Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro
2015-03-01
This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com; Ishida, Yoshihiro; Osada, Morihiro
Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for amore » region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-04-01
The document is one of six technical handbooks prepared by EPA to help government officials granting permits to build synfuels facilities, synfuels process developers, and other interested parties. They provide technical data on waste streams from synfuels facilities and technologies capable of controlling them. Process technologies covered in the manuals include coal gasification, coal liquefaction by direct and idirect processing, and the extraction of oil from shale. The manuals offer no regulatory guidance, allowing the industry flexibility in deciding how best to comply with environmental regulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedman, P.O.; Smoot, L.D.; Smith, P.J.
1987-10-15
The general purpose of this research program was to develop a basic understanding of the physical and chemical processes in entrained coal gasification and to use the results to improve and evaluate an entrained gasification computer model. The first task included the collection and analysis of in-situ gasifier data at elevated pressures with three coal types (North Dakota lignite, Wyoming subbituminous and Illinois bituminous), the design, construction, and testing of new coal/oxygen/steam injectors with a fourth coal type (Utah bituminous), the collection of supporting turbulent fluid dynamic (LDV) data from cold-flow studies, and the investigation of the feasibility of usingmore » laser-based (CARS) daignostic instruments to make measurements in coal flames. The second task included improvements to the two-dimensional gasifier submodels, tabulation and evaluation of new coal devolatilization and char oxidation data for predictions, fundamental studies of turbulent particle dispersion, the development of improved numerical methods, and validation of the comprehensive model through comparison of predictions with experimental results. The third task was to transfer technical advances to industry and to METC through technical seminars, production of a detailed data book, code placement, and publication of results. Research results for these three tasks are summarized briefly here and presented in detail in the body of the report and in supporting references. 202 refs., 73 figs., 23 tabs.« less
Fluidized bed gasification of industrial solid recovered fuels.
Arena, Umberto; Di Gregorio, Fabrizio
2016-04-01
The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.M. Gandrik
2012-04-01
This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.
Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration
NASA Astrophysics Data System (ADS)
Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.
1981-03-01
A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.
Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.
1981-01-01
A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.
Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niessen, W.R.; Marks, C.H.; Sommerlad, R.E.
1996-08-01
This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition,more » mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy c onversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.« less
Integrated bioenergy conversion concepts for small scale gasification power systems
NASA Astrophysics Data System (ADS)
Aldas, Rizaldo Elauria
Thermal and biological gasification are promising technologies for addressing the emerging concerns in biomass-based renewable energy, environmental protection and waste management. However, technical barriers such as feedstock quality limitations, tars, and high NOx emissions from biogas fueled engines impact their full utilization and make them suffer at the small scale from the need to purify the raw gas for most downstream processes, including power generation other than direct boiler use. The two separate gasification technologies may be integrated to better address the issues of power generation and waste management and to complement some of each technologies' limitations. This research project investigated the technical feasibility of an integrated thermal and biological gasification concept for parameters critical to appropriately matching an anaerobic digester with a biomass gasifier. Specific studies investigated the thermal gasification characteristics of selected feedstocks in four fixed-bed gasification experiments: (1) updraft gasification of rice hull, (2) indirect-heated gasification of rice hull, (3) updraft gasification of Athel wood, and (4) downdraft gasification of Athel and Eucalyptus woods. The effects of tars and other components of producer gas on anaerobic digestion at mesophilic temperature of 36°C and the biodegradation potentials and soil carbon mineralization of gasification tars during short-term aerobic incubation at 27.5°C were also examined. Experiments brought out the ranges in performance and quality and quantity of gasification products under different operating conditions and showed that within the conditions considered in the study, these gasification products did not adversely impact the overall digester performance. Short-term aerobic incubation demonstrated variable impacts on carbon mineralization depending on tar and soil conditions. Although tars exhibited low biodegradation indices, degradation may be improved if the microorganisms used to deal with tars are selected and pre-conditioned to the tar environment. Overall, the results provided a basis for operational and design strategy for a combined gasification system but further study is recommended such as determination of the impacts in terms of emissions, power, efficiency and costs associated with the use of producer gas-enriched biogas taking advantage of hydrogen enrichment to reduce NOx and other pollutants in reciprocating engines and other energy conversion systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaul, G.; Nakhamkin, M.; Swensen, E.
1994-12-01
Turbomachinery trains were conceptually developed for three power plant concepts: Compressed Air Storage with Humidification and Integrated Gasification and Natural Gas Firing (CASHING), Natural Gas fired Compressed Air Storage with Humidification (NGCASH), and Integrated Gasification fired Compressed Air Storage with Humidification (IGCASH). Performance data, arrangement drawings, cost estimates, and other technical information for the three turboexpander trains were developed based on the Westinghouse BB51 steam turbine for the high pressure expander and the expander section of the W501F or W501D5 combustion turbine for the low pressure expander. The study supports previous EPRI projects investigating the performance and cost of CASHING,more » NGCASH, and IGCASH concepts and provides a basis for quotations that can be used in evaluating compressed air energy storage concepts in future projects.« less
Biomass thermochemical gasification: Experimental studies and modeling
NASA Astrophysics Data System (ADS)
Kumar, Ajay
The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For corn stover, the selling price of electricity was 0.1351/kWh. For DDGS, the selling price of electricity was 0.1287/kWh.
Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornetti, Micheal; Freeman, Douglas
2012-10-31
The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve tomore » validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could produce transportation fuels and produce pulp at the same time. This has the added advantage of reducing or eliminating the need for a recovery boiler. The recovery boiler is an extremely expensive unit operation in the Kraft process and is key to the chemical recovery system that makes the Kraft process successful. Going to a gasification process with potentially higher energy efficiency, improve the pulping process and be more efficient with the use of wood. At the same time a renewable fuel product can be made. Cellulosic Based Black Liquor Gasification and Fuels Plant progressed with the design of the mill as Chemrec continued to work on their pilot plant data gathering. The design information helped to guide the pilot plant and vice versa. In the end, the design details showed that the process was technically feasible. However, at the relatively small size of this plant the specific capital cost was very high and could only be considered if the pulp operation needed to replace the recovery boiler. Some of the reasons for the costs being high are attributed to the many constraints that needed to be addressed in the pulping process. Additionally, the Methanol product did not have a vehicle fuel supply chain to enter into. A different product selection could have eliminated this issue. However, with the selected design, the installation at Escanaba Paper Mill was not economically feasible and the project was not pursued further.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal,more » IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.« less
The prospect of hazardous sludge reduction through gasification process
NASA Astrophysics Data System (ADS)
Hakiki, R.; Wikaningrum, T.; Kurniawan, T.
2018-01-01
Biological sludge generated from centralized industrial WWTP is classified as toxic and hazardous waste based on the Indonesian’s Government Regulation No. 101/2014. The amount of mass and volume of sludge produced have an impact in the cost to manage or to dispose. The main objective of this study is to identify the opportunity of gasification technology which can be applied to reduce hazardous sludge quantity before sending to the final disposal. This preliminary study covers the technical and economic assessment of the application of gasification process, which was a combination of lab-scale experimental results and assumptions based on prior research. The results showed that the process was quite effective in reducing the amount and volume of hazardous sludge which results in reducing the disposal costs without causing negative impact on the environment. The reduced mass are moisture and volatile carbon which are decomposed, while residues are fix carbon and other minerals which are not decomposed by thermal process. The economical simulation showed that the project will achieve payback period in 2.5 years, IRR value of 53 % and BC Ratio of 2.3. The further study in the pilot scale to obtain the more accurate design and calculations is recommended.
NASA Technical Reports Server (NTRS)
Mistry, D. K.; Chen, T. N.
1977-01-01
A dry coal screw feeder for feeding coal into coal gasification reactors operating at pressures up to 1500 psig is described. Results on the feeder under several different modes of operation are presented. In addition, three piston feeder concepts and their technical and economical merits are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-09-01
This document presents a modeling and control study of the Fluid Bed Gasification (FBG) unit at the Morgantown Energy Technology Center (METC). The work is performed under contract no. DE-FG21-94MC31384. The purpose of this study is to generate a simple FBG model from process data, and then use the model to suggest an improved control scheme which will improve operation of the gasifier. The work first developes a simple linear model of the gasifier, then suggests an improved gasifier pressure and MGCR control configuration, and finally suggests the use of a multivariable control strategy for the gasifier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckingham, P.A.; Cobb, D.D.; Leavitt, A.A.
1981-08-01
This report presents the results of a technical and economic evaluation of producing methanol from bituminous coal using Texaco coal gasification and ICI methanol synthesis. The scope of work included the development of an overall configuration for a large plant comprising coal preparation, air separation, coal gasification, shift conversion, COS hydrolysis, acid gas removal, methanol synthesis, methanol refining, and all required utility systems and off-site facilities. Design data were received from both Texaco and ICI while a design and cost estimate were received from Lotepro covering the Rectisol acid gas removal unit. The plant processes 14,448 tons per day (drymore » basis) of Illinois No. 6 bituminous coal and produces 10,927 tons per day of fuel-grade methanol. An overall thermal efficiency of 57.86 percent was calculated on an HHV basis and 52.64 percent based on LHV. Total plant investment at an Illinois plant site was estimated to be $1159 million dollars in terms of 1979 investment. Using EPRI's economic premises, the first-year product costs were calculated to $4.74 per million Btu (HHV) which is equivalent to $30.3 cents per gallon and $5.37 per million Btu (LHV).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhamkin, M.; Patel, M.; Andersson, L.
1992-12-01
A previous study sponsored by EPRI concluded that integrating a compressed-air energy storage (CAES) plant with a coal-gasification system (CGS) can reduce the required capacity and cost of the expensive gasification system. The results showed that when compared at an equal plant capacity, the capital cost of the CGS portion of the integrated CAES/CGS plant can be reduced by as much as 30% relative to the same portion of an integrated gasification combined cycle (IGCC) plant. Furthermore, the capital cost of the CAES/CGS.plant, configured as a peaking unit, was found to be slightly lower than that of the base-load IGCCmore » plant. However, the overall economics of the CAES/CGS plant were adversely affected by the low capacity factor of the peak-load service, and ultimately, were found to be less attractive than the IGCC plant. The main objective of this study was to develop and analyze integrated CAES/CGS power plant concepts which provide for continuous (around-the-clock) operation of both the CAES reheat turboexpander train and the CGS facility. The developed concepts also provide utility-load management functions by driving the CAES compressor trains with off-peak electricity supplied through the grid. EPRI contracted with Energy Storage & Power Consultants, Inc. (ESPC) to develop conceptual designs, optimized performance characteristics, and preliminary cost data for these CAES/CGS concepts, and to provide a technical and cost comparison to the IGCC plant. The CAES/CGS concepts developed by ESPC for the current study contrast from those of Reference 1.« less
A techno-economic approach to plasma gasification
NASA Astrophysics Data System (ADS)
Ramos, Ana; Rouboa, Abel
2018-05-01
Within the most used Waste-to-Energy technologies plasma gasification is recent and therefore not yet widely commercialized. Thus, it is necessary to conduct a viability study to support the thorough understanding and implementation of this thermal treatment. This paper aims to assess some technical, environmental and economic aspects of plasma gasification paving the way for a more sustained waste management system, as well as taking advantage of the commodity assets granted by the technique. Therefore, results from previously published studies were updated and highlighted as a preliminary starting point in order to potentially evolve to a complete and systematic work.
Assessment of advanced coal gasification processes
NASA Technical Reports Server (NTRS)
Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.
1981-01-01
A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorres, K S
The overall accomplishments of the HYGAS program to date are that it has demonstrated the key process concepts and integrated unit operations of coal gasification. It has also demonstrated several methods of hydrogen generation, including catalytic steam reforming of natural gas, electrothermal gasification, and also steam-oxygen gasification. A total of 37 tests with lignite, including a total of 5500 tons of lignite processed, demonstrated the technical feasibility of a gasification process using lignite. A total of 17 tests with bituminous coal involved a total of 3100 tons. Some specific objectives of the HYGAS program for fiscal 1977 include tests tomore » be conducted with subbituminous coal. Data will be collected for use in the design of an effluent treatment and water reuse cycles in a commercial plant. New methanation catalysts will be tested. Materials testing will continue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastasia M. Gribik; Ronald E. Mizia; Harry Gatley
This project addresses both the technical and economic feasibility of replacing industrial gas in lime kilns with synthesis gas from the gasification of hog fuel. The technical assessment includes a materials evaluation, processing equipment needs, and suitability of the heat content of the synthesis gas as a replacement for industrial gas. The economic assessment includes estimations for capital, construction, operating, maintenance, and management costs for the reference plant. To perform these assessments, detailed models of the gasification and lime kiln processes were developed using Aspen Plus. The material and energy balance outputs from the Aspen Plus model were used asmore » inputs to both the material and economic evaluations.« less
Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea
2015-03-01
The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels of energy efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.
Coal gasification systems engineering and analysis. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1980-01-01
Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.
Low/medium-Btu coal-gasification feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-11-01
This study examines the feasibility of applying the concepts of Coal Gasification and Combined Cycle Technology to the re-powering of existing steam turbine-electric generating facilities. The primary objectives of this study include: (1) the determination of the feasibility of designing a technically sound system embodying this technology; (2) the determination of the potential for displacing foreign oil by the project; (3) the identificaton of any constraints and/or barriers that might impede the accomplishment of such a project; and (4) the evaluation of the potential benefits of such a system. Although the system is designed around the use of commercially available,more » state-of-the-art components and equipment, a completely integrated, electric generating plant, such as is being proposed here, has not yet been demonstrated. However, the designs developed as part of this study combine these components, utilizing well developed and technically sound concepts in such a way as to provide a reasonable degree of confidence in the workability of the total system. This study offers the potential for reducing oil dependency; the possibility of improving cycle efficiency and extending the useful life of existing facilities; the feasibility of re-vitalizing a facility located within a major load center; and presents some attractive possibilities for a co-generation, district heating application in the central portions of Bridgeport. Although the results of the study produce a number of clear conclusions, they also stimulate additional questions, the resolution of which would require further study and more detailed design. The final resolution of these questions that still remain may have a significant effect on the final conclusions concerning the viability of this project, and it is for this reason that further study is required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardi, Lidia, E-mail: lidia.lombardi@unicusano.it; Carnevale, Ennio; Corti, Andrea
2015-03-15
Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration,more » gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30–31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20–24%. Other types of technical solutions – gasification with syngas use in internally fired devices, pyrolysis and plasma gasification – are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels of energy efficiency.« less
CFD-Modeling of the Multistage Gasifier Capacity of 30 KW
NASA Astrophysics Data System (ADS)
Levin, A. A.; Kozlov, A. N.; Svishchev, D. A.; Donskoy, I. G.
2017-11-01
Single-stage fuel gasification processes have been developed and widely studied in Russia and abroad throughout the 20th century. They are fundamental to the creation and design of modern gas generator equipment. Many studies have shown that single-stage gasification process, have already reached the limit of perfection, which was a significant improvement in their performance becomes impossible and unprofitable. The most fully meet modern technical requirements of multistage gasification technology. In the first step of the process, is organized allothermic biomass pyrolysis using heat of exhaust gas and generating power plant. At this stage, the yield of volatile products (gas and tar) of fuel. In the second step, the layer of fuel is, the tar is decomposed by the action of hot air and steam, steam-gas mixture is formed further reacts with the charcoal in the third process stage. The paper presents a model developed by the authors of the multi-stage gasifier for wood chips. The model is made with the use of CFD-modeling software package (COMSOL Multiphisics). To describe the kinetics of wood pyrolysis and gasification of charcoal studies were carried out using a set of simultaneous thermal analysis. For this complex developed original methods of interpretation of measurements, including methods of technical analysis of fuels and determine the parameters of the detailed kinetics and mechanism of pyrolysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, B.C.; Schmit, C.R.
The report, conducted by Energy and Environmental Research Center, was funded by the US Trade and Development Agency. The objective of this report was to determine the technical, environmental and economic feasibility of developing, demonstrating, and commercializing underground coal gasification (UCG) at the Krabi coal mine site in Southern Thailand. This is Volume 1, the Progress Report for the period December 1, 1995, through December 31, 1995.
1987-08-01
synthesis gas from the gasification plant. This scheme was modified by changing the hydrogen generation step. Instead of the cryogenic separation it...Affairs ASD/PA) and is releasable to the National Technical Information Service NTIS). At NTIS, it will be available to the general public, including...58 Modified El Paso By-Products Schem 158 59 Modified El Paso Economics 158 60 Non-Hydrotreating El Paso Scheme 162 61 Non-Hydrotreating El Paso
Techno Economic Analysis of Hydrogen Production by gasification of biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis Lau
Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-productmore » of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.« less
Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization
NASA Astrophysics Data System (ADS)
Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng
2018-01-01
As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.
Ebadi, Abdol Ghaffar; Hisoriev, Hikmat
2017-11-28
Gasification is one of the most important thermochemical routes to produce both synthesis gas (syngas) and chars. The quality of produced syngas wieldy depends on the operating conditions (temperature, residence time, heating rate, and gasifying agent), hydrodynamic properties of gasifier (particle size, minimum fluidization velocity, and gasifier size), and type of feedstock (coal, biomass, oil, and municipal solid wastes). In the present study, simulation of syngas production via circulating fluidized bed (CFB) gasification of algal biomass (Cladophora glomerata L.) at different gasifying agents and particle sizes was carried out, using Aspen Plus simulator. The model which has been validated by using experimental data of the technical literature was used to evaluate the influence of operating conditions on gas composition and performance parameters. The results show that biomass gasification using pure oxygen as the gasification agent has great potential to improve the caloric value of produced gas and performance indicators. It was also found that the produced gas caloric value, syngas yield, and performance parameters (CCE and CGE) increase with reaction temperature but are inversely proportional to the biomass particle size.
Optical spectra of coal gasification products in the RF plasmatron
NASA Astrophysics Data System (ADS)
Fedorovich, S. D.; Burakov, I. A.; Dudolin, A. A.; Markov, A. A.; Khtoo Naing, Aung; Ulziy, Batsamboo; Kavyrshin, D. I.
2017-11-01
The use of solid fuel gasification process is relevant to the regions where there is no opportunity to use natural gas as the main fuel. On the territory of the Russian Federation such regions are largely the Urals, Siberia and the Far East. In order to reduce the harmful effects on the environment solid fuel with high sulfur content, ash content and moisture are subjected to gasification process. One of the major problems of this process is to produce syngas with a low calorific value. For conventional types of gasification (gasification), the value of this quantity ranges 8 - 10 MJ / m3. The use of plasma gasification increases the calorific value of 12 - 16 MJ / m3 which allows the most efficient use of the syngas. The reason for the increase of the value lies in the change of temperature in the reaction zone. A significant rise in temperature in the reaction zone leads to an increase in methane formation reactions constant value, which allows to obtain a final product with a large calorific value. The HFI-plasma torch coal temperature reaches 3000 ° C, and the temperature of coal gasification products can reach 8000 ° C. The aim is to develop methods for determining the composition of the plasma gasification products obtained optical spectra. The Kuznetsky coal used as the starting material. Received and decrypted gasification products optical spectra in a wavelength range from 220 to 1000 nm. Recommendations for the use of the developed method for determining the composition of the plasma gasification products. An analysis of the advantages of using plasma gasification as compared with conventional gasification and coal combustion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, E.
2014-09-01
LanzaTech and NREL will investigate the integration between biomass gasification and LanzaTech's proprietary gas fermentation process to produce ethanol and 2,3-butanediol. Using three feed materials (woody biomass, agricultural residue and herbaceous grass) NREL will produce syngas via steam indirect gasification and syngas conditioning over a range of process relevant operating conditions. The gasification temperature, steam-to-biomass ratio of the biomass feed into the gasifier, and several levels of syngas conditioning (based on temperature) will be varied to produce multiple syngas streams that will be fed directly to 10 liter seed fermenters operating with the Lanzatech organism. The NREL gasification system willmore » then be integrated with LanzaTech's laboratory pilot unit to produce large-scale samples of ethanol and 2,3-butanediol for conversion to fuels and chemicals.« less
Coal gasification systems engineering and analysis. Appendix F: Critical technology items/issues
NASA Technical Reports Server (NTRS)
1980-01-01
Critical technology items and issues are defined in which there is a need for developmental research in order to assure technical and economic success for the state of the art of coal gasification in the United States. Technology development needs for the main processing units and the supporting units are discussed. While development needs are shown for a large number of systems, the most critical areas are associated with the gasifier itself and those systems which either feed the gasifier or directly receive products form the gasifier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
GTI
Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-productmore » of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys. design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nsakala, N.Y.; Patel, R.L.; Lao, T.C.
1982-09-01
The combustion and gasification kinetics of four size graded coal chars were investigated experimentally in Combustion Engineering's Drop Tube Furnace System (DTFS). The chars were prepared in the DTFS from commercially significant coals representing a wide range of rank; these included a Pittsburgh No. 8 Seam hvAb coal, an Illinois No. 6 Seam hvCb coal, a Wyoming Sub C, and a Texas Lignite A. Additionally, a number of standard ASTM and special bench scale tests were performed on the coals and chars to characterize their physicochemical properties. Results showed that the lower rank coal chars were more reactive than themore » higher rank coal chars and that combustion reactions of chars were much faster than the corresponding gasification reactions. Fuel properties, temperature, and reactant gas partial pressure had a significant influence on both combustion and gasification, and particle size had a mild but discernible influence on gasification. Fuel reactivities were closely related to pore structure. Computer simulation of the combustion and gasification performances of the subject samples in the DTFS supported the experimental findings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk; Advanced Plasma Power, South Marston Business park, Swindon, SN3 4DE; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk
2012-04-15
Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process.more » This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohan, S.M.; Barkhordar, P.M.
1979-01-01
The thermochemical conversion of biomass feedstocks generally denotes technologies that use elevated temperatures to convert the fixed carbon content of biomass materials to produce other, more useful energy forms. Examples are combustion to produce heat, steam, electricity, or combinations of these; pyrolysis to produce gas (low- or intermediate-Btu), pyrolytic liquids and chemicals, and char; gasification to produce low or intermediate Btu gas (and, from IBG, additional products such as SNG, ammonia, methanol, or Fischer-Tropsch liquids); and liquefaction to produce heavy fuel oil or, with upgrading, lighter-boiling liquid products such as distillates, light fuel oils, or gasoline. This section discusses themore » selection of the feedstock used in the analysis of thermochemical conversion technologies. The following sections present detailed technical and economic evaluations of biomass conversion to electricity and steam by combustion, SNG by gasification and methanation, methanol by gasification and synthesis, oil by catalytic liquefaction, oil and char by pyrolysis, and ammonia by gasification and synthesis. The conversion options were reviewed with DOE for approval at the start of the project.« less
Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO 2 Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathe, Mandar; Xu, Dikai; Hsieh, Tien-Lin
2014-12-31
This document is the final report for the project titled “Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO 2 Capture” under award number FE0012136 for the performance period 10/01/2013 to 12/31/2014.This project investigates the novel Ohio State chemical looping gasification technology for high efficiency, cost efficiency coal gasification for IGCC and methanol production application. The project developed an optimized oxygen carrier composition, demonstrated the feasibility of the concept and completed cold-flow model studies. WorleyParsons completed a techno-economic analysis which showed that for a coal only feed with carbon capture, the OSU CLG technology reduced the methanol requiredmore » selling price by 21%, lowered the capital costs by 28%, increased coal consumption efficiency by 14%. Further, using the Ohio State Chemical Looping Gasification technology resulted in a methanol required selling price which was lower than the reference non-capture case.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmis, Michael; Luttrell, Gerald; Ripepi, Nino
The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderlessmore » coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO x, CO 2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battista, J.J.; Zawadzki, E.A.
1993-07-01
A new process for the production of commercial grade coke, char, and carbon products has been evaluated by Penelec/NYSEG. The process, developed by Coal Technology Corporation, CTC, utilizes a unique screw reactor to produce a devolatilized char from a wide variety of coals for the production of commercial grade coke for use in blast furnaces, foundries, and other processes requiring high quality coke. This process is called the CTC Mild Gasification Process (MGP). The process economics are significantly enhanced by integrating the new technology into an existing power generating complex. Cost savings are realized by the coke producer, the cokemore » user, and the electric utility company. Site specific economic studies involving the Homer City Generating Station site in Western Pennsylvania, confirmed that an integrated MGP at the Homer City site, using coal fines produced at the Homer City Coal Preparation Plant, would reduce capital and operating costs significantly and would enable the HC Owners to eliminate thermal dryers, obtain low cost fuel in the form of combustible gases and liquids, and obtain lower cost replacement coal on the spot market. A previous report, identified as the Interim Report on the Project, details the technical and economic studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battaglia, Francine; Agblevor, Foster; Klein, Michael
A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important resultsmore » was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.« less
A Technical Feasibility Study of a Green Area
2012-09-01
40 Biomass Gasification Combined Cycle 40 Waste-to-Electricity 22 - 28 Nuclear 33 - 36 Table 21. Power Plants Efficiencies. After [17] 71 VI...10 6. Biomass and Biofuels ........................................................... 11 7. Earthquakes...31 5. Tidal Power ............................................................................. 32 6. Biomass and Biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadle, L.J.; Berry, D.A.; Syamlal, Madhava
2007-07-01
Coal gasification is the process of reacting coal with oxygen, steam, and carbon dioxide to form a product gas containing hydrogen and carbon monoxide. Gasification is essentially incomplete combustion. The chemical and physical processes are quite similar, the main difference being the nature of the final products. From a processing point of view the main operating difference is that gasification consumes heat evolved during combustion. Under the reducing environment of gasification the sulfur in the coal is released as hydrogen sulfide rather than sulfur dioxide and the coal's nitrogen is converted mostly to ammonia rather than nitrogen oxides. These reducedmore » forms of sulfur and nitrogen are easily isolated, captured, and utilized, and thus gasification is a clean coal technology with better environmental performance than coal combustion. Depending on the type of gasifier and the operating conditions, gasification can be used to produce a fuel gas suitable for any number of applications. A low heating value fuel gas is produced from an air blown gasifier for use as an industrial fuel and for power production. A medium heating value fuel gas is produced from enriched oxygen blown gasification for use as a synthesis gas in the production of chemicals such as ammonia, methanol, and transportation fuels. A high heating value gas can be produced from shifting the medium heating value product gas over catalysts to produce a substitute or synthetic natural gas (SNG).« less
Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lingzhi; Wei, Wei; Manke, Jeff
Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification.more » Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system design, identification and selection of tar compounds and 2 mixtures for use in CPO tests, and preparation of CPO catalysts for validation. (Q3 2009 ~ Q4 2009) - Task C: Test CPO with biomass gasification product gas. Optimize CPO performance with selected tar compounds. Optimize CPO performance with multi-component mixtures. Milestones include optimizing CPO catalysts design, collecting CPO experimental data for next stage kinetic modeling and understanding the effect of relative reactivities on ultimate tar conversion and syngas yields. (Q1 2010 ~ Q3 2010) - Task D: Develop tar CPO kinetic model with CPO kinetic model and modeling results as deliverables. (Q3 2010 ~ Q2 2011) - Task E: Project management and reporting. Milestone: Quarterly reports and presentations, final report, work presented at national technical conferences (Q1 2009 ~ Q2 2011) At the beginning of the program, IP landscaping was conducted to understand the operation of various types of biomass gasifiers, their unique syngas/tar compositions and potential tar mitigation options using the catalytic partial oxidation technology. A process simulation model was developed to quantify the system performance and economics impact of CPO tar removal technology. Biomass gasification product compositions used for performance evaluation tests were identified after literature review and system modeling. A reaction system for tar conversion tests was designed, constructed, with each individual component shaken-down in 2009. In parallel, University of Minnesota built a lab-scale unit and evaluated the tar removal performance using catalytic reforming. Benzene was used as the surrogate compound. The biomass gasification raw syngas composition was provided by GE through system studies. In 2010, GE selected different tar compounds and evaluated the tar removal effectiveness of the CPO catalyst. The catalytic performance was evaluated under different operating conditions, including catalyst geometry, S/C ratio, O/C ratio, GHSV, and N2 dilution. An understanding of how to optimize catalytic tar removal efficiency by varying operating conditions has been developed. GE collaborated with UoMn in examining inorganic impurities effects. Catalysts were pre-impregnated with inorganic impurities commonly present in biomass gasification syngas, including Si, Ca, Mg, Na, K, P and S. UoMn performed catalyst characterization and has acquired fundamental understandings of impurities effect on catalytic tar removal. Based on experimental data and the proposed reaction pathway, GE constructed a model to predict kinetic performance for biomass gasification tar cleanup process. Experimental data (eg. tar conversion, reactor inlet and outlet temperatures, product distribution) at different operating conditions were used to validate the model. A good fit between model predictions and experimental data was found. This model will be a valuable tool in designing the tar removal reactor and identifying appropriate operating conditions. We attended the 2011 DOE Biomass Program Thermochemical Platform Review held in Denver, CO from February 16 to 18 and received very positive comments from the review panel. Further, syngas utility and biomass to power/fuel companies expressed strong interest in our tar removal technology.« less
Werle, Sebastian
2014-10-01
This work presents results of experimental studies on the gasification process of granulated sewage sludge in a laboratory fixed bed gasifier. Nowadays, there is a large and pressing need for the development of thermal methods for sewage sludge disposal. Gasification is an example of thermal method that has several advantages over the traditional combustion. Gasification leads to a combustible gas, which can be used for the generation of useful forms of final energy. It can also be used in processes, such as the drying of sewage sludge directly in waste treatment plant. In the present work, the operating parameters were varied over a wide range. Parameters, such as air ratio λ = 0.12 to 0.27 and the temperature of air preheating t = 50 °C to 250 °C, were found to influence temperature distribution and syngas properties. The results indicate that the syngas heating value decreases with rising air ratio for all analysed cases: i.e. for both cold and preheated air. The increase in the concentration of the main combustible components was accompanied by a decrease in the concentration of carbon dioxide. Preheating of the gasification agent supports the endothermic gasification and increases hydrogen and carbon monoxide production. © The Author(s) 2014.
Machin, Einara Blanco; Pedroso, Daniel Travieso; de Carvalho, João Andrade
2017-10-01
Concern about contamination associated with the disposal of tires has led to the search for technologies to reuse discarded tires, which include the use of Tire Derived Fuel (TDF) as fuel in advanced thermal-conversion processes, this allows the energy use of these wastes at affordable costs and reduces the environmental impact on scrap tires disposal. A theoretical assessment of the technical viability of TDF gasification for electric and thermal power generation, from the producer gas combustion in an internal combustion engine and in a gas turbine, was performed. The combustion of producer gas derived from the gasification of TDF in an internal combustion engine driving a generator (ICE-G) appears as the more efficient route for electricity generation when compared with the efficiency obtained with the use of gas turbine (GT-G). A higher global efficiency, considering the electric and thermal generation efficiency can be expected with the use of TDF producer gas in GT-G, where is expected an overall efficiency of 77.49%. The assessment shows that is possible produces up to 7.67MJ and 10.62MJ of electric and thermal energy per kilogram of TDF gasified using an ICE-G and up to 6.06MJ and 13.03MJ of electric and thermal energy respectively per kilogram of gasified TDF using a GT-G. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Vijay; Denton, David; SHarma, Pradeep
The key objective for this project was to evaluate the potential to achieve substantial reductions in the production cost of H 2-rich syngas via coal gasification with near-zero emissions due to the cumulative and synergistic benefits realized when multiple advanced technologies are integrated into the overall conversion process. In this project, Aerojet Rocketdyne’s (AR’s) advanced gasification technology (currently being offered as R-GAS™) and RTI International’s (RTI’s) advanced warm syngas cleanup technologies were evaluated via a number of comparative techno-economic case studies. AR’s advanced gasification technology consists of a dry solids pump and a compact gasifier system. Based on the uniquemore » design of this gasifier, it has been shown to reduce the capital cost of the gasification block by between 40 and 50%. At the start of this project, actual experimental work had been demonstrated through pilot plant systems for both the gasifier and dry solids pump. RTI’s advanced warm syngas cleanup technologies consist primarily of RTI’s Warm Gas Desulfurization Process (WDP) technology, which effectively allows decoupling of the sulfur and CO 2 removal allowing for more flexibility in the selection of the CO 2 removal technology, plus associated advanced technologies for direct sulfur recovery and water gas shift (WGS). WDP has been demonstrated at pre-commercial scale using an activated amine carbon dioxide recovery process which would not have been possible if a majority of the sulfur had not been removed from the syngas by WDP. This pre-commercial demonstration of RTI’s advanced warm syngas cleanup system was conducted in parallel to the activities on this project. The technical data and cost information from this pre-commercial demonstration were extensively used in this project during the techno-economic analysis. With this project, both of RTI’s advanced WGS technologies were investigated. Because RT’s advanced fixed-bed WGS (AFWGS) process was successfully implemented in the WDP pre-commercial demonstration test mentioned above, this technology was used as part of RTI’s advanced warm syngas technology package for the techno-economic analyses for this project. RTI’s advanced transport-reactor-based WGS (ATWGS) process was still conceptual at the start of this project, but one of the tasks for this project was to evaluate the technical feasibility of this technology. In each of the three application-based comparison studies conducted as part of this project, the reference case was based on an existing Department of Energy National Energy Technology Laboratory (DOE/NETL) system study. Each of these references cases used existing commercial technology and the system resulted in > 90% carbon capture. In the comparison studies for the use of the hydrogen-rich syngas generated in either an Integrated Gasification Combined Cycle (IGCC) or a Coal-to-Methanol (CTM) plant, the comparison cases consisted of the reference case, a case with the integration of each individual advanced technology (either AR or RTI), and finally a case with the integration of all the advanced technologies (AR and RTI combined). In the Coal-to-Liquids (CTL) comparison study, the comparison study consisted of only three cases, which included a reference case, a case with just RTI’s advanced syngas cleaning technology, and a case with AR’s and RTI’s advanced technologies. The results from these comparison studies showed that the integration of the advanced technologies did result in substantial benefits, and by far the greatest benefits were achieved for cases integrating all the advanced technologies. For the IGCC study, the fully integrated case resulted in a 1.4% net efficiency improvement, an 18% reduction in capital cost per kW of capacity, a 12% reduction in the operating cost per kWh, and a 75–79% reduction in sulfur emissions. For the CTM case, the fully integrated plant resulted in a 22% reduction in capital cost, a 13% reduction in operating costs, a > 99% net reduction in sulfur emissions, and a reduction of 13–15% in CO 2 emissions. Because the capital cost represents over 60% of the methanol Required Selling Price (RSP), the significant reduction in the capital cost for the advanced technology case resulted in an 18% reduction in methanol RSP. For the CTL case, the fully integrated plant resulted in a 16% reduction in capital cost, which represented a 13% reduction in diesel RSP. Finally, the technical feasibility analysis of RTI’s ATWGS process demonstrated that a fluid-bed catalyst with sufficient attrition resistance and WGS activity could be made and that the process achieved about a 24% reduction in capital cost compared to a conventional fixed-bed commercial process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The US Department of Energy is funding an underground coal gasification (UCG) project in steeply dipping coal beds (SDB), at North Knobs, about 8 miles west of Rawlins, Carbon County, Wyoming. The project is being conducted to determine the technical, economic and environmental viability of such a technology. The development of SDB is an interesting target for UCG since such beds contain coals not normally mineable economically by ordinary techniques. Although the underground gasification of SDB has not been attempted in the US, Soviet experience and theoretical work indicate that the gasification of SDB in place offers all the advantagesmore » of underground gasification of horizontal coal seams plus some unique characteristics. The steep angle of dip helps to channel the produced gases up dip to offtake holes and permits the ash and rubble to fall away from the reaction zone helping to mitigate the blocking of the reaction zone in swelling coals. The intersection of SDB with the surface makes the seam accessible for drilling and other preparation. The tests at the North Knobs site will consist of three tests, lasting 20, 80 and 80 days, respectively. A total of 9590 tons of coal is expected to be gasified, with surface facilities utilizing 15 acres of the total section of land. The environmental effects of the experiment are expected to be very small. The key environmental impact is potential groundwater contamination by reaction products from coal gasification. There is good evidence that the surrounding coal effectively blocks the migration of these contaminants.« less
Petersen, Abdul M; Farzad, Somayeh; Görgens, Johann F
2015-05-01
This study considered an average-sized sugar mill in South Africa that crushes 300 wet tonnes per hour of cane, as a host for integrating methanol and Fischer-Tropsch synthesis, through gasification of a combined flow of sugarcane trash and bagasse. Initially, it was shown that the conversion of biomass to syngas is preferably done by catalytic allothermal gasification instead of catalytic autothermal gasification. Thereafter, conventional and advanced synthesis routes for both Methanol and Fischer-Tropsch products were simulated with Aspen Plus® software and compared by technical and economic feasibility. Advanced FT synthesis satisfied the overall energy demands, but was not economically viable for a private investment. Advanced methanol synthesis is also not viable for private investment since the internal rate of return was 21.1%, because it could not provide the steam that the sugar mill required. The conventional synthesis routes had less viability than the corresponding advanced synthesis routes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zeng, Xi; Shao, Ruyi; Wang, Fang; Dong, Pengwei; Yu, Jian; Xu, Guangwen
2016-04-01
A fluidized bed two-stage gasification process, consisting of a fluidized-bed (FB) pyrolyzer and a transport fluidized bed (TFB) gasifier, has been proposed to gasify biomass for fuel gas production with low tar content. On the basis of our previous fundamental study, an autothermal two-stage gasifier has been designed and built for gasify a kind of Chinese herb residue with a treating capacity of 600 kg/h. The testing data in the operational stable stage of the industrial demonstration plant showed that when keeping the reaction temperatures of pyrolyzer and gasifier respectively at about 700 °C and 850 °C, the heating value of fuel gas can reach 1200 kcal/Nm(3), and the tar content in the produced fuel gas was about 0.4 g/Nm(3). The results from this pilot industrial demonstration plant fully verified the feasibility and technical features of the proposed FB two-stage gasification process. Copyright © 2016. Published by Elsevier Ltd.
Black liquor gasification integrated in pulp and paper mills: A critical review.
Naqvi, M; Yan, J; Dahlquist, E
2010-11-01
Black liquor gasification (BLG) has potential to replace a Tomlinson recovery boiler as an alternative technology to increase safety, flexibility and energy efficiency of pulp and paper mills. This paper presents an extensive literature review of the research and development of various BLG technologies over recent years based on low and high temperature gasification that include SCA-Billerud process, Manufacturing and Technology Conversion International (MTCI) process, direct alkali regeneration system (DARS), BLG with direct causticization, Chemrec BLG system, and catalytic hydrothermal BLG. A few technologies were tested on pilot scale but most of them were abandoned due to technical inferiority and very fewer are now at commercial stage. The drivers for the commercialization of BLG enabling bio-refinery operations at modern pulp mills, co-producing pulp and value added energy products, are discussed. In addition, the potential areas of research and development in BLG required to solve the critical issues and to fill research knowledge gaps are addressed and highlighted. Copyright 2010 Elsevier Ltd. All rights reserved.
Fourth technical contractors' conference on peat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
This conference reported the status of the US Department of Energy Peat Program. The papers presented dealt with peat dewatering, international peat programs, environmental and socio-economic factors, peat gasification, peat harvesting, and the state peat surveys for 14 states. Separate abstracts were prepared for the individual papers. (CKK)
Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification
Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang
2016-01-01
Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975
Assessment of Advanced Coal Gasification Processes
NASA Technical Reports Server (NTRS)
McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John
1981-01-01
This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.
Numerical investigation of cryogen re-gasification in a plate heat exchanger
NASA Astrophysics Data System (ADS)
Malecha, Ziemowit; Płuszka, Paweł; Brenk, Arkadiusz
2017-12-01
The efficient re-gasification of cryogen is a crucial process in many cryogenic installations. It is especially important in the case of LNG evaporators used in stationary and mobile applications (e.g. marine and land transport). Other gases, like nitrogen or argon can be obtained at highest purity after re-gasification from their liquid states. Plate heat exchangers (PHE) are characterized by a high efficiency. Application of PHE for liquid gas vaporization processes can be beneficial. PHE design and optimization can be significantly supported by numerical modelling. Such calculations are very challenging due to very high computational demands and complexity related to phase change modelling. In the present work, a simplified mathematical model of a two phase flow with phase change was introduced. To ensure fast calculations a simplified two-dimensional (2D) numerical model of a real PHE was developed. It was validated with experimental measurements and finally used for LNG re-gasification modelling. The proposed numerical model showed to be orders of magnitude faster than its full 3D original.
Updraft gasification of salmon processing waste.
Rowland, Sarah; Bower, Cynthia K; Patil, Krushna N; DeWitt, Christina A Mireles
2009-10-01
The purpose of this study was to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible "syngas" in a high temperature (above 700 degrees C), oxygen deficient environment. Syngas can be combusted to generate power, which recycles energy from waste products. At 66% to 79% moisture, raw salmon waste streams are too wet to undergo pyrolysis and combustion. Ground raw or de-oiled salmon whole fish, heads, viscera, or frames were therefore "dried" by mixing with wood pellets to a final moisture content of 20%. Ground whole salmon with moisture reduced to 12% moisture was gasified without a drying agent. Gasification tests were performed in a small-scale, fixed-bed, updraft gasifer. After an initial start-up period, the gasifier was loaded with 1.5 kg of biomass. Temperature was recorded at 6 points in the gasifier. Syngas was collected during the short steady-state period during each gasifier run and analyzed. Percentages of each type of gas in the syngas were used to calculate syngas heating value. High heating value (HHV) ranged from 1.45 to 1.98 MJ/kg. Bomb calorimetry determined maximum heating value for the salmon by-products. Comparing heating values shows the efficiency of gasification. Cold gas efficiencies of 13.6% to 26% were obtained from the various samples gasified. Though research of gasification as a means of salmon waste disposal and energy production is ongoing, it can be concluded that pre-dried salmon or relatively low moisture content mixtures of waste with wood are gasifiable.
1985-07-01
and Operation 132 6.7.5 Safety 135 6.7.6 System Control Description 136 6.7.6.1 Coal Gasification 136 6.7.6.2 Gas Cooling, Cleaning and Compression...the hydrogen content. The gas is then desulfurized and heated before final polishing and feeding to the fuel cell. Receiving compressed fuel gas and...4 CO Shift 1 Stretford Desulfurizer 3 Gas Compressors 3 Material Handling(3) 3 Subtotal 39 Scheduled Shutdown 14 Total Annual Shutdown 53
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Pradeep K.
The overall objective of the current project was to investigate the high pressure gasification characteristics of a feed containing both coal and biomass. The two feed types differ in their ash contents and ash composition, particularly the alkali content. Gasification of a combined feed of coal and biomass has the potential for considerable synergies that might lead to a dramatic improvement in process economics and flexibility. The proposed study aimed to develop a detailed understanding of the chemistry, kinetics, and transport effects during high pressure gasification of coal-biomass blend feed. Specifically, we studied to develop: (a) an understanding of themore » catalytic effect of alkali and other inorganic species present in the biomass and coal, (b) an understanding of processing conditions under which synergistic effects of the blending of coal and biomass might be observed. This included the role of particle size, residence time, and proximity of the two feed types, (c) kinetics of high pressure gasification of individual feeds as well as the blends, and (d) development of mathematical models that incorporate kinetics and transport models to enable prediction of gasification rate at a given set of operating conditions, and (e) protocols to extend the results to other feed resources. The goal was to provide a fundamental understanding of the gasification process and guide in optimizing the configurations and design of the next generation of gasifiers. The approach undertaken was centered on two basic premises: (1) the gasification for small particles without internal mass transfer limitations can be treated as the sum of two processes in series (pyrolysis and char gasification) , and (2) the reactivity of the char generated during pyrolysis not only depends on the pressure and temperature but is also affected by the heating rates. Thus low heating rates (10-50 °C/min) typical of PTGA fail to produce char that would typically be formed at high heating rates (~10 4 °C/sec), encountered in entrained flow gasifiers. The char morphology, also a function of the heating rate, would influence the transport rates during the char gasification phase. Thus, heating rate plays a critical role through which both, pyrolysis and char gasification, are interconnected. We utilized two complementary gasification experiments: PEFR (pressurized entrained flow gasifier) and PTGA (pressurized thermo-gravimetric analyzer). The PEFR allowed us to study gasification at pressures, temperatures, and heating rates relevant for coal-biomass gasifiers. The PTGA work was useful in understanding the basic chemistry of the evolution of various gaseous species during pyrolysis. These results helped improved our understanding of the chemistry and chemical changes during pyrolysis. The role alkali metals and other inorganics in char gasification using steam and/or CO 2 was investigated. Finally, the mathematical models for char gasification without the transport effects were developed at commercial operating conditions.« less
Model-based estimation of adiabatic flame temperature during coal gasification
NASA Astrophysics Data System (ADS)
Sarigul, Ihsan Mert
Coal gasification temperature distribution in the gasifier is one of the important issues. High temperature may increase the risk of corrosion of the gasifier wall or it may cause an increase in the amount of volatile compounds. At the same time, gasification temperature is a dominant factor for high conversion of products and completing the reactions during coal gasification in a short time. In the light of this information it can be said that temperature is one of key parameters of coal gasification to enhance the production of high heating value syngas and maximize refractory longevity. This study aims to predict the adiabatic flame temperatures of Australian bituminous coal and Indonesian roto coal in an entrained flow gasifier using different operating conditions with the ChemCAD simulation and design program. To achieve these objectives, two types of gasification parameters were carried out using simulation of a vertical entrained flow reactor: oxygen-to-coal feed ratio by kg/kg and pressure and steam-to-coal feed ratio by kg/kg and pressure. In the first part of study the adiabatic flame temperatures, coal gasification products and other coal characteristics of two types of coals were determined using ChemCAD software. During all simulations, coal feed rate, coal particle size, initial temperature of coal, water and oxygen were kept constant. The relationships between flame temperature, coal gasification products and operating parameters were fundamentally investigated. The second part of this study addresses the modeling of the flame temperature relation to methane production and other input parameters used previous chapter. The scope of this work was to establish a reasonable model in order to estimate flame temperature without any theoretical calculation. Finally, sensitivity analysis was performed after getting some basic correlations between temperature and input variables. According to the results, oxygen-to-coal feed ratio has the most influential effect on adiabatic flame temperature.
Evaluating the feasibility of underground coal gasification in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, B.C.; Harju, J.A.; Schmit, C.R.
Underground coal gasification (UCG) is a clean coal technology that converts in situ coal into a low- to medium-grade product gas without the added expense of mining and reclamation. Potential candidates for UCG are those coal resources that are not economically recoverable or that are otherwise unacceptable for conventional coal utilization processes. The Energy and Environmental Research Center (EERC), through the sponsorship of the US Trade and Development Agency and in collaboration with the Electricity Generating Authority of Thailand (EGAT), is undertaking a feasibility study for the application of UCG in the Krabi coal mining area, 620 miles south ofmore » Bangkok in Thailand. The EERC`s objective for this project is to determine the technical, environmental, and economic feasibility of demonstrating and commercializing UCG at a selected site in the Krabi coal mining area. This paper addresses the preliminary developments and ongoing strategy for evaluating the selected UCG site. The technical, environmental, and economic factors for successful UCG operation are discussed, as well as the strategic issues pertaining to future energy expansion in southern Thailand.« less
77 FR 38801 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-29
... Resource Management (VRM) Plan, Amendment, Class Designation, Carbon County, WY, Review Period Ends: 07/30... Final Vehicle Management Plan, Implementation, Denali National Park and Preserve, AK, Review Period Ends.... EIS No. 20120199, Final EIS, RUS, MS, ADOPTION--Kemper County Integrated Gasification Combined Cycle...
Fixed bed gasification for production of industrial fuel gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-10-01
This report summarizes the results of technical and economic evaluations of six commercially available, fixed-bed coal gasification processes for the production of industrial fuel gas. The study was performed for DOE and is intended to assist industrial companies in exploring the feasibility of producing gaseous fuels for both retrofit and new industrial plant situations. The report includes a technical analysis of the physical configuration, performance capabilities, and commercial experiments to-date for both air-blown and oxygen-blown fixed bed gasifiers. The product gas from these gasifiers is analyzed economically for three different degrees of cleanliness: (1) hot raw gas, (2) dust-, tar-,more » and oil-free gas, and (3) dust-, tar-, oil-free and desulfurized gas. The evaluations indicate that low-Btu gases produced from fixed bed gasifiers constitute one of the most logical short-term solutions for helping ease the shortage of natural gas for industrial fuel applications because the technology is well-proven and has been utilized on a commercial scale for several decades both in this country and overseas; time from initiation of design to commercial operation is about two years; the technology is not complicated to construct, operate, or maintain; and a reliable supply of product gas can be generated on-site. The advantages and disadvantages of fixed bed gasification technology are listed. The cost of the low Btu gas is estimated at $2 to $4 per MM Btu depending on gas purity, cost of coal ($20 to $50 per ton) and a number of specified assumptions with respect to financing, reliability, etc. (LTN)« less
Samolada, M C; Zabaniotou, A A
2014-02-01
For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a 'zero waste' solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gasification of land-based biomass. Final report July 78-December 82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chynoweth, D.P.; Jerger, D.E.; Conrad, J.R.
1983-06-01
The objective of this research was to develop efficient processes for conversion of land-based biomass to methane and other resources. One task was to determine the relative suitability of selected species or feedstocks for biological and thermal gasification processes. The second task was to narrow options for design and operation of the experimental test unit (ETU) on water hyacinth and sludge at Walt Disney World (WDW) and to provide a scientific base for understanding rate- and yield-limiting reactions for biogasification of these feedstocks, (separately and as blends).
Estimation of Coal Reserves for UCG in the Upper Silesian Coal Basin, Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialecka, Barbara
One of the prospective methods of coal utilization, especially in case of coal resources which are not mineable by means of conventional methods, is underground coal gasification (UCG). This technology allows recovery of coal energy 'in situ' and thus avoid the health and safety risks related to people which are inseparable from traditional coal extraction techniques.In Poland most mining areas are characterized by numerous coal beds where extraction was ceased on account of technical and economic reasons or safety issues. This article presents estimates of Polish hard coal resources, broken down into individual mines, that can constitute the basis ofmore » raw materials for the gasification process. Five mines, representing more than 4 thousand tons, appear to be UCG candidates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The goal of the U.S. Department of Energy Underground Coal Conversion (UCC) program is to develop the technology to produce clean fuels from coal deposits unsuitable for commercial exploitation by conventional mining techniques. The highest priority is to develop and demonstrate, in conjunction with industry, a commercially feasible process for underground gasification of low-rank coal in the 1985--1987 time period. The program will also attempt to develop cost-effective technologies to utilize steeply dipping seams and bituminous coal by UCC. Results of the program to date indicate that, while UCC is technically feasible, it still contains some process unknowns, environmental risks,more » and economic risks that require R and D. In order to contribute to the national energy goals, a strong DOE program which incorporates maximum industry involvement is planned. Major projects are described in some detail. Finally, a strong program of supporting activities will address specific problems identified in the field testing and will seek to advance UCC technology. In summary, the program's strategy is to remove the high-risk elements of UCC by resolving those technical, environmental, and economic uncertainties that remain, and to enable industry to assume responsibility for commercialization of the process.« less
Microplastics co-gasification with biomass: Modelling syngas characteristics at low temperatures
NASA Astrophysics Data System (ADS)
Ramos, Ana; Tavares, Raquel; Rouboa, Abel
2018-05-01
To assess the syngas produced through the gasification of microplastics at low temperatures, distinct blends of polyethylene terephthalate (PET) with biomass (vine pruning) were modelled using Aspen Plus. Critical gasification parameters such as co-fuel mixture, temperature and hydrogen production were evaluated, under two different gasifier agents (air and O2). Results have shown that higher PET ratios and higher temperatures (< 1200 °C) lead to enhanced hydrogen yields, for both atmospheres. The calorific content was also seen to increase with growing temperatures, superior LHV being achieved for the mixture with less microplastics fraction (9.2 MJ/Nm3) for both air and O2 environments. A final high-quality syngas was achieved, the dominant requirement determining which parameter to optimize: on one hand, higher H2 contents were seen for the blend with higher microplastic fraction, and on the other higher LHV was achieved for the equimolar mixture.
Thermogravimetric characterization and gasification of pecan nut shells.
Aldana, Hugo; Lozano, Francisco J; Acevedo, Joaquín; Mendoza, Alberto
2015-12-01
This study focuses on the evaluation of pecan nut shells as an alternative source of energy through pyrolysis and gasification. The physicochemical characteristics of the selected biomass that can influence the process efficiency, consumption rates, and the product yield, as well as create operational problems, were determined. In addition, the thermal decomposition kinetics necessary for prediction of consumption rates and yields were determined. Finally, the performance of a downdraft gasifier fed with pecan nut shells was analyzed in terms of process efficiency and exit gas characteristics. It was found that the pyrolytic decomposition of the nut shells can be modeled adequately using a single equation considering two independent parallel reactions. The performance of the gasification process can be influenced by the particle size and air flow rate, requiring a proper combination of these parameters for reliable operation and production of a valuable syngas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Properties of gasification-derived char and its utilization for catalytic tar reforming
NASA Astrophysics Data System (ADS)
Qian, Kezhen
Char is a low-value byproduct of biomass gasification and pyrolysis with many potential applications, such as soil amendment and the synthesis of activated carbon. The overall goal of the proposed research was to develop novel methods to use char derived from gasification for high-value applications in syngas conditioning. The first objective was to investigate effects of gasification condition and feedstock on properties of char derived from fluidized bed gasification. Results show that the surface areas of most of the char were 1--10 m 2/g and increased as the equivalence ratio increased. Char moisture and fixed carbon contents decreased while ash content increased as equivalence ratio increased. The next objective was to study the properties of sorghum and red cedar char derived from downdraft gasifier. Red cedar char contained more aliphatic carbon and o-alkyl carbon than sorghum char. Char derived from downdraft gasification had higher heating values and lower ash contents than char derived from fluidized bed gasification. The gasification reactivity of red cedar char was higher than that of sorghum char. Then, red cedar char based catalysts were developed with different preparation method to reform toluene and naphthalene as model tars. The catalyst prepared with nickel nitrate was found to be better than that with nickel acetate. The nickel particle size of catalyst impregnated with nickel nitrate was smaller than that of catalyst impregnated with nickel acetate. The particle size of catalyst impregnated with nickel acetate decreased by hydrazine reduction. The catalyst impregnated with nickel nitrate had the highest toluene removal efficiency, which was 70%--100% at 600--800 °C. The presence of naphthalene in tar reduced the catalyst efficiency. The toluene conversion was 36--99% and the naphthalene conversion was 37%--93% at 700--900 °C. Finally, effects of atmosphere and pressure on catalytic reforming of lignin-derived tars over the developed catalyst were investigated. An increase in reaction temperature led to an increase in removal of most tar components except naphthalene. High pressure promoted the catalytic conditioning of lignin tar. Hydrogen promoted the conversion of lignin into non-condensable gas.
Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro
2012-04-01
This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.
Technical challenges and opportunities in cogasification of coal and biomass
Jagpinder Singh Brar; Kaushlendra Singh; John Zondlo
2013-01-01
Biomass gasification manufacturers are beginning to market 5 to 100 kW capacity gasifiers (e.g., Community Power Corporation (CPC), Littleton, CO and gasifier experimenters kit (GEK), AllPower Labs, Berkeley, CA) for producing electricity and synthetic gas (syngas). These gasifiers operate at 900 to 1000 °C, consuming 1.3 kg of biomass per hour for every kW...
Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Steven
2016-07-11
Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests onmore » forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.« less
Gasification Product Improvement Facility (GPIF). Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunatemore » that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.« less
75 FR 28612 - Environmental Impact Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... Counties, OR and Adams and Nez Perce Counties, ID, Wait Period Ends: 06/21/2010, Contact: Robert W. Rock.... EIS No. 20100181, Final EIS, DOE, MS, Kemper County Integrated Gasification Combined-Cycle (IGCC...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhamkin, M.; Patel, M.; Andersson, L.
1992-12-01
A previous study sponsored by EPRI concluded that integrating a compressed-air energy storage (CAES) plant with a coal-gasification system (CGS) can reduce the required capacity and cost of the expensive gasification system. The results showed that when compared at an equal plant capacity, the capital cost of the CGS portion of the integrated CAES/CGS plant can be reduced by as much as 30% relative to the same portion of an integrated gasification combined cycle (IGCC) plant. Furthermore, the capital cost of the CAES/CGS.plant, configured as a peaking unit, was found to be slightly lower than that of the base-load IGCCmore » plant. However, the overall economics of the CAES/CGS plant were adversely affected by the low capacity factor of the peak-load service, and ultimately, were found to be less attractive than the IGCC plant. The main objective of this study was to develop and analyze integrated CAES/CGS power plant concepts which provide for continuous (around-the-clock) operation of both the CAES reheat turboexpander train and the CGS facility. The developed concepts also provide utility-load management functions by driving the CAES compressor trains with off-peak electricity supplied through the grid. EPRI contracted with Energy Storage Power Consultants, Inc. (ESPC) to develop conceptual designs, optimized performance characteristics, and preliminary cost data for these CAES/CGS concepts, and to provide a technical and cost comparison to the IGCC plant. The CAES/CGS concepts developed by ESPC for the current study contrast from those of Reference 1.« less
Black liquor gasification phase 2D final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohl, A.L.; Stewart, A.E.
1988-06-01
This report covers work conducted by Rockwell International under Amendment 5 to Subcontract STR/DOE-12 of Cooperative Agreement DE-AC-05-80CS40341 between St. Regis Corporation (now Champion International) and the Department of Energy (DOE). The work has been designated Phase 2D of the overall program to differentiate it from prior work under the same subcontract. The overall program is aimed at demonstrating the feasibility of and providing design data for the Rockwell process for gasifying Kraft black liquor. In this process, concentrated black liquor is converted into low-Btu fuel gas and reduced melt by reaction with air in a specially designed gasification reactor.
Solar gasification of biomass: design and characterization of a molten salt gasification reactor
NASA Astrophysics Data System (ADS)
Hathaway, Brandon Jay
The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus containing the molten salt to maximize utilization of absorbed solar energy, resulting in a predicted utilization efficiency of 70%. Finite element analysis was used to finalize the design to achieve acceptable thermal stresses less than 34.5 MPa to avoid material creep.
Gasification of oil palm empty fruit bunches: a characterization and kinetic study.
Mohammed, M A A; Salmiaton, A; Wan Azlina, W A K G; Mohamad Amran, M S
2012-04-01
Empty fruit bunches (EFBs), a waste material from the palm oil industry, were subjected to pyrolysis and gasification. A high content of volatiles (>82%) increased the reactivity of EFBs, and more than 90% decomposed at 700°C; however, a high content of moisture (>50%) and oxygen (>45%) resulted in a low calorific value. Thermogravimetric analysis demonstrated that the higher the heating rate and the smaller the particle size, the higher the peak and final reaction temperatures. The least squares estimation for a first-order reaction model was used to study the degradation kinetics. The values of activation energy increased from 61.14 to 73.76 and from 40.06 to 47.99kJ/mol when the EFB particle size increased from 0.3 to 1.0mm for holocellulose and lignin degradation stages, respectively. The fuel characteristics of EFB are comparable to those of other biomasses and EFB can be considered a good candidate for gasification. Copyright © 2012 Elsevier Ltd. All rights reserved.
A feasibility study for underground coal gasification at Krabi Mine, Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solc, J.; Steadman, E.N.; Boysen, J.E.
A study to evaluate the technical, economical, and environmental feasibility of underground coal gasification (UCG) in the Krabi Mine, Thailand, was conducted by the Energy and Environmental Research Center (EERC) in cooperation with B.C. Technologies (BCT) and the Electricity Generating Authority of Thailand (EGAT). The selected coal resource was found suitable to fuel a UCG facility producing 460,000 MJ/h (436 million Btu/h) of 100--125 Btu/scf gas for 20 years. The raw UCG gas could be produced for a selling price of $1.94/MMBtu. The UCG facility would require a total investment of $13.8 million for installed capital equipment, and annual operatingmore » expenses for the facility would be $7.0 million. The UCG gas could be either cofired in a power plant currently under construction or power a 40 MW simple-cycle gas turbine or a 60 MW combined-cycle power plant.« less
Efficiency of a hybrid-type plasma-assisted fuel reformation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matveev, I.B.; Serbin, S.I.; Lux, S.M.
2008-12-15
The major advantages of a new plasma-assisted fuel reformation system are its cost effectiveness and technical efficiency. Applied Plasma Technologies has proposed its new highly efficient hybrid-type plasma-assisted system for organic fuel combustion and gasification. The system operates as a multimode multipurpose reactor in a wide range of plasma feedstock gases and turndown ratios. This system also has convenient and simultaneous feeding of several reagents in the reaction zone such as liquid fuels, coal, steam, and air. A special methodology has been developed for such a system in terms of heat balance evaluation and optimization. This methodology considers all existingmore » and possible energy streams, which could influence the system's efficiency. The developed hybrid-type plasma system could be suitable for combustion applications, mobile and autonomous small- to mid-size liquid fuel and coal gasification modules, hydrogen-rich gas generators, waste-processing facilities, and plasma chemical reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calo, J.M.; Zhang, L.; Hall, P.J.
1997-09-01
A new approach to the study of porosity and porosity development in coal chars during gasification was investigated. This approach involves the establishment of the relationships between the amount and type of surface complexes evolved during post-activation temperature programmed desorption (TPD), and the porosity, as measured by gas adsorption and small angle neutron scattering (SANS) techniques. With this new method, the total surface area and micropore volume can be determined by the interpretation of post-activation TPD spectra. The primary conclusion of this work is that it is possible to predict total surface area and micropore volume from TPD spectra. Frommore » the extended random pore model, additional information about the micropore surface area, the nonmicroporous surface area, and the mean micropore size development as a function of reaction time (or burn-off) can also be predicted. Therefore, combining the TPD technique and the extended random pore model provides a new method for the characterization of char porosity.« less
Mafu, Lihle D; Neomagus, Hein W J P; Everson, Raymond C; Okolo, Gregory N; Strydom, Christien A; Bunt, John R
2018-06-01
The carbon dioxide gasification characteristics of three biomass char samples and bituminous coal char were investigated in a thermogravimetric analyser in the temperature range of 850-950 °C. Char SB exhibited higher reactivities (R i , R s , R f ) than chars SW and HW. Coal char gasification reactivities were observed to be lower than those of the three biomass chars. Correlations between the char reactivities and char characteristics were highlighted. The addition of 10% biomass had no significant impact on the coal char gasification reactivity. However, 20 and 30% biomass additions resulted in increased coal char gasification rate. During co-gasification, chars HW and SW caused increased coal char gasification reactivity at lower conversions, while char SB resulted in increased gasification rates throughout the entire conversion range. Experimental data from biomass char gasification and biomass-coal char co-gasification were well described by the MRPM, while coal char gasification was better described by the RPM. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, H.J.; Steinberg, M.
1983-10-01
Based on the studies performed on the agglomerated cement sorbent (ACS) pellet for in-situ desulfurization of gases and for improved gasification, in low and medium Btu fluidized bed coal gasifier (FBG) systems, the following conclusions can be drawn: (1) The pelletization method by a drum pelletizer is a good way of agglomerating large sized (>20 US mesh) ACS pellets having high sorbent performance. (2) The ACS pellets have a sulfur capture capacity of about 60% at 950/sup 0/C, are 100% regenerable, and so not lose reactivity during cyclic use. (3) The rate of sulfidation increases linearly with H/sub 2/S concentrationmore » in the feed gas stream up to 1.0%. (4) The rate of sulfidation first increases with temperature in an Arrhenius fashion in the temperature range of 800/sup 0/C to 1000/sup 0/C and then decreases with further increase in temperatures, giving rise to an optimum sulfidation temperature of about 1000/sup 0/C. (5) The gasification of coal or coal char either with CO/sub 2/ gas or by partial oxidation in a 40 mm ID FBG shows that the gasification efficiency of coal (or coal char) is very much enhanced with the ACS pellets and with Greer limestone over the coal (or coal char) alone. There is, however, not much difference between the ACS pellets and Greer limestone in the degree of enhancement. (6) The gasification of coal by partial oxidation with air to low Btu gas in a 1-inch coal-fired FBG unit shows that in the temperature range of 800/sup 0/ to 900/sup 0/C the efficiency of coal gasification is improved by as much as 40% when ACS pellets are used compared to the use of Greer limestone. At the same time the sulfur removal efficiency is increased from 50 to 65% with Greer limestone to over 95% with the ACS pellets.« less
Conversion of municipal solid waste to hydrogen
NASA Astrophysics Data System (ADS)
Richardson, J. H.; Rogers, R. S.; Thorsness, C. B.
1995-04-01
LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL's focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.
NASA Astrophysics Data System (ADS)
Ilse, Jürgen
2010-05-01
Coal is the energy source with the largest geological availability worldwide. Of all non-renewable energies coal and lignite accounting for 55 % of the reserves and some 76 % of the resources represent the largest potential. Reserves are those geological quantities of a mineral which can currently be mined under technically and economically viable conditions. Resources are those quantities which are either proven but currently not economically recoverable or quantities which can still be expected or explored on the basis of geological findings. The global availability of energy source does not only depend on geological and economic factors. The technical availability, e.g. mining and preparation capacities, the sufficient availability of land and sea-borne transportation as well as transloading capacities and also a political availability are required likewise. The latter may be disturbed by domestic-policy disputes like strikes or unrest or by foreign-policy disputes like embargos, trade conflicts or even tensions and wars in the producing regions. In the energy-economic discussion the reach of fossil primary energies plays a central role with the most important questions being: when will which energy source be exhausted, which impact will future developments have on the energy price, what does the situation of the other energies look like and which alternatives are there? The reach of coal can only be estimated because of the large deposits on the one hand and the uncertain future coal use and demand on the other. The stronger growth of population and the economic catching-up process in the developing and threshold countries will result in a shift of the production and demand centres in the global economy. However, also in case of further increases the geological potential will be sufficient to reliably cover the global coal demand for the next 100 years. The conventional mining of seams at great depths or of thin seams reaches its technical and economic limits. However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.
TRACE ELEMENT TRANSFORMATIONS AND OPTIONS FOR CONTROL IN GASIFICATION SYSTEMS. (R827649)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The coal industry, the utilities, and the state government are planning for development of high-energy coal gasification in Illinois to convert its abundant high-sulfur coal supply to a substitute natural gas. Following a summary of the findings, the following topics are discussed briefly: Illinois coal and the push for coal gasification; coal gasification: a look at the process; potential sites for an Illinois coal gasification industry; the impact of coal gasification's water requirements; solid wastes from coal gasification; land losses: the impact on agriculture; potential human health problems with coal gasification; the energy efficiency of coal gasification; potential economic impactsmore » of coal gasification; the corporations behind high-energy coal gasification; state involvement: legalizing the losses of the people; the national energy picture: the impact of western coal developments on Illinois; action: what you can do now. 27 references. (MCW)« less
Experimental and numerical study of steam gasification of a single charcoal particle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mermoud, F.; Van de Steene, L.; Golfier, F.
2006-04-15
The present work deals with a study coupling experiments and modeling of charcoal gasification by steam at large particle scale. A reliable set of experiments was first established using a specially developed 'macro-TG' apparatus where a particle was suspended and continuously weighed during its gasification. The main control parameters of a fixed-bed process were modified separately: steam gasification of beech charcoal spheres of different diameters (10 to 30 mm) was studied at different temperatures (830 to 1030{sup o}C), different steam partial pressures (0.1 to 0.4 atm H{sub 2}O), and different gas velocities around the particle (0.09 to 0.30 m/s). Simulationsmore » with the particle model were performed for each case. Confrontations with experimental data indicate that the model predictions are both qualitatively and quantitatively satisfactory, with an accuracy of 7%, until 60% of conversion, despite the fact that the phenomena of reactive surface evolution and particle fracturing are not well understood. Anisotropy and peripheral fragmentation make the end of the process difficult to simulate. Finally, an analysis of the thermochemical situation is proposed: it is demonstrated that the usual homogeneous or shrinking core particle models are not satisfying and that only the assumption of thermal equilibrium between the particle and the surrounding gas is valid for a model at bed scale. (author)« less
Programmed temperature gasification study. Final report, October 1, 1979-November 30, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spoon, M.J.; Gardner, M.P.; Starkovich, J.A.
An experimental, modeling and conceptual engineering analysis study has been performed to assess the feasibility of TRW's Programmed Temperature Gasification (PTG) concept for carbonizing caking coals without severe agglomeration. The concept involves control of carbonizing heating rate to maintain metaplast concentration at a level equal to or slightly below that which causes agglomeration. The experimental studies required the contruction of a novel programmed temperature, elevated pressure, hot stage video microscope for observation of coal particle changes during heating. This system was used to develop a minimum-time heating schedule capable of carbonizing the coal at elevated pressures in the presence ofmore » hydrogen without severe agglomeration. Isothermal fixed heating rate data for a series of coals were subsequently used to calibrate and verify the mathematical model for the PTG process. These results showed good correlation between experimental data and mathematical predictions. Commercial application of the PTG concept to batch, moving bed and fluid bed processing schemes was then evaluated. Based on the calibrated model programmed temperature gasification of the coal without severe agglomeration could be carried out on a commercial batch reaction in 4 to 12 minutes. The next step in development of the PTG concept for commercial application would require testing on a bench scale (3-inch diameter) gasifier coupled with a full commercial assessment to determine size and cost of various gasification units.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celik, I.; Chattree, M.
1988-07-01
An assessment of the theoretical and numerical aspects of the computer code, PCGC-2, is made; and the results of the application of this code to the Morgantown Energy Technology Center (METC) advanced gasification facility entrained-flow reactor, ''the gasifier,'' are presented. PCGC-2 is a code suitable for simulating pulverized coal combustion or gasification under axisymmetric (two-dimensional) flow conditions. The governing equations for the gas and particulate phase have been reviewed. The numerical procedure and the related programming difficulties have been elucidated. A single-particle model similar to the one used in PCGC-2 has been developed, programmed, and applied to some simple situationsmore » in order to gain insight to the physics of coal particle heat-up, devolatilization, and char oxidation processes. PCGC-2 was applied to the METC entrained-flow gasifier to study numerically the flash pyrolysis of coal, and gasification of coal with steam or carbon dioxide. The results from the simulations are compared with measurements. The gas and particle residence times, particle temperature, and mass component history were also calculated and the results were analyzed. The results provide useful information for understanding the fundamentals of coal gasification and for assessment of experimental results performed using the reactor considered. 69 refs., 35 figs., 23 tabs.« less
Tampa Electric Company Polk Power Station IGCC project: Project status
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, J.E.; Carlson, M.R.; Hurd, R.
1997-12-31
The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC andmore » Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.« less
Coal without carbon: an investment plan for federal action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettus, A.; Tatsutani, M.
2009-09-15
This study examines several technologies for CCS that are not currently receiving adequate development support but that could - in the right policy environment - provide the kind of significant cost reductions (and significant improvements in efficiency) that could greatly accelerate broad, economically attractive CCS deployment. Clean Air Task Force selected these technology areas (though not the technologies themselves) and solicited reports from experts in each field to explore how these technologies might fit into a broader CCS deployment strategy. Each expert was asked to develop a research, development, and demonstration (RD&D) 'road map' that could efficiently move each technologymore » from the laboratory into the commercial mainstream. Because the chapter authors are either technical experts or commercial players and are not, for the most part, energy policy experts, subsequent work will translate their RD&D recommendations into actionable policy proposals. The heart of this report consists of four chapters on advanced coal and CCS technologies: underground coal gasification (UCG), written by Julio Friedmann at Lawrence Livermore National Laboratory; Next generation coal gasification (surface-based gasification) led by Eric Redman at Summit Power Group; Advanced technologies for post-combustion capture (PCC) of CO{sub 2}, led by Howard Herzog at Massachusetts Institute of Technology; and RD&D to speed commercialization of geological CO{sub 2} sequestration (GCS), led by Julio Friedmann. 12 refs., 5 figs., 2 tabs.« less
Thermochemical conversion of waste tyres-a review.
Labaki, Madona; Jeguirim, Mejdi
2017-04-01
A review of the energy recovery from waste tyres is presented and focuses on the three thermochemical processes used to valorise waste tyres: pyrolysis, gasification, and combustion/incineration. After recalling the chemical composition of tyres, the thermogravimetric behaviours of tyres or their components under different atmospheres are described. Different kinetic studies on the thermochemical processes are treated. Then, the three processes were investigated, with a particular attention given to the gasification, due to the information unavailability on this process. Pyrolysis is a thermochemical conversion to produce a hydrocarbon rich gas mixture, condensable liquids or tars, and a carbon-rich solid residue. Gasification is a form of pyrolysis, carried out at higher temperatures and under given atmosphere (air, steam, oxygen, carbon dioxide, etc.) in order to yield mainly low molecular weight gaseous products. Combustion is a process that needs a fuel and an oxidizer with an ignition system to produce heat and/or steam. The effects of various process parameters such as temperature, heating rate, residence time, catalyst addition, etc. on the energy efficiency and the products yields and characteristics are mainly reviewed. These thermochemical processes are considered to be the more attractive and practicable methods for recovering energy and material from waste tyres. For the future, they are the main promising issue to treat and valorise used tyres. However, efforts should be done in developing more efficient technical systems.
DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.
1979-07-13
A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using airmore » or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.« less
Biomass power for rural development. Technical progress report, January 1, 1997--March 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, E.
Detailed task progress reports and schedules are provided for the DOE/USDA sponsored Biomass Power for Rural Development project. The focus of the project is on developing commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firingmore » tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-II of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is under way. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-III will represent fullscale commercialization of the energy crop and power generation on a sustainable basis.« less
Biomass power for rural development. Technical progress report, April 1, 1997--June 30, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, E.
Detailed task progress reports and schedules are provided for the DOE/USDA sponsored Biomass Power for Rural Development project. The focus of the project is on developing commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-I, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firingmore » tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-H of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is under way. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-III will represent fullscale commercialization of the energy crop and power generation on a sustainable basis.« less
High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Ben; Turk, Brian; Denton, David
Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilotmore » scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H 2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit was designed and constructed on schedule and under budget and was operated for approximately 1,500 total hours utilizing ~20% of the IGCC’s total syngas as feed (~1.5 MM scfh of dry syngas). The WDP system reduced total sulfur levels to ~10 ppmv (~99.9% removal) from raw syngas that contained as high as 14,000 ppmv of total sulfur. The integration of WDP with the activated amine process enabled further reduction of total sulfur in the final treated syngas to the anticipated sub-ppmv concentrations (>99.99% removal), suitable for stringent syngas applications such as chemicals, fertilizers, and fuels. Techno-economic assessments by RTI and by third parties indicate potential for significant (up to 50%) capital and operating cost reductions for the entire syngas cleanup block when WDP technology is integrated with a broad spectrum of conventional and emerging carbon capture or acid gas removal technologies. This final scientific/technical report covers the pre-FEED, FEED, EPC, commissioning, and operation phases of this project, as well as system performance results. In addition, the report addresses other parallel-funded R&D efforts focused on development and testing of trace contaminant removal process (TCRP) sorbents, a direct sulfur recovery process (DSRP), and a novel sorbent for warm carbon dioxide capture, as well as pre-FEED, FEED, and techno-economic studies to consider the potential benefit for use of WDP for polygeneration of electric power and ammonia/urea fertilizers.« less
Global Development of Commercial Underground Coal Gasification
NASA Astrophysics Data System (ADS)
Blinderman, M. S.
2017-07-01
Global development of Underground Coal Gasification (UCG) is considered here in light of latest trends of energy markets and environmental regulations in the countries that have been traditional proponents of UCG. The latest period of UCG development triggered by initial success of the Chinchilla UCG project (1997-2006) has been characterized by preponderance of privately and share-market funded developments. The deceleration of UCG commercialization has been in part caused by recent significant decrease of world oil, gas and coal prices. Another substantial factor was lack of necessary regulations governing extraction and conversion of coal by UCG method in the jurisdictions where the UCG projects were proposed and developed. Along with these objective causes there seem to have been more subjective and technical reasons for a slowdown or cancelation of several significant UCG projects, including low efficiency, poor environmental performance, and inability to demonstrate technology at a sufficient scale and/or at a competitive cost. Latest proposals for UCG projects are briefly reviewed.
Producing fired bricks using coal slag from a gasification plant in indiana
Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.
2009-01-01
Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Wei, Juntao; Guo, Qinghua; He, Qing; Ding, Lu; Yoshikawa, Kunio; Yu, Guangsuo
2017-09-01
In this work, the influences of gasification temperature and blended ratio on co-gasification reactivity and synergy of Shenfu bituminous coal (SF) and municipal solid waste-derived hydrochar (HTC) were investigated using TGA. Additionally, active alkaline and alkaline earth metal (AAEM) transformation during co-gasification was quantitatively analyzed by inductively coupled plasma optical emission spectrometer for correlating synergy on co-gasification reactivity. The results showed that higher char gasification reactivity existed at higher HTC char proportion and gasification temperature, and the main synergy behaviour on co-gasification reactivity was performed as synergistic effect. Enhanced synergistic effect at lower temperature was mainly resulted from more obviously inhibiting the primary AAEM (i.e. active Ca) transformation, and weak synergistic effect still existed at higher temperature since more active K with prominent catalysis was retained. Furthermore, more active HTC-derived AAEM remaining in SF sample during co-gasification would lead to enhanced synergistic effect as HTC char proportion increased. Copyright © 2017 Elsevier Ltd. All rights reserved.
Co-gasification of solid waste and lignite - a case study for Western Macedonia.
Koukouzas, N; Katsiadakis, A; Karlopoulos, E; Kakaras, E
2008-01-01
Co-gasification of solid waste and coal is a very attractive and efficient way of generating power, but also an alternative way, apart from conventional technologies such as incineration and landfill, of treating waste materials. The technology of co-gasification can result in very clean power plants using a wide range of solid fuels but there are considerable economic and environmental challenges. The aim of this study is to present the available existing co-gasification techniques and projects for coal and solid wastes and to investigate the techno-economic feasibility, concerning the installation and operation of a 30MW(e) co-gasification power plant based on integrated gasification combined cycle (IGCC) technology, using lignite and refuse derived fuel (RDF), in the region of Western Macedonia prefecture (WMP), Greece. The gasification block was based on the British Gas-Lurgi (BGL) gasifier, while the gas clean-up block was based on cold gas purification. The competitive advantages of co-gasification systems can be defined both by the fuel feedstock and production flexibility but also by their environmentally sound operation. It also offers the benefit of commercial application of the process by-products, gasification slag and elemental sulphur. Co-gasification of coal and waste can be performed through parallel or direct gasification. Direct gasification constitutes a viable choice for installations with capacities of more than 350MW(e). Parallel gasification, without extensive treatment of produced gas, is recommended for gasifiers of small to medium size installed in regions where coal-fired power plants operate. The preliminary cost estimation indicated that the establishment of an IGCC RDF/lignite plant in the region of WMP is not profitable, due to high specific capital investment and in spite of the lower fuel supply cost. The technology of co-gasification is not mature enough and therefore high capital requirements are needed in order to set up a direct co-gasification plant. The cost of electricity estimated was not competitive, compared to the prices dominating the Greek electricity market and thus further economic evaluation is required. The project would be acceptable if modular construction of the unit was first adopted near operating power plants, based on parallel co-gasification, and gradually incorporating the remaining process steps (gas purification, power generation) with the aim of eventually establishing a true direct co-gasification plant.
You, Siming; Ok, Yong Sik; Chen, Season S; Tsang, Daniel C W; Kwon, Eilhann E; Lee, Jechan; Wang, Chi-Hwa
2017-12-01
This review lays great emphasis on production and characteristics of biochar through gasification. Specifically, the physicochemical properties and yield of biochar through the diverse gasification conditions associated with various types of biomass were extensively evaluated. In addition, potential application scenarios of biochar through gasification were explored and their environmental implications were discussed. To qualitatively evaluate biochar sustainability through the gasification process, all gasification products (i.e., syngas and biochar) were evaluated via life cycle assessment (LCA). A concept of balancing syngas and biochar production for an economically and environmentally feasible gasification system was proposed and relevant challenges and solutions were suggested in this review. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quarterly technical progress report, April-June 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1984-04-01
Progress reports are presented for the following tasks: (1) preparation of low-rank coals; application of liquefaction processes to low-rank coals; (2) slagging fixed-bed gasification; (3) atmospheric fluidized-bed combustion of low-rank coal; (4) ash fouling and combustion modification for low-rank coal; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization and disposal; and (9) exploratory research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2005-07-01
Papers discussed the coal policy of China, Russia, Indonesia and Vietnam; clean coal technology (small-scale coal power plants, carbon capture and sequestration, new coking process SCOPE21, coal gasification (HyPr-RING), CO{sub 2} reduction technology, Supercritical coal-fired units and CFB boilers, EAGLE project, coal liquefaction), the coal consumer's view of clean fossil energy policy, and natural gas policy and technology. Some of the papers only consist of the presentation overheads/viewgraphs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozkurt, Y.; Misirlioglu, Z.; Sinag, A.
The reactivities of chars obtained by pyrolysis of Bursa Mustafa Kemal Pasa Alpagut lignite and Balkesir Dursunbey Cakiirca lignite (Turkey) at different temperatures were determined by CO{sub 2} gasification and by combustion with O{sub 2}. Catalytic effect of Na{sub 2}CO{sub 3} on the CO{sub 2} and O{sub 2} gasification reactivity of chars was investigated. Gasification tests were performed in the fixed bed reactors operating at ambient pressure. Reactivity of chars during the CO{sub 2} gasification reactions was determined by calculating the reaction rate constants and reactivity of chars during the O{sub 2} gasification was determined by using ignition temperatures ofmore » the samples. Activation energies and Arrhenius constants of the chars on the CO{sub 2} gasification reactions were also calculated by the help of Arrhenius curves. The activation energy for CO{sub 2} gasification was generally decreased with pyrolysis temperature, due to the different surface characteristics and different nature of carbon atoms gasified as the gasification reactions proceed. Generally, the increase in pyrolysis temperature leads to an increase in gasification reactivity with CO{sub 2}. The reactivity of chars in catalytic gasification was higher than the corresponding non-catalytic reactivity of the same chars. Ignition temperature increased with increasing pyrolysis temperature.« less
Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rue, David
The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work inmore » this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner was stable over the full oxygen to fuel firing range (0.8 to 1.05 of fuel gas stoichiometry) and with all fuel gases (natural gas and two syngas compositions), with steam, and without steam. The lower Btu content of the syngases presented no combustion difficulties. The molten bed was stable throughout testing. The molten bed was easily established as a bed of molten glass. As the composition changed from glass cullet to cullet with slag, no instabilities were encountered. The bed temperature and product syngas temperature remained stable throughout testing, demonstrating that the bed serves as a good heat sink for the gasification process. Product syngas temperature measured above the bed was stable at ~1600ºF. Testing found that syngas quality measured as H 2/CO ratio increased with decreasing oxygen to fuel gas stoichiometric ratio, higher steam to inlet carbon ratio, higher temperature, and syngas compared with natural gas. The highest H 2/CO ratios achieved were in the range of 0.70 to 0.78. These values are well below the targets of 1.5 to 2.0 that were expected and were predicted by modeling. The team, however, is encouraged that the HMB process can and will achieve H 2/CO ratios up to 2.0. Changes needed include direct injection of coal into the molten bed of slag to prevent coal particle bypass into the product gas stream, elevation of the molten bed temperature to approximately 2500ºF, and further decrease of the oxygen to fuel gas ratio to well below the 0.85 minimum ratio used in the testing in this project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samolada, M.C.; Zabaniotou, A.A., E-mail: azampani@auth.gr
2014-02-15
Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current statusmore » of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated.« less
Considerations on coal gasification
NASA Technical Reports Server (NTRS)
Franzen, J. E.
1978-01-01
Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.
Synergistic effect on co-gasification reactivity of biomass-petroleum coke blended char.
Wei, Juntao; Guo, Qinghua; Gong, Yan; Ding, Lu; Yu, Guangsuo
2017-06-01
In this work, effects of gasification temperature (900°C-1100°C) and blended ratio (3:1, 1:1, 1:3) on reactivity of petroleum coke and biomass co-gasification were studied in TGA. Quantification analysis of active AAEM transformation and in situ investigation of morphological structure variations in gasification were conducted respectively using inductively coupled plasma optical emission spectrometer and heating stage microscope to explore synergistic effect on co-gasification reactivity. The results indicated that char gasification reactivity was enhanced with increasing biomass proportion and gasification temperature. Synergistic effect on co-gasification reactivity was presented after complete generation of biomass ash, and gradually weakened with increasing temperature from 1000°C to 1100°C after reaching the most significant value at 1000°C. This phenomenon was well related with the appearance of molten biomass ash rich in glassy state potassium and the weakest inhibition effect on active potassium transformation during co-gasification at the temperature higher than 1000°C. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, C.I.C.; Gillespie, B.L.
One of the most perplexing problems facing the coal industry is how to properly dispose of the waste and/or even recovery a small fraction of the Btu value of the waste, while minimizing the environmental concerns. UCC Research considers this monumental environmental problems as an opportunity to recovery useable organic materials and reduce the environmental problems created by coal waste. Mild gasification is the method used by UCC Research to realize these objectives. Coal feedstocks are fed into the mild gasification system yielding liquids, char, and gases for commercial application. The program consists of seven tasks: Task 1, Characterize Managementmore » of Coal Preparation Wastes; Task 2, Review Design Specifications and Prepare Preliminary Test Plan; Task 3, Select and Characterize Test Feedstocks; Task 4, Acquire/Construct Process Elements; Task 5, Prepare Final Test Plan; Task 6, Implement Final Test Plan; Task 7, Analyze Test Results and Assess System Economics. A schedule of the program is given. The program was initiated on September 30, 1984. Tasks 1, 2, 3, 4, 5, and 6 have been completed. Work is continuing on Task 7.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Ronald; Whitty, Kevin
2014-12-01
The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiplemore » species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.« less
Thermal valorization of post-consumer film waste in a bubbling bed gasifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Lera, S., E-mail: susanamartinezlera@gmail.com; Torrico, J.; Pallarés, J.
2013-07-15
Highlights: • Film waste from packaging is a common waste, a fraction of which is not recyclable. • Gasification can make use of the high energy value of the non-recyclable fraction. • This waste and two reference polymers were gasified in a bubbling bed reactor. • This experimental research proves technical feasibility of the process. • It also analyzes impact of composition and ER on the performance of the plant. - Abstract: The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes.more » A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m{sup 3} and cold gas efficiencies up to 60%.« less
Waste-to-Energy Decision Support Method for Forward Deployed Forces
2014-03-27
15 Gasification ...stable electrical source to generate the plasma. Thermal WTE technology includes three subtypes called incineration, gasification , and pyrolysis...unfavorable public perception associated with the emissions produced by the technology. Gasification Gasification is a thermal process in which
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, D.; Haase, S.
2009-07-01
This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; andmore » an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Patrick Barry
2013-01-28
National energy policy supports the gathering of more detailed and authoritative data on the introduction of renewable bio-based fuels into new and existing district energy systems via the application of biomass gasification. The University of Iowa developed a biomass-fueled, university-scale steam generation system based on biomass gasification technologies. The system serves as a state-of-the-art research and educational facility in the emerging application of gasification in steam generation. The facility, which includes a smaller down-draft gasifier and a larger multi-stage biomass boiler, was designed to operate primarily on wood-based fuels, but has provisions for testing other biomass fuel sources produced withinmore » a 100-mile radius, providing enough flexibility to meet the fluctuating local supply of biomass from industry and Midwest agriculture. The equipment was installed in an existing, staffed facility. The down-draft gasifier unit is operated by College of Engineering staff and students, under the direct technical supervision of qualified Utilities plant staff. The Green Power Initiative also includes a substantial, innovative educational component. In addition to an onsite, graduate-level research program in biomass fuels, the investigators have integrated undergraduate and graduate level teaching – through classroom studies and experiential learning – and applied research into a biomass-based, university-scale, functioning power plant. University of Iowa is unique in that it currently has multiple renewable energy technologies deployed, including significant biomass combustion (oat hulls) at its Main Power Plant and a new reciprocating engine based renewable district energy system. This project complements and supports the national energy policy and State of Iowa initiatives in ethanol and biodiesel. Byproducts of ethanol and biodiesel processes (distiller grains) as well as industry residues (oat hulls, wood chips, construction and demolition waste), farm related material (seed corn and soybean seed), and poplar trees for cleaning up ground water are logical feed stocks for gasification.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... Ratcliffe, Kemper County Integrated Gasification Combined-Cycle (IGCC) Project AGENCY: Rural Utilities... Plant Ratcliffe, an Integrated Gasification Combined-Cycle Facility located in Kemper County... Company (MPCo), and will demonstrate the feasibility of the Integrated Gasification Combined-Cycle (IGCC...
Energy from gasification of solid wastes.
Belgiorno, V; De Feo, G; Della Rocca, C; Napoli, R M A
2003-01-01
Gasification technology is by no means new: in the 1850s, most of the city of London was illuminated by "town gas" produced from the gasification of coal. Nowadays, gasification is the main technology for biomass conversion to energy and an attractive alternative for the thermal treatment of solid waste. The number of different uses of gas shows the flexibility of gasification and therefore allows it to be integrated with several industrial processes, as well as power generation systems. The use of a waste-biomass energy production system in a rural community is very interesting too. This paper describes the current state of gasification technology, energy recovery systems, pre-treatments and prospective in syngas use with particular attention to the different process cycles and environmental impacts of solid wastes gasification.
Waste-to-Energy Plant Environmental Assessment, Dyess Air Force Base, Texas
2011-09-01
pyrolysis can be defined as “ gasification minus oxygen.” Pyrolysis is the technique of heating organic matter ( biomass ) between 480 and 1,470 °F in the...provider using one of four alternative technologies: 1) gasification ; 2) pyrolysis; 3) plasma gasification /pyrolysis and 4) incineration. Under this...the solicitation to build a WTE plant based on one of the following alternative technologies: I) gasification ; 2) pyrolysis; 3) plasma gasification
Biomass-derived Syngas Utilization for Fuels and Chemicals - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayton, David C
2010-03-24
Executive Summary The growing gap between petroleum production and demand, mounting environmental concerns, and increasing fuel prices have stimulated intense interest in research and development (R&D) of alternative fuels, both synthetic and bio-derived. Currently, the most technically defined thermochemical route for producing alternative fuels from lignocellulosic biomass involves gasification/reforming of biomass to produce syngas (carbon monoxide [CO] + hydrogen [H2]), followed by syngas cleaning, Fischer-Tropsch synthesis (FTS) or mixed alcohol synthesis, and some product upgrading via hydroprocessing or separation. A detailed techno-economic analysis of this type of process has recently been published [1] and it highlights the need for technicalmore » breakthroughs and technology demonstration for gas cleanup and fuel synthesis. The latter two technical barrier areas contribute 40% of the total thermochemical ethanol cost and 70% of the production cost, if feedstock costs are factored out. Developing and validating technologies that reduce the capital and operating costs of these unit operations will greatly reduce the risk for commercializing integrated biomass gasification/fuel synthesis processes for biofuel production. The objective of this project is to develop and demonstrate new catalysts and catalytic processes that can efficiently convert biomass-derived syngas into diesel fuel and C2-C4 alcohols. The goal is to improve the economics of the processes by improving the catalytic activity and product selectivity, which could lead to commercialization. The project was divided into 4 tasks: Task 1: Reactor Systems: Construction of three reactor systems was a project milestone. Construction of a fixed-bed microreactor (FBR), a continuous stirred tank reactor (CSTR), and a slurry bubble column reactor (SBCR) were completed to meet this milestone. Task 2: Iron Fischer-Tropsch (FT) Catalyst: An attrition resistant iron FT catalyst will be developed and tested. Task 3: Chemical Synthesis: Promising process routes will be identified for synthesis of selected chemicals from biomass-derived syngas. A project milestone was to select promising mixed alcohol catalysts and screen productivity and performance in a fixed bed micro-reactor using bottled syngas. This milestone was successfully completed in collaboration withour catalyst development partner. Task 4: Modeling, Engineering Evaluation, and Commercial Assessment: Mass and energy balances of conceptual commercial embodiment for FT and chemical synthesis were completed.« less
Huo, Wei; Zhou, Zhijie; Chen, Xueli; Dai, Zhenghua; Yu, Guangsuo
2014-05-01
Gasification reactivities of six different carbonaceous material chars with CO2 were determined by a Thermogravimetric Analyzer (TGA). Gasification reactivities of biomass chars are higher than those of coke and coal chars. In addition, physical structures and chemical components of these chars were systematically tested. It is found that the crystalline structure is an important factor to evaluate gasification reactivities of different chars and the crystalline structures of biomass chars are less order than those of coke and coal chars. Moreover, initial gasification rates of these chars were measured at high temperatures and with relatively large particle sizes. The method of calculating the effectiveness factor η was used to quantify the effect of pore diffusion on gasification. The results show that differences in pore diffusion effects among gasification with various chars are prominent and can be attributed to different intrinsic gasification reactivities and physical characteristics of different chars. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ding, Liang; Zhang, Yongqi; Wang, Zhiqing; Huang, Jiejie; Fang, Yitian
2014-12-01
Co-gasification of coal char and biomass char was conducted to investigate the interactions between them. And random pore model (RPM) and modified random pore model (MRPM) were applied to describe the gasification behaviors of the samples. The results show that inhibiting effect was observed during co-gasification of corn stalk char with Hulunbeier lignite coal char, while synergistic effects were observed during co-gasification of corn stalk char with Shenmu bituminous coal char and Jincheng anthracite coal char. The inhibiting effect was attributed to the intimate contact and comparable gasification rate between biomass char and coal char, and the loss of the active form of potassium caused by the formation of KAlSiO4, which was proved to be inactive during gasification. While the synergistic effect was caused by the high potassium content of biomass char and the significant difference of reaction rate between coal char and biomass char during gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hadidi, Laith A; Omer, Mohamed Mahmoud
2017-01-01
Municipal Solid Waste (MSW) generation in Saudi Arabia is increasingly growing at a fast rate, as it hurtles towards ever increasing urban development coupled with rapid developments and expanding population. Saudi Arabia's energy demands are also rising at a faster rate. Therefore, the importance of an integrated waste management system in Saudi Arabia is increasingly rising and introducing Waste to Energy (WTE) facilities is becoming an absolute necessity. This paper analyzes the current situation of MSW management in Saudi Arabia and proposes a financial model to assess the viability of WTE investments in Saudi Arabia in order to address its waste management challenges and meet its forecasted energy demands. The research develops a financial model to investigate the financial viability of WTE plants utilizing gasification and Anaerobic Digestion (AD) conversion technologies. The financial model provides a cost estimate of establishing both gasification and anaerobic digestion WTE plants in Saudi Arabia through a set of financial indicators, i.e. net present value (NPV), internal rate of return (IRR), modified internal rate of return (MIRR), profitability index (PI), payback period, discounted payback period, Levelized Cost of Electricity (LCOE) and Levelized Cost of Waste (LCOW). Finally, the analysis of the financial model reveals the main affecting factors of the gasification plants investment decision, namely: facility generation capacity, generated electricity revenue, and the capacity factor. Similarly, the paper also identifies facility waste capacity and the capacity factor as the main affecting factors on the AD plants' investment decision. Copyright © 2016 Elsevier Ltd. All rights reserved.
Experimental study on air-stream gasification of biomass micron fuel (BMF) in a cyclone gasifier.
Guo, X J; Xiao, B; Zhang, X L; Luo, S Y; He, M Y
2009-01-01
Based on biomass micron fuel (BMF) with particle size of less than 250 microm, a cyclone gasifier concept has been considered in our laboratory for biomass gasification. The concept combines and integrates partial oxidation, fast pyrolysis, gasification, and tar cracking, as well as a shift reaction, with the purpose of producing a high quality of gas. In this paper, experiments of BMF air-stream gasification were carried out by the gasifier, with energy for BMF gasification produced by partial combustion of BMF within the gasifier using a hypostoichiometric amount of air. The effects of ER (0.22-0.37) and S/B (0.15-0.59) and biomass particle size on the performances of BMF gasification and the gasification temperature were studied. Under the experimental conditions, the temperature, gas yields, LHV of the gas fuel, carbon conversion efficiency, stream decomposition and gasification efficiency varied in the range of 586-845 degrees C, 1.42-2.21 N m(3)/kg biomass, 3806-4921 kJ/m(3), 54.44%-85.45%, 37.98%-70.72%, and 36.35%-56.55%, respectively. The experimental results showed that the gasification performance was best with ER being 3.7 and S/B being 0.31 and smaller particle, as well as H(2)-content. And the BMF gasification by air and low temperature stream in the cyclone gasifier with the energy self-sufficiency is reliable.
CO2 Capture and Storage in Coal Gasification Projects
NASA Astrophysics Data System (ADS)
Rao, Anand B.; Phadke, Pranav C.
2017-07-01
In response to the global climate change problem, the world community today is in search for an effective means of carbon mitigation. India is a major developing economy and the economic growth is driven by ever-increasing consumption of energy. Coal is the only fossil fuel that is available in abundance in India and contributes to the major share of the total primary energy supply (TPES) in the country. Owing to the large unmet demand for affordable energy, primarily driven by the need for infrastructure development and increasing incomes and aspirations of people, as well as the energy security concerns, India is expected to have continued dependence on coal. Coal is not only the backbone of the electric power generation, but many major industries like cement, iron and steel, bricks, fertilizers also consume large quantities of coal. India has very low carbon emissions (˜ 1.5 tCO2 per capita) as compared to the world average (4.7 tCO2 per capita) and the developed world (11.2 tCO2 per capita). Although the aggregate emissions of the country are increasing with the rising population and fossil energy use, India has a very little contribution to the historical GHG accumulation in the atmosphere linked to the climate change problem. However, a large fraction of the Indian society is vulnerable to the impacts of climate change - due to its geographical location, large dependence on monsoon-based agriculture and limited technical, financial and institutional capacity. Today, India holds a large potential to offer cost-effective carbon mitigation to tackle the climate change problem. Carbon Capture and Storage (CCS) is the process of extraction of Carbon Dioxide (CO2) from industrial and energy related sources, transport to storage locations and long-term isolation from the atmosphere. It is a technology that has been developed in recent times and is considered as a bridging technology as we move towards carbon-neutral energy sources in response to the growing concerns about climate change problem. Carbon Capture and Storage (CCS) is being considered as a promising carbon mitigation technology, especially for large point sources such as coal power plants. Gasification of coal helps in better utilization of this resource offering multiple advantages such as pollution prevention, product flexibility (syngas and hydrogen) and higher efficiency (combined cycle). It also enables the capture of CO2 prior to the combustion, from the fuel gas mixture, at relatively lesser cost as compared to the post-combustion CO2 capture. CCS in gasification projects is considered as a promising technology for cost-effective carbon mitigation. Although many projects (power and non-power) have been announced internationally, very few large-scale projects have actually come up. This paper looks at the various aspects of CCS applications in gasification projects, including the technical feasibility and economic viability and discusses an Indian perspective. Impacts of including CCS in gasification projects (e.g. IGCC plants) have been assessed using a simulation tool. Integrated Environmental Control Model (IECM) - a modelling framework to simulate power plants - has been used to estimate the implications of adding CCS units in IGCC plants, on their performance and costs.
NASA Astrophysics Data System (ADS)
Xiao, Li
Despite the great passion and endless efforts on development of renewable energy from biomass, the commercialization and scale up of biofuel production is still under pressure and facing challenges. New ideas and facilities are being tested around the world targeting at reducing cost and improving product value. Cutting edge technologies involving analytical chemistry, statistics analysis, industrial engineering, computer simulation, and mathematics modeling, etc. keep integrating modern elements into this classic research. One of those challenges of commercializing biofuel production is the complexity from chemical composition of biomass feedstock and the products. Because of this, feedstock selection and process optimization cannot be conducted efficiently. This dissertation attempts to further evaluate biomass thermal decomposition process using both traditional methods and advanced technique (Pyrolysis Molecular Beam Mass Spectrometry). Focus has been made on data base generation of thermal decomposition products from biomass at different temperatures, finding out the relationship between traditional methods and advanced techniques, evaluating process efficiency and optimizing reaction conditions, comparison of typically utilized biomass feedstock and new search on innovative species for economical viable feedstock preparation concepts, etc. Lab scale quartz tube reactors and 80il stainless steel sample cups coupled with auto-sampling system were utilized to simulate the complicated reactions happened in real fluidized or entrained flow reactors. Two main high throughput analytical techniques used are Near Infrared Spectroscopy (NIR) and Pyrolysis Molecular Beam Mass Spectrometry (Py-MBMS). Mass balance, carbon balance, and product distribution are presented in detail. Variations of thermal decomposition temperature range from 200°C to 950°C. Feedstocks used in the study involve typical hardwood and softwood (red oak, white oak, yellow poplar, loblolly pine), fast growing energy crops (switchgrass), and popular forage crop (alfalfa), as well as biochar derived from those materials and their mixtures. It demonstrated that Py-MBMS coupled with MVA could be used as fast analytical tools for the study of not only biomass composition but also its thermal decomposition behaviors. It found that the impact of biomass composition heavily depends on the thermal decomposition temperature because at different temperature, the composition of biomass decomposed and the impact of minerals on the decomposition reaction varies. At low temperature (200-500°C), organic compounds attribute to the majority of variation in thermal decomposition products. At higher temperature, inorganics dramatically changed the pyrolysis pathway of carbohydrates and possibly lignin. In gasification, gasification tar formation is also observed to be impacted by ash content in vapor and char. In real reactor, biochar structure also has interactions with other fractions to make the final pyrolysis and gasification product. Based on the evaluation of process efficiencies during torrefaction, temperature ranging from 275°C to 300°C with short residence time (<10min) are proposed to be optimal torrefaction conditions. 500°C is preferred to 700°C as primary pyrolysis temperature in two stage gasification because higher primary pyrolysis temperature resulted in more tar and less gasification char. Also, in terms of carbon yield, more carbon is lost in tar while less carbon is retained in gas product using 700°C as primary pyrolysis temperature. In addition, pyrolysis char is found to produce less tar and more gas during steam gasification compared with gasification of pyrolysis vapor. Thus it is suggested that torrefaction might be an efficient pretreatment for biomass gasification because it can largely improve the yield of pyrolysis char during the primary pyrolysis step of gasification thus reduce the total tar of the overall gasification products. Future work is suggested in the end.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iisa, Kristiina
2016-04-06
NREL will work with Participant as a subtier partner under DE-FOA-0000240 titled "Co-Production of Power, Fuels, and Chemicals via Coal/Biomass Mixtures." The goal of the project is to determine the gasification characteristics of switchgrass and lignite mixtures and develop kinetic models. NREL will utilize a pressurized thermogravimetric analyzer to measure the reactivity of chars generated in a pressurized entrained-flow reactor at Participant's facilities and to determine the evolution of gaseous species during pyrolysis of switchgrass-lignite mixtures. Mass spectrometry and Fourier-transform infrared analysis will be used to identify and quantify the gaseous species. The results of the project will aid inmore » defining key reactive properties of mixed coal biomass fuels.« less
Royal Society, Discussion on New Coal Chemistry, London, England, May 21, 22, 1980, Proceedings
NASA Astrophysics Data System (ADS)
1981-03-01
A discussion of new coal chemistry is presented. The chemical and physical structure of coal is examined in the first section, including structural studies of coal extracts, metal and metal complexes in coal and coal microporosity. The second section presents new advances in applied coal technology. The development of liquid fuels and chemicals from coal is given especial emphasis, with papers on the Sasol Synthol process, the Shell-Koppers gasification process, liquefaction and gasification in Germany, the Solvent Refined Coal process, the Exxon Donor Solvent liquefaction process and the Mobil Methanol-to-Gasoline process. Finally, some developments that will be part of the future of coal chemistry in the year 2000 are examined in the third section, including coal-based chemical complexes and the use of coal as an alternative source to oil for chemical feedstocks.
Biomass power for rural development. Technical progress report, October 1--December 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, E.
The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC).more » Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill Power Station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the fourth quarter of 1997 the Consortium submitted a Phase-2 proposal. A few of the other more important milestones are outlined below. The first quarter of 1998 will be dominated by pre-planting activity in the spring.« less
NASA Astrophysics Data System (ADS)
Rani, Abha; Singh, Udayan; Jayant; Singh, Ajay K.; Sankar Mahapatra, Siba
2017-07-01
Coal gasification processes are crucial to decarbonisation in the power sector. While underground coal gasification (UCG) and integrated gasification combined cycle (IGCC) are different in terms of the site of gasification, they have considerable similarities in terms of the types of gasifiers used. Of course, UCG offers some additional advantages such as reduction of the fugitive methane emissions accompanying the coal mining process. Nevertheless, simulation of IGCC plants involving surface coal gasification is likely to give reasonable indication of the 3E (efficiency, economics and emissions) prospects of the gasification pathway towards electricity. This paper will aim at Estimating 3E impacts (efficiency, environment, economics) of gasification processes using simulation carried out in the Integrated Environmental Control Model (IECM) software framework. Key plant level controls which will be studied in this paper will be based on Indian financial regulations and operating costs which are specific to the country. Also, impacts of CO2 capture and storage (CCS) in these plants will be studied. The various parameters that can be studied are plant load factor, impact of coal quality and price, type of CO2 capture process, capital costs etc. It is hoped that relevant insights into electricity generation from gasification may be obtained with this paper.
Evaluation of solid oxide fuel cell systems for electricity generation
NASA Technical Reports Server (NTRS)
Somers, E. V.; Vidt, E. J.; Grimble, R. E.
1982-01-01
Air blown (low BTU) gasification with atmospheric pressure Solid Electrolyte Fuel Cells (SOFC) and Rankine bottoming cycle, oxygen blown (medium BTU) gasification with atmospheric pressure SOFC and Rankine bottoming cycle, air blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle, oxygen blown gasification with pressurized SOFC and combined Brayton/Rankine bottoming cycle were evaluated.
Nogueira Junior, Edson; Kumar, Mayank; Pankratz, Stan; Oyedun, Adetoyese Olajire; Kumar, Amit
2018-09-01
This study develops life cycle water footprints for the production of fuels and chemicals via thermochemical conversion of algae biomass. This study is based on two methods of feedstock production - ponds and photobioreactors (PBRs) - and four conversion pathways - fast pyrolysis, hydrothermal liquefaction (HTL), conventional gasification, and hydrothermal gasification (HTG). The results show the high fresh water requirement for algae production and the necessity to recycle harvested water or use alternative water sources. To produce 1 kg of algae through ponds, 1564 L of water are required. When PBRs are used, only 372 L water are required; however, the energy requirements for PBRs are about 30 times higher than for ponds. From a final product perspective, the pathway based on the gasification of algae biomass was the thermochemical conversion method that required the highest amount of water per MJ produced (mainly due to its low hydrogen yield), followed by fast pyrolysis and HTL. On the other hand, HTG has the lowest water footprint, mainly because the large amount of electricity generated as part of the process compensates for the electricity used by the system. Performance in all pathways can be improved through recycling channels. Copyright © 2018 Elsevier Ltd. All rights reserved.
Process aspects in combustion and gasification Waste-to-Energy (WtE) units.
Leckner, Bo
2015-03-01
The utilisation of energy in waste, Waste to Energy (WtE), has become increasingly important. Waste is a wide concept, and to focus, the feedstock dealt with here is mostly municipal solid waste. It is found that combustion in grate-fired furnaces is by far the most common mode of fuel conversion compared to fluidized beds and rotary furnaces. Combinations of pyrolysis in rotary furnace or gasification in fluidized or fixed bed with high-temperature combustion are applied particularly in Japan in systems whose purpose is to melt ashes and destroy dioxins. Recently, also in Japan more emphasis is put on WtE. In countries with high heat demand, WtE in the form of heat and power can be quite efficient even in simple grate-fired systems, whereas in warm regions only electricity is generated, and for this product the efficiency of boilers (the steam data) is limited by corrosion from the flue gas. However, combination of cleaned gas from gasification with combustion provides a means to enhance the efficiency of electricity production considerably. Finally, the impact of sorting on the properties of the waste to be fed to boilers or gasifiers is discussed. The description intends to be general, but examples are mostly taken from Europe. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang
2014-11-01
A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). Copyright © 2014. Published by Elsevier B.V.
High temperature gasification of high heating-rate chars using a flat-flame reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tian; Niu, Yanqing; Wang, Liang
The increasing interest in gasification and oxy-fuel combustion of biomass has heightened the need for a detailed understanding of char gasification in industrially relevant environments (i.e., high temperature and high-heating rate). Despite innumerable studies previously conducted on gasification of biomass, very few have focused on such conditions. Consequently, in this study the high-temperature gasification behaviors of biomass-derived chars were investigated using non-intrusive techniques. Two biomass chars produced at a heating rate of approximately 10 4 K/s were subjected to two gasification environments and one oxidation environment in an entrained flow reactor equipped with an optical particle-sizing pyrometer. A coal charmore » produced from a common U.S. low sulfur subbituminous coal was also studied for comparison. Both char and surrounding gas temperatures were precisely measured along the centerline of the furnace. Despite differences in the physical and chemical properties of the biomass chars, they exhibited rather similar reaction temperatures under all investigated conditions. On the other hand, a slightly lower particle temperature was observed in the case of coal char gasification, suggesting a higher gasification reactivity for the coal char. A comprehensive numerical model was applied to aid the understanding of the conversion of the investigated chars under gasification atmospheres. In addition, a sensitivity analysis was performed on the influence of four parameters (gas temperature, char diameter, char density, and steam concentration) on the carbon conversion rate. Here, the results demonstrate that the gas temperature is the most important single variable influencing the gasification rate.« less
Modeling and comparative assessment of municipal solid waste gasification for energy production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arafat, Hassan A., E-mail: harafat@masdar.ac.ae; Jijakli, Kenan
Highlights: • Study developed a methodology for the evaluation of gasification for MSW treatment. • Study was conducted comparatively for USA, UAE, and Thailand. • Study applies a thermodynamic model (Gibbs free energy minimization) using the Gasify software. • The energy efficiency of the process and the compatibility with different waste streams was studied. - Abstract: Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H{sub 2}) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producingmore » energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify®) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.« less
Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Müller-Stöver, Dorette Sophie
2017-08-01
The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer. Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100kW and 6MW, respectively. The assessment included: (i) Elemental composition and recovery of key elements and heavy metals; (ii) content of total carbon (C) and total nitrogen (N); (iii) pH; (iv) water extractability of phosphorus after incubation in soil; and (v) plant phosphorus response measured in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottom ashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded that LT-CFB gasification and co-gasification is a highly effective way to purify and sanitize sewage sludge for subsequent use in agricultural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
High temperature gasification of high heating-rate chars using a flat-flame reactor
Li, Tian; Niu, Yanqing; Wang, Liang; ...
2017-08-25
The increasing interest in gasification and oxy-fuel combustion of biomass has heightened the need for a detailed understanding of char gasification in industrially relevant environments (i.e., high temperature and high-heating rate). Despite innumerable studies previously conducted on gasification of biomass, very few have focused on such conditions. Consequently, in this study the high-temperature gasification behaviors of biomass-derived chars were investigated using non-intrusive techniques. Two biomass chars produced at a heating rate of approximately 10 4 K/s were subjected to two gasification environments and one oxidation environment in an entrained flow reactor equipped with an optical particle-sizing pyrometer. A coal charmore » produced from a common U.S. low sulfur subbituminous coal was also studied for comparison. Both char and surrounding gas temperatures were precisely measured along the centerline of the furnace. Despite differences in the physical and chemical properties of the biomass chars, they exhibited rather similar reaction temperatures under all investigated conditions. On the other hand, a slightly lower particle temperature was observed in the case of coal char gasification, suggesting a higher gasification reactivity for the coal char. A comprehensive numerical model was applied to aid the understanding of the conversion of the investigated chars under gasification atmospheres. In addition, a sensitivity analysis was performed on the influence of four parameters (gas temperature, char diameter, char density, and steam concentration) on the carbon conversion rate. Here, the results demonstrate that the gas temperature is the most important single variable influencing the gasification rate.« less
2009-04-01
at hospitals, at schools,” or wherever there are people creating masses of trash.5 Pyrolytic Gasification Pyrolytic gasification is not a new...prevalent with both. Gasification is . . . the chemical reaction and molecular breakdown or degradation of materials. The first pyrolytic gasification...dealing with about 2 tons of mixed solid waste per day, will destroy wood, paper card, food, plastics, and sanitary, clinical, and oil waste and
Iliuta, Ion; Leclerc, Arnaud; Larachi, Faïçal
2010-05-01
A new reactor concept of allothermal cyclic multi-compartment fluidized bed steam biomass gasification is proposed and analyzed numerically. The concept combines space and time delocalization to approach an ideal allothermal gasifier. Thermochemical conversion of biomass in periodic time and space sequences of steam biomass gasification and char/biomass combustion is simulated in which the exothermic combustion compartments provide heat into an array of interspersed endothermic steam gasification compartments. This should enhance unit heat integration and thermal efficiency and procure N(2)-free biosyngas with recourse neither to oxygen addition in steam gasification nor contact between flue and syngas. The dynamic, one-dimensional, multi-component, non-isothermal model developed for this concept accounts for detailed solid and gas flow dynamics whereupon gasification/combustion reaction kinetics, thermal effects and freeboard-zone reactions were tied. Simulations suggest that allothermal operation could be achieved with switch periods in the range of a minute supporting practical feasibility for portable small-scale gasification units. Copyright 2009 Elsevier Ltd. All rights reserved.
Xin, Ya; Cao, Hongliang; Yuan, Qiaoxia; Wang, Dianlong
2017-10-01
Two-step gasification process was proposed to dispose cattle manure for hydrogen rich gas production. The effect of temperature on product distribution and biochar properties were first studied in the pyrolysis-carbonization process. The steam gasification of biochar derived from different pyrolysis-carbonization temperatures was then performed at 750°C and 850°C. The biochar from the pyrolysis-carbonization temperatures of 500°C had high carbon content and low volatiles content. According to the results of gasification stage, the pyrolysis-carbonization temperature of 500°C and the gasification temperature of 850°C were identified as the suitable conditions for hydrogen production. We obtained 1.61m 3 /kg of syngas production, 0.93m 3 /kg of hydrogen yield and 57.58% of hydrogen concentration. This study shows that two-step gasification is an efficient waste-to-hydrogen energy process. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr.
Recently, carbonaceous materials including activated carbon were proven to be effective catalysts for hazardous waste gasification in supercritical water. Using coconut shell activated carbon catalyst, complete decomposition of industrial organic wastes including methanol and acetic acid was achieved. During this process, the total mass of the activated carbon catalyst changes by two competing processes: a decrease in weight via gasification of the carbon by supercritical water, or an increase in weight by deposition of carbonaceous materials generated by incomplete gasification of the biomass feedstocks. The deposition of carbonaceous materials does not occur when complete gasification is realized. Gasification of themore » activated carbon in supercritical water is often favored, resulting in changes in the quality and quantity of the catalyst. To thoroughly understand the hazardous waste decomposition process, a more complete understanding of the behavior of activated carbon in pure supercritical water is needed. The gasification rate of carbon by water vapor at subcritical pressures was studied in relation to coal gasification and generating activated carbon.« less
A study of industrial hydrogen and syngas supply systems
NASA Technical Reports Server (NTRS)
Amos, W. J.; Solomon, J.; Eliezer, K. F.
1979-01-01
The potential and incentives required for supplying hydrogen and syngas feedstocks to the U.S. chemical industry from coal gasification systems were evaluated. Future hydrogen and syngas demand for chemical manufacture was estimated by geographic area and projected economics for hydrogen and syngas manufacture was estimated with geographic area of manufacture and plant size as parameters. Natural gas, oil and coal feedstocks were considered. Problem areas presently affecting the commercial feasibility of coal gasification discussed include the impact of potential process improvements, factors involved in financing coal gasification plants, regulatory barriers affecting coal gasification, coal mining/transportation, air quality regulations, and competitive feedstock pricing barriers. The potential for making coal gasification the least costly H2 and syngas supply option. Options to stimulate coal gasification system development are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr.
Recently, carbonaceous materials were proved to be effective catalysts for hazardous waste decomposition in supercritical water. Gasification of the carbonaceous catalyst itself is also expected, however, under supercritical conditions. Thus, it is essential to determine the gasification rate of the carbonaceous materials during this process to determine the active lifetime of the catalysts. For this purpose, the gasification characteristics of granular coconut shell activated carbon in supercritical water alone (600-650{degrees}C, 25.5-34.5 MPa) were investigated. The gasification rate at subatmospheric pressure agreed well with the gasification rate at supercritical conditions, indicating the same reaction mechanism. Methane generation under these conditions ismore » via pyrolysis, and thus is not affected by the water pressure. An iodine number increase of 25% was observed as a result of the supercritical water gasification.« less
High Pressure Biomass Gasification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Pradeep K
2016-07-29
According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO 2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDOmore » hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H 2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However, similar approach for biomass gasification was not very useful and was the impetus for this study. Specifically, we aimed this study at three broad objectives: (i) defining operating conditions at which C 2-C 4 hydrocarbons are formed since these represent loss of carbon efficiency, (ii) understanding the formation of tar species which create downstream processing difficulties in addition of carbon efficiency loss, and (iii) kinetics of biomass gasification where it would be possible to understand the effect of operating conditions and gas phase composition.« less
Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda.
Gumisiriza, Robert; Hawumba, Joseph Funa; Okure, Mackay; Hensel, Oliver
2017-01-01
Uganda's banana industry is heavily impeded by the lack of cheap, reliable and sustainable energy mainly needed for processing of banana fruit into pulp and subsequent drying into chips before milling into banana flour that has several uses in the bakery industry, among others. Uganda has one of the lowest electricity access levels, estimated at only 2-3% in rural areas where most of the banana growing is located. In addition, most banana farmers have limited financial capacity to access modern solar energy technologies that can generate sufficient energy for industrial processing. Besides energy scarcity and unreliability, banana production, marketing and industrial processing generate large quantities of organic wastes that are disposed of majorly by unregulated dumping in places such as swamps, thereby forming huge putrefying biomass that emit green house gases (methane and carbon dioxide). On the other hand, the energy content of banana waste, if harnessed through appropriate waste-to-energy technologies, would not only solve the energy requirement for processing of banana pulp, but would also offer an additional benefit of avoiding fossil fuels through the use of renewable energy. The potential waste-to-energy technologies that can be used in valorisation of banana waste can be grouped into three: Thermal (Direct combustion and Incineration), Thermo-chemical (Torrefaction, Plasma treatment, Gasification and Pyrolysis) and Biochemical (Composting, Ethanol fermentation and Anaerobic Digestion). However, due to high moisture content of banana waste, direct application of either thermal or thermo-chemical waste-to-energy technologies is challenging. Although, supercritical water gasification does not require drying of feedstock beforehand and can be a promising thermo-chemical technology for gasification of wet biomass such as banana waste, it is an expensive technology that may not be adopted by banana farmers in Uganda. Biochemical conversion technologies are reported to be more eco-friendly and appropriate for waste biomass with high moisture content such as banana waste. Uganda's banana industrialisation is rural based with limited technical knowledge and economic capability to setup modern solar technologies and thermo-conversions for drying banana fruit pulp. This review explored the advantages of various waste-to-energy technologies as well as their shortfalls. Anaerobic digestion stands out as the most feasible and appropriate waste-to-energy technology for solving the energy scarcity and waste burden in banana industry. Finally, potential options for the enhancement of anaerobic digestion of banana waste were also elucidated.
Waste to Energy at SUNY Cobleskill
2011-05-10
Overview on Army Net Zero Concepts • Gasification Intro. • SUNY Cobleskill Center for Environmental Science and Technology. • TURNW2E™ Gasification ...5 GASIFICATION A TECHNOLOGY 2-fer • Waste Reduction • Reduced Logistics for Waste Transportation • Reduced environmental and personnel impact... GASIFICATION Ash ENERGYWaste T ~ 800oC Partial Combustion O/C ~1/3 • Energy Production • Reduced Fuel Usage for transportation • Increased Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob, J.T.; Chu, L.A.
The modular nature of gasification-combined-cycle (GCC) plants is known to facilitate capacity addition in increments (phased construction) that may match more closely with the anticipated growth in electrical load. Because the gas turbines are the primary building blocks of a phased GCC plant, utility planners are investigating in more detail prospective gas turbines of current and advanced designs developed by several manufacturers. This report summarizes the results of the evaluation of a GCC power plant based on the Kraftwerk Union Model V84.2 gas turbines of the current design now offered for the US market. The design of the Model V84.2more » machine, a scaled-down version of Kraftwerk Union's 50 Hz Model V94 machine, incorporates features suitable for burning gases, such as coal-derived synthesis gas. 14 figs., 42 tabs.« less
Characterization of solid fuels at pressurized fluidized bed gasification conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zevenhoven, R.; Hupa, M.
1998-07-01
The gasification of co-gasification of solid fuel (coal, peat, wood) in air-blown fluidized bed gasifiers is receiving continued attention as an alternative to entrained flow gasifiers which in general are oxygen-blown. Fluidized bed gasification of wood and wood-waste at elevated pressures, and the so-called air-blown gasification cycle are examples of processes which are under development in Europe. based on complete or partial gasification of a solid fuel in a pressurized fluidized bed. At the same time, fuel characterization data for the combination of temperature, pressure and fuel particle heating rate that is encountered in fluidized bed gasification are very scarce.more » In this paper, quantitative data on the characterization of fuels for advanced combustion and gasification technologies based on fluidized beds are given, as a result from the authors participation in the JOULE 2 extension project on clean coal technology of the European community. Eleven solid fuels, ranging from coal via peat to wood, have been studied under typical fluidized bed gasification conditions: 800--1,000 C, 1--25 bar, fuel heating rate in the order of 100--1,000 C/s. Carbon dioxide was used as gasifying agent. A pressurized thermogravimetric reactor was used for the experiments. The results show that the solid residue yield after pyrolysis/devolatilization increases with pressure and decreases with temperature. For coal, the gasification reactivity of the char increases by a factor of 3 to 4 when pressurizing from 1 to 25 bar, for the younger fuels such as peat and wood, this effect is negligible. Several empirical engineering equations are given which relate the fuel performance to the process parameters and the proximate and chemical analyses of the fuel. A pressure maximum was found at which a maximum gasification reactivity occurs, for practically all fuels, and depending on temperature. It is shown that this can be explained and modeled using a Langmuir-Hinshelwood model.« less
Characterisation of solid fuels at pressurised fluidised bed gasification conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zebenhoven, R.; Hupa, M.
1998-04-01
The gasification or co-gasification of solid fuels (coal, peat, wood) in air-blown fluidised bed gasifiers is receiving continued attention as an alternative to entrained flow gasifiers which in general are oxygen-blown. Fluidised bed gasification of wood and wood-waste at elevated pressures, and the so-called air-blown gasification cycle are examples of processes which are under development in Europe, based on complete or partial gasification of a solid fuel in a pressurised fluidised bed. At the same time, fuel characterisation data for the combination of temperature, pressure and fuel particle heating rate that is encountered in fluidised bed gasification are very scarce.more » Quantitative data on the characterisation of fuels for advanced combustion and gasification technologies based on fluidised beds are given, as a result from our participation to the JOULE 2 extension project on clean coal technology of the European Community. Eleven solid fuels, ranging from coal via peat to wood, have been studied under typical fluidised bed gasification conditions: 800-1000{degrees}C, 1-25 bar, fuel heating rate in the order of 100-1000{degrees}C/s. Carbon dioxide was used as gasifying agent. A pressurised thermogravimetric reactor was used for the experiments. The results show that the solid residue yield after pyrolysis/devolatilisation. increases with pressure and decreases with temperature. For coal, the gasification reactivity of the char increases by a factor of 3 to 4 when pressurising from 1 to 25 bar, for the `younger` fuels such as peat and wood, this effect is negligible. Several empirical, `engineering` equations are given which relate the fuel performance to the process parameters and the proximate and chemical analyses of the fuel. A pressure maximum was found at which a maximum gasification reactivity occurs, for practically all fuels, and depending on temperature. It is shown that this can be explained and modelled using a Langmuir-Hinshelwood model.« less
Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil.
Ferreira, Elzimar Tadeu de F; Balestieri, José Antonio P
2018-03-01
The Brazilian National Solid Waste Policy has been implemented with some difficulty, especially in convincing the different actors of society about the importance of conscious awareness among every citizen and businesses concerning adequate solid waste disposal and recycling. Technologies for recovering energy from municipal solid waste were considered in National Solid Waste Policy (NSWP), given that their technical and environmental viability is ensured, being the landfill biogas burning in internal combustion engines and solid waste incineration suggested options. In the present work, an analysis of current technologies and a collection of basic data on electricity generation using biogas from waste/liquid effluents is presented, as well as an assessment of the installation of a facility that harnesses biogas from waste or liquid effluents for producing electricity. Two combined cycle concepts were evaluated with capacity in the range 4-11 MW, gas turbine burning landfill biogas and an incinerator that burns solid waste hybrid cycle, and a solid waste gasification system to burn syngas in gas turbines. A comparative analysis of them demonstrated that the cycle with gasification from solid waste has proved to be technically more appealing than the hybrid cycle integrated with incineration because of its greater efficiency and considering the initially defined guidelines for electricity generation. The economic analysis does not reveal significant attractive values; however, this is not a significant penalty to the project given the fact that this is a pilot low-capacity facility, which is intended to be constructed to demonstrate appropriate technologies of energy recovery from solid waste.
Numerical investigation of the staged gasification of wet wood
NASA Astrophysics Data System (ADS)
Donskoi, I. G.; Kozlov, A. N.; Svishchev, D. A.; Shamanskii, V. A.
2017-04-01
Gasification of wooden biomass makes it possible to utilize forestry wastes and agricultural residues for generation of heat and power in isolated small-scale power systems. In spite of the availability of a huge amount of cheap biomass, the implementation of the gasification process is impeded by formation of tar products and poor thermal stability of the process. These factors reduce the competitiveness of gasification as compared with alternative technologies. The use of staged technologies enables certain disadvantages of conventional processes to be avoided. One of the previously proposed staged processes is investigated in this paper. For this purpose, mathematical models were developed for individual stages of the process, such as pyrolysis, pyrolysis gas combustion, and semicoke gasification. The effect of controlling parameters on the efficiency of fuel conversion into combustible gases is studied numerically using these models. For the controlling parameter are selected heat inputted into a pyrolysis reactor, the excess of oxidizer during gas combustion, and the wood moisture content. The process efficiency criterion is the gasification chemical efficiency accounting for the input of external heat (used for fuel drying and pyrolysis). The generated regime diagrams represent the gasification efficiency as a function of controlling parameters. Modeling results demonstrate that an increase in the fraction of heat supplied from an external source can result in an adequate efficiency of the wood gasification through the use of steam generated during drying. There are regions where it is feasible to perform incomplete combustion of the pyrolysis gas prior to the gasification. The calculated chemical efficiency of the staged gasification is as high as 80-85%, which is 10-20% higher that in conventional single-stage processes.
Anukam, Anthony; Mamphweli, Sampson; Okoh, Omobola; Reddy, Prashant
2017-01-01
Sugarcane bagasse was torrefied to improve its quality in terms of properties prior to gasification. Torrefaction was undertaken at 300 °C in an inert atmosphere of N2 at 10 °C·min−1 heating rate. A residence time of 5 min allowed for rapid reaction of the material during torrefaction. Torrefied and untorrefied bagasse were characterized to compare their suitability as feedstocks for gasification. The results showed that torrefied bagasse had lower O–C and H–C atomic ratios of about 0.5 and 0.84 as compared to that of untorrefied bagasse with 0.82 and 1.55, respectively. A calorific value of about 20.29 MJ·kg−1 was also measured for torrefied bagasse, which is around 13% higher than that for untorrefied bagasse with a value of ca. 17.9 MJ·kg−1. This confirms the former as a much more suitable feedstock for gasification than the latter since efficiency of gasification is a function of feedstock calorific value. SEM results also revealed a fibrous structure and pith in the micrographs of both torrefied and untorrefied bagasse, indicating the carbonaceous nature of both materials, with torrefied bagasse exhibiting a more permeable structure with larger surface area, which are among the features that favour gasification. The gasification process of torrefied bagasse relied on computer simulation to establish the impact of torrefaction on gasification efficiency. Optimum efficiency was achieved with torrefied bagasse because of its slightly modified properties. Conversion efficiency of the gasification process of torrefied bagasse increased from 50% to approximately 60% after computer simulation, whereas that of untorrefied bagasse remained constant at 50%, even as the gasification time increased. PMID:28952501
Weide, Tobias; Guschin, Viktor; Becker, Wolfgang; Koelle, Sabine; Maier, Simon; Seidelt, Stephan
2015-01-01
The analysis of tar, mostly characterized as polycyclic aromatic hydrocarbons (PAHs), describes a topic that has been researched for years. An online analysis of tar in the gas stream in particular is needed to characterize the tar conversion or formation in the biomass gasification process. The online analysis in the gas is carried out with ultraviolet-visible (UV-Vis) spectroscopy (190-720 nm). This online analysis is performed with a measuring cell developed by the Fraunhofer Institute for Chemical Technology (ICT). To this day, online tar measurements using UV-Vis spectroscopy have not been carried out in detail. Therefore, PAHs are analyzed as follows. The measurements are split into different steps. The first step to prove the online method is to vaporize single tar substances. These experiments show that a qualitative analysis of PAHs in the gas stream with the used measurement setup is possible. Furthermore, it is shown that the method provides very exact results, so that a differentiation of various PAHs is possible. The next step is to vaporize a PAH mixture. This step consists of vaporizing five pure substances almost simultaneously. The interpretation of the resulting data is made using a chemometric interpretation method, the multivariate curve resolution (MCR). The verification of the calculated results is the main aim of this experiment. It has been shown that the tar mixture can be analyzed qualitatively and quantitatively (in arbitrary units) in detail using the MCR. Finally it is the main goal of this paper to show the first steps in the applicability of the UV-Vis spectroscopy and the measurement setup on online tar analysis in view of characterizing the biomass gasification process. Due to that, the gasification plant (at the laboratory scale), developed and constructed by the Fraunhofer ICT, has been used to vaporize these substances. Using this gasification plant for the experiments enables the usage of the measurement setup also for the spectroscopic analysis of the tar formation during the biomass gasification.
Chun, Young Nam; Jeong, Byeo Ri
2017-07-28
Microwave drying-pyrolysis or drying-gasification characteristics were examined to convert sewage sludge into energy and resources. The gasification was carried out with carbon dioxide as a gasifying agent. The examination results were compared with those of the conventional heating-type electric furnace to compare both product characteristics. Through the pyrolysis or gasification, gas, tar, and char were generated as products. The produced gas was the largest component of each process, followed by the sludge char and the tar. During the pyrolysis process, the main components of the produced gas were hydrogen and carbon monoxide, with a small amount of hydrocarbons such as methane and ethylene. In the gasification process, however, the amount of carbon monoxide was greater than the amount of hydrogen. In microwave gasification, a large amount of heavy tar was produced. The largest amount of benzene in light tar was generated from the pyrolysis or gasification. Ammonia and hydrogen cyanide, which are precursors of NO x , were also generated. In the microwave heating method, the sludge char produced by pyrolysis and gasification had pores in the mesopore range. This could be explained that the gas obtained from the microwave pyrolysis or gasification of the wet sewage sludge can be used as an alternative fuel, but the tar and NO x precursors in the produced gas should be treated. Sludge char can be used as a biomass solid fuel or as a tar removal adsorbent if necessary.
Division of Biological and Medical Research annual technical report, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, M.W.
1982-06-01
This report summarizes research during 1981 in the Division of Biological and Medical Research, Argonne National Laboratory. Studies in Low Level Radiation include comparison of lifetime effects in mice of low level neutron and gamma irradiation, delineation of the responses of dogs to continuous low level gamma irradiation, elucidation of mechanisms of radiation damage and repair in mammalian cells, and study of the genetic effects of high LET radiations. Carcinogenesis research addresses mechanisms of tumor initiation and promotion in rat liver, chemical carcinogenesis in cultured mammalian cells, and molecular and genetic mechanisms of chemical and ultraviolet mutagenesis in bacteria. Researchmore » in Toxicology uses a variety of cellular, whole animal, and chronobiological end points, chemical separations, and statistical models to evaluate the hazards and mechanisms of actions of metals, coal gasification by products, and other energy-related pollutants. Human Protein Index studies develop two-dimensional electrophoresis systems for diagnosis and detection of cancer and other disease. Biophysics research includes fundamental structural and biophysical investigations of immunoglobulins and key biological molecules using NMR, crystallographic, and x-ray and neutron small-angle scattering techniques. The final sections cover support facilities, educational activities, seminars, staff talks, staff, and funding agencies.« less
Supercritical gasification for the treatment of o-cresol wastewater.
Wei, Chao-hai; Hu, Cheng-sheng; Wu, Chao-fei; Yan, Bo
2006-01-01
The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650 degrees C and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650 degrees C and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CH4 and CO, among which the total molar percentage of H2 and CH4 was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.
NASA Astrophysics Data System (ADS)
Taniguchi, Miki; Nishiyama, Akio; Sasauchi, Kenichi; Ito, Yusuke; Akamatsu, Fumiteru
In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planned a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the appropriate conditions such as air supply location, air ratio, air temperature and hearth load. We considered the results by calculating reaction rates of representative reactions on char gasification part and found that water gas reaction is dominant in the reduction area and its behavior gives important information to decide the adequate length of the char layer.
Hybrid Technology of Hard Coal Mining from Seams Located at Great Depths
NASA Astrophysics Data System (ADS)
Czaja, Piotr; Kamiński, Paweł; Klich, Jerzy; Tajduś, Antoni
2014-10-01
Learning to control fire changed the life of man considerably. Learning to convert the energy derived from combustion of coal or hydrocarbons into another type of energy, such as steam pressure or electricity, has put him on the path of scientific and technological revolution, stimulating dynamic development. Since the dawn of time, fossil fuels have been serving as the mankind's natural reservoir of energy in an increasingly great capacity. A completely incomprehensible refusal to use fossil fuels causes some local populations, who do not possess a comprehensive knowledge of the subject, to protest and even generate social conflicts as an expression of their dislike for the extraction of minerals. Our times are marked by the search for more efficient ways of utilizing fossil fuels by introducing non-conventional technologies of exploiting conventional energy sources. During apartheid, South Africa demonstrated that cheap coal can easily satisfy total demand for liquid and gaseous fuels. In consideration of current high prices of hydrocarbon media (oil and gas), gasification or liquefaction of coal seems to be the innovative technology convergent with contemporary expectations of both energy producers as well as environmentalists. Known mainly from literature reports, underground coal gasification technologies can be brought down to two basic methods: - shaftless method - drilling, in which the gasified seam is uncovered using boreholes drilled from the surface, - shaft method, in which the existing infrastructure of underground mines is used to uncover the seams. This paper presents a hybrid shaft-drilling approach to the acquisition of primary energy carriers (methane and syngas) from coal seams located at great depths. A major advantage of this method is the fact that the use of conventional coal mining technology requires the seams located at great depths to be placed on the off-balance sheet, while the hybrid method of underground gasification enables them to become a source of additional energy for the economy. It should be noted, however, that the shaft-drilling method cannot be considered as an alternative to conventional methods of coal extraction, but rather as a complementary and cheaper way of utilizing resources located almost beyond the technical capabilities of conventional extraction methods due to the associated natural hazards and high costs of combating them. This article presents a completely different approach to the issue of underground coal gasification. Repurposing of the already fully depreciated mining infrastructure for the gasification process may result in a large value added of synthesis gas production and very positive economic effect.
Technology Assessment Report: Aqueous Sludge Gasification Technologies
The study reveals that sludge gasification is a potentially suitable alternative to conventional sludge handling and disposal methods. However, very few commercial operations are in existence. The limited pilot, demonstration or commercial application of gasification technology t...
Studies on biomass char gasification and dynamics
NASA Astrophysics Data System (ADS)
You, Zhanping; You, Shijun; Ma, Xiaoyan
2018-01-01
The gasification performances of two kinds of biomass char by experiment methods are studied, including conversion rate and gasification gas component with temperature and time. Experimental results show that gasification temperature has important effects on the conversion rate and gas component. In the range of experimental temperature, char conversion rates are no more than 30.0%. The apparent activation energies and apparent reaction frequency factors of two biomass chars are obtained through kinetic studies.
You, Siming; Wang, Wei; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa
2016-10-01
The compositions of food wastes and their co-gasification producer gas were compared with the existing data of sewage sludge. Results showed that food wastes are more favorable than sewage sludge for co-gasification based on residue generation and energy output. Two decentralized gasification-based schemes were proposed to dispose of the sewage sludge and food wastes in Singapore. Monte Carlo simulation-based cost-benefit analysis was conducted to compare the proposed schemes with the existing incineration-based scheme. It was found that the gasification-based schemes are financially superior to the incineration-based scheme based on the data of net present value (NPV), benefit-cost ratio (BCR), and internal rate of return (IRR). Sensitivity analysis was conducted to suggest effective measures to improve the economics of the schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synergistic combination of biomass torrefaction and co-gasification: Reactivity studies.
Zhang, Yan; Geng, Ping; Liu, Rui
2017-12-01
Two typical biomass feedstocks obtained from woody wastes and agricultural residues were torrefied or mildly pyrolized in a fixed-bed reactor. Effects of the torrefaction conditions on product distributions, compositional and energetic properties of the solid products, char gasification reactivity, and co-gasification behavior between coal and torrefied solids were systematically investigated. Torrefaction pretreatment produced high quality bio-solids with not only increased energy density, but also concentrated alkali and alkaline earth metals (AAEM). As a consequence of greater retention of catalytic elements in the solid products, the chars derived from torrefied biomass exhibited a faster conversion than those derived from raw biomass during CO 2 gasification. Furthermore, co-gasification of coal/torrefied biomass blends exhibited stronger synergy compared to the coal/raw biomass blends. The results and insights provided by this study filled a gap in understanding synergy during co-gasification of coal and torrefied biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dong, Jun; Tang, Yuanjun; Nzihou, Ange; Chi, Yong; Weiss-Hortala, Elsa; Ni, Mingjiang
2018-06-01
Municipal solid waste (MSW) pyrolysis and gasification are in development, stimulated by a more sustainable waste-to-energy (WtE) option. Since comprehensive comparisons of the existing WtE technologies are fairly rare, this study aims to conduct a life cycle assessment (LCA) using two sets of data: theoretical analysis, and case studies of large-scale commercial plants. Seven systems involving thermal conversion (pyrolysis, gasification, incineration) and energy utilization (steam cycle, gas turbine/combined cycle, internal combustion engine) are modeled. Theoretical analysis results show that pyrolysis and gasification, in particular coupled with a gas turbine/combined cycle, have the potential to lessen the environmental loadings. The benefits derive from an improved energy efficiency leading to less fossil-based energy consumption, and the reduced process emissions by syngas combustion. Comparison among the four operating plants (incineration, pyrolysis, gasification, gasification-melting) confirms a preferable performance of the gasification plant attributed to syngas cleaning. The modern incineration is superior over pyrolysis and gasification-melting at present, due to the effectiveness of modern flue gas cleaning, use of combined heat and power (CHP) cycle, and ash recycling. The sensitivity analysis highlights a crucial role of the plant efficiency and pyrolysis char land utilization. The study indicates that the heterogeneity of MSW and syngas purification technologies are the most relevant impediments for the current pyrolysis/gasification-based WtE. Potential development should incorporate into all process aspects to boost the energy efficiency, improve incoming waste quality, and achieve efficient residues management. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Zhanyu; Koh, Shun Kai; Ng, Wei Cheng; Lim, Reuben C J; Tan, Hugh T W; Tong, Yen Wah; Dai, Yanjun; Chong, Clive; Wang, Chi-Hwa
2016-05-01
Gasification is recognized as a green technology as it can harness energy from biomass in the form of syngas without causing severe environmental impacts, yet producing valuable solid residues that can be utilized in other applications. In this study, the feasibility of co-gasification of woody biomass and food waste in different proportions was investigated using a fixed-bed downdraft gasifier. Subsequently, the capability of biochar derived from gasification of woody biomass in the rehabilitation of soil from tropical secondary forests on degraded land (adinandra belukar) was also explored through a water spinach cultivation study using soil-biochar mixtures of different ratios. Gasification of a 60:40 wood waste-food waste mixture (w/w) produced syngas with the highest lower heating value (LHV) 5.29 MJ/m(3)-approximately 0.4-4.0% higher than gasification of 70:30 or 80:20 mixtures, or pure wood waste. Meanwhile, water spinach cultivated in a 2:1 soil-biochar mixture exhibited the best growth performance in terms of height (a 4-fold increment), weight (a 10-fold increment) and leaf surface area (a 5-fold increment) after 8 weeks of cultivation, owing to the high porosity, surface area, nutrient content and alkalinity of biochar. It is concluded that gasification may be an alternative technology to food waste disposal through co-gasification with woody biomass, and that gasification derived biochar is suitable for use as an amendment for the nutrient-poor, acidic soil of adinandra belukar. Copyright © 2016 Elsevier Ltd. All rights reserved.
TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT
This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, B.E.; Ahner, P.F.; Singelton, A.H.
In situ gasification of steeply dipping coal beds (UCG-SDB) has significant advantages over the more conventional horizontal UCG. In fact, the UCG-SDB process appears to be both technically and operationally competitive with surface gasifiers. The results of the Rawlins UCG-SDB field test program suggest that the process can compete with more conventional sources of synthesis gas on an economic basis. The SDB process mechanism has several advantages over the horizontal process and performs in a fashion similar to surface packedbed reactors. The oxygen requirements for the process are quite low and the degree of process control observed at Rawlins ismore » very attractive.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, B.E.; Ahner, P.F.
In-situ gasification of steeply dipping coal beds (UCG-SDB) has significant advantages over the more conventional horizontal UCG. In fact, the UCG-SDB process appears to be both technically and operationally competitive with surface gasifiers. The results of the Rawlins UCG-SDB field test program suggest that the process can compete with more conventional sources of synthesis gas on an economic basis. The SDB process mechanism has several advantages over the horizontal process and performs in a fashion similar to surface packed bed reactors. The oxygen requirements for the process are quite low and the degree of process control observed at Rawlins ismore » very attractive.« less
Biomass conversion processes for energy and fuels
NASA Astrophysics Data System (ADS)
Sofer, S. S.; Zaborsky, O. R.
The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.
Waste-to-Energy and Fuel Cell Technologies Overview
2011-01-13
Integration of stationary fuel cells with biomass gasification is a developing technology that is in need of demonstration. Innovation for Our...the PureCell®400 Innovation for Our Energy Future Gasification of wood wastes is another potential source of useful fuel gas. Wood waste... Gasification → Cleanup → Fuel Cell Gasification uses high temperature to convert cellulosic materials to fuel gas • Hydrogen (H2) • Carbon monoxide (CO
Small Scale Gasification Application and Perspectives in Circular Economy
NASA Astrophysics Data System (ADS)
Klavins, Maris; Bisters, Valdis; Burlakovs, Juris
2018-06-01
Gasification is the process converting solid fuels as coal and organic plant matter, or biomass into combustible gas, called syngas. Gasification is a thermal conversion process using carbonaceous fuel, and it differs substantially from other thermal processes such as incineration or pyrolysis. The process can be used with virtually any carbonaceous fuel. It is an endothermic thermal conversion process, with partial oxidation being the dominant feature. Gasification converts various feedstock including waste to a syngas. Instead of producing only heat and electricity, synthesis gas produced by gasification may be transformed into commercial products with higher value as transport fuels, fertilizers, chemicals and even to substitute natural gas. Thermo-chemical conversion of biomass and solid municipal waste is developing as a tool to promote the idea of energy system without fossil fuels to a reality. In municipal solid waste management, gasification does not compete with recycling, moreover it enhances recycling programs. Pre-processing and after-processing must increase the amount of recyclables in the circular economy. Additionally, end of life plastics can serve as an energy feedstock for gasification as otherwise it cannot be sorted out and recycled. There is great potential for application of gasification technology within the biomass waste and solid waste management sector. Industrial self-consumption in the mode of combined heat and power can contribute to sustainable economic development within a circular economy.
NASA Astrophysics Data System (ADS)
Das, Tonkeswar; Saikia, Ananya; Mahanta, Banashree; Choudhury, Rahul; Saikia, Binoy K.
2016-10-01
Coal gasification with CO2 has emerged as a cleaner and more efficient way for the production of energy, and it offers the advantages of CO2 mitigation policies through simultaneous CO2 sequestration. In the present investigation, a feasibility study on the gasification of three low-quality, high-sulphur coals from the north-eastern region (NER) of India in a CO2 atmosphere using thermogravimetric analysis (TGA-DTA) has been made in order to have a better understanding of the physical and chemical characteristics in the process of gasification of coal. Model-free kinetics was applied to determine the activation energies (E) and pre-exponential factors (A) of the CO2 gasification process of the coals. Multivariate non-linear regression analyses were performed to find out the formal mechanisms, kinetic model, and the corresponding kinetic triplets. The results revealed that coal gasification with CO2 mainly occurs in the temperature range of 800∘-1400∘C and a maximum of at around 1100∘C. The reaction mechanisms responsible for CO2 gasification of the coals were observed to be of the ` nth order with autocatalysis (CnB)' and ` nth order (Fn) mechanism'. The activation energy of the CO2 gasification was found to be in the range 129.07-146.81 kJ mol-1.
NASA Astrophysics Data System (ADS)
Zhang, Yukui; Zhang, Haixia; Zhu, Zhiping; Na, Yongjie; Lu, Qinggang
2017-08-01
Zhundong coalfield is the largest intact coalfield worldwide and fluidized bed gasification has been considered as a promising way to achieve its clean and efficient utilization. The purpose of this study is to investigate the physicochemical properties and gasification reactivity of the ultrafine semi-char, derived from a bench-scale fluidized bed gasifier, using Zhundong coal as fuel. The results obtained are as follows. In comparison to the raw coal, the carbon and ash content of the semi-char increase after partial gasification, but the ash fusion temperatures of them show no significant difference. Particularly, 76.53% of the sodium in the feed coal has released to the gas phase after fluidized bed gasification. The chemical compositions of the semi-char are closely related to its particle size, attributable to the distinctly different natures of diverse elements. The semi-char exhibits a higher graphitization degree, higher BET surface area, and richer meso- and macropores, which results in superior gasification reactivity than the coal char. The chemical reactivity of the semi-char is significantly improved by an increased gasification temperature, which suggests the necessity of regasification of the semi-char at a higher temperature. Consequently, it will be considered feasible that these carbons in the semi-char from fluidized bed gasifiers are reclaimed and reused for the gasification process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leib, Thomas; Cole, Dan
In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture andmore » Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO 2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO 2 generated in a large industrial gasification process and sequester the CO 2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials, construction labor, engineering, and other costs. The CCS Project Final Technical Report is based on a Front End Engineering and Design (FEED) study prepared by SK E&C, completed in [June] 2014. Subsequently, Fluor Enterprises completed a FEED validation study in mid-September 2014. The design analyses indicated that the FEED package was sufficient and as expected. However, Fluor considered the construction risk based on a stick-build approach to be unacceptable, but construction risk would be substantially mitigated through utilization of modular construction where site labor and schedule uncertainty is minimized. Fluor’s estimate of the overall EPC project cost utilizing the revised construction plan was comparable to SKE&C’s value after reflecting Fluor’s assessment of project scope and risk characteristic. Development was halted upon conclusion of Phase 2A FEED and the project was not constructed.Transport and Sequestration – The overall objective of the pipeline project was to construct a pipeline to transport captured CO 2 from the Lake Charles Clean Energy project to the existing Denbury Green Line and then to the Hastings Field in Southeast Texas to demonstrate effective geologic sequestration of captured CO 2 through commercial EOR operations. The overall objective of the MVA portion of the project was to demonstrate effective geologic sequestration of captured CO 2 through commercial Enhanced Oil Recovery (EOR) operations in order to evaluate costs, operational processes and technical performance. The DOE target for the project was to capture and implement a research MVA program to demonstrate the sequestration through EOR of approximately one million tons of CO 2 per year as an integral component of commercial operations.« less
Coal gasification systems engineering and analysis. Appendix B: Medium B+U gas design
NASA Technical Reports Server (NTRS)
1980-01-01
A four module, 20,000 TPD, based on KT coal gasification technology was designed. The plant processes Kentucky No. 9 coal with provisions for up to five percent North Alabama coal. Medium BTU gas with heat content of 305 BTU/SCF and not more than 200 ppm sulfur is the primary plant product. Sulfur is recovered for scale as prilled sulfur. Ash disposal is on site. The plant is designed for zero water discharge. Trade studies provided the basis for not using boiler produced steam to drive prime movers. Thus process derived steam in excess of process requirements in superheated for power use in prime movers. Electricity from the TVA grid is used to supply the balance of the plant prime mover power requirements. A study of the effect of mine mouth coal cleaning showed that coal cleaning is not an economically preferred route. The design procedure involved defining available processes to meet the requirements of each system, technical/economic trade studies to select the preferred processes, and engineering design and flow sheet development for each module. Cost studies assumed a staggered construction schedule for the four modules beginning spring 1981 and a 90% on stream factor.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-26
... DEPARTMENT OF ENERGY Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined Cycle Project Preliminary Staff Assessment and Draft Environmental Impact Statement... California's Integrated Gasification Combined Cycle Project Preliminary Staff Assessment/Draft Environmental...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Telesca, D.R.
A control technology survey was conducted at the coal gasification facility of the Caterpillar Tractor Company (SIC-5161), in York, Pennsylvania on August 18, 1980 and May 7, 1981, in conjunction with an industrial hygiene characterization study. Potential hazards included coal dust, noise, fire, carbon-monoxide (630080) (CO), polynuclear aromatics, hydrogen sulfide (7783064), phenols, and flammable and explosive gases. Preemployment physicals were given to employees including complete medical histories, physical examinations, and skin examination. Examinations were given annually for the first 5 years and semiannually thereafter. The most hazardous activities were poking, cleaning, inspection of process equipment, and equipment maintenance. Coal dustmore » emissions were effectively reduced by enclosure and venting. Venturi steam injectors in the gasifier pokeholes prevented gas emissions during poking. Ash dust was controlled by removal and handling while it was wet. An audible and visual alarm was used for CO monitoring. The ventilation system in the building effectively prevented accumulation of gases. The author recommends separate lockers for contaminated and clean clothing; a clean area for eating; escape pack respirators located in the rectifier room, control room, and coal bunker; and supplied air respirators in dangerous areas. Disposal of off gas from the feeding system should be addressed.« less
NASA Astrophysics Data System (ADS)
Chen, Y. Q.; Chen, H. P.; Yang, H. P.; Wang, X. H.; Zhang, S. H.
With the depleting of fossil fuel and environmental polluting increasing, the utilization of biomass resources caught increasing concern. Biomass gasification in fluidized bed, as one promising technology, developed quickly. However, serious agglomeration was displayed as biomass ash reacted with bed material (silica sand) at higher temperature. It hindered the wide utilization of CFB gasifier. The objective ofthis work is to investigate the agglomeration behavior between biomass ash and silica sand, and catch the inherent mechanism. Firstly, the influence of ash compounds on the agglomeration behavior was analyzed with biomass ash and synthesis ash compounds addition in fixed bed as ash sample mixed with bed material evenly before every trial. The reaction temperature was set 850°C that is the operated temperature for many fluidized bed gasificated biomass fuels. Then the influence of reaction time was analyzed. The characteristics of the agglomerated silica sand particles were analyzed by the XRD. Finally, it was simulated with HSC computer mode based on thermodynamic equilibrium. It was observed that when the ratio of the biomass ash to the silica sand was above 0.2, the agglomeration was observed. With the increase of the reaction time, more silica sand particles agglomerated with the biomass ash. There are two kinds of silicate eutecticum investigated by the XRD. It is of great significance for the running ofCFB biomass gasifier and the development ofbiomass utilization technology.
Analysis and comparison of biomass pyrolysis/gasification condensates: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, D.C.
1986-06-01
This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases and aqueous phases. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay and mouse skin tumorigenicity tests). These results are the first step of a longermore » term program to determine the properties, handling requirements, and utility of the condensates recovered from biomass gasification and pyrolysis. The analytical data demonstrates the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures. 56 refs., 25 figs., 21 tabs.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the fifth quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending December 31, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab- and bench-scale experimental testing, pilot-scale design, and economic studies.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the seventh quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2002 and ending June 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab-/bench-scale experimental testing and pilot-scale design.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision 21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the second annual technical progress report for the Vision 21 AGC program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending September 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2001 and ending June 30, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of program activities covering program management and progress in first year tasks including lab- and bench-scale design, facilities preparation, and engineering studies.« less
Solar coal gasification reactor with pyrolysis gas recycle
Aiman, William R.; Gregg, David W.
1983-01-01
Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.
Sensing underground coal gasification by ground penetrating radar
NASA Astrophysics Data System (ADS)
Kotyrba, Andrzej; Stańczyk, Krzysztof
2017-12-01
The paper describes the results of research on the applicability of the ground penetrating radar (GPR) method for remote sensing and monitoring of the underground coal gasification (UCG) processes. The gasification of coal in a bed entails various technological problems and poses risks to the environment. Therefore, in parallel with research on coal gasification technologies, it is necessary to develop techniques for remote sensing of the process environment. One such technique may be the radar method, which allows imaging of regions of mass loss (voids, fissures) in coal during and after carrying out a gasification process in the bed. The paper describes two research experiments. The first one was carried out on a large-scale model constructed on the surface. It simulated a coal seam in natural geological conditions. A second experiment was performed in a shallow coal deposit maintained in a disused mine and kept accessible for research purposes. Tests performed in the laboratory and in situ conditions showed that the method provides valuable data for assessing and monitoring gasification surfaces in the UCG processes. The advantage of the GPR method is its high resolution and the possibility of determining the spatial shape of various zones and forms created in the coal by the gasification process.
Updraft gasification of salmon processing waste
USDA-ARS?s Scientific Manuscript database
The purpose of this research is to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible “syngas” in a high temperature (above 700 °C), oxygen deficient environmen...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-05
... DEPARTMENT OF ENERGY Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined Cycle Project Preliminary Staff Assessment and Draft Environmental Impact Statement... Integrated Gasification Combined Cycle Project Preliminary Staff Assessment and Draft Environmental Impact...
77 FR 58022 - Montana Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
... additions of statutory definitions of approximate original contour, in situ coal gasification, and recovery... intends to promulgate regulations pertaining to in situ coal gasification within one year. The statutory... which do not have Federal counterparts under SMCRA: ``in situ coal gasification'' and ``recovery fluid...
Method for increasing steam decomposition in a coal gasification process
Wilson, Marvin W.
1988-01-01
The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.
Method for increasing steam decomposition in a coal gasification process
Wilson, M.W.
1987-03-23
The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.
Hydrothermal Gasification for Waste to Energy
NASA Astrophysics Data System (ADS)
Epps, Brenden; Laser, Mark; Choo, Yeunun
2014-11-01
Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.
Effect of fuel origin on synergy during co-gasification of biomass and coal in CO2.
Zhang, Yan; Zheng, Yan; Yang, Mingjun; Song, Yongchen
2016-01-01
The effect of fuel origin on synergy in coal/biomass blends during co-gasification has been assessed using a congruent-mass thermogravimetry analysis (TGA) method. Results revealed that synergy occurs when ash residuals are formed, followed by an almost complete gasification of biomass. Potassium species in biomass ash play a catalytic role in promoting gasification reactivity of coal char, which is a direct consequence of synergy during co-gasification. The SEM-EDS spectra provided conclusive evidence that the transfer of potassium from biomass to the surface of coal char occurs during co-pyrolysis/gasification. Biomass ash rich in silica eliminated synergy in coal/biomass blends but not to the extent of inhibiting the reaction rate of the blended chars to make it slower than that of separated ones. The best result in terms of synergy was concluded to be the combination of low-ash coal and K-rich biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulc, Jindrich; Stojdl, Jiri; Richter, Miroslav
2012-04-15
Highlights: Black-Right-Pointing-Pointer Comparison of one stage (co-current) and two stage gasification of wood pellets. Black-Right-Pointing-Pointer Original arrangement with grate-less reactor and upward moving bed of the pellets. Black-Right-Pointing-Pointer Two stage gasification leads to drastic reduction of tar content in gas. Black-Right-Pointing-Pointer One stage gasification produces gas with higher LHV at lower overall ER. Black-Right-Pointing-Pointer Content of ammonia in gas is lower in two stage moving bed gasification. - Abstract: A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stagemore » gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW{sub th}. The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950 Degree-Sign C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER = 0.71) led to substantial reduction of gas heating value (LHV = 3.15 MJ/Nm{sup 3}), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950 Degree-Sign C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the second stage presented only few mass% of the inlet biomass stream.« less
Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju
2016-06-05
The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Yan; Wu, Qian; Shimatani, Yuji; Yamaguchi, Koji
2015-10-07
Due to the lack of regeneration methods, the reusability of nanofluidic chips is a significant technical challenge impeding the efficient and economic promotion of both fundamental research and practical applications on nanofluidics. Herein, a simple method for the total regeneration of glass nanofluidic chips was described. The method consists of sequential thermal treatment with six well-designed steps, which correspond to four sequential thermal and thermochemical decomposition processes, namely, dehydration, high-temperature redox chemical reaction, high-temperature gasification, and cooling. The method enabled the total regeneration of typical 'dead' glass nanofluidic chips by eliminating physically clogged nanoparticles in the nanochannels, removing chemically reacted organic matter on the glass surface and regenerating permanent functional surfaces of dissimilar materials localized in the nanochannels. The method provides a technical solution to significantly improve the reusability of glass nanofluidic chips and will be useful for the promotion and acceleration of research and applications on nanofluidics.
Evaluation of wood chip gasification to produce reburn fuel for coal-fired boilers
Gasification/reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient sour...
Improved catalysts for carbon and coal gasification
McKee, D.W.; Spiro, C.L.; Kosky, P.G.
1984-05-25
This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.
BIOMASS REACTIVITY IN GASIFICATION BY THE HYNOL PROCESS
A thermobalance reactor was used to evaluate the reactivity of poplar wood in gasification under the operating conditions specific for the Hynol process where biomass is gasified at 30 atm and 800E C with a hydrogen-rich gas recycled from methane synthesis. The gasification invol...
Methods for sequestering carbon dioxide into alcohols via gasification fermentation
Gaddy, James L; Ko, Ching-Whan; Phillips, J. Randy; Slape, M. Sean
2013-11-26
The present invention is directed to improvements in gasification for use with synthesis gas fermentation. Further, the present invention is directed to improvements in gasification for the production of alcohols from a gaseous substrate containing at least one reducing gas containing at least one microorganism.
Evaluation of Biomass Gasification to Produce Reburning Fuel for Coal-Fired Boilers
Gasification and reburning testing with biomass and other wastes is of interest to both the U.S. EPA and the Italian Ministry of the Environment & Territory. Gasification systems that use biofuels or wastes as feedstock can provide a clean, efficient source of synthesis gas and p...
Evaluation of wood chip gasification to produce reburrn fuel for coal-fired boilers: AWMA
Gasification or reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient s...
Modeling integrated biomass gasification business concepts
Peter J. Ince; Ted Bilek; Mark A. Dietenberger
2011-01-01
Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...
Method for in situ gasification of a subterranean coal bed
Shuck, Lowell Z.
1977-05-31
The method of the present invention relates to providing controlled directional bores in subterranean earth formations, especially coal beds for facilitating in situ gasification operations. Boreholes penetrating the coal beds are interconnected by laser-drilled bores disposed in various arrays at selected angles to the major permeability direction in the coal bed. These laser-drilled bores are enlarged by fracturing prior to the gasification of the coal bed to facilitate the establishing of combustion zones of selected configurations in the coal bed for maximizing the efficiency of the gasification operation.
The role of high-Btu coal gasification technology
NASA Astrophysics Data System (ADS)
German, M. I.
An analysis is given of the role and economic potential of Lurgi-technology gasification of coal to the year 2000, in relation to other gas-supply options, the further development of gasifier designs, and probable environmental impact. It is predicted that coal gasification may reach 10% of total gas supplies by the year 2000, with Eastern U.S. coal use reaching commercially significant use in the 1990's. It is concluded that coal gasification is the cleanest way of using coal, with minimal physical, chemical, biological and socioeconomic impacts.
Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, E.; Hart, D.; Lethi, M.
The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of themore » case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overend, R.P.; Rivard, C.J.
Gasification is being developed to enable a diverse range of biomass resources to meet modern secondary energy uses, especially in the electrical utility sector. Biological or anaerobic gasification in US landfills has resulted in the installation of almost 500 MW(e) of capacity and represents the largest scale application of gasification technology today. The development of integrated gasification combined cycle generation for coal technologies is being paralleled by bagasse and wood thermal gasification systems in Hawaii and Scandinavia, and will lead to significant deployment in the next decade as the current scale-up activities are commercialized. The advantages of highly reactive biomassmore » over coal in the design of process units are being realized as new thermal gasifiers are being scaled up to produce medium-energy-content gas for conversion to synthetic natural gas and transportation fuels and to hydrogen for use in fuel cells. The advent of high solids anaerobic digestion reactors is leading to commercialization of controlled municipal solid waste biological gasification rather than landfill application. In both thermal and biological gasification, high rate process reactors are a necessary development for economic applications that address waste and residue management and the production and use of new crops for energy. The environmental contribution of biomass in reducing greenhouse gas emission will also be improved.« less
Non-slag co-gasification of biomass and coal in entrained-bed furnace
NASA Astrophysics Data System (ADS)
Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke
2018-02-01
Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a thermogravimetric analysis. It was revealed that co-gasification rate of sludge and coal chars was influenced negatively due to high ash content in sludge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bota, K.B.
1991-12-31
The primary objective of this research program is to expose students in the Historically Black Colleges and Universities (HBCU) Fossil Energy Consortium Institutions to energy and fossil fuels research, to stimulate their interest in the sciences and engineering and to encourage them to pursue graduate studies. This report provides the research accomplishment of the various students who participated in the program. Research results are presented on the following topics: Energy Enhancement and Pollutant Reduction in Coal by Cryogenic Diminution; Competition of NO and SO{sub 2} for OH Generated witin Electrical Aerosol Analyzers; Dispersed Iron Catalysts for Coal Gasification; NQR/NMR Studiesmore » of Copper-Cobalt Catalysts for Syngas Concersion; Catalytic gasification of Coal Chars by Potassium Sulfate and Ferrous Sulfate Mixtures; A New Method for Cleaning and Beneficiation of Ultrafine Coal; Characterization Studies of Coal-Derived Liquids; Study of Coal Liquefaction Catalysts and Removal of Certain Toxic Heavy Metal Ions from Coal Conversion Process Wastewaters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyen, S.; Baily, E.; Mawer, J.
1980-10-01
The objective of the work reported herein was to develop a preliminary conceptual design, capital requirements, and product cost for a lignite-to-methanol plant incorporating Winkler Gasification Technology and ICI Methanol synthesis. The lignite-to-methanol complex described herein is designed to produce 15,000 TPD of fuel grade methanol. The complex is designed to be self-sufficient with respect to all utility services, offsites, and other support facilities, including power generation. Following is a summary of the results of the study: (1) Tons per day (TPD) of Lignite Feedstock and Fuel (as received) was 47,770; (2) TPD of Fuel Grade Methanol Product was 15,000;more » (3) Thermal efficiency, % (HHV) was 47.4; (4) Plant investment expressed in terms of first quarter of 1980 was ($ Million) 1545; and (5) Applying the economic premises used by EPRI for fuel conversion plant utility type financing, the calculated levelized and first year product costs are included.« less
Supercritical water gasification of biomass for H2 production: process design.
Fiori, Luca; Valbusa, Michele; Castello, Daniele
2012-10-01
The supercritical water gasification (SCWG) of biomass for H(2) production is analyzed in terms of process development and energetic self-sustainability. The conceptual design of a plant is proposed and the SCWG process involving several substrates (glycerol, microalgae, sewage sludge, grape marc, phenol) is simulated by means of AspenPlus™. The influence of various parameters - biomass concentration and typology, reaction pressure and temperature - is analyzed. The process accounts for the possibility of exploiting the mechanical energy of compressed syngas (later burned to sustain the SCWG reaction) through expansion in turbines, while purified H(2) is fed to fuel cells. Results show that the SCWG reaction can be energetically self-sustained if minimum feed biomass concentrations of 15-25% are adopted. Interestingly, the H(2) yields are found to be maximal at similar feed concentrations. Finally, an energy balance is performed showing that the whole process could provide a net power of about 150 kW(e)/(1000 kg(feed)/h). Copyright © 2012 Elsevier Ltd. All rights reserved.
Gorazda, K; Tarko, B; Werle, S; Wzorek, Z
2018-03-01
Increasing problems associated with sewage sludge disposal are observed nowadays. As the thermal conversion of sewage sludge (combustion, co-combustion, gasification and pyrolysis) appears to be the most promising alternative for its management, the solid residues left after gasification were examined. The present study evaluates the potential of this waste as an alternative phosphorus source in the context of phosphorus recovery. The obtained solid gasification residues were characterised (chemical and phase composition, thermal properties, surface properties and technological parameters used for phosphorus raw materials) and compared to commercial phosphate raw materials. It was revealed that gasification residue is a valuable source of phosphorus and microelements, comparable to sewage sludge ash (SSA) considered nowadays as secondary phosphorus raw materials. Chemical properties as well as technological parameters characteristic for natural phosphate ores are different. Solid gasification residue was leached with mineral acids (phosphoric and nitric) according to the patented method of phosphorus recovery - PolFerAsh, developed by Cracow University of Technology. It was revealed that phosphorus can be selectively leached from solid gasification residue with high efficiency (73-82%); moreover, most of the iron and heavy metals stay in the solid phase due to the low concentration of acids and proper solid to liquid phase ratio. The obtained leachates are valuable products that can be considered for the production of fertilisers. Combining the gasification process with nutrient recovery provides the opportunity for more environmentally efficient technologies driven by sustainable development rules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transformation of Swine Manure and Algal Consortia to Value-added Products
NASA Astrophysics Data System (ADS)
Sharara, Mahmoud A.
The swine production sector is projected to grow globally. In the past, this growth manifested itself in increased herd sizes and geographically concentrated production. Although economically sound, these trends had negative consequences on surrounding ecosystems. Over-application of manure resulted in water quality degradation, while long-term storage of manure slurries was found to promote release of potent GHG emissions. There is a need for innovative approaches for swine manure management that are compatible with current scales of production, and increasingly strict environmental regulations. This study aims to investigate the potential for incorporating gasification as part of a novel swine manure management system which utilizes liquid-solid separation and periphytic algal consortia as a phycoremediation vector for the liquid slurry. The gasification of swine manure solids, and algal biomass solids generate both a gaseous fuel product (producer gas) in addition to a biochar co-product. First, the decomposition kinetics for both feedstock, i.e., swine manure solids, and algal solids, were quantified using thermogravimetry at different heating rates (1 ~ 40°C min-1) under different atmospheres (nitrogen, and air). Pyrolysis kinetics were determined for manure solids from two farms with different manure management systems. Similarly, the pyrolysis kinetics were determined for phycoremediation algae grown on swine manure slurries. Modeling algal solids pyrolysis as first-order independent parallel reactions was sufficient to describe sample devolatilization. Combustion of swine manure solids blended with algal solids, at different ratios, showed no synergistic effects. Gasification of phycoremediation algal biomass was studied using a bench-scale auger gasification system at temperatures between 760 and 960°C. The temperature profile suggested a stratification of reaction zones common to fixed-bed reactors. The producer gas heating value ranged between 2.2 MJ m-3 at 760°C, and 3.6 MJ m-3 at 960°C. Finally, life cycle assessment (LCA) was used to evaluate a proposed swine manure management system that includes a thermochemical conversion sub-system: drying, gasification, and producer-gas combustion (boiler). Liquid manure storage (uncovered tank) was the biggest contributor to GHG emissions. Liquid slurry management stages were credited with the highest fossil fuel use. Improvements to separation and drying technologies can improve this conversion scenario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fred D. Brent; Lalit Shah; Earl Berry
The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase IImore » is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture of ethylene and propylene chemicals from F-T naphtha, for the generation of hydrogen from F-T naphtha to power fuel cells, for direct blending of F-T diesels into transportation fuels, for the conversion of F-T heavy product wax to transportation fuels, and the conversion of F-T Heavy product wax to a valuable high melting point food-grade specialty wax product. Product evaluations conducted under Task 2.5 of Phase II successfully mitigated the above technical and economic risks to the EECP with the development of product yields and product qualities for the production of chemicals, transportation fuels, and specialty food-grade waxes from the F-T synthesis products.« less
Vision of the U.S. biofuel future: a case for hydrogen-enriched biomass gasification
Mark A. Dietenberger; Mark Anderson
2007-01-01
Researchers at the Forest Product Laboratory (FPL) and the University of Wisconsin-Madison (UW) envision a future for biofuels based on biomass gasification with hydrogen enrichment. Synergisms between hydrogen production and biomass gasification technologies will be necessary to avoid being marginalized in the biofuel marketplace. Five feasible engineering solutions...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... Processed in a Gasification System To Produce Synthesis Gas; Tentative Determination To Deny Petition for... Synthesis Gas,'' published in the Federal Register on January 2, 2008. The EPA considered the petition... Refining Industry Processed in a Gasification System to Produce Synthesis Gas'' (Gasification Rule). This...
2012-03-31
there is a need for fundamental scientific and synergistic research in catalytic biomass fast-hydropyrolysis and advanced coal gasification studies...produce appropriate aviation fuels. 15. SUBJECT TERMS Biomass fast hydropyrolysis, hydrodeoxygenation, and coal gasification 16. SECURITY...22 2.0 Investigation of Coal and Biomass Gasification using In-situ
30 CFR 206.264 - In-situ and surface gasification and liquefaction operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false In-situ and surface gasification and... THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Federal Coal § 206.264 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in-situ or...
30 CFR 1206.463 - In-situ and surface gasification and liquefaction operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false In-situ and surface gasification and..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Coal § 1206.463 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in...
30 CFR 1206.463 - In-situ and surface gasification and liquefaction operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false In-situ and surface gasification and..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Coal § 1206.463 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in...
30 CFR 1206.264 - In-situ and surface gasification and liquefaction operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false In-situ and surface gasification and..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Federal Coal § 1206.264 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in...
30 CFR 206.463 - In-situ and surface gasification and liquefaction operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false In-situ and surface gasification and... THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Indian Coal § 206.463 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in-situ or...
30 CFR 1206.264 - In-situ and surface gasification and liquefaction operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false In-situ and surface gasification and... developed by in-situ or surface gasification or liquefaction technology, the lessee shall propose the value... ENFORCEMENT, DEPARTMENT OF THE INTERIOR Natural Resources Revenue PRODUCT VALUATION Federal Coal § 1206.264 In...
30 CFR 1206.264 - In-situ and surface gasification and liquefaction operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false In-situ and surface gasification and..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Federal Coal § 1206.264 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in...
30 CFR 1206.463 - In-situ and surface gasification and liquefaction operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false In-situ and surface gasification and..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Coal § 1206.463 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in...
30 CFR 1206.463 - In-situ and surface gasification and liquefaction operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false In-situ and surface gasification and... developed by in-situ or surface gasification or liquefaction technology, the lessee shall propose the value... ENFORCEMENT, DEPARTMENT OF THE INTERIOR Natural Resources Revenue PRODUCT VALUATION Indian Coal § 1206.463 In...
30 CFR 1206.264 - In-situ and surface gasification and liquefaction operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false In-situ and surface gasification and..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Federal Coal § 1206.264 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in...
Countercurrent fixed-bed gasification of biomass at laboratory scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Blasi, C.; Signorelli, G.; Portoricco, G.
1999-07-01
A laboratory-scale countercurrent fixed-bed gasification plant has been designed and constructed to produce data for process modeling and to compare the gasification characteristics of several biomasses (beechwood, nutshells, olive husks, and grape residues). The composition of producer gas and spatial temperature profiles have been measured for biomass gasification at different air flow rates. The gas-heating value always attains a maximum as a function of this operating variable, associated with a decrease of the air-to-fuel ratio. Optical gasification conditions of wood and agricultural residues give rise to comparable gas-heating values, comprised in the range 5--5.5 MJ/Nm{sup 3} with 28--30% CO, 5--7%more » CO{sub 2}, 6--8% H{sub 2}, 1--2% CH{sub 4}, and small amounts of C{sub 2}- hydrocarbons (apart from nitrogen). However, gasification of agricultural residues is more difficult because of bed transport, partial ash sintering, nonuniform flow distribution, and the presence of a muddy phase in the effluents, so that proper pretreatments are needed for largescale applications.« less
Yu, Ming Ming; Masnadi, Mohammad S; Grace, John R; Bi, Xiaotao T; Lim, C Jim; Li, Yonghua
2015-01-01
This work studied the feasibility of co-gasification of biosolids with biomass as a means of disposal with energy recovery. The kinetics study at 800°C showed that biomass, such as switchgrass, could catalyze the reactions because switchgrass ash contained a high proportion of potassium, an excellent catalyst for gasification. However, biosolids could also inhibit gasification due to interaction between biomass alkali/alkaline earth metals and biosolids clay minerals. In the pilot scale experiments, increasing the proportion of biosolids in the feedstock affected gasification performance negatively. Syngas yield and char conversion decreased from 1.38 to 0.47m(3)/kg and 82-36% respectively as the biosolids proportion in the fuel increased from 0% to 100%. Over the same range, the tar content increased from 10.3 to 200g/m(3), while the ammonia concentration increased from 1660 to 19,200ppmv. No more than 25% biosolids in the fuel feed is recommended to maintain a reasonable gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lahijani, Pooya; Zainal, Zainal Alimuddin
2011-01-01
Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Edreis, Elbager M A; Luo, Guangqian; Li, Aijun; Chao, Chen; Hu, Hongyun; Zhang, Sen; Gui, Ben; Xiao, Li; Xu, Kai; Zhang, Pingan; Yao, Hong
2013-05-01
This study investigates the non-isothermal mechanism and kinetic behaviour of gasification of a lower sulphur petroleum coke, sugar cane bagasse and blends under carbon dioxide atmosphere conditions using the thermogravimetric analyser (TGA). The gas products were measured online with coupled Fourier transform infrared spectroscopy (FTIR). The achieved results explored that the sugar cane bagasse and blend gasification happened in two steps: at (<500 °C) the volatiles are released, and at (>700 °C) char gasification occurred, whereas the lower sulphur petroleum coke presented only one char gasification stage at (>800 °C). Significant interactions were observed in the whole process. Some solid-state mechanisms were studied by the Coats-Redfern method in order to observe the mechanisms responsible for the gasification of samples. The results show that the chemical first order reaction is the best responsible mechanism for whole process. The main released gases are CO2, CO, CH4, HCOOH, C6H5OH and CH3COOH. Copyright © 2013 Elsevier Ltd. All rights reserved.
Comparison of phosphorus recovery from incineration and gasification sewage sludge ash.
Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M; Thomsen, Tobias P; Ahrenfeldt, Jesper; Hauggaard-Nielsen, Henrik
2017-03-01
Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ashes, a material that is rich in phosphorus, but which is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock supply, phosphorus recovery from sewage sludge ashes has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of phosphorus extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of phosphorus were achieved with a single ED step for incineration ashes and a sequential combination of two ED steps for gasification ashes, which was due to a higher influence of iron and/or aluminium in phosphorus solubility for the latter. A product with lower level of metallic impurities and comparable to wet process phosphoric acid was eventually obtained from gasification ashes. Thus, gasification becomes an interesting alternative to incineration also in terms of phosphorus separation.
Gong, Miao; Zhu, Wei; Fan, Yujie; Zhang, Huiwen; Su, Ying
2016-05-01
The supercritical water gasification of ten different types of dewatered sewage sludges was investigated to understand the relationship between sludge properties and gasification products. Experiments were performed in a high-pressure autoclave at 400°C for 60 min. Results showed that gasification of sewage sludge in supercritical water consists mainly of a gasification reaction, a carbonization reaction and a persistent organic pollutants synthesis reaction. Changes in the reactant C/H/O composition have significant effects on the key gasification products. Total gas production increased with increasing C/H2O of the reactant. The char/coke content increased with increasing C/H ratio of the reactant. A decrease in the C/O ratio of the reactant led to a reduction in polycyclic aromatic hydrocarbon formation. This means that we can adjust the reactant C/H/O composition by adding carbon-, hydrogen-, and oxygen-containing substances such as coal, algae and H2O2 to optimize hydrogen production and to inhibit an undesired by-product formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh
2013-06-01
In this investigation, palm empty fruit bunch (EFB) and almond shell (AS) were implemented as two natural catalysts rich in alkali metals, especially potassium, to enhance the reactivity of tire-char through co-gasification process. Co-gasification experiments were conducted at several blending ratios using isothermal Thermogravimetric analysis (TGA) under CO2. The pronounced effect of inherent alkali content of biomass-chars on promoting the reactivity of tire-char was proven when acid-treated biomass-chars did not exert any catalytic effect on improving the reactivity of tire-char in co-gasification experiments. In kinetic studies of the co-gasified samples in chemically-controlled regime, modified random pore model (M-RPM) was adopted to describe the reactive behavior of the tire-char/biomass-char blends. By virtue of the catalytic effect of biomass, the activation energy for tire-char gasification was lowered from 250 kJ/mol in pure form 203 to 187 kJ/mol for AS-char and EFB-char co-gasified samples, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Taguchi approach for co-gasification optimization of torrefied biomass and coal.
Chen, Wei-Hsin; Chen, Chih-Jung; Hung, Chen-I
2013-09-01
This study employs the Taguchi method to approach the optimum co-gasification operation of torrefied biomass (eucalyptus) and coal in an entrained flow gasifier. The cold gas efficiency is adopted as the performance index of co-gasification. The influences of six parameters, namely, the biomass blending ratio, oxygen-to-fuel mass ratio (O/F ratio), biomass torrefaction temperature, gasification pressure, steam-to-fuel mass ratio (S/F ratio), and inlet temperature of the carrier gas, on the performance of co-gasification are considered. The analysis of the signal-to-noise ratio suggests that the O/F ratio is the most important factor in determining the performance and the appropriate O/F ratio is 0.7. The performance is also significantly affected by biomass along with torrefaction, where a torrefaction temperature of 300°C is sufficient to upgrade eucalyptus. According to the recommended operating conditions, the values of cold gas efficiency and carbon conversion at the optimum co-gasification are 80.99% and 94.51%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Co-gasification of coal and biomass: Synergy, characterization and reactivity of the residual char.
Hu, Junhao; Shao, Jingai; Yang, Haiping; Lin, Guiying; Chen, Yingquan; Wang, Xianhua; Zhang, Wennan; Chen, Hanping
2017-11-01
The synergy effect between coal and biomass in their co-gasification was studied in a vertical fixed bed reactor, and the physic-chemical structural characteristics and gasification reactivity of the residual char obtained from co-gasification were also investigated. The results shows that, conversion of the residual char and tar into gas is enhanced due to the synergy effect between coal and biomass. The physical structure of residual char shows more pore on coal char when more biomass is added in the co-gasification. The migration of inorganic elements between coal and biomass was found, the formation and competitive role of K 2 SiO 3 , KAlSiO 4 , and Ca 3 Al 2 (SiO 4 ) 3 is a mechanism behind the synergy. The graphization degree is enhanced but size of graphite crystallite in the residual char decreases with biomass blending ratio increasing. TGA results strongly suggest the big difference in the reactivity of chars derived from coal and biomass in spite of influence from co-gasification. Copyright © 2017 Elsevier Ltd. All rights reserved.
Singla, Mallika; Rasmussen, Morten Lund; Hashemi, Hamid; Wu, Hao; Glarborg, Peter; Pelucchi, Matteo; Faravelli, Tiziano; Marshall, Paul
2018-04-25
Limitations in current hot gas cleaning methods for chlorine species from biomass gasification may be a challenge for end use such as gas turbines, engines, and fuel cells, all requiring very low levels of chlorine. During devolatilization of biomass, chlorine is released partly as methyl chloride. In the present work, the thermal conversion of CH3Cl under gasification conditions was investigated. A detailed chemical kinetic model for pyrolysis and oxidation of methyl chloride was developed and validated against selected experimental data from the literature. Key reactions of CH2Cl with O2 and C2H4 for which data are scarce were studied by ab initio methods. The model was used to analyze the fate of methyl chloride in gasification processes. The results indicate that CH3Cl emissions will be negligible for most gasification technologies, but could be a concern for fluidized bed gasifiers, in particular in low-temperature gasification. The present work illustrates how ab initio theory and chemical kinetic modeling can help to resolve emission issues for thermal processes in industrial scale.
Hydrogen production from biomass gasification using biochar as a catalyst/support.
Yao, Dingding; Hu, Qiang; Wang, Daqian; Yang, Haiping; Wu, Chunfei; Wang, Xianhua; Chen, Hanping
2016-09-01
Biochar is a promising catalyst/support for biomass gasification. Hydrogen production from biomass steam gasification with biochar or Ni-based biochar has been investigated using a two stage fixed bed reactor. Commercial activated carbon was also studied as a comparison. Catalyst was prepared with an impregnation method and characterized by X-ray diffraction, specific surface and porosity analysis, X-ray fluorescence and scanning electron micrograph. The effects of gasification temperature, steam to biomass ratio, Ni loading and bio-char properties on catalyst activity in terms of hydrogen production were explored. The Ni/AC catalyst showed the best performance at gasification temperature of 800°C, S/B=4, Ni loading of 15wt.%. Texture and composition characterization of the catalysts suggested the interaction between volatiles and biochar promoted the reforming of pyrolysis volatiles. Cotton-char supported Ni exhibited the highest activity of H2 production (64.02vol.%, 92.08mgg(-1) biomass) from biomass gasification, while rice-char showed the lowest H2 production. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-04-01
Brief details are given of processes including: BGC-Lurgi slagging gasification, COGAS, Exxon catalytic coal gasification, FW-Stoic 2-stage, GI two stage, HYGAS, Koppers-Totzek, Lurgi pressure gasification, Saarberg-Otto, Shell, Texaco, U-Gas, W-D.IGI, Wellman-Galusha, Westinghouse, and Winkler coal gasification processes; the Rectisol process; the Catacarb and the Benfield processes for removing CO/SUB/2, H/SUB/2s and COS from gases produced by the partial oxidation of coal; the selectamine DD, Selexol solvent, and Sulfinol gas cleaning processes; the sulphur-tolerant shift (SSK) process; and the Super-meth process for the production of high-Btu gas from synthesis gas.
Method and system for controlling a gasification or partial oxidation process
Rozelle, Peter L; Der, Victor K
2015-02-10
A method and system for controlling a fuel gasification system includes optimizing a conversion of solid components in the fuel to gaseous fuel components, controlling the flux of solids entrained in the product gas through equipment downstream of the gasifier, and maximizing the overall efficiencies of processes utilizing gasification. A combination of models, when utilized together, can be integrated with existing plant control systems and operating procedures and employed to develop new control systems and operating procedures. Such an approach is further applicable to gasification systems that utilize both dry feed and slurry feed.
Integration of stripping of fines slurry in a coking and gasification process
DeGeorge, Charles W.
1980-01-01
In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.
Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.
1981-09-14
Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Gulf Research and Development Company is implementing a DOE-sponsored Underground Coal Gasification project in Steeply Dipping Coal Beds (UCG/SDB) in order to assess the economic and technical viability of UCG in SDB. In the Fall 1980 drilling program, 2 vertical and 2 slant process wells; 3 hydrologic and 1 exploratory well and 4 HFEM wells were completed. The Spring, 1981 program will consist of drilling the remaining instrumentation wells necessary to track the progress of the underground reactor in real time. These will consist of: 6 additional High Frequency Electromagnetic wells (HFEM) and 3 extensometer wells (X). These wells willmore » be installed vertically with an expected deviation of two degrees or less.« less
Gasification Characteristics and Kinetics of Coke with Chlorine Addition
NASA Astrophysics Data System (ADS)
Wang, Cui; Zhang, Jianliang; Jiao, Kexin; Liu, Zhengjian; Chou, Kuochih
2017-10-01
The gasification process of metallurgical coke with 0, 1.122, 3.190, and 7.132 wt pct chlorine was investigated through thermogravimetric method from ambient temperature to 1593 K (1320 °C) in purified CO2 atmosphere. The variations in the temperature parameters that T i decreases gradually with increasing chlorine, T f and T max first decrease and then increase, but both in a downward trend indicated that the coke gasification process was catalyzed by the chlorine addition. Then the kinetic model of the chlorine-containing coke gasification was obtained through the advanced determination of the average apparent activation energy, the optimal reaction model, and the pre-exponential factor. The average apparent activation energies were 182.962, 118.525, 139.632, and 111.953 kJ/mol, respectively, which were in the same decreasing trend with the temperature parameters analyzed by the thermogravimetric method. It was also demonstrated that the coke gasification process was catalyzed by chlorine. The optimal kinetic model to describe the gasification process of chlorine-containing coke was the Šesták Berggren model using Málek's method, and the pre-exponential factors were 6.688 × 105, 2.786 × 103, 1.782 × 104, and 1.324 × 103 min-1, respectively. The predictions of chlorine-containing coke gasification from the Šesták Berggren model were well fitted with the experimental data.
Gasification: A Cornerstone Technology
Gary Stiegel
2017-12-09
NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants
New projects for CCGTs with coal gasification (Review)
NASA Astrophysics Data System (ADS)
Olkhovskii, G. G.
2016-10-01
Perspectives of using coal in combined-cycle gas turbine units (CCGTs), which are significantly more efficient than steam power plants, have been associated with preliminary coal gasification for a long time. Due to gasification, purification, and burning the resulting synthesis gas at an increased pressure, there is a possibility to intensify the processes occurring in them and reduce the size and mass of equipment. Physical heat evolving from gasification can be used without problems in the steam circuit of a CCGT. The downside of these opportunities is that the unit becomes more complex and expensive, and its competitiveness is affected, which was not achieved for CCGT power plants with coal gasification built in the 1990s. In recent years, based on the experience with these CCGTs, several powerful CCGTs of the next generation, which used higher-output and cost-effective gas-turbine plants (GTPs) and more advanced systems of gasification and purification of synthesis gas, were either built or designed. In a number of cases, the system of gasification includes devices of CO vapor reforming and removal of the emitted CO2 at a high pressure prior to fuel combustion. Gasifiers with air injection instead of oxygen injection, which is common in coal chemistry, also find application. In this case, the specific cost of the power station considerably decreases (by 15% and more). In units with air injection, up to 40% air required for separation is drawn from the intermediate stage of the cycle compressor. The range of gasified coals has broadened. In order to gasify lignites in one of the projects, a transfer reactor was used. The specific cost of a CCGT with coal gasification rose in comparison with the period when such units started being designed, from 3000 up to 5500 dollars/kW.
Second stage gasifier in staged gasification and integrated process
Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang
2015-10-06
A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.
2011-03-31
2.1 Experimental Investigation of Coal and Biomass Gasification using In-situ Diagnostics ................ 31 2.2 References...need for fundamental scientific and synergistic research in catalytic biomass fast-hydropyrolysis, advanced coal gasification and liquid fuel...experimental findings will improve the scientific knowledge of catalytic biomass fast-hydropyrolysis, coal/ biomass gasification and liquid fuel combustion
Report of the DOD-DOE Workshop on Converting Waste to Energy Using Fuel Cells
2011-10-01
for both at current costs, when federal and state incentives are available • The integration of stationary fuel cells with biomass gasification is a... gasification plant utilizing biomass feedstock. 25 FuelCell Energy Market Research, January 2011...cell WTE opportunities near U.S. Department of Energy (DOE)-supported coal gasification sites. • Identify biomass -rich DOD installations
NASA Technical Reports Server (NTRS)
1979-01-01
Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.
Apparatus for fixed bed coal gasification
Sadowski, Richard S.
1992-01-01
An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.
A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwong, Kyei-Sing; Bennett, James P.
Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less
Gaseous fuels production from dried sewage sludge via air gasification.
Werle, Sebastian; Dudziak, Mariusz
2014-07-01
Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic. © The Author(s) 2014.
First Experiences with the New Chalmers Gasifier
NASA Astrophysics Data System (ADS)
Thunman, H.; Seemann, M. C.
During summer 2007 a 2-6 MWth indirect gasification section was integrated into the loop of the existing 82➀2 MWth circulating fluidized bed boiler at Chalmers University. With help of a particle distributor the gasification unit is connected to the loop after the cyclone. Hot bed material entrained from the boiler is so transferred to the gasifier providing the heat for the production of a nearly nitrogen free product gas. Non-gasified char is returned together with the bed material into the boiler and converted. Biomass can be fed into both sections; the boiler and the gasifier. The gasification is separated from the boiler via two loop seals and a particle distributer, directing particles either back to the boiler or into the gasification section. For that reason the CFB boiler can be operated even after the retrofit independently, just like before, or in combined combustion/gasification mode. This possibility keeps the risk for a retrofit low. As, furthermore, the investment costs for the integration are considerably lower than standalone gasification units of that size, the retrofit is an easy way to extend the potential of a CFB Boiler towards bi- and tri-generation (heat, power, fuel) and enter new markets.
A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures
Kwong, Kyei-Sing; Bennett, James P.
2016-11-25
Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less
Experimental study of biomass gasification with oxygen-enriched air in fluidized bed gasifier.
Liu, Lingqin; Huang, Yaji; Cao, Jianhua; Liu, Changqi; Dong, Lu; Xu, Ligang; Zha, Jianrui
2018-06-01
Considering the universality, renewability and cleanness of biomass, an experimental research is carried out using rice straw in a two-stage fluidized bed. The experimental analysis identified the relevant parameters in the operation of the two-stage fluidized bed to investigate the properties of biomass enriched air gasification. Results show that higher gasification temperature is conducive to enhance the gasification performance. An increasing ER is shown to go against adding gas heat value. When oxygen concentration increases from 21% to 45%, the gas heating value increases from 4.00MJ/kg to 5.24MJ/kg and the gasification efficiency increases from 29.60% to 33.59%, which shows higher oxygen concentration is conducive to higher quality gas and higher gasification efficiency. A secondary oxygen injection leads to reduction of tar concentration from 15.78g/Nm 3 to 10.24g/Nm 3 . The optimal secondary oxygen ratio is about 33.00%. When the secondary oxygen ratio increased to 46.86%, monocyclic aromatics reduced from 28.17% to 19.65% and PAHs increased from 34.97% to 44.05%, leading to the increase aromatization of tar. Copyright © 2018 Elsevier B.V. All rights reserved.
Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment.
Crawford, Jordan T; Shan, Chin Wei; Budsberg, Erik; Morgan, Hannah; Bura, Renata; Gustafson, Rick
2016-01-01
Infrastructure compatible hydrocarbon biofuel proposed to qualify as renewable transportation fuel under the U.S. Energy Independence and Security Act of 2007 and Renewable Fuel Standard (RFS2) is evaluated. The process uses a hybrid poplar feedstock, which undergoes dilute acid pretreatment and enzymatic hydrolysis. Sugars are fermented to acetic acid, which undergoes conversion to ethyl acetate, ethanol, ethylene, and finally a saturated hydrocarbon end product. An unfermentable lignin stream may be burned for steam and electricity production, or gasified to produce hydrogen. During biofuel production, hydrogen gas is required and may be obtained by various methods including lignin gasification. Both technical and economic aspects of the biorefinery are analyzed, with different hydrogen sources considered including steam reforming of natural gas and gasification of lignin. Cash operating costs for jet fuel production are estimated to range from 0.67 to 0.86 USD L -1 depending on facility capacity. Minimum fuel selling prices with a 15 % discount rate are estimated to range from 1.14 to 1.79 USD L -1 . Capacities of 76, 190, and 380 million liters of jet fuel per year are investigated. Capital investments range from 356 to 1026 million USD. A unique biorefinery is explored to produce a hydrocarbon biofuel with a high yield from bone dry wood of 330 L t -1 . This yield is achieved chiefly due to the use of acetogenic bacteria that do not produce carbon dioxide as a co-product during fermentation. Capital investment is significant in the biorefinery in part because hydrogen is required to produce a fully de-oxygenated fuel. Minimum selling price to achieve reasonable returns on investment is sensitive to capital financing options because of high capital costs. Various strategies, such as producing alternative, intermediate products, are investigated with the intent to reduce risk in building the proposed facility. It appears that producing and selling these intermediates may be more profitable than converting all the biomass into aviation fuel. With variability in historical petroleum prices and environmental subsidies, a high internal rate of return would be required to attract investors.
Thermal Cracking of Tars in a Continuously Fed Reactor with Steam
2011-05-01
Fluidized Bed using biomass 8 Tars Mixture of organic components present in gasification product gas with high molecular weight hydrocarbons [MW...Disable sulfur removal systems FoulingPlugging [Ref. 3: Biomass Gasification – Tar and Particles in Product Gases Sampling and Analysis”, European...P., and Nussbaumer T., “Gas Cleaning Requirements for Internal Combustion Engine Applications of Fixed Bed Biomass Gasification ”, Biomass and
Proceedings of the 1st Army Installation Waste to Energy Workshop
2008-08-01
Center 2902 Newmark Dr. Champaign, IL 61824 René S. Parker Select Engineering Services (SES) 1544 Woodland Park Ave. Suite 310 Layton , UT 84041...gasification technologies at different scales (Source: Larson, Eric D., “Small-Scale Gasification-Based Biomass Power Generation,” January 1998...Engineering Research Laboratory. Larson, Eric D. 1998. Small-scale gasification-based biomass power generation. Prepared for the Biomass Workshop
Sulc, Jindřich; Stojdl, Jiří; Richter, Miroslav; Popelka, Jan; Svoboda, Karel; Smetana, Jiří; Vacek, Jiří; Skoblja, Siarhei; Buryan, Petr
2012-04-01
A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW(th). The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950°C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER=0.71) led to substantial reduction of gas heating value (LHV=3.15 MJ/Nm(3)), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950°C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the second stage presented only few mass% of the inlet biomass stream. Copyright © 2011 Elsevier Ltd. All rights reserved.
Experimental study on temperature profile of fixed - bed gasification of oil-palm fronds
NASA Astrophysics Data System (ADS)
Atnaw, Samson M.; Sulaiman, Shaharin A.; Moni, M. Nazmi Z.
2012-06-01
Currently the world's second largest palm oil producer Malaysia produces large amount of oil palm biomass each year. The abundance of the biomass introduces a challenge to utilize them as main feedstock for heat and energy generation. Although some oil palm parts and derivatives like empty fruit bunch and fibre have been commercialized as fuel, less attention has been given to oil palm fronds (OPF). Initial feasibility and characterization studies of OPF showed that it is highly feasible as fuel for gasification to produce high value gaseous fuel or syngas. This paper discusses the experimental gasification attempt carried out on OPF using a 50 kW lab scale downdraft gasifier and its results. The conducted study focused on the temperature distributions within the reactor and the characteristics of the dynamic temperature profile for each temperature zones during operation. OPF feedstock of one cubic inch in individual size with 15% average moisture content was utilized. An average pyrolysis zone temperature of 324°Cand an average oxidation zone temperature of 796°Cwere obtained over a total gasification period of 74 minutes. A maximum oxidation zone temperature of 952°Cwas obtained at 486 lpm inlet air flow rate and 10 kg/hr feedstock consumption rate. Stable bluish flare was produced for more than 70% of the total gasification time. The recorded temperature profiles produced closely similar patterns with the temperature profiles recorded from the gasification of woody materials. Similar temperature profile was obtained comparing the results from OPF gasification with that of woody biomass. Furthermore, the successful ignition of the syngas produced from OPF gasification ascertained that OPF indeed has a higher potential as gasification feedstock. Hence, more detailed studies need to be done for better understanding in exploiting the biomass as a high prospect alternative energy solution. In addition, a study of the effect of initial moisture content of OPF feedstock on the temperature distribution profile along the gasifier bed showed that initial moisture content of feedstock in the range of 15% gives satisfactory result, while experiment with feedstock having higher moisture content resulted in lower zone temperature values.
NASA Astrophysics Data System (ADS)
Kislukhina, Irina A.; Rybakova, Olga G.
2018-03-01
The article deals with biomass gasification technology using the gasification plant running on wood chips and pellets, produced from essential oils waste (waste of coniferous boughs). During the study, the authors solved the process task of improving the quality of the product gas derived from non-wood waste of timber production (coniferous boughs) due to the extraction of essential oils and the subsequent thermal processing of spent coniferous boughs at a temperature of 250-300°C degrees without oxygen immediately before pelleting. The paper provides the improved biomass gasification process scheme including the grinding of coniferous boughs, essential oil distillation and thermal treatment of coniferous boughs waste and pelletizing.
Process for fixed bed coal gasification
Sadowski, Richard S.
1992-01-01
The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.
Yamaguchi, Aritomo; Hiyoshi, Norihito; Sato, Osamu; Bando, Kyoko K; Shirai, Masayuki
2010-06-21
Paper wastes are used for the production of gaseous fuels over supported metal catalysts. The gasification of the nonrecyclable paper wastes, such as shredded documents and paper sludge, is carried out in high-temperature liquid water. The order of the catalytic activity for the gasification is found to be ruthenium>rhodium>platinum>palladium. A charcoal-supported ruthenium catalyst (Ru/C) is the most effective for the gasification of paper and cellulose. Paper wastes are gasified to a limited degree (32.6 carbon %) for 30 min in water at 523 K to produce methane and carbon dioxide, with a small amount of hydrogen. At 573 K, more complete gasification with almost 100 carbon % is achieved within 10 min in water. At 523 K, the gas yield of paper gasification over Ru/C is higher than that of cellulose powder. The gas yields are increased by ball-milling treatment of the recycled paper and cellulose powder. Printed paper wastes are also gasified at 523 K in water.
Co-gasification of pine and oak biochar with sub-bituminous coal in carbon dioxide.
Beagle, E; Wang, Y; Bell, D; Belmont, E
2018-03-01
Pine and oak biochars derived as byproducts of demonstration-scale pyrolysis, and blends of these two feedstocks with Powder River Basin coal, were gasified in a carbon dioxide environment using a modified drop tube reactor (MDTR) and a thermogravimetric analyzer (TGA). The impact of gasification temperature on conversion kinetics was evaluated from the temporal evolution of major product gases in the MDTR as measured using a mass spectrometer. Random pore modeling was conducted to simulate gasification in the MDTR with favorable results. The MDTR and TGA were used to conduct gasification for assessment of non-linear additive effects in the blends. Additive analysis of the blends showed deviation from the experimental blend results, indicating inhibiting effects of co-gasifying the biochar and coal. Inhibitory effects are more significant for oak than pine and more pronounced in the TGA at lower gasification temperatures. Results are discussed in the context of feedstock and reactor type. Copyright © 2017 Elsevier Ltd. All rights reserved.
Behaviors of Char Gasification Based on Two-stage Gasifier of Biomass
NASA Astrophysics Data System (ADS)
Taniguchi, Miki; Sasauchi, Kenichi; Ahn, Chulju; Ito, Yusuke; Hayashi, Toshiaki; Akamatsu, Fumiteru
In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planed a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the apropriate conditions such as air supply location, air ratio, air temperature and hearth load. The following results was found: 1) the air supply into the char bed is more effective than that into the gas phase, 2) we can have the maximum cold gas efficiency of 80% on the following conditions: air supply location: char layer, air temperature: 20°C, air ratio: 0.2. 3) As air temperature is higher, the cold gas efficiency is larger. As for the hearth load, the cold gas efficiency becomes higher and reaches the constant level. It is expected from the results that high temperature in the char layer is effective on the char gasification.
Characterization of Scots pine stump-root biomass as feed-stock for gasification.
Eriksson, Daniel; Weiland, Fredrik; Hedman, Henry; Stenberg, Martin; Öhrman, Olov; Lestander, Torbjörn A; Bergsten, Urban; Öhman, Marcus
2012-01-01
The main objective was to explore the potential for gasifying Scots pine stump-root biomass (SRB). Washed thin roots, coarse roots, stump heartwood and stump sapwood were characterized (solid wood, milling and powder characteristics) before and during industrial processing. Non-slagging gasification of the SRB fuels and a reference stem wood was successful, and the gasification parameters (synthesis gas and bottom ash characteristics) were similar. However, the heartwood fuel had high levels of extractives (≈19%) compared to the other fuels (2-8%) and thereby ≈16% higher energy contents but caused disturbances during milling, storage, feeding and gasification. SRB fuels could be sorted automatically according to their extractives and moisture contents using near-infrared spectroscopy, and their amounts and quality in forests can be predicted using routinely collected stand data, biomass functions and drill core analyses. Thus, SRB gasification has great potential and the proposed characterizations exploit it. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bennett, James; Nakano, Anna; Nakano, Jinichiro; Thomas, Hugh
Gasification is a high-temperature/high-pressure process that converts carbonaceous materials such as coal and/or petcoke into CO and H2, feedstock materials used in power generation and chemical production. Gasification is considered an important technology because of its high process efficiency and the ability to capture environmental pollutants such as CO2, SO3 and Hg. Ash impurities in the carbon feedstock materials melt and coalesce during gasification (1325-1575 °C), becoming slag that attaches to and flows down the gasifier sidewall, corroding and eroding the high Cr2O3 refractory liner used to protect the gasification chamber. Phosphate additions to high Cr2O3 refractory have been found to alter slag/refractory interactions and dramatically reduce refractory wear by the following mechanisms: a) spinel formation, b) slag chemistry changes, c) two phase liquid formation, and d) oxidation state changes. The mechanisms and how they work together to impact material wear/corrosion will be discussed.
Wei, Juntao; Gong, Yan; Guo, Qinghua; Ding, Lu; Wang, Fuchen; Yu, Guangsuo
2017-03-01
Physicochemical evolution (i.e. pore structure variation, carbon structure change and active AAEM transformation) during rice straw (RS) and Shenfu bituminous coal (SF) co-pyrolysis was quantitatively determined in this work. Moreover, the corresponding char gasification was conducted using a thermogravimetric analyzer (TGA) and relative reactivity was proposed to quantify the co-pyrolysis impact on co-gasification reactivity. The results showed that the development of pore structure in co-pyrolyzed chars was first inhibited and then enhanced with the decrease of SF proportion. The promotion effect of co-pyrolysis on order degree of co-pyrolyzed chars gradually weakened with increasing RS proportion. Co-pyrolysis mainly enhanced active K transformation in co-pyrolyzed chars and the promotion effect was alleviated with increasing RS proportion. The inhibition effect of co-pyrolysis on co-gasification reactivity weakened with increasing RS proportion and gasification temperature, which was mainly attributed to the combination of carbon structure evolution and active AAEM transformation in co-pyrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrogen production from algal biomass via steam gasification.
Duman, Gozde; Uddin, Md Azhar; Yanik, Jale
2014-08-01
Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata. Copyright © 2014 Elsevier Ltd. All rights reserved.
Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.
Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong
2015-03-01
Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.
Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog
NASA Technical Reports Server (NTRS)
1980-01-01
The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.
Sustainable Land Use for Bioenergy in the 21st Century
2011-06-01
as pyrolysis and gasification are also applicable to burn biomass and produce electricity.61–63 Biomass can be used directly in existing co- fired...engineering specifications that may ultimately lead to high process efficiency. COMPARISON OF BIOMASS THERMAL CONVERSION PROCESSES Gasification ...thermal gasification of biomass and its application to electricity and fuel production. Biomass and Bioenergy 2008;32(7):573–581. 62. Caputo AC
Numerical simulation of waste tyres gasification.
Janajreh, Isam; Raza, Syed Shabbar
2015-05-01
Gasification is a thermochemical pathway used to convert carbonaceous feedstock into syngas (CO and H2) in a deprived oxygen environment. The process can accommodate conventional feedstock such as coal, discarded waste including plastics, rubber, and mixed waste owing to the high reactor temperature (1000 °C-1600 °C). Pyrolysis is another conversion pathway, yet it is more selective to the feedstock owing to the low process temperature (350 °C-550 °C). Discarded tyres can be subjected to pyrolysis, however, the yield involves the formation of intermediate radicals additional to unconverted char. Gasification, however, owing to the higher temperature and shorter residence time, is more opted to follow quasi-equilibrium and being predictive. In this work, tyre crumbs are subjected to two levels of gasification modelling, i.e. equilibrium zero dimension and reactive multi-dimensional flow. The objective is to investigate the effect of the amount of oxidising agent on the conversion of tyre granules and syngas composition in a small 20 kW cylindrical gasifier. Initially the chemical compositions of several tyre samples are measured following the ASTM procedures for proximate and ultimate analysis as well as the heating value. The measured data are used to carry out equilibrium-based and reactive flow gasification. The result shows that both models are reasonably predictive averaging 50% gasification efficiency, the devolatilisation is less sensitive than the char conversion to the equivalence ratio as devolatilisation is always complete. In view of the high attained efficiency, it is suggested that the investigated tyre gasification system is economically viable. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Rahmat, N. F. H.; Rasid, R. A.
2017-06-01
The main objectives of this work are to study the gasification of EFB in an atmospheric entrained flow gasifier, using carbon dioxide (CO2) as its gasifying agent and to determine the optimum gasification operating conditions, which includes temperature and the oxidant to fuel (OTF) ratio. These were evaluated in terms of important gasification parameters such as the concentration of hydrogen (H2) and carbon monoxide (CO) produced the syngas ratio H2/CO and carbon conversion. The gasification reactions take place in the presence of CO2 at very high reaction rate because of the high operating temperature (700°C - 900°C). The use of CO2 as the oxidant for gasification process can improve the composition of syngas produced as in the Boudouard reaction. Rise of reaction temperature which is 900°C will increase the concentration of both H2 & CO by up to 81 and 30 respectively, though their production were decreased after the OTF ratio of 0.6 for temperature 700°C & 800°C and OTF ratio 0.8 for temperature 750°C. The operating temperature must be higher than 850°C to ensure the Boudouard reaction become the more prominent reaction for the biomass gasification. The syngas ratio obtained was in the range of ≈ 0.6 - 2.4 which is sufficient for liquid fuel synthesis. For the carbon conversion, the highest fuel conversion recorded at temperature 850°C for all OTF ratios. As the OTF ratio increases, it was found that there was an increase in the formation of CO and H2. This suggests that to achieve higher carbon conversion, high operating temperature and OTF ratio are preferable. This study provides information on the optimum operating conditions for the gasification of biomass, especially the EFB, hence may upsurge the utilization of biomass waste as an energy source.
A Burning Rate Emulator (BRE) for Study in Microgravity
NASA Technical Reports Server (NTRS)
Markan, A.; Sunderland, P. B.; Quintiere, J. G.; DeRis, J.; Stocker, D. P.
2015-01-01
A gas-fueled burner, the Burning Rate Emulator (BRE), is used to emulate condensed-phase fuel flames. The design has been validated to easily measure the burning behavior of condensed-phase fuels by igniting a controlled stream of gas fuel and diluent. Four properties, including the heat of combustion, the heat of gasification, the surface temperature, and the laminar smoke point, are assumed to be sufficient to define the steady burning rate of a condensed-phase fuel. The heat of gasification of the fuel is determined by measuring the heat flux and the fuel flow rate. Microgravity BRE tests in the NASA 5.2 s drop facility have examined the burning of pure methane and ethylene (pure and 50 in N2 balance). Fuel flow rates, chamber oxygen concentration and initial pressure have been varied. Two burner sizes, 25 and 50 mm respectively, are chosen to examine the nature of initial microgravity burning. The tests reveal bubble-like flames that increase within the 5.2s drop but the heat flux received from the flame appears to asymptotically approach steady state. Portions of the methane flames appear to locally detach and extinguish at center, while its shape remains fixed, but growing. The effective heat of gasification is computed from the final measured net heat flux and the fuel flow rate under the assumption of an achieved steady burning. Heat flux (or mass flux) and flame position are compared with stagnant layer burning theory. The analysis offers the prospect of more complete findings from future longer duration ISS experiments.
Girardin, Bertrand; Fontaine, Gaëlle; Duquesne, Sophie; Försth, Michael; Bourbigot, Serge
2015-11-20
The pyrolysis of solid polymeric materials is a complex process that involves both chemical and physical phenomena such as phase transitions, chemical reactions, heat transfer, and mass transport of gaseous components. For modeling purposes, it is important to characterize and to quantify the properties driving those phenomena, especially in the case of flame-retarded materials. In this study, protocols have been developed to characterize the thermal conductivity and the heat capacity of an ethylene-vinyl acetate copolymer (EVA) flame retarded with aluminum tri-hydroxide (ATH). These properties were measured for the various species identified across the decomposition of the material. Namely, the thermal conductivity was found to decrease as a function of temperature before decomposition whereas the ceramic residue obtained after the decomposition at the steady state exhibits a thermal conductivity as low as 0.2 W/m/K. The heat capacity of the material was also investigated using both isothermal modulated Differential Scanning Calorimetry (DSC) and the standard method (ASTM E1269). It was shown that the final residue exhibits a similar behavior to alumina, which is consistent with the decomposition pathway of EVA/ATH. Besides, the two experimental approaches give similar results over the whole range of temperatures. Moreover, the optical properties before decomposition and the heat capacity of the decomposition gases were also analyzed. Those properties were then used as input data for a pyrolysis model in order to predict gasification experiments. Mass losses of gasification experiments were well predicted, thus validating the characterization of the thermo-physical properties of the material.
Girardin, Bertrand; Fontaine, Gaëlle; Duquesne, Sophie; Försth, Michael; Bourbigot, Serge
2015-01-01
The pyrolysis of solid polymeric materials is a complex process that involves both chemical and physical phenomena such as phase transitions, chemical reactions, heat transfer, and mass transport of gaseous components. For modeling purposes, it is important to characterize and to quantify the properties driving those phenomena, especially in the case of flame-retarded materials. In this study, protocols have been developed to characterize the thermal conductivity and the heat capacity of an ethylene-vinyl acetate copolymer (EVA) flame retarded with aluminum tri-hydroxide (ATH). These properties were measured for the various species identified across the decomposition of the material. Namely, the thermal conductivity was found to decrease as a function of temperature before decomposition whereas the ceramic residue obtained after the decomposition at the steady state exhibits a thermal conductivity as low as 0.2 W/m/K. The heat capacity of the material was also investigated using both isothermal modulated Differential Scanning Calorimetry (DSC) and the standard method (ASTM E1269). It was shown that the final residue exhibits a similar behavior to alumina, which is consistent with the decomposition pathway of EVA/ATH. Besides, the two experimental approaches give similar results over the whole range of temperatures. Moreover, the optical properties before decomposition and the heat capacity of the decomposition gases were also analyzed. Those properties were then used as input data for a pyrolysis model in order to predict gasification experiments. Mass losses of gasification experiments were well predicted, thus validating the characterization of the thermo-physical properties of the material. PMID:28793682
Analysis of medium-BTU gasification condensates, June 1985-June 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, D.C.
1987-05-01
This report provides the final results of chemical and physical analysis of condensates from biomass gasification systems which are part of the US Department of Energy Biomass Thermochemical Conversion Program. The work described in detail in this report involves extensive analysis of condensates from four medium-BTU gasifiers. The analyses include elemental analysis, ash, moisture, heating value, density, specific chemical analysis, ash, moisture, heating value, density, specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, Carbon-13 nuclear magnetic resonance spectrometry) and Ames Assay. This work was an extension of a broader study earlier completed of the condensates of all the gasifers andmore » pyrolyzers in the Biomass Thermochemical Conversion Program. The analytical data demonstrates the wide range of chemical composition of the organics recoverd in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. Future studies of the time/temperature relationship to tar composition and the effect of processing atmosphere should be undertaken. Further processing of the condensates either as wastewater treatment or upgrading of the organics to useful products is also recommended. 15 refs., 4 figs., 4 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.J.; Smoot, L.D.; Brewster, B.S.
1987-12-01
A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along withmore » a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.« less
The NASA Hydrogen Energy Systems Technology study - A summary
NASA Technical Reports Server (NTRS)
Laumann, E. A.
1976-01-01
This study is concerned with: hydrogen use, alternatives and comparisons, hydrogen production, factors affecting application, and technology requirements. Two scenarios for future use are explained. One is called the reference hydrogen use scenario and assumes continued historic uses of hydrogen along with additional use for coal gasification and liquefaction, consistent with the Ford technical fix baseline (1974) projection. The expanded scenario relies on the nuclear electric economy (1973) energy projection and assumes the addition of limited new uses such as experimental hydrogen-fueled aircraft, some mixing with natural gas, and energy storage by utilities. Current uses and supply of hydrogen are described, and the technological requirements for developing new methods of hydrogen production are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fishkind, H.H.
The overall environmental impact of the eucalyptus to methanol energy system in Florida is assessed. The environmental impacts associated with the following steps of the process are considered: (1) the greenhouse and laboratory; (2) the eucalyptus plantation; (3) transporting the mature logs; (4) the hammermill; and (5) the methanol synthesis plant. Next, the environmental effects of methanol as an undiluted motor fuel, methanol as a gasoline blend, and gasoline as motor fuels are compared. Finally, the environmental effects of the eucalypt gasification/methanol synthesis system are compared to the coal liquefaction and conversion system.
Ma, Weiwei; Han, Yuxing; Xu, Chunyan; Han, Hongjun; Ma, Wencheng; Zhu, Hao; Li, Kun; Wang, Dexin
2018-03-01
The aim of this work was to study an integration of micro-electrolysis with biological reactor (MEBR) for strengthening removal of phenolic compounds in coal gasification wastewater (CGW). The results indicated MEBR achieved high efficiencies in removal of COD and phenolic compounds as well as improvement of biodegradability of CGW under the micro-oxygen condition. The integrated MEBR process was more favorable to improvement of the structural stability of activated sludge and biodiversity of specific functional microbial communities. Especially, Shewanella and Pseudomonas were enriched to accelerate the extracellular electron transfer, finally facilitating the degradation of phenolic compounds. Moreover, MEBR process effectively relieved passivation of Fe-C filler surface and prolonged lifespan of Fe-C filler. Accordingly, the synergetic effect between iron-carbon micro-electrolysis (ICME) and biological action played a significant role in performance of the integrated process. Therefore, the integrated MEBR was a promising practical process for enhancing CGW treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
On-site GC/MS analysis of Chapman gasification separator liquor. Final report Jul 80-Mar 81
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thielen, C.J.; Magee, R.A.; Collins, R.V.
1981-08-01
The report gives results of a characterization of a wastewater stream from a coal gasification plant, using on-site extraction and GC/MS analysis. Extractable material in the wastewater was primarily phenols and alkylphenols, accounting for about 99% of the total mass identified. Several polynuclear aromatic compounds were also identified. The composition of the sample deteriorated even though the water was held in amber bottles at 4C: this was most evident in the concentration of dimethylphenols which dropped about 75% during 2 weeks of refrigerated storage. Ambient sample storage produced a greater decrease in the concentration of phenol, but did not appearmore » to affect the alkylphenols or the base/neutral compounds as much. The observed changes in composition should hamper any off-site wastewater treatbility studies with waters of this type. Diisopropyl ether (DIPE) extraction confirmed the 99-plus % removal efficiency of phenol which had been demonstrated in previous studies. Wet oxidation removed organics almost as efficiently as DIPE extraction, but may have limited use because of its high operating cost.« less
Techno-economic analysis of biofuel production considering logistic configurations.
Li, Qi; Hu, Guiping
2016-04-01
In the study, a techno-economic analysis method considering logistic configurations is proposed. The economic feasibility of a low temperature biomass gasification pathway and an integrated pathway with fast pyrolysis and bio-oil gasification are evaluated and compared with the proposed method in Iowa. The results show that both pathways are profitable, biomass gasification pathway could achieve an Internal Rate of Return (IRR) of 10.00% by building a single biorefinery and integrated bio-oil gasification pathway could achieve an IRR of 3.32% by applying decentralized supply chain structure. A Monte-Carlo simulation considering interactions among parameters is also proposed and conducted, which indicates that both pathways are at high risk currently. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Jayesh; Hess, Fernando; Horzen, Wessel van
This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability ofmore » implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO 2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO 2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and process steam in the existing combined cycle power plant provides sufficient power for all plant loads. The lifecycle GHG profile of the produced jet fuel is 95% of conventional jet fuel. Without converting the fuel gas to a low carbon fuel gas, the emissions would be 108% of conventional jet fuel and without any GHG mitigation, the profile would be 206%. Oil prices greater than $120 per barrel are required to reach a targeted internal rate of return on equity (IRROE) of 12%. Although capital expenditure is much less than if a greenfield facility was built, the relatively small size of the plant, assumed coal price, and the CTL risk profile used in the economic assumptions lead to a high cost of production. Assuming more favorable factors, the economic oil price could be reduced to $78 per barrel with GHG mitigation and $55 per barrel with no GHG mitigation.« less
Characterization of cellulosic wastes and gasification products from chicken farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Paul, E-mail: p.joseph@ulster.ac.uk; Tretsiakova-McNally, Svetlana; McKenna, Siobhan
Highlights: Black-Right-Pointing-Pointer The gas chromatography indicated the variable quality of the producer gas. Black-Right-Pointing-Pointer The char had appreciable NPK values, and can be used as a fertiliser. Black-Right-Pointing-Pointer The bio-oil produced was of poor quality, having high moisture content and low pH. Black-Right-Pointing-Pointer Mass and energy balances showed inadequate level energy recovery from the process. Black-Right-Pointing-Pointer Future work includes changing the operating parameters of the gasification unit. - Abstract: The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chickenmore » litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.« less
Hwang, In-Hee; Kobayashi, Jun; Kawamoto, Katsuya
2014-02-01
Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products. The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500°C but the polycyclic aromatic hydrocarbons became the major compounds at 900°C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700°C under steam gasification condition. For WBC, both char utilization by pyrolysis at low temperature (500°C) and syngas recovery by steam gasification at higher temperature (900°C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500°C) might be one of viable options. Steam gasification at 900°C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered. Copyright © 2013 Elsevier Ltd. All rights reserved.
Power Sources Focus Group - Evaluation of Plasma Gasification for Waste-to-Energy Conversion
2012-09-21
including paper , wood, plastic, food and agricultural waste. The system uses a shredder, dryer , and pelletizing preprocessor to fuel an in-house...limited information available, this paper does not attempt to determine the best way to use plasma in a gasifier. Instead, this paper makes general...Gasification Plasma gasification for the purposes of this paper includes any WTE system using plasma as part of the generation of syngas and/or cleanup
Updraft Fixed Bed Gasification Aspen Plus Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
2007-09-27
The updraft fixed bed gasification model provides predictive modeling capabilities for updraft fixed bed gasifiers, when devolatilization data is available. The fixed bed model is constructed using Aspen Plus, process modeling software, coupled with a FORTRAN user kinetic subroutine. Current updraft gasification models created in Aspen Plus have limited predictive capabilities and must be "tuned" to reflect a generalized gas composition as specified in literature or by the gasifier manufacturer. This limits the applicability of the process model.
Thomsen, Tobias Pape; Sárossy, Zsuzsa; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Frandsen, Flemming Jappe; Henriksen, Ulrik Birk
2017-08-01
Results from five experimental campaigns with Low Temperature Circulating Fluidized Bed (LT-CFB) gasification of straw and/or municipal sewage sludge (MSS) from three different Danish municipal waste water treatment plants in pilot and demonstration scale are analyzed and compared. The gasification process is characterized with respect to process stability, process performance and gas product characteristics. All experimental campaigns were conducted at maximum temperatures below 750°C, with air equivalence ratios around 0.12 and with pure silica sand as start-up bed material. A total of 8600kg of MSS dry matter was gasified during 133h of operation. The average thermal loads during the five experiments were 62-100% of nominal capacity. The short term stability of all campaigns was excellent, but gasification of dry MSS lead to substantial accumulation of coarse and rigid, but un-sintered, ash particles in the system. Co-gasification of MSS with sufficient amounts of cereal straw was found to be an effective way to mitigate these issues as well as eliminate thermal MSS drying requirements. Characterization of gas products and process performance showed that even though gas composition varied substantially, hot gas efficiencies of around 90% could be achieved for all MSS fuel types. Copyright © 2017 Elsevier Ltd. All rights reserved.
Potassium dichromate method of coal gasification the study of the typical organic compounds in water
NASA Astrophysics Data System (ADS)
Quan, Jiankang; Qu, Guangfei; Dong, Zhanneng; Lu, Pei; Cai, Yingying; Wang, Shibo
2017-05-01
The national standard method is adopted in this paper the water - digestion spectrophotometry for determination of the chemical oxygen demand (COD), after ultrasonic processing of coal gasification water for CODCr measurement. Using the control variable method, measured in different solution pH, ultrasonic frequency, ultrasonic power, reaction conditions of different initial solution concentration, the change of coal gasification water CODCr value under the action of ultrasonic, the experimental results shows that appear when measurement is allowed to fluctuate, data, in order to explain the phenomenon we adopt the combination of the high performance liquid chromatography and mass spectrometry before and after ultrasonic coal gasification qualitative analysis on composition of organic matter in water. To raw water sample chromatography - mass spectrometry (GC/MS) analysis, combined with the spectra analysis of each peak stands for material, select coal gasification typical organic substances in water, with the method of single digestion, the equivalent CODCr values measured after digestion. Order to produce, coal gasification water contained high concentration organic wastewater, such as the national standard method is adopted to eliminate the organic material, therefore to measure the CODCr value is lower than actual CODCr value of the emergence of the phenomenon, the experiment of the effect of ultrasound [9-13] is promote the complex organic chain rupture, also explains the actual measurement data fluctuation phenomenon in the experiment.
Hydrogen recovery from the thermal plasma gasification of solid waste.
Byun, Youngchul; Cho, Moohyun; Chung, Jae Woo; Namkung, Won; Lee, Hyeon Don; Jang, Sung Duk; Kim, Young-Suk; Lee, Jin-Ho; Lee, Carg-Ro; Hwang, Soon-Mo
2011-06-15
Thermal plasma gasification has been demonstrated as one of the most effective and environmentally friendly methods for solid waste treatment and energy utilization in many of studies. Therefore, the thermal plasma process of solid waste gasification (paper mill waste, 1.2 ton/day) was applied for the recovery of high purity H(2) (>99.99%). Gases emitted from a gasification furnace equipped with a nontransferred thermal plasma torch were purified using a bag-filter and wet scrubber. Thereafter, the gases, which contained syngas (CO+H(2)), were introduced into a H(2) recovery system, consisting largely of a water gas shift (WGS) unit for the conversion of CO to H(2) and a pressure swing adsorption (PSA) unit for the separation and purification of H(2). It was successfully demonstrated that the thermal plasma process of solid waste gasification, combined with the WGS and PSA, produced high purity H(2) (20 N m(3)/h (400 H(2)-Nm(3)/PMW-ton), up to 99.99%) using a plasma torch with 1.6 MWh/PMW-ton of electricity. The results presented here suggest that the thermal plasma process of solid waste gasification for the production of high purity H(2) may provide a new approach as a future energy infrastructure based on H(2). Copyright © 2011 Elsevier B.V. All rights reserved.
Bio-syngas production from agro-industrial biomass residues by steam gasification.
Pacioni, Tatiana Ramos; Soares, Diniara; Domenico, Michele Di; Rosa, Maria Fernanda; Moreira, Regina de Fátima Peralta Muniz; José, Humberto Jorge
2016-12-01
This study evaluated the steam gasification potential of three residues from Brazilian agro-industry by assessing their reaction kinetics and syngas production at temperatures from 650 to 850°C and a steam partial pressure range of 0.05 to 0.3bar. The transition temperature between kinetic control and diffusion control regimes was identified. Prior to the gasification tests, the raw biomasses, namely apple pomace, spent coffee grounds and sawdust, were pyrolyzed in a fixed-bed quartz tubular reactor under controlled conditions. Gasification tests were performed isothermally in a magnetic suspension thermobalance and the reaction products were analyzed by a gas chromatograph with TCD/FID detectors. According to the characterization results, the samples presented higher carbon and lower volatile matter contents than the biomasses. Nevertheless, all of the materials had high calorific value. Syngas production was influenced by both temperature and steam partial pressure. Higher concentrations of H 2 and CO were found in the conversion range of 50-80% and higher concentrations of CO 2 in conversions around 10%, for all the gasified biochars. The H 2 /CO decreased with increasing temperature, mainly in kinetic control regime, in the lower temperature range. The results indicate the gasification potential of Brazilian biomass residues and are an initial and important step in the development of gasification processes in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gasification of torrefied Miscanthus × giganteus in an air-blown bubbling fluidized bed gasifier.
Xue, G; Kwapinska, M; Horvat, A; Kwapinski, W; Rabou, L P L M; Dooley, S; Czajka, K M; Leahy, J J
2014-05-01
Torrefaction is suggested to be an effective method to improve the fuel properties of biomass and gasification of torrefied biomass should provide a higher quality product gas than that from unprocessed biomass. In this study, both raw and torrefied Miscanthus × giganteus (M×G) were gasified in an air-blown bubbling fluidized bed (BFB) gasifier using olivine as the bed material. The effects of equivalence ratio (ER) (0.18-0.32) and bed temperature (660-850°C) on the gasification performance were investigated. The results obtained suggest the optimum gasification conditions for the torrefied M × G are ER 0.21 and 800°C. The product gas from these process conditions had a higher heating value (HHV) of 6.70 MJ/m(3), gas yield 2m(3)/kg biomass (H2 8.6%, CO 16.4% and CH4 4.4%) and cold gas efficiency 62.7%. The comparison between raw and torrefied M × G indicates that the torrefied M × G is more suitable BFB gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihaela Grigore; Richard Sakurovs; David French
Gasification of coke contributes to its degradation in the blast furnace. In this study, the effect of gasification on the inherent catalytic minerals in cokes and their reciprocal influence on gasification are investigated. The catalytic mineral phases identified in the cokes used in this study were metallic iron, iron sulfides, and iron oxides. Metallic iron and pyrrhotite were rapidly oxidized during gasification to iron oxide. The catalysts had a strong influence on the apparent rates at the initial stages of reaction. As gasification proceeds, their effect on the reaction rate diminishes as a result of reducing the surface contact betweenmore » catalyst and carbon matrix because of carbon consumption around the catalyst particles; with extended burnout the reactivity of the coke becomes increasingly dependent on surface area. The reaction rate in the initial stages was also influenced by the particle size of the catalytic minerals; for a given catalytic iron level, the cokes whose catalytic minerals were more finely dispersed had a higher apparent reaction rate than cokes containing larger catalytic particles. Iron, sodium, and potassium in the amorphous phase did not appear to affect the reaction rate. 40 refs., 16 figs., 6 tabs.« less
Influence of operating conditions on the air gasification of dry refinery sludge in updraft gasifier
NASA Astrophysics Data System (ADS)
Ahmed, R.; Sinnathambi, C. M.
2013-06-01
In the present work, details of the equilibrium modeling of dry refinery sludge (DRS) are presented using ASPEN PLUS Simulator in updraft gasifier. Due to lack of available information in the open journal on refinery sludge gasification using updraft gasifier, an evaluate for its optimum conditions on gasification is presented in this paper. For this purpose a Taguchi Orthogonal array design, statistical software is applied to find optimum conditions for DRS gasification. The goal is to identify the most significant process variable in DRS gasification conditions. The process variables include; oxidation zone temperature, equivalent ratio, operating pressure will be simulated and examined. Attention was focused on the effect of optimum operating conditions on the gas composition of H2 and CO (desirable) and CO2 (undesirable) in terms of mass fraction. From our results and finding it can be concluded that the syngas (H2 & CO) yield in term of mass fraction favors high oxidation zone temperature and at atmospheric pressure while CO2 acid gas favor at a high level of equivalent ratio as well as air flow rate favoring towards complete combustion.
Environmental and economic performance of plasma gasification in Enhanced Landfill Mining.
Danthurebandara, Maheshi; Van Passel, Steven; Vanderreydt, Ive; Van Acker, Karel
2015-11-01
This paper describes an environmental and economic assessment of plasma gasification, one of the viable candidates for the valorisation of refuse derived fuel from Enhanced Landfill Mining. The study is based on life cycle assessment and life cycle costing. Plasma gasification is benchmarked against conventional incineration, and the study indicates that the process could have significant impact on climate change, human toxicity, particulate matter formation, metal depletion and fossil depletion. Flue gas emission, oxygen usage and disposal of residues (plasmastone) are the major environmental burdens, while electricity production and metal recovery represent the major benefits. Reductions in burdens and improvements in benefits are found when the plasmastone is valorised in building materials instead of landfilling. The study indicates that the overall environmental performance of plasma gasification is better than incineration. The study confirms a trade-off between the environmental and economic performance of the discussed scenarios. Net electrical efficiency and investment cost of the plasma gasification process and the selling price of the products are the major economic drivers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Performance and Characteristics of a Cyclone Gasifier for Gasification of Sawdust
NASA Astrophysics Data System (ADS)
Azman Miskam, Muhamad; Zainal, Z. A.; Idroas, M. Y.
The performance and characteristics of a cyclone gasifier for gasification of sawdust has been studied and evaluated. The system applied a technique to gasify sawdust through the concept of cyclonic motion driven by air injected at atmospheric pressure. This study covers the results obtained for gasification of ground sawdust from local furniture industries with size distribution ranging from 0.25 to 1 mm. It was found that the typical wall temperature for initiating stable gasification process was about 400°C. The heating value of producer gas was about 3.9 MJ m-3 that is sufficient for stable combustion in a dual-fuel engine generator. The highest thermal output from the cyclone gasifier was 57.35 kWT. The highest value of mass conversion efficiency and enthalpy balance were 60 and 98.7%, respectively. The highest efficiency of the cyclone gasifier obtained was 73.4% and this compares well with other researchers. The study has identified the optimum operational condition for gasifying sawdust in a cyclone gasifier and made conclusions as to how the steady gasification process can be achieved.
Jia, Lijuan; Yu, Jiangdong; Chen, Yuan; ...
2017-08-01
The exploration of non-noble-metal catalysts for high efficiency gasification of biomass in supercritical water (SCW) is of great significance for the sustainable development. A series of Ni–M (M = Co or Zn) bimetallic nanoparticles supported on graphitized carbon black were synthesized and examined as catalysts for gasification of phenol in SCW. We found that a nearly complete gasification of phenol can be achieved even at a low temperature of 450 °C with the bimetallic nanoparticles catalysts. Kinetic study indicated the activation energy for phenol gasification were 20.4 ± 2.6 and 43.6 ± 2.6 kJ/mol for Ni20Zn15 and Ni20Co15 catalyst, respectively.more » Furthermore, XRD, XPS and TEM were performed to characterize the catalysts and the results showed the formation of NiCo and NiZn alloy phase. Catalyst recycling experiments were also conducted to evaluate the stability of the catalysts. The characterization of used catalysts suggest that the severe agglomeration of nanoparticles leads to the decrease in catalytic activity.« less
Ghrib, Amina; Friaa, Athar; Ouerghi, Aymen; Naoui, Slim; Belayouni, Habib
2017-01-01
Solar dried sewage sludge (SS) conversion by pyrolysis and gasification processes has been performed, separately, using two laboratory-scale reactors, a fixed-bed pyrolyzer and a downdraft gasifier, to produce mainly hydrogen-rich syngas. Prior to SS conversion, solar drying has been conducted in order to reduce moisture content (up to 10%). SS characterization reveals that these biosolids could be appropriate materials for gaseous products production. The released gases from SS pyrolysis and gasification present relatively high heating values (up to 9.96 MJ/kg for pyrolysis and 8.02 9.96 MJ/kg for gasification) due to their high contents of H2 (up to 11 and 7 wt%, resp.) and CH4 (up to 17 and 5 wt%, resp.). The yields of combustible gases (H2 and CH4) show further increase with pyrolysis. Stoichiometric models of both pyrolysis and gasification reactions were determined based on the global biomass formula, CαHβOγNδSε, in order to assist in the products yields optimization. PMID:28856162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Lijuan; Yu, Jiangdong; Chen, Yuan
The exploration of non-noble-metal catalysts for high efficiency gasification of biomass in supercritical water (SCW) is of great significance for the sustainable development. A series of Ni–M (M = Co or Zn) bimetallic nanoparticles supported on graphitized carbon black were synthesized and examined as catalysts for gasification of phenol in SCW. We found that a nearly complete gasification of phenol can be achieved even at a low temperature of 450 °C with the bimetallic nanoparticles catalysts. Kinetic study indicated the activation energy for phenol gasification were 20.4 ± 2.6 and 43.6 ± 2.6 kJ/mol for Ni20Zn15 and Ni20Co15 catalyst, respectively.more » Furthermore, XRD, XPS and TEM were performed to characterize the catalysts and the results showed the formation of NiCo and NiZn alloy phase. Catalyst recycling experiments were also conducted to evaluate the stability of the catalysts. The characterization of used catalysts suggest that the severe agglomeration of nanoparticles leads to the decrease in catalytic activity.« less
An Experimental Investigation of Sewage Sludge Gasification in a Fluidized Bed Reactor
Calvo, L. F.; García, A. I.; Otero, M.
2013-01-01
The gasification of sewage sludge was carried out in a simple atmospheric fluidized bed gasifier. Flow and fuel feed rate were adjusted for experimentally obtaining an air mass : fuel mass ratio (A/F) of 0.2 < A/F < 0.4. Fuel characterization, mass and power balances, produced gas composition, gas phase alkali and ammonia, tar concentration, agglomeration tendencies, and gas efficiencies were assessed. Although accumulation of material inside the reactor was a main problem, this was avoided by removing and adding bed media along gasification. This allowed improving the process heat transfer and, therefore, gasification efficiency. The heating value of the produced gas was 8.4 MJ/Nm, attaining a hot gas efficiency of 70% and a cold gas efficiency of 57%. PMID:24453863
Köhler, Markus; Oßwald, Patrick; Krueger, Dominik; Whitside, Ryan
2018-02-19
This manuscript describes a high-temperature flow reactor experiment coupled to the powerful molecular beam mass spectrometry (MBMS) technique. This flexible tool offers a detailed observation of chemical gas-phase kinetics in reacting flows under well-controlled conditions. The vast range of operating conditions available in a laminar flow reactor enables access to extraordinary combustion applications that are typically not achievable by flame experiments. These include rich conditions at high temperatures relevant for gasification processes, the peroxy chemistry governing the low temperature oxidation regime or investigations of complex technical fuels. The presented setup allows measurements of quantitative speciation data for reaction model validation of combustion, gasification and pyrolysis processes, while enabling a systematic general understanding of the reaction chemistry. Validation of kinetic reaction models is generally performed by investigating combustion processes of pure compounds. The flow reactor has been enhanced to be suitable for technical fuels (e.g. multi-component mixtures like Jet A-1) to allow for phenomenological analysis of occurring combustion intermediates like soot precursors or pollutants. The controlled and comparable boundary conditions provided by the experimental design allow for predictions of pollutant formation tendencies. Cold reactants are fed premixed into the reactor that are highly diluted (in around 99 vol% in Ar) in order to suppress self-sustaining combustion reactions. The laminar flowing reactant mixture passes through a known temperature field, while the gas composition is determined at the reactors exhaust as a function of the oven temperature. The flow reactor is operated at atmospheric pressures with temperatures up to 1,800 K. The measurements themselves are performed by decreasing the temperature monotonically at a rate of -200 K/h. With the sensitive MBMS technique, detailed speciation data is acquired and quantified for almost all chemical species in the reactive process, including radical species.
Novel Attrition-Resistant Fischer Tropsch Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weast, Logan, E.; Staats, William, R.
2009-05-01
There is a strong national interest in the Fischer-Tropsch synthesis process because it offers the possibility of making liquid hydrocarbon fuels from reformed natural gas or coal and biomass gasification products. This project explored a new approach that had been developed to produce active, attrition-resistant Fischer-Tropsch catalysts that are based on glass-ceramic materials and technology. This novel approach represented a promising solution to the problem of reducing or eliminating catalyst attrition and maximizing catalytic activity, thus reducing costs. The technical objective of the Phase I work was to demonstrate that glass-ceramic based catalytic materials for Fischer-Tropsch synthesis have resistance tomore » catalytic deactivation and reduction of particle size superior to traditional supported Fischer-Tropsch catalyst materials. Additionally, these novel glass-ceramic-based materials were expected to exhibit catalytic activity similar to the traditional materials. If successfully developed, the attrition-resistant Fischer-Tropsch catalyst materials would be expected to result in significant technical, economic, and social benefits for both producers and public consumers of Fischer-Tropsch products such as liquid fuels from coal or biomass gasification. This program demonstrated the anticipated high attrition resistance of the glass-ceramic materials. However, the observed catalytic activity of the materials was not sufficient to justify further development at this time. Additional testing documented that a lack of pore volume in the glass-ceramic materials limited the amount of surface area available for catalysis and consequently limited catalytic activity. However, previous work on glass-ceramic catalysts to promote other reactions demonstrated that commercial levels of activity can be achieved, at least for those reactions. Therefore, we recommend that glass-ceramic materials be considered again as potential Fischer-Tropsch catalysts if it can be demonstrated that materials with adequate pore volume can be produced. During the attrition resistance tests, it was learned that the glass-ceramic materials are very abrasive. Attention should be paid in any further developmental efforts to the potential for these hard, abrasive materials to damage reactors.« less
The commercial feasibility of underground coal gasification in southern Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solc, J.; Young, B.C.; Harju, J.A.
Underground Coal Gasification (UCG) is a clean coal technology with the commercial potential to provide low- or medium-Btu gas for the generation of electric power. While the abundance of economic coal and natural gas reserves in the United States of America (USA) has delayed the commercial development of this technology in the USA, potential for commercial development of UCG-fueled electric power generation currently exists in many other nations. Thailand has been experiencing sustained economic growth throughout the past decade. The use of UCG to provide electric power to meet the growing power demand appears to have commercial potential. A projectmore » to determine the commercial feasibility of UCG-fueled electric power generation at a site in southern Thailand is in progress. The objective of the project is to determine the commercial feasibility of using UCG for power generation in the Krabi coal mining area located approximately 1,000 kilometers south of Bangkok, Thailand. The project team has developed a detailed methodology to determine the technical feasibility, environmental acceptability, and commercial economic potential of UCG at a selected site. In the methodology, hydrogeologic conditions of the coal seam and surrounding strata are determined first. These results and information describing the local economic conditions are then used to assess the commercial potential of the UCG application. The methodology for evaluating the Krabi UCG site and current project status are discussed in this paper.« less
Yap, H Y; Nixon, J D
2015-12-01
Energy recovery from municipal solid waste plays a key role in sustainable waste management and energy security. However, there are numerous technologies that vary in suitability for different economic and social climates. This study sets out to develop and apply a multi-criteria decision making methodology that can be used to evaluate the trade-offs between the benefits, opportunities, costs and risks of alternative energy from waste technologies in both developed and developing countries. The technologies considered are mass burn incineration, refuse derived fuel incineration, gasification, anaerobic digestion and landfill gas recovery. By incorporating qualitative and quantitative assessments, a preference ranking of the alternative technologies is produced. The effect of variations in decision criteria weightings are analysed in a sensitivity analysis. The methodology is applied principally to compare and assess energy recovery from waste options in the UK and India. These two countries have been selected as they could both benefit from further development of their waste-to-energy strategies, but have different technical and socio-economic challenges to consider. It is concluded that gasification is the preferred technology for the UK, whereas anaerobic digestion is the preferred technology for India. We believe that the presented methodology will be of particular value for waste-to-energy decision-makers in both developed and developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, B. J.; Sancier, K. M.; Sheridan, D. R.
1982-02-26
The purpose of this study is to determine the mechanisms involved in the catalytic reactions of coal char and to identify the specific reaction steps and the parameters that control the catalytic process. The mode of action of the catalyst can be viewed in two ways. In one view, the catalyst participates in a reduction/oxidation cycle. The initial reaction between the carbon and the catalyst reduces the KOH to potassium accompanied by the gaseous reactant (H/sub 2/O or CO/sub 2/), producing further gaseous products (CO and H/sub 2/) and regenerating the initial state of the catalyst. In an alternative view,more » the catalyst initially forms an alkali metal addition compound with the carbon network of the char. The carbon-carbon bonds are altered by the formation of the metal-carbon linkage, possibly by electron transfer from the alkali metal atom to the carbon structure. As a result, the carbon structure is more readily attacked by the gaseous reactant (CO or H/sub 2/O) to produce the products of gasification. The following areas were investigated to provide experimental evidence for these catalytic modes of action: chemical kinetic measurements; thermodynamic measurements; free radicals in reacting carbon; electrical conductivity measurements. A detailed discussion on the catalyst-carbon interaction and on the reaction intermediate is provided.« less
NASA Astrophysics Data System (ADS)
Morioka, Yasuki; Nakata, Toshihiko
In order to design optimal biomass utilization system for rural area, OMNIBUS (The Optimization Model for Neo-Integrated Biomass Utilization System) has been developed. OMNIBUS can derive the optimal system configuration to meet different objective function, such as current account balance, amount of biomass energy supply, and CO2 emission. Most of biomass resources in a focused region e.g. wood biomass, livestock biomass, and crop residues are considered in the model. Conversion technologies considered are energy utilization technologies e.g. direct combustion and methane fermentation, and material utilization technologies e.g. composting and carbonization. Case study in Miyakojima, Okinawa prefecture, has been carried out for several objective functions and constraint conditions. Considering economics of the utilization system as a priority requirement, composting and combustion heat utilization are mainly chosen in the optimal system configuration. However gasification power plant and methane fermentation are included in optimal solutions, only when both biomass energy utilization and CO2 reduction have been set as higher priorities. External benefit of CO2 reduction has large impacts on the system configuration. Provided marginal external benefit of more than 50,000 JPY/t-C, external benefit becomes greater than the revenue from electricity and compost etc. Considering technological learning in the future, expensive technologies such as gasification power plant and methane fermentation will have economic feasibility as well as market competitiveness.
[Tampa Electric Company IGCC project]. 1996 DOE annual technical report, January--December 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project uses a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal to syngas. The gasification plant is coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 BTUs/cf (HHV). The syngas then flows through a highmore » temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product. Approximately 10% of the raw, hot syngas at 900 F is designed to pass through an intermittently moving bed of metal-oxide sorbent which removes sulfur-bearing compounds from the syngas. PPS-1 will be the first unit in the world to demonstrate this advanced metal oxide hot gas desulfurization technology on a commercial unit. The emphasis during 1996 centered around start-up activities.« less
Continuous Removal of Coal-Gasification Residue
NASA Technical Reports Server (NTRS)
Collins, Earl R., Jr.; Suitor, J.; Dubis, D.
1986-01-01
Continuous-flow hopper processes solid residue from coal gasification, converting it from ashes, cinders, and clinkers to particles size of sand granules. Unit does not require repeated depressurization of lockhopper to admit and release materials. Therefore consumes less energy. Because unit has no airlock valves opened and closed repeatedly on hot, abrasive particles, subjected to lesser wear. Coal-gasification residue flows slowly through pressure-letdown device. Material enters and leaves continuously. Cleanout door on each pressure-letdown chamber allows access for maintenance and emergencies.
NASA Technical Reports Server (NTRS)
Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.
1976-01-01
Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.
Addition to the Lewis Chemical Equilibrium Program to allow computation from coal composition data
NASA Technical Reports Server (NTRS)
Sevigny, R.
1980-01-01
Changes made to the Coal Gasification Project are reported. The program was developed by equilibrium combustion in rocket engines. It can be applied directly to the entrained flow coal gasification process. The particular problem addressed is the reduction of the coal data into a form suitable to the program, since the manual process is involved and error prone. A similar problem in relating the normal output of the program to parameters meaningful to the coal gasification process is also addressed.
The applicability of the catalytic wet-oxidation to CELSS
NASA Technical Reports Server (NTRS)
Takahashi, Y.; Nitta, K.; Ohya, H.; Oguchi, M.
1987-01-01
The wet oxidation catalysis of Au, Pd, Pt, Rh or Ru on a ceramic honeycomb carrier was traced in detail by 16 to 20 repetitive batch tests each. As a result, Pt or Pd on a honeycomb carrier was shown to catalyze complete nitrogen gasification as N2. Though the catalysts which realize both complete nitrogen gasification and complete oxidation could not be found, the Ru+Rh catalyst was found to be most promising. Ru honeycomb catalyzed both nitrification and nitrogen gasification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seggiani, Maurizia, E-mail: m.seggiani@diccism.unipi.it; Puccini, Monica, E-mail: m.puccini@diccism.unipi.it; Raggio, Giovanni, E-mail: g.raggio@tiscali.it
2012-10-15
Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effectmore » of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was within the limits for landfilling inert residues. On the other hand, sulfate and chloride releases were found to comply with the limits for non-hazardous residues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scofield, R.
1984-01-01
This report includes toxicological and regulatory evaluations performed in support of U.S. EPA regulation of toxic materials and hazardous wastes. The first section of the report describes evaluations which support: (a) the regulation of small-volume generators of hazardous wastes, (b) the regulation of hazardous wastes from pesticide manufacturing, and (c) the disposal of the herbicide, silvex. The second section describes the environmental fate, transport, and effect of glyphosate and dalapon. The third section deals with synthetic fuels, including evaluations of synfuel-product toxicity, uncontrolled air emissions, and particular focus on the toxicity of products from several indirect coal liquefaction processes includingmore » methanol synthesis, Fischer-Tropsch, Mobil M-Gasoline, and Lurgi gasification technologies. Three direct coal liquefaction processes were examined for product toxicity and air emissions: Solvent Refined Coal (I and II) and the Exxon Donor Solvent Process. Also described in the third section is an evaluation of environmental and health hazards associated with the use of synthetic fuels from indirect coal liquefaction, direct coal liquefaction, and shale oil. Finally, the fourth section discusses some problems associated with performing, on a contractual basis, scientific and technical evaluations in support of U.S. EPA regulatory and research decisions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-01-01
The WyCoal Project Village is a housing facility proposed adjacent to the Wyoming Coal Gasification Project plant construction site that would accommodate single workers in dormitory units and singles or couples at a recreation vehicle park. Centralized services and recreational facilities are also to be provided. The provision for some mobile home units to be used in lieu of RV spaces has been considered but would be developed only if a strong demonstrated demand from singles and couples required such a provision. No children will be allowed at the Project Village as accommodations for families will be available in themore » town of Douglas. The development program for the Project Village calls for a total plan capacity of 225 living units: 1500 dormitory rooms and 750 recreational vehicle spaces. However, the total units to be developed will not exceed 1800 with peak employment, including couples at the Recreational Vehicle Park, not anticipated to exceed 2000. The flexibility within the maximum plan capacity of 2250 will allow for the development of an appropriate balance of housing units geared to the on-site project demands as plant construction occurs. At this time a mix of approximately 1200 dormitory rooms and 600 RV spaces appears appropriate for planning purposes.« less
Biomass power for rural development. Technical progress report, May 1, 1996--December 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, E.
Developing commercial energy crops for power generation by the year 2000 is the focus of the DOE/USDA sponsored Biomass Power for Rural Development project. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-I, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Facette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG). Phase-II of the project willmore » focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. There will be testing of the energy crop as part of the gasification trials expected to occur at BED`s McNeill power station and potentially at one of GPU`s facilities. Phase-III will represent full-scale commercialization of the energy crop and power generation on a sustainable basis. Willow has been selected as the energy crop of choice for many reasons. Willow is well suited to the climate of the Northeastern United States, and initial field trials have demonstrated that the yields required for the success of the project are obtainable. Like other energy crops, willow has rural development benefits and could serve to diversify local crop production, provide new sources of income for participating growers, and create new jobs. Willow could be used to put a large base of idle acreage back into crop production. Additionally, the willow coppicing system integrates well with current farm operations and utilizes agricultural practices that are already familiar to farmers.« less
Biomass power for rural development. Technical progress report, July 1--September 30, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, E.
The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC).more » Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the third quarter of 1997, much of the Consortium`s effort has focused on outreach activities, continued feedstock development, fuel supply planning, and fuel contract development, and preparation for 1998 scale-up activities. The Consortium also submitted a Phase-1 extension proposal during this period. A few of the more important milestones are outlined below. The fourth quarter of 1997 is expected to be dominated by Phase-II proposal efforts and planning for 1998 activities.« less
Catalysts for carbon and coal gasification
McKee, Douglas W.; Spiro, Clifford L.; Kosky, Philip G.
1985-01-01
Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.
Incineration and pyrolysis vs. steam gasification of electronic waste.
Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika
2018-05-15
Constructional complexity of items and their integration are the most distinctive features of electronic wastes. These wastes consist of mineral and polymeric materials and have high content of valuable metals that could be recovered. Elimination of polymeric components (especially epoxy resins) while leaving non-volatile mineral and metallic phases is the purpose of thermal treatment of electronic wastes. In the case of gasification, gaseous product of the process may be, after cleaning, used for energy recovery or chemical synthesis. If not melted, metals from solid products of thermal treatment of electronic waste could be recovered by hydrometallurgical processing. Three basic, high temperature ways of electronic waste processing, i.e. smelting/incineration, pyrolysis and steam gasification were shortly discussed in the paper, giving a special attention to gasification under steam, illustrated by laboratory experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of small-scale biomass gasification at the state of refractory lining the fixed bed reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janša, Jan, E-mail: jan.jansa@vsb.cz; Peer, Vaclav, E-mail: vaclav.peer@vsb.cz; Pavloková, Petra, E-mail: petra.pavlokova@vsb.cz
The article deals with the influence of biomass gasification on the condition of the refractory lining of a fixed bed reactor. The refractory lining of the gasifier is one part of the device, which significantly affects the operational reliability and durability. After removing the refractory lining of the gasifier from the experimental reactor, there was done an assessment how gasification of different kinds of biomass reflected on its condition in terms of the main factors affecting its life. Gasification of biomass is reflected on the lining, especially through sticking at the bottom of the reactor. Measures for prolonging the lifemore » of lining consist in the reduction of temperature in the reactor, in this case, in order to avoid ash fusion biomass which it is difficult for this type of gasifier.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siriwardane, Ranjani; Riley, Jarrett; Tian, Hanjing
Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe2O4) and calcium ferrite (CaFe2O4). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe2O4 and CaFe2O4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H2) and carbon monoxide (CO), but carbon dioxide (CO2) remained low because these oxygenmore » carriers have minimal reactivity with H2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.« less
Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier
Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama; Subbarao, Duvvuri
2014-01-01
Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368
A high temperature drop-tube and packed-bed solar reactor for continuous biomass gasification
NASA Astrophysics Data System (ADS)
Bellouard, Quentin; Abanades, Stéphane; Rodat, Sylvain; Dupassieux, Nathalie
2017-06-01
Biomass gasification is an attractive process to produce high-value syngas. Utilization of concentrated solar energy as the heat source for driving reactions increases the energy conversion efficiency, saves biomass resource, and eliminates the needs for gas cleaning and separation. A high-temperature tubular solar reactor combining drop tube and packed bed concepts was used for continuous solar-driven gasification of biomass. This 1 kW reactor was experimentally tested with biomass feeding under real solar irradiation conditions at the focus of a 2 m-diameter parabolic solar concentrator. Experiments were conducted at temperatures ranging from 1000°C to 1400°C using wood composed of a mix of pine and spruce (bark included) as biomass feedstock. The aim of this study was to demonstrate the feasibility of syngas production in this reactor concept and to prove the reliability of continuous biomass gasification processing using solar energy. The study first consisted of a parametric study of the gasification conditions to obtain an optimal gas yield. The influence of temperature and oxidizing agent (H2O or CO2) on the product gas composition was investigated. The study then focused on solar gasification during continuous biomass particle injection for demonstrating the feasibility of a continuous process. Regarding the energy conversion efficiency of the lab scale reactor, energy upgrade factor of 1.21 and solar-to-fuel thermochemical efficiency up to 28% were achieved using wood heated up to 1400°C.
Tar Management and Recycling in Biomass Gasification and Syngas Purification
NASA Astrophysics Data System (ADS)
McCaffrey, Zach
Removal of tars is critical to the design and operation of biomass gasification systems as most syngas utilization processing equipment (e.g. internal combustion engines, gas turbines, fuel cells, and liquid fuel synthesis reactors) have a low tolerance for tar. Capturing and disposal of tar is expensive due to equipment costs, high hazardous waste disposal costs where direct uses cannot be found, and system energy losses incurred. Water scrubbing is an existing technique commonly used in gasification plants to remove contaminants and tar; however using water as the absorbent is non-ideal as tar compounds have low or no water solubility. Hydrophobic solvents can improve scrubber performance and this study evaluated tar solubility in selected solvents using slip-streams of untreated syngas from a laboratory fluidized bed reactor operated on almond composite feedstock using both air and steam gasification. Tar solubility was compared with Hansen's solubility theory to examine the extent to which the tar removal can be predicted. As collection of tar without utilization leads to a hazardous waste problem, the study investigated the effects of recycling tars back into the gasifier for destruction. Prior to experiments conducted on tar capture and recycle, characterizations of the air and steam gasification of the almond composite mix were made. This work aims to provide a better understanding of tar collection and solvent selection for wet scrubbers, and to provide information for designing improved tar management systems for biomass gasification.
Porous filtering media comparison through wet and dry sampling of fixed bed gasification products
NASA Astrophysics Data System (ADS)
Allesina, G.; Pedrazzi, S.; Montermini, L.; Giorgini, L.; Bortolani, G.; Tartarini, P.
2014-11-01
The syngas produced by fixed bed gasifiers contains high quantities of particulate and tars. This issue, together with its high temperature, avoids its direct exploitation without a proper cleaning and cooling process. In fact, when the syngas produced by gasification is used in an Internal Combustion engine (IC), the higher the content of tars and particulate, the higher the risk to damage the engine is. If these compounds are not properly removed, the engine may fail to run. A way to avoid engine fails is to intensify the maintenance schedule, but these stops will reduce the system profitability. From a clean syngas does not only follow higher performance of the generator, but also less pollutants in the atmosphere. When is not possible to work on the gasification reactions, the filter plays the most important role in the engine safeguard process. This work is aimed at developing and comparing different porous filters for biomass gasifiers power plants. A drum filter was developed and tested filling it with different filtering media available on the market. As a starting point, the filter was implemented in a Power Pallet 10 kW gasifier produced by the California-based company "ALL Power Labs". The original filter was replaced with different porous biomasses, such as woodchips and corn cobs. Finally, a synthetic zeolites medium was tested and compared with the biological media previously used. The Tar Sampling Protocol (TSP) and a modified "dry" method using the Silica Gel material were applied to evaluate the tars, particulate and water amount in the syngas after the filtration process. Advantages and disadvantages of every filtering media chosen were reported and discussed.
Liu, Yangsheng; Liu, Yushan
2005-05-15
The conventional mass burn systems for municipal solid waste (MSW) emit large amount of acidic gases and dioxins as well as heavy metals due to the large excess air ratio. Additionally, the final process residues, bottom ash with potential leachability of heavy metals and fly ash with high level of heavy metals and dioxins, also constitute a major environmental problem. To deal with these issues more effectively, a novel MSW incineration technology was developed in this study. MSW drying, pyrolysis, gasification, incineration, and ash vitrification were achieved as a spectrum of combustion by the same equipment (primary chamber) in one step. In practice, the primary chamber of this technology actually acted as both gasifier for organic matter and vitrifying reactor for ashes, and the combustion process was mainly completed in the secondary chamber. Experiments were carried outto examine its characteristics in an industrial MSW incineration plant, located in Taiyuan, with a capability of 100 tons per day (TPD). Results showed that (1) the pyrolysis, gasification, and vitrification processes in the primary chamber presented good behaviors resulting in effluent gases with high contents of combustibles (e.g., CO and CH4) and bottom ash with a low loss-on-ignition (L.o.l), low leachability of heavy metals, and low toxicity of cyanide and fluoride. The vitrified bottom ash was benign to its environment and required no further processing for its potential applications. (2) Low stack emissions of dioxins (0.076 ng of TEQ m(-3)), heavy metals (ranging from 0.013 to 0.033 mg m(-3)), and other air pollutants were achieved. This new technology could effectively dispose Chinese MSW with a low calorific value and high water content; additionally, it also had a low capital and operating costs compared with the imported systems.
Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose
2011-09-30
The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less
Assessment of Tree Leaves Flakes Mixed with Crude Glycerol as a Bioenergy Source
Hilal-AlNaqbi, Ali; Al-Omari, Salah B.; Selim, Mohamed Y. E.
2016-01-01
The gasification and combustion of dry tree leaves and the cogasification of dry tree leaves soaking crude glycerol were studied experimentally. An updraft fixed bed gasification and combustion system was built. The operation was conducted at different air to fuel ratios. Results show more stable combustion and more effective heat transfer to furnace walls for the cases when tree leaves flakes are mixed with 20 percent (on mass basis) of crude glycerol, as compared with the case when only dry tree leaves are used as fuel. TGA analysis was also conducted for the two fuels used under both air and nitrogen environments. For the crude glycerol, four phases of pyrolysis and gasification were noticed under either of the two surrounding gaseous media (air or nitrogen). For the dry tree leaves, the pyrolysis under nitrogen shows only a simple smooth pyrolysis and gasification curve without showing the different distinct phases that were otherwise identified when the pyrolysis is conducted under air environment. Moreover, the air TGA results lead to more gasification due to the char oxidation at high temperatures. DTG results are also presented and discussed. PMID:27413749
Characteristics of Catalytic Gasification of Natural Coke with H2O in a Fluidized Bed
NASA Astrophysics Data System (ADS)
Lin, L. S.; Zhao, C. S.; Wang, S.; Zhu, G.; Xiang, W. G.
The experimental investigation on gasification characteristics of natural coke from Peicheng, Jiangsu with steam were conducted in a fluidized bed gasifier setup. The effects of several parameters, in terms of the catalyst type, the catalyst mixed manner and the dosage of catalyst over coke on the yield, the components, the heating value of fuel gas and the carbon conversion rate were examined. Results indicate that the fluidized bed gasification technology could overcome the shortcomings of natural coke. Ca-, Fe- and Cu-based nitrates could improve the gasification reaction effectively with a little difference, they could be listed in a descending sequence as follows: Cu-based>Fe-based>Ca-based according to their catalytic effect. The influences of Fe/Ca ratio and Cu/Ca ratio on gasification are similar, gas yield, carbon conversion rate and gas heating value per hour increase as Fe/Ca ratio or Cu/Ca ratio increases, but all of them go up first and then drop with decrease in Fe/Cu ratio. When the dosage of Ca-, Fe- and Cu-based nitrates mixed with the ratio of Ca/Fe/Cu= 10/35/55 is 3%, the best catalytic effect is achieved.
A Novel Study of Methane-Rich Gas Reforming to Syngas and Its Kinetics over Semicoke Catalyst
Zhang, Guojie; Su, Aiting; Qu, Jiangwen; Du, Yannian
2014-01-01
A small-size gasification unit is improved through process optimization to simulate industrial United Gas Improvement Company gasification. It finds that the reaction temperature has important impacts on semicoke catalyzed methane gas mixture. The addition of water vapor can enhance the catalytic activity of reforming, which is due to the fact that addition of water vapor not only removes carbon deposit produced in the reforming and gasification reaction processes, but also participates in gasification reaction with semicoke to generate some active oxygen-containing functional groups. The active oxygen-containing functional groups provide active sites for carbon dioxide reforming of methane, promoting the reforming reaction. It also finds that the addition of different proportions of methane-rich gas can yield synthesis gas with different H2/CO ratio. The kinetics study shows that the semicoke can reduce the activation energy of the reforming reaction and promote the occurrence of the reforming reaction. The kinetics model of methane reforming under the conditions of steam gasification over semicoke is as follows: k-=5.02×103·pCH40.71·pH20.26·exp(−74200/RT). PMID:24959620
Biochar affected by composting with farmyard manure.
Prost, Katharina; Borchard, Nils; Siemens, Jan; Kautz, Timo; Séquaris, Jean-Marie; Möller, Andreas; Amelung, Wulf
2013-01-01
Biochar applications to soils can improve soil fertility by increasing the soil's cation exchange capacity (CEC) and nutrient retention. Because biochar amendment may occur with the applications of organic fertilizers, we tested to which extent composting with farmyard manure increases CEC and nutrient content of charcoal and gasification coke. Both types of biochar absorbed leachate generated during the composting process. As a result, the moisture content of gasification coke increased from 0.02 to 0.94 g g, and that of charcoal increased from 0.03 to 0.52 g g. With the leachate, the chars absorbed organic matter and nutrients, increasing contents of water-extractable organic carbon (gasification coke: from 0.09 to 7.00 g kg; charcoal: from 0.03 to 3.52 g kg), total soluble nitrogen (gasification coke: from not detected to 705.5 mg kg; charcoal: from 3.2 to 377.2 mg kg), plant-available phosphorus (gasification coke: from 351 to 635 mg kg; charcoal: from 44 to 190 mg kg), and plant-available potassium (gasification coke: from 6.0 to 15.3 g kg; charcoal: from 0.6 to 8.5 g kg). The potential CEC increased from 22.4 to 88.6 mmol kg for the gasification coke and from 20.8 to 39.0 mmol kg for the charcoal. There were little if any changes in the contents and patterns of benzene polycarboxylic acids of the biochars, suggesting that degradation of black carbon during the composting process was negligible. The surface area of the biochars declined during the composting process due to the clogging of micropores by sorbed compost-derived materials. Interactions with composting substrate thus enhance the nutrient loads but alter the surface properties of biochars. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio
2018-03-01
The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights reserved.
Weijin, Gong; Binbin, Li; Qingyu, Wang; Zuohua, Huang; Liang, Zhao
2018-03-01
Gasification of landfill leachate in supercritical water using batch-type reactor is investigated. Alkali such as NaOH, KOH, K 2 CO 3 , Na 2 CO 3 is used as catalyst. The effect of temperature (380-500 °C), retention time (5-25 min), landfill leachate concentration (1595 mg L -1 -15,225 mg L -1 ), catalyst adding amount (1-10 wt%) on hydrogen mole fraction, hydrogen yield, carbon gasification rate, COD, TOC, TN removal efficiency are investigated. The results showed that gaseous products mainly contained hydrogen, methane, carbon dioxide and carbon monoxide without addition of catalyst. However, the main gaseous products are hydrogen and methane with addition of NaOH, KOH, K 2 CO 3 , Na 2 CO 3 . In the absence of alkali catalyst, the effect of temperature on landfill leachate gasification is positive. Hydrogen mole fraction, hydrogen yield, carbon gasification ratio increase with temperature, which maximum value being 55.6%, 107.15 mol kg -1 , 71.96% is obtained at 500 °C, respectively. Higher raw landfill leachate concentration leads to lower hydrogen production and carbon gasification rate. The suitable retention time is suggested to be 15 min for higher hydrogen production and carbon gasification rate. COD, TOC and TN removal efficiency also increase with increase of temperature, decrease of landfill leachate concentration. In the presence of catalyst, the hydrogen production is obviously promoted by addition of alkali catalyst. the effect of catalysts on hydrogen production is in the following order: NaOH > KOH > Na 2 CO 3 > K 2 CO 3 . The maximum hydrogen mole fraction and hydrogen yield being 74.40%, 70.05 mol kg -1 is obtained with adding amount of 5 wt% NaOH at 450 °C, 28 MPa, 15 min. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Rokhman, B. B.
2014-09-01
With the use of the developed model, detailed information has been obtained on the working process in a flow reactor with single- and two-stage schemes of vapor-oxygen gasification of coals under a pressure of 3 MPa. The dependence of the ratios of mass flow rates O2/coal and H2O/coal on the type of fuel has been established and their optimal values for the "Shell" process have been found. At a given consumption ratio of gas coal and brown coal of brand B1, the optimum diameters of particles providing minimum combustible loss of the carbon mixture have been determined. It has been found that the content of methane in the syngas in the case of two-stage gasification is much higher than in the case of single-stage gasification.
Wabash River coal gasification repowering project -- first year operation experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troxclair, E.J.; Stultz, J.
1997-12-31
The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined highmore » sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.« less
Gasification Reaction Characteristics of Ferro-Coke at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Wang, Peng; Zhang, Jian-liang; Gao, Bing
2017-01-01
In this paper, the effects of temperature and atmosphere on the gasification reaction of ferro-coke were investigated in consideration of the actual blast furnace conditions. Besides, the microstructure of the cokes was observed by scanning electron microscope (SEM). It is found that the weight loss of ferro-coke during the gasification reaction is significantly enhanced in the case of increasing either the reaction temperature or the CO2 concentration. Furthermore, compared with the normal type of metallurgical coke, ferro-coke exhibits a higher weight loss when they are gasified at the same temperature or under the same atmosphere. As to the microstructure, inside the reacted ferro-coke are a large amount of pores. Contrary to the normal coke, the proportions of the large-size pores and the through holes are greatly increased after gasification, giving rise to thinner pore walls and hence a degradation in coke strength after reaction (CSR).
Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel
2014-01-01
This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm3 at a gasification temperature of 1500 K and equivalence ratio of 0.15. PMID:27433487
Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel
2014-01-01
This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm(3) at a gasification temperature of 1500 K and equivalence ratio of 0.15.
Consonni, Stefano; Viganò, Federico
2012-04-01
A number of waste gasification technologies are currently proposed as an alternative to conventional Waste-to-Energy (WtE) plants. Assessing their potential is made difficult by the scarce operating experience and the fragmentary data available. After defining a conceptual framework to classify and assess waste gasification technologies, this paper compares two of the proposed technologies with conventional WtE plants. Performances are evaluated by proprietary software developed at Politecnico di Milano and compared on the basis of a coherent set of assumptions. Since the two gasification technologies are configured as "two-step oxidation" processes, their energy performances are very similar to those of conventional plants. The potential benefits that may justify their adoption relate to material recovery and operation/emission control: recovery of metals in non-oxidized form; collection of ashes in inert, vitrified form; combustion control; lower generation of some pollutants. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hydrodynamic Stability of Multicomponent Droplet Gasification in Reduced Gravity
NASA Technical Reports Server (NTRS)
Aharon, I.; Shaw, B. D.
1995-01-01
This investigation addresses the problem of hydrodynamic stability of a two-component droplet undergoing spherically-symmetrical gasification. The droplet components are assumed to have characteristic liquid species diffusion times that are large relative to characteristic droplet surface regression times. The problem is formulated as a linear stability analysis, with a goal of predicting when spherically-symmetric droplet gasification can be expected to be hydrodynamically unstable from surface-tension gradients acting along the surface of a droplet which result from perturbations. It is found that for the conditions assumed in this paper (quasisteady gas phase, no initial droplet temperature gradients, diffusion-dominated gasification), surface tension gradients do not play a role in the stability characteristics. In addition, all perturbations are predicted to decay such that droplets were hydrodynamically stable. Conditions are identified, however, that deserve more analysis as they may lead to hydrodynamic instabilities driven by capillary effects.
Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis.
Ferrara, Francesca; Orsini, Alessandro; Plaisant, Alberto; Pettinau, Alberto
2014-11-01
With the aim to support the experimental tests in a gasification pilot plant, the thermal decomposition of coal, biomass and their mixtures has been carried out through a thermogravimetric analysis (TGA) and a simplified kinetic analysis. The TGA of pure fuels indicates the low reactivity of South African coal and the relatively high reactivity of Sardinian Sulcis coal during pyrolysis. Among the tested fuels, biomass (stone pine wood chips) is the most reactive one. These results fully confirm those obtained during the experimental tests in the gasification pilot plant. As for the fuel blends, the analysis shows that the synergic effects between the considered coals and biomass are negligible when they are co-pyrolyzed. The results of the analysis confirm that TGA could be very useful to generally predict the gasification performance and to optimize the experimental campaigns in pilot-scale gasification plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Process simulation of ethanol production from biomass gasification and syngas fermentation.
Pardo-Planas, Oscar; Atiyeh, Hasan K; Phillips, John R; Aichele, Clint P; Mohammad, Sayeed
2017-12-01
The hybrid gasification-syngas fermentation platform can produce more bioethanol utilizing all biomass components compared to the biochemical conversion technology. Syngas fermentation operates at mild temperatures and pressures and avoids using expensive pretreatment processes and enzymes. This study presents a new process simulation model developed with Aspen Plus® of a biorefinery based on a hybrid conversion technology for the production of anhydrous ethanol using 1200tons per day (wb) of switchgrass. The simulation model consists of three modules: gasification, fermentation, and product recovery. The results revealed a potential production of about 36.5million gallons of anhydrous ethanol per year. Sensitivity analyses were also performed to investigate the effects of gasification and fermentation parameters that are keys for the development of an efficient process in terms of energy conservation and ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Peng; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian
2015-01-01
The study examined the feasibility of using combined heterogeneous photocatalysis oxidation (HPO) and moving bed biofilm reactor (MBBR) process for advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that the TOC removal efficiency was significantly improved in HPO. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the HPO could be employed to eliminate bio-refractory and toxic compounds. Meanwhile, the BOD5/COD of the raw wastewater was increased from 0.08 to 0.49. Furthermore, in the integration of TiO2 photocatalysis oxidation and MBBR process, the effluent of COD, BOD5, TOC, NH4(+)-N and TN were 22.1 mg/L, 1.1 mg/L, 11.8 mg/L, 4.1mg/L and 13.7 mg/L, respectively, which all met class-I criteria of the Integrated Wastewater Discharge Standard (GB18918-2002, China). The total operating cost was 2.8CNY/t. Therefore, there is great potential for the combined system in engineering applications as a final treatment for biologically pretreated CGW. Copyright © 2015 Elsevier Ltd. All rights reserved.
Milani, M; Montorsi, L; Stefani, M
2014-07-01
The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Kouichi; Nakagawa, Hiroyuki
1996-12-31
Carbon gasification reaction has been investigated for decades including the pioneering works of Walker and his co-workers, but its mechanism has not been completely elucidated. The concept of the active surface area (ASA) was proposed by them, and its importance has been recognized. However, since ASA was measured by O{sub 2} chemisorption at below 300{degrees}C where carbon loss through gasification is negligible, it does not reflect the actual gasification situation. To overcome this weak point, measurements of ASA in a batch reactor and the so-called transient kinetic (TK) method were proposed. Ahmed and Back successfully measured the chemisorbed oxygen duringmore » the gasification using a batch reactor, and proposed a new mechanistic sequence for carbon-oxygen reaction which stresses the importance of the reaction between the gaseous oxygen and the chemisorbed oxygen. Radovic et al. proposed the concept of the reactive surface area (RSA), and reported excellent proportionality between the CO{sub 2} gasification rate and the RSA estimated by the TK and the TPD methods. Kapteijn et al. showed that the TK method with labeled molecules is more powerful to examine the mechanism. They found the presence of two types of surface oxygen complexes which desorb at different rates. A Square-input response (SIR) method is applied to the carbon-oxygen reaction. This method allows the observation of transient changes on two step changes. This method has been successfully applied to the analysis of a coal char gasification.« less
Systems Analysis of Physical Absorption of CO2 in Ionic Liquids for Pre-Combustion Carbon Capture.
Zhai, Haibo; Rubin, Edward S
2018-04-17
This study develops an integrated technical and economic modeling framework to investigate the feasibility of ionic liquids (ILs) for precombustion carbon capture. The IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is modeled as a potential physical solvent for CO 2 capture at integrated gasification combined cycle (IGCC) power plants. The analysis reveals that the energy penalty of the IL-based capture system comes mainly from the process and product streams compression and solvent pumping, while the major capital cost components are the compressors and absorbers. On the basis of the plant-level analysis, the cost of CO 2 avoided by the IL-based capture and storage system is estimated to be $63 per tonne of CO 2 . Technical and economic comparisons between IL- and Selexol-based capture systems at the plant level show that an IL-based system could be a feasible option for CO 2 capture. Improving the CO 2 solubility of ILs can simplify the capture process configuration and lower the process energy and cost penalties to further enhance the viability of this technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glasser, Alan H.
Final technical report on DE-SC0016106. This is the final technical report for a portion of the multi-institutional CEMM project. This report is centered around 3 publications and a seminar presentation, which have been submitted to E-Link.
10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2013-01-01 2013-01-01 false Contents of applications; technical information in final...
10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2012-01-01 2012-01-01 false Contents of applications; technical information in final...
10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.
Code of Federal Regulations, 2014 CFR
2014-01-01
...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2014-01-01 2014-01-01 false Contents of applications; technical information in final...
10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2011-01-01 2011-01-01 false Contents of applications; technical information in final...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... DEPARTMENT OF AGRICULTURE Rural Utilities Service South Mississippi Electric Cooperative: Plant Ratcliff, Kemper County Integrated Gasification Combined-Cycle (IGCC) Project AGENCY: Rural Utilities... Combined-Cycle (IGCC) Project currently under construction in Kemper County, Mississippi (hereinafter ``the...
Production of Hydrogen from Underground Coal Gasification
Upadhye, Ravindra S.
2008-10-07
A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.
Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI
2012-04-10
A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.
Cortright, Randy D.; Dumesic, James A.
2013-04-02
A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.
Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI
2011-01-18
A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.
NASA Astrophysics Data System (ADS)
Xu, Haoran; Chen, Bin; Zhang, Houcheng; Tan, Peng; Yang, Guangming; Irvine, John T. S.; Ni, Meng
2018-04-01
In this paper, 2D models for direct carbon solid oxide fuel cells (DC-SOFCs) with in situ catalytic steam-carbon gasification reaction are developed. The simulation results are found to be in good agreement with experimental data. The performance of DC-SOFCs with and without catalyst are compared at different operating potential, anode inlet gas flow rate and operating temperature. It is found that adding suitable catalyst can significantly speed up the in situ steam-carbon gasification reaction and improve the performance of DC-SOFC with H2O as gasification agent. The potential of syngas and electricity co-generation from the fuel cell is also evaluated, where the composition of H2 and CO in syngas can be adjusted by controlling the anode inlet gas flow rate. In addition, the performance DC-SOFCs and the percentage of fuel in the outlet gas are both increased with increasing operating temperature. At a reduced temperature (below 800 °C), good performance of DC-SOFC can still be obtained with in-situ catalytic carbon gasification by steam. The results of this study form a solid foundation to understand the important effect of catalyst and related operating conditions on H2O-assisted DC-SOFCs.
Yan, Fang; Xu, Kaili
2017-01-01
Because a biomass gasification station includes various hazard factors, hazard assessment is needed and significant. In this article, the cloud model (CM) is employed to improve set pair analysis (SPA), and a novel hazard assessment method for a biomass gasification station is proposed based on the cloud model-set pair analysis (CM-SPA). In this method, cloud weight is proposed to be the weight of index. In contrast to the index weight of other methods, cloud weight is shown by cloud descriptors; hence, the randomness and fuzziness of cloud weight will make it effective to reflect the linguistic variables of experts. Then, the cloud connection degree (CCD) is proposed to replace the connection degree (CD); the calculation algorithm of CCD is also worked out. By utilizing the CCD, the hazard assessment results are shown by some normal clouds, and the normal clouds are reflected by cloud descriptors; meanwhile, the hazard grade is confirmed by analyzing the cloud descriptors. After that, two biomass gasification stations undergo hazard assessment via CM-SPA and AHP based SPA, respectively. The comparison of assessment results illustrates that the CM-SPA is suitable and effective for the hazard assessment of a biomass gasification station and that CM-SPA will make the assessment results more reasonable and scientific.
NASA Astrophysics Data System (ADS)
Butakov, Evgenii; Burdukov, Anatoly; Chernetskiy, Mikhail; Kuznetsov, Victor
2017-10-01
Combination of the processes of coal combustion and gasification into a single technology of mechano-chemical and plasma-chemical activation is of a considerable scientific and technological interest. Enhancement of coal reactivity at their grinding with mechanical activation is associated with an increase in the reaction rate of carbon material, and at plasma-chemical effect, the main is an increase in reactivity of the oxidizing agent caused by the high plasma temperatures of atomic oxygen. The process of gasification was studied on the 1-MW setup with tangential scroll supply of pulverized coal-air mixture and cylindrical reaction chamber. Coal ground by the standard boiler mill is fed to the disintegrator, then, it is sent to the scroll inlet of the burner-reactor with the transport air. Pulverized coal is ignited by the plasmatron of 10-kW power. In experiments on air gasification of micronized coal, carried out at the temperature in the reaction chamber of 1000-1200°C and air excess α = 0.3-1, the data on CO concentration of 11% and H2 concentration of up to 6% were obtained. Air and air-steam gasification of mechanically-activated micronized coals with plasma control was calculated using SigmaFlow software package.
Gong, Miao; Wang, Yulan; Fan, Yujie; Zhu, Wei; Zhang, Huiwen; Su, Ying
2018-02-01
The formation of polycyclic aromatic hydrocarbon is a widespread issue during the supercritical water gasification of sewage sludge, which directly reduces the gasification efficiency and restricts the technology practical application. The changes of the concentrations and forms as well as the synthesis rate of polycyclic aromatic hydrocarbons in the residues from supercritical water gasification of dewatered sewage sludge were investigated to understand influence factors and the reaction pathways. Results showed that the increase of reaction temperature during the heating period favours directly concentration of polycyclic aromatic hydrocarbon (especially higher-molecular-weight), especially when it raise above 300 °C. Lower heating and cooling rate essentially extend the total reaction time. Higher polycyclic aromatic hydrocarbon concentration and higher number of rings were generally promoted by lower heating and cooling rate, longer reaction time and higher reaction temperature. The lower-molecular-weight polycyclic aromatic hydrocarbons can be directly generated through the decomposition of aromatic-containing compounds in sewage sludge, as well as 3-ring and 4-ring polycyclic aromatic hydrocarbons can be formed by aromatization of steroids. Possible mechanisms of reaction pathways of supercritical water gasification of sewage sludge were also proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gasification of yeast industry treatment plant sludge using downdraft Gasifier.
Ayol, Azize; Tezer, Ozgun; Gurgen, Alim
2018-01-01
Sludges produced in biological wastewater treatment plants have rich organic materials in their characteristics. Recent research studies have focused on the energy recovery from sludge due to its high organic content. The gasification process is a thermal conversion technology transforming the chemical energy contained in a solid fuel into thermal energy and electricity. The produced syngas as a mixture of CO, CH 4 , H 2 and other gases can be used to generate electrical energy. The gasification of yeast industry sludge has been experimentally evaluated in a pilot scale downdraft-type gasifier as a route towards the energy recovery. The gasifier has 20 kg biomass/h fuel capacity. During gasification, the temperature achieved was more than 1,000°C in the gasifier, and then the syngas was transferred to the gas engine to yield the electricity. A load was connected to the grid box and approximately 1 kWh electrical power generation for 1 kg dry sludge was determined. The characteristics of residuals - ash, glassy material - were also analyzed. It was found that most of the heavy metals were fixed in the glassy material. Experimental results showed that the yeast industry sludge was an appropriate material for gasification studies and remarkable energy recovery was obtained in terms of power production by using syngas.
Kohl, A.L.
1987-07-28
A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.
Kohl, Arthur L.
1987-07-28
A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.
Yan, Fang; Xu, Kaili
2017-01-01
Because a biomass gasification station includes various hazard factors, hazard assessment is needed and significant. In this article, the cloud model (CM) is employed to improve set pair analysis (SPA), and a novel hazard assessment method for a biomass gasification station is proposed based on the cloud model-set pair analysis (CM-SPA). In this method, cloud weight is proposed to be the weight of index. In contrast to the index weight of other methods, cloud weight is shown by cloud descriptors; hence, the randomness and fuzziness of cloud weight will make it effective to reflect the linguistic variables of experts. Then, the cloud connection degree (CCD) is proposed to replace the connection degree (CD); the calculation algorithm of CCD is also worked out. By utilizing the CCD, the hazard assessment results are shown by some normal clouds, and the normal clouds are reflected by cloud descriptors; meanwhile, the hazard grade is confirmed by analyzing the cloud descriptors. After that, two biomass gasification stations undergo hazard assessment via CM-SPA and AHP based SPA, respectively. The comparison of assessment results illustrates that the CM-SPA is suitable and effective for the hazard assessment of a biomass gasification station and that CM-SPA will make the assessment results more reasonable and scientific. PMID:28076440
Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification
NASA Astrophysics Data System (ADS)
Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.
Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.
Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir
2017-11-01
High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hauggaard-Nielsen, Henrik; Müller-Stöver, Dorette; Bruun, Esben W.; Petersen, Carsten T.
2014-05-01
Biochar soil application has been proposed as a measure to mitigate climate change and on the same time improve soil fertility by increased soil carbon sequestration. However, while on tropical soils the beneficial effects of biochar application on crop growth often become immediately apparent, it has been shown to be more difficult to demonstrate these effects on the more fertile soils in temperate regions. Therefore and because of the lack of carbon credits for farmers, it is necessary to link biochar application to additional benefits, both related to agricultural as well as to bioenergy production. Thermal gasification of biomass is an efficient (95% energy efficiency) and flexible way (able to cope with many different and otherwise difficult-to-handle biomass fuels) to generate bioenergy, while producing a valuable by-product - gasification biochar, containing recalcitrant carbon and essential crop nutrients. The use of the residual char product in agricultural soils will add value to the technology as well as result in additional soil benefits such as providing plant nutrients and improving soil water-holding capacity while reducing leaching risks. From a soil column (30 x 130 cm) experiment with gasification straw biochar amendment to coarse sandy subsoil increased root density of barley at critical depths in the soil profile reducing the mechanical resistance was shown, increasing yields, and the soil's capacity to store plant available water. Incorporation of residuals from a bioenergy technology like gasification show great potentials to reduce subsoil constraints increasing yield potentials on poor soils. Another advantage currently not appropriately utilized is recovery of phosphorus (P). In a recent pot experiments char products originating from low-temperature gasification of various biofuels were evaluated for their suitability as P fertilizers. Wheat straw gasification biochar generally had a low P content but a high P plant availability. To improve the fertilizer value while keeping a high carbon content in the char, the gasification of a combination of sewage sludge and wheat straw was implemented, resulting in a char product with a promising performance as a fertilizer and soil amendment. To implement gasification-biochar as a promising soil improver on the marked, independently of potential carbon market developments and CO2 certificates, stakeholder involvement is strongly required. In a newly established project consortium Bregentved Estate (one of Europe's largest agriculture companies) and the DONG Energy company (one of the leading energy groups in Northern Europe) are in a joint effort trying to integrate the economic matrix of i) biomass needed for bioenergy, ii) profit from energy generation and iii) soil advantages gained from biochar application. Experiments are conducted with a 6MW biomass gasification demonstration plant producing straw biochar used in field plots (12 m x 250 m).
Modeling biomass gasification in circulating fluidized beds
NASA Astrophysics Data System (ADS)
Miao, Qi
In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous reactions occur in gas phase. Each section was divided into a number of small cells, over which mass and energy balances were applied. Due to the high heating rate in circulating fluidized bed, the pyrolysis was considered instantaneous. A number of homogeneous and heterogeneous reactions were considered in the model. Mass transfer resistance was considered negligible since the reactions were under kinetic control due to good gas-solid mixing. The model is capable of predicting the bed temperature distribution along the gasifier, the concentration and distribution of each species in the vertical direction of the bed, the composition and lower heating value (LHV) of produced gas, the gasification efficiency, the overall carbon conversion and the produced gas production rate. A sensitivity analysis was performed to test its response to several gasifier operating conditions. The model sensitivity analysis showed that equivalence ratio (ER), bed temperature, fluidization velocity, biomass feed rate and moisture content had various effects on the gasifier performance. However, the model was more sensitive to variations in ER and bed temperature. The model was validated using the experimental results obtained from the demonstration plant. The reactor was operated on rice husk at various ERs, fluidization velocities and biomass feed rates. The model gave reasonable predictions. The model was also validated by comparing the simulation results with two other different size CFBBGs using different biomass feedstock, and it was concluded that the developed model can be applied to other CFBBGs using various biomass fuels and having comparable reactor geometries. A thermodynamic model was developed under ASPEN PLUS environment. Using the approach of Gibbs free energy minimization, the model was essentially independent of kinetic parameters. A sensitivity analysis was performed on the model to test its response to operating variables, including ER and biomass moisture content. The results showed that the ER has the most effect on the product gas composition and LHV. The simulation results were compared with the experimental data obtained from the demonstration plant. Keywords: Biomass gasification; Mathematical model; Circulating fluidized bed; Hydrodynamics; Kinetics; Sensitivity analysis; Validation; Equivalence ratio; Temperature; Feed rate; Moisture; Syngas composition; Lower heating value; Gasification efficiency; Carbon conversion
Leading trends in environmental regulation that affect energy development. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, R V; Attaway, L D; Christerson, J A
1980-01-01
Major environmental issues that are likely to affect the implementation of energy technologies between now and the year 2000 are identified and assessed. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; true and modified in situ oil shale retorting; geothermal energy; biomass energy conversion; and nuclear power (fission). Environmental analyses of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. A comprehensive surveymore » of the environmental community (including environmental groups, researchers, and regulatory agencies) was carried out in parallel with an analysis of the technologies to identify important future environmental issues. Each of the final 20 issues selected by the project staff has the following common attributes: consensus of the environmental community that the issue is important; it is a likely candidate for future regulatory action; it deals with a major environmental aspect of energy development. The analyses of the 20 major issues address their environmental problem areas, current regulatory status, and the impact of future regulations. These analyses are followed by a quantitative assessment of the impact on energy costs and nationwide pollutant emissions of possible future regulations. This is accomplished by employing the Strategic Environmental Assessment System (SEAS) for a subset of the 20 major issues. The report concludes with a more general discussion of the impact of environmental regulatory action on energy development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junhua Jiang; Ted Aulich
An electrolytic renewable nitrogen fertilizer process that utilizes wind-generated electricity, N{sub 2} extracted from air, and syngas produced via the gasification of biomass to produce nitrogen fertilizer ammonia was developed at the University of North Dakota Energy & Environmental Research Center. This novel process provides an important way to directly utilize biosyngas generated mainly via the biomass gasification in place of the high-purity hydrogen which is required for Haber Bosch-based production of the fertilizer for the production of the widely used nitrogen fertilizers. Our preliminary economic projection shows that the economic competitiveness of the electrochemical nitrogen fertilizer process strongly dependsmore » upon the cost of hydrogen gas and the cost of electricity. It is therefore expected the cost of nitrogen fertilizer production could be considerably decreased owing to the direct use of cost-effective 'hydrogen-equivalent' biosyngas compared to the high-purity hydrogen. The technical feasibility of the electrolytic process has been proven via studying ammonia production using humidified carbon monoxide as the hydrogen-equivalent vs. the high-purity hydrogen. Process optimization efforts have been focused on the development of catalysts for ammonia formation, electrolytic membrane systems, and membrane-electrode assemblies. The status of the electrochemical ammonia process is characterized by a current efficiency of 43% using humidified carbon monoxide as a feedstock to the anode chamber and a current efficiency of 56% using high-purity hydrogen as the anode gas feedstock. Further optimization of the electrolytic process for higher current efficiency and decreased energy consumption is ongoing at the EERC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spackman, W.; Davis, A.; Walker, P. L.
1977-12-01
The Penn State/ERDA Coal Sample Bank was expanded to include 201 new coal samples. A total of 68 characterized coal samples and 115 selected printouts of coal data were supplied upon request to the coal research community. Selected chemical and petrographic properties were statistically analyzed for 119 coal channel samples chosen from the Penn State/ERDA Coal Data Base. Installation of the pressurized laminar flow isotherml reactor has begun. Experiments have continued on the combustion pot; the study of the reactivity of a Koppers Company coke is now complete. Studies show that weight changes associated with preoxidation can be precisely meausredmore » using a TGA apparatus. Water densities determined on 19 coals were lower when measured in the presence of a wetting agent. Study of the effect of reaction temperature on gasification of Saran carbon in air shows one percent platinum loading on Saran carbon increases gasification rates over the entire range of carbon burn-off. Study of the theoretical aspects of combustion of low volatile fuels was resumed. The computer model was expanded to include the effects of heat loss through the furnace walls and its effect on flame temperature profiles. Investigation of the combustion characteristics of coal-oil-water-air fuel mixtures was continued. Only through the use of non-equilibrium experiments can certain important combustion characteristics be studied, and computerized data acquisition is being developed to fully implement such methods.« less
NASA Astrophysics Data System (ADS)
Korre, Anna; Andrianopoulos, Nondas; Durucan, Sevket
2015-04-01
Underground Coal Gasification (UCG) is an unconventional method for recovering energy from coal resources through in-situ thermo-chemical conversion to gas. In the core of the UCG lays the coal gasification process which involves the engineered injection of a blend of gasification agents into the coal resource and propagating its gasification. Athough UCG technology has been known for some time and considered a promising method for unconventional fossil fuel resources exploitation, there are limited modelling studies which achieve the necessary accuracy and realistic simulation of the processes involved. This paper uses the existing knowledge for surface gasifiers and investigates process designs which could be adapted to model UCG. Steady state simulations of syngas production were developed using the Advanced System for Process ENgineering (Aspen) Plus software. The Gibbs free energy minimisation method was used to simulate the different chemical reactor blocks which were combined using a FORTRAN code written. This approach facilitated the realistic simulation of the gasification process. A number of model configurations were developed to simulate different subsurface gasifier layouts considered for the exploitation of underground coal seams. The two gasifier layouts considered here are the linked vertical boreholes and the controlled retractable injection point (CRIP) methods. Different stages of the UCG process (i.e. initialisation, intermediate, end-phase) as well as the temperature level of the syngas collection point in each layout were found to be the two most decisive and distinctive parameters during the design of the optimal model configuration for each layout. Sensitivity analyses were conducted to investigate the significance of the operational parameters and the performance indicators used to evaluate the results. The operational parameters considered were the type of reagents injected (i.e. O2, N2, CO2, H2O), the ratio between the injected reagents and the feedstock quantity (i.e. coal), the pressure, the gasification and the combustion temperatures. The performance indicators included the composition and the energy content of the product gas as well as the carbon and energy efficiency achieved under each operational scenario. Different operational scenarios for every model configuration facilitated the cross-comparison among different configurations. The proximate and ultimate analysis data for the coal seams modelled were taken from a number of candidate UCG sites (Durucan et al., 2014) .The model findings were validated using the results of field trials reported in the literature. It was found that, increased gasification temperature leads to higher H2 and CO quantities in the product gas. Moreover, CH4 and CO2 concentrations increased as reaction pressure increased, while the CH4 quantity reached its highest value at the highest operational pressure, when combined with the lowest gasification temperature. The simulation models developed can be used to design and validate experimental UCG studies and offer significant advantages in terms of time and resource savings. As the UCG process consists of interrelated stages and a number of diverse phenomena, therefore, the gasification designs developed could act as the basis for an integrated UCG model tailored to the needs of a UCG pilot plant.
DEMONSTRATION BULLETIN: TEXACO GASIFICATION PROCESS TEXACO, INC.
The Texaco Gasification Process (TGP) has operated commercially for nearly 45 years on feeds such as natural gas, liquid petroleum fractions, coal, and petroleum coke. More than 45 plants are either operational or under development in the United States and abroad. Texaco has dev...
Optimization Review, Fairfield Coal Gasification Plant Superfund Site, Fairfield, Iowa
The Fairfield Coal Gasification Plant (FCGP) also known as the Fairfield Former Manufactured Gas Plant (MGP) is located in the southwest 1/4 of the southeast 1/4, Section 26, Township 72 North, Range 10 West of Jefferson County, Iowa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-12-01
The coal gasification plant will occupy a 43-acre site, known as the Riverside Site, located along the Delaware River next to Port Richmond between the Betsy Ross and Benjamin Franklin Bridges. The cleared site was previously used for industrial purposes and has a G-2 industrial zoning. Adverse impacts during the construction phase of the project are not expected to be significantly different than those occurring during any major industrial construction project. During operation of the coal gasification facility, specific mitigative measures have been designed into the facility to avoid adverse environmental impacts wherever possible. In addition to these extensive engineeringmore » safeguards, elaborate monitoring and control instrumentation shall be used. The GKT entrained bed, oxygen-blown gasification process provided by Krupp/Koppers was selected because it is a commercially proven system and because of its positive environmental characteristics such as its ability to gasify many coal types and the fact that it does not produce tars, phenols, or ammonia. During gasification of the coal, pollutants such as heavy metals in the coal are concentrated into the slag and ash. None of these pollutants are found in the product gas. The facility will produce 250 tpd of non-hazardous slag and fly ash. The combined slag and fly ash will occupy 347 cubic yards per day of landfill volume. Available haulers and landfills have been identified.A sophisticated health and safety program will include appropriate monitoring instruments for CO, H/sub 2/, H/sub 2/S, polynuclear aromatic hydrocarbons, organic compounds, and coal dust. Air emissions from operation of the coal gasification plant are not considered significant. Dust control systems have been designed into the facility to minimize fugitive dust emissions.« less
Tanigaki, Nobuhiro; Fujinaga, Yasuka; Kajiyama, Hirohisa; Ishida, Yoshihiro
2013-11-01
Gasification technologies for waste processing are receiving increased interest. A lot of gasification technologies, including gasification and melting, have been developed in Japan and Europe. However, the flue gas and heavy metal behaviors have not been widely reported, even though those of grate furnaces have been reported. This article reports flue gas components of gasification and melting technology in different flue gas treatment systems. Hydrogen chloride concentrations at the inlet of the bag filter ranged between 171 and 180 mg Nm(-3) owing to de-acidification by limestone injection to the gasifier. More than 97.8% of hydrogen chlorides were removed by a bag filter in both of the flue gas treatment systems investigated. Sulfur dioxide concentrations at the inlet of the baghouse were 4.8 mg Nm(-3) and 12.7 mg Nm(-3), respectively. Nitrogen oxides are highly decomposed by a selective catalytic reduction system. Owing to the low regenerations of polychlorinated dibenzo-p-dioxins and furans, and the selective catalytic reduction system, the concentrations of polychlorinated dibenzo-p-dioxins and furans at the stacks were significantly lower without activated carbon injection. More than 99% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 97.6% and 96.5%, respectively. Most high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that the slag is stable and contains few harmful heavy metals, such as lead. The heavy metal distribution behaviors are almost the same regardless of the compositions of the processed waste. These results indicate that the gasification of municipal solid waste constitutes an ideal approach to environmental conservation and resource recycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, G.R.B.; Vanderborgh, N.E.
Experimental and theoretical analyses show that uncontrolled water invasion during underground coal conversion (UCC) is harmful at all stages of UCC. By contrast, if water invasion is prevented, coal porosity can be created for further processing, pyrolysis can yield uniform hydrocarbon products, gasification can produce a uniform product, coal is fully consumed (not bypassed) during combustion, and environmental problems are minimized. In all cases the experimental results are supportive of the theory of underground coal processing presented. We see no insurmountable technical problems existing for a staged underground coal conversion process, but we emphasize that all concepts in underground coalmore » processing depend critically upon control of water influx. It is important that techniques for measuring and controlling water flow be developed if this technology is to make a contribution to the Nation's energy supply.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haase, S.G.; Quinn, M.W.; Whittier, J.P.
1993-12-31
The disposal of wastes associated with the processing of cotton is posing increasing problems for cotton gin operators in the western United States. Traditional disposal methods, such as open-air incineration and landfilling are no longer adequate due to increasing environmental concerns. This paper evaluates the technical, economic and environmental feasibility for cotton gin trash to serve as an energy resource. Cotton gin trash has been quantified, by county, in the five cotton-growing states of the western United States. The energy conversion technology that appears to offer the most promise is gasification. An economic evaluation model has been developed that willmore » allow gin operators to analyze their own situation to determine the profitability of converting gin trash to energy.« less
BIMOMASS GASIFICATION PILOT PLANT STUDY
The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...
TECHNOECONOMIC APPRAISAL OF INTEGRATED GASIFICATION COMBINED-CYCLE POWER GENERATION
The report is a technoeconomic appraisal of the integrated (coal) gasification combined-cycle (IGCC) system. lthough not yet a proven commercial technology, IGCC is a future competitive technology to current pulverized-coal boilers equipped with SO2 and NOx controls, because of i...
BIOMASS GASIFICATION FOR AGRICULTURAL ENERGY SOURCES AND SOIL ENRICHMENT
Phase I of the Biomass Gasification Project gave birth to many success stories and demonstrated enormous potential for members of the local agricultural community and for students within the university.
Community-building
Watauga County Cooperative Ext...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... Combined Cycle Project; Preliminary Staff Assessment and Draft Environmental Impact Statement AGENCY... Combined Cycle Project Preliminary Staff Assessment/Draft Environmental Impact Statement (PSA/DEIS) (DOE... Gasification Combined Cycle Project, which would be designed, constructed, and operated by HECA, LLC. HECA's...
Code of Federal Regulations, 2013 CFR
2013-07-01
... situ coal mining means activities conducted on the surface or underground in connection with in-place... not limited to, in situ gasification, in situ leaching, slurry mining, solution mining, bore hole mining, and fluid recovery mining. At this time, part 870 considers only in situ gasification. Inherent...
Code of Federal Regulations, 2014 CFR
2014-07-01
... situ coal mining means activities conducted on the surface or underground in connection with in-place... not limited to, in situ gasification, in situ leaching, slurry mining, solution mining, bore hole mining, and fluid recovery mining. At this time, part 870 considers only in situ gasification. Inherent...
Code of Federal Regulations, 2012 CFR
2012-07-01
... situ coal mining means activities conducted on the surface or underground in connection with in-place... not limited to, in situ gasification, in situ leaching, slurry mining, solution mining, bore hole mining, and fluid recovery mining. At this time, part 870 considers only in situ gasification. Inherent...
Code of Federal Regulations, 2011 CFR
2011-07-01
... situ coal mining means activities conducted on the surface or underground in connection with in-place... not limited to, in situ gasification, in situ leaching, slurry mining, solution mining, bore hole mining, and fluid recovery mining. At this time, part 870 considers only in situ gasification. Inherent...
Code of Federal Regulations, 2010 CFR
2010-07-01
... situ coal mining means activities conducted on the surface or underground in connection with in-place... not limited to, in situ gasification, in situ leaching, slurry mining, solution mining, bore hole mining, and fluid recovery mining. At this time, part 870 considers only in situ gasification. Inherent...
Low-temperature catalytic gasification of food processing wastes. 1995 topical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, D.C.; Hart, T.R.
The catalytic gasification system described in this report has undergone continuing development and refining work at Pacific Northwest National Laboratory (PNNL) for over 16 years. The original experiments, performed for the Gas Research Institute, were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous stirred-tank reactor tests provided useful design information for evaluating the preliminary economics of the process. This report is a follow-on to previousmore » interim reports which reviewed the results of the studies conducted with batch and continuous-feed reactor systems from 1989 to 1994, including much work with food processing wastes. The discussion here provides details of experiments on food processing waste feedstock materials, exclusively, that were conducted in batch and continuous- flow reactors.« less
A short review on the potential of coffee husk gasification for sustainable energy in Uganda.
Miito, Gilbert John; Banadda, Noble
2017-01-01
Agricultural biomass is widely recognized as a clean and renewable energy source, with increasing potential to replace conventional fossil fuels in the energy market. Uganda, like other developing countries, has a high dependency (91%) on wood fuel, leading to environmental degradation. With a coffee production of 233 Metric Tonnes per annum, relating to 46.6 Mega Tonnes of coffee husks from processing, transforming these husks into syngas through gasification can contribute to resolving the existing energy challenges. The objective of this article is to briefly review the energy potential of coffee husks through gasification, and how the gasification process could increase energy recoveries for coffee farmers. Previous findings indicate that the 46.6 Mega Tonnes per year of coffee husks generated in Uganda, with a heating value of 18.34 MJ/kg, is capable of generating 24 GWh of energy. This will address a 0.7% portion of the energy situation in Uganda, while protecting the environment.
Shehzad, Areeb; Bashir, Mohammed J K; Horttanainen, Mika; Manttari, Mika; Havukainen, Jouni; Abbas, Ghulam
2017-06-19
The present study explores the potential of MSW gasification for exergy analysis and has been recently given a premier attention in a region like Pakistan where the urbanization is rapidly growing and resources are few. The plant capacity was set at 50 MW based on reference data available and the total exergetic efficiency was recorded to be 31.5 MW. The largest irreversibility distribution appears in the gasifier followed by methanation unit and CO 2 capture. The effect of process temperature, equivalence ratio and MSW moisture content was explored for inspecting the variations in syngas composition, lower heating value, carbon conversion efficiency and cold gas efficiency. Special attention of the paper is paid to the comparative assessment of MSW gasification products in four regions, namely Pakistan, USA, UAE and Thailand. This extended study gave an insight into the spectrum of socioeconomic conditions with varying MSW compositions in order to explain the effect of MSW composition variance on the gasification products.
CO2 gasification of char from lignocellulosic garden waste: Experimental and kinetic study.
Gupta, Ankita; Thengane, Sonal K; Mahajani, Sanjay
2018-04-25
In this study, the dry leaves litter from jackfruit, raintree, mango and eucalyptus trees, lignin, and cellulose were characterized, pyrolysed, and evaluated for their char reactivity towards CO 2 gasification using TGA. The differences in char reactivity were attributed to the difference in char morphology and the varying inorganic contents. The mineral analysis of biomass ash showed the presence of alkali minerals some of which could act as catalysts. The adverse effect of high silica content was also evident through the experimental results. The kinetic parameters for gasification reaction were determined using three different reaction models. A modified random pore model was investigated to account for the influence of inorganic content. The effect of external catalyst on CO 2 gasification was also studied by adding potassium carbonate to biomass char and pellets. The results obtained from this study can be conveniently used in the design of a gasifier for lignocellulosic garden waste. Copyright © 2018 Elsevier Ltd. All rights reserved.
A short review on the potential of coffee husk gasification for sustainable energy in Uganda
Miito, Gilbert John; Banadda, Noble
2017-01-01
Agricultural biomass is widely recognized as a clean and renewable energy source, with increasing potential to replace conventional fossil fuels in the energy market. Uganda, like other developing countries, has a high dependency (91%) on wood fuel, leading to environmental degradation. With a coffee production of 233 Metric Tonnes per annum, relating to 46.6 Mega Tonnes of coffee husks from processing, transforming these husks into syngas through gasification can contribute to resolving the existing energy challenges. The objective of this article is to briefly review the energy potential of coffee husks through gasification, and how the gasification process could increase energy recoveries for coffee farmers. Previous findings indicate that the 46.6 Mega Tonnes per year of coffee husks generated in Uganda, with a heating value of 18.34 MJ/kg, is capable of generating 24 GWh of energy. This will address a 0.7% portion of the energy situation in Uganda, while protecting the environment. PMID:29259766
Niu, Miaomiao; Dong, Qing; Huang, Yaji; Jin, Baosheng; Wang, Hongyan; Gu, Haiming
2018-05-01
To achieve high-temperature gasification-melting of combustible solid waste, ash melting behaviour under conditions simulating high-temperature gasification were studied. Raw ash (RA) and gasified ash (GA) were prepared respectively by waste ashing and fluidized bed gasification. Results of microstructure and composition of the two-ash indicated that GA showed a more porous structure and higher content of alkali and alkali earth metals among metallic elements. Higher temperature promoted GA melting and could reach a complete flowing state at about 1250°C. The order of melting rate of GA under different atmospheres was reducing condition > inert condition > oxidizing condition, which might be related to different existing forms of iron during melting and different flux content with atmosphere. Compared to RA, GA showed lower melting activity at the same condition due to the existence of an unconverted carbon and hollow structure. The melting temperature for sufficient melting and separation of GA should be at least 1250°C in this work.
Enhanced Reduction of Few-Layer Graphene Oxide via Supercritical Water Gasification of Glycerol
Arcelus-Arrillaga, Pedro; Millan, Marcos; Suelves, Isabel
2017-01-01
A sustainable and effective method for de-oxygenation of few-layer graphene oxide (FLGO) by glycerol gasification in supercritical water (SCW) is described. In this manner, reduction of FLGO and valorization of glycerol, in turn catalyzed by FLGO, are achieved simultaneously. The addition of glycerol enhanced FLGO oxygen removal by up to 59% due to the in situ hydrogen generation as compared to the use of SCW only. Physicochemical characterization of the reduced FLGO (rFLGO) showed a high restoration of the sp2-conjugated carbon network. FLGO sheets with a starting C/O ratio of 2.5 are reduced by SCW gasification of glycerol to rFLGO with a C/O ratio of 28.2, above those reported for hydrazine-based methods. Additionally, simultaneous glycerol gasification resulted in the concurrent production of H2, CO, CH4 and valuable hydrocarbons such as alkylated and non-alkylated long chain hydrocarbon (C12–C31), polycyclic aromatic hydrocarbons (PAH), and phthalate, phenol, cresol and furan based compounds. PMID:29240720
Reforming of glucose and wood at the critical conditions of water
NASA Technical Reports Server (NTRS)
Modell, M.
1977-01-01
Reforming of organics in aqueous solutions is being investigated as a potential waste treatment process. Earlier studies showed that glucose in water reacts to form a gaseous mixture of CO, H2, CH4, CO2, C2H6, and C2H4 in the vicinity of the critical conditions of water (374 C, 22 MPa). The earlier work has been extended to determine the effect of variations in temperature and feed concentration on the extent of gasification. The percent gasification decreases with increasing feed concentration, indicating an overall kinetic order less than unity. Surprisingly, the percent gasification decreases with increasing temperature. A number of preliminary experiments were conducted with maple sawdust feed, which was thought to be representative of complex organic wastes from paper and vegetable matter. Once again, no solid products were found under the critical conditions; the percent gasification ranged from 16 to 88 percent, depending on the feed composition and residence time.
Ebadi, Abdol Ghaffar; Hisoriev, Hikmat; Zarnegar, Mohammad; Ahmadi, Hamed
2018-01-02
The steam gasification of algal biomass (Cladophora glomerata L.) in presence of alkali and alkaline-earth metal compounds catalysts was studied to enhance the yield of syngas and reduce its tar content through cracking and reforming of condensable fractions. The commercial catalysts used include NaOH, KHCO 3 , Na 3 PO 4 and MgO. The gasification runs carried out with a research scale, biomass gasification unit, show that the NaOH has a strong potential for production of hydrogen, along with the added advantages of char converting and tar destruction, allowing enhancement of produced syngas caloric value. When the temperature increased from 700°C to 900°C, the tar content in the gas sharply decreased, while the hydrogen yield increased. Increasing steam/biomass ratio significantly increased hydrogen yield and tar destruction; however, the particle size in the range of 0.5-2.5 mm played a minor role in the process.
Equilibrium model analysis of waste plastics gasification using CO2 and steam.
Kannan, P; Lakshmanan, G; Al Shoaibi, A; Srinivasakannan, C
2017-12-01
Utilization of carbon dioxide (CO 2 ) in thermochemical treatment of waste plastics may significantly help to improve CO 2 recycling, thus simultaneously curtailing dioxins/furans and CO 2 emissions. Although CO 2 is not such an effective gasifying agent as steam, a few investigations have explored the utilization of CO 2 in conjunction with steam to achieve somewhat higher carbon conversion. This work presents a comparative evaluation study of CO 2 and steam gasification of a typical post-consumer waste plastics mixture using an Aspen Plus equilibrium model. The effect of flow rate of gasifying medium (CO 2 and/or steam) and gasification temperature on product gas composition, carbon conversion, and cold gas efficiency has been analyzed. Simulation results demonstrate that CO 2 can serve as a potential gasifying agent for waste plastics gasification. The resulting product gas was rich in CO whereas CO 2 -steam blends yield a wider H 2 /CO ratio, thus extending the applications of the product gas.
Li, Jiazhou; Wang, Xiaoyu; Wang, Bing; Zhao, Jiantao; Fang, Yitian
2018-06-01
This study investigates the volatilization behaviors and mineral transformation of vanadium and nickel during co-gasification of petroleum coke with biomass. Moreover, the evolution of occurrence modes of vanadium and nickel was also determined by the method of sequential chemical extraction. The results show that the volatilities of vanadium and nickel in petroleum coke have a certain level of growth with an increase in the temperature. With the addition of biomass, their volatilities both show an obvious decrease. Organic matter and stable forms are the dominant chemical forms of vanadium and nickel. After gasification, organic-bound vanadium and nickel decompose completely and convert into other chemical forms. The crystalline phases of vanadium trioxide, coulsonite, nickel sulfide, and elemental nickel are clearly present in petroleum coke and biomass gasification ashes. When the addition of biomass reaches 60 wt%, the diffraction peaks of orthovanadate are found while that of vanadium trioxide disappear. Copyright © 2018 Elsevier Ltd. All rights reserved.
Performance of biofuel processes utilising separate lignin and carbohydrate processing.
Melin, Kristian; Kohl, Thomas; Koskinen, Jukka; Hurme, Markku
2015-09-01
Novel biofuel pathways with increased product yields are evaluated against conventional lignocellulosic biofuel production processes: methanol or methane production via gasification and ethanol production via steam-explosion pre-treatment. The novel processes studied are ethanol production combined with methanol production by gasification, hydrocarbon fuel production with additional hydrogen produced from lignin residue gasification, methanol or methane synthesis using synthesis gas from lignin residue gasification and additional hydrogen obtained by aqueous phase reforming in synthesis gas production. The material and energy balances of the processes were calculated by Aspen flow sheet models and add on excel calculations applicable at the conceptual design stage to evaluate the pre-feasibility of the alternatives. The processes were compared using the following criteria: energy efficiency from biomass to products, primary energy efficiency, GHG reduction potential and economy (expressed as net present value: NPV). Several novel biorefinery concepts gave higher energy yields, GHG reduction potential and NPV. Copyright © 2015 Elsevier Ltd. All rights reserved.
Agon, N; Hrabovský, M; Chumak, O; Hlína, M; Kopecký, V; Masláni, A; Bosmans, A; Helsen, L; Skoblja, S; Van Oost, G; Vierendeels, J
2016-01-01
The renewable evolution in the energy industry and the depletion of natural resources are putting pressure on the waste industry to shift towards flexible treatment technologies with efficient materials and/or energy recovery. In this context, a thermochemical conversion method of recent interest is plasma gasification, which is capable of producing syngas from a wide variety of waste streams. The produced syngas can be valorized for both energetic (heat and/or electricity) and chemical (ammonia, hydrogen or liquid hydrocarbons) end-purposes. This paper evaluates the performance of experiments on a single-stage plasma gasification system for the treatment of refuse-derived fuel (RDF) from excavated waste. A comparative analysis of the syngas characteristics and process yields was done for seven cases with different types of gasifying agents (CO2+O2, H2O, CO2+H2O and O2+H2O). The syngas compositions were compared to the thermodynamic equilibrium compositions and the performance of the single-stage plasma gasification of RDF was compared to that of similar experiments with biomass and to the performance of a two-stage plasma gasification process with RDF. The temperature range of the experiment was from 1400 to 1600 K and for all cases, a medium calorific value syngas was produced with lower heating values up to 10.9 MJ/Nm(3), low levels of tar, high levels of CO and H2 and which composition was in good agreement to the equilibrium composition. The carbon conversion efficiency ranged from 80% to 100% and maximum cold gas efficiency and mechanical gasification efficiency of respectively 56% and 95%, were registered. Overall, the treatment of RDF proved to be less performant than that of biomass in the same system. Compared to a two-stage plasma gasification system, the produced syngas from the single-stage reactor showed more favourable characteristics, while the recovery of the solid residue as a vitrified slag is an advantage of the two-stage set-up. Copyright © 2015 Elsevier Ltd. All rights reserved.
Literature survey of properties of synfuels derived from coal
NASA Technical Reports Server (NTRS)
Flores, F.
1982-01-01
A literature survey of the properties of synfuels for ground-based turbine applications is presented. The four major concepts for converting coal into liquid fuels (solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction), and the most important concepts for coal gasification (fixed bed, fluidized bed, entrained flow, and underground gasification) are described. Upgrading processes for coal derived liquid fuels are also described. Data presented for liquid fuels derived from various processes, including H-coal, synthoil, solvent refined coal, COED, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Typical composition, and property data is also presented for low and medium-BTU gases derived from the various coal gasification processes.
Systems Analysis Of Advanced Coal-Based Power Plants
NASA Technical Reports Server (NTRS)
Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.
1988-01-01
Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.
NANOMATERIAL SOLUTIONS FOR HOT COAL GAS CLEANUP - PHASE I
Integrated gasification combined cycle (IGCC) is a new coal gasification technique that efficiently uses the hot (900-1500°C) generated syngas to power both steam and gas turbines. Due to regulations, this syngas must be free of sulfur and purification is normally carried ...
Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.
Medina Jimenez, Ana Carolina; Nordi, Guilherme Henrique; Palacios Bereche, Milagros Cecilia; Bereche, Reynaldo Palacios; Gallego, Antonio Garrido; Nebra, Silvia Azucena
2017-11-01
Brazil has a large population with a high waste generation. The municipal solid waste (MSW) generated is deposited mainly in landfills. However, a considerable fraction of the waste is still improperly disposed of in dumpsters. In order to overcome this inadequate deposition, it is necessary to seek alternative routes. Between these alternatives, it is possible to quote gasification and incineration. The objective of this study is to compare, from an energetic and economic point of view, these technologies, aiming at their possible implementation in Brazilian cities. A total of two configurations were evaluated: (i) waste incineration with energy recovery and electricity production in a steam cycle; and (ii) waste gasification, where the syngas produced is used as fuel in a boiler of a steam cycle for electricity production. Simulations were performed assuming the same amount of available waste for both configurations, with a composition corresponding to the MSW from Santo André, Brazil. The thermal efficiencies of the gasification and incineration configurations were 19.3% and 25.1%, respectively. The difference in the efficiencies was caused by the irreversibilities associated with the gasification process, and the additional electricity consumption in the waste treatment step. The economic analysis presented a cost of electrical energy produced of 0.113 (US$ kWh -1 ) and 0.139 (US$ kWh -1 ) for the incineration and gasification plants respectively.
Modeling of the reburning process using sewage sludge-derived syngas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werle, Sebastian, E-mail: sebastian.werle@polsl.pl
2012-04-15
Highlights: Black-Right-Pointing-Pointer Gasification provides an attractive method for sewage sludges treatment. Black-Right-Pointing-Pointer Gasification generates a fuel gas (syngas) which can be used as a reburning fuel. Black-Right-Pointing-Pointer Reburning potential of sewage sludge gasification gases was defined. Black-Right-Pointing-Pointer Numerical simulation of co-combustion of syngases in coal fired boiler has been done. Black-Right-Pointing-Pointer Calculation shows that analysed syngases can provide higher than 80% reduction of NO{sub x}. - Abstract: Gasification of sewage sludge can provide clean and effective reburning fuel for combustion applications. The motivation of this work was to define the reburning potential of the sewage sludge gasification gas (syngas). Amore » numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was done. All calculations were performed using the Chemkin programme and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 2.11 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000-1200 K. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions. The highest reduction efficiency (>90%) was achieved when the molar flow ratio of the syngas was 15%. Calculations show that the analysed syngas can provide better results than advanced reburning (connected with ammonia injection), which is more complicated process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartke, T.C.
Under the US Department of Energy's Underground-Coal-Conversion program, four field tests were completed in 1979 and preparations were begun in 1980 for two additional field tests to be operated in 1981. The Laramie Energy Technology Center (LETC) and Sandia National Laboratories (SNL) completed Hanna IV, an air gasification test in Wyoming subbituminous coal. The Morgantown Energy Technology Center (METC) completed Pricetown 1, an air gasification test in West Virginia bituminous coal. Lawrence Livermore National Laboratory (LLNL) completed Hoe Creek 3, a steam-oxygen gasification test in Wyoming subbituminous coal. Gulf Research and Development Co. completed Steeply Dipping Beds (SDB) Test 1,more » primarily an air gasification test in Wyoming subbituminous coal and the first SDB test in the US. In 1980, Gulf R and D Co. began preparation of SDB Test 2, scheduled for operation in the fall of 1981. The DOE project teams at LETC, METC, LLNL, and SNL, in association with the Washington Irrigation and Development Co. (WIDCo), Washington Water Power (WWP), and the State of Washington, are preparing a field test site in the Centralia-Chehalis coal district of Washington. A series of large coal block tests will be completed prior to the field test, scheduled for operation in 1982 or 1983. This field test will utilize a directionally drilled link and steam-oxygen gasification system. This paper summarizes the results of the four recently completed field tests and the plans for additional tests.« less
Násner, Albany Milena Lozano; Lora, Electo Eduardo Silva; Palacio, José Carlos Escobar; Rocha, Mateus Henrique; Restrepo, Julian Camilo; Venturini, Osvaldo José; Ratner, Albert
2017-11-01
This work deals with the development of a Refuse Derived Fuel (RDF) gasification pilot plant using air as a gasification agent. A downdraft fixed bed reactor is integrated with an Otto cycle Internal Combustion Engine (ICE). Modelling was carried out using the Aspen Plus™ software to predict the ideal operational conditions for maximum efficiency. Thermodynamics package used in the simulation comprised the Non-Random Two-Liquid (NRTL) model and the Hayden-O'Connell (HOC) equation of state. As expected, the results indicated that the Equivalence Ratio (ER) has a direct influence over the gasification temperature and the composition of the Raw Produced Gas (RPG), and effects of ER over the Lower Heating Value (LHV) and Cold Gasification Efficiency (CGE) of the RPG are also discussed. A maximum CGE efficiency of 57-60% was reached for ER values between 0.25 and 0.3, also an average reactor temperature values in the range of 680-700°C, with a peak LHV of 5.8MJ/Nm 3 . RPG was burned in an ICE, reaching an electrical power of 50kW el . The economic assessment of the pilot plant implementation was also performed, showing the project is feasible, with power above 120kW el with an initial investment of approximately US$ 300,000. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sampling of tar from sewage sludge gasification using solid phase adsorption.
Ortiz González, Isabel; Pérez Pastor, Rosa Ma; Sánchez Hervás, José Ma
2012-06-01
Sewage sludge is a residue from wastewater treatment plants which is considered to be harmful to the environment and all living organisms. Gasification technology is a potential source of renewable energy that converts the sewage sludge into gases that can be used to generate energy or as raw material in chemical synthesis processes. But tar produced during gasification is one of the problems for the implementation of the gasification technology. Tar can condense on pipes and filters and may cause blockage and corrosion in the engines and turbines. Consequently, to minimize tar content in syngas, the ability to quantify tar levels in process streams is essential. The aim of this work was to develop an accurate tar sampling and analysis methodology using solid phase adsorption (SPA) in order to apply it to tar sampling from sewage sludge gasification gases. Four types of commercial SPA cartridges have been tested to determine the most suitable one for the sampling of individual tar compounds in such streams. Afterwards, the capacity, breakthrough volume and sample stability of the Supelclean™ ENVI-Carb/NH(2), which is identified as the most suitable, have been determined. Basically, no significant influences from water, H(2)S or NH(3) were detected. The cartridge was used in sampling real samples, and comparable results were obtained with the present and traditional methods.
Kumar, Ajay; Demirel, Yasar; Jones, David D; Hanna, Milford A
2010-05-01
Thermochemical gasification is one of the most promising technologies for converting biomass into power, fuels and chemicals. The objectives of this study were to maximize the net energy efficiency for biomass gasification, and to estimate the cost of producing industrial gas and combined heat and power (CHP) at a feedrate of 2000kg/h. Aspen Plus-based model for gasification was combined with a CHP generation model, and optimized using corn stover and dried distillers grains with solubles (DDGS) as the biomass feedstocks. The cold gas efficiencies for gas production were 57% and 52%, respectively, for corn stover and DDGS. The selling price of gas was estimated to be $11.49 and $13.08/GJ, respectively, for corn stover and DDGS. For CHP generation, the electrical and net efficiencies were as high as 37% and 88%, respectively, for corn stover and 34% and 78%, respectively, for DDGS. The selling price of electricity was estimated to be $0.1351 and $0.1287/kWh for corn stover and DDGS, respectively. Overall, high net energy efficiencies for gas and CHP production from biomass gasification can be achieved with optimized processing conditions. However, the economical feasibility of these conversion processes will depend on the relative local prices of fossil fuels. Copyright 2009 Elsevier Ltd. All rights reserved.
General fuel cell hybrid synergies and hybrid system testing status
NASA Astrophysics Data System (ADS)
Winkler, Wolfgang; Nehter, Pedro; Williams, Mark C.; Tucker, David; Gemmen, Randy
FCT hybrid power systems offer the highest efficiency and the cleanest emissions of all fossil fuelled power. The engineering for the highest possible efficiency at lowest cost and weight depends on general system architecture issues and the performance of the components. Presented in this paper are system studies which provide direction for the most efficient path toward achieving the most beneficial result for this technology. Ultimately, fuel cell-turbine (FCT) hybrid systems applicable to integrated gasification combined cycle power systems will form the basis for reaching the goals for advanced coal-based power generation. The FCT hybrid power island will also be important for the FutureGen plant and will provide new options for carbon dioxide capture and sequestration as well as power and hydrogen generation. The system studies presented in this paper provide insight to current technology 'benchmarks' versus expected benefits from hybrid applications. Discussion is also presented on the effects of different balance of plant arrangements and approaches. Finally, we discuss the status of US DOE is sponsored projects that are looking to help understand the unique requirements for these systems. One of these projects, Hyper, will provide information on FCT dynamics and will help identify technical needs and opportunities for cycle advancement. The methods studied show promise for effective control of a hybrid system without the direct intervention of isolation valves or check valves in the main pressure loop of the system, which introduce substantial pressure losses, allowing for realization of the full potential efficiency of the hybrid system.
Gasification of hybrid feedstock using animal manures and hays
USDA-ARS?s Scientific Manuscript database
The objective of this study is to evaluate the efficiency of a proprietary integrated gasification-internal combustion system in producing electricity from mixtures of animal manures such as swine solids, chicken litter, and hays. Five to 10 gallons of mixtures of swine manure, chicken litter, and h...
USDA-ARS?s Scientific Manuscript database
Char produced from the gasification of post-seed harvest Kentucky bluegrass residues could be recycled to a cropping system as a soil amendment if chemical characterization determined that the gasification process had not produced or concentrated deleterious chemical or physical factors that might h...
Production of hydrogen by direct gasification of coal with steam using nuclear heat
NASA Technical Reports Server (NTRS)
1975-01-01
Problems related to: (1) high helium outlet temperature of the reactor, and (2) gas generator design used in hydrogen production are studied. Special attention was given to the use of Oklahoma coal in the gasification process. Plant performance, operation, and environmental considerations are covered.
Henry Taube and Coordination Chemistry
Shifts Caused by Cr++ in Aqueous Solutions, DOE Technical Report, 1962 Reactions of Solvated Ions Final Report, DOE Technical Report, 1962 Isotopic Discrimination of Some Solutes in Liquid Ammonia, DOE Technical Report, 1966 Final Technical Report of Research, DOE Technical Report, 1972 Top Additional Web
George A. Olah, Carbocation and Hydrocarbon Chemistry
. Final Technical Report. [HF:BF{sub 2}/H{sub 2}] , DOE Technical Report, 1980 Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984 , DOE Technical Report, 1984 Superacid Catalyzed Coal Conversion Chemistry. Final Technical Report
Prospects for the development of coal-steam plants in Russia
NASA Astrophysics Data System (ADS)
Tumanovskii, A. G.
2017-06-01
Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.
Fluidized bed gasification of extracted coal
Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter
1986-01-01
Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.
Chen, Jianjun; Frey, H Christopher
2004-12-15
Methods for optimization of process technologies considering the distinction between variability and uncertainty are developed and applied to case studies of NOx control for Integrated Gasification Combined Cycle systems. Existing methods of stochastic optimization (SO) and stochastic programming (SP) are demonstrated. A comparison of SO and SP results provides the value of collecting additional information to reduce uncertainty. For example, an expected annual benefit of 240,000 dollars is estimated if uncertainty can be reduced before a final design is chosen. SO and SP are typically applied to uncertainty. However, when applied to variability, the benefit of dynamic process control is obtained. For example, an annual savings of 1 million dollars could be achieved if the system is adjusted to changes in process conditions. When variability and uncertainty are treated distinctively, a coupled stochastic optimization and programming method and a two-dimensional stochastic programming method are demonstrated via a case study. For the case study, the mean annual benefit of dynamic process control is estimated to be 700,000 dollars, with a 95% confidence range of 500,000 dollars to 940,000 dollars. These methods are expected to be of greatest utility for problems involving a large commitment of resources, for which small differences in designs can produce large cost savings.
Fernández-González, J M; Grindlay, A L; Serrano-Bernardo, F; Rodríguez-Rojas, M I; Zamorano, M
2017-09-01
The application of Directive 2008/98/CE on Municipal Solid Waste (MSW) implies the need to introduce technologies to generate energy from waste. Incineration, the most widely used method, is difficult to implement in low populated areas because it requires a large amount of waste to be viable (100,000 tons per year). This paper analyses the economic and environmental costs of different MSW-to-Energy technologies (WtE) in an area comprising of 13 municipalities in southern Spain. We analyse anaerobic digestion (Biomethanization), the production of solid recovered fuel (SRF) and gasification, and compare these approaches to the present Biological Mechanical Treatment (BMT) with elimination of the reject in landfill, and incineration with energy recovery. From an economic standpoint the implementation of WtE systems reduces the cost of running present BMT systems and incineration; gasification presents the lowest value. From the environmental standpoint, Life Cycle Assessment shows that any WtE alternatives, including incineration, present important advantages for the environment when compared to BMT. Finally, in order to select the best alternative, a multi-criteria method is applied, showing that anaerobic digestion is the optimal solution for the area studied. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Raul Subia
GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility weremore » established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.« less
77 FR 46306 - Fluxapyroxad; Pesticide Tolerances Technical Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-03
...; Pesticide Tolerances Technical Amendment AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule; technical amendment. SUMMARY: EPA issued a final rule in the Federal Register of May 14, 2012, concerning.... Inadvertently, the terminology for the oilseed crop group and for dried plums was incorrect. This technical...
Low Cost High-H 2 Syngas Production for Power and Liquid Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, S. James
2015-07-31
This report summarizes the technical progress made of the research project entitled “Low Cost High-H2 Syngas Production for Power and Liquid Fuels,” under DOE Contract No. DE-FE-0011958. The period of performance was October 1, 2013 through July 30, 2015. The overall objectives of this project was to determine the technical and economic feasibility of a systems approach for producing high hydrogen syngas from coal with the potential to reduce significantly the cost of producing power, chemical-grade hydrogen or liquid fuels, with carbon capture to reduce the environmental impact of gasification. The project encompasses several areas of study and the resultsmore » are summarized here. (1) Experimental work to determine the technical feasibility of a novel hybrid polymer/metal H2-membrane to recover pure H2 from a coal-derived syngas was done. This task was not successful. Membranes were synthesized and show impermeability of any gases at required conditions. The cause of this impermeability was most likely due to the densification of the porous polymer membrane support made from polybenzimidazole (PBI) at test temperatures above 250 °C. (2) Bench-scale experimental work was performed to extend GTI's current database on the University of California Sulfur Recovery Process-High Pressure (UCSRP-HP) and recently renamed Sulfur Removal and Recovery (SR2) process for syngas cleanup including removal of sulfur and other trace contaminants, such as, chlorides and ammonia. The SR2 process tests show >90% H2S conversion with outlet H2S concentrations less than 4 ppmv, and 80-90% ammonia and chloride removal with high mass transfer rates. (3) Techno-economic analyses (TEA) were done for the production of electric power, chemical-grade hydrogen and diesel fuels, from a mixture of coal- plus natural gas-derived syngas using the Aerojet Rocketdyne (AR) Advanced Compact coal gasifier and a natural gas partial oxidation reactor (POX) with SR2 technology. Due to the unsuccessful experimental results with the hybrid polymer/metal H2 membrane, a conventional CO2 capture (single-stage Selexol) and hydrogen purification (PSA) technologies were used in the appropriate cases. In all cases, the integrated system of Advanced Compact coal gasifier, non-catalytic natural gas partial oxidation, and SR2 multicontaminant removal with state-of-the-art auxiliary system provided a 5-25% cost advantage over the base line plants using GEE coal gasifier with conventional Selexol/Claus sulfur removal and recovery. These plants also produce 18-30% less CO2 than with the conventional coal gasification plants.« less
NASA Technical Reports Server (NTRS)
1980-01-01
A technology evaluation of five coal gasifier systems (Koppers-Totzek, Texaco, Babcock and Wilcox, Lurgi and BGC/Lurgi) and procedures and criteria for evaluating competitive commercial coal gasification designs is presented. The technology evaluation is based upon the plant designs and cost estimates developed by the BDM-Mittelhauser team.
NASA Technical Reports Server (NTRS)
1975-01-01
The gasification reactions necessary for the production of hydrogen from montana subbituminous coal are presented. The coal composition is given. The gasifier types mentioned include: suspension (entrained) combustion; fluidized bed; and moving bed. Each gasification process is described. The steam-iron process, raw and product gas compositions, gasifier feed quantities, and process efficiency evaluations are also included.
Hydrogen manufacture by Lurgi gasification of Oklahoma coal
NASA Technical Reports Server (NTRS)
1975-01-01
Advantages and disadvantages of using the Lurgi gasification process to produce hydrogen from Oklahoma coal are listed. Special attention was given to the production of heat for the process; heat is generated by burning part of pretreated coal in the steam generator. Overall performance of the Lurgi process is summarized in tabular form.
Micro-scale Plasma Arc Gasification for Waste Treatment and Energy Production Project
NASA Technical Reports Server (NTRS)
Caraccio, Anne
2015-01-01
As NASA continues to develop technology for spaceflight beyond low earth orbit, we must develop the right systems for sustaining human life on a long duration or planetary mission. Plasma arc gasification (PAG) is an energy efficient mechanism of waste management for power generation and synthetic gas(syngas) production.
USDA-ARS?s Scientific Manuscript database
The utility of biochars produced by biomass gasification for remediation of acidic production soils and plant growth in general is not as well known compared to effects from biochars resulting from pyrolysis. Recent characterization of biochar produced from gasification of Kentucky bluegrass (Poa pr...
Updraft gasification of poultry litter at farm-scale--A case study.
Taupe, N C; Lynch, D; Wnetrzak, R; Kwapinska, M; Kwapinski, W; Leahy, J J
2016-04-01
Farm and animal wastes are increasingly being investigated for thermochemical conversion, such as gasification, due to the urgent necessity of finding new waste treatment options. We report on an investigation of the use of a farm-scale, auto-thermal gasification system for the production of a heating gas using poultry litter (PL) as a feedstock. The gasification process was robust and reliable. The PL's ash melting temperature was 639°C, therefore the reactor temperature was kept around this value. As a result of the low reactor temperature the process performance parameters were low, with a cold gas efficiency (CGE) of 0.26 and a carbon conversion efficiency (CCE) of 0.44. The calorific value of the clean product gas was 3.39 MJ m(-3)N (LHV). The tar was collected as an emulsion containing 87 wt.% water and the extracted organic compounds were identified. The residual char exceeds thresholds for Zn and Cu to obtain European biochar certification; however, has potential to be classified as a pyrogenic carbonaceous material (PCM), which resembles a high nutrient biochar. Copyright © 2016 Elsevier Ltd. All rights reserved.
Power Systems Development Facility Gasification Test Campaing TC18
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southern Company Services
2005-08-31
In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifiermore » train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.« less
Two-stage high temperature sludge gasification using the waste heat from hot blast furnace slags.
Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong
2015-12-01
Nowadays, disposal of sewage sludge from wastewater treatment plants and recovery of waste heat from steel industry, become two important environmental issues and to integrate these two problems, a two-stage high temperature sludge gasification approach was investigated using the waste heat in hot slags herein. The whole process was divided into two stages, i.e., the low temperature sludge pyrolysis at ⩽ 900°C in argon agent and the high temperature char gasification at ⩾ 900°C in CO2 agent, during which the heat required was supplied by hot slags in different temperature ranges. Both the thermodynamic and kinetic mechanisms were identified and it was indicated that an Avrami-Erofeev model could best interpret the stage of char gasification. Furthermore, a schematic concept of this strategy was portrayed, based on which the potential CO yield and CO2 emission reduction achieved in China could be ∼1.92∗10(9)m(3) and 1.93∗10(6)t, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
NH3 Abatement in Fluidized Bed Co-Gasification of RDF and Coal
NASA Astrophysics Data System (ADS)
Gulyurtlu, I.; Pinto, Filomena; Dias, Mário; Lopes, Helena; André, Rui Neto; Cabrita, I.
Gasification of wastes may come out as an alternative technology to produce a gas with many potential applications, from direct burning in a boiler or motor to the production of synthetic chemicals and hydrogen. High tar production and high operational costs are preventing gasification wider dissemination. Besides these problems, the presence of NH3 in the syngas may have a negative impact as it can be converted into nitrogen oxides if the gas is further burnt. To reduce NH3 formation it is required a full understanding of how operational parameters contribute to the formation/reduction of this pollutant. A full studyon the effect of fuel composition, temperature and equivalence ratio on the formation of NH3 is given. Experimental results are compared to theoretical ones obtained with FactSage software. It is also analyzed the effect of feedstock mineral matterin NH3 release during gasification. Toaccomplish a significant decrease in the release of NH3, different catalysts and sorbents were tested with the aim of achieving high energy conversions and low environmental impact.
Singh, Dharminder; Yadav, Sanjeev; Rajesh, V M; Mohanty, Pravakar
2018-05-24
This work was focused on finding the groundnut shell (GNS) gasification performance in a fluidized bed gasifier with bubbling air as gasification medium. GNS in powder form (a mixture of different particle size as given in table 8 in the article) was gasified using naturally available river sand as bed material, top of the bed feeding, conventional charcoal as bed heating medium, and two cyclones for proper cleaning and cooling the product gas. Experiments were performed using different operating conditions such as equivalence ratio (ER) between 0.29 and 0.33, bed temperature between 650°C and 800°C, and feedstock feeding rate between 36 and 31.7 kg/h. Different parameters were evaluated to study the gasifier performance such as gas yield, cold gas efficiency, carbon conversion efficiency (CCE), and high heating value. The most suitable ER value was found to be 0.31, giving the most stable bed temperature profile at 714.4°C with 5-10% fluctuation. Cold gas efficiency and CCE at optimal ER of 0.31 was found to be 71.8% and 91%, respectively.
Calvo, L F; Gil, M V; Otero, M; Morán, A; García, A I
2012-04-01
The feasibility and operation performance of the gasification of rice straw in an atmospheric fluidized-bed gasifier was studied. The gasification was carried out between 700 and 850 °C. The stoichiometric air-fuel ratio (A/F) for rice straw was 4.28 and air supplied was 7-25% of that necessary for stoichiometric combustion. Mass and power balances, tar concentration, produced gas composition, gas phase ammonia, chloride and potassium concentrations, agglomeration tendencies and gas efficiencies were assessed. Agglomeration was avoided by replacing the normal alumina-silicate bed by a mixture of alumina-silicate sand and MgO. It was shown that it is possible to produce high quality syngas from the gasification of rice straw. Under the experimental conditions used, the higher heating value (HHV) of the produced gas reached 5.1 MJ Nm(-3), the hot gas efficiency 61% and the cold gas efficiency 52%. The obtained results prove that rice straw may be used as fuel for close-coupled boiler-gasifier systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wu, Zhiqiang; Wang, Shuzhong; Luo, Zhengyuan; Chen, Lin; Meng, Haiyu; Zhao, Jun
2017-07-01
In this paper, the influence of cellulose on the physicochemical properties and the gasification reactivity of co-pyrolysis char was investigated. A specific surface area analyzer and an X-ray diffraction system were used to characterize the pore structure and the micro-crystalline structure of char. Fractal theory and deconvolution method were applied to quantitatively investigate the influence of cellulose on the structure of co-pyrolysis char. The results indicate that the improvements in the pore structure due to the presence of cellulose are more pronounced in the case of anthracite char with respect to bituminous char. Cellulose promotes the ordering of micro-scale structure and the uniformity of both anthracite and bituminous char, while the negative synergetic effect was observed during gasification of co-pyrolysis char. The exponential relationships between fractal dimension and specific surface area were determined, along with the relations between the gasification reactivity index and the microcrystalline structure parameter. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yuan, Shuai; Dai, Zheng-hua; Zhou, Zhi-jie; Chen, Xue-li; Yu, Guang-suo; Wang, Fu-chen
2012-04-01
Rapid pyrolysis of rice straw (RS) and Shenfu bituminous coal (SB) separately, and rapid co-pyrolysis of RS/SB blends (mass ratio 1:4, 1:4, and 4:1), were carried out in a high-frequency furnace which can ensure both high heating rate and satisfying contact of fuel particles. Synergies between RS and SB during rapid co-pyrolysis were investigated. Intrinsic and morphological structures of residual char from co-pyrolysis, and their effects on gasification characteristics were also studied. Synergies occurred during rapid co-pyrolysis of RS and SB (RS/SB=1:4) resulting in decreasing char yields and increasing volatile yields. Synergies also happened during gasification of the char derived from co-pyrolysis of RS and SB with mass ratio of 1:4. The increased mass ratio of RS to SB did not only weaken synergies during co-pyrolysis, but significantly reduced the gasification rates of the co-pyrolysis char compared to the calculated values. Results can help to optimize co-conversion process of biomass/coal. Copyright © 2012 Elsevier Ltd. All rights reserved.
Combustion of Coal Char Particles under Fluidized Bed Oxyfiring Conditions
NASA Astrophysics Data System (ADS)
Scala, Fabrizio; Chirone, Riccardo
In this work combustion of single coal char particles was studied at 850°C in a lab-scale fluidized bed under simulated oxyfiring conditions. The burning rate of the particles was followed as a function of time by continuously measuring the outlet CO and O2 concentrations. Some preliminary evaluations on the significance of homogeneous CO oxidation in the reactor and of carbon gasification by CO2 in the char were also carried out. Results showed that the carbon burning rate increases with oxygen concentration and char particle size. The particle temperature is approximately equal to the bed one up to an oxygen concentration of 2%, but it is considerably higher for larger oxygen concentrations. Both CO2 gasification of char and homogeneous CO oxidation are not negligible. The gasification reaction rate is slow and it is likely to be controlled by intrinsic kinetics. During purely gasification conditions the extent of carbon loss due to particle attrition by abrasion (estimated from the carbon mass balance) appears to be more important than under combustion conditions.
Bates, Richard B.; Ghoniem, Ahmed F.; Jablonski, Whitney S.; ...
2017-02-02
During fluidized bed biomass gasification, complex gas-solid mixing patterns and numerous chemical and physical phenomena make identification of optimal operating conditions challenging. In this work, a parametric experimental campaign was carried out alongside the development of a coupled reactor network model which successfully integrates the individually validated sub-models to predict steady-state reactor performance metrics and outputs. The experiments utilized an integrated gasification system consisting of an externally-heated, bench-scale, 4-in., 5 kWth, fluidized bed steam/air blown gasifier fed with woody biomass equipped with a molecular beam mass spectrometer to directly measure tar species. The operating temperature (750-850°C) and air/fuel equivalence ratiomore » (ER = 0-0.157) were independently varied to isolate their effects. Elevating temperature is shown to improve the char gasification rate and reduce tar concentrations. In conclusion, air strongly impacts the composition of tar, accelerating the conversion of lighter polycyclic-aromatic hydrocarbons into soot precursors, while also improving the overall carbon conversion.« less
Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard
2014-01-01
Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO2 and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO2's generation. The response of COS to sulphur in the feed was quite prompt, whereas SO2 was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO2 generation. The more reducing gas phase regions above the bed would have facilitated COS--hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sun, Yongqi; Liu, Qianyi; Wang, Hao; Zhang, Zuotai; Wang, Xidong
2017-01-01
Disposal of biomass in the agriculture and steel slags in the steel industry provides a significant solution toward sustainability in China. Herein these two sectors were creatively combined as a novel method, i.e., biomass/CO 2 gasification using waste heat from hot slags where the influence of chemical compositions of steel slags, characterized as iron oxide content and basicity, on gasification thermodynamics, was systemically reported for the first time. Both the target gases of CO, H 2 and CH 4 and the polluted gases of NH 3 , NO and NO 2 were considered. It was first found that an increasing iron content and slag basicity continuously improved the CO yield at 600-1000°C and 800-1000°C, respectively; while the effect on polluted gas releases was limited. Moreover, the solid wastes after gasification could be utilized to provide nutrients and improve the soil in the agriculture, starting from which an integrated modern system was proposed herein. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirrito, A.J.
Combustion jet pumps ingest waste heat gases from power plant engines and boilers to boost their pressure for the ultimate low temperature utilization of the captured heat for heating homes, full-year hot houses, sterilization purposes, recreational hot water, absorption refrigeration and the like. Jet pump energy is sustained from the incineration of solids, liquids and gases and vapors or simply from burning fuels. This is the energy needed to transport the reaction products to the point of heat utilization and to optimize the heat transfer to that point. Sequent jet pumps raise and preserve energy levels. Crypto-steady and special jetmore » pumps increase pumping efficiency. The distribution conduit accepts fluidized solids, liquids, gases and vapors in multiphase flow. Temperature modulation and flow augmentation takes place by water injection. Macro solids such as dried sewage waste are removed by cyclone separation. Micro particles remain entrained and pass out with waste condensate just beyond each point of final heat utilization to recharge the water table. The non-condensible gases separated at this point are treated for pollution control. Further, jet pump reactions are controlled to yield fuel gas as necessary to power jet pumps or other use. In all these effects introduced sequentially, the available energy necessary to provide the flow energy, for the continuously distributed heating medium, is first extracted from fuel and fuel-like additions to the stream. As all energy, any way, finally converts to heat, which in this case is retained or recaptured in the flow, the captured heat is practically 90% available at the point of low temperature utilization. The jet pump for coal gasification is also disclosed as are examples of coal gasification and hydrogen production.« less
NASA Astrophysics Data System (ADS)
Li, Qi
As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be pivotal in this supply chain design and optimization problem. Also, farmers' participation has a significant effect on the decision making process.
García, Carlos A; Peña, Álvaro; Betancourt, Ramiro; Cardona, Carlos A
2018-06-15
Forest residues are an important source of biomass. Among these, Coffee Cut-Stems (CCS) are an abundant wood waste in Colombia obtained from coffee crops renovation. However, only low quantities of these residues are used directly in combustion processes for heating and cooking in coffee farms where their energy efficiency is very low. In the present work, an energy and environmental assessment of two bioenergy production processes (ethanol fermentation and gasification) using CCS as raw material was performed. Biomass gasification seems to be the most promising thermochemical method for bioenergy production whereas, ethanol fermentation is a widely studied biochemical method to produce biofuels. Experimental runs of the CCS gasification were carried out and the synthesis gas composition was monitored. Prior to the fermentation process, a treatment of the CCS is required from which sugar content was determined and then, in the fermentation process, the ethanol yield was calculated. Both processes were simulated in order to obtain the mass and energy balance that are used to assess the energy efficiency and the potential environmental impact (PEI). Moderate high energy efficiency and low environmental impacts were obtained from the CCS gasification. In contrast, high environmental impacts in different categories and low energy efficiencies were calculated from the ethanolic fermentation. Biomass gasification seems to be the most promising technology for the use of Coffee Cut-Stems with high energy yields and low environmental issues. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing Gu; Shiyong Wu; Youqing Wu
2008-11-15
In the study, two fly ash samples from Texaco gasifiers were compared to coal char and the physical and chemical properties and reactivity of samples were investigated by scanning electron microscopy (SEM), SEM-energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), N{sub 2} and CO{sub 2} adsorption method, and isothermal thermogravimetric analysis. The main results were obtained. The carbon content of gasified fly ashes exhibited 31-37%, which was less than the carbon content of 58-59% in the feed coal. The fly ashes exhibited higher Brunauer-Emmett-Teller (BET) surface area, richer meso- and micropores, more disordered carbon crystalline structure, and better CO{sub 2} gasification reactivitymore » than coal char. Ashes in fly ashes occurred to agglomerate into larger spherical grains, while those in coal char do not agglomerate. The minerals in fly ashes, especial alkali and alkaline-earth metals, had a catalytic effect on gasification reactivity of fly ash carbon. In the low-temperature range, the gasification process of fly ashes is mainly in chemical control, while in the high-temperature range, it is mainly in gas diffusion control, which was similar to coal char. In addition, the carbon in fly ashes was partially gasified and activated by water vapor and exhibited higher BET surface area and better gasification activity. Consequently, the fact that these carbons in fly ashes from entrained flow gasifiers are reclaimed and reused will be considered to be feasible. 15 refs., 7 figs., 5 tabs.« less
Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.
Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir
2017-03-01
Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg -1 to 16.60 MJ kg -1 depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm -3 at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kW e . The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, J.; Talbott, J.
1984-01-01
Task 1. Methods development for the speciation of the polysulfides. Work on this task has been completed in December 1983 and reported accordingly in DOE/PC/40783-T13. Task 2. Methods development for the speciation of dithionite and polythionates. Work on Task 2 has been completed in June 1984 and has been reported accordingly in DOE/PC/40783-T15. Task 3. Total accounting of the sulfur balance in representative samples of synfuel process streams. A systematic and critical comparison of results, obtained in the analysis of sulfur moieties in representative samples of coal conversion process streams, revealed the following general trends. (a) In specimens of highmore » pH (9-10) and low redox potential (-0.3 to -0.4 volt versus NHE) sulfidic and polysulfidic sulfur moieties predominate. (b) In process streams of lower pH and more positive redox potential, higher oxidation states of sulfur (notably sulfate) account for most of the total sulfur present. (c) Oxidative wastewater treatment procedures by the PETC stripping process convert lower oxidation states of sulfur into thiosulfate and sulfate. In this context, remarkable similarities were observed between liquefaction and gasification process streams. However, the thiocyanate present in samples from the Grand Forks gasifier were impervious to the PETC stripping process. (d) Total sulfur contaminant levels in coal conversion process stream wastewater samples are primarily determined by the abundance of sulfur in the coal used as starting material than by the nature of the conversion process (liquefaction or gasification). 13 references.« less
Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew Wold; Robert Divers
2011-06-23
At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and overmore » 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The project involves the construction of an 80,000 gallon per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases producedmore » by modern-day coal gasifiers. Originally tested at a small (10 TPD), DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thibodeaux, J.; Hensley, J.
2013-01-01
The biomass thermochemical conversion platform at the National Renewable Energy Laboratory (NREL) develops and demonstrates processes for the conversion of biomass to fuels and chemicals including gasification, pyrolysis, syngas clean-up, and catalytic synthesis of alcohol and hydrocarbon fuels. In this talk, I will discuss the challenges of being a technician in this type of research environment, including handling and working with catalytic materials and hazardous chemicals, building systems without being given all of the necessary specifications, pushing the limits of the systems through ever-changing experiments, and achieving two-way communication with engineers and supervisors. I will do this by way ofmore » two examples from recent research. First, I will describe a unique operate-to-failure experiment in the gasification of chicken litter that resulted in the formation of a solid plug in the gasifier, requiring several technicians to chisel the material out. Second, I will compare and contrast bench scale and pilot scale catalyst research, including instances where both are conducted simultaneously from common upstream equipment. By way of example, I hope to illustrate the importance of researchers 1) understanding the technicians' perspective on tasks, 2) openly communicating among all team members, and 3) knowing when to voice opinions. I believe the examples in this talk will highlight the crucial role of a technical staff: skills attained by years of experience to build and operate research and production systems. The talk will also showcase the responsibilities of NREL technicians and highlight some interesting behind-the-scenes work that makes data generation from NREL's thermochemical process development unit possible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, M.W.; Forbes, I.A.; Turnage, J.C.
The potential of new and future energy technologies is discussed, with information provided on availability, technical and economic feasibility, and limitations due to the form of the energy. Energy sources not presently in use (i.e., shale oil, garbage, geothermal, wind, tidal, breeder reactors, ocean thermal gradients, solar energy, and fusion) are expected to supply only 10 to 15% of the Nation's energy requirements in the year 2000. The following chapters are included: Energy Use and Supply; Extending Chemical Fuel Resources, which covers oil shale and tar sands, coal gasification and liquefaction, garbage, and biomass energy; Harnessing the Forces of Nature,more » which describes geothermal, tidal, hydro, wind, and solar energy; New Nuclear Technology (e.g., converter reactors, breeder reactors, fusion by magnetic confinement, and laser fusion); and Improving Energy Production Efficiency, with discussions on energy storage, MHD (magnetohydrodynamics), and combined cycles. (64 references) (BYB)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bland, Alan E.; Sellakumar, Kumar Muthusami; Newcomer, Jesse D.
Efficient coal pre-processing systems (69) integrated with gasification, oxy-combustion, and power plant systems include a drying chamber (28), a volatile metal removal chamber (30), recirculated gases, including recycled carbon dioxide (21), nitrogen (6), and gaseous exhaust (60) for increasing the efficiencies and lowering emissions in various coal processing systems.
The report describes the second phase of studies on the CAFB process for desulfurizing gasification of heavy fuel oil in a bed of hot lime. The first continuous pilot plant test with U.S. limestone BCR 1691 experienced local stone sintering and severe production of sticky dust du...
USDA-ARS?s Scientific Manuscript database
The utility of biochars produced by biomass gasification for remediation of acidic production soils and plant growth in general is not as well known compared to effects from biochars resulting from pyrolysis. Our recent characterization of biochars produced from gasification of Kentucky bluegrass (P...
USDA-ARS?s Scientific Manuscript database
Biochar is a renewable, useful material that can be utilized in many different applications. Biochar is commonly produced via pyrolysis methods using a retort-style oven with inert gas. Gasification is another method that can utilize pyrolysis to produce biochar, but with the advantage of not requir...
Agglomerating combustor-gasifier method and apparatus for coal gasification
Chen, Joseph L. P.; Archer, David H.
1976-09-21
A method and apparatus for gasifying coal wherein the gasification takes place in a spout fluid bed at a pressure of about 10 to 30 atmospheres and a temperature of about 1800.degree. to 2200.degree.F and wherein the configuration of the apparatus and the manner of introduction of gases for combustion and fluidization is such that agglomerated ash can be withdrawn from the bottom of the apparatus and gas containing very low dust loading is produced. The gasification reaction is self-sustaining through the burning of a stoichiometric amount of coal with air in the lower part of the apparatus to form the spout within the fluid bed. The method and apparatus are particularly suitable for gasifying coarse coal particles.
Fluidized bed gasification of extracted coal
Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.
1984-07-06
Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.
Methods and apparatus for catalytic hydrothermal gasification of biomass
Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.
2012-08-14
Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... How is the final performance report to be sent to the Defense Technical Information Center? (a... 32 National Defense 1 2014-07-01 2014-07-01 false How is the final performance report to be sent to the Defense Technical Information Center? 37.895 Section 37.895 National Defense Department of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... How is the final performance report to be sent to the Defense Technical Information Center? (a... 32 National Defense 1 2011-07-01 2011-07-01 false How is the final performance report to be sent to the Defense Technical Information Center? 37.895 Section 37.895 National Defense Department of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... How is the final performance report to be sent to the Defense Technical Information Center? (a... 32 National Defense 1 2013-07-01 2013-07-01 false How is the final performance report to be sent to the Defense Technical Information Center? 37.895 Section 37.895 National Defense Department of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 1 2012-07-01 2012-07-01 false How is the final performance report to be sent to the Defense Technical Information Center? 37.895 Section 37.895 National Defense Department of... How is the final performance report to be sent to the Defense Technical Information Center? (a...
Hansen, Veronika; Müller-Stöver, Dorette; Imparato, Valentina; Krogh, Paul Henning; Jensen, Lars Stoumann; Dolmer, Anders; Hauggaard-Nielsen, Henrik
2017-01-15
Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study investigated the impact of traditional straw incorporation vs. straw removal for thermal gasification bioenergy production and the application of straw gasification biochar (GB) on soil quality and crop production. Two rates of GB were applied over three successive years in which the field was cropped with winter wheat (Triticum aestivum L.), winter oilseed rape (Brassica napus L.) and winter wheat, respectively, to assess the potential effects on the soil carbon pool, soil microorganisms, earthworms, soil chemical properties and crop yields. The application of GB did not increase the soil organic carbon content significantly and had no effect on crop yields. The application of straw and GB had a positive effect on the populations of bacteria and protists, but no effect on earthworms. The high rate of GB increased soil exchangeable potassium content and soil pH indicating its potassium bioavailability and liming properties. These results suggest, that recycling GB into agricultural soils has the potential to be developed into a system combining bioenergy generation from agricultural residues and crop production, while maintaining soil quality. However, future studies should be undertaken to assess its long-term effects and to identify the optimum balance between straw removal and biochar application rate. Copyright © 2016. Published by Elsevier Ltd.
Method for Hot Real-Time Sampling of Gasification Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomeroy, Marc D
The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a highly instrumented half-ton/day pilot scale plant capable of demonstrating industrially relevant thermochemical technologies from lignocellulosic biomass conversion, including gasification. Gasification creates primarily Syngas (a mixture of Hydrogen and Carbon Monoxide) that can be utilized with synthesis catalysts to form transportation fuels and other valuable chemicals. Biomass derived gasification products are a very complex mixture of chemical components that typically contain Sulfur and Nitrogen species that can act as catalysis poisons for tar reforming and synthesis catalysts. Real-time hot online sampling techniques, such as Molecular Beammore » Mass Spectrometry (MBMS), and Gas Chromatographs with Sulfur and Nitrogen specific detectors can provide real-time analysis providing operational indicators for performance. Sampling typically requires coated sampling lines to minimize trace sulfur interactions with steel surfaces. Other materials used inline have also shown conversion of sulfur species into new components and must be minimized. Sample line Residence time within the sampling lines must also be kept to a minimum to reduce further reaction chemistries. Solids from ash and char contribute to plugging and must be filtered at temperature. Experience at NREL has shown several key factors to consider when designing and installing an analytical sampling system for biomass gasification products. They include minimizing sampling distance, effective filtering as close to source as possible, proper line sizing, proper line materials or coatings, even heating of all components, minimizing pressure drops, and additional filtering or traps after pressure drops.« less
NASA Astrophysics Data System (ADS)
Boravelli, Sai Chandra Teja
This thesis mainly focuses on design and process development of a downdraft biomass gasification processes. The objective is to develop a gasifier and process of gasification for a continuous steady state process. A lab scale downdraft gasifier was designed to develop the process and obtain optimum operating procedure. Sustainable and dependable sources such as biomass are potential sources of renewable energy and have a reasonable motivation to be used in developing a small scale energy production plant for countries such as Canada where wood stocks are more reliable sources than fossil fuels. This thesis addresses the process of thermal conversion of biomass gasification process in a downdraft reactor. Downdraft biomass gasifiers are relatively cheap and easy to operate because of their design. We constructed a simple biomass gasifier to study the steady state process for different sizes of the reactor. The experimental part of this investigation look at how operating conditions such as feed rate, air flow, the length of the bed, the vibration of the reactor, height and density of syngas flame in combustion flare changes for different sizes of the reactor. These experimental results also compare the trends of tar, char and syngas production for wood pellets in a steady state process. This study also includes biomass gasification process for different wood feedstocks. It compares how shape, size and moisture content of different feedstocks makes a difference in operating conditions for the gasification process. For this, Six Sigma DMAIC techniques were used to analyze and understand how each feedstock makes a significant impact on the process.
ERIC Educational Resources Information Center
Shreve, Bradley Glenn
2006-01-01
In the spring of 1977, members of the National Indian Youth Council (NIYC), along with the Coalition for Navajo Liberation, barraged the Secretary of the Interior and the chairman of the Navajo Nation with petitions calling for a halt to the proposed construction of several coal gasification plants on the Navajo Reservation in northwestern New…
Modeling of indirect carbon fuel cell systems with steam and dry gasification
NASA Astrophysics Data System (ADS)
Ong, Katherine M.; Ghoniem, Ahmed F.
2016-05-01
An indirect carbon fuel cell (ICFC) system that couples coal gasification to a solid oxide fuel cell (SOFC) is a promising candidate for high efficiency stationary power. This study couples an equilibrium gasifier model to a detailed 1D MEA model to study the theoretical performance of an ICFC system run on steam or carbon dioxide. Results show that the fuel cell in the ICFC system is capable of power densities greater than 1.0 W cm-2 with H2O recycle, and power densities ranging from 0.2 to 0.4 W cm-2 with CO2 recycle. This result indicates that the ICFC system performs better with steam than with CO2 gasification as a result of the faster electro-oxidation kinetics of H2 relative to CO. The ICFC system is then shown to reach higher current densities and efficiencies than a thermally decoupled gasifier + fuel cell (G + FC) system because it does not include combustion losses associated with autothermal gasification. 55-60% efficiency is predicted for the ICFC system coupled to a bottoming cycle, making this technology competitive with other state-of-the-art stationary power candidates.
Catalytic Tar Reduction for Assistance in Thermal Conversion of Space Waste for Energy Production
NASA Technical Reports Server (NTRS)
Caraccio, Anne Joan; Devor, Robert William; Hintze, Paul E.; Muscatello, Anthony C.; Nur, Mononita
2014-01-01
The Trash to Gas (TtG) project investigates technologies for converting waste generated during spaceflight into various resources. One of these technologies was gasification, which employed a downdraft reactor designed and manufactured at NASA's Kennedy Space Center (KSC) for the conversion of simulated space trash to carbon dioxide. The carbon dioxide would then be converted to methane for propulsion and water for life support systems. A minor byproduct of gasification includes large hydrocarbons, also known as tars. Tars are unwanted byproducts that add contamination to the product stream, clog the reactor and cause complications in analysis instrumentation. The objective of this research was to perform reduction studies of a mock tar using select catalysts and choose the most effective for primary treatment within the KSC downdraft gasification reactor. Because the KSC reactor is operated at temperatures below typical gasification reactors, this study evaluates catalyst performance below recommended catalytic operating temperatures. The tar reduction experimentation was observed by passing a model tar vapor stream over the catalysts at similar conditions to that of the KSC reactor. Reduction in tar was determined using gas chromatography. Tar reduction efficiency and catalyst performances were evaluated at different temperatures.
Gasification of refinery sludge in an updraft reactor for syngas production
NASA Astrophysics Data System (ADS)
Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama
2014-10-01
The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H2, CH4 compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO2+ C = 450 2CO ), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm-3 of, and 2.5 Nm3 kg-1 respectively.
Investigation of sewage sludge treatment using air plasma assisted gasification.
Striūgas, Nerijus; Valinčius, Vitas; Pedišius, Nerijus; Poškas, Robertas; Zakarauskas, Kęstutis
2017-06-01
This study presents an experimental investigation of downdraft gasification process coupled with a secondary thermal plasma reactor in order to perform experimental investigations of sewage sludge gasification, and compare process parameters running the system with and without the secondary thermal plasma reactor. The experimental investigation were performed with non-pelletized mixture of dried sewage sludge and wood pellets. To estimate the process performance, the composition of the producer gas, tars, particle matter, producer gas and char yield were measured at the exit of the gasification and plasma reactor. The research revealed the distribution of selected metals and chlorine in the process products and examined a possible formation of hexachlorobenzene. It determined that the plasma assisted processing of gaseous products changes the composition of the tars and the producer gas, mostly by destruction of hydrocarbon species, such as methane, acetylene, ethane or propane. Plasma processing of the producer gas reduces their calorific value but increases the gas yield and the total produced energy amount. The presented technology demonstrated capability both for applying to reduce the accumulation of the sewage sludge and production of substitute gas for drying of sewage sludge and electrical power. Copyright © 2017 Elsevier Ltd. All rights reserved.
Syngas production by chemical-looping gasification of wheat straw with Fe-based oxygen carrier.
Hu, Jianjun; Li, Chong; Guo, Qianhui; Dang, Jiatao; Zhang, Quanguo; Lee, Duu-Jong; Yang, Yunlong
2018-05-03
The iron-based oxygen carriers (OC's), Fe 2 O 3 /support (Al 2 O 3 , TiO 2 , SiO 2 and ZrO 2 ), for chemical looping gasification of wheat straw were prepared using impregnation method. The surface morphology, crystal structure, carbon deposition potential, lattice oxygen activity and selectivity of the yielded OCs were examined. The Fe 2 O 3 /Al 2 O 3 OCs at 60% loading has the highest H 2 yield, H 2 /CO ratio, gas yield, and carbon conversion amongst the tested OC's. Parametric studies revealed that an optimal loading Fe 2 O 3 of 60%, steam-to-biomass ratio of 0.8 and oxygen carrier-to-biomass ratio of 1.0 led to the maximum H 2 /CO ratio, gas yield, H 2 + CO ratio, and carbon conversion from the gasified wheat straw. High temperature, up to 950 °C, enhanced the gasification performance. A kinetic network interpreted the noted experimental results. The lattice oxygen provided by the prepared Fe 2 O 3 /Al 2 O 3 oxygen carriers promotes chemical looping gasification efficiencies from wheat straw. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gasification of high ash, high ash fusion temperature bituminous coals
Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang
2015-11-13
This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.
Yan, Fang; Xu, Kaili; Li, Deshun; Cui, Zhikai
2017-01-01
Biomass gasification stations are facing many hazard factors, therefore, it is necessary to make hazard assessment for them. In this study, a novel hazard assessment method called extended set pair analysis (ESPA) is proposed based on set pair analysis (SPA). However, the calculation of the connection degree (CD) requires the classification of hazard grades and their corresponding thresholds using SPA for the hazard assessment. In regard to the hazard assessment using ESPA, a novel calculation algorithm of the CD is worked out when hazard grades and their corresponding thresholds are unknown. Then the CD can be converted into Euclidean distance (ED) by a simple and concise calculation, and the hazard of each sample will be ranked based on the value of ED. In this paper, six biomass gasification stations are introduced to make hazard assessment using ESPA and general set pair analysis (GSPA), respectively. By the comparison of hazard assessment results obtained from ESPA and GSPA, the availability and validity of ESPA can be proved in the hazard assessment for biomass gasification stations. Meanwhile, the reasonability of ESPA is also justified by the sensitivity analysis of hazard assessment results obtained by ESPA and GSPA. PMID:28938011
Yokohama, Naoki; Otaka, Hiroaki; Minato, Ichiro; Nakata, Munetaka
2008-05-01
The gasification behavior of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in fly ash by thermal treatment has been investigated to estimate gas-particle partition in flue gas. The results obtained in thermal experiments under various conditions showed that gasification of PCDD/Fs depends on air flow rate and treatment weight of fly ash as well as treatment temperature. On the other hand, the results obtained in the thermal experiments using dioxin-free fly ash revealed that during thermal treatment, the de novo synthesis, gasification, and decomposition of PCDFs proceeded at different rates. This difference in the reaction rates indicates that thermal treatment time is also a factor in determining the gas-particle partition of PCDD/Fs in fly ash. Therefore, reasonable thermal treatment conditions were established and applied to three ash samples. For all samples, PCDD/Fs started to gasify at 350 degrees C treatment, whereas 53-98% of PCDD/F homologs gasified at 400 degrees C treatment, implying that gaseous PCDD/Fs are dominant in flue gas at temperatures in the range 350-400 degrees C regardless of particle concentration.
Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold
2016-12-01
In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.
Combustion of two-component miscible droplets in reduced gravity
NASA Technical Reports Server (NTRS)
Shaw, Benjamin D.; Aharon, Israel; Gage, James W.; Jenkins, Andrew J.; Kahoe, Thomas J.
1995-01-01
This research focuses on the combustion of binary miscible droplets initially in the mm size range. Experiments are performed using the NASA Lewis 2.2 sec drop tower in Cleveland, Ohio, where mixtures of alkanes and/or alcohols are studied. The fuel components are selected to have significantly different volatilities. Initial oxygen mole fractions from about 0.15-0.5 and initial pressures from 0.2-2 atm are employed. Different inerts are used (He, CO2, Ar, N2) to change burning rates and sooting behaviors. Objectives are to observe the following: (1) Transient droplet diameters (including three-staged combustion behaviors and microexplosion; (2) Transient flow behaviors (sudden flame contraction, luminosity, extinction); and (3) Behaviors of observable soot particles. theoretical and computational research in support of this program has also been undertaken. This research includes analytical studies to determine the effects of small but nonzero gravitational levels on droplet gasification, analytical studies of hydrodynamic stability of spherically-symmetrical droplet gasification (to address the question as to whether spherically-symmetrical droplet gasification may be destabilized from capillary, i.e., Marangoni effects), and computational modeling of effects of capillary stresses on droplet gasification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Gary; Albritton, John; Denton, David
In September 2010, RTI and the DOE/NETL signed a cooperative agreement (DE-FE000489) to design, build, and operate a pre-commercial syngas cleaning system that would capture up to 90% of the CO 2 in the syngas slipstream, and demonstrate the ability to reduce syngas contaminants to meet DOE’s specifications for chemical production application. This pre-commercial syngas cleaning system is operated at Tampa Electric Company’s (TEC) 250-MWe integrated gasification combined cycle (IGCC) plant at Polk Power Station (PPS), located near Tampa, Florida. The syngas cleaning system consists of the following units: Warm Gas Desulfurization Process (WDP) - this unit processes a syngasmore » flow equivalent of 50 MWe of power (50 MWe equivalent corresponds to about 2.0 MM scfh of syngas on dry basis) to produce a desulfurized syngas with a total sulfur (H 2S+COS) concentration ~ 10 ppmv. Water Gas Shift (WGS) Reactor - this unit converts sufficient CO into CO 2 to enable 90% capture of the CO 2 in the syngas slipstream. This reactor uses conventional commercial shift catalyst technologies. Low Temperature Gas Cooling (LTGC) - this unit cools the syngas for the low temperature activated MDEA process and separates any condensed water. Activated MDEA Process (aMDEA) - this unit employs a non-selective separation for the CO 2 and H 2S present in the raw syngas stream. Because of the selective sulfur removal by the upstream WDP unit, the CO 2 capture target of 90% CO 2 can be achieved with the added benefit that total sulfur concentration in the CO 2 product is < 100 ppmv. An additional advantage of the activated MDEA process is that the non-selective sulfur removal from the treated syngas reduces sulfur in the treated gas to very low sub-ppmv concentrations, which are required for chemical production applications. Testing to date of this pre-commercial syngas cleaning system has shown that the technology has great potential to provide clean syngas from coal and petcoke-based gasification at increased efficiency and at significantly lower capital and operating costs than conventional syngas cleanup technologies. However, before the technology can be deemed ready for scale-up to a full commercial-scale demonstration, additional R&D testing is needed at the site to address the following critical technical risks: WDP sorbent stability and performance; Impact of WDP on downstream cleanup and conversion steps; Metallurgy and refractory; Syngas cleanup performance and controllability; Carbon capture performance and additional syngas cleanup The proposed plan to acquire this additional R&D data involves: Operation of the units to achieve an additional 3,000 hours of operation of the system within the performance period, with a target of achieving 1,000 hours of those hours via continuous operation of the entire integrated pre-commercial demonstration system; Rapid turnaround of repairs and/or modifications required as necessary to return any specific unit to operating status with documentation and lessons learned to support technology maturation, and; Proactive performance of maintenance activities during any unplanned outages and if possible while operating.« less
Apparatus and method for solar coal gasification
Gregg, David W.
1980-01-01
Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.
Apparatus for solar coal gasification
Gregg, D.W.
Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.
NASA Technical Reports Server (NTRS)
Jefferys, S.; Johnson, W.; Lewis, R.; Rich, R.
1981-01-01
This specification establishes the requirements, concepts, and preliminary design for a set of software known as the IGDS/TRAP Interface Program (ITIP). This software provides the capability to develop at an Interactive Graphics Design System (IGDS) design station process flow diagrams for use by the NASA Coal Gasification Task Team. In addition, ITIP will use the Data Management and Retrieval System (DMRS) to maintain a data base from which a properly formatted input file to the Time-Line and Resources Analysis Program (TRAP) can be extracted. This set of software will reside on the PDP-11/70 and will become the primary interface between the Coal Gasification Task Team and IGDS, DMRS, and TRAP. The user manual for the computer program is presented.
Plasma gasification of municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, G.W.; Tsangaris, A.V.
1995-12-31
Resorption Canada Limited (RCL) has conducted extensive operational testing with plasma technology in their plasma facility near Ottawa, Ontario, Canada to develop an environmentally friendly waste disposal process. Plasma technology, when utilized in a reactor vessel with the exclusion of oxygen, provides for the complete gasification of all combustibles in source materials with non-combustibles being converted to a non-hazardous slag. The energy and environmental characteristics of the plasma gasification of carbonaceous waste materials were studied over a period of eight years during which RCL completed extensive experimentation with MSW. A plasma processing system capable of processing 200--400 lbs/hr of MSWmore » was designed and built. The experimentation on MSW concentrated on establishing the optimum operating parameters and determining the energy and environmental characteristics at these operating parameters.« less
76 FR 18624 - Research, Technical Assistance and Training Programs: Notice of Final Circular
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-04
... to FTA Circular 6100.1D, Research and Technical Assistance Training Program: Application Instructions... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Research, Technical Assistance and Training Programs: Notice of Final Circular AGENCY: Federal Transit Administration (FTA), DOT. ACTION...
Feasibility of Biomass Biodrying for Gasification Process
NASA Astrophysics Data System (ADS)
Hamidian, Arash
An important challenge of biomass gasification is the limitation of feedstock quality especially the moisture content, which plays a significant role on the performance of gasification process. Gasification requires low moisture levels (20% and less) and several reports have emphasized on the moisture as a typical problem while gasifying biomass. Moisture affects overall reaction rates in the gasifiers as a result of temperature drop and ultimately increases tar content, decreases gas yield, changes the composition of produced gas and affects the efficiency. Therefore, it is mandatory to pre-treat the biomass before gasification and reduce the moisture content to the suitable and economic level. The well-known solutions are either natural drying (not practical for commercial plants) or conventional drying technologies (have high operating costs). Biodrying is an alternative process, which uses both convective air and heat of biological reactions as a source of energy, to reduce the moisture. In the biodrying reactor heat is generated from exothermic decomposition of organic fraction of biomass and that is why the process is called "self-heating process". Employing such technology for drying biomass at pre-treatment units of gasification process returns several economic and environmental advantages to mills. In Europe, municipal waste treatment (MSW) plants use the biodrying at commercial scale to degrade a part of the biodegradable fraction of waste to generate heat and reduce the moisture content for high quality SRF (Solid Recovered Fuel) production. In Italy, wine industry is seeking to develop biodrying for energy recovery of grape wastes after fermentation and distillation, which returns economic benefits to the industry. In Canada, the development of biodrying technology for pulp and paper industry was started at Ecole polytechnique de Montreal as an option for sludge management solution. Therefore, batch biodrying reactor was successfully developed in 2004 and the pilot-scale continuous system was designed in 2010 to demonstrate the feasibility of mixed sludge biodrying for efficient combustion in biomass boilers. Mixed sludge was biodried in the reactor to 45% moisture level, which was the suitable level for boiler application. Techno-economic analysis also revealed the potential economic benefits for pulp and paper mills. However, considerable uncertainties existed in terms of feasibility of the biodrying technology for other types of biomass that are usually used in the gasification process, mainly because of low nutrient level of typical lignocellulosic biomass used as feedstock. Furthermore, the technology had not been shown to be economically viable in conjunction with gasification process at pulp and paper mills. In this work the feasibility of low-nutrient biomass biodrying was tested by experiments and techno-economic model was developed to identify the performance of biodrying process for commercial-scale application. In the economic analysis, a comprehensive approach for biodrying cost assessment was introduced that is based on the well-known approach widely used in the process industry and few sources of benefits were identified.
Minnesota Deaf-Blind Technical Assistance Project. Final Report.
ERIC Educational Resources Information Center
Kloos, Eric
This final report describes activities and accomplishments of the 3-year federally supported Minnesota Deaf-Blind Technical Assistance Project. The project provided training and technical assistance, information sharing, and support services to families of children with deaf-blindness. Activities and accomplishments included: collaboration with…
75 FR 56857 - Pilot, Flight Instructor, and Pilot School Certification
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-17
... of part 141. Discussion of Technical Amendment Section 141.5(d) establishes the quality of training... Certification AGENCY: Federal Aviation Administration, DOT. ACTION: Final rule; technical amendment. SUMMARY: The Federal Aviation Administration (FAA) is making minor technical changes to a final rule published...
Refractory Degradation by Slag Attack in Coal Gasification
2009-02-01
REFRACTORY DEGRADATION BY SLAG ATTACK IN COAL GASIFICATION Jinichiro Nakano 1,2 , Sridhar Seetharaman 1,2 , James Bennett 3 , Kyei-Sing...and two synthetic slags (coal and petcoke). Pulverized slag samples were placed at specific microstructure locations on refractory substrates and...heated to 1500 ºC at log(Po2) = -9, using a high-speed heating chamber. Cross-sections of the slag /refractory interface indicated unique slag
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-01-01
Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)
Small-Scale Waste-to-Energy Technology for Contingency Bases
2012-05-24
Expedient, No Waste Sorting Technology Readiness Level High Fuel Demand Water Required Steam Infrastructure Required Air Emissions Gasification ...Full gasification system • Costs $26K • GM Industrial Engine (GM 4 Cylinder, 3.00 L) • MeccAlte Generator Head • Imbert type downdraft reactor...Solid waste volume reduction − Response to waste streams biomass , refuse-derived fuel, shredded waste − Operation and maintenance requirements
Microwave-assisted pyrolysis of Mississippi coal: A comparative study with conventional pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelsayed, Victor; Shekhawat, Dushyant; Smith, Mark W.
Pyrolysis conditions greatly affect the structure-reactivity relationship of char during coal gasification. Here, this work investigated the effect of temperature and microwave heating on the structural properties of the chars generated during pyrolysis, as well as gaseous and tar products. Results showed that microwave pyrolysis of Mississippi coal produced more gaseous products and less tars compared to conventional pyrolysis. Higher CO/CO 2 ratio (>1) was observed under microwave pyrolysis compared to conventional pyrolysis (CO/CO2 < 1), which may be explained by a greater extent of gasification between solid carbon and the CO 2 formed during microwave pyrolysis. Additionally, in microwavemore » pyrolysis, the oil tars generated exhibited lower concentrations of polar oxygenates, while the wax tars showed higher concentrations of non-polar alkanes, as observed from the intensity of CH vibrations in FTIR. The product compositions and FTIR analysis of the tars (oils and waxes) suggest that the microwave interacted preferentially with these polar species, which have relatively higher dielectric properties compared to alkanes. The structure–reactivity relationship of the chars produced was also investigated using a variety of characterization tools such as XRD, BET, SEM, EDS, and FTIR. Finally, the char reactivity towards combustion suggested that microwave-produced chars have a higher thermal stability, likely due to lower O/C ratios, and could be utilized in the metallurgical industry.« less
Microwave-assisted pyrolysis of Mississippi coal: A comparative study with conventional pyrolysis
Abdelsayed, Victor; Shekhawat, Dushyant; Smith, Mark W.; ...
2018-01-13
Pyrolysis conditions greatly affect the structure-reactivity relationship of char during coal gasification. Here, this work investigated the effect of temperature and microwave heating on the structural properties of the chars generated during pyrolysis, as well as gaseous and tar products. Results showed that microwave pyrolysis of Mississippi coal produced more gaseous products and less tars compared to conventional pyrolysis. Higher CO/CO 2 ratio (>1) was observed under microwave pyrolysis compared to conventional pyrolysis (CO/CO2 < 1), which may be explained by a greater extent of gasification between solid carbon and the CO 2 formed during microwave pyrolysis. Additionally, in microwavemore » pyrolysis, the oil tars generated exhibited lower concentrations of polar oxygenates, while the wax tars showed higher concentrations of non-polar alkanes, as observed from the intensity of CH vibrations in FTIR. The product compositions and FTIR analysis of the tars (oils and waxes) suggest that the microwave interacted preferentially with these polar species, which have relatively higher dielectric properties compared to alkanes. The structure–reactivity relationship of the chars produced was also investigated using a variety of characterization tools such as XRD, BET, SEM, EDS, and FTIR. Finally, the char reactivity towards combustion suggested that microwave-produced chars have a higher thermal stability, likely due to lower O/C ratios, and could be utilized in the metallurgical industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansone, M.J.
1979-02-01
On the basis of simple, first approximation calculations, it has been shown that catalytic gasification and hydrogasification are inherently superior to conventional gasification with respect to carbon utilization and thermal efficiency. However, most processes which are directed toward the production of substitute natural gas (SNG) by direct combination of coal with steam at low temperatures (catalytic processes) or with hydrogen (hydrogasification) will require a step for separation of product SNG from a recycle stream. The success or falure of the process could well depend upon the economics of this separation scheme. The energetics for the separation of mixtures of idealmore » gases has been considered in some detail. Minimum energies for complete separation of representative effluent mixtures have been calculated as well as energies for separation into product and recycle streams. The gas mixtures include binary systems of H/sub 2/ and CH/sub 4/ and ternary mixtures of H/sub 2/, CH/sub 4/, and CO. A brief summary of a number of different real separation schemes has also been included. We have arbitrarily divided these into five categories: liquefaction, absorption, adsorption, chemical, and diffusional methods. These separation methods will be screened and the more promising methods examined in more detail in later reports. Finally, a brief mention of alternative coal conversion processes concludes this report.« less
Effect of pulsation on black liquor gasification. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinn, B.T.; Jagoda, J.; Jeong, H.
1998-12-01
Pyrolysis is an endothermic process. The heat of reaction is provided either by partial combustion of the waste or by heat transfer from an external combustion process. In one proposed system black liquor is pyrolized in a fluidized bed to which heat is added through a series of pulse combustor tail pipes submerged in the bed material. This system appears promising because of the relatively high heat transfer in pulse combustors and in fluidized beds. Other advantages of pulse combustors are discussed elsewhere. The process is, however, only economically viable if a part of the pyrolysis products can be usedmore » to fire the pulse combustors. The overall goals of this study were to determine: (1) which is the limiting heat transfer rate in the process of transferring heat from the hot combustion products to the pipe, through the pipe, from the tail pipe to the bed and through the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the heat transfer benefits of the pulse combustor can be utilized while maintaining the temperature in the bed within the narrow temperature range required by the process without generating hot spots in the bed; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.« less
NASA Astrophysics Data System (ADS)
Imhausen, K. H.
1982-08-01
The IG hydrogenation process used commercially in Germany up to 1945, was improved. Pilot plants in Germany are presently under construction or in the start-up phase. A technical concept for the conversion of Australian bituminous coals and/or Australian brown coals into automotive fuels, using coal hydrogenation, gasification and Fisher-Tropsch synthesis was developed. Development of technology, consumption figures and of expenditure/investment for a complete plant, producing about 3 million tons of automotive fuels per year, was also attempted. The results show that standard automotive fuels are produced from bituminous coal, using a combination of high pressure coal hydrogenation and of Fisher-Tropsch synthesis, and from brown coal, using high pressure coal hydrogenation only. Under the assumption that crude oil prices increase 3% more rapidly than yearly inflation, and the raw material cost are staying at a low level, commercial plants are planned.
77 FR 29247 - Federal Motor Vehicle Safety Standards; Occupant Crash Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
...). ACTION: Final rule; technical amendments. SUMMARY: This final rule makes technical amendments to Federal... advanced air bag requirements. As written now, the general warning label requirements contain an explicit... equipment requirements for restraint systems. This document makes technical amendments to several of the...
Pyrolysis and gasification-melting of automobile shredder residue.
Roh, Seon Ah; Kim, Woo Hyun; Yun, Jin Han; Min, Tae Jin; Kwak, Yeon Ho; Seo, Yong Chil
2013-10-01
Automobile shredder residue (ASR) from end-of-life vehicles (ELVs) in Korea has commonly been disposed of in landfills. Due to the growing number of scrapped cars and the decreasing availability of landfill space, effective technology for reducing ASR is needed. However ASR is a complex mixture, and finding an appropriate treatment is not easy on account of the harmful compounds in ASR. Therefore, research continues to seek an effective treatment technology. However most studies have thus far been performed in the laboratory, whereas few commercial and pilot studies have been performed. This paper studies the pyrolysis and gasification-melting of ASR. The pyrolyis characteristics have been analyzed in a thermogravimetric analyzer (TGA), a Lindberg furnace, and a fixed-bed pyrolyzer to study the fundamental characteristics of ASR thermal conversion. As a pilot study, shaft-type gasification-melting was performed. High-temperature gasification-melting was performed in a 5000 kg/day pilot system. The gas yield and syngas (H2 and CO) concentration increase when the reaction temperature increases. Gas with a high calorific value of more than 16,800 kJ/m3 was produced in the pyrolyzer. From the gasification-melting process, syngas of CO (30-40%) and H2(10-15%) was produced, with 5% CH4 produced as well. Slag generation was 17% of the initial ASR, with 5.8% metal content and 4% fly ash. The concentration of CO decreases, whereas the H2, CO2, and CH4 concentrations increase with an increase in the equivalence ratio (ER). The emission levels of dioxin and air pollution compounds except nitrogen oxides (NO(x)) were shown to satisfy Korean regulations.
Gikas, Petros
2017-12-01
Primary Fine-Sieved Solids (PFSS) are produced from wastewater by the use of micro-sieves, in place of primary clarification. Biosolids is considered as a nuisance product, however, it contains significant amounts of energy, which can be utilized by biological (anaerobic digestion) or thermal (combustion or gasification) processes. In the present study, an semi-industrial scale UHT rotary kiln gasifier, operating with electric energy, was employed for the gasification of PFSS (at 17% moisture content), collected from a municipal wastewater treatment plant. Two gasification temperatures (950 and 1050 °C) had been tested, with minimal differences, with respect to syngas yield. The system appears to reach steady state after about 30-40 min from start up. The composition of the syngas at near steady state was measured approximately as 62.4% H 2 , 30.0% CO, 2.4% CH 4 and 3.4% CO 2 , plus 1.8% unidentified gases. The potential for electric energy production from the syngas produced is theoretically greater than the electric energy required for gasification. Theoretically, approximately 3.8 MJ/kg PFSS of net electric energy may be produced. However, based on the measured electric energy consumption, and assuming that all the syngas produced is used for electric energy production, addition of excess electric energy (about 0.43 MJ/kg PFSS) is required to break even. The latter is probably due to heat losses to the environment, during the heating process. With the improvement of energy efficiency, the process can be self sustained, form the energy point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mermelstein, Joshua; Millan, Marcos; Brandon, Nigel
The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm -2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.
On the influence of the char gasification reactions on NO formation in flameless coal combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, Hannes; Toporov, Dobrin; Foerster, Malte
2009-09-15
Flameless combustion is a well known measure to reduce NO{sub x} emissions in gas combustion but has not yet been fully adapted to pulverised coal combustion. Numerical predictions can provide detailed information on the combustion process thus playing a significant role in understanding the basic mechanisms for pollutant formation. In simulations of conventional pulverised coal combustion the gasification by CO{sub 2} or H{sub 2} O is usually omitted since its overall contribution to char oxidation is negligible compared to the oxidation with O{sub 2}. In flameless combustion, however, due to the strong recirculation of hot combustion products, primarily CO{sub 2}more » and H{sub 2} O, and the thereby reduced concentration of O{sub 2} in the reaction zone the local partial pressures of CO{sub 2} and H{sub 2} O become significantly higher than that for O{sub 2}. Therefore, the char reaction with CO{sub 2} and H{sub 2} O is being reconsidered. This paper presents a numerical study on the importance of these reactions on pollutant formation in flameless combustion. The numerical models used have been validated against experimental data. By varying the wall temperature and the burner excess air ratio, different cases have been investigated and the impact of considering gasification on the prediction of NO formation has been assessed. It was found that within the investigated ranges of these parameters the fraction of char being gasified increases up to 35%. This leads to changes in the local gas composition, primarily CO distribution, which in turn influences NO formation predictions. Considering gasification the prediction of NO emission is up to 40% lower than the predicted emissions without gasification reactions being taken into account. (author)« less