we obtained an intense and sharp surface plasmon band from the plasma-treated GNP arrays. The clear response of their plasmonic behavior according to a refractive index of the surrounding media demonstrated that the proposed method had a significant advantage when fabricating GNP-based plasmonic devices.

  17. Growth process of hydrogenated amorphous carbon films synthesized by atmospheric pressure plasma enhanced CVD using nitrogen and helium as a dilution gas

    NASA Astrophysics Data System (ADS)

    Mori, Takanori; Sakurai, Takachika; Sato, Taiki; Shirakura, Akira; Suzuki, Tetsuya

    2016-04-01

    Hydrogenated amorphous carbon films with various thicknesses were synthesized by dielectric barrier discharge-based plasma deposition under atmospheric pressure diluted with nitrogen (N2) and helium (He) at various pulse frequencies. The C2H2/N2 film showed cauliflower-like-particles that grew bigger with the increase in film’s thickness. At 5 kHz, the film with a thickness of 2.7 µm and smooth surface was synthesized. On the other hand, the films synthesized from C2H2/He had a smooth surface and was densely packed with domed particles. The domed particles extended with the increase in the film thickness, enabling it to grow successfully to 37 µm with a smooth surface.

  18. Electron density change of atmospheric-pressure plasmas in helium flow depending on the oxygen/nitrogen ratio of the surrounding atmosphere

    NASA Astrophysics Data System (ADS)

    Tomita, Kentaro; Urabe, Keiichiro; Shirai, Naoki; Sato, Yuta; Hassaballa, Safwat; Bolouki, Nima; Yoneda, Munehiro; Shimizu, Takahiro; Uchino, Kiichiro

    2016-06-01

    Laser Thomson scattering was applied to an atmospheric-pressure plasma produced in a helium (He) gas flow for measuring the spatial profiles of electron density (n e) and electron temperature (T e). Aside from the He core flow, the shielding gas flow of N2 or synthesized air (\\text{N}2:\\text{O}2 = 4:1) surrounding the He flow was introduced to evaluate the effect of ambient gas components on the plasma parameters, eliminating the effect of ambient humidity. The n e at the discharge center was 2.7 × 1021 m-3 for plasma generated with N2/O2 shielding gas, 50% higher than that generated with N2 shielding.

  19. Effects of the pulse width on the reactive species production and DNA damage in cancer cells exposed to atmospheric pressure microsecond-pulsed helium plasma jets

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Kang, Tae Hong; Chung, T. H.

    2017-08-01

    Plasma-liquid and plasma-cell interactions were investigated using an atmospheric pressure dc microsecond-pulsed helium plasma jet. We investigated the effects of the electrical parameters such as applied voltage and pulse width (determined by the pulse frequency and duty ratio) on the production of reactive species in the gas/liquid phases and on the DNA damage responses in the cancer cells. The densities of reactive species including OH radicals were estimated inside the plasma-treated liquids using a chemical probe method, and the nitrite concentration was detected by Griess assay. Importantly, the more concentration of OH resulted in the more DNA base oxidation and breaks in human lung cancer A549 cells. The data are very suggestive that there is strong correlation between the production of OH in the plasmas/liquids and the DNA damage.

  20. Effect of O2 additive on spatial uniformity of atmospheric-pressure helium plasma jet array driven by microsecond-duration pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Shao, Tao; Zhou, Yixiao; Fang, Zhi; Yan, Ping; Yang, Wenjin

    2014-07-01

    Plasma jet array is a promising device for producing low-temperature plasma at atmospheric pressure. In our letter, the effect of O2 additive on spatial uniformity of one-dimensional helium plasma jet array is described. The length of the plasma jet in the middle of the array before the injection of O2 additive is less than that on the edges of the array. However, when a small amount of O2 additive is injected into the plasma jet array, the length increases and becomes approximately the same as the length of the plasma jets on the edges of the array. The improvement of spatial uniformity of the plasma jet array is due to the enhancement of the Penning ionization in the plasma jets caused by O2 additive. Too much quantity of O2 additive, however, may lead to discharge quenching in the plasma jet array.

  1. Two-dimensional numerical study of two counter-propagating helium plasma jets in air at atmospheric pressure

    SciTech Connect

    Yan, Wen; Sang, Chaofeng; Wang, Dezhen; Liu, Fucheng

    2014-06-15

    In this paper, a computational study of two counter-propagating helium plasma jets in ambient air is presented. A two-dimensional fluid model is applied to investigate the physical processes of the two plasma jets interaction (PJI) driven by equal and unequal voltages, respectively. In all studied cases, the PJI results in a decrease of both plasma bullets propagation velocity. When the two plasma jets are driven by equal voltages, they never merge but rather approach each other around the middle of the gas gap at a minimum approach distance, and the minimal distance decreases with the increase of both the applied voltages and initial electron density, but increases with the increase of the relative permittivity. When the two plasma jets are driven by unequal voltages, we observe the two plasma jets will merge at the position away from the middle of the gas gap. The effect of applied voltage difference on the PJI is also studied.

  2. Maximum Expected Wall Heat Flux and Maximum Pressure After Sudden Loss of Vacuum Insulation on the Stratospheric Observatory for Infrared Astronomy (SOFIA) Liquid Helium (LHe) Dewars

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2014-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.

  3. High-pressure cryogenic seals for pressure vessels

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1977-01-01

    This investigation of the problems associated with reliably containing gaseous helium pressurized to 1530 bars (22 500 psi) between 4.2 K and 150 K led to the following conclusions: (1) common seal designs used in existing elevated-temperature pressure vessels are unsuitable for high-pressure cryogenic operation, (2) extrusion seal-ring materials such as Teflon, tin, and lead are not good seal materials for cryogenic high-pressure operation; and (3) several high-pressure cryogenic seal systems suitable for large-pressure vessel applications were developed; two seals required prepressurization, and one seal functioned repeatedly without any prepressurization. These designs used indium seal rings, brass or 304 stainless-steel anvil rings, and two O-rings of silicone rubber or Kel-F.

  4. A study of density measurements in hypersonic helium tunnels using an electron beam fluorescence technique

    NASA Technical Reports Server (NTRS)

    Honaker, W. C.; Hunter, W. W., Jr.; Woods, W. C.

    1979-01-01

    A series of experiments have been conducted at Langley Research Center to determine the feasibility of using electron-beam fluorescence to measure the free-stream static density of gaseous helium flow over a wide range of conditions. These experiments were conducted in the Langley hypersonic helium tunnel facility and its 3-inch prototype. Measurements were made for a range of stagnation pressures and temperatures and produced free-stream number densities of 1.53 x 10 to the 23rd to 1.25 x 10 to the 24th molecules/cu m and static temperatures from 2 K to 80 K. The results showed the collision quenching cross section to be 4.4 x 10 to the -15th sq cm at 1 K and to have a weak temperature dependence of T to the 1/6. With knowledge of these two values, the free-stream number density can be measured quite accurately.

  5. Tensile properties of V-Cr-Ti alloys after exposure in helium and low-partial-pressure oxygen environments

    SciTech Connect

    Natesan, K.; Soppet, W.K.

    1997-04-01

    A test program is in progress to evaluate the effect of oxygen at low pO{sub 2} on the tensile properties of V-(4-5)wt% Cr-(4-5)wt% Ti alloys. Some of the tensile specimens were precharged with oxygen at low pO{sub 2} at 500{degrees}C and reannealed in vacuum at 500{degrees}C in environments with various pO{sub 2} levels and subsequently tensile tested at room temperature. The preliminary results indicate that both approaches are appropriate for evaluating the effect of oxygen uptake on the tensile properties of the alloys. The data showed that in the relatively short-time tests conducted thus far, the maximum engineering stress slightly increased after oxygen exposure but the uniform and total elongation values exhibited significant decrease after exposure in oxygen-containing environments. The data for a specimen exposed to a helium environment were similar to those obtained in low pO{sub 2} environments.

  6. Chemistry of neutral species in the effluent of the micro atmospheric pressure plasma jet in water-helium admixture

    NASA Astrophysics Data System (ADS)

    Willems, Gert; Benedikt, Jan; von Keudell, Achim

    2016-09-01

    A thorough understanding and good control of produced neutral and charged species by cold atmospheric plasmas is essential for potential environmental and/or bio-medical applications. In this study we use the COST reference micro plasma jet (µ-APPJ), which is a radio-frequency capacitive coupled plasma source with 1 mm electrode distance, which has been operated in helium-water vapour mixture and has been studied as a potential source of hydroxyl radicals and hydrogen peroxide molecules. The water vapour concentration was up to 1.2%. Molecular Beam mass spectrometry is used as diagnostic tool. An absolute calibration of hydrogen peroxide was conducted using a double bubbler concept, because the ionization cross section for hydrogen peroxide is not available. Additionally the effluent chemistry was investigated by use of a 0D and 2D model. Absolute densities of hydrogen peroxide and hydroxyl radicals from atmospheric plasma will be presented. Their dependency on water vapour concentration in the carrier gas as well as distance to target have been investigated. The measured density is between 5E-13 cm-3 (2.4ppm) and 1.5E-14 cm-3 (7.2ppm) for both hydrogen peroxide molecules and hydroxyl radicals. The achieved results are in good agreement with other experiments.

  7. High-temperature helium-loop facility

    SciTech Connect

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

  8. Use of lung pressure-volume curves and helium-sulphur hexafluoride washout to detect emphysema in subjects with mild airflow obstruction

    PubMed Central

    Pereira, R Petrik; Hunter, D; Pride, N B

    1981-01-01

    Mild abnormalities of peripheral lung function can be detected by simple methods, but it remains difficult to determine when these changes are the result of emphysema rather than disease of the airways. We have compared the value of measurements of lung distensibility and a multibreath test of helium (He) and sulphur hexafluoride (SF6) washout in distinguishing between six men with mild impairment of airway function caused by asthma (group A) and six men with similar airway function but probable widespread emphysema (group E). In group E there were striking abnormalities in the static pressure-volume curve of the lungs (reduced lung recoil pressures, increased chord compliance, increased shape factor) and the relation between maximum expiratory flow and lung recoil pressure fell within the normal range. In group A there were only minor abnormalities in lung distensibility and maximum expiratory flow was reduced at a standard lung recoil pressure. In addition carbon monoxide transfer coefficient was reduced in group E but normal in group A. Normal values for He-SF6 washout were similar to those previously described. Differences in He-SF6 washout between group A and group E men were small and in part accounted for by differences in functional residual capacity. In subjects with lung disease, end-tidal He and SF6 concentrations during washout were erratic and it was sometimes impossible to define a crossover point. We conclude that in our hands this technique is less useful for detecting acinar disease than are measurements of lung distensibility or carbon monoxide transfer. Considerable changes in lung distensibility may occur at an early stage in the natural history of emphysema and are readily distinguishable from the small changes that occur in mild asthma. Images PMID:7292378

  9. Planar Reflection of Gaseous Detonations

    NASA Astrophysics Data System (ADS)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  10. LOX Tank Helium Removal for Propellant Scavenging

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2009-01-01

    System studies have shown a significant advantage to reusing the hydrogen and oxygen left in these tanks after landing on the Moon in fuel cells to generate power and water for surface systems. However in the current lander concepts, the helium used to pressurize the oxygen tank can substantially degrade fuel cell power and water output by covering the reacting surface with inert gas. This presentation documents an experimental investigation of methods to remove the helium pressurant while minimizing the amount of the oxygen lost. This investigation demonstrated that significant quantities of Helium (greater than 90% mole fraction) remain in the tank after draining. Although a single vent cycle reduced the helium quantity, large amounts of helium remained. Cyclic venting appeared to be more effective. Three vent cycles were sufficient to reduce the helium to small (less than 0.2%) quantities. Two vent cycles may be sufficient since once the tank has been brought up to pressure after the second vent cycle the helium concentration has been reduced to the less than 0.2% level. The re-pressurization process seemed to contribute to diluting helium. This is as expected since in order to raise the pressure liquid oxygen must be evaporated. Estimated liquid oxygen loss is on the order of 82 pounds (assuming the third vent cycle is not required).

  11. Development of a high vacuum sample preparation system for helium mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Das, N. K.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    A high vacuum sample preparation system for the 3He/4He ratio mass spectrometer (Helix SFT) has been developed to remove all the gaseous constituents excluding helium from the field gases. The sample preparation system comprises of turbo molecular pump, ion pump, zirconium getter, pipettes and vacuum gauges with controller. All these are fitted with cylindrical SS chamber using all metal valves. The field samples are initially treated with activated charcoal trap immersed in liquid nitrogen to cutoff major impurities and moisture present in the sample gas. A sample of 5 ml is collected out of this stage at a pressure of 10-2 mbar. This sample is subsequently purified at a reduced pressure of 10-7 mbar before it is injected into the ion source of the mass spectrometer. The sample pressure was maintained below 10-7 mbar with turbo molecular vacuum pumps and ion pumps. The sample gas passes through several getter elements and a cold finger with the help of manual high vacuum valves before it is fed to the mass spectrometer. Thus the high vacuum sample preparation system introduces completely clean, dry and refined helium sample to the mass spectrometer for best possible analysis of isotopic ratio of helium.

  12. Thermal conductivity of graphene nanoribbons in noble gaseous environments

    SciTech Connect

    Zhong, Wei-Rong Xu, Zhi-Cheng; Zheng, Dong-Qin; Ai, Bao-Quan

    2014-02-24

    We investigate the thermal conductivity of suspended graphene nanoribbons in noble gaseous environments using molecular dynamics simulations. It is reported that the thermal conductivity of perfect graphene nanoribbons decreases with the gaseous pressure. The decreasing is more obvious for the noble gas with large atomic number. However, the gaseous pressure cannot change the thermal conductivity of defective graphene nanoribbons apparently. The phonon spectra of graphene nanoribbons are also provided to give corresponding supports.

  13. A new pressure swing adsorption (PSA) process for recovery of tritium from the ITER solid ceramic breeder helium purge gas

    SciTech Connect

    Sood, S.K.; Fong, C.; Kalyanam, K.M. ); Kveton, O.K. ); Busigin, A. ); Ruthven, D.M. )

    1992-03-01

    This paper reports on Pressure Swing Adsorption (PSA), a well established industrial process for separating and purifying industrial gases, it is proposed for recovery of hydrogen isotopes from the ITER (International Thermonuclear Experimental Reactor) solid breeder He purge stream. The PSA process has an inherent advantage over a recently proposed Temperature Swing Adsorption (TSA) design because it allows much faster cycling (10 vs. 480 min.) and therefore has significantly (48 times) lower tritium inventory. The maximum tritium inventory for a 10 minute PSA cycle is less than 0.5 g of tritium, thus meeting an important safety goal of ITER. The PSA process is based on using molecular sieve 5A at 77 K, with pressure cycling from 1-2 MPa during the adsorption cycle, to a rough vacuum during regeneration. Experiments have been carried out to confirm the H{sub 2}/He adsorption isotherms on molecular sieve 5A, and to develop new data points at low H{sub 2} partial pressures and a temperature of 77 K. A dynamic simulation model has been developed to facilitate system design and optimization.

  14. Effect of pressure of helium, argon, krypton, and xenon on the porosity, microstructure, and mechanical properties of commercially pure titanium castings.

    PubMed

    Zinelis, S

    2000-11-01

    Porosity is a frequently observed casting defect in dental titanium alloys. This study evaluated the effect of pressure of helium, argon, krypton, and xenon on the porosity, microstructure, and mechanical properties of commercially pure titanium (cp Ti) castings. Eight groups (A-H) of 16 rectangular wax patterns each (30 mm in length, 3 mm in width, and 1 mm in depth) were prepared. The wax patterns were invested with a magnesia-based material and cast with cp Ti (grade II). Groups A, C, E, and G were cast under a pressure of 1 atm, and groups B, D, F, and H were cast under a pressure of 0.5 atm of He, Ar, Kr, and Xe, respectively. The extent of the porosity of the cast specimens was determined radiographically and quantified by image analysis. Three specimens of each group and 3 cylinders of the as-received cp Ti used as a reference were embedded in resin and studied metallographically after grinding, polishing, and chemical etching. These surfaces were used for determination of the Vickers hardness (VHN) as well. Eight specimens from each group were fractured in the tensile mode, and the 0.2% yield strength, fracture stress, and percentage elongation were calculated. Porosity was analyzed with 2-way ANOVA and the Newman-Keuls multiple range test. VHN measurements and tensile properties for specimen groups were compared with 1-way ANOVA and the Newman-Keuls multiple range test (95% significance level). The porosity levels per group were (%): A = 5.50 +/- 4.34, B = 0.77 +/- 1.27, C = 2.44 +/- 3.68, D = 0.06 +/- 0.12, E-H = 0. Two-way ANOVA showed that there was no detectable interaction (P<.05) between gas type and applied pressure. Metallographic examination revealed no differences in microstructure among the groups studied. A finer grain size was observed in all cast groups compared with the original cp Ti. The VHN of the as-received cp Ti was significantly greater than all the cast groups tested. Groups cast under He showed the highest VHN, yield strength, and

  15. Effect of discharge polarity on the propagation of atmospheric-pressure helium plasma jets and the densities of OH, NO, and O radicals.

    PubMed

    Yonemori, Seiya; Ono, Ryo

    2015-06-01

    The atmospheric-pressure helium plasma jet is an emerging technology for plasma biomedical applications. In this paper, the authors focus on the effect of discharge polarity on propagation of the discharge and the densities of OH, NO, and O radicals. The plasma jet is applied to a glass surface placed on a grounded metal plate. Positive or negative voltage pulses with 25 μs duration, 8 kV amplitude, and 10 kpps repetition rate are used for the plasma jet. The plasma propagation is measured using a short-gated ICCD camera. The light emission intensity of the discharge generated at the rising phase of the voltage pulse is approximately equivalent for both polarities, while that generated during the falling phase is much higher for the negative discharge than the positive one. The shape of the discharge changes with the discharge polarity. The OH, NO, and O densities in the plasma jet are also measured for both polarities. It is found that the OH density is almost the same regardless the discharge polarity. Conversely, the negative discharge produces more O atoms and the positive discharge produces more NO molecules. These results indicate that the polarity of the discharge affects the densities of some reactive species produced in the plasma jet.

  16. Improving the homogeneity of alternating current-drive atmospheric pressure dielectric barrier discharges in helium with an additional low-amplitude radio frequency power source: A numerical study

    SciTech Connect

    Wang Qi; Sun Jizhong; Zhang Jianhong; Wang Dezhen; Liu Liying

    2013-04-15

    It was proposed in this paper that the homogeneity of the atmospheric pressure discharge driven by an ac power source could be improved by applying an auxiliary low-amplitude rf power source. To verify the idea, a two-dimensional fluid model then was applied to study the atmospheric discharges in helium driven by ac power, low-amplitude rf power, and combined ac and low-amplitude rf power, respectively. Simulation results confirmed that an auxiliary rf power could improve the homogeneity of a discharge driven by an ac power source. It was further found that there existed a threshold voltage of the rf power source leading to the transition from inhomogeneous to homogeneous discharge. As the frequency of the rf power source increased from 2 to 22 MHz, the magnitude of the threshold voltage dropped first rapidly and then to a constant value. When the frequency was over 13.56 MHz, the magnitude of the threshold voltage was smaller than one-sixth of the ac voltage amplitude under the simulated discharge parameters.

  17. Pressurant requirements for discharge of liquid methane from a 1.52-meter-(5-ft-) diameter spherical tank under both static and slosh conditions

    NASA Technical Reports Server (NTRS)

    Dewitt, R. L.; Mcintire, T. O.

    1974-01-01

    Pressurized expulsion tests were conducted to determine the effect of various physical parameters on the pressurant gas (methane, helium, hydrogen, and nitrogen) requirements during the expulsion of liquid methane from a 1.52-meter-(5-ft-) diameter spherical tank and to compare results with those predicted by an analytical program. Also studied were the effects on methane, helium, and hydrogen pressurant requirements of various slosh excitation frequencies and amplitudes, both with and without slosh suppressing baffles in the tank. The experimental results when using gaseous methane, helium, and hydrogen show that the predictions of the analytical program agreed well with the actual pressurant requirements for static tank expulsions. The analytical program could not be used for gaseous nitrogen expulsions because of the large quantities of nitrogen which can dissolve in liquid methane. Under slosh conditions, a pronounced increase in gaseous methane requirements was observed relative to results obtained for the static tank expulsions. Slight decreases in the helium and hydrogen requirements were noted under similar test conditions.

  18. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    SciTech Connect

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nygren, D. R.; Oliveira, C. A. B.; Renner, J.

    2016-03-18

    The gaseous Xenon(Xe) time projection chamber (TPC) is an attractive detector technique for neutrinoless double beta decay and WIMP dark matter searches. While it is less dense compared to Liquid Xe detectors, it has intrinsic advantages in tracking capability and better energy resolution. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which is expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). In order to test the feasibility of the performance improvements with TMA, in this paper we made the first direct measurement of Penning and fluorescence transfer efficiency with gaseous mixtures of Xe and TMA. While we observed a Penning transfer efficiency up to ~35%, we found strong suppression of primary scintillation light with TMA. We also found that the primary scintillation light with Xe and TMA mixture can be well characterized by ~3% fluorescence transfer from Xe to TMA, with further suppression due to TMA self-quenching. No evidence of the scintillation light produced by recombination of TMA ions was found. This strong suppression of scintillation light makes dark matter searches quite challenging, while the possibility of improved neutrinoless double beta decay searches remains open. Finally, this work has been carried out within the context of the NEXT collaboration.

  19. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    DOE PAGES

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; ...

    2016-03-18

    The gaseous Xenon(Xe) time projection chamber (TPC) is an attractive detector technique for neutrinoless double beta decay and WIMP dark matter searches. While it is less dense compared to Liquid Xe detectors, it has intrinsic advantages in tracking capability and better energy resolution. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which is expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). In order to test the feasibilitymore » of the performance improvements with TMA, in this paper we made the first direct measurement of Penning and fluorescence transfer efficiency with gaseous mixtures of Xe and TMA. While we observed a Penning transfer efficiency up to ~35%, we found strong suppression of primary scintillation light with TMA. We also found that the primary scintillation light with Xe and TMA mixture can be well characterized by ~3% fluorescence transfer from Xe to TMA, with further suppression due to TMA self-quenching. No evidence of the scintillation light produced by recombination of TMA ions was found. This strong suppression of scintillation light makes dark matter searches quite challenging, while the possibility of improved neutrinoless double beta decay searches remains open. Finally, this work has been carried out within the context of the NEXT collaboration.« less

  20. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nygren, D. R.; Oliveira, C. A. B.; Renner, J.

    2016-03-01

    The gaseous Xenon(Xe) time projection chamber (TPC) is an attractive detector technique for neutrinoless double beta decay and WIMP dark matter searches. While it is less dense compared to Liquid Xe detectors, it has intrinsic advantages in tracking capability and better energy resolution. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which is expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). In order to test the feasibility of the performance improvements with TMA, we made the first direct measurement of Penning and fluorescence transfer efficiency with gaseous mixtures of Xe and TMA. While we observed a Penning transfer efficiency up to ~35%, we found strong suppression of primary scintillation light with TMA. We also found that the primary scintillation light with Xe and TMA mixture can be well characterized by ~3% fluorescence transfer from Xe to TMA, with further suppression due to TMA self-quenching. No evidence of the scintillation light produced by recombination of TMA ions was found. This strong suppression of scintillation light makes dark matter searches quite challenging, while the possibility of improved neutrinoless double beta decay searches remains open. This work has been carried out within the context of the NEXT collaboration.

  1. Regimes of Helium Burning

    NASA Astrophysics Data System (ADS)

    Timmes, F. X.; Niemeyer, J. C.

    2000-07-01

    The burning regimes encountered by laminar deflagrations and Zeldovich von Neumann Döring (ZND) detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts that start with a thermonuclear runaway on the surface of a neutron star and to the thin-shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial direction encounter a transition from the distributed regime to the flamelet regime at a density of ~108 g cm-3. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than ~106 g cm-3. Self-sustained laminar deflagrations traveling in the radial direction cannot exist below this density. Similarly, the planar ZND detonation width becomes larger than the pressure scale height at ~107 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. In the thin helium shell case, turbulent deflagrations traveling in the lateral or radial direction encounter the distributed regime at densities below ~107 g cm-3 and the flamelet regime at larger densities. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than ~104 g cm-3, indicating that steady state laminar deflagrations cannot form below this density. The planar ZND detonation width becomes larger than the pressure scale height at ~5×104 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction.

  2. Regimes of Helium Burning

    SciTech Connect

    Timmes, F. X.; Niemeyer, J. C.

    2000-07-10

    The burning regimes encountered by laminar deflagrations and Zeldovich von Neumann Doering [ZND] detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts that start with a thermonuclear runaway on the surface of a neutron star and to the thin-shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial direction encounter a transition from the distributed regime to the flamelet regime at a density of {approx}108 g cm-3. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}106 g cm-3. Self-sustained laminar deflagrations traveling in the radial direction cannot exist below this density. Similarly, the planar ZND detonation width becomes larger than the pressure scale height at {approx}107 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. In the thin helium shell case, turbulent deflagrations traveling in the lateral or radial direction encounter the distributed regime at densities below {approx}107 g cm-3 and the flamelet regime at larger densities. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}104 g cm-3, indicating that steady state laminar deflagrations cannot form below this density. The planar ZND detonation width becomes larger than the pressure scale height at {approx}5x10{sup 4} g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. (c) 2000 The American Astronomical Society.

  3. Sensitive analysis of carbon, chromium and silicon in steel using picosecond laser induced low pressure helium plasma

    NASA Astrophysics Data System (ADS)

    Abdulmadjid, Syahrun Nur; Idris, Nasrullah; Pardede, Marincan; Jobiliong, Eric; Hedwig, Rinda; Lie, Zener Sukra; Suyanto, Hery; Tjia, May On; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2015-12-01

    An experimental study has been performed on the gas pressure and laser energy dependent variations of plasma emission intensities in Ar, He and N2 ambient gases induced by picosecond (ps) Nd-YAG laser irradiation on low alloy steel (JSS) samples. The study is aimed to demonstrate distinct advantage of using low pressure He ambient gas in combination with ps laser for the sensitive ppm level detection of C, Si and Cr emission lines in the UV-VIS spectral region. The much shorter pulses of ps laser are chosen for the effective ablation at much lower energy and for the benefit of reducing the undesirable long heating of the sample surface. It is found that the C I 247.8 nm, Fe I 253.5 nm, and Si I 251.4 nm emission lines induced by the ps laser at 15 mJ are readily detected with He ambient gas of 2.6 kPA, featuring generally sharp spectral signals with very low background. The following experimental results using samples with various concentrations of C, Si and Cr impurities are shown to produce for each of those elements a linear calibration line with extrapolated zero intercept, demonstrating the applicability for their quantitative analyses, with a preliminary estimated detection limits of 20 μg/g, 15 μg/g, and 5 μg/g, for C, Si, and Cr, respectively. The possibility of applying the same setup for concentration depth profiling is also demonstrated.

  4. Electric field measurements in an atmospheric-pressure microplasma jet using Stark polarization emission spectroscopy of helium atom

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Wu, Shuqun; Cheng, Wenxin; Lu, Xinpei

    2017-08-01

    Electric field in an atmospheric-pressure microplasma jet, determined by a non-invasive Stark polarization spectroscopy of He 447.1 nm line, is reported in this work. The microplasma jet was driven by a positive pulsed dc power supply with pulse rising time of 60 ns. First, the electric field strength in the streamer head (Eh) is in the range of 9-17 kV/cm. Second, as the streamer head is shooting out of the tube exit, Eh starts to increase rapidly and then decreases after reaching a maximum of 17 kV/cm, indicating the same tendency of streamer velocity. However, a further analysis reveals that the relationship between the electric field and the streamer velocity is non-linear. Third, although the pulse width plays an important role in the control of the length of plasma plume, it has a minor effect on Eh. Fourth, the electric field strength in the secondary discharge is estimated to be less than 6 kV/cm, which further validates the similarity between the secondary discharge and negative discharge. Finally, over atmospheric-pressure plasmas transferring across the glass tube, the electric field in the head of newborn secondary streamer is about 10 kV/cm.

  5. Thermodynamic properties of hydrogen-helium plasmas.

    NASA Technical Reports Server (NTRS)

    Nelson, H. F.

    1972-01-01

    Calculation of the thermodynamic properties of an atomic hydrogen-helium plasma for postulated conditions present in a stagnation shock layer of a spacecraft entering the atmosphere of Jupiter. These properties can be used to evaluate transport properties, to calculate convective heating, and to investigate nonequilibrium behavior. The calculations have been made for temperatures from 10,000 to 100,000 K, densities of 10 to the minus 7th and .00001 g cu cm, and three plasma compositions: pure hydrogen, 50% hydrogen/50% helium, and pure helium. The shock layer plasma consists of electrons, protons, atomic hydrogen, atomic helium, singly ionized helium, and doubly atomized helium. The thermodynamic properties which have been investigated are: pressure, average molecular weight, internal energy, enthalpy, entropy, specific heat, and isentropic speed of sound. A consistent model was used for the reduction of the ionization potential in the calculation of the partition functions.

  6. Thermodynamic properties of hydrogen-helium plasmas.

    NASA Technical Reports Server (NTRS)

    Nelson, H. F.

    1972-01-01

    Calculation of the thermodynamic properties of an atomic hydrogen-helium plasma for postulated conditions present in a stagnation shock layer of a spacecraft entering the atmosphere of Jupiter. These properties can be used to evaluate transport properties, to calculate convective heating, and to investigate nonequilibrium behavior. The calculations have been made for temperatures from 10,000 to 100,000 K, densities of 10 to the minus 7th and .00001 g cu cm, and three plasma compositions: pure hydrogen, 50% hydrogen/50% helium, and pure helium. The shock layer plasma consists of electrons, protons, atomic hydrogen, atomic helium, singly ionized helium, and doubly atomized helium. The thermodynamic properties which have been investigated are: pressure, average molecular weight, internal energy, enthalpy, entropy, specific heat, and isentropic speed of sound. A consistent model was used for the reduction of the ionization potential in the calculation of the partition functions.

  7. Helium recovery and purification at CHMFL

    NASA Astrophysics Data System (ADS)

    Li, J.; Meng, Q.; Ouyang, Z.; Shi, L.; Ai, X.; Chen, X.

    2017-02-01

    Currently, rising demand and declining reserves of helium have led to dramatic increases in the helium price. The High Magnetic Field Laboratory of Chinese Academy of Sciences (CHMFL) has made efforts since its foundation to increase the percentage of helium recovered. The piping network connects all the helium experimental facilities to the recovery system, and even exhaust ports of pressure relief valves and vacuum pumps are also connected. In each year, about 30,000 cubic meters helium gas is recovered. The recovery gas is purified, liquefied and supplied to the users again. This paper will provide details about the helium recovery and purification system at CHMFL, including system flowchart, components, problems and solutions.

  8. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system.

    PubMed

    Uchida, Masaki; Natsume, Hideshi; Kobayashi, Daisuke; Sugibayashi, Kenji; Morimoto, Yasunori

    2002-05-01

    We investigated the effects of the particle size of indomethacin-loaded poly-L-lactic acid microspheres (IDM-loaded PLA MS), the helium pressure used to accelerate the particles, and the bombardment dose of PLA MS on the plasma concentration of IDM after bombarding with IDM-loaded PLA MS of different particle size ranges, 20-38, 44-53 and 75-100 microm, the abdomen of hairless rats using the Helios gene gun system (Helios gun system). Using larger particles and a higher helium pressure, produced an increase in the plasma IDM concentration and the area under the plasma concentration-time curve (AUC) and resultant F (relative bioavailability with respect to intracutaneous injection) of IDM increased by an amount depending on the particle size and helium pressure. Although a reduction in the bombardment dose led to a decrease in C(max) and AUC, F increased on decreasing the bombardment dose. In addition, a more efficient F was obtained after bombarding with IDM-loaded PLA MS of 75-100 microm in diameter at each low dose in different sites of the abdomen compared with that after bolus bombardment with a high dose (dose equivalent). These results suggest that the bombardment injection of drug-loaded microspheres by the Helios gun system is a very useful tool for delivering a variety of drugs in powder form into the skin and systemic circulation.

  9. Properties of carbon-based structures synthesized in nuclear reactions induced by bremsstrahlung γ quanta with threshold energy of 10 MeV at helium pressure of 1.1 kbar

    NASA Astrophysics Data System (ADS)

    Didyk, A. Yu.; Wiśniewski, R.

    2016-07-01

    Helium gas with an initial pressure of about 1.1 kbar inside a high-pressure chamber (HeHPC) has been irradiated by bremsstrahlung γ quanta with a threshold energy of 10 MeV for 1.0 × 105 s produced by an electron-beam current of 22-24 μA. After opening the HeHPC, the residual pressure of helium is equal to 430 bar. Synthesized black foils with a variety of other objects are found inside the HeHPC. They are located on the inner surfaces of the reaction chamber made of high-purity copper (99.99%), the entrance the window of γ quanta made of beryllium bronze and a copper container of nuclear and chemical reaction products. Elemental analysis with the use of scanning electron microscopy and X-ray microprobe analysis has revealed that the foils contain predominantly carbon and small quantities of other elements from carbon to iron. The results are in good agreement with the cycle of investigations of the authors devoted to the γ-quanta irradiation of dense hydrogen and helium gases in the presence (absence) of metals in a reaction chamber.

  10. Measurement of plasma-generated RONS in the cancer cells exposed by atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Baek, Eun Jeong; Kim, Sun Ja; Chung, Tae Hun

    2015-09-01

    The plasma-induced reactive oxygen and nitrogen species (RONS) could result in cellular responses including DNA damages and apoptotic cell death. These chemical species, O, O2-,OH, NO, and NO2-,exhibit strong oxidative stress and/or trigger signaling pathways in biological cells. Each plasma-generated chemical species having biological implication should be identified and quantitatively measured. For quantitative measurement of RONS, this study is divided into three stages; plasma diagnostics, plasma-liquid interactions, plasma-liquid-cell interactions. First, the optical characteristics of the discharges were obtained by optical emission spectroscopy to identify various excited plasma species. And the characteristics of voltage-current waveforms, gas temperature, and plume length with varying control parameters were measured. Next, atmospheric pressure plasma jet was applied on the liquid. The estimated OH radical densities were obtained by ultraviolet absorption spectroscopy at the liquid surface. And NO2-is detected by Griess test and compared between the pure liquid and the cell-containing liquid. Finally, bio-assays were performed on plasma treated human lung cancer cells (A549). Intracellular ROS production was measured using DCF-DA. Among these RONS, productions of NO and OH within cells were measured by DAF-2DA and APF, respectively. The data are very suggestive that there is a strong correlation among the production of RONS in the plasmas, liquids, and cells.

  11. Properties of materials in high pressure hydrogen at room and elevated temperatures

    NASA Technical Reports Server (NTRS)

    Harris, J. A., Jr.

    1972-01-01

    Experimental efforts in this program for this period. Mechanical property tests of wrought and cast nickel-base alloys and one wrought cobalt-base alloy were conducted in 34.5 MN/sq m (5000-psig) helium and hydrogen or hydrogen mixtures. Comparison of test results was made to determine degradation of properties due to the hydrogen environments. All testing was conducted on solid specimens exposed to external gaseous pressure. Specific mechanical properties determined and the testing methods used are summarized.

  12. Properties of materials in high pressure hydrogen at cryogenic, room, and elevated temperatures

    NASA Technical Reports Server (NTRS)

    Harris, J. A., Jr.; Vanwanderham, M. C.

    1973-01-01

    Various tests were conducted to determine the mechanical properties of 12 alloys that are commonly used or proposed for use in pressurized gaseous hydrogen or hydrogen containing environments. Properties determined in the hydrogen environments were compared to properties determined in a pure helium environment at the same conditions to establish environmental degradation. The specific mechanical properties tested include: high-cycle fatigue, low-cycle fatigue, fracture mechanics, creep-rupture, and tensile.

  13. Dielectric Barrier Discharges in Helium at Atmospheric Pressure: Experiments and Model in the Needle-Plane Geometry

    NASA Astrophysics Data System (ADS)

    Radu, Ion; Bartnikas, Raymond; Wertheimer, Michael

    2002-10-01

    We present an experimental and theoretical modeling study of "dielectric barrier discharges" (DBD) at atmospheric pressure in a needle-plane configuration. Synchronous, Ultra High Speed Imaging (UHSI, using a Princeton Instruments PI-MAX 512RB Digital ICCD Camera System) and real-time dual detection (optical-electrical) diagnostics have been carried out in a flow of He. A phase-resolved synchronizing circuit was used to trigger the ICCD camera's shutter for durations varying from 2 ns up to 100 ms. All diagnostics, including the PI-MAX images, could be precisely synchronized and processed on a PC computer. The high voltage electrode was a steel needle with a sharp point of precisely-machined radius, while a thin (1.6 mm) ceramic (Al2O3) plate with a metallized bottom surface was used as the ground electrode. Three different situations have been studied, namely (i) the bare Al2O3, and with an ultra-thin coatings of (ii) graphite (a semiconductor) or (iii) metal, the latter two at floating potential. The purpose of these experiments was to investigate possible effects of surface charging on the discharge behavior [1]. The axial [y(t)] and radial [x(t)] time evolutions of the discharge have been measured by UHSI, plotted, and found to differ very significantly among cases (i) to (iii). In the needle-plane configuration (like in the plane-plane case), the DBD is characterized by a single pulse per half-period of the applied voltage. A two-dimensional model of the needle-plane discharge, based upon the continuity equations for electrons, ions, excited particles, and the Poisson equation, is developed; it assumes a low degree of ionization, so that the transport coefficients of the gas are uniquely determined by the local electric field [2]. In order to determine the electric field and the electrical potential in the (hyperboloidal) needle-plane geometry, the finite element method is used. We have found excellent agreement between measured and calculated [y(t)] and [x

  14. Liquid Helium 3 and Solid Helium at Yale and Beyond

    NASA Astrophysics Data System (ADS)

    Lee, D. M.

    2006-03-01

    Many of the foundations of low temperature physics in the latter half of the twentieth century were built at Yale University under the leadership of Professor Cecil T. Lane who came to Yale in 1932 and Henry A. Fairbank who obtained his Ph.D. at Yale in 1944 under Lane's guidance. This discussion will mainly treat the contributions of Henry Fairbank and his students during the period between 1954 and 1963, when Henry Fairbank left Yale to become chairman of the Physics Dept. at Duke University. Following World War II small amounts of helium three became available to low temperature experimenters. Henry Fairbank’s graduate students were provided with the opportunity to investigate second sound in dilute and later concentrated mixtures of helium three in superfluid helium four. These measurements showed strong effects of the phase separation in helium 3 - helium 4 mixtures previously discovered in the laboratory of William Fairbank (a student of Lane and a brother of Henry Fairbank). As more helium three became available, studies of pure helium three were performed, including measurements of the thermal conductivity, the density and the specific heat. Early evidence for the melting curve minimum was found. The main emphasis in this work was to search for Fermi liquid behavior. Much of the later work in this area was performed by the group of John Wheatley at the University of Illinois. In studies of solid helium four at Yale, a surprising observation was made. Hitherto it had been thought that hcp was the stable phase throughout the low temperature part of the phase diagram. It was found via ultrasound experiments that a small silver of bcc solid existed at the lowest pressures. While this author was a graduate student at Yale, Henry Fairbank pointed out to him the possibility of cooling helium three via adiabatic compression from the liquid into the solid phase. (Pomeranchuk Cooling). A brief discussion is given of the use of this technique in the discovery of

  15. Assessment of Remote Sensing Technologies for Location of Hydrogen and Helium Leaks

    NASA Technical Reports Server (NTRS)

    Sellar, R. Glenn; Wang, Danli

    2000-01-01

    The objective of this initial phase of this research effort is to: 1) Evaluate remote sensing technologies for location of leaks of gaseous molecular hydrogen (H2) and gaseous helium (He) in air, for space transportation applications; and 2) Develop a diffusion model that predicts concentration of H2 or He gas as a function of leak rate and distance from the leak.

  16. Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions

    NASA Technical Reports Server (NTRS)

    Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.

    1992-01-01

    The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results are included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in), a fence height of 0.0635 cm (0.025 in), and 1800 bristles/cm circumference (4500 bristles/in circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approx. the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.

  17. Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions

    NASA Technical Reports Server (NTRS)

    Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.

    1992-01-01

    The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in.), a fence height of 0.0635 cm (0.025 in.), and 1800 bristles/cm circumference (4500 bristles/in. circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approximately the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.

  18. Improved gaseous leak detector

    DOEpatents

    Juravic, F.E. Jr.

    1983-10-06

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  19. Gaseous leak detector

    DOEpatents

    Juravic, Jr., Frank E.

    1988-01-01

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  20. Solid and Gaseous Fuels.

    ERIC Educational Resources Information Center

    Schultz, Hyman; And Others

    1989-01-01

    This review covers methods of sampling, analyzing, and testing coal, coke, and coal-derived solids and methods for the chemical, physical, and instrumental analyses of gaseous fuels. The review covers from October 1986, to September 1988. (MVL)

  1. Solid and Gaseous Fuels.

    ERIC Educational Resources Information Center

    Schultz, Hyman; And Others

    1989-01-01

    This review covers methods of sampling, analyzing, and testing coal, coke, and coal-derived solids and methods for the chemical, physical, and instrumental analyses of gaseous fuels. The review covers from October 1986, to September 1988. (MVL)

  2. Helium liquefier cycles with saturated vapor compression

    NASA Astrophysics Data System (ADS)

    Minta, M.; Smith, J. L., Jr.

    The three refrigeration stages of the conventional helium liquefaction cycle are related to liquid nitrogen precooling, the use of expansion engines, and a J-T expansion. For an operation of helium refrigerators at temperatures below 4.2 K reduced pressure levels are required. Such an operation makes it necessary to enhance the compressor size and the heat exchanger surface area. In the case of 1.8 K refrigerators, practical cycles with three pressure levels are employed. It is pointed out that the saturated-vapor-compression (SVC) helium cycle provides an alternative solution to these problems. The present investigation is concerned with the design study of a SVC helium liquifier operating at elevated pressures. The study was conducted to demonstrate the potential of the SVC cycle on the basis of a direct comparison with a conventional cycle using the same precooling expanders and a supercritical wet expander instead of a J-T valve.

  3. Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 GPa

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Li, J. T.; Li, Z. G.; Li, C. J.; Chen, Z. Y.

    2017-06-01

    Multiple reverberation compression can achieve higher pressure, higher temperature, but lower entropy. It is available to provide an important validation for the elaborate and wider planetary models and simulate the inertial confinement fusion capsule implosion process. In the work, we have developed the thermodynamic and optical properties of helium from shock-adiabatic to quasi-isentropic compression by means of a multiple reverberation technique. By this technique, the initial dense gaseous helium was compressed to high pressure and high temperature and entered the warm dense matter (WDM) region. The experimental equation of state (EOS) of WDM helium in the pressure-density-temperature (P-ρ -T) range of 1 -150 GPa , 0.1 -1.1 g c m-3 , and 4600-24 000 K were measured. The optical radiations emanating from the WDM helium were recorded, and the particle velocity profiles detecting from the sample/window interface were obtained successfully up to 10 times compression. The optical radiation results imply that dense He has become rather opaque after the 2nd compression with a density of about 0.3 g c m-3 and a temperature of about 1 eV. The opaque states of helium under multiple compression were analyzed by the particle velocity measurements. The multiple compression technique could efficiently enhanced the density and the compressibility, and our multiple compression ratios (ηi=ρi/ρ0,i =1 -10 ) of helium are greatly improved from 3.5 to 43 based on initial precompressed density (ρ0) . For the relative compression ratio (ηi'=ρi/ρi -1) , it increases with pressure in the lower density regime and reversely decreases in the higher density regime, and a turning point occurs at the 3rd and 4th compression states under the different loading conditions. This nonmonotonic evolution of the compression is controlled by two factors, where the excitation of internal degrees of freedom results in the increasing compressibility and the repulsive interactions between the

  4. Special treatment reduces helium permeation of glass in vacuum systems

    NASA Technical Reports Server (NTRS)

    Bryant, P. J.; Gosselin, C. M.

    1966-01-01

    Internal surfaces of the glass component of a vacuum system are exposed to cesium in gaseous form to reduce helium permeation. The cesium gas is derived from decomposition of cesium nitrate through heating. Several minutes of exposure of the internal surfaces of the glass vessel are sufficient to complete the treatment.

  5. Helium/Carbon dioxide ratios as premonitors of volcanic activity.

    PubMed

    Thomas, D M; Naughton, J J

    1979-06-15

    The composition of the gaseous emissions of two fumaroles at the summit of Kilauea Volcano was monitored for môre than 2 years. Magma was released from the summit reservoir on three occasions during this period; prior to or during each event the ratios of helium to carbon dioxide in the fumarole gases decreased substantially from that observed during periods of quiescence.

  6. Cryogenic helium 2 systems for space applications

    NASA Technical Reports Server (NTRS)

    Urban, E.; Katz, L.; Hendricks, J.; Karr, G.

    1978-01-01

    Two cryogenic systems are described which will provide cooling for experiments to be flown on Spacelab 2 in the early 1980's. The first system cools a scanning infrared telescope by the transfer of cold helium gas from a separate superfluid helium storage dewar. The flexible design permits the helium storage dewar and transfer assembly to be designed independent of the infrared experiment. Where possible, modified commerical apparatus is used. The second cryogenic system utilizes a specially designed superfluid dewar in which a superfluid helium experiment chamber is immersed. Each dewar system employs a porous plug as a phase separator to hold the liquid helium within the dewar and provide cold gas to a vent line. To maintain the low vapor pressure of the superfluid, each system requires nearly continuous prelaunch vacuum pump service, and each will vent to space during the Spacelab 2 flight.

  7. Cryogenic helium 2 systems for space applications

    NASA Technical Reports Server (NTRS)

    Urban, E.; Katz, L.; Hendricks, J.; Karr, G.

    1978-01-01

    Two cryogenic systems are described which will provide cooling for experiments to be flown on Spacelab 2 in the early 1980's. The first system cools a scanning infrared telescope by the transfer of cold helium gas from a separate superfluid helium storage dewar. The flexible design permits the helium storage dewar and transfer assembly to be designed independent of the infrared experiment. Where possible, modified commerical apparatus is used. The second cryogenic system utilizes a specially designed superfluid dewar in which a superfluid helium experiment chamber is immersed. Each dewar system employs a porous plug as a phase separator to hold the liquid helium within the dewar and provide cold gas to a vent line. To maintain the low vapor pressure of the superfluid, each system requires nearly continuous prelaunch vacuum pump service, and each will vent to space during the Spacelab 2 flight.

  8. Comparison between a propane-air combustion front and a helium-air simulated combustion front

    SciTech Connect

    Barraclough, S.

    1983-12-01

    Turbulent combustion experiments were performed in a right cylindrical combustion bomb using a premixed propane-air gaseous fuel. The initial conditions inside the combustion chamber were three psig and room temperature. Prior to spark firing, the turbulence intensity inside the combustion chamber was measured and could be varied over a ten fold range. The effect of initial turbulence intensity on turbulent flame propagation was investigated. Two regimes of turbulent combustion were identified, which is in agreement with a previous investigator's results. One of them, a ''transition regime'' occurs when the turbulence intensity is approximately twice the laminar flame speed. Within the transition regime, the turbulent burning speed is linearly proportional to initial turbulence intensity and independent of laminar flame speed and turbulence length scale. A high pressure helium front was injected into the combustion chamber to simulate the combustion front. Since the helium front is isothermal, hot-wire anemometry can be used to quantify the change in turbulence intensity ahead of the propagating front. The helium front was found to have different characteristics than the combustion front.

  9. Effects of helium-oxygen mixtures on endotracheal tubes: an in vitro study.

    PubMed

    Gerbeaux, Patrick; Gainnier, Marc; Arnal, Jean-Michel; Papazian, Laurent; Jean, Philippe; Sainty, Jean-Marie

    2005-01-01

    To determine flow pattern and critical Reynolds numbers in endotracheal tubes submitted to different helium-oxygen mixtures under laboratory conditions. Flow-pressure relationships were performed for seven endotracheal tubes (rectilinear position, entry length applied) with distal end open to atmosphere (predicted internal diameters: 6-9 mm). Nine helium-oxygen mixtures were tested, with FIHe varying from zero to 0.78 (increment: 10%). Nine flows were tested, with rates varying from 0.25 to 1.60 l s(-1) (increment: 0.15 l s(-1)). Gas flow resistance was calculated, and for each endotracheal tube, a Moody diagram was realised. Flow regime and critical Reynolds numbers were then determined (fully established laminar, nonestablished laminar, smooth turbulent, or rough). Even low concentration of helium in inspiratory mixture reduces endotracheal tubes resistance. Effect is maximal for high flows, small tube and high FIHe. Critical Reynolds numbers are inversely correlated to tube diameter. Under laboratory conditions, flow pattern in endotracheal tubes varies from fully established laminar to rough. Knowledge of the critical Reynolds numbers allows correct application of fluid mechanic formula when studying tube or gaseous mixture effects on respiratory mechanisms.

  10. Helium Storage and Transfer Subsystem design description. Revision

    SciTech Connect

    1987-07-01

    The Helium Storage and Transfer Subsystem (HSTS) consists of two parts. The first consists of nine (9) high pressure storage tanks containing helium at 15.6 MPa (2250 psig). These tanks provide makeup and purge helium at a rate of 1216 kg per y (2680 lb/y) to the various helium users, including circulator bearing seals, analysis packages, and cooling system surge tanks. The second, larger part of the system, provides for the low pressure storage of 6078 kg (13,400 lb) of primary coolant helium in 180 storage tanks at 7.0 MPa (1000 psig). The system serves all four (4) reactor modules. The low pressure storage part of the system receives helium from the discharge of Helium Purification Subsystem (HPS) and is activated during depressurization and pumpup operations only. It is not required to operate continuously. Storage capacity is provided for primary helium coolant from two reactor modules. However, since depressurization and pumpup operations are performed for only one reactor module at a time, two 50% capacity low pressure transfer compressors are provided having a total transfer capacity of 340 am{sup 3}/h (200 acfm) which is sufficient to service one module. High pressure helium is supplied continuously to all the four reactor modules simultaneously from the high pressure storage tanks. These tanks are replaced periodically with fresh tanks.

  11. Measurements of helium 23S metastable atom density in low-pressure glow discharge plasmas by self-absorption spectroscopy of HeI 23S-23P transition

    NASA Astrophysics Data System (ADS)

    Shikama, Taiichi; Ogane, Shuhei; Ishii, Hidekazu; Iida, Yohei; Hasuo, Masahiro

    2014-08-01

    The helium 23S metastable atom densities are experimentally evaluated by self-absorption spectroscopy of the HeI 23S-23P transition spectra in two kinds of cylindrical glow discharge plasmas, which have different radii and are operated under different pressures of 300 and 20 Pa. The spectra are measured by using an interference spectroscopy system with a wavelength resolution of about 60 pm, and the relative intensities of the fine structure transitions are analyzed. It is found that the method is in principle applicable to plasmas with the pressure up to about the atmospheric pressure and electron density on the order of up to 1022 m-3. For a plasma with an absorption length of 10 mm and a spatially uniform temperature of 300 K, the method is sensitive to the metastable atom density roughly from 1016 to 1019 m-3.

  12. Experimental Evaluation of a Subscale Gaseous Hydrogen/Gaseous Oxygen Coaxial Rocket Injector

    NASA Astrophysics Data System (ADS)

    Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert

    2002-11-01

    The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.

  13. Experimental Evaluation of a Subscale Gaseous Hydrogen/gaseous Oxygen Coaxial Rocket Injector

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert

    2002-01-01

    The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.

  14. Theoretical determination of the polarizability dispersion and the refractive index of helium

    NASA Astrophysics Data System (ADS)

    Puchalski, Mariusz; Piszczatowski, Konrad; Komasa, Jacek; Jeziorski, Bogumił; Szalewicz, Krzysztof

    2016-03-01

    The refractive index n of gaseous helium can be measured by optical interferometry so accurately that it can be used to establish a pressure standard which is expected to be superior to the current standard based on the height of a mercury column. The new standard requires knowledge of the dynamic polarizability of helium atom with accuracy significantly higher than obtainable in the best experiments, but possible to achieve computationally. Calculations of this quantity are presented at relativistic and quantum electrodynamics levels of theory including relativistic nuclear recoil effects. The uncertainties of the results are carefully estimated. Our recommended value of the dynamic polarizability at the He-Ne laser wavelength of 6329.908 Å, equal 1.39181197(14) a.u., has uncertainty at least two orders of magnitude smaller than that of recent measurements and is sufficiently accurate to establish a new pressure standard. Purely ab initio values of the refraction coefficient n are computed using our polarizability, literature values of magnetic susceptibility, and dielectric virial coefficients. It is shown that n -1 can be predicted by theory as a function of density and temperature with uncertainty of 1 ppm for pressures up to 3 MPa.

  15. Gaseous hydrogen embrittlement of high strength steels

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1977-01-01

    The effects of temperature, hydrogen pressure, stress intensity, and yield strength on the kinetics of gaseous hydrogen assisted crack propagation in 18Ni maraging steels were investigated experimentally. It was found that crack growth rate as a function of stress intensity was characterized by an apparent threshold for crack growth, a stage where the growth rate increased sharply, and a stage where the growth rate was unchanged over a significant range of stress intensity. Cracking proceeded on load application with little or no detectable incubation period. Gaseous hydrogen embrittlement susceptibility increased with increasing yield strength.

  16. Dynamical instability of a charged gaseous cylinder

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Mumtaz, Saadia

    2017-10-01

    In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.

  17. Nucleation of bubbles in liquid helium

    SciTech Connect

    Maris, H.J. ); Balibar, S.; Pettersen, M.S. )

    1993-12-01

    The authors give a brief survey of experiments that have been performed to study the nucleation of bubbles (cavitation) in liquid helium at negative pressures. There have been two principal motivations for research in this field. Because all impurities (except [sup 3]He) freeze out of the liquid at low temperatures, it is possible to prepare helium with a much higher purity than ordinary classical liquids. In any study of a nucleation process this is an important advantage because impurities introduce the complication of heterogeneous nucleation. The second reason for interest in helium is that at low enough temperatures nucleation is expected to be dominated by quantum tunnelling rather than thermal activation.

  18. Helium refrigeration considerations for cryomodule design

    SciTech Connect

    Ganni, V.; Knudsen, P.

    2014-01-29

    Many of the present day accelerators are based on superconducting radio frequency (SRF) cavities, packaged in cryo-modules (CM), which depend on helium refrigeration at sub-atmospheric pressures, nominally 2 K. These specialized helium refrigeration systems are quite cost intensive to produce and operate. Particularly as there is typically no work extraction below the 4.5-K supply, it is important that the exergy loss between this temperature level and the CM load temperature(s) be minimized by the process configuration choices. This paper will present, compare and discuss several possible helium distribution process arrangements to support the CM loads.

  19. The cryogenic helium cooling system for the Tokamak physics experiment

    SciTech Connect

    Felker, B.; Slack, D.S.; Wendland, C.R.

    1995-09-29

    The Tokamak Physics Experiment (TPX) will use supercritical helium to cool all the magnets and supply helium to the Vacuum cryopumping subsystem. The heat loads will come from the standard steady state conduction and thermal radiation sources and from the pulsed loads of the nuclear and eddy currents caused by the Central Solenoid Coils and the plasma positioning coils. The operations of the TPX will begin with pulses of up to 1000 seconds in duration every 75 minutes. The helium system utilizes a pulse load leveling scheme to buffer out the effects of the pulse load and maintain a constant cryogenic plant operation. The pulse load leveling scheme utilizes the thermal mass of liquid and gaseous helium stored in a remote dewar to absorb the pulses of the tokamak loads. The mass of the stored helium will buffer out the temperature pulses allowing 5 K helium to be delivered to the magnets throughout the length of the pulse. The temperature of the dewar will remain below 5 K with all the energy of the pulse absorbed. This paper will present the details of the heat load sources, of the pulse load leveling scheme operations, a partial helium schematic, dewar temperature as a function of time, the heat load sources as a function of time and the helium temperature as a function of length along the various components that will be cooled.

  20. Superfluid Helium Heat Pipe

    NASA Astrophysics Data System (ADS)

    Gully, P.

    This paper reports on the development and the thermal tests of three superfluid helium heat pipes. Two of them are designed to provide a large transport capacity (4 mW at 1.7 K). They feature a copper braid located inside a 6 mm outer diameter stainless tube fitted with copper ends for mechanical anchoring. The other heat pipe has no copper braid and is designed to get much smaller heat transport capacity (0.5 mW) and to explore lower temperature (0.7 - 1 K). The copper braid and the tube wall is the support of the Rollin superfluid helium film in which the heat is transferred. The low filling pressure makes the technology very simple with the possibility to easily bend the tube. We present the design and discuss the thermal performance of the heat pipes tested in the 0.7 to 2.0 K temperature range. The long heat pipe (1.2 m with copper braid) and the short one (0.25 m with copper braid) have similar thermal performance in the range 0.7 - 2.0 K. At 1.7 K the long heat pipe, 120 g in weight, reaches a heat transfer capacity of 6.2 mW and a thermal conductance of 600 mW/K for 4 mW transferred power. Due to the pressure drop of the vapor flow and Kapitza thermal resistance, the conductance of the third heat pipe dramatically decreases when the temperature decreases. A 3.8 mW/K is obtained at 0.7 K for 0.5 mW transferred power.

  1. An Assessment of Helium Evolution from Helium-Saturated Propellant Depressurization in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.; Best, Frederick; Wong, Tony; Kurwitz, Cable; McConnaughey, H. (Technical Monitor)

    2001-01-01

    Helium evolution from the transfer of helium-saturated propellant in space is quantified to assess its impacts from creating two-phase gas/liquid flow from the supply tank, gas injection into the receiving tank, and liquid discharge from the receiving tank. Propellant transfer takes place between two similar tanks whose maximum storage capacity is approximately 2.55 cubic meters each. The maximum on-orbit propellants transfer capability is 9000 lbm (fuel and oxidizer). The transfer line is approximately 1.27 cm in diameter and 6096 cm in length and comprised of the fluid interconnect system (FICS), the orbiter propellant transfer system (OPTS), and the International Space Station (ISS) propulsion module (ISSPM). The propellant transfer rate begins at approximately 11 liter per minute (lpm) and subsequently drops to approximately 0.5 lpm. The tank nominal operating pressure is approximately 1827 kPa (absolute). The line pressure drops for Monomethy1hydrazine (MMH) and Nitrogen tetroxide (NTO) at 11.3 lpm are approximately 202 kPa and 302 kPa, respectively. The pressure-drop results are based on a single-phase flow. The receiving tank is required to vent from approximately 1827 kPa to a lower pressure to affect propellant transfer. These pressure-drop scenarios cause the helium-saturated propellants to release excess helium. For tank ullage venting, the maximum volumes of helium evolved at tank pressure are approximately 0.5 ft3 for MMH and 2 ft3 for NTO. In microgravity environment, due to lack of body force, the helium evolution from a liquid body acts to propel it, which influences its fluid dynamics. For propellant transfer, the volume fractions of helium evolved at line pressure are 0.1% by volume for MMH and 0.6 % by volume for NTO at 11.3 lpm. The void fraction of helium evolved varies as an approximate second order power function of flow rate.

  2. Analysis and Design of the NASA Langley Cryogenic Pressure Box

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Stevens, Jonathan C.; Vause, R. Frank; Winn, Peter M.; Maguire, James F.; Driscoll, Glenn C.; Blackburn, Charles L.; Mason, Brian H.

    1999-01-01

    A cryogenic pressure box was designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 72 in. x 60 in. curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20K) with 54 psig maximum pressure on the concave side, and elevated temperatures and atmospheric pressure on the convex surface. The internal surface of the panel is cooled by high pressure helium as that is cooled to -423 F by liquid helium heat exchangers. An array of twelve independently controlled fans circulate the high pressure gaseous helium to provide uniform cooling on the panel surface. The load introduction structure, consisting of four stainless steel load plates and numerous fingers attaching the load plates to the test panel, is designed to introduce loads into the test panel that represent stresses that will he observed in the actual tank structure. The load plates are trace cooled with liquid nitrogen to reduce thermal gradients that may result in bending the load plates, and thus additional stresses in the test panel. The design of the cryogenic systems, load introduction structure, and control system are discussed in this report.

  3. Cryogenic adsorber design in a helium refrigeration system

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  4. Characterization and antimicrobial efficacy against E. coli of a helium/air plasma at atmospheric pressure created in a plastic package

    NASA Astrophysics Data System (ADS)

    Connolly, J.; Valdramidis, V. P.; Byrne, E.; Karatzas, K. A.; Cullen, P. J.; Keener, K. M.; Mosnier, J. P.

    2013-01-01

    A plasma source, sustained by the application of a floating high voltage (±15 kV) to parallel-plate electrodes at 50 Hz, has been achieved in a helium/air mixture at atmospheric pressure (P = 105 Pa) contained in a zip-locked plastic package placed in the electrode gap. Some of the physical and antimicrobial properties of this apparatus were established with a view to ascertain its performance as a prototype for the disinfection of fresh produce. The current-voltage (I-V) and charge-voltage (Q-V) characteristics of the system were measured as a function of gap distance d, in the range (3 × 103 ⩽ Pd ⩽ 1.0 × 104 Pa m). The electrical measurements showed this plasma source to exhibit the characteristic behaviour of a dielectric barrier discharge in the filamentary mode and its properties could be accurately interpreted by the two-capacitance in series model. The power consumed by the discharge and the reduced field strength were found to decrease quadratically from 12.0 W to 4.5 W and linearly from 140 Td to 50 Td, respectively, in the range studied. Emission spectra of the discharge were recorded on a relative intensity scale and the dominant spectral features could be assigned to strong vibrational bands in the 2+ and 1- systems of N2 and N_2^+ , respectively, with other weak signatures from the NO and OH radicals and the N+, He and O atomic species. Absolute spectral intensities were also recorded and interpreted by comparison with the non-equilibrium synthetic spectra generated by the computer code SPECAIR. At an inter-electrode gap of 0.04 m, this comparison yielded typical values for the electron, vibrational and translational (gas) temperatures of (4980 ± 100) K, (2700 ± 200) K and (300 ± 100) K, respectively and an electron density of 1.0 × 1017 m-3. A Boltzmann plot also provided a value of (3200 ± 200 K) for the vibrational temperature. The antimicrobial efficacy was assessed by studying the resistance of both Escherichia coli K12 its isogenic

  5. Gaseous wire detectors

    SciTech Connect

    Va'vra, J.

    1997-08-01

    This article represents a series of three lectures describing topics needed to understand the design of typical gaseous wire detectors used in large high energy physics experiments; including the electrostatic design, drift of electrons in the electric and magnetic field, the avalanche, signal creation, limits on the position accuracy as well as some problems one encounters in practical operations.

  6. Spectral properties of hydrogen, helium, methane, and ammonia at thermal infrared wavelengths. [for Jupiter atmosphere

    NASA Technical Reports Server (NTRS)

    Taylor, F. W.; Jones, A. D., III

    1976-01-01

    The paper presents some results of a theoretical and laboratory program to determine the thermal infrared spectral properties of the principal gaseous constituents of the atmosphere of Jupiter. Birnbaum (1975) has measured laboratory spectra in the 16- to 1000-micron wavelength range for hydrogen and hydrogen-helium mixtures at Jovian temperatures. These are compared with theoretically computed spectra in order to determine the temperature dependence of the line strengths in the pressure-induced rotational band and the overlap parameters from the translational band. Existing spectral data for methane do not agree well with measurements of the nu 4 band at room temperature. A revised allocation of line intensities is proposed. Existing data for the nu 2 (10-micron) band of ammonia agree reasonably well with measurements at room temperature and at -77 C, but there are some important discrepancies which remain to be explained.

  7. A plan for directional dark matter sensitivity in high-pressure xenon detectors through the addition of wavelength shifting gaseous molecules

    NASA Astrophysics Data System (ADS)

    Gehman, V. M.; Goldschmidt, A.; Nygren, D.; Oliveira, C. A. B.; Renner, J.

    2013-10-01

    Xenon is an especially attractive candidate for both direct WIMP and 0νββ decay searches. Although the current trend has exploited the liquid phase, the gas phase xenon offers remarkable performance advantages for: energy resolution, topology visualization, and discrimination between electron and nuclear recoils. The NEXT-100 experiment, now under construction in the Canfranc Underground Laboratory, Spain, will operate at ~ 15 bars with 100 kg of 136Xe for the 0νββ decay search. We will describe recent results with small prototypes, indicating that NEXT-100 can provide about 0.5% FWHM energy resolution at the decay's Q value (2457.83 keV), as well as rejection of γ-rays with topological cuts. However, sensitivity goals for WIMP dark matter and 0νββ decay searches indicate the probable need for ton-scale active masses. NEXT-100 provides the springboard to reach this scale with xenon gas. We describe a scenario for performing both searches in a single, high-pressure, ton-scale xenon gas detector, without significant compromise to either. In addition, even in a single ton-scale, high-pressure xenon gas TPC, an intrinsic sensitivity to the nuclear recoil direction may exist. This plausibly offers an advance of more than two orders of magnitude relative to current low-pressure TPC concepts. We argue that, in an era of deepening fiscal austerity, such a dual-purpose detector may be possible at acceptable cost, within the time frame of interest, and deserves our collective attention.

  8. Review of Membranes for Helium Separation and Purification

    PubMed Central

    Scholes, Colin A.; Ghosh, Ujjal K.

    2017-01-01

    Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources. PMID:28218644

  9. Review of Membranes for Helium Separation and Purification.

    PubMed

    Scholes, Colin A; Ghosh, Ujjal K

    2017-02-17

    Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

  10. Helium damage and helium effusion in fully stabilised zirconia

    NASA Astrophysics Data System (ADS)

    Damen, P. M. G.; Matzke, Hj.; Ronchi, C.; Hiernaut, J.-P.; Wiss, T.; Fromknecht, R.; van Veen, A.; Labohm, F.

    2002-05-01

    Fully stabilised zirconia (FSZ) samples have been implanted with helium-ions of different energies (200 keV and 1 MeV) and with different fluences (1.4×10 13-1.4×10 16 He +/cm 2). Neutron depth profiling (NDP) for different annealing temperatures and effusion experiments in two different experimental systems with different thermal annealings have been performed on these samples. The samples were analysed by electron microscopy during the various annealing stages. For the low-fluence samples, the diffusion of helium is probably caused by vacancy assisted interstitial diffusion with an activation energy of 1.6 eV. In the highest fluence samples probably high pressure bubbles are formed during thermal annealing.

  11. Vorticity matching in superfluid helium

    NASA Astrophysics Data System (ADS)

    Samuels, David C.

    1991-12-01

    Recent experiments have rekindled interest in high Reynolds number flows using superfluid helium. In a continuing series of experiments, the flow of helium II through various devices (smooth pipes, corrugated pipes, valves, venturies, turbine flowmeters, and coanda flowmeters for example) was investigated. In all cases, the measured values (typically, mass flow rates and pressure drops) were found to be well described by classical relations for high Reynolds flows. This is unexpected since helium II consists of two interpenetrating fluids; one fluid with nonzero viscosity (the normal fluid) and one with zero viscosity (the superfluid). Only the normal fluid component should directly obey classical relations. Since the experiments listed above only measure the external behavior of the flow (i.e., pressure drops over devices), there is a great deal of room for interpretation of their results. One possible interpretation is that in turbulent flows the normal fluid and the superfluid velocity fields are somehow 'locked' together, presumably by the mutual friction force between the superfluid vortex filaments and the normal fluid. We refer to this locking together of the two fluids as 'vorticity matching.'

  12. Warm Pressurant Gas Effects on the Bubble Point Pressure for Cryogenic LADs

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2014-01-01

    This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  13. Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic LADs

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John; Chato, Daniel J.

    2014-01-01

    This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K - 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  14. GASEOUS DISPOSAL PROCESS

    DOEpatents

    Ryan, R.F.; Thomasson, F.R.; Hicks, J.H.

    1963-01-22

    A method is described of removing gaseous radioactive Xe and Kr from water containing O. The method consists in stripping the gases from the water stream by means of H flowing countercurrently to the stream. The gases are then heated in a deoxo bed to remove O. The carrier gas is next cooled and passed over a charcoal adsorbent bed maintained at a temperature of about --280 deg F to remove the Xe and Kr. (AEC)

  15. Gaseous fuel reactor research

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schneider, R. T.

    1977-01-01

    The paper reviews studies dealing with the concept of a gaseous fuel reactor and describes the structure and plans of the current NASA research program of experiments on uranium hexafluoride systems and uranium plasma systems. Results of research into the basic properties of uranium plasmas and fissioning gases are reported. The nuclear pumped laser is described, and the main results of experiments with these devices are summarized.

  16. The Nucleosynthesis of Helium

    NASA Astrophysics Data System (ADS)

    Kneller, James

    2007-04-01

    The large cosmic abundance of Helium - second only to Hydrogen - is a testament to the importance of its formation in the cosmos. Both Helium-3 and Helium-4 emerge from Big Bang Nucleosynthesis in considerable quantities, the synthesis of the isotopes are links in the pp chain and other stellar nucleosynthesis processes, and they are also created during the initial stages of the r-process. The importance of Helium formation in these settings provides us with valuable information upon the environments in which it occurs. We survey the role of the synthesis of Helium in nuclear astrophysics, how its manufacture is affected by many diverse factors, and what we have learnt from observations of Helium abundances.

  17. Confined helium on Lagrange meshes.

    PubMed

    Baye, D; Dohet-Eraly, J

    2015-12-21

    The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than 10(-10). For larger radii up to 10, they progressively decrease to 10(-3), still improving the best literature results.

  18. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    NASA Astrophysics Data System (ADS)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  19. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  20. Correlation and prediction of gaseous diffusion coefficients.

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  1. Correlation and prediction of gaseous diffusion coefficients.

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  2. Helium Diffusion in Olivine

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.

    2011-12-01

    Diffusion of helium has been characterized in natural Fe-bearing olivine (~Fo90) and synthetic forsterite. Polished, oriented slabs of olivine were implanted with 3He, at 100 keV at a dose of 5x1015/cm2 or at 3.0 MeV at a dose of 1x1016/cm2. A set of experiments on the implanted olivine were run in 1-atm furnaces. In addition to the one-atm experiments, experiments on implanted samples were also run at higher pressures (2.6 and 2.7 GPa) to assess the potential effects of pressure on He diffusion and the applicability of the measured diffusivities in describing He transport in the mantle. The high-pressure experiments were conducted in a piston-cylinder apparatus using an "ultra-soft" pressure cell, with the diffusion sample directly surrounded by AgCl. 3He distributions following experiments were measured with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. This direct profiling method permits us to evaluate anisotropy of diffusion, which cannot be easily assessed using bulk-release methods. For diffusion in forsterite parallel to c we obtain the following Arrhenius relation over the temperatures 250-950°C: D = 3.91x10-6exp(-159 ± 4 kJ mol-1/RT) m2/sec. The data define a single Arrhenius line spanning more than 7 orders of magnitude in D and 700°C in temperature. Diffusion parallel to a appears slightly slower, yielding an activation energy for diffusion of 135 kJ/mol and a pre-exponential factor of 3.73x10-8 m2/sec. Diffusion parallel to b is slower than diffusion parallel to a (by about two-thirds of a log unit); for this orientation an activation energy of 138 kJ/mol and a pre-exponential factor of 1.34x10-8 m2/sec are obtained. This anisotropy is broadly consistent with observations for diffusion of Ni and Fe-Mg in olivine. Diffusion in Fe-bearing olivine (transport parallel to b) agrees within uncertainty with findings for He diffusion in forsterite. The higher-pressure experiments yield diffusivities in agreement with those from the 1-atm

  3. Simplified Helium Refrigerator Cycle Analysis Using the `Carnot Step'

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Ganni, V.

    2006-04-01

    An analysis of the Claude form of an idealized helium liquefier for the minimum input work reveals the `Carnot Step' for helium refrigerator cycles. As the `Carnot Step' for a multi-stage polytropic compression process consists of equal pressure ratio stages; similarly for an idealized helium liquefier the `Carnot Step' consists of equal temperature ratio stages for a given number of expansion stages. This paper presents the analytical basis and some useful equations for the preliminary examination of existing and new Claude helium refrigeration cycles.

  4. Interaction of Helium Rydberg State Molecules with Dense Helium.

    PubMed

    Bonifaci, Nelly; Li, Zhiling; Eloranta, Jussi; Fiedler, Steven L

    2016-11-17

    The interaction potentials of the He2(*) excimer, in the a(3)Σu, b(3)Πg, c(3)Σg, and d(3)Σu electronic states with a ground state helium atom are presented. The symmetry of the interaction potentials closely follows the excimer Rydberg electron density with pronounced short-range minima appearing along the nodal planes of the Rydberg orbital. In such cases, a combination of the electrostatic short-range attraction combined with Pauli repulsion leads to the appearance of unusual long-range maxima in the potentials. Bosonic density functional calculations show that the (3)d state excimer resides in a localized solvation bubble in dense helium at 4.5 K, with radii varying from 12.7 Å at 0.1 MPa to 10.8 Å at 2.4 MPa. The calculated (3)d → (3)b pressure-induced fluorescence band shifts are in good agreement with experimental results determined by application of corona discharge. The magnitude of the spectral shifts indicate that the observed He2(*) molecules emit from dense helium whereas the corresponding fluorescence signal from the discharge zone appears quenched. This implies that fluorescence spectroscopy involving this electronic transition can only be used to probe the state of the surrounding medium rather than the discharge zone itself.

  5. Gaseous Fuel Injection Modeling using a Gaseous Sphere Injection Methodology

    SciTech Connect

    Hessel, R P; Aceves, S M; Flowers, D L

    2006-03-06

    The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.

  6. Sonic helium detectors in the Fermilab Tevatron

    SciTech Connect

    Bossert, R.J.; /Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  7. GASEOUS SCINTILLATION COUNTER

    DOEpatents

    Eggler, C.; Huddleston, C.M.

    1959-04-28

    A gaseous excitation counter for detecting the presence amd measuring the energy of subatomic particles and electromagnetic radiation is described. The counter includes a gas-tight chamber filled with an elemental gas capable of producing ultra-violet excitation quanta when irradiated with subatomic particles and electromagnetic radiation. The gas has less than one in a thousand parts ultra-violet absorbing contamination. When nuclear radiation ps present the ultra-violet light produced by the gas strikes a fluorescent material within the counter, responsive to produce visible excitation quanta, and photo-sensitive counting means detect the visible emission.

  8. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    DOEpatents

    Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  9. Energy Distribution of Electrons in Radiation Induced-Helium Plasmas. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lo, R. H.

    1972-01-01

    Energy distribution of high energy electrons as they slow down and thermalize in a gaseous medium is studied. The energy distribution in the entire energy range from source energies down is studied analytically. A helium medium in which primary electrons are created by the passage of heavy-charged particles from nuclear reactions is emphasized. A radiation-induced plasma is of interest in a variety of applications, such as radiation pumped lasers and gaseous core nuclear reactors.

  10. Toxicological findings in three cases of suicidal asphyxiation with helium.

    PubMed

    Oosting, Roelof; van der Hulst, Rogier; Peschier, Leo; Verschraagen, Miranda

    2015-11-01

    Toxicological findings in deaths by asphyxiation due to a pure inert gas like helium are rare. We present three suicide cases of asphyxial death attributed to anoxia caused by inhalation of helium in a plastic bag positioned over the head. In one case, lung tissue, brain tissue and heart blood were obtained during standard autopsy procedures. In two cases, samples were obtained differently: heart blood, femoral blood, brain tissue, lung tissue and/or air from the lungs were directly sealed into headspace vials during autopsy. Air from the lungs was collected using a syringe and transferred into an aluminum gas sampling bag which was heat sealed as soon as possible. Semi-quantitative gas analyses were performed using headspace gas chromatography-thermal conductivity detection (HS-GC/TCD) with a molsieve column capable of separating permanent gasses. Nitrogen was used as carrier gas. In the first case no helium was detected in lung tissue, brain tissue and heart blood. In the second case the presence of helium was detected in lung tissue (approximately 5% helium in gaseous phase) but not in femoral blood. In the third case the presence of helium was detected in air from the lungs (0.05%), lung tissue (0.4%), brain tissue (0.1%) and heart blood (0.04%). Helium is easily lost if sampling is not performed properly. The presented cases suggest that quick sample collection of various matrices during autopsy is suitable to detect gasses like helium in postmortem cases. Use of HS-GC/TCD enables to detect an inert gas like helium. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Downhole gaseous liquid flow agitator

    SciTech Connect

    Kamilos, N.; Kennedy, D.D.; Lederhos, L.J. Jr.

    1989-03-14

    An apparatus is described for agitating and mixing of a gaseous phase and a liquid phase comprising: a first tube having non-blocking internal threads within the first tube to agitate a liquid phase adhering thereto with a gaseous phase passing therethrough, whereby a uniform gaseous phase and liquid phase mixture is formed; and a second tube connected to an end of the first tube having non-blocking internal threads of opposite handedness.

  12. Investigations on thermodynamic phenomena of the active-pressurization process of a cryogenic propellant tank

    NASA Astrophysics Data System (ADS)

    Ludwig, C.; Dreyer, M. E.

    2014-09-01

    In optimizing the design and operation of a launcher’s cryogenic upper stage, the required pressurant gas mass must be accurately predicted. In order to do so, the appearing thermodynamic phenomena of the initial active-pressurization process of a cryogenic propellant tank need to be understood and assessed. On that account, ground experiments with liquid nitrogen as model propellant, pressurized with either gaseous nitrogen or gaseous helium, as well as numerical simulations were performed, and analytical approaches were applied. It was found that the thermal stratification in the liquid propellant is mostly driven by the increase in saturation temperature at the free surface during pressurization. The mode of phase change during pressurization was found to be mainly dependent on the pressurant gas type. The main mode of heat transfer appears from pressurant gas to the tank wall, through which the heat is then partly conducted into the uppermost liquid layers. After tank pressurization end, a pressure drop is observed and the decrease in vapor temperature is identified as its main driver. Moreover, a correlation is derived for the prediction of the required pressurant gas mass, based on the Jakob number and the thermal expansion Froude number, identifying pressurant gas temperature, phase change, and tank aspect ratio as the most important parameters, determining the required pressurant gas mass for cryogenic propellant tanks.

  13. Superfluid Helium Tanker (SFHT) study

    NASA Technical Reports Server (NTRS)

    Eberhardt, Ralph N.; Dominick, Sam M.; Anderson, John E.; Gille, John P.; Martin, Tim A.; Marino, John S.; Paynter, Howard L.; Traill, R. Eric; Herzl, Alfred; Gotlib, Sam

    1988-01-01

    Replenishment of superfluid helium (SFHe) offers the potential of extending the on-orbit life of observatories, satellite instruments, sensors and laboratories which operate in the 2 K temperature regime. A reference set of resupply customers was identified as representing realistic helium servicing requirements and interfaces for the first 10 years of superfluid helium tanker (SFHT) operations. These included the Space Infrared Telescope Facility (SIRTF), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (Astromag), and the Microgravity and Materials Processing Sciences Facility (MMPS)/Critical Point Phenomena Facility (CPPF). A mixed-fleet approach to SFHT utilization was considered. The tanker permits servicing from the Shuttle cargo bay, in situ when attached to the OMV and carried to the user spacecraft, and as a depot at the Space Station. A SFHT Dewar ground servicing concept was developed which uses a dedicated ground cooling heat exchanger to convert all the liquid, after initial fill as normal fluid, to superfluid for launch. This concept permits the tanker to be filled to a near full condition, and then cooled without any loss of fluid. The final load condition can be saturated superfluid with any desired ullage volume, or the tank can be totally filed and pressurized. The SFHT Dewar and helium plumbing system design has sufficient component redundancy to meet fail-operational, fail-safe requirements, and is designed structurally to meet a 50 mission life usage requirement. Technology development recommendations were made for the selected SFHT concept, and a Program Plan and cost estimate prepared for a phase C/D program spanning 72 months from initiation through first launch in 1997.

  14. Investigations of levitated helium drops

    NASA Astrophysics Data System (ADS)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  15. Electrostatic Precipitation in Nearly Pure Gaseous Nitrogen

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Cox, Bobby; Ritz, Mindy

    2008-01-01

    Electrostatic precipitation was performed in a nearly pure gaseous nitrogen system as a possible remedy for black dust contaminant from high pressure 6000 psi lines at the NASA Kennedy Space Center. The results of a prototype electrostatic precipitator that was built and tested using nitrogen gas at standard atmospheric pressures is presented. High voltage pulsed waveforms are generated using a rotating spark gap system at 30 Hz. A unique dust delivery system utilizing the Venturi effect was devised that supplies a given amount of dust per unit time for testing purposes.

  16. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  17. Blow-down analysis of helium from a cryogenic dewar

    NASA Technical Reports Server (NTRS)

    Khan, H. J.; Zhang, Q. Q.; Rhee, M.; Figueroa, O.

    1992-01-01

    NASA is currently developing Space Shuttle-based refilling of helium using superfluid helium on-orbit transfer (SHOOT). All the critical components of SHOOT need to be developed through ground-based tests. The helium dewar is one of these components. The Dewar consists of a vacuum vessel enclosing a superinsulated tank. The space between the vacuum vessel and the liquid tank is considered a common vacuum space. In the event that the vacuum is lost, the heat transfers to the dewar and the pressure inside the dewar increases rapidly, resulting in rupture of the dewar due to excessive pressure. Therefore, an emergency vent line is required for release of helium to prevent the dewar from rupturing. The study describes a numerical model for blow-down analysis in an emergency. This qualifies the design of the emergency vent line to be adequate for the assumed heat loads to the helium dewar.

  18. Blow-down analysis of helium from a cryogenic dewar

    NASA Astrophysics Data System (ADS)

    Khan, H. J.; Zhang, Q. Q.; Rhee, M.; Figueroa, O.

    NASA is currently developing Space Shuttle-based refilling of helium using superfluid helium on-orbit transfer (SHOOT). All the critical components of SHOOT need to be developed through ground-based tests. The helium dewar is one of these components. The Dewar consists of a vacuum vessel enclosing a superinsulated tank. The space between the vacuum vessel and the liquid tank is considered a common vacuum space. In the event that the vacuum is lost, the heat transfers to the dewar and the pressure inside the dewar increases rapidly, resulting in rupture of the dewar due to excessive pressure. Therefore, an emergency vent line is required for release of helium to prevent the dewar from rupturing. The study describes a numerical model for blow-down analysis in an emergency. This qualifies the design of the emergency vent line to be adequate for the assumed heat loads to the helium dewar.

  19. Shock Compression of Liquid Helium to 56 GPa (560) Kbar

    NASA Technical Reports Server (NTRS)

    Nellis, W. J.; Holmes, N. C.; Mitchell, A. C.; Trainor, R. J.; Governo, G. K.; Ross, M.; Young, D. A.

    1985-01-01

    Shock-wave data are presented for liquid helium which has been compressed to densities up to five times greater than the normal liquid. The helium was heated to temperatures up to 21,000 K, while the maximum pressure attained was 56 GPa. The properties of helium and hydrogen are important for modeling the giant planets Saturn and Jupiter where these elements are the major constituents. Conditions on Saturn are of particular interest because studies have suggested that this planet has an internal energy source which is associated with unmixing and gravitational separation the hydrogen-helium fluid at pressures below 1 TPa. The existence of this phase transition depends very sensitively on the hydrogen and helium equation of state. In the experiments, strong shock waves were generated by the impact of planar projectiles into cryogenic specimen holders.

  20. Shock compression of liquid helium to 56 GPa (560 kbar)

    NASA Technical Reports Server (NTRS)

    Nellis, W. J.; Holmes, N. C.; Mitchell, A. C.; Governo, G. K.; Ross, M.; Young, D. A.; Trainor, R. J.

    1984-01-01

    Shock-wave data are presented for liquid helium which has been compressed to densities up to five times greater than the normal liquid. The helium was heated to temperatures up to 21,000 K, while the maximum pressure attained was 56 GPa. The properties of helium and hydrogen are important for modeling the giant planets Saturn and Jupiter where these elements are the major constituents. Conditions on Saturn are of particular interest because studies have suggested that this planet has an internal energy source which is associated with unmixing and gravitational separation of the hydrogen-helium fluid at pressures below 1 TPa. The existence of this phase transition depends very sensitively on the hydrogen and helium equation of state. In the experiments, strong shock waves were generated by the impact of planar projectiles into cryogenic specimen holders.

  1. Blow-down analysis of helium from a cryogenic dewar

    NASA Technical Reports Server (NTRS)

    Khan, H. J.; Zhang, Q. Q.; Rhee, M.; Figueroa, O.

    1992-01-01

    NASA is currently developing Space Shuttle-based refilling of helium using superfluid helium on-orbit transfer (SHOOT). All the critical components of SHOOT need to be developed through ground-based tests. The helium dewar is one of these components. The Dewar consists of a vacuum vessel enclosing a superinsulated tank. The space between the vacuum vessel and the liquid tank is considered a common vacuum space. In the event that the vacuum is lost, the heat transfers to the dewar and the pressure inside the dewar increases rapidly, resulting in rupture of the dewar due to excessive pressure. Therefore, an emergency vent line is required for release of helium to prevent the dewar from rupturing. The study describes a numerical model for blow-down analysis in an emergency. This qualifies the design of the emergency vent line to be adequate for the assumed heat loads to the helium dewar.

  2. Effect of boundary conditions on the kinetics of helium release from structural materials

    NASA Astrophysics Data System (ADS)

    Zaluzhnyi, A. G.

    2015-11-01

    Gaseous products of nuclear reactions (specifically, helium) play a significant part in altering the material properties upon irradiation. It is known that atoms of inert gases promote the generation and growth of pores in irradiated materials and affect phenomena such as swelling, high-temperature irradiation embrittlement, etc. Therefore, a study of the behavior of helium (its production, accumulation, retention, and release) within structural materials is fairly topical. In order to validate the methods of express imitation of accumulation and retention of helium within structural materials under reactor irradiation, we perform a comparative analysis of the spectra of the rate of gas release from samples of austenitic steel 0Kh16N15M3B that were saturated with helium in different ways, i.e., through irradiation in a cyclotron, a magnetic massseparation setup, the IRT-2000 reactor, the BOR-60 reactor, and using the so-called tritium trick technique. The effect of the presence of dislocations and grain boundaries on the release of helium from materials is evaluated. The results of the research conducted show that the kinetics of helium release from samples saturated with helium through the bombardment with alpha particles of different energies, which ensures the simultaneous introduction of helium and radiation defects (in wide ranges of helium concentration and radiation damage) into the material lattice, is similar to the kinetics of helium release from samples irradiated in reactors.

  3. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  4. Barometric pressure

    NASA Technical Reports Server (NTRS)

    Billings, C. E.

    1973-01-01

    The effects of alterations in barometric pressure on human beings are described. Human tolerances for gaseous environments and low and high barometric pressure are discussed, including effects on specific areas, such as the ear, lungs, teeth, and sinuses. Problems due to trapped gas within the body, high dynamic pressures on the body, and blasts are also considered.

  5. Effect of gaseous ammonia on nicotine sorption

    SciTech Connect

    Webb, A.M.; Singer, B.C.; Nazaroff, W.W.

    2002-06-01

    Nicotine is a major constituent of environmental tobacco smoke. Sorptive interactions of nicotine with indoor surfaces can substantially alter indoor concentrations. The phenomenon is poorly understood, including whether sorption is fully reversible or partially irreversible. They hypothesize that acid-base chemistry on indoor surfaces might contribute to the apparent irreversibility of nicotine sorption under some circumstances. Specifically, they suggest that nicotine may become protonated on surfaces, markedly reducing its vapor pressure. If so, subsequent exposure of the surface to gaseous ammonia, a common base, could raise the surface pH, causing deprotonation and desorption of nicotine from surfaces. A series of experiments was conducted to explore the effect of ammonia on nicotine sorption to and reemission from surfaces. The results indicate that, under some conditions, exposure to gaseous ammonia can substantially increase the rate of desorption of previously sorbed nicotine from common indoor surface materials.

  6. Removing gaseous contaminants in {sup 3}He by cryogenic stripping

    SciTech Connect

    Benapfl, M.; Biltoft, P.; Coombs, A.

    1995-08-17

    The Tritium Operations Group at LLNL, Tritium Facility has recently developed a {sup 3}He recovery system to remove argon, xenon, neon, hydrogen, and all other contaminants from the {sup 3}He stream in an Accelerator Production of Tritium (APT) experimental apparatus. In this paper the authors will describe in detail the background information, technical requirements, the design approach, and the results of their experimental tests. The authors believe this gas purification system may have other applications as it provides at a reasonable cost an efficient method for purification of gaseous helium.

  7. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  8. Inhalation gases or gaseous mediators as neuroprotectants for cerebral ischaemia.

    PubMed

    Sutherland, Brad A; Harrison, Joanne C; Nair, Shiva M; Sammut, Ivan A

    2013-01-01

    Ischaemic stroke is one of the leading causes of morbidity and mortality worldwide. While recombinant tissue plasminogen activator can be administered to produce thrombolysis and restore blood flow to the ischaemic brain, therapeutic benefit is only achieved in a fraction of the subset of patients eligible for fibrinolytic intervention. Neuroprotective therapies attempting to restrict the extent of brain injury following cerebral ischaemia have not been successfully translated into the clinic despite overwhelming pre-clinical evidence of neuroprotection. Therefore, an adequate treatment for the majority of acute ischaemic stroke patients remains elusive. In the stroke literature, the use of therapeutic gases has received relatively little attention. Gases such as hyperbaric and normobaric oxygen, xenon, hydrogen, helium and argon all possess biological effects that have shown to be neuroprotective in pre-clinical models of ischaemic stroke. There are significant advantages to using gases including their relative abundance, low cost and feasibility for administration, all of which make them ideal candidates for a translational therapy for stroke. In addition, modulating cellular gaseous mediators including nitric oxide, carbon monoxide, and hydrogen sulphide may be an attractive option for ischaemic stroke therapy. Inhalation of these gaseous mediators can also produce neuroprotection, but this strategy remains to be confirmed as a viable therapy for ischaemic stroke. This review highlights the neuroprotective potential of therapeutic gas therapy and modulation of gaseous mediators for ischaemic stroke. The therapeutic advantages of gaseous therapy offer new promising directions in breaking the translational barrier for ischaemic stroke.

  9. GASEOUS DISCHARGE DEVICE

    DOEpatents

    Gow, J.D.

    1961-01-10

    An extremely compact two-terminal gaseous discharge device is described that is capable of producing neutrons in copious quantities, relatively high energy ions, intense x rays, and the like. Principal novelty resides in the provision of a crossed electric-magnetic field region in the discharge envelope that traps electrons and accelerates them to very high energies to provide an intense ionizing medium adjacent the anode of the device for ionizing gas therein with extremely high efficiency. In addition, the crossed-field trapping region holds the electrons close to the anode whereby the acceleration of ions to the cathode is not materially effected by the electron sheath and the ions assume substantially the full energy of the anodecathode potential drop. (auth)

  10. Ethylene Oxide Gaseous Sterilization

    PubMed Central

    Ernst, Robert R.; Shull, James J.

    1962-01-01

    The duration of the equilibration period between admission of water vapor and subsequent introduction of gaseous ethylene oxide to an evacuated sterilizer chamber was studied with respect to its effect on the inactivation of spores of Bacillus subtilis var. niger under simulated practical conditions. Introduction of a water-adsorbing cotton barrier between the spores and an incoming gas mixture of water vapor and ethylene oxide caused a marked increase in the observed thermochemical death time of the spore populations. This effect was negated by admission of water vapor one or more minutes prior to introduction of ethylene oxide gas. Increases in temperature and relative humidity of the system promoted passage of water vapor through the cotton barriers and diminished their effect. PMID:13890660

  11. Performance of Oil-Injected Scroll Compressors for Helium Refrigerators

    NASA Astrophysics Data System (ADS)

    Shiibayashi, Masao; Izunaga, Yasushi; Sado, Shintaro

    In recent years there arises growing demand of helium liquefaction refrigerators for the magnetic resonance imaging systems, magnetically levitated vehicles and other systems using superconducting magnet. From this background, a small size, scroll type of hermetic helium compressor capable of compressing helium gas to the pressure ratio of 20 in a single stage is developed. Main features of this compressor are as follows. 1) Discharge capacity can be varied from 7 to 20 Nm3/h by changing driving motor frequency from 30 to 80 Hz. 2) The overall adiabatic efficiency showed 72%∼79% under the pressure ratio range of 11∼20 at 60 Hz using oil injection cooling device.

  12. Observation of a superfluid component within solid helium.

    PubMed

    Lauter, H; Apaja, V; Kalinin, I; Kats, E; Koza, M; Krotscheck, E; Lauter, V V; Puchkov, A V

    2011-12-23

    We demonstrate by neutron scattering that a localized superfluid component exists at high pressures within solid helium in aerogel. Its existence is deduced from the observation of two sharp phonon-roton spectra which are clearly distinguishable from modes in bulk superfluid helium. These roton excitations exhibit different roton gap parameters than the roton observed in the bulk fluid at freezing pressure. One of the roton modes disappears after annealing the samples. Comparison with theoretical calculations suggests that the model that reproduces the observed data best is that of superfluid double layers within the solid and at the helium-substrate interface.

  13. Gaseous trace impurity analyzer and method

    DOEpatents

    Edwards, Jr., David; Schneider, William

    1980-01-01

    Simple apparatus for analyzing trace impurities in a gas, such as helium or hydrogen, comprises means for drawing a measured volume of the gas as sample into a heated zone. A segregable portion of the zone is then chilled to condense trace impurities in the gas in the chilled portion. The gas sample is evacuated from the heated zone including the chilled portion. Finally, the chilled portion is warmed to vaporize the condensed impurities in the order of their boiling points. As the temperature of the chilled portion rises, pressure will develop in the evacuated, heated zone by the vaporization of an impurity. The temperature at which the pressure increase occurs identifies that impurity and the pressure increase attained until the vaporization of the next impurity causes a further pressure increase is a measure of the quantity of the preceding impurity.

  14. Experiments with single electrons in liquid helium

    SciTech Connect

    Guo, W.; Jin, D.; Seidel, G. M.; Maris, H. J.

    2009-02-01

    We describe experiments we have performed in which we are able to image the motion of individual electrons moving in liquid helium 4. Electrons in helium form bubbles of radius {approx}19 A. We use the negative pressure produced by a sound wave to expand these bubbles to a radius of about 10 {mu}m. The bubbles are then illuminated with light from a flash lamp and their position recorded. We report on several interesting phenomena that have been observed in these experiments. It appears that the majority of the electrons that we detect result from cosmic rays passing through the experimental cell. We discuss this mechanism for electron production.

  15. Japan's research on gaseous flames

    NASA Technical Reports Server (NTRS)

    Niioka, Takashi

    1995-01-01

    Although research studies on gaseous flames in microgravity in Japan have not been one-sided, they have been limited, for the most part, to comparatively fundamental studies. At present it is only possible to achieve a microgravity field by the use of drop towers, as far as gaseous flames are concerned. Compared with experiments on droplets, including droplet arrays, which have been vigorously performed in Japan, studies on gaseous flames have just begun. Experiments on ignition of gaseous fuel, flammability limits, flame stability, effect of magnetic field on flames, and carbon formation from gaseous flames are currently being carried out in microgravity. Seven subjects related to these topics are introduced and discussed herein.

  16. Combined cold compressor/ejector helium refrigerator

    DOEpatents

    Brown, D.P.

    1984-06-05

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  17. Combined cold compressor/ejector helium refrigerator

    DOEpatents

    Brown, Donald P.

    1985-01-01

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  18. Liquid vapour spinodal of pure helium 4

    NASA Astrophysics Data System (ADS)

    Imre, Attila R.; Kraska, Thomas

    2008-10-01

    Unlike gases, liquids can be overheated or stretched only up to a limit. The determination of the mean-field thermodynamic stability limit-the so-called spinodal-is a very difficult theoretical and a more-or-less impossible experimental task. Based on a recent semi-empirical method, the spinodal pressure of helium-4 at given temperature is determined, using liquid-vapour surface tension, interface thickness and vapour pressure data.

  19. Helium induces preconditioning in human endothelium in vivo.

    PubMed

    Smit, Kirsten F; Oei, Gezina T M L; Brevoord, Daniel; Stroes, Erik S; Nieuwland, Rienk; Schlack, Wolfgang S; Hollmann, Markus W; Weber, Nina C; Preckel, Benedikt

    2013-01-01

    Helium protects myocardium by inducing preconditioning in animals. We investigated whether human endothelium is preconditioned by helium inhalation in vivo. Forearm ischemia-reperfusion (I/R) in healthy volunteers (each group n = 10) was performed by inflating a blood pressure cuff for 20 min. Endothelium-dependent and endothelium-independent responses were measured after cumulative dose-response infusion of acetylcholine and sodium nitroprusside, respectively, at baseline and after 15 min of reperfusion using strain-gauge, venous occlusion plethysmography. Helium preconditioning was applied by inhalation of helium (79% helium, 21% oxygen) either 15 min (helium early preconditioning [He-EPC]) or 24 h before I/R (helium late preconditioning). Additional measurements of He-EPC were done after blockade of endothelial nitric oxide synthase. Plasma levels of cytokines, adhesion molecules, and cell-derived microparticles were determined. Forearm I/R attenuated endothelium-dependent vasodilation (acetylcholine) with unaltered endothelium-independent response (sodium nitroprusside). Both He-EPC and helium late preconditioning attenuated I/R-induced endothelial dysfunction (max increase in forearm blood flow in response to acetylcholine after I/R was 180 ± 24% [mean ± SEM] without preconditioning, 573 ± 140% after He-EPC, and 290 ± 32% after helium late preconditioning). Protection of helium was comparable to ischemic preconditioning (max forearm blood flow 436 ± 38%) and was not abolished after endothelial nitric oxide synthase blockade. He-EPC did not affect plasma levels of cytokines, adhesion molecules, or microparticles. Helium is a nonanesthetic, nontoxic gas without hemodynamic side effects, which induces early and late preconditioning of human endothelium in vivo. Further studies have to investigate whether helium may be an instrument to induce endothelial preconditioning in patients with cardiovascular risk factors.

  20. The Descending Helium Balloon

    ERIC Educational Resources Information Center

    Helseth, Lars Egil

    2014-01-01

    I describe a simple and fascinating experiment wherein helium leaks out of a rubber balloon, thereby causing it to descend. An estimate of the volumetric leakage rate is made by measuring its rate of descent.

  1. The Descending Helium Balloon

    ERIC Educational Resources Information Center

    Helseth, Lars Egil

    2014-01-01

    I describe a simple and fascinating experiment wherein helium leaks out of a rubber balloon, thereby causing it to descend. An estimate of the volumetric leakage rate is made by measuring its rate of descent.

  2. The descending helium balloon

    NASA Astrophysics Data System (ADS)

    Helseth, Lars Egil

    2014-07-01

    I describe a simple and fascinating experiment wherein helium leaks out of a rubber balloon, thereby causing it to descend. An estimate of the volumetric leakage rate is made by measuring its rate of descent.

  3. Method for removing acid gases from a gaseous stream

    DOEpatents

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  4. Experimental helium liquefier with a GM cryocooler

    NASA Astrophysics Data System (ADS)

    Choudhury, Anup; Sahu, Santosh

    2017-06-01

    A helium liquefier has been developed with a Gifford-McMahon cryocooler using the cold enthalpy available at the first stage, the inter-stage, and the second stage of the cryocooler. Most of the enthalpy of the helium gas at 300 K is absorbed in the first stage by a coaxial heat exchanger and inter-stage region of the cryocooler. Pre-cooled helium gas is liquefied at the second stage heat exchanger where the final cooldown and condensation happens. The measured production capacity of the liquefier is 17.4 l/day at atmospheric pressure. The whole setup has been designed to work in a coaxial configuration where the two heat exchangers, the cryostat, and the dewar are symmetrically placed around the central axis.

  5. Feasibility of gas-phase decontamination of gaseous diffusion equipment

    SciTech Connect

    Munday, E.B.; Simmons, D.W.

    1993-02-01

    The five buildings at the K-25 Site formerly involved in the gaseous diffusion process contain 5000 gaseous diffusion stages as well as support facilities that are internally contaminated with uranium deposits. The gaseous diffusion facilities located at the Portsmouth Gaseous Diffusion Plant and the Paducah Gaseous Diffusion Plant also contain similar equipment and will eventually close. The decontamination of these facilities will require the most cost-effective technology consistent with the criticality, health physics, industrial hygiene, and environmental concerns; the technology must keep exposures to hazardous substances to levels as low as reasonably achievable (ALARA). This report documents recent laboratory experiments that were conducted to determine the feasibility of gas-phase decontamination of the internal surfaces of the gaseous diffusion equipment that is contaminated with uranium deposits. A gaseous fluorinating agent is used to fluorinate the solid uranium deposits to gaseous uranium hexafluoride (UF{sub 6}), which can be recovered by chemical trapping or freezing. The lab results regarding the feasibility of the gas-phase process are encouraging. These results especially showed promise for a novel decontamination approach called the long-term, low-temperature (LTLT) process. In the LTLT process: The equipment is rendered leak tight, evacuated, leak tested, and pretreated, charged with chlorine trifluoride (ClF{sub 3}) to subatmospheric pressure, left for an extended period, possibly > 4 months, while processing other items. Then the UF{sub 6} and other gases are evacuated. The UF{sub 6} is recovered by chemical trapping. The lab results demonstrated that ClF{sub 3} gas at subatmospheric pressure and at {approx} 75{degree}F is capable of volatilizing heavy deposits of uranyl fluoride from copper metal surfaces sufficiently that the remaining radioactive emissions are below limits.

  6. BASG thermomechanical pump helium 2 transfer tests

    NASA Technical Reports Server (NTRS)

    Mills, G. L.; Newell, D. A.; Urbach, A. R.

    1990-01-01

    The purpose of the effort described was to perform experiments and calculations related to using a thermomechanical pump in the space-based resupply of the Space Infrared Telescope Facility (SIRTF) with Helium 2. Thermomechanical (fountain effect) pumps have long been suggested as a means for pumping large quantities of Helium 2. The unique properties of Helium 2 have made it useful for cooling space instruments. Several space science missions, including SIRTF, are now being planned which would benefit greatly from on-orbit resupply of Helium 2. A series of experiments were performed to demonstrate that large volumes of Helium 2 can be transferred with a thermomechanical pump at high flow rates and at high efficiency from one dewar to another through valves and lines that are similar to the plumbing arrangement that would be necessary to accomplish such a transfer on-orbit. In addition, temperature, pressure, and flow rate data taken during the tests were used to verify and refine a computer model which was developed.

  7. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants watch as helium-filled balloons take to the sky after their lines were cut. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO.

  8. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants cut the lines to helium-filled balloons. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO.

  9. In situ controlled modification of the helium density in single helium-filled nanobubbles

    SciTech Connect

    David, M.-L. Pailloux, F.; Alix, K.; Mauchamp, V.; Pizzagalli, L.; Couillard, M.; Botton, G. A.

    2014-03-28

    We demonstrate that the helium density and corresponding pressure can be modified in single nano-scale bubbles embedded in semiconductors by using the electron beam of a scanning transmission electron microscope as a multifunctional probe: the measurement probe for imaging and chemical analysis and the irradiation source to modify concomitantly the pressure in a controllable way by fine tuning of the electron beam parameters. The control of the detrapping rate is achieved by varying the experimental conditions. The underlying physical mechanisms are discussed; our experimental observations suggest that the helium detrapping from bubbles could be interpreted in terms of direct ballistic collisions, leading to the ejection of the helium atoms from the bubble.

  10. Helium detection in gas mixtures by laser-induced breakdown spectroscopy.

    PubMed

    Eseller, Kemal E; Yueh, Fang-Yu; Singh, Jagdish P; Melikechi, Noureddine

    2012-03-01

    Laser-induced breakdown spectroscopy (LIBS) has been evaluated as a tool for monitoring trace levels of helium in gas mixtures consisting mostly of hydrogen. Calibration data for helium in hydrogen was investigated at different helium concentration levels. At high concentrations of helium (>7.25%), the LIBS signal is quenched due to Penning ionization. The hydrogen alpha line (656.28 nm) was observed to broaden as the concentration of helium impurities in the hydrogen gas mixture increased. The helium line at 587.56 nm was selected as the analyte line for helium impurity detection. The effects of laser energy, the delay time between the laser pulse and data acquisition, and the gas pressure on the LIBS signal of helium were investigated to determine the optimum conditions for helium detection. The LIBS signal from the helium line at 587.56 nm shows good linear correlation with helium concentration for He concentrations below 1%. Thus, LIBS can be reliably used to detect the low levels of helium. The limit of detection for helium was found to be 78 ppm. © 2012 Optical Society of America

  11. Ethylene Oxide Gaseous Sterilization

    PubMed Central

    Ernst, Robert R.; Shull, James J.

    1962-01-01

    The relationships of reaction temperature and concentration of gaseous ethylene oxide to the time required for inactivation of air-dried Bacillus subtilis var. niger spores are more complex than previously reported. A plot of temperature vs. the logarithm of “thermochemical death time” (TCDT) resulted in a straight line between 18 and 57 C for systems of “high” ethylene oxide concentration. The TCDT values were independent of ethylene oxide concentrations above certain temperature-dependent limits. A given ethylene oxide concentration produced a TCDT curve identical in the upper temperature regions with that for higher concentrations. As the temperature was lowered beyond a critical point, this curve diverged from that for higher concentrations, as a straight line of lesser slope. Thus, a series of curves exists for a range of ethylene oxide concentrations. They are characterized by two segments, both logarithmic, intersecting at a critical temperature for each concentration. The intersecting point is at a temperature inversely related to the ethylene oxide gas concentration. The temperature quotient for the high temperature segments of all systems was 1.8. This value was characteristic for ethylene oxide concentrations of 440 and 880 mg/liter at temperatures above 40.6 and 33.4 C, respectively. Below these critical temperatures, the Q10 values for the respective systems were 3.2 and 2.3. PMID:13890659

  12. Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: Analyte interactions and signal enhancement

    NASA Astrophysics Data System (ADS)

    Henry, C. A.; Diwakar, P. K.; Hahn, D. W.

    2007-12-01

    The role of helium addition on the analyte signal enhancement in laser-induced breakdown spectroscopy for analysis of pure gaseous systems was examined using carbon and hydrogen atomic emission lines. Increased analyte response, as measured by peak-to-base and signal-to-noise ratios, was observed with increasing helium addition, with maximum enhancement approaching a factor of 7. Additional measurements revealed a significant decrease in plasma electron density with increasing helium addition. To explore the mechanisms of analyte signal enhancement, the helium emission lines were also examined and found to be effectively quenched with nitrogen addition. In consideration of the data, it is concluded that the role of metastable helium is not as important as the overall changes in plasma properties, namely electron density and laser-plasma coupling. Helium addition is concluded to affect the electron density via Penning ionization, as well as to play a role in the initial plasma breakdown processes.

  13. Measurements of the total energy lost per electron-ion pair lost in low-pressure inductive argon, helium, oxygen and nitrogen discharge

    NASA Astrophysics Data System (ADS)

    Lee, Young-Kwang; Ku, Ju-Hwan; Chung, Chin-Wook

    2011-02-01

    Experimental measurements of the total energy lost per electron-ion pair lost, ɛT, were performed in a low-pressure inductive atomic gases (Ar, He) and molecular gases (O2, N2) discharge. The value of ɛT was determined from a power balance based on the electropositive global (volume-averaged) model. A floating harmonic method was employed to measure ion fluxes and electron temperatures at the discharge wall. In the pressure range 5-50 mTorr, it was found that the measured ɛT ranged from about 70 to 150 V for atomic gases, but from about 180 to 1300 V for molecular gases. This difference between atomic and molecular discharge is caused by additional collisional energy losses of molecular gases. For argon discharge, the stepwise ionization effect on ɛT was observed at relatively high pressures. For different gases, the measured ɛT was evaluated with respect to the electron temperature, and then compared with the calculation results, which were derived from collisional and kinetic energy loss. The measured ɛT and their calculations showed reasonable agreement.

  14. A New Determination of the Helium Vapour Pressure Scales Using a CMN Magnetic Thermometer and the NPL-75 Gas Thermometer Scale

    NASA Astrophysics Data System (ADS)

    Rusby, R. L.; Swenson, C. A.

    1980-04-01

    A single-crystal cerous magnesium nitrate (CMN) paramagnetic salt thermometer has been set up and used for therometry between 0.4 K and 3.1 K in a cryostat also equipped for the measurement of the vapour pressures of 3He and 4He. Two temperature scales, TX 1 and TX 2, have been derived in experiments with samples of CMN obtained from different sources. They are in agreement to +/- 0.2 mK with the NPL-75 gas thermometry scale above 2.6 K, with the TXISU (1975) magnetic thermometry scale down to 1.3 K and with each other down to 1 K. There are appreciable differences between the two scales below 1 K for an unidentified reason. The scales are retained in terms of calibrations of 5 rhodium-iron resistance thermometers which also carry NPL-75. Vapour pressure data for 3He and 4He obtained with these thermometers have contributed to the derivation of values for the differences between EPT-76 and the established vapour pressure scales, T58 and T62, and also are intended for use in the complete revision of T58 and T62 which is envisaged by the Comité Consultatif de Thermometrie. The relationships between these various scales and other thermometric data in the range 0.5 K to 5.2 K are discussed.

  15. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium. Final report

    SciTech Connect

    Misencik, J.A.; Titran, R.H.

    1984-10-01

    Sixteen commercial tubing alloys were endurance tested at 820/sup 0/ C, 15 MPa in a diesel-fuel fired Stirling engine simulator materials test rig: iron-base N-155, A-286, Incoloy 800, 19-9DL, CG-27, W-545, 12RN72, 253MA, Sanicro 31H and Sanicro 32; nickel-base Inconel 601, Inconel 625, Inconel 718, Inconel 750 and Pyromet 901; and cobalt-base HS-188. The iron-nickel alloys CG-27 and Pyromet 901 exhibited superior oxidation/corrosion resistance to the diesel-fuel combustion products and surpassed the design criterias' 3500 h creep-rupture endurance life. Three other alloys, Inconel 625, W-545, and 12RN72, had creep-rupture failures after 2856, 2777, and 1598 h, respectively. Hydrogen permeability coefficients determined after 250 h of rig exposure show that Pyromet 901 had the lowest Phi value, 0.064x10/sup -6/ cm/sup 2//s MPa/sup 1///sup 2/. The next five hairpin tubes, CG-27, Inconel 601, Inconel 718(wd), Inconel 750, and 12RN72(cw) all had Phi values below 0.2x10/sup -6/ more than a decade lower than the design criteria. Based upon its measured high strength and low hydrogen permeation, CG-27 was selected for 3500 h endurance testing at 21 MPa gas pressure and 820/sup 0/C. Results of the high pressure, 21 MPa, CG-27 endurance test demonstrated that the 1.0 vol % C0/sub 2/ dopant is an effective deterrent to hydrogen permeation. The 21 MPa hydrogen gas pressure apparent permeability coefficient at 820/sup 0/C approached 0.1x10/sup -6/ cm/sup 2/sec MPa/sup 1///sup 2/ after 500 hr, the same as the 15 MPa test. Even at this higher gas pressure and comparable permeation rate, CG-27 passed the 3500 hr endurance test without creep-rupture failures. It is concluded that the CG-27 alloy, in the form of thin wall tubing is suitable for Stirling engine applications at 820/sup 0/C and gas pressures up to 21 MPa.

  16. Research of natural circulation in the experimental helium loop of STU

    NASA Astrophysics Data System (ADS)

    František, Urban; František, RidzoÅ; Branislav, Knížat; Róbert, Olšiak; Jozef, Bereznai; Peter, Mlynár

    2017-09-01

    On the STU experimental helium loop, natural circulation of the helium by residual thermal power of the reactor up to 220 kW, temperature of the helium from l50°C to 520°C and helium pressure up to 7,0 MPa is investigated. Selected measurements are analysed. Measurements realized on experimental device with different operational states of the STU helium loop can be used for cooling loops design corrections and validation of the computational algorithms of the passive heat removal from ALLEGRO nuclear reactor.

  17. Gas absorption cell photometer for rocket observations of local interstellar helium

    NASA Technical Reports Server (NTRS)

    Freeman, J.; Bowyer, S.; Paresce, F.; Lampton, M.

    1976-01-01

    A photometer sensitive in the 584-A line of He I, incorporating a helium-gas absorption cell, has been developed. The helium is confined at a pressure of 0.2 torr between thin-metal-foil broad-band ultraviolet filters. The cell contains sufficient helium to absorb 584-A radiation scattered from atmospheric helium. The ratio of fluxes seen with the cell full and empty provides a valuable datum for fitting models of the local interstellar medium, which is independent of solar 584-A flux, interstellar helium density, and photometer sensitivity.-

  18. Suprathermal electron energy spectrum and nonlocally affected plasma-wall interaction in helium/air micro-plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Adams, S. F.; Miles, J. A.; Koepke, M. E.; Kurlyandskaya, I. P.

    2016-10-01

    Details of ground-state and excited-state neutral atoms and molecules in an atmospheric-pressure micro-discharge plasma may be obtained by plasma electron spectroscopy (PLES), based on a wall probe. The presence and transport of energetic (suprathermal) electrons, having a nonlocal origin, are responsible for electrostatic charging of the plasma boundary surfaces to potentials many times that associated with the ambient electron kinetic energy. The energy-flux distribution function is shown to be controllable for applications involving analysis of composition and processes taking place in a multiphase (plasma-gas-solid), chemically reactive, interaction region.

  19. Comparison of two electro-hydrodynamic force models for the interaction between helium jet flow and an atmospheric-pressure "plasma jet"

    NASA Astrophysics Data System (ADS)

    Logothetis, D.; Papadopoulos, P. K.; Svarnas, P.; Vafeas, P.

    2016-12-01

    In this work, two simple phenomenological models of the electro-hydrodynamic force that arises in an atmospheric-pressure "plasma jet" are presented. The models are distinguished by the different boundary conditions applied for the consideration of the plasma propagation length. The comparison is based on numerical simulations, which are combined with experimental data, in order to determine the magnitude of the electro-hydrodynamic force and assess the ability of the two models to evaluate the visible plasma length. The results reveal that the gas flow characteristics depend on the spatial range of the force action and the force magnitude, and vice versa.

  20. Helium-flow measurement using ultrasonic technique

    SciTech Connect

    Sondericker, J.H.

    1983-01-01

    While designing cryogenic instrumentation for the Colliding Beam Accelerator (CBA) helium-distribution system it became clear that accurate measurement of mass flow of helium which varied in temperature from room to sub-cooled conditions would be difficult. Conventional venturi flow meters full scale differential pressure signal would decrease by more than an order of magnitude during cooldown causing unacceptable error at operating temperature. At sub-cooled temperatures, helium would be pumped around cooling loops by an efficient, low head pressure circulating compressor. Additional pressure drop meant more pump work was necessary to compress the fluid resulting in a higher outlet temperature. The ideal mass flowmeter for this application was one which did not add pressure drop to the system, functioned over the entire temperature range, has high resolution and delivers accurate mass flow measurement data. Ultrasonic flow measurement techniques used successfully by the process industry, seemed to meet all the necessary requirements. An extensive search for a supplier of such a device found that none of the commercial stock flowmeters were adaptable to cryogenic service so the development of the instrument was undertaken by the CBA Cryogenic Control and Instrumentation Engineering Group at BNL.

  1. Is solid helium a supersolid?

    SciTech Connect

    Hallock, Robert

    2015-05-15

    Recent experiments suggest that helium-4 atoms can flow through an experimental cell filled with solid helium. But that incompletely understood flow is quite different from the reported superfluid-like motion that so excited physicists a decade ago.

  2. Helium-refrigeration system

    SciTech Connect

    Specht, J.R.; Millar, B.; Sutherland, A.

    1995-08-01

    The design, procurement, and preliminary construction was completed for adding two more wet expansion engines to two helium refrigerators. These will be added in mid-year FY 1995. In addition a variable speed drive will be added to an existing helium compressor. This is part of an energy conservation upgrade project to reduce operating costs from the use of electricity and liquid nitrogen. This project involves the replacement of Joule-Thompson valves in the refrigerators with expansion engines resulting in system efficiency improvements of about 30% and improved system reliability.

  3. The Creation of Long-Lived Multielectron Bubbles in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Fang, Jieping; Tempere, J.; Silvera, Isaac F.

    2017-04-01

    Multielectron bubbles (MEBs) in liquid helium were first observed in the late 1970s, but their properties have never been explored experimentally due to their short lifetimes. MEBs in liquid helium are predicted to have dynamic instabilities for zero or positive pressures, and stability for negative pressures. We report the production of long-lived MEBs in a novel cell filled with helium at static negative pressures. MEBs were extracted from the vapor sheath of a heated filament loop embedded in the superfluid helium and were observed by high-speed photography as they rose in the helium under buoyant forces. In earlier studies we found that MEBs created in this way had large amplitude oscillations and were unstable to decay. By creating MEBs at temperatures just under the lambda point, these oscillations are rapidly damped and the MEBs relax toward a spherical shape and stability as they rise in the helium.

  4. Temperature dependence of helium diffusion through common epoxies

    NASA Astrophysics Data System (ADS)

    Lovinger, D. J.; Hallock, R. B.

    2012-12-01

    Helium gas at room temperature is known to diffuse through the epoxies commonly used in various low temperature applications, which can complicate leak detection. The helium flux typically decreases with decreasing temperature. We have measured the flux of helium that passes though thin sections of as-cast clear Stycast 1266, Stycast 2850FT (black) and TRA-BOND 2151 (blue) epoxies as a function of temperature in the range 130K < T < 300K. We analyze the data to create normalized (to constant sample thickness and pressure differential) data for comparison. We report the preliminary temperature-dependent fluxes we have measured, which show significant differences among the epoxies studied.

  5. Helium at White Dwarf Photospheric Conditions: Preliminary Laboratory Results

    NASA Astrophysics Data System (ADS)

    Schaeuble, M.; Falcon, R. E.; Gomez, T. A.; Winget, D. E.; Montgomery, M. H.; Bailey, J. E.

    2017-03-01

    We present preliminary results of an experimental study exploring helium at photospheric conditions of white dwarf stars. These data were collected at Sandia National Laboratories' Z-machine, the largest x-ray source on earth. Our helium results could have many applications ranging from validating current DB white dwarf model atmospheres to providing accurate He pressure shifts at varying temperatures and densities. In a much broader context, these helium data can be used to guide theoretical developments in new continuum-lowering models for two-electron atoms. We also discuss future applications of our updated experimental design, which enables us to sample a greater range of densities, temperatures, and gas compositions.

  6. Cavitation in flowing superfluid helium

    NASA Technical Reports Server (NTRS)

    Daney, D. E.

    1988-01-01

    Flowing superfluid helium cavitates much more readily than normal liquid helium, and there is a marked difference in the cavitation behavior of the two fluids as the lambda point is traversed. Examples of cavitation in a turbine meter and centrifugal pump are given, together with measurements of the cavitation strength of flowing superfluid helium. The unusual cavitation behavior of superfluid helium is attributed to its immense thermal conductivity .

  7. Gaseous Flows in Microchannels

    NASA Astrophysics Data System (ADS)

    Graur, I. A.; Méolans, J. G.; Zeitoun, D. E.

    2005-05-01

    The objective of this study is to broaden the fundamental understanding of the emerging field of microfluidics especially in a long channel. The quasi gasdynamic (QGD) equations, originally developed on the basis of a kinetical model are used for numerical and analytical simulation. A two-dimensional analysis of the QGD equations with a first order slip velocity boundary conditions demonstrates that both compressibility and rarefied effects are present in long microchannels. Analytical solutions for the pressure and the velocity profiles are derived from the quasi gasdynamic equations by undertaking perturbation expansions according to a small parameter ɛ (the height-to-length ratio of the channel) and using the isothermal flow assumption. The deduced expression for the mass flow rate is similar to the analytical expression obtained from the Navier-Stokes equations with a second order slip boundary condition and gives results in agreement with the measurements. The effects of the rarefaction and of the compressibility on pressure distributions are analyzed. The analytical expression of the pressure predicts accurately the measured pressure distribution. The Knudsen numbers calculated at the exit of the channel and based on the channel height vary from 10-3 to 0.4. The comparisons of analytical and numerical solutions confirm the validity of the analytical approach.

  8. Pressurization System Modeling for a Generic Bimese Two- Stage-to-Orbit Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Mazurkivich, Pete; Chandler, Frank; Nguyen, Han

    2005-01-01

    A pressurization system model was developed for a generic bimese Two-Stage-to-orbit Reusable Launch Vehicle using a cross-feed system and operating with densified propellants. The model was based on the pressurization system model for a crossfeed subscale water test article and was validated with test data obtained from the test article. The model consists of the liquid oxygen and liquid hydrogen pressurization models, each made up of two submodels, Booster and Orbiter tank pressurization models. The tanks are controlled within a 0.2-psi band and pressurized on the ground with ambient helium and autogenously in flight with gaseous oxygen and gaseous hydrogen. A 15-psi pressure difference is maintained between the Booster and Orbiter tanks to ensure crossfeed check valve closure before Booster separation. The analysis uses an ascent trajectory generated for a generic bimese vehicle and a tank configuration based on the Space Shuttle External Tank. It determines the flow rates required to pressurize the tanks on the ground and in flight, and demonstrates the model's capability to analyze the pressurization system performance of a full-scale bimese vehicle with densified propellants.

  9. Predicting gaseous pollutant dispersion around a workplace.

    PubMed

    Guerra, Davide; Ricciardi, Laurent; Laborde, Jean-Claude; Domenech, Serge

    2007-08-01

    Predicting the space-time evolution of a gaseous or particulate pollutant concentration in a ventilated room where a process operation is performed is imperative in hazardous activities, such as chemical or nuclear ones. This study presents a prediction of the space-time evolution of airborne pollutant dispersion following the accidental rupture of a containment enclosure (fume cupboard, glove box, pressurized gas duct, etc.). The final model is written as correlations inspired by the free turbulent jet theory, giving the space-time evolution of a pollutant concentration c (x,y,z,t) that has been formulated as a correlated function of various parameters: leak geometry (slot or round opening), emission type (continuous or transient), emission duration and initial emission velocity. These correlations are based on gas tracing experiments and on multidimensional simulations using computational fluid dynamics (CFD) tools. An instrumented experimental facility was used to simulate pressurized gas industrial failure, and the measurements performed gave the real-time evolution of a tracer gas concentration. Transient leak simulations were run in parallel with a CFD code. Comparisons between experimental and numerical results largely agree. A semiempirical model was built using a methodical parametric study of all the simulation results. This model is easy to use in safety evaluations of radioactive material containment and radiological protection inside nuclear facilities and for evaluating toxic gaseous compounds in the chemical industry.

  10. How to make Raman-inactive helium visible in Raman spectra of tritium-helium gas mixtures

    SciTech Connect

    Schloesser, M.; Pakari, O.; Rupp, S.; Mirz, S.; Fischer, S.

    2015-03-15

    Raman spectroscopy, a powerful method for the quantitative compositional analysis of molecular gases, e.g. mixtures of hydrogen isotopologues, is not able to detect monoatomic species like helium. This deficit can be overcome by using radioluminescence emission from helium atoms induced by β-electrons from tritium decay. We present theoretical considerations and combined Raman/radioluminescence spectra. Furthermore, we discuss the linearity of the method together with validation measurements for determining the pressure dependence. Finally, we conclude how this technique can be used for samples of helium with traces of tritium, and vice versa. (authors)

  11. Producing and imaging a thin line of He*₂ molecular tracers in helium-4.

    PubMed

    Gao, J; Marakov, A; Guo, W; Pawlowski, B T; Van Sciver, S W; Ihas, G G; McKinsey, D N; Vinen, W F

    2015-09-01

    Cryogenic helium-4 has long been recognized as a useful material in fluids research. The unique properties of helium-4 in the gaseous phase and the normal liquid phase allow for the generation of turbulent flows with exceptionally high Reynolds and Rayleigh numbers. In the superfluid phase, helium-4 exhibits two-fluid hydrodynamics and possesses fascinating properties due to its quantum nature. However, studying the flows in helium-4 has been very challenging largely due to the lack of effective visualization and velocimetry techniques. In this article, we discuss the development of novel instrumentation for flow-visualization in helium based on the generation and imaging of thin lines of metastable He*₂ tracer molecules. These molecular tracers are created via femtosecond-laser field-ionization of helium atoms and can be imaged using a laser-induced fluorescence technique. By observing the displacement and distortion of the tracer lines in helium, quantitative information about the flow field can be extracted. We present experimental results in the study of thermal counterflow in superfluid helium that validate the concept of this technique. We also discuss anticipated future developments of this powerful visualization technique.

  12. Purification of helium for chromatographic analysis by electrical discharge

    SciTech Connect

    Bondarenko, I.V.; Budovich, V.L.; Myagkov, E.A.; Okhotnikov, B.P.

    1986-02-01

    In order to apply gas discharge purification of helium in chromotographic analysis, the authors have carried out the separation process in the present work at a pressure above the atmospheric pressure. They then carry out the purification in an arc discharge, because it is difficult to achieve a stationary glow discharge at atmospheric pressure. Cylinder discharge chambers were used in the experiments, made of stainless steel with Teflon flanges. A decrease in the nitrogen content by a factor of 7-10 has been obtained in the experiments. The proposed method can be used for the purification of helium from cylinders in different variants of chromatographic analysis.

  13. The antimicrobial effects of helium and helium-air plasma on Staphylococcus aureus and Clostridium difficile.

    PubMed

    Galvin, S; Cahill, O; O'Connor, N; Cafolla, A A; Daniels, S; Humphreys, H

    2013-08-01

    Healthcare-associated infections (HCAI) affect 5-10% of acute hospital admissions. Environmental decontamination is an important component of all strategies to prevent HCAI as many bacterial causes survive and persist in the environment, which serve as ongoing reservoirs of infection. Current approaches such as cleaning with detergents and the use of chemical disinfectant are suboptimal. We assessed the efficacy of helium and helium-air plasma in killing Staphylococcus aureus and Clostridium difficile on a glass surface and studied the impact on bacterial cells using atomic force microscopy (AFM). Both plasma types exhibited bactericidal effects on Staph. aureus (log3·6 - >log7), with increased activity against methicillin-resistant strains, but had a negligible effect on Cl. difficile spores (<1log). AFM demonstrated cell surface disruption. The addition of air increased the microbicidal activity of the plasma and decreased the exposure time required for an equivalent log reduction. Further evaluation of cold plasma systems is warranted with, for example, different bacteria and on surfaces more reminiscent of the health care environment as this approach has potential as an effective decontaminant. Many bacterial causes of healthcare infection can survive in the inanimate environment for lengthy periods and be transmitted to patients. Furthermore, current methods of environmental decontamination such as detergents, chemical disinfectants or gaseous fumigation are suboptimal for a variety of reasons. We assessed the efficacy of helium and helium-air plasma as a decontaminant and demonstrated a significant reduction in bacterial counts of Staphylococcus aureus on a glass surface. Atomic force microscopy morphologically confirmed the impact on bacterial cells. This approach warrants further study as an alternative to current options for hospital hygiene. © 2013 The Society for Applied Microbiology.

  14. Helium anion formation inside helium droplets

    NASA Astrophysics Data System (ADS)

    Jabbour Al Maalouf, Elias; Reitshammer, Julia; Ribar, Anita; Scheier, Paul; Denifl, Stephan

    2016-07-01

    The formation of He∗- is examined with improved electron energy resolution of about 100 meV utilizing a hemispherical electron monochromator. The work presented provides a precise determination of the three previously determined resonance peak positions that significantly contribute to the formation of He∗- inside helium nanodroplets in the energy range from 20 eV to 29.5 eV. In addition, a new feature is identified located at 27.69 ± 0.18 eV that we assign to the presence of O2 as a dopant inside the droplet. With increasing droplet size a small blue shift of the resonance positions is observed. Also for the relatively low electron currents used in the present study (i.e., 15-70 nA) a quadratic dependence of the He∗- ion yield on the electron current is observed.

  15. Superconducting cable cooling system by helium gas and a mixture of gas and liquid helium

    DOEpatents

    Dean, John W.

    1977-01-01

    Thermally contacting, oppositely streaming cryogenic fluid streams in the same enclosure in a closed cycle that changes from a cool high pressure helium gas to a cooler reduced pressure helium fluid comprised of a mixture of gas and boiling liquid so as to be near the same temperature but at different pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid in a go leg from a refrigerator at one end of the line as a high pressure helium gas near the normal boiling temperature of helium; then circulating the gas through an expander at the other end of the line where the gas becomes a mixture of reduced pressure gas and boiling liquid at its boiling temperature; then by circulating the mixture in a return leg that is separated from but in thermal contact with the gas in the go leg and in the same enclosure therewith; and finally returning the resulting low pressure gas to the refrigerator for compression into a high pressure gas at T.sub.2 is a closed cycle, where T.sub.1 >T.sub.2, the temperature distribution is such that the line temperature is nearly constant along its length from the refrigerator to the expander due to the boiling of the liquid in the mixture. A heat exchanger between the go and return lines removes the gas from the liquid in the return leg while cooling the go leg.

  16. Formation of Positively Charged Liquid Helium Clusters in Supercritical Helium and their Solidification upon Compression.

    PubMed

    Tarchouna, Hejer Gharbi; Bonifaci, Nelly; Aitken, Frédéric; Mendoza Luna, Luis Guillermo; von Haeften, Klaus

    2015-08-06

    Positively charged ions were produced in supercritical helium at temperatures from 6 to 10 K and up to 2 MPa using a corona discharge. Their mobility was measured via current-voltage curves, and the hydrodynamic radius was derived using Stokes law. An initial increase and subsequent decrease of hydrodynamic radius was observed and interpreted in terms of growth, compression and solidification of ion clusters. The mobility was modeled using a van der Waals-type thermodynamic state equation for the ion-in-helium mixed system and a temperature-dependent Millikan-Cunningham factor, describing experimental data both in the Knudsen and the Stokes flow region. Regions of maximum hydrodynamic radius and large compressibility were interpreted as boiling points. These points were modeled over a large range of pressures and found to match the Frenkel line of pure helium up to 0.7 MPa, reflecting similarity of density fluctuations in pure supercritical helium and gas-liquid phase transitions of ionic helium clusters.

  17. Transitions of an atmospheric-pressure diffuse dielectric barrier discharge in helium for frequencies increasing from kHz to MHz

    NASA Astrophysics Data System (ADS)

    Boisvert, J.-S.; Margot, J.; Massines, F.

    2017-03-01

    Recent studies have shown that tuning a dielectric barrier discharge (DBD) in the medium-frequency range (MF: from 0.3 to 3 MHz) allows a low-power and a high-power mode to be sustained. In the present article the effect of the driving frequency on a DBD is studied from the low-frequency range (LF: from 30 to 300 kHz) to the high-frequency range (HF: from 3 to 30 MHz). This is achieved using fast imaging together with electrical and spectroscopic diagnostics. At every frequency, a diffuse discharge is sustained. It is observed that at 25 kHz the discharge is an atmospheric-pressure glow discharge (APGD) while at 15 MHz the discharge behaves as a capacitive discharge in the RF-α mode. The usual LF APGD behavior is observed up to 100 kHz. Above 200 kHz, the positive column remains during the whole cycle so that the hybrid mode is sustained. At 5 MHz, the hybrid mode finally turns into the RF-α mode. In addition to the LF APGD, RF-α and hybrid modes obtained when the applied voltage is significantly higher than the ignition value, two other modes can be reached at low applied voltage. A Townsend-like mode is achieved from 50 to 100 kHz while in the medium-frequency range, the Ω mode is sustained. Moreover, only from 1.0 to 2.7 MHz there is a large hysteresis occurring when the discharge transits back and forth from the Ω to the hybrid mode. It is also found that when the frequency increases from 25 kHz to 15 MHz, the rms current increases over two orders of magnitudes while the rms voltage decreases by about 60%. The gas temperature estimated from N2 rotational spectra is always close to room temperature but the discharge is more energy efficient (in the HF range) as a lower fraction of energy turns into gas heating.

  18. Development of a Flexible Seal for a 60 psi Cryogenic Pressure Box

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1998-01-01

    A cryogenic pressure box test facility has been designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 5 ft x 6 ft curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20 K) with 54 psig maximum pressure. The key challenge in the design and fabrication of the pressure box was the development of a seal that could remain flexible at -423 F and contain 60 psi gaseous helium as the pressurization gas. A C-shaped seal was developed using a Gore-tex woven fabric. Mechanical testing of the fabric at room and elevated temperature, liquid nitrogen temperature, and liquid helium temperature demonstrated the strength and creep resistance of the material over the desired operating range. A small scale cryogenic pressure box was used to test prototype seals at cryogenic temperatures up to 60 psi. Preliminary tests indicated that excessive leakage was present through the seal. As a result, an aluminized mylar liner was placed inside the Gore-tex seal to reduce leakage through the seal. The final seal configuration resulted in minimal pressure loss during seal testing.

  19. Entropy of gaseous boron monobromide

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Feng; Peng, Xiao-Long; Zhang, Lie-Hui; Wang, Chao-Wen; Jia, Chun-Sheng

    2017-10-01

    We present an explicit representation of molar entropy for gaseous boron monobromide in terms of experimental values of only three molecular constants. Fortunately, through comparison of theoretically calculated results and experimental data, we find that the molar entropy of gaseous boron monobromide can be well predicted by employing the improved Manning-Rosen oscillator to describe the internal vibration of boron monobromide molecule. The present approach provides also opportunities for theoretical predictions of molar entropy for other gases with no use of large amounts of experimental spectroscopy data.

  20. High energy chlorine for chlorine substitution involving Walden inversion in gaseous enantiomers

    NASA Astrophysics Data System (ADS)

    To, Kar-Chun; Rack, E. P.; Wolf, A. P.

    1981-01-01

    The reactions of 34mCl- for cl substitution in gaseous 2(S)-(+)- a and 2(R)-(-)-chloro-1-propanol are reported at various system pressures and in the presence of neon moderator and a radical scavenger. (AIP).