Science.gov

Sample records for gasoline reduce toxicity

  1. Acute toxicity of gasoline and some additives.

    PubMed Central

    Reese, E; Kimbrough, R D

    1993-01-01

    The acute toxicity of gasoline; its components benzene, toluene, and xylene; and the additives ethanol, methanol, and methyl tertiary butyl ether are reviewed. All of these chemicals are only moderately to mildly toxic at acute doses. Because of their volatility, these compounds are not extensively absorbed dermally unless the exposed skin is occluded. Absorption through the lungs and the gastrointestinal tract is quite efficient. After ingestion, the principal danger for a number of these chemicals, particularly gasoline, is aspiration pneumonia, which occurs mainly in children. It is currently not clear whether aspiration pneumonia would still be a problem if gasoline were diluted with ethanol or methanol. During the normal use of gasoline or mixtures of gasoline and the other solvents as a fuel, exposures would be much lower than the doses that have resulted in poisoning. No acute toxic health effects would occur during the normal course of using automotive fuels. PMID:8020435

  2. Acute toxicity of gasoline and some additives

    SciTech Connect

    Reese, E.; Kimbrough, R.D.

    1993-12-01

    The acute toxicity of gasoline; its components benzene, toluene, and xylene; and the additives ethanol, methanol, and methyl tertiary butyl ether are reviewed. All of these chemicals are only moderately to mildly toxic at acute doses. Because of their volatility, these compounds are not extensively absorbed dermally unless the exposed skin is occluded. Absorption through the lungs and the gastrointestinal tract is quite efficient. After ingestion, the principal danger for a number of these chemicals, particularly gasoline, is aspiration pneumonia, which occurs mainly in children. It is currently not clear whether aspiration pneumonia would still be a problem if gasoline were diluted with ethanol or methanol. During the normal use of gasoline or mixtures of gasoline and the other solvents as a fuel, exposures would be much lower than the doses that have resulted in poisoning. No acute toxic health effects would occur during the normal course of using automotive fuels. 128 refs., 7 tabs.

  3. 40 CFR 80.815 - What are the gasoline toxics performance requirements for refiners and importers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What are the gasoline toxics... Gasoline Toxics Gasoline Toxics Performance Requirements § 80.815 What are the gasoline toxics performance requirements for refiners and importers? (a)(1) The gasoline toxics performance requirements of this...

  4. 40 CFR 80.815 - What are the gasoline toxics performance requirements for refiners and importers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What are the gasoline toxics... Gasoline Toxics Gasoline Toxics Performance Requirements § 80.815 What are the gasoline toxics performance requirements for refiners and importers? (a)(1) The gasoline toxics performance requirements of this...

  5. 40 CFR 80.815 - What are the gasoline toxics performance requirements for refiners and importers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What are the gasoline toxics... Gasoline Toxics Gasoline Toxics Performance Requirements § 80.815 What are the gasoline toxics performance requirements for refiners and importers? (a)(1) The gasoline toxics performance requirements of this...

  6. 40 CFR 80.815 - What are the gasoline toxics performance requirements for refiners and importers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What are the gasoline toxics... Gasoline Toxics Gasoline Toxics Performance Requirements § 80.815 What are the gasoline toxics performance requirements for refiners and importers? (a)(1) The gasoline toxics performance requirements of this...

  7. 40 CFR 80.815 - What are the gasoline toxics performance requirements for refiners and importers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the gasoline toxics... Gasoline Toxics Gasoline Toxics Performance Requirements § 80.815 What are the gasoline toxics performance requirements for refiners and importers? (a)(1) The gasoline toxics performance requirements of this...

  8. Reformulated Gasoline

    EPA Pesticide Factsheets

    Reformulated gasoline (RFG) is gasoline blended to burn cleaner and reduce smog-forming and toxic pollutants in the air we breathe. The Clean Air Act requires that RFG be used to reduce harmful emissions of ozone.

  9. Developmental toxicity evaluation of unleaded gasoline vapor in the rat.

    PubMed

    Roberts, L; White, R; Bui, Q; Daughtrey, W; Koschier, F; Rodney, S; Schreiner, C; Steup, D; Breglia, R; Rhoden, R; Schroeder, R; Newton, P

    2001-01-01

    To evaluate the potential of unleaded gasoline vapor for developmental toxicity, a sample was prepared by slowly heating API 94-02 (1990 industry average gasoline) and condensing the vapor. The composition of this vapor condensate, which comprises 10.4% by volume of the starting gasoline, is representative of real-world exposure to gasoline vapor encountered at service stations and other occupational settings and consists primarily of volatile short chain (C4-C6) aliphatic hydrocarbons (i.e. paraffins) with small amounts of cycloparaffins and aromatic hydrocarbons. A preliminary study in rats and mice resulted in no developmental toxicity in either species. However, a slight reduction in maternal body weight gain in rats led to the selection of rats for this guideline study. Groups of pregnant rats (n = 24/group) were exposed to unleaded gasoline vapor at concentrations of 0, 1000, 3000, or 9000 (75% lower explosive limit) ppm equivalent to 0, 2653, 7960, or 23,900 mg/m3, for 6 h/day on gestation days 6-19. All rats were sacrificed on gestation day 20. No maternal toxicity was observed. Developmentally, there were no differences between treated and control groups in malformations, total variations, resorptions, fetal body weight, or viability. The maternal and developmental NOAEL is 9000 ppm. Under conditions of this study, unleaded gasoline vapors did not produce evidence of developmental toxicity.

  10. Toxicity and genotoxicity of wastewater from gasoline stations

    PubMed Central

    2009-01-01

    The toxicity and genotoxicity of wastewater from eight gasoline stations in Brasília, Brazil's capital city, was studied by assessing chromosomal aberrations, chromosomal malsegregation and the mitotic index in Alliumcepa root cells, and the occurrence of micronucleus and nuclear abnormalities in peripheral erythrocytes of tilapia fish (Oreochromis niloticus). The content of gasoline station effluents was also analyzed based on several physico-chemical parameters. None of the wastewater samples was genotoxic to A. cepa root cells, although cell proliferation was significantly inhibited, especially at the highest concentrations. Likewise, no micronuclei were observed in O. niloticus peripheral erythrocytes, even after exposure to high concentrations, but there was an increase in the number of nuclear abnormalities and fish mortality. These results show that although the effluent from gasoline stations is processed by an oil/water separation system before being discharged into the main sewage system, the wastewater still contains toxic compounds. PMID:21637464

  11. Gasoline sniffing and lead toxicity in Navajo adolescents.

    PubMed

    Coulehan, J L; Hirsch, W; Brillman, J; Sanandria, J; Welty, T K; Colaiaco, P; Koros, A; Lober, A

    1983-01-01

    During a 6-year period, 23 Navajo adolescents were hospitalized 47 times for presumed lead intoxication secondary to gasoline sniffing. Most patients were male (87%) and sniffed gasoline as a social activity, more frequently in spring and summer. Sixty-five percent of the patients first presented with toxic encephalopathy. Of total episodes, 31% involved asymptomatic lead overload; 31% involved tremor, ataxia, and other neurologic signs; and 38% involved encephalopathy with disorientation and hallucinations. Free erythrocyte protoporphyrin levels were not consistently high, although blood lead levels were all elevated. One death occurred. Approximately 11% of 537 Navajo adolescents said they inhaled gasoline for enjoyment at least occasionally. Among 147 junior high school students, blood lead levels averaged 18 +/- 6 micrograms/dL with no values greater than 40 micrograms/dL. Three of these students had elevated zinc protoporphyrin levels and all three were anemic. No correlation was found between levels of blood lead or zinc protoporphyrin and whether or not the youth reported sniffing gasoline. However, sniffing gasoline was associated with poor school performance and delinquent behavior. Although apparently many Navajo adolescents experiment with gasoline inhalation, only a few engage in this activity frequently enough to develop either asymptomatic or symptomatic lead overload.

  12. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable...

  13. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable...

  14. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable...

  15. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall:...

  16. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable...

  17. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and...

  18. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall:...

  19. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall:...

  20. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall:...

  1. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall:...

  2. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable...

  3. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and...

  4. 40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What gasoline is subject to the toxics... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.820 What gasoline is subject to the toxics...

  5. 40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What gasoline is subject to the toxics... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.820 What gasoline is subject to the toxics...

  6. Health assessment of gasoline and fuel oxygenate vapors: developmental toxicity in rats.

    PubMed

    Roberts, Linda G; Gray, Thomas M; Trimmer, Gary W; Parker, Robert M; Murray, F Jay; Schreiner, Ceinwen A; Clark, Charles R

    2014-11-01

    Gasoline-vapor condensate (BGVC) or condensed vapors from gasoline blended with methyl t-butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME) diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA) were evaluated for developmental toxicity in Sprague-Dawley rats exposed via inhalation on gestation days (GD) 5-20 for 6h/day at levels of 0 (control filtered air), 2000, 10,000, and 20,000mg/m(3). These exposure durations and levels substantially exceed typical consumer exposure during refueling (<1-7mg/m(3), 5min). Dose responsive maternal effects were reduced maternal body weight and/or weight change, and/or reduced food consumption. No significant malformations were seen in any study. Developmental effects occurred at 20,000mg/m(3) of G/TAME (reduced fetal body weight, increased incidence of stunted fetuses), G/TBA (reduced fetal body weight, increased skeletal variants) and G/DIPE (reduced fetal weight) resulting in developmental NOAEL of 10,000mg/m(3) for these materials. Developmental NOAELs for other materials were 20,000mg/m(3) as no developmental toxicity was induced in those studies. Developmental NOAELs were equal to or greater than the concurrent maternal NOAELs which ranged from 2000 to 20,000mg/m(3). There were no clear cut differences in developmental toxicity between vapors of gasoline and gasoline blended with the ether or alcohol oxygenates.

  7. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Who shall register with EPA under the gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and...

  8. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Who shall register with EPA under the gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and...

  9. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Who shall register with EPA under the gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and...

  10. 40 CFR 80.1035 - What are the attest engagement requirements for gasoline toxics compliance applicable to refiners...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for gasoline toxics compliance applicable to refiners and importers? 80.1035 Section 80.1035... FUELS AND FUEL ADDITIVES Gasoline Toxics Attest Engagements § 80.1035 What are the attest engagement requirements for gasoline toxics compliance applicable to refiners and importers? In addition to...

  11. 40 CFR 80.1035 - What are the attest engagement requirements for gasoline toxics compliance applicable to refiners...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for gasoline toxics compliance applicable to refiners and importers? 80.1035 Section 80.1035... FUELS AND FUEL ADDITIVES Gasoline Toxics Attest Engagements § 80.1035 What are the attest engagement requirements for gasoline toxics compliance applicable to refiners and importers? In addition to...

  12. 40 CFR 80.1035 - What are the attest engagement requirements for gasoline toxics compliance applicable to refiners...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for gasoline toxics compliance applicable to refiners and importers? 80.1035 Section 80.1035... FUELS AND FUEL ADDITIVES Gasoline Toxics Attest Engagements § 80.1035 What are the attest engagement requirements for gasoline toxics compliance applicable to refiners and importers? In addition to...

  13. 40 CFR 80.1035 - What are the attest engagement requirements for gasoline toxics compliance applicable to refiners...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for gasoline toxics compliance applicable to refiners and importers? 80.1035 Section 80.1035... FUELS AND FUEL ADDITIVES Gasoline Toxics Attest Engagements § 80.1035 What are the attest engagement requirements for gasoline toxics compliance applicable to refiners and importers? In addition to...

  14. Gasoline Distribution Facilities (Bulk Gasoline Terminals and Pipeline Breakout Stations) Air Toxics Rule Fact Sheets

    EPA Pesticide Factsheets

    This page contains a November 1994 fact sheet for the final NESHAP for Gasoline Distribution Facilities. This page also contains a December fact sheet with information regarding the final amendments to the 2003 final rule for the NESHAP.

  15. Processing, compliance options can reduce cost of producing new gasoline

    SciTech Connect

    Not Available

    1994-07-11

    The price difference between US conventional and reformulated gasolines is expected to be 3.1[cents]/gal higher, less than the 4[cents]/gal difference indicated in May by the New York Mercantile Exchange. The difference will be set by the central Atlantic and New England areas, which Bonner Moore projects to be significantly short on reformulated gasoline and long on conventional gasoline. Bonner Moore consultants, in an unpublished report, say refiners in the central Atlantic will not be able to economically convert much more than 70% of their gasoline output to reformulated gasoline. As a result, gasoline movements through the pipeline system supplying Petroleum Administration for Defense District (PADD) 1-the US East Coast-will have to increase to deliver reformulated gasoline produced on the Gulf Coast to New England and the Central Atlantic region. The paper discusses production costs, processing options, price differential, compliance, and benefits from averaging both oxygen and benzene parameters.

  16. Optimization of gasoline hydrocarbon compositions for reducing exhaust emissions.

    PubMed

    Shen, Yitao; Shuai, Shijin; Wang, Jianxin; Xiao, Jianhua

    2009-01-01

    Effects of hydrocarbon compositions on raw exhaust emissions and combustion processes were studied on an engine test bench. The optimization of gasoline hydrocarbon composition was discussed. As olefins content increased from 10.0% to 25.0% in volume, the combustion duration was shortened by about 2 degree crank angle (degrees CA), and the engine-out THC emission was reduced by about 15%. On the other hand, as aromatics content changed from 35.0% to 45.0%, the engine-out NOx emissions increased by 4%. An increment in olefins content resulted in a slight increase in engine-out CO emission, while the aromatics content had little effect on engine-out total hydrocarbon (THC) and CO emissions. Over the new European driving cycle (NEDC), the THC, NOx and CO emissions of fuel with 25.0% olefins and 35.0% aromatics were about 45%, 21% and 19% lower than those of fuel with 10.0% olefins and 40.0% aromatics, respectively. The optimized gasoline compositions for new engines and new vehicles have low aromatics and high olefins contents.

  17. Health assessment of gasoline and fuel oxygenate vapors: subchronic inhalation toxicity.

    PubMed

    Clark, Charles R; Schreiner, Ceinwen A; Parker, Craig M; Gray, Thomas M; Hoffman, Gary M

    2014-11-01

    Sprague Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess whether their use in gasoline influences the hazard of evaporative emissions. Test substances included vapor condensates prepared from an EPA described "baseline gasoline" (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000mg/m(3) and exposures were for 6h/day, 5days/week for 13weeks. A portion of the animals were maintained for a four week recovery period to determine the reversibility of potential adverse effects. Increased kidney weight and light hydrocarbon nephropathy (LHN) were observed in treated male rats in all studies which were reversible or nearly reversible after 4weeks recovery. LHN is unique to male rats and is not relevant to human toxicity. The no observed effect level (NOAEL) in all studies was 10,000mg/m(3), except for G/MTBE (<2000) and G/TBA (2000). The results provide evidence that use of the studied oxygenates are unlikely to increase the hazard of evaporative emissions during refueling, compared to those from gasoline alone.

  18. Comparative Toxicity of Gasoline and Diesel Engine Emissions

    SciTech Connect

    JeanClare Seagrave; Joe L. Mauderly; Barbara Zielinska; John Sagebiel; Kevin Whitney; Doughlas R. Lawson; Michael Gurevich

    2000-06-19

    Better information on the comparative toxicity of airborne emissions from different types of engines is needed to guide the development of heavy vehicle engine, fuel, lubricant, and exhaust after-treatment technologies, and to place the health hazards of current heavy vehicle emissions in their proper perspective. To help fill this information gap, samples of vehicle exhaust particles and semi-volatile organic compounds (SVOC) were collected and analyzed. The biological activity of the combined particle-SVOC samples is being tested using standardized toxicity assays. This report provides an update on the design of experiments to test the relative toxicity of engine emissions from various sources.

  19. Comparative Toxicity of Combined Particle and Semi-Volatile Organic Fractions of Gasoline and Diesel Emissions

    SciTech Connect

    Mauderly, Joe; Seagrave, JeanClare; McDonald, Jacob; Gigliotti,Andrew; Nikula, Kristen; Seilkop, Steven; Gurevich, Michael

    2002-08-25

    Little is known about the relative health hazards presented by emissions from in-use gasoline and diesel engines. Adverse health effects have been ascribed to engine emissions on the basis of: (1) the presence of known toxic agents in emissions; (2) high-dose animal and bacterial mutagenicity tests; and (3) studies indicating gradients of health effects with proximity to roadways. Most attention has been given to the particulate fraction of emissions; little attention has been given to the semi-volatile organic fraction. However, the semi-volatile fraction overlaps the particulate fraction in composition and is always present in the vicinity of fresh emissions. Although the potential health effects of diesel emissions have been frequently studied and debated during the past 20 years (EPA, 2002), relatively little attention has been given to the toxicity of emissions from gasoline engines. In view of the considerable progress in cleaning up diesel emissions, it would be useful to compare the toxicity of emissions from contemporary on-road diesel technology with that of emissions from the in-use gasoline fleet that is well-accepted by the public. It would also be useful to have a set of validated tests for rapid, cost-effective comparisons of the toxicity of emission samples, both for comparisons among competing technologies (e.g., diesel, gasoline, natural gas) and for determining the impacts of new fuel, engine, and after-treatment strategies on toxicity. The Office of Heavy Vehicle Technologies has sponsored research aimed at developing and applying rapid-response toxicity tests for collected emission samples (Seagrave et al., 2000). This report presents selected results from that work, which is being published in much greater detail in the peer-reviewed literature (Seagrave et al., 2002).

  20. The Hepatoprotective Effect of Vitamin A against Gasoline Vapor Toxicity in Rats

    PubMed Central

    Uboh, Friday E.; Ekaidem, Itemobong S.; Ebong, Patrick E.; Umoh, Ime B.

    2009-01-01

    Background Changes in the activities of plasma alanine amino transferase (ALT), aspartate amino transferase (AST), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP) are used to assess the functional state of the liver. Significant increase in the activities of these enzymes commonly indicates the hepatotoxicity of chemical agent(s) in the body. Exposure of male and female rats to 17.8 cm3h-1m-3 of Premium Motor Spirit (PMS) blend unleaded gasoline (UG) vapors for 6 hr/day, 5 days/week for 20 weeks have been observed to cause hepatotoxicity. In this study, the potential hepatoprotective effect of vitamin A (retinol) against gasoline vapours-induced toxicity was investigated in male and female rats. Methods Retinol (400 IU/kg/day) was orally administered to the test rats concomitant with the gasoline vapor exposure in the last two weeks of the experiment. Results The results obtained from this study showed that exposure to gasoline vapors caused significant increase (P < 0.05) in the activities of serum ALT, AST, ALP, GGT and bilirubin in both male and female rats. The treatment of the male and female test rats with vitamin A produced a significant decrease (P < 0.05) in the activities of these parameters, compared with the test rats without treatment; but insignificant increase(P ≥ 0.05), compared with the control. Conclusions The result of this study demonstrates the beneficial effects of retinol, at prophylactic dosage, against gasoline vapours hepatotoxicity in male and female rats, thereby suggesting that retinol may be used to prevent hepatotoxicity in individuals frequently exposed to gasoline vapours. PMID:27933127

  1. In vitro relative toxicity screening of combined particulate and semivolatile organic fractions of gasoline and diesel engine emissions.

    PubMed

    Seagrave, JeanClare; Mauderly, Joe L; Seilkop, Steven K

    2003-06-27

    Engine technology modifications designed to reduce engine emissions are likely to alter the physicochemical characteristics of the emissions. These changes may alter the biological effects of the emissions, but these effects cannot currently be predicted from the physical and chemical properties. Rapid in vitro toxicity screening techniques to compare the biological effects of emission samples would be useful as preliminary guides to assess the relative health impact of modified technology. Here, we demonstrate that selected responses of cultured human lung epithelial cells and rat alveolar macrophages can discriminate among combined particulate matter (PM) and semivolatile organic compound (SVOO fractions of emissions collected from normal- and high-emitter, in-use gasoline and diesel vehicles. Macrophages were more susceptible to cytotoxicity than epithelial cells. Samples from gasoline vehicles (except a vehicle that produced visible white smoke) generally caused greater effects than the diesel engine samples. However, low concentrations of diesel emission samples were more potent stimulators of peroxide production than gasoline emission samples. The same rank order of potency applied to suppression of this response at high concentrations. A diesel PM fraction was much less toxic to both types of cells than the combined PM +SVOC fractions, consistent with a role for the SVOC fraction in cytotoxicity. However, the rank order of potency from the in vitro assays in general did not correspond with the previous rankings from in vivo comparisons of the same samples. Thus, while the in vitro assays may provide mechanistic information, revealing cell type-specific responses, they did not accurately reflect in vivo comparative toxicity in their current form.

  2. 40 CFR 80.1035 - What are the attest engagement requirements for gasoline toxics compliance applicable to refiners...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... this section. (c) Obtain and read a copy of the refinery's or importer's annual toxics reports per... volume. (d) Agree the yearly volume of gasoline reported to EPA in the toxics reports with the inventory reconciliation analysis under § 80.128. (e) Calculate the annual average toxics value level for each type...

  3. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia

    PubMed Central

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G.; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S. H.; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-01-01

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies. PMID:26119831

  4. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia.

    PubMed

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S H; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-06-29

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.

  5. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia

    NASA Astrophysics Data System (ADS)

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G.; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S. H.; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-06-01

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.

  6. The toxicity of selected gasoline components to glucose methanogenesis by aquifer microorganisms

    USGS Publications Warehouse

    Mormile, Melanie R.; Suflita, Joseph M.

    1996-01-01

    Six model hydrocarbons, representing various classes of chemicals found in gasoline, and methyl ethyl ketone, were assayed for their inhibitory effect on glucose methanogenesis in slurries prepared from aquifer sediments and ground water. Biogas (CH4and CO2) production was monitored with an automated pressure transducer system. Benzene, 1-methyl naphthalene, and methyltert-butyl ether (MTBE) were found to have no inhibitory influence on biogas production rates at concentrations up to 71·7 mg/L. Similarly, octane, cyclohexane, indan, and methyl ethyl ketone (MEK) were found to have only marginal negative effects on the rate of biogas production in aquifer slurries, at concentrations ranging from 51·7 to 72·1 mg/L. Thus, gasoline components had low apparent toxicities to microorganisms responsible for glucose methanogenesis in aquifier slurries. As the concentrations of the assayed hydrocarbons are about 100 times those typically reported after an aquifer has been contaminated with gasoline, it is unlikely that individual hydrocarbons will substantially impact anaerobic metabolic processes.

  7. Reducing US oil-import dependence: A tariff, subsidy, or gasoline tax

    SciTech Connect

    Yuecel, M.K. ); Dahl, C. )

    1990-05-01

    Low oil prices and rising oil imports have caused growing concern about U.S. vulnerability to oil-supply shocks. The authors devise a measure of vulnerability and use it to compare three policies that have been proposed to reduce U.S. vulnerability to oil-supply disruptions: a 25% oil-import tariff, a $5-per-barrel subsidy to domestic oil producers, and an increase in the gasoline tax from 9 cents to 25 cents per gallon. They find that the tariff would make the United States less vulnerable to disruptions. By increasing both consumer and producer prices, the tariff lowers consumption while encouraging domestic production. The increased gasoline tax could either lower or raise vulnerability. If domestic supply is not very responsive to price changes, the gasoline tax increases vulnerability. If domestic supply is responsive to price changes, the gasoline tax reduces vulnerability. The subsidy encourages increased consumption and production, leading to a faster depletion of the resource base. Hence, the subsidy would make the United States more vulnerable to oil-supply shocks. 10 refs., 8 figs., 1 tab.

  8. Reduced Toxicity Fuel Satellite Propulsion System

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2001-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  9. Health assessment of gasoline and fuel oxygenate vapors: developmental toxicity in mice.

    PubMed

    Roberts, L G; Gray, T M; Marr, M C; Tyl, R W; Trimmer, G W; Hoffman, G M; Murray, F J; Clark, C R; Schreiner, C A

    2014-11-01

    CD-1 mice were exposed to baseline gasoline vapor condensate (BGVC) alone or to vapors of gasoline blended with methyl tertiary butyl ether (G/MTBE). Inhalation exposures were 6h/d on GD 5-17 at levels of 0, 2000, 10,000, and 20,000mg/m(3). Dams were evaluated for evidence of maternal toxicity, and fetuses were weighed, sexed, and evaluated for external, visceral, and skeletal anomalies. Exposure to 20,000mg/m(3) of BGVC produced slight reductions in maternal body weight/gain and decreased fetal body weight. G/MTBE exposure did not produce statistically significant maternal or developmental effects; however, two uncommon ventral wall closure defects occurred: gastroschisis (1 fetus at 10,000mg/m(3)) and ectopia cordis (1 fetus at 2000mg/m(3); 2 fetuses/1 litter at 10,000mg/m(3)). A second study (G/MTBE-2) evaluated similar exposure levels on GD 5-16 and an additional group exposed to 30,000mg/m(3) from GD 5-10. An increased incidence of cleft palate was observed at 30,000mg/m(3) G/MTBE. No ectopia cordis occurred in the replicate study, but a single observation of gastroschisis was observed at 30,000mg/m(3). The no observed adverse effect levels for maternal/developmental toxicity in the BGVC study were 10,000/2000mg/m(3), 20,000/20,000 for the G/MTBE study, and 10,000/20,000 for the G/MTBE-2 study.

  10. Health assessment of gasoline and fuel oxygenate vapors: reproductive toxicity assessment.

    PubMed

    Gray, Thomas M; Steup, David; Roberts, Linda G; O'Callaghan, James P; Hoffman, Gary; Schreiner, Ceinwen A; Clark, Charles R

    2014-11-01

    Vapor condensates of baseline gasoline (BGVC), or gasoline-blended with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA) were evaluated for reproductive toxicity in rats at target concentrations of 2000, 10,000, or 20,000mg/m(3), 6h/day, 7days/week. BGVC and G/MTBE were assessed over two generations, the others for one generation. BGVC and G/MTBE F1 offspring were evaluated for neuropathology and changes in regional brain glial fibrillary acidic protein content. No neurotoxicity was observed. Male kidney weight was increased consistent with light hydrocarbon nephropathy. In adult rats, decreased body weight gain and increased liver weight were seen. Spleen weight decreased in adults and pups exposed to G/TBA. No pathological changes to reproductive organs occurred in any study. Decreased food consumption was seen in G/TAME lactating females. Transient decreases in G/TAME offspring weights were observed during lactation. Except for a minor increase in time to mating in G/TBA which did not affect other reproductive parameters, there were no adverse reproductive findings. The NOAEL for reproductive and offspring parameters was 20,000mg/m(3) for all vapor condensates except for lower offspring NOAELs of 10,000mg/m(3) for G/TBA and 2000mg/m(3) for G/TAME.

  11. Health assessment of gasoline and fuel oxygenate vapors: Reproductive toxicity assessment

    PubMed Central

    Gray, Thomas M.; Steup, David; Roberts, Linda G.; O'Callaghan, James P.; Hoffman, Gary; Schreiner, Ceinwen A.; Clark, Charles R.

    2016-01-01

    Vapor condensates of baseline gasoline (BGVC), or gasoline-blended with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA) were evaluated for reproductive toxicity in rats at target concentrations of 2000, 10,000, or 20,000 mg/m3, 6 h/day, 7 days/week. BGVC and G/MTBE were assessed over two generations, the others for one generation. BGVC and G/MTBE F1 offspring were evaluated for neuropathology and changes in regional brain glial fibrillary acidic protein content. No neurotoxicity was observed. Male kidney weight was increased consistent with light hydrocarbon nephropathy. In adult rats, decreased body weight gain and increased liver weight were seen. Spleen weight decreased in adults and pups exposed to G/TBA. No pathological changes to reproductive organs occurred in any study. Decreased food consumption was seen in G/TAME lactating females. Transient decreases in G/TAME off-spring weights were observed during lactation. Except for a minor increase in time to mating in G/TBA which did not affect other reproductive parameters, there were no adverse reproductive findings. The NOAEL for reproductive and offspring parameters was 20,000 mg/m3 for all vapor condensates except for lower offspring NOAELs of 10,000 mg/m3 for G/TBA and 2000 mg/m3 for G/TAME. PMID:24813181

  12. Do biofuel blending mandates reduce gasoline consumption? Implications of state-level renewable fuel standards for energy security

    NASA Astrophysics Data System (ADS)

    Lim, Shinling

    In an effort to keep America's addiction to oil under control, federal and state governments have implemented a variety of policy measures including those that determine the composition of motor gasoline sold at the pump. Biofuel blending mandates known as Renewable Fuel Standards (RFS) are designed to reduce the amount of foreign crude oil needed to be imported as well as to boost the local ethanol and corn industry. Yet beyond looking at changes in gasoline prices associated with increased ethanol production, there have been no empirical studies that examine effects of state-level RFS implementation on gasoline consumption. I estimate a Generalized Least Squares model for the gasoline demand for the 1993 to 2010 period with state and time fixed effects controlling for RFS. States with active RFS are Minnesota, Hawaii, Missouri, Florida, Washington, and Oregon. I find that, despite the onset of federal biofuel mandates across states in 2007 and the lower energy content of blended gasoline, being in a state that has implemented RFS is associated with 1.5% decrease in gasoline consumption (including blended gasoline). This is encouraging evidence for efforts to lessen dependence on gasoline and has positive implications for energy security.

  13. Estimating the gasoline components and formulations toxicity to microalgae (Tetraselmis chuii) and oyster (Crassostrea rhizophorae) embryos: An approach to minimize environmental pollution risk

    SciTech Connect

    Paixao, J.F.; Nascimento, I.A. . E-mail: iracema@ftc.br; Pereira, S.A.; Leite, M.B.L.; Carvalho, G.C.; Silveira, J.S.C.; Reboucas, M.; Matias, G.R.A.; Rodrigues, I.L.P.

    2007-03-15

    Even though petrochemical contamination frequently occurs in the form of oil spills, it is thought that a greater danger to coastal habitats is posed by chronic petrochemical toxicity associated with urban run-off, in which gasoline water-soluble-fraction (WSF) plays an important role. The hypothesis of the entrepreneurs, who were associated to the scientists uncharged of this research, was that recycled petrochemical waste may provide different gasoline formulations, having different toxic properties; the correlation between the gasoline formulations and their components' toxicological effects might contribute to the reformulation of the products, in such a way that the gasoline generated could be less toxic and less harmful to the environment. The aim of this research was to determine the toxic effects of 14 different types of gasoline (formulated, in accordance with National Petroleum Agency standards, from petrochemical waste), on Tetraselmis chuii (microalgae culture) and Crassostrea rhizophorae (embryos). Microalgae and oyster embryos were exposed to different gasoline formulations water-soluble fractions (WSF) at a range of concentrations (0%, 4.6%, 10.0%, 22.0%, 46.0%, and 100%), for 96 and 24 h, respectively. The tests were carried out under controlled conditions. End-points have been CI50-96h (concentration causing 50% growth inhibition in microalgae cultures) and EC50-24h (concentration causing abnormalities on 50% of the exposed embryos). Through these procedures, gasoline formulations, which represent the lowest environmental risk, were selected. Bioassays carried out on the 8 different gasoline components aimed to correlate gasoline toxicity with the toxic potential of its components. The analysis of principal components showed that the C9DI, a mixture of aromatic hydrocarbons of 9 carbon atoms, had the highest level of toxic potential, followed by C9S (a mixture of aromatics with 9-11 carbon atoms) and heavy naphtha. The results showed gasoline

  14. Applicability of gasoline containing ethanol as Thailand's alternative fuel to curb toxic VOC pollutants from automobile emission

    NASA Astrophysics Data System (ADS)

    Leong, Shing Tet; Muttamara, S.; Laortanakul, Preecha

    Emission rates of benzene, toluene, m-xylene, formaldehyde and acetaldehyde were measured in a fleet of 16 in-use vehicles. The test was performed on a chassis dynamometer incorporated with Bangkok Driving Cycle test mode. Three different test fuels: unleaded gasoline, gasoline blended with 10% ethanol (E10) and gasoline blended with 15% ethanol (E15) were used to determine the different compositions of exhaust emissions from various vehicles. The effects of ethanol content fuels on emissions were tested by three types of vehicles: cars with no catalytic converter installation, cars with three-way catalytic converter and cars with dual-bed catalytic converter. The test result showed wide variations in the average emission rates with different mileages, fuel types and catalytic converters (benzene: 3.33-56.48 mg/km, toluene: 8.62-124.66 mg/km, m-xylene: 2.97-51.65 mg/km, formaldehyde: 20.82-477.57 mg/km and acetaldehyde: 9.46-219.86 mg/km). There was a modest reduction in emission rate of benzene, toluene and m-xylene in cars using E10 and E15 fuels. Use of ethanol fuels, however, leads to increased formaldehyde and acetaldehyde emission rates. Our analysis revealed that alternative fuels and technologies give significant reduction in toxic VOC pollutants from automobile emission—particularly car with dual-bed catalytic converter using E10 fuel.

  15. Gasoline Reid Vapor Pressure

    EPA Pesticide Factsheets

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  16. Comparative Hepatoprotective Effect of Vitamins A and E Against Gasoline Vapor Toxicity in Male and Female Rats

    PubMed Central

    Uboh, Friday Effiong; Ebong, Patrick E.; Umoh, Ime B.

    2009-01-01

    Background Plasma alanine transferase(ALT), aspartate transferase(AST), α-glutamyl transferase(GGT), and alkaline phosphatase(ALP) activities are known biomarkers in assessing hepatic functional integrity. A remarkable rise in the activities of these enzymes normally signifies hepatotoxicity of chemical agent(s) in the biological system. Exposure to 17.8 cm3h-1m-3 of PMS blend unleaded gasoline vapors (UGV) for 6 hr/day, 5 days/week for 20 weeks have been reported to cause hepatotoxicity in rats. Methods In this study, the comparative hepatoprotective effect of vitamins A (retinol) and E (α-tocopherol) against UGV-induced toxicity was assessed in male and female rats. Retinol and α-tocopherol at prophylactic dosage (400 and 200 IU/kg/day, respectively) were separately administered orally to the test rats concomitant with exposure to UGV in the last two weeks of the experiment. Results The results of this study indicated that exposure to UGV caused significant increase (P < 0.05) in the activities of serum ALT, AST, ALP, GGT and bilirubin in male and female rats. Oral administration of prophylactic doses of retinol and α-tocopherol produced a significant decrease (P < 0.05) in the activities of these parameters in male and female test rats, compared with the non-treated test rats; but insignificant increase(P ≥ 0.05), compared with the control. However, the hepatoprotective effect of α-tocopherol was observed to be more potent than that of retinol. Conclusions The result of this study demonstrated that the hepatoprotective potency of α-tocopherol against gasoline vapors toxicity was higher than that of retinol in male and female rats, although the female gender of the animal model responded to treatment with both vitamins better than the males. Hence, the work suggested the beneficial effects of both vitamins against hepatotoxicity in individuals frequently exposed to gasoline vapors. PMID:27956974

  17. 40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Product transfer documents associated with such gasoline, and any pump stand from which such gasoline is... that is restricted for use in racing motor vehicles or racing boats that are used only in sanctioned..., distribution and sale to the ultimate consumer; and (3) The gasoline is not made available for use as...

  18. 40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Product transfer documents associated with such gasoline, and any pump stand from which such gasoline is... that is restricted for use in racing motor vehicles or racing boats that are used only in sanctioned..., distribution and sale to the ultimate consumer; and (3) The gasoline is not made available for use as...

  19. 40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Product transfer documents associated with such gasoline, and any pump stand from which such gasoline is... that is restricted for use in racing motor vehicles or racing boats that are used only in sanctioned..., distribution and sale to the ultimate consumer; and (3) The gasoline is not made available for use as...

  20. Reduced Toxicity Fuel Satellite Propulsion System Including Plasmatron

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2003-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster. whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  1. Role of Bioadsorbents in Reducing Toxic Metals

    PubMed Central

    Jaishankar, Monisha; Biju, Vinai George; Krishnamurthy Nideghatta Beeregowda

    2016-01-01

    Industrialization and urbanization have led to the release of increasing amounts of heavy metals into the environment. Metal ion contamination of drinking water and waste water is a serious ongoing problem especially with high toxic metals such as lead and cadmium and less toxic metals such as copper and zinc. Several biological materials have attracted many researchers and scientists as they offer both cheap and effective removal of heavy metals from waste water. Therefore it is urgent to study and explore all possible sources of agrobased inexpensive adsorbents for their feasibility in the removal of heavy metals. The objective was to study inexpensive adsorbents like various agricultural wastes such as sugarcane bagasse, rice husk, oil palm shell, coconut shell, and coconut husk in eliminating heavy metals from waste water and their utilization possibilities based on our research and literature survey. It also shows the significance of developing and evaluating new potential biosorbents in the near future with higher adsorption capacity and greater reusable options. PMID:28090207

  2. Role of Bioadsorbents in Reducing Toxic Metals.

    PubMed

    Mathew, Blessy Baby; Jaishankar, Monisha; Biju, Vinai George; Krishnamurthy Nideghatta Beeregowda

    2016-01-01

    Industrialization and urbanization have led to the release of increasing amounts of heavy metals into the environment. Metal ion contamination of drinking water and waste water is a serious ongoing problem especially with high toxic metals such as lead and cadmium and less toxic metals such as copper and zinc. Several biological materials have attracted many researchers and scientists as they offer both cheap and effective removal of heavy metals from waste water. Therefore it is urgent to study and explore all possible sources of agrobased inexpensive adsorbents for their feasibility in the removal of heavy metals. The objective was to study inexpensive adsorbents like various agricultural wastes such as sugarcane bagasse, rice husk, oil palm shell, coconut shell, and coconut husk in eliminating heavy metals from waste water and their utilization possibilities based on our research and literature survey. It also shows the significance of developing and evaluating new potential biosorbents in the near future with higher adsorption capacity and greater reusable options.

  3. Reducing Boron Toxicity by Microbial Sequestration

    SciTech Connect

    Hazen, T.; Phelps, T.J.

    2002-01-01

    While electricity is a clean source of energy, methods of electricity-production, such as the use of coal-fired power plants, often result in significant environmental damage. Coal-fired electrical power plants produce air pollution, while contaminating ground water and soils by build-up of boron, which enters surrounding areas through leachate. Increasingly high levels of boron in soils eventually overcome boron tolerance levels in plants and trees, resulting in toxicity. Formation of insoluble boron precipitates, mediated by mineral-precipitating bacteria, may sequester boron into more stable forms that are less available and toxic to vegetation. Results have provided evidence of microbially-facilitated sequestration of boron into insoluble mineral precipitates. Analyses of water samples taken from ponds with high boron concentrations showed that algae present contained 3-5 times more boron than contained in the water in the samples. Boron sequestration may also be facilitated by the incorporation of boron within algal cells. Experiments examining boron sequestration by algae are in progress. In bacterial experiments with added ferric citrate, the reduction of iron by the bacteria resulted in an ironcarbonate precipitate containing boron. An apparent color change showing the reduction of amorphous iron, as well as the precipitation of boron with iron, was more favorable at higher pH. Analysis of precipitates by X-ray diffraction, scanning electron microscopy, and inductively coupled plasma mass spectroscopy revealed mineralogical composition and biologicallymediated accumulation of boron precipitates in test-tube experiments.

  4. Global gasoline prices: The need to raise gasoline taxes

    NASA Astrophysics Data System (ADS)

    Lin Lawell, C.-Y. Cynthia

    2017-01-01

    Gasoline taxes are considered to be a cost-effective policy instrument for reducing carbon emissions. A study finds that while gasoline taxes rose in 83 countries between 2003 and 2015, the global mean fell by 13.3% due to a shift in consumption towards countries that maintain gasoline subsidies or that have low taxes.

  5. Bioswales reduce contaminants associated with toxicity in urban storm water.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Siegler, Katie; Tjeerdema, Ronald

    2016-12-01

    Contamination and toxicity associated with urban storm water runoff are a growing concern because of the potential impacts on receiving systems. California water regulators are mandating implementation of green infrastructure as part of new urban development projects to treat storm water and increase infiltration. Parking lot bioswales are low impact development practices that promote filtering of runoff through plants and soil. Studies have demonstrated that bioswales reduce concentrations of suspended sediments, metals, and hydrocarbons. There have been no published studies evaluating how well these structures treat current-use pesticides, and studies have largely ignored whether bioswales reduce toxicity in surface water. Three storms were monitored at 3 commercial and residential sites, and reductions of contaminants and associated toxicity were quantified. Toxicity testing showed that the majority of untreated storm water samples were toxic to amphipods (Hyalella azteca) and midges (Chironomus dilutus), and toxicity was reduced by the bioswales. No samples were toxic to daphnids (Ceriodaphnia dubia) or fish (Pimephales promelas). Contaminants were significantly reduced by the bioswales, including suspended solids (81% reduction), metals (81% reduction), hydrocarbons (82% reduction), and pyrethroid pesticides (74% reduction). The single exception was the phenypyrazole pesticide fipronil, which showed inconsistent treatment. The results demonstrate these systems effectively treat contaminated storm water associated with surface water toxicity but suggest that modifications of their construction may be required to treat some contaminant classes. Environ Toxicol Chem 2016;35:3124-3134. © 2016 SETAC.

  6. Phytochemicals reduce aflatoxin-induced toxicity in chicken embryos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins (AF) are toxic metabolites produced by molds, Aspergillus flavus and Aspergillus parasicitus, which frequently contaminate chicken feed ingredients. Ingestion of AF-contaminated feed by chickens leads to deleterious effects, including decreased chicken performance and reduced egg producti...

  7. Approaches for the design of reduced toxicant emission cigarettes.

    PubMed

    Dittrich, David J; Fieblekorn, Richard T; Bevan, Michael J; Rushforth, David; Murphy, James J; Ashley, Madeleine; McAdam, Kevin G; Liu, Chuan; Proctor, Christopher J

    2014-01-01

    Cigarette smoking causes serious diseases through frequent and prolonged exposure to toxicants. Technologies are being developed to reduce smokers' toxicant exposure, including filter adsorbents, tobacco treatments and substitutes. This study examined the effect of modifications to filter ventilation, variations in cigarette circumference and active charcoal filter length and loading, as well as combinations of these features in a reduced-toxicant prototype (RTP) cigarette, on the yields of toxicants in cigarette smoke. An air-dilution mechanism, called split-tipping, was developed in which a band of porous paper in the centre of the filter tipping functions to minimise the loss of effective filter ventilation that occurs at the high flow rates encountered during human-smoking, and to facilitate the diffusional loss of volatile toxicants. As compared with conventional filter ventilation cigarettes, split-tipping reduced tar and volatile smoke constituent emissions under high flow rate machine-smoking conditions, most notably for products with a 1-mg ISO tar yield. Furthermore, mouth level exposure (MLE) to tar and nicotine was reduced among smokers of 1-mg ISO tar cigarettes in comparison to smokers of cigarettes with traditional filter ventilation. For higher ISO tar level cigarettes, however, there were no significant reductions in MLE. Smaller cigarette circumferences reduced sidestream toxicant yields and modified the balance of mainstream smoke chemistry with reduced levels of aromatic amines and benzo[a]pyrene but increased yields of formaldehyde. Smaller circumference cigarettes also had lower mainstream yields of volatile toxicants. Longer cigarette filters containing increased levels of high-activity carbon (HAC) showed reduced machine-smoking yields of volatile toxicants: with up to 97% removal for some volatile toxicants at higher HAC loadings. Split-tipping was combined with optimal filter length and cigarette circumference in an RTP cigarette that gave

  8. Gasoline additive

    SciTech Connect

    Weil, O.A.; Smith, G.G.

    1990-03-06

    This patent describes a method for improving the quality and performance of an internal combustion engine. It comprises: introducing gasoline into the fuel tank of the internal combustion engine; and adding to the gasoline, in an amount effective to improve the performance of an internal combustion engine, a stable dispersion of 3 to 20 volume percent of a compound consisting essentially of polyoxyethylene sorbitol polyoleate in a gasoline-miscible oxygenated organic solvent; and operating the engine.

  9. Bioethanol Blending Reduces Nanoparticle, PAH, and Alkyl- and Nitro-PAH Emissions and the Genotoxic Potential of Exhaust from a Gasoline Direct Injection Flex-Fuel Vehicle.

    PubMed

    Muñoz, Maria; Heeb, Norbert V; Haag, Regula; Honegger, Peter; Zeyer, Kerstin; Mohn, Joachim; Comte, Pierre; Czerwinski, Jan

    2016-11-01

    Bioethanol as an alternative fuel is widely used as a substitute for gasoline and also in gasoline direct injection (GDI) vehicles, which are quickly replacing traditional port-fuel injection (PFI) vehicles. Better fuel efficiency and increased engine power are reported advantages of GDI vehicles. However, increased emissions of soot-like nanoparticles are also associated with GDI technology with yet unknown health impacts. In this study, we compare emissions of a flex-fuel Euro-5 GDI vehicle operated with gasoline (E0) and two ethanol/gasoline blends (E10 and E85) under transient and steady driving conditions and report effects on particle, polycyclic aromatic hydrocarbon (PAH), and alkyl- and nitro-PAH emissions and assess their genotoxic potential. Particle number emissions when operating the vehicle in the hWLTC (hot started worldwide harmonized light-duty vehicle test cycle) with E10 and E85 were lowered by 97 and 96% compared with that of E0. CO emissions dropped by 81 and 87%, while CO2 emissions were reduced by 13 and 17%. Emissions of selected PAHs were lowered by 67-96% with E10 and by 82-96% with E85, and the genotoxic potentials dropped by 72 and 83%, respectively. Ethanol blending appears to reduce genotoxic emissions on this specific flex-fuel GDI vehicle; however, other GDI vehicle types should be analyzed.

  10. Gasoline poisoning

    MedlinePlus

    ... The poisonous ingredients in gasoline are chemicals called hydrocarbons, which are substances that contain only hydrogen and ... dangerous and is not advised. References Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et ...

  11. Selected ebselen analogs reduce mechlorethamine toxicity in vitro.

    PubMed

    Pino, Maria A; Pietka-Ottlik, Magdalena; Billack, Blase

    2014-03-01

    Sulfur mustard (SM) is a potent vesicant. The lack of an effective antidote makes SM a continued threat to both military and civilian settings. A surrogate agent, namely mechlorethamine (HN2), was used here to mimic the toxicity of SM, and the main objective of this study was to demonstrate if selected organoselenium analogs could protect cultured A-431 skin cells from HN2 toxicity. Test compounds included ebselen (EB-1) and three related organoselenium analogs (EB-2, EB-3 and EB-4). In the absence of test compound, a reproducible and robust cell death was observed in the cells following incubation with HN2 (25 µM, 24 or 48 h) while cells treated with test compound alone (15, 30 or 60 µM) for similar periods of time were generally not affected. When incubated in the presence of both HN2 and test compound for 24 or 48 h, it was found that EB-1, EB-2, EB-3 and EB-4 could spare the cells from death, with the EB-4 compound being the most effective at reducing HN2 toxicity. Light microscopy confirmed these findings. The organoseleniums were also examined for their effects on reducing lipid peroxidation in the A-431 skin cells. Among the test compounds, EB-4 reduced lipid peroxidation by HN2 to the greatest extent. These studies, taken together, validate that the organoselenium antioxidants tested here may serve a purpose in the discovery of medical countermeasures to vesicants.

  12. Mutagenicity and in vivo toxicity of combined particulate and semivolatile organic fractions of gasoline and diesel engine emissions.

    PubMed

    Seagrave, JeanClare; McDonald, Jacob D; Gigliotti, Andrew P; Nikula, Kristen J; Seilkop, Steven K; Gurevich, Michael; Mauderly, Joe L

    2002-12-01

    Exposure to engine emissions is associated with adverse health effects. However, little is known about the relative effects of emissions produced by different operating conditions, fuels, or technologies. Rapid screening techniques are needed to compare the biological effects of emissions with different characteristics. Here, we examined a set of engine emission samples using conventional bioassays. The samples included combined particulate material and semivolatile organic compound fractions of emissions collected from normal- and high-emitter gasoline and diesel vehicles collected at 72 degrees F, and from normal-emitter groups collected at 30 degrees F. The relative potency of the samples was determined by statistical analysis of the dose-response curves. All samples induced bacterial mutagenicity, with a 10-fold range of potency among the samples. Responses to intratracheal instillation in rats indicated generally parallel rankings of the samples by multiple endpoints reflecting cytotoxic, inflammatory, and lung parenchymal changes, allowing selection of a more limited set of parameters for future studies. The parameters selected to assess oxidative stress and macrophage function yielded little useful information. Responses to instillation indicated little difference in potency per unit of combined particulate material and semivolatile organic compound mass between normal-emitter gasoline and diesel vehicles, or between emissions collected at different temperatures. However, equivalent masses of emissions from high-emitter vehicles of both types were more potent than those from normal-emitters. While preliminary in terms of assessing contributions of different emissions to health hazards, the results indicate that a subset of this panel of assays will be useful in providing rapid, cost-effective feedback on the biological impact of modified technology.

  13. Microbial biotransformation of DON: molecular basis for reduced toxicity

    NASA Astrophysics Data System (ADS)

    Pierron, Alix; Mimoun, Sabria; Murate, Leticia S.; Loiseau, Nicolas; Lippi, Yannick; Bracarense, Ana-Paula F. L.; Schatzmayr, Gerd; He, Jian Wei; Zhou, Ting; Moll, Wulf-Dieter; Oswald, Isabelle P.

    2016-07-01

    Bacteria are able to de-epoxidize or epimerize deoxynivalenol (DON), a mycotoxin, to deepoxy-deoxynivalenol (deepoxy-DON or DOM-1) or 3-epi-deoxynivalenol (3-epi-DON), respectively. Using different approaches, the intestinal toxicity of 3 molecules was compared and the molecular basis for the reduced toxicity investigated. In human intestinal epithelial cells, deepoxy-DON and 3-epi-DON were not cytotoxic, did not change the oxygen consumption or impair the barrier function. In intestinal explants, exposure for 4 hours to 10 μM DON induced intestinal lesions not seen in explants treated with deepoxy-DON and 3-epi-DON. A pan-genomic transcriptomic analysis was performed on intestinal explants. 747 probes, representing 323 genes, were differentially expressed, between DON-treated and control explants. By contrast, no differentially expressed genes were observed between control, deepoxy-DON and 3-epi-DON treated explants. Both DON and its biotransformation products were able to fit into the pockets of the A-site of the ribosome peptidyl transferase center. DON forms three hydrogen bonds with the A site and activates MAPKinases (mitogen-activated protein kinases). By contrast deepoxy-DON and 3-epi-DON only form two hydrogen bonds and do not activate MAPKinases. Our data demonstrate that bacterial de-epoxidation or epimerization of DON altered their interaction with the ribosome, leading to an absence of MAPKinase activation and a reduced toxicity.

  14. Microbial biotransformation of DON: molecular basis for reduced toxicity

    PubMed Central

    Pierron, Alix; Mimoun, Sabria; Murate, Leticia S.; Loiseau, Nicolas; Lippi, Yannick; Bracarense, Ana-Paula F. L.; Schatzmayr, Gerd; He, Jian Wei; Zhou, Ting; Moll, Wulf-Dieter; Oswald, Isabelle P.

    2016-01-01

    Bacteria are able to de-epoxidize or epimerize deoxynivalenol (DON), a mycotoxin, to deepoxy-deoxynivalenol (deepoxy-DON or DOM-1) or 3-epi-deoxynivalenol (3-epi-DON), respectively. Using different approaches, the intestinal toxicity of 3 molecules was compared and the molecular basis for the reduced toxicity investigated. In human intestinal epithelial cells, deepoxy-DON and 3-epi-DON were not cytotoxic, did not change the oxygen consumption or impair the barrier function. In intestinal explants, exposure for 4 hours to 10 μM DON induced intestinal lesions not seen in explants treated with deepoxy-DON and 3-epi-DON. A pan-genomic transcriptomic analysis was performed on intestinal explants. 747 probes, representing 323 genes, were differentially expressed, between DON-treated and control explants. By contrast, no differentially expressed genes were observed between control, deepoxy-DON and 3-epi-DON treated explants. Both DON and its biotransformation products were able to fit into the pockets of the A-site of the ribosome peptidyl transferase center. DON forms three hydrogen bonds with the A site and activates MAPKinases (mitogen-activated protein kinases). By contrast deepoxy-DON and 3-epi-DON only form two hydrogen bonds and do not activate MAPKinases. Our data demonstrate that bacterial de-epoxidation or epimerization of DON altered their interaction with the ribosome, leading to an absence of MAPKinase activation and a reduced toxicity. PMID:27381510

  15. Evaporation characteristics of ETBE-blended gasoline.

    PubMed

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-04-28

    To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were developed.

  16. 40 CFR 80.845 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline? 80.845 Section 80.845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.845 What requirements apply to California gasoline? (a) Definition. For purposes of...

  17. 40 CFR 80.845 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline? 80.845 Section 80.845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.845 What requirements apply to California gasoline? (a) Definition. For purposes of...

  18. 40 CFR 80.845 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline? 80.845 Section 80.845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.845 What requirements apply to California gasoline? (a) Definition. For purposes of...

  19. 40 CFR 80.845 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline? 80.845 Section 80.845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.845 What requirements apply to California gasoline? (a) Definition. For purposes of...

  20. 40 CFR 80.845 - What requirements apply to California gasoline?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline? 80.845 Section 80.845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.845 What requirements apply to California gasoline? (a) Definition. For purposes of...

  1. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-07-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX ( P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  2. Organic ligands reduce copper toxicity in Pseudomonas syringae

    SciTech Connect

    Azenha, M.; Vasconcelos, M.T.; Cabral, J.P.S.

    1995-03-01

    Pseudomonas syringae cells were exposed to 100 {mu}M copper alone, or to previously equilibrated copper sulfate-ligand solutions. Ligand concentrations were determined experimentally as those that reduced the free copper concentration to 5 {mu}M (determined with a Cu{sup 2+}-selective electrode). These values were in agreement with those calculated by computational equilibrium simulation based on published stability constants. Exposure of P. syringae cells to copper sulfate, chloride, or nitrate resulted in similar high mortality, suggesting that copper was responsible for cell death. Acetate, succinate, proline, lysine, cysteine, and EDTA significantly reduced both the amount of copper bound to the cells and cell death, indicating that not only strong chelating agents but also weak and moderate copper ligands can effectively antagonize copper toxicity. However, cysteine and EDTA were considerably more effective than acetate, succinate, proline, and lysine, indicating that copper toxicity is not simply a function of free copper concentration but depends on the nature of the ligand. The results suggested that a significant fraction of copper bound to acetate, succinate, proline, or lysine was displaced to the bacteria or, alternatively, mixed copper-ligand-cell complexes could be formed. On the contrary, none of these phenomena occurred for the copper complexes with cysteine or EDTA.

  3. Structural Basis for the Reduced Toxicity of Dinophysistoxin-2

    SciTech Connect

    Huhn, J.; Jeffrey, F; Larsen, K; Rundberget, T; Rise, F; Cox, N; Arcus, V; Shi, Y; Miles, C

    2009-01-01

    Okadaic acid (OA), dinophysistoxin-1 (DTX-1), and dinophysistoxin-2 (DTX-2) are algal toxins that can accumulate in shellfish and cause diarrhetic shellfish poisoning. Recent studies indicate that DTX-2 is about half as toxic and has about half the affinity for protein phosphatase 2A (PP2A) as OA. NMR structural studies showed that DTX-1 possessed an equatorial 35-methyl group but that DTX-2 had an axial 35-methyl group. Molecular modeling studies indicated that an axial 35-methyl could exhibit unfavorable interactions in the PP2A binding site, and this has been proposed as the reason for the reduced toxicity of DTX-2. Statistical analyses of published data indicate that the affinity of PP2A for DTX-1 is 1.6-fold higher, and for DTX-2 is 2-fold lower, than for OA. We obtained X-ray crystal structures of DTX-1 and DTX-2 bound to PP2A. The crystal structures independently confirm the C-35 stereochemistries determined in the earlier NMR study. The structure for the DTX-1 complex was virtually identical to that of the OA-PP2A complex, except for the presence of the equatorial 35-methyl on the ligand. The favorable placement of the equatorial 35-methyl group of DTX-1 against the aromatic {pi}-bonds of His191 may account for the increased affinity of PP2A toward DTX-1. In contrast, the axial 35-methyl of DTX-2 caused the side chain of His191 to rotate 140{sup o} so that it pointed toward the solvent, thereby opening one end of the hydrophobic binding cage. This rearrangement to accommodate the unfavorable interaction from the axial 35-methyl of DTX-2 reduces the binding energy and appears to be responsible for the reduced affinity of PP2A for DTX-2. These results highlight the potential of molecular modeling studies for understanding the relative toxicity of analogues once the binding site at the molecular target has been properly characterized.

  4. Strategies for reducing solvent toxicity in extractive ethanol fermentation.

    PubMed

    Kapucu, H; Mehmetoğlu, U

    1998-01-01

    Extractive fermentation is a widely preferred technique in which the products of fermentation are removed from the fermentation medium by a proper solvent, in order to avoid the inhibitory effects of the products. In this work, decanol, which has a high distribution coefficient with respect to the biocompatible solvents, was used in extractive ethanol fermentation. In order to reduce decanol toxicity, Saccharomyces cerevisiae cells were immobilized in calcium alginate gel. Further, sunflower oil and Al2O3 were added to the immobilization media. Experiments were performed in 250-mL Erlenmeyer flasks that were placed in the constant-temperature bath of a constant stirring-rate shaker. Ethanol concentrations were measured to observe the effect of various parameters on ethanol production. Immobilization media included 10, 20, and 30% sunflower oil, or 5, 10, and 20% Al2O3, or Al2O3 and sunflower oil together. The ratio of the volume of aqueous phase to that of decanol phase ranged from 2:1 to 6:1. It was observed that protection depends on the oil, Al2O3, and decanol amounts. Utilization of sunflower oil (30%) and Al2O3 (5%) together yielded best results.

  5. Toxicological Assessments of Rats Exposed Prenatally to Inhaled Vapors of Gasoline and Gasoline-Ethanol Blends

    EPA Science Inventory

    The primary alternative to petroleum-based fuels is ethanol, which is blended with gasoline in the United States at concentrations up to 15% for most automobiles. Efforts to increase the amount of ethanol in gasoline have prompted concerns about the potential toxicity of inhaled ...

  6. Reduced Toxicity Fuel Satellite Propulsion System Including Axial Thruster and ACS Thruster Combination

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2001-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  7. Reduced Toxicity Fuel Satellite Propulsion System Including Catalytic Decomposing Element with Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2002-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  8. Reduced Toxicity Fuel Satellite Propulsion System Including Fuel Cell Reformer with Alcohols Such as Methanol

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2001-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  9. All about gasoline

    SciTech Connect

    Day, J.W.

    1987-01-01

    Increasingly sophisticated gasoline technology now makes gasoline more expensive to produce, but cheaper to buy, than in the early part of the century. Gasoline technology has kept pace with the sophistication of engines in the effort to find ways to produce gasoline of sufficient octane without using lead. Multi-port fuel injection engines caused problems for detergents in gasoline until Cononco installed mechanical injection systems to blend the detergent with gasoline at its terminals. Other problems will develop as computerized fuel controls and small, high horsepower engines enter the market, but the gasoline refiners will be working on their solutions.

  10. Organic Matter Application Can Reduce Copper Toxicity in Tomato Plants

    ERIC Educational Resources Information Center

    Campbell, Brian

    2010-01-01

    Copper fungicides and bactericides are often used in tomato cultivation and can cause toxic Cu levels in soils. In order to combat this, organic matter can be applied to induce chelation reactions and form a soluble complex by which much of the Cu can leach out of the soil profile or be taken up safely by plants. Organic acids such as citric,…

  11. Temperature determines toxicity: bisphenol A reduces thermal tolerance in fish.

    PubMed

    Little, Alexander G; Seebacher, Frank

    2015-02-01

    Bisphenol A (BPA) is a ubiquitous pollutant around the globe, but whether environmental concentrations have toxic effects remains controversial. BPA interferes with a number of nuclear receptor pathways, including several that mediate animal responses to environmental input. Because thermal acclimation is regulated by these pathways in fish, we hypothesized that the toxicity of BPA would change with ambient temperature. We exposed zebrafish (Danio rerio) to ecologically relevant and artificially high concentrations of BPA at two acclimation temperatures, and tested physiological responses at two test temperatures that corresponded to acclimation temperatures. We found ecologically relevant concentrations of BPA (20 μg l(-1)) impair swimming performance, heart rate, muscle and cardiac SERCA activity and gene expression. We show many of these responses are temperature-specific and non-monotonic. Our results suggest that BPA pollution can compound the effects of climate change, and that its effects are more dynamic than toxicological assessments currently account for.

  12. Reducing Toxicity of Radiation Treatment of Advanced Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    malignant tissues. A major effort focused on the effects these drugs on myeloid (bone marrow-derived) cells. This is based on our finding that...the last progress report we further presented data supporting the notion that the radioprotecive effect of RTA 408 is a ‘class’ effect of drugs that...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Toxicity is a major impediment to effective radiation therapy of locally advanced prostate cancer

  13. Gamma Radiation Reduced Toxicity of Azoxystrobin Tested on Artemia franciscana.

    PubMed

    Dvorak, P; Zdarsky, M; Benova, K; Falis, M; Tomko, M

    2016-06-01

    Fungicide azoxystrobin toxicity was monitored by means of a 96-h biotest with Artemia franciscana nauplius stages after exposure to solutions with concentrations of 0.2, 0.4, 0.6 and 0.8 mg L(-1) irradiated with (60)Co gamma radiation with doses of 1, 2.5, 5 and 10 kGy. The effects of ionization radiation on azoxystrobin toxicity were mainly manifested by a statistically significant reduction of lethality after 72- and 96-h exposure. A maximum reduction of lethality of 72 % was achieved using doses of 1-5 kGy for an azoxystrobin initial concentration of 0.4 mg L(-1) and after 72 h of exposure. At a 96-h exposure, a difference of lethal effects reached up to 70 % for a dose of 10 kGy. The observed effect of gamma ionizing radiation on azoxystrobin toxicity suggest that this approach can be applied as an alternative for a reduction of azoxystrobin residua in food.

  14. Reducing groundwater pollution by toxic substances: Procedures and policies

    NASA Astrophysics Data System (ADS)

    Waterstone, Marvin

    1987-11-01

    One major source of water-related health problems is the improper disposal of toxic substances in the environment. Toxic materials leaching from unregulated and unlined pits, ponds, lagoons, and landfills have created a widespread environmental nightmare in the United States and many other parts of the world. At present, there are two major and interrelated components of this problem in the United States. The first is the issue of cleaning up abandoned disposal sites that pose actual or potential threats to water supplies. The second aspect of the problem concerns the necessity of siting proper management, treatment, or disposal facilities in the future. Priorities must be set to allow efficient, effective, and equitable allocation of the scarce resources that are available for accomplishing these tasks. This article examines a number of the issues involved in setting these priorities, and presents the results obtained from a study of risk estimation and evaluation in the context of groundwater contamination by toxic substances. The article introduces a new concept of risk estimation, which is shown to produce more accurate and credible risk analyses. Finally, the relationships between risk credibility and public perceptions of procedural fairness and equity are examined as these factors bear on the institutional aspects of implementing policies for site cleanup and/or facility siting.

  15. Peptides having reduced toxicity that stimulate cholesterol efflux

    DOEpatents

    Bielicki, John K.; Johansson, Jan; Danho, Waleed

    2016-08-16

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABCA1 that parallels that of full-length apolipoproteins. Further, the peptides of the invention have little or no toxicity when administered at therapeutic and higher doses. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  16. Plants as useful vectors to reduce environmental toxic arsenic content.

    PubMed

    Mirza, Nosheen; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Sultan, Sikander

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants.

  17. Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content

    PubMed Central

    Mirza, Nosheen; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Sultan, Sikander

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants. PMID:24526924

  18. Spore-forming, Desulfosporosinus-like sulphate-reducing bacteria from a shallow aquifer contaminated with gasoline.

    PubMed

    Robertson, W J; Franzmann, P D; Mee, B J

    2000-02-01

    Previous studies on the geochemistry of a shallow unconfined aquifer contaminated with hydrocarbons suggested that the degradation of some hydrocarbons was linked to bacterial sulphate reduction. There was attenuation of naphthalene, 1,3,5-trimethylbenzene (TMB), toluene, p-xylene and ethylbenzene in the groundwater with concomitant loss of sulphate. Here, the recovery of eight strains of sulphate-reducing bacteria (SRB) from the contaminated site is reported. All were straight or curved rod-shaped cells which formed endospores. Amplification and sequencing of the 16S rDNA indicated that the strains were all sulphate reducers of the Gram-positive line of descent, and were most closely related to Desulfosporosinus (previously Desulfotomaculum) orientis DSM 8344 (97-98.9% sequence similarity). The strains clustered in three phylogenetic groups based on 16S rRNA sequences. Whole cell fatty acid compositions were similar to those of D. orientis DSM 8344, and were consistent with previous studies of fatty acids in soil and groundwater from the site. Microcosms containing groundwater from this aquifer indicated a role for sulphate reduction in the degradation of [ring-UL-14C]toluene, but not for the degradation of [UL-14C]benzene which could also be degraded by the microcosms. Adding one of the strains that was isolated from the groundwater (strain T2) to sulphate-enriched microcosms increased the rate of toluene degradation four- to 10-fold but had no effect on the rate of benzene degradation. The addition of molybdate, an inhibitor of sulphate reduction, to the groundwater samples decreased the rate of toluene mineralization. There was no evidence to support the mineralization of [UL-14C]benzene, [ring-UL-14C]toluene or unlabelled m-xylene, p-xylene, ethylbenzene, TMB or naphthalene by any of the strains in pure culture. Growth of all the strains was completely inhibited by 100 micromol l-1 TMB.

  19. Reduced in vivo toxicity of doxorubicin by encapsulation in cholesterol-containing self-assembled nanoparticles.

    PubMed

    Gonzalez-Fajardo, Laura; Mahajan, Lalit H; Ndaya, Dennis; Hargrove, Derek; Manautou, José E; Liang, Bruce T; Chen, Ming-Hui; Kasi, Rajeswari M; Lu, Xiuling

    2016-05-01

    We previously reported the development of an amphiphilic brush-like block copolymer composed of polynorbornene-cholesterol/polyethylene glycol (P(NBCh9-b-NBPEG)) that self-assembles in aqueous media to form long circulating nanostructures capable of encapsulating doxorubicin (DOX-NPs). Biodistribution studies showed that this formulation preferentially accumulates in tumor tissue with markedly reduced accumulation in the heart and other major organs. The aim of the current study was to evaluate the in vivo efficacy and toxicity of DOX containing self-assembled polymer nanoparticles in a mouse xenograft tumor model and compare its effects with the hydrochloride non-encapsulated form (free DOX). DOX-NPs significantly reduced the growth of tumors without inducing any apparent toxicity. Conversely, mice treated with free DOX exhibited significant weight loss, early toxic cardiomyopathy, acute toxic hepatopathy, reduced hematopoiesis and fatal toxicity. The improved safety profile of the polymeric DOX-NPs can be explained by the low circulating concentration of non-nanoparticle-associated drug as well as the reduced accumulation of DOX in non-target organs. These findings support the use of P(NBCh9-b-NBPEG) nanoparticles as delivery platforms for hydrophobic anticancer drugs intended to reduce the toxicity of conventional treatments.

  20. Smokeless tobacco brand switching: A means to reduce toxicant exposure?

    PubMed Central

    Hatsukami, D.K.; Ebbert, J.O.; Anderson, A.; Lin, H.; Le, C.; Hecht, S.S.

    2007-01-01

    The purpose of this study was to examine the effects of smokeless tobacco (ST) brand switching on biomarkers of ST exposure and on ST use. Subjects seeking treatment to reduce their use were randomized to ST brand switching with controlled ST topography, brand switching with ad libitum ST use, or a waitlist control with subsequent randomization to one of these two conditions. The waitlist control group was included to assess whether changes were a consequence of time effect. During the intervention, Copenhagen or Kodiak ST users were asked to switch to products that were sequentially lower in nicotine content: Skoal Long Cut Original or Wintergreen for 4 weeks and then Skoal Bandits for the subsequent 4 weeks. Measures were obtained during the course of treatment and at 12-week follow-up. Significant reductions in total urinary cotinine and 4-(methylnitrosamino)-l-(3 pyridyl) l-butanol (NNAL) plus its glucuronides (total NNAL) were observed with no significant differences between the controlled topography and ad libitum conditions. Significant reductions were also observed in the amount and duration of dips with a significant intervention effect for durational measures. At 12 weeks, the 7-day biochemically-verified tobacco abstinent rate was 26% in the ad libitum group. ST brand switching may be a feasible alternative intervention for ST users interested in quitting but unwilling to stop ST use completely. PMID:16996230

  1. Life cycle assessment of gasoline blending options.

    PubMed

    Mata, Teresa M; Smith, Raymond L; Young, Douglas M; Costa, Carlos A V

    2003-08-15

    A life cycle assessment has been done to compare the potential environmental impacts of various gasoline blends that meet octane and vapor pressure specifications. The main blending components of alkylate, cracked gasoline, and reformate have different octane and vapor pressure values as well as different potential environmental impacts. Because the octane and vapor pressure values are nonlinearly related to impacts, the results of this study show that some blends are better for the environment than others. To determine blending component compositions, simulations of a reformer were done at various operating conditions. The reformate products of these simulations had a wide range of octane values and potential environmental impacts. Results of the study indicate that for low-octane gasoline (95 Research Octane Number), lower reformer temperatures and pressures generally decrease the potential environmental impacts. However, different results are obtained for high-octane gasoline (98 RON), where increasing reformer temperatures and pressures increase the reformate octane values faster than the potential environmental impacts. The higher octane values for reformate allow blends to have less reformate, and therefore high-octane gasoline can have lower potential environmental impacts when the reformer is operated at higher temperatures and pressures. In the blends studied, reformate and cracked gasoline have the highest total impacts, of which photochemical ozone creation is the largest contributor (assuming all impact categories are equally weighted). Alkylate has a much lower total potential environmental impact but does have higher impact values for human toxicity by ingestion, aquatic toxicity, terrestrial toxicity, and acidification. Therefore, depending on environmental priorities, different gasoline blends and operating conditions should be chosen to meet octane and vapor pressure specifications.

  2. Comparative study of regulated and unregulated air pollutant emissions before and after conversion of automobiles from gasoline power to liquefied petroleum gas/gasoline dual-fuel retrofits.

    PubMed

    Yang, Hsi-Hsien; Chien, Shu-Mei; Cheng, Man-Ting; Peng, Chiung-Yu

    2007-12-15

    Liquefied petroleum gas (LPG) is increasingly being examined as an alternative to gasoline use in automobiles as interest grows in reducing air pollutant emissions. In this study, emissions of regulated (CO, THC, NO(x)) and unregulated air pollutants, including CO2, particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and BTEX (acronym for benzene, toluene, ethylbenzene, xylene), were measured before and after conversion of nine gasoline-powered automobiles to LPG/ gasoline dual-fuel retrofits. The tests were conducted on a standard chassis dynamometer in accordance with the United States Environmental Protection Agency FTP-75 test procedure, with the exception that all tests were conducted under hot-start driving conditions. The influences of LPG on air pollutant emission levels and carcinogenic potency were investigated and compared with gasoline. The results showed average emission factors of 0.14 g/km, 0.33 mg/km, 0.09 g/km, 0.44 g/km, and 197 g/km for CO, THC, NO(x), PM, and CO2, respectively, for LPG/ gasoline dual-fuel retrofits. Paired-sample t-test results indicated that the emissions of CO (p = 0.03), THC (p = 0.04), and CO2 (p = 4.6 x 10(-8)) were significantly reduced with the retrofit in comparison with gasoline-powered automobiles. The reduction percentages were 71%, 89%, and 14% for CO, THC, and CO2, respectively. The average total PAH emission factor for LPG was 217 microg/km, which is significantly lower than gasoline (863 microg/km; p = 0.05). The PAH corresponding carcinogenicities (BaP(eq)) were calculated via toxic equivalencies based on benzo(a)pyrene (BaP). Paired-sample t-test results fortotal BaP(eq) emissions showed no significant difference between gasoline (30.0 microg/km) and LPG (24.8 microg/km) at a confidence level of 95%. The discrepancy between PAH and BaP(eq) emissions resulted from the higher emission percentages of high molecular weight PAHs for LPG, which might be from lubricant oil. The average emission factors of

  3. Extraction of bioavailable contaminants from marine sediments: an approach to reducing toxicity using adsorbent parcels.

    PubMed

    Goodsir, Freya; Fisher, Tom T; Barry, Jon; Bolam, Thi; Nelson, Leah D; Rumney, Heather S; Brant, Jan L

    2013-07-15

    This paper demonstrates an approach to reducing acute toxicity in marine sediments using adsorbent parcels. Acute toxicity tests were carried using the marine amphipod Corophium volutator. Marine sediments were spiked with two know contaminants tributyltin and naphthalene and then treated with adsorbent parcels containing either amberlite XAD4 or activated carbon. Results showed that both types of adsorbent parcels were effective in reducing acute toxicity, not only within spiked sediments containing naphthalene and/or tributyltin, but also in an environmental field samples form an expected contaminated site. Adsorbent parcels such as these could provide a practical approach to remediate areas of contaminated sediment within marine environments. Furthermore adsorbents can be used as an identification tool for problematic contaminants using a toxicity identification evaluation approach.

  4. EPA Announces National Limits to Reduce Toxic Pollutants Discharged into Waterways by Steam Electric Power Plants

    EPA Pesticide Factsheets

    WASHINGTON - The U.S. Environmental Protection Agency (EPA) today finalized a rule that will reduce the discharge of toxic pollutants into America's waterways from steam electric power plants by 1.4 billion pounds annually, as well as reduce water w

  5. Gasoline from alcohols

    NASA Astrophysics Data System (ADS)

    Morgan, C. R.; Warner, J. P.; Yurchak, S.

    1981-03-01

    This paper discusses laboratory and vehicle performance test results obtained from gasoline produced by the Mobil methanol conversion process. Antiknock qualities, driveability performance, exhaust emission levels, plus other in-car and laboratory characterization tests show the gasoline to compare very favorably with conventional petroleum derived high-octane unleaded gasolines. The methanol conversion process, and its advantages relative to the blending of alcohol-containing fuels, also is discussed briefly.

  6. Reducing Freshwater Toxicity while Maintaining Weed Control, Profits, And Productivity: Effects of Increased Crop Rotation Diversity and Reduced Herbicide Usage.

    PubMed

    Hunt, Natalie D; Hill, Jason D; Liebman, Matt

    2017-02-07

    Increasing crop rotation diversity while reducing herbicide applications may maintain effective weed control while reducing freshwater toxicity. To test this hypothesis, we applied the model USEtox 2.0 to data from a long-term Iowa field experiment that included three crop rotation systems: a 2-year corn-soybean sequence, a 3-year corn-soybean-oat/red clover sequence, and 4-year corn-soybean-oat/alfalfa-alfalfa sequence. Corn and soybean in each rotation were managed with conventional or low-herbicide regimes. Oat, red clover, and alfalfa were not treated with herbicides. Data from 2008-2015 showed that use of the low-herbicide regime reduced freshwater toxicity loads by 81-96%, and that use of the more diverse rotations reduced toxicity and system dependence on herbicides by 25-51%. Mean weed biomass in corn and soybean was <25 kg ha(-1) in all rotation × herbicide combinations except the low-herbicide 3-year rotation, which contained ∼110 kg ha(-1) of weed biomass. Corn and soybean yields and net returns were as high or higher for the 3- and 4-year rotations managed with the low-herbicide regime as for the conventional-herbicide 2-year rotation. These results indicate that certain forms of cropping system diversification and alternative weed management strategies can maintain yield, profit, and weed suppression while delivering enhanced environmental performance.

  7. The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions. Part 3: diesel and gasoline.

    PubMed

    Claxton, Larry D

    2015-01-01

    Within this review the genotoxicity of diesel and gasoline fuels and emissions is placed in an historical context. New technologies have changed the composition of transportation methods considerably, reducing emissions of many of the components of health concern. The similarity of modern diesel and gasoline fuels and emissions to other carbonaceous fuels and emissions is striking. Recently an International Agency for Research on Cancer (IARC) Working Group concluded that there was sufficient evidence in humans for the carcinogenicity of diesel exhaust (Group 1). In addition, the Working Group found that diesel exhaust has "a positive association (limited evidence) with an increased risk of bladder cancer." Like most other carbonaceous fuel emissions, diesel and gasoline exhausts contain toxic levels of respirable particles (PM <2.5μm) and polycyclic aromatic hydrocarbons. However, the level of toxic components in exhausts from diesel and gasoline emissions has declined in certain regions over time because of changes in engine design, the development of better aftertreatment devices (e.g., catalysts), increased fuel economy, changes in the fuels and additives used, and greater regulation. Additional research and better exposure assessments are needed so that decision makers and the public can decide to what extent diesel and gasoline engines should be replaced.

  8. Persulfate injection into a gasoline source zone.

    PubMed

    Sra, Kanwartej S; Thomson, Neil R; Barker, Jim F

    2013-07-01

    One pore volume of unactivated sodium persulfate was delivered into an emplaced gasoline residual source zone at CFB Borden. Concentrations of inorganic species (S2O8(2-), SO4(2-), Na(+), dissolved inorganic carbon (DIC)) and selected gasoline compounds (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) were monitored across a transect equipped with 90 multilevel sampling points for >10months post-injection. Mass loading (M˙) of compounds constructed from the transect data was used for assessment purposes. Breakthrough of inorganic species was observed when the injection slug crossed the monitoring transect. An increase in [Formula: see text] indicated persulfate consumption during oxidation of gasoline compounds or degradation due to the interaction with aquifer materials. M˙DIC increased by >100% suggesting some mineralization of gasoline compounds during treatment. Mass loading for all the monitored gasoline compounds reduced by 46 to 86% as the inorganic slug crossed the monitoring transect. The cumulative mass discharge across the monitoring transect was 19 to 58% lower than that expected without persulfate injection. After the inorganic injection slug was flushed from the source zone a partial rebound (40 to 80% of baseline levels) of mass discharge of the monitored gasoline compounds was observed. The ensemble of data collected provides insight into the fate and transport of the injected persulfate solution, and the accompanying treatment of a gasoline the source zone.

  9. Attenuating the toxicity of cisplatin by using selenosulfate with reduced risk of selenium toxicity as compared with selenite

    SciTech Connect

    Zhang Jinsong Peng Dungeng; Lu Hongjuan; Liu Qingliang

    2008-02-01

    It has been reported that high doses of sodium selenite can reduce side effects of cisplatin (CDDP) without compromising its antitumor activity, thus substantially enhancing the cure rate in tumor-bearing mice. However, the toxicity of selenite at high doses should be a concern. The present study revealed that selenosulfate had much lower toxicity, but possessed equal efficacy in selenium (Se) utilization, as compared with selenite at similar doses when used for the intervention of CDDP. In addition, Se accumulation in whole blood and kidney of mice treated with selenosulfate was highly correlated with the survival rate of mice treated with CDDP (both r > 0.96 and both p < 0.05), suggesting that whole blood Se is a potential clinical biomarker to predict host tolerance to CDDP. In either Se-deficient or -sufficient mice bearing solid tumors of hepatoma 22 (H22), selenosulfate did not disturb the therapeutic effect of CDDP on tumors but effectively attenuated the toxicity of CDDP. Furthermore, in a highly malignant cancer model, with Se-sufficient mice bearing ascitic H22 cells, 8 or 10 mg/kg CDDP alone only achieved a null or 25% cure rate, whereas coadministration of selenosulfate with the above two doses of CDDP achieved cure rates of 87.5% or 75%. These results together argue for consideration of selenosulfate as an agent to enhance the therapeutic efficacy of CDDP.

  10. Nitric oxide reduces Cu toxicity and Cu-induced NH4+ accumulation in rice leaves.

    PubMed

    Yu, Chia Chi; Hung, Kuo Tung; Kao, Ching Huei

    2005-12-01

    Nitric oxide (NO) is a highly reactive, membrane-permeable free radical, which has recently emerged as an important antioxidant. Here we investigated the protective effect of NO against the toxicity and NH4+ accumulation in rice leaves caused by excess CuSO4 (10mmol L(-1)). It was found that free radical scavengers (sodium benzoate, thiourea, and reduced glutathione) reduced the toxicity and NH4+ accumulation in rice leaves caused by excess CuSO4. NO donor sodium nitroprusside (SNP) was also effective in reducing CuSO4-induced toxicity and NH4+ accumulation in rice leaves. The protective effect of SNP on the toxicity and NH4+ accumulation can be reversed by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, suggesting that the protective effect of SNP is attributable to NO released. Results obtained in the present study suggest that reduction of CuSO4-induced toxicity and NH4+ accumulation by SNP is most likely mediated through its ability to scavenge active oxygen species.

  11. The use of a novel tobacco treatment process to reduce toxicant yields in cigarette smoke.

    PubMed

    Liu, Chuan; DeGrandpré, Yves; Porter, Andrew; Griffiths, Alexander; McAdam, Kevin; Voisine, Richard; Côté, France; Proctor, Christopher

    2011-09-01

    The US Institute of Medicine has encouraged the pursuit and development of potential reduced-exposure products (PREPs) - tobacco products that substantially reduce exposure to one or more tobacco toxicants and can reasonably be expected to reduce the risk of one or more specific diseases or other adverse health effects. One potential approach is to reduce levels of some smoke toxicant precursors, such as proteins and polyphenols, in tobacco. We describe a treatment process involving aqueous tobacco extraction and treatment with protease; filtration of the extract to remove peptides, amino acids and polyphenols, and recombination of extract and treated tobacco. The process reduced levels of protein nitrogen (59%), polyphenols (33-78%) and nicotine (12%) while sugars increased 16%. ISO mainstream smoke yields of 43 toxicants were measured from cigarettes containing treated tobaccos; lower yields of tar, nicotine, carbon monoxide (16-20%), acrylonitrile, ammonia, aromatic amines, pyridine, quinolene and hydrogen cyanide (33-51%), tobacco specific nitrosamines (25-32%); phenolics (24-56%), benzene (16%), toluene (25%) and cadmium (34%) were obtained. There were significantly increased yields of formaldehyde (49%) and isoprene (17%). Reductions in sidestream yields of nitrogenous smoke toxicants and increases in sidestream yields of several carbonyls, benzo(a)pyrene and isoprene were also observed.

  12. Simulation: Gasoline Compression Ignition

    SciTech Connect

    2015-04-13

    The Mira supercomputer at the Argonne Leadership Computing Facility helped Argonne researchers model what happens inside an engine when you use gasoline in a diesel engine. Engineers are exploring this type of combustion as a sustainable transportation option because it may be more efficient than traditional gasoline combustion engines but produce less soot than diesel.

  13. Metabolomics reveals the mechanisms for the cardiotoxicity of Pinelliae Rhizoma and the toxicity-reducing effect of processing

    NASA Astrophysics Data System (ADS)

    Su, Tao; Tan, Yong; Tsui, Man-Shan; Yi, Hua; Fu, Xiu-Qiong; Li, Ting; Chan, Chi Leung; Guo, Hui; Li, Ya-Xi; Zhu, Pei-Li; Tse, Anfernee Kai Wing; Cao, Hui; Lu, Ai-Ping; Yu, Zhi-Ling

    2016-10-01

    Pinelliae Rhizoma (PR) is a commonly used Chinese medicinal herb, but it has been frequently reported about its toxicity. According to the traditional Chinese medicine theory, processing can reduce the toxicity of the herbs. Here, we aim to determine if processing reduces the toxicity of raw PR, and to explore the underlying mechanisms of raw PR-induced toxicities and the toxicity-reducing effect of processing. Biochemical and histopathological approaches were used to evaluate the toxicities of raw and processed PR. Rat serum metabolites were analyzed by LC-TOF-MS. Ingenuity pathway analysis of the metabolomics data highlighted the biological pathways and network functions involved in raw PR-induced toxicities and the toxicity-reducing effect of processing, which were verified by molecular approaches. Results showed that raw PR caused cardiotoxicity, and processing reduced the toxicity. Inhibition of mTOR signaling and activation of the TGF-β pathway contributed to raw PR-induced cardiotoxicity, and free radical scavenging might be responsible for the toxicity-reducing effect of processing. Our data shed new light on the mechanisms of raw PR-induced cardiotoxicity and the toxicity-reducing effect of processing. This study provides scientific justifications for the traditional processing theory of PR, and should help in optimizing the processing protocol and clinical combinational application of PR.

  14. Metabolomics reveals the mechanisms for the cardiotoxicity of Pinelliae Rhizoma and the toxicity-reducing effect of processing

    PubMed Central

    Su, Tao; Tan, Yong; Tsui, Man-Shan; Yi, Hua; Fu, Xiu-Qiong; Li, Ting; Chan, Chi Leung; Guo, Hui; Li, Ya-Xi; Zhu, Pei-Li; Tse, Anfernee Kai Wing; Cao, Hui; Lu, Ai-Ping; Yu, Zhi-Ling

    2016-01-01

    Pinelliae Rhizoma (PR) is a commonly used Chinese medicinal herb, but it has been frequently reported about its toxicity. According to the traditional Chinese medicine theory, processing can reduce the toxicity of the herbs. Here, we aim to determine if processing reduces the toxicity of raw PR, and to explore the underlying mechanisms of raw PR-induced toxicities and the toxicity-reducing effect of processing. Biochemical and histopathological approaches were used to evaluate the toxicities of raw and processed PR. Rat serum metabolites were analyzed by LC-TOF-MS. Ingenuity pathway analysis of the metabolomics data highlighted the biological pathways and network functions involved in raw PR-induced toxicities and the toxicity-reducing effect of processing, which were verified by molecular approaches. Results showed that raw PR caused cardiotoxicity, and processing reduced the toxicity. Inhibition of mTOR signaling and activation of the TGF-β pathway contributed to raw PR-induced cardiotoxicity, and free radical scavenging might be responsible for the toxicity-reducing effect of processing. Our data shed new light on the mechanisms of raw PR-induced cardiotoxicity and the toxicity-reducing effect of processing. This study provides scientific justifications for the traditional processing theory of PR, and should help in optimizing the processing protocol and clinical combinational application of PR. PMID:27698376

  15. Efficient chemo-enzymatic gluten detoxification: reducing toxic epitopes for celiac patients improving functional properties.

    PubMed

    Ribeiro, Miguel; Nunes, Fernando M; Guedes, Sofia; Domingues, Pedro; Silva, Amélia M; Carrillo, Jose Maria; Rodriguez-Quijano, Marta; Branlard, Gérard; Igrejas, Gilberto

    2015-12-22

    Protein engineering of gluten, the exogenous effector in celiac disease, seeking its detoxification by selective chemical modification of toxic epitopes is a very attractive strategy and promising technology when compared to pharmacological treatment or genetic engineering of wheat. Here we present a simple and efficient chemo-enzymatic methodology that decreases celiac disease toxic epitopes of gluten proteins improving its technological value through microbial transglutaminase-mediated transamidation of glutamine with n-butylamine under reducing conditions. First, we found that using low concentrations of amine-nucleophile under non-reducing conditions, the decrease in toxic epitopes is mainly due to transglutaminase-mediated cross-linking. Second, using high amine nucleophile concentrations protein cross-linking is substantially reduced. Third, reducing conditions increase 7-fold the transamidation reaction further decreasing toxic epitopes amount. Fourth, using n-butylamine improves gluten hydrophobicity that strengthens the gluten network. These results open the possibility of tailoring gluten for producing hypoallergenic flours while still taking advantage of the unique viscoelastic properties of gluten.

  16. Efficient chemo-enzymatic gluten detoxification: reducing toxic epitopes for celiac patients improving functional properties

    PubMed Central

    Ribeiro, Miguel; Nunes, Fernando M.; Guedes, Sofia; Domingues, Pedro; Silva, Amélia M.; Carrillo, Jose Maria; Rodriguez-Quijano, Marta; Branlard, Gérard; Igrejas, Gilberto

    2015-01-01

    Protein engineering of gluten, the exogenous effector in celiac disease, seeking its detoxification by selective chemical modification of toxic epitopes is a very attractive strategy and promising technology when compared to pharmacological treatment or genetic engineering of wheat. Here we present a simple and efficient chemo-enzymatic methodology that decreases celiac disease toxic epitopes of gluten proteins improving its technological value through microbial transglutaminase-mediated transamidation of glutamine with n-butylamine under reducing conditions. First, we found that using low concentrations of amine-nucleophile under non-reducing conditions, the decrease in toxic epitopes is mainly due to transglutaminase-mediated cross-linking. Second, using high amine nucleophile concentrations protein cross-linking is substantially reduced. Third, reducing conditions increase 7-fold the transamidation reaction further decreasing toxic epitopes amount. Fourth, using n-butylamine improves gluten hydrophobicity that strengthens the gluten network. These results open the possibility of tailoring gluten for producing hypoallergenic flours while still taking advantage of the unique viscoelastic properties of gluten. PMID:26691232

  17. Extrusion cooking using a twin-screw apparatus reduces toxicity of fumonisin-contaminated corn grits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion cooking using a single screw configuration reduced fumonisin concentrations of corn grits in an earlier study. Adding glucose before cooking enhanced reductions and, in one of three trials, partially reversed in vivo toxicity. To determine the effectiveness of extrusion using the more effi...

  18. Reduced toxicity of fumonisin B1 in corn grits by single-screw extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion cooking under conditions of high heat and pressure reduces the concentration of fumonisins in corn-based products; however, the toxicity of heretofore uncharacterized fumonisin reactions products in extruded materials has not been determined. Uncontaminated corn grits, grits spiked with 3...

  19. Improving the Nation's Health. Step One: Reduce Toxic Stress in Early Childhood. Perspectives

    ERIC Educational Resources Information Center

    Louv, Richard

    2006-01-01

    To reduce risk factors for adult disease in our society, we must tackle the problem of toxic stress in early childhood. This condition is associated with the excessive release of a stream of hormones whose persistent elevation can disrupt the wiring of the developing brain and the functioning of the immune system. Children who experience toxic…

  20. INTERLABORATORY COMPARISON OF A REDUCED VOLUME MARINE SEDIMENT TOXICITY TEST METHOD USING AMPHIPOD AMPELISCA ABDITA

    EPA Science Inventory

    The U.S. Environmental Protection Agency has standardized methods for performing acute marine amphipod sediment toxicity tests. A test design reducing sediment volume from 200 to 50 ml and overlying water from 600 to 150 ml was recently proposed. An interlaboratory comparison wa...

  1. A Community-Based Initiative to Reduce Children's Exposure to Toxics in Household Products

    ERIC Educational Resources Information Center

    Blackman, Anne Berlin; Luskin, Jack

    2006-01-01

    Purpose--The purpose of this paper is to explore the efficacy of a community-based outreach initiative, piloted in Worcester, Massachusetts, to reduce children's exposure to toxic chemicals in common household products by changing parental behavior regarding product purchase and use. Design/methodology/approach--The program model was based on the…

  2. Bioremediation of gasoline-contaminated soil using poultry litter

    SciTech Connect

    Gupta, G; Tao, J.

    1996-10-01

    Contaminated soil, excavated from around a leaking underground gasoline storage tank, is commonly subjected to thermal degradation to remove the gasoline. Bioremediation as an alternative treatment technology is now becoming popular. The important hydrocarbon-degrading bacteria include Pseudomonas, Arthrobacter, and Flavobacterium. Poultry litter contains a large number of microorganisms, including Pseudomonas, as well as many inorganic nutrients and organic biomass that may assist in biodegrading gasoline in contaminated soil. During bioremediation of contaminated soil, microbial densities are known to increase by 2-3 orders of magnitude. However, bioremediation may result in a increase in the toxic characteristics of the soil due to the production of potentially toxic degradation intermediates. The objective of this research was to study the influence of the addition of poultry litter on the bioremediation of gasoline-contaminated soil by quantifying the changes in the densities of microorganisms and by monitoring the toxicity of the degradation products. 25 refs., 5 figs., 2 tabs.

  3. Non-ionic surfactant vesicles simultaneously enhance antitumor activity and reduce the toxicity of cantharidin

    PubMed Central

    Han, Wei; Wang, Shengpeng; Liang, Rixin; Wang, Lan; Chen, Meiwan; Li, Hui; Wang, Yitao

    2013-01-01

    Objective The objective of the present study was to prepare cantharidin-entrapped non-ionic surfactant vesicles (CTD-NSVs) and evaluate their potential in enhancing the antitumor activities and reducing CTD’s toxicity. Methods and results CTD-NSVs were prepared by injection method. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry analysis showed that CTD-NSVs could significantly enhance in vitro toxicity against human breast cancer cell line MCF-7 and induce more significant cell-cycle arrest in G0/G1 phase. Moreover, Hoechst 33342 staining implicated that CTD-NSVs induced higher apoptotic rates in MCF-7 cells than free CTD solution. In vivo therapeutic efficacy was investigated in imprinting control region mice bearing mouse sarcoma S180. Mice treated with 1.0 mg/kg CTD-NSVs showed the most powerful antitumor activity, with an inhibition rate of 52.76%, which was significantly higher than that of cyclophosphamide (35 mg/kg, 40.23%) and the same concentration of free CTD (1.0 mg/kg, 31.05%). In addition, the acute toxicity and liver toxicity of CTD were also distinctly decreased via encapsulating into NSVs. Conclusion Our results revealed that NSVs could be a promising delivery system for enhancing the antitumor activity and simultaneously reducing the toxicity of CTD. PMID:23807847

  4. Use of deep water lagoons for reducing sewage toxicity prior to wastewater treatment

    SciTech Connect

    Shaw, J.R.; Zuiderveen, J.A.; Belcher, B.; McGinley, P.; Birge, W.J.

    1995-12-31

    Investigations were conducted to determine the effectiveness of deep lagoons as a means of minimizing toxicity and reducing wastewater parameters. A lagoon system associated with a wastewater treatment plant (WWTP) was selected for study and parameters identified for monitoring included toxicity, metal concentrations, total suspended solids (TSS) and ammonia. This system included two lagoons, with 7--15 day hydraulic retention times, which received municipal waste. Toxicity and other parameters were measured for raw influent water, the two lagoon outfalls, and the final WWTP effluent. In a definitive seven-day chronic test with Ceriodaphnia dubia, the NOEC of influent water was 20%, and the IC{sub 50} for reproduction was 22.3%. Outfall from the first deep water lagoon showed reduced toxicity. The NOEC and IC{sub 50} were 80 and 71.8%, respectively. Further reduction in toxicity occurred in the second lagoon. The NOEC was 80% and the IC{sub 50} was 75.9. The final effluent discharged from the treatment plant affected neither survival nor fecundity. A 7-day embryo larval test conducted with Pimephales promelas yielded similar results. NOEC values increased through the lagoon system and were 2.5, 40.0, 40.0 and 100%, respectively. Acute TIE procedures implicated both metals and ammonia as primary toxicants. In all tests a sequential reduction in toxicity was observed through the lagoons. Results of this investigation support the use of deep water lagoons as an effective and economical means of pretreating wastewater. This approach offers promise for municipal waters, industrial effluents and stormwater runoff.

  5. Intensity-modulated radiotherapy reduces gastrointestinal toxicity in locally advanced pancreas cancer

    PubMed Central

    Prasad, Shreya; Cambridge, Lajhem; Huguet, Florence; Chou, Joanne F.; Zhang, Zhigang; Wu, Abraham J.; O'Reilly, Eileen M.; Allen, Peter; Goodman, Karyn A.

    2016-01-01

    Purpose We compared gastrointestinal (GI) and hematologic toxicity in patients with locally advanced pancreas cancer (LAPC) undergoing definitive chemoradiation using intensity modulated radiotherapy (IMRT) or 3D conformal radiotherapy (3D-CRT) planning. Methods and Materials We retrospectively studied 205 patients with LAPC undergoing IMRT (n=134) and 3D-CRT (n=71) between 05/03 and 03/12. Patient, tumor, and treatment characteristics and acute GI/hematology toxicity according to Common Terminology Criteria for Adverse Events v3.0 were recorded. Multivariable logistic regression models were used to test association between acute grade 2+ GI and hematologic toxicity outcomes and predictors. Propensity score analysis for grade 2+ GI toxicity was performed to reduce bias for confounding variables: age, gender, radiation dose, field size, and chemotherapy type. Results Median follow-up time for survivors was 22 months, similar between groups. Median RT dose was significantly higher for IMRT vs. 3D-CRT (5600 cGy vs 5040 cGy, P<.001); concurrent chemotherapy was mainly gemcitabine (56%) or 5-fluorouracil (5-FU, 38%). Grade 2+ GI toxicity occurred in 34% (n=24) of 3D-CRT compared with 16% (n=21) of IMRT patients. Using propensity-score analysis, 3D-CRT had significantly higher grade 2+ GI toxicity (odds ratio, 1.26 [95%CI, 1.08-1.45], P=.001). Grade 2+ hematologic toxicity was similar between IMRT and 3D-CRT groups but was significantly greater in recipients of concurrent gemcitabine over 5-FU (62% vs 29%, P<.0001). Conclusions IMRT is associated with significant lower grade 2+ GI toxicity versus 3D-CRT for patients undergoing definitive chemoradiotherapy for LAPC. Since IMRT is better tolerated at higher doses and may allow further dose escalation, potentially improving local control for this aggressive disease. Further prospective studies of dose-escalated chemoradiation using IMRT are warranted. PMID:26577010

  6. The Vitamin E analog Trolox reduces copper toxicity in the annelid Lumbriculus variegatus but is also toxic on its own.

    PubMed

    O'Gara, Bruce A; Murray, Phillip M; Hoyt, Erik M; Leigh-Logan, Tifany; Smeaton, Michael B

    2006-07-01

    The ability of the water-soluble Vitamin E analog, Trolox, to prevent the toxic effects of copper exposure on the behavior and neuronal physiology of the freshwater oligochaete Lumbriculus variegatus was examined. Trolox produced a concentration-dependent increase in the 24 h LC(50) for copper exposure, with 100 microM Trolox elevating the LC(50) by almost seven-fold (from 0.36 to 2.43 microM). Copper exposure (0.2 microM) for 24h produced a reduction in the conduction velocity of the medial and lateral giant nerve fibers, which was prevented by 100 microM Trolox. Copper exposure (0.2 microM) for 24h also reduced the effectiveness of substrate vibration in eliciting giant nerve fiber spikes. Trolox prevented this reduction in sensory responsiveness. Trolox (100 microM) partially reversed the copper-induced (0.4 microM) decrease in touch-evoked helical swimming behavior, but had no effect on the copper-induced decrement in touch-evoked body reversal. Copper exposure (0.2 microM) for 24 h reduced the amount of spontaneous locomotion (crawling); however, Trolox did not reverse this effect. However, Trolox exposure alone produced a decrease in the distance crawled that was similar in magnitude to copper exposure. In normal worms, rapid spiking activity of the medial giant nerve fiber produces facilitation in the amplitude of the resulting muscle potentials produced by the longitudinal body wall muscles. Copper exposure had no effect on the amount of muscle potential facilitation, but Trolox exposure (100 microM) produced a significant decrease in facilitation. The results of this study indicate that many of the toxic effects of copper exposure on Lumbriculus are prevented or reduced by the antioxidant Trolox. However, the results of this study also indicate that Trolox has toxic effects on behavior and neuronal physiology. The results presented here document one of the few published reports of the detrimental effects of Vitamin E or its analogs on nervous system

  7. Gasoline immersion injury

    SciTech Connect

    Simpson, L.A.; Cruse, C.W.

    1981-01-01

    Chemical burns and pulmonary complications are the most common problems encountered in the patient immersed in gasoline. Our patient demonstrated a 46-percent total-body-surface area, partial-thickness chemical burn. Although he did not develop bronchitis or pneumonitis, he did display persistent atelectasis, laryngeal edema, and subsequent upper airway obstruction. This had not previously been reported in gasoline inhalation injuries. Hydrocarbon hepatitis secondary to the vascular endothelial damage is apparently a reversible lesion with no reported long-term sequelae. Gasoline immersion injuries may be a series multisystem injury and require the burn surgeon to take a multisystem approach to its diagnosis and treatment.

  8. Application of Fenton oxidation to reduce the toxicity of mixed parabens.

    PubMed

    Martins, Rui C; Gmurek, Marta; Rossi, André F; Corceiro, Vanessa; Costa, Raquel; Quinta-Ferreira, M Emília; Ledakowicz, Stanislaw; Quinta-Ferreira, Rosa M

    2016-10-01

    The aims of the present work were to assess the application of a chemical process to degrade a mixture of parabens and determine the influence of a natural river water matrix on toxicity. Model effluents containing either a single compound, namely methylparaben, ethylparaben, propylparaben, butylparaben, benzylparaben or p-hydroxybenzoic acid, or to mimic realistic conditions a mixture of the six compounds was used. Fenton process was applied to reduce the organic charge and toxic properties of the model effluents. The efficiency of the decontamination has been investigated using a chemical as well as a toxicological approach. The potential reduction of the effluents' toxicity after Fenton treatment was evaluated by assessing (i) Vibrio fischeri luminescence inhibition, (ii) lethal effects amongst freshwater Asian clams (Corbicula fluminea), and (iii) the impact on mammalian neuronal activity using brain slices. From the environmental point of view such a broad toxicity analysis has been performed for the first time. The results indicate that Fenton reaction is an effective method for the reduction of chemical oxygen demand of a mixture of parabens and their toxicity to V. fischeri and C. fluminea. However, no important differences were found between raw and treated samples in regard to mammalian neuronal activity.

  9. Sodium chloride alleviates cadmium toxicity by reducing nitric oxide accumulation in tobacco.

    PubMed

    Zhang, Binglin; Shang, Shenghua; Jabben, Zahra; Zhang, Guoping

    2014-12-01

    Nitric oxide (NO) is involved in regulating the response of plants to Cd toxicity. In this study, we examined possible involvement of NO in the alleviation of Cd toxicity by NaCl in tobacco plants. Two independent experiments were conducted to investigate the changes of NO accumulation and Cd concentration in tobacco plants after the addition of a NO donor, sodium nitroprusside dehydrate (SNP), or a NO inhibitor, nitro-l-arginine methyl ester (l-NAME) in the solution containing NaCl and Cd. NO accumulation in tobacco roots was enhanced when plants were exposed to Cd, but reduced in the treatments of NaCl or l-NAME. NO production was not enhanced even when SNP (NO donor) was added to the solution containing Cd and NaCl. Root number was reduced in plants exposed to Cd, and increased by the addition of NaCl and reduced by the addition of SNP. Addition of NaCl or l-NAME to the Cd-containing solution reduced Cd concentration in plant tissues, with l-NAME having a more dramatic effect. It can be concluded that alleviation of Cd toxicity by NaCl contributed to reduction of NO accumulation in plants.

  10. Use of deep water lagoons for reducing sewage toxicity prior to wastewater treatment

    SciTech Connect

    Shaw, J.R.; Zuiderveen, J.A.; Belcher, B.; McGinley, P.; Birge, W.J.

    1994-12-31

    Investigations were conducted to determine the effectiveness of deep lagoons as a means of wastewater pretreatment. A lagoon system associated with a wastewater treatment plant (WWTP) was selected for study and parameters identified for monitoring included toxicity, metals, total suspended solids (TSS) and ammonia. This system included two lagoons, with 7--15 day hydraulic retention times, fed sequentially with untreated water. Toxicity and other parameters were measured for raw influent water, the two lagoon outfalls, and the final WWTP effluent. In seven-day chronic tests with Ceriodaphnia dubia, the NOEC of influent water was as low as 20%, and 100% mortality occurred at 40%. Outfall from the first deep water lagoon showed reduced toxicity. The NOEC was > 50% but complete mortality occurred in undiluted effluent. Further reduction in toxicity occurred in the second lagoon. Its undiluted effluent had no effect on survival, but did markedly reduce fecundity. The final effluent discharged from the treatment plant affected neither survival nor fecundity. Results of this investigation support the use of deep water lagoons as an effective and economical means of pretreating wastewater. This approach offers promise for municipal waters, industrial effluents and stormwater runoff.

  11. Standby Gasoline Rationing Plan

    SciTech Connect

    1980-06-01

    The final rules adopted by the President for a Standby Gasoline Rationing Plan are presented. The plan provides that eligibility for ration allotments will be determined primarily on the basis of motor vehicle registrations, taking into account historical differences in the use of gasoline among states. The regulations also provide authority for supplemental allotments to firms so that their allotment will equal a specified percentage of gasoline use during a base period. Priority classifications, i.e., agriculture, defense, etc., are established to assure adequate gasoline supplies for designated essential services. Ration rights must be provided by end-users to their suppliers for each gallon sold. DOE will regulate the distribution of gasoline at the wholesale level according to the transfer by suppliers of redeemed ration rights and the gasoline allocation regulations. Ration rights are transferable. A ration banking system is created to facilitate transfers of ration rights. Each state will be provided with a reserve of ration rights to provide for hardship needs and to alleviate inequities. (DC)

  12. Effects of reduced mitochondrial DNA content on secondary mitochondrial toxicant exposure in Caenorhabditis elegans.

    PubMed

    Luz, Anthony L; Meyer, Joel N

    2016-09-01

    The mitochondrial genome (mtDNA) is intimately linked to cellular and organismal health, as demonstrated by the fact that mutations in and depletion of mtDNA result in severe mitochondrial disease in humans. However, cells contain hundreds to thousands of copies of mtDNA, which provides genetic redundancy, and creates a threshold effect in which a large percentage of mtDNA must be lost prior to clinical pathogenesis. As certain pharmaceuticals and genetic mutations can result in depletion of mtDNA, and as many environmental toxicants target mitochondria, it is important to understand whether reduced mtDNA will sensitize an individual to toxicant exposure. Here, using ethidium bromide (EtBr), which preferentially inhibits mtDNA replication, we reduced mtDNA 35-55% in the in vivo model organism Caenorhabditis elegans. Chronic, lifelong, low-dose EtBr exposure did not disrupt nematode development or lifespan, and induced only mild alterations in mitochondrial respiration, while having no effect on steady-state ATP levels. Next, we exposed nematodes with reduced mtDNA to the known and suspected mitochondrial toxicants aflatoxin B1, arsenite, paraquat, rotenone or ultraviolet C radiation (UVC). EtBr pre-exposure resulted in mild sensitization of nematodes to UVC and arsenite, had no effect on AfB1 and paraquat, and provided some protection from rotenone toxicity. These mixed results provide a first line of evidence suggesting that reduced mtDNA content may sensitize an individual to certain environmental exposures.

  13. Reduced Toxicity Conditioning and Allogeneic Hematopoietic Progenitor Cell Transplantation for Recessive Dystrophic Epidermolysis Bullosa.

    PubMed

    Geyer, Mark B; Radhakrishnan, Kavita; Giller, Roger; Umegaki, Noriko; Harel, Sivan; Kiuru, Maija; Morel, Kimberly D; LeBoeuf, Nicole; Kandel, Jessica; Bruckner, Anna; Fabricatore, Sandra; Chen, Mei; Woodley, David; McGrath, John; Baxter-Lowe, LeeAnn; Uitto, Jouni; Christiano, Angela M; Cairo, Mitchell S

    2015-09-01

    Recessive dystrophic epidermolysis bullosa is a severe, incurable, inherited blistering disease caused by COL7A1 mutations. Emerging evidence suggests hematopoietic progenitor cells (HPCs) can be reprogrammed into skin; HPC-derived cells can restore COL7 expression in COL7-deficient mice. We report two children with recessive dystrophic epidermolysis bullosa treated with reduced-toxicity conditioning and HLA-matched HPC transplantation.

  14. Reduced Acute Bowel Toxicity in Patients Treated With Intensity-Modulated Radiotherapy for Rectal Cancer

    SciTech Connect

    Samuelian, Jason M.; Callister, Matthew D.; Ashman, Jonathan B.; Young-Fadok, Tonia M.; Borad, Mitesh J.; Gunderson, Leonard L.

    2012-04-01

    Purpose: We have previously shown that intensity-modulated radiotherapy (IMRT) can reduce dose to small bowel, bladder, and bone marrow compared with three-field conventional radiotherapy (CRT) technique in the treatment of rectal cancer. The purpose of this study was to review our experience using IMRT to treat rectal cancer and report patient clinical outcomes. Methods and Materials: A retrospective review was conducted of patients with rectal cancer who were treated at Mayo Clinic Arizona with pelvic radiotherapy (RT). Data regarding patient and tumor characteristics, treatment, acute toxicity according to the Common Terminology Criteria for Adverse Events v 3.0, tumor response, and perioperative morbidity were collected. Results: From 2004 to August 2009, 92 consecutive patients were treated. Sixty-one (66%) patients were treated with CRT, and 31 (34%) patients were treated with IMRT. All but 2 patients received concurrent chemotherapy. There was no significant difference in median dose (50.4 Gy, CRT; 50 Gy, IMRT), preoperative vs. postoperative treatment, type of concurrent chemotherapy, or history of previous pelvic RT between the CRT and IMRT patient groups. Patients who received IMRT had significantly less gastrointestinal (GI) toxicity. Sixty-two percent of patients undergoing CRT experienced {>=}Grade 2 acute GI side effects, compared with 32% among IMRT patients (p = 0.006). The reduction in overall GI toxicity was attributable to fewer symptoms from the lower GI tract. Among CRT patients, {>=}Grade 2 diarrhea and enteritis was experienced among 48% and 30% of patients, respectively, compared with 23% (p = 0.02) and 10% (p = 0.015) among IMRT patients. There was no significant difference in hematologic or genitourinary acute toxicity between groups. In addition, pathologic complete response rates and postoperative morbidity between treatment groups did not differ significantly. Conclusions: In the management of rectal cancer, IMRT is associated with a

  15. Role of Intensity-Modulated Radiotherapy in Reducing Toxicity in Dose Escalation for Localized Prostate Cancer

    SciTech Connect

    Al-Mamgani, Abrahim Heemsbergen, Wilma D.; Peeters, Stephanie T.H.; Lebesque, Joos V.

    2009-03-01

    Purpose: To compare the acute and late gastrointestinal (GI) and genitourinary (GU) toxicity in prostate cancer patients treated to a total dose of 78 Gy with either a three-conformal radiotherapy technique with a sequential boost (SEQ) or a simultaneous integrated boost using intensity-modulated radiotherapy (SIB-IMRT). Patients and Methods: A total of 78 prostate cancer patients participating in the randomized Dutch trial comparing 68 Gy and 78 Gy were the subject of this analysis. They were all treated at the same institution to a total dose of 78 Gy. The median follow-up was 76 and 56 months for the SEQ and SIB-IMRT groups, respectively. The primary endpoints were acute and late GI and GU toxicity. Results: A significantly lower incidence of acute Grade 2 or greater GI toxicity occurred in patients treated with SIB-IMRT compared with SEQ (20% vs. 61%, p = 0.001). For acute GU toxicity and late GI and GU toxicity, the incidence was lower after SIB-IMRT, but these differences were not statistically significant. No statistically significant difference were found in the 5-year freedom from biochemical failure rate (Phoenix definition) between the two groups (70% for the SIB-IMRT group vs. 61% for the SEQ group, p = 0.3). The same was true for the 5-year freedom from clinical failure rate (90% vs. 72%, p = 0.07). Conclusion: The results of our study have shown that SIB-IMRT reduced the toxicity without compromising the outcome in patients with localized prostate cancer treated to 78 Gy radiation.

  16. Biochar reduces copper toxicity in Chenopodium quinoa Willd. In a sandy soil.

    PubMed

    Buss, Wolfram; Kammann, Claudia; Koyro, Hans-Werner

    2012-01-01

    Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required.

  17. Reduced cadmium accumulation and toxicity in Daphnia magna under carbon nanotube exposure.

    PubMed

    Liu, Jie; Wang, Wen-Xiong

    2015-12-01

    With increasing application and commercial production, carbon nanotubes (CNTs) will inevitably be released into aquatic environments and affect the transport and toxicity of toxic metals in ecosystems. The present study examined how CNTs affected the biokinetics and toxicity of a toxic metal, cadmium (Cd), in the freshwater zooplankton Daphnia magna. The authors quantified the dissolved uptake and the 50% lethal concentration (LC50, 48 h and 72 h) of Cd in daphnids in the presence of functionalized multiwalled nanotubes (F-CNTs) with different lengths (10-30 µm vs 0.5-2 µm) and concentrations (4 mg/L and 8 mg/L). Compared with the control treatment without CNTs, both CNTs slowed down the accumulation rate of Cd in D. magna over 8 h of exposure and further reduced the accumulation thereafter. Mechanisms for the reduced Cd uptake were mainly related to the influences of CNTs on the physiological activity of daphnids. The LC50 of D. magna in the presence of Cd and shorter CNTs was almost the same as that of the control group without CNTs. However, the LC50 of the groups with normal CNTs was significantly higher than that of the control group (i.e., F-CNTs decreased Cd toxicity significantly). Meanwhile, CNTs also decreased the tolerance of D. magna to Cd. The present study suggests that different physical properties of CNTs, such as length, need to be considered in the environmental risk assessment of CNTs.

  18. Extracts from presumed "reduced harm" cigarettes induce equivalent or greater toxicity in antigen-presenting cells.

    PubMed

    Vassallo, Robert; Wang, Lei; Hirano, Yoshimi; Walters, Paula; Grill, Diane

    2015-09-01

    The tobacco industry has promoted certain cigarette products with claims that their use may be less harmful to the smoker as they purportedly deliver lower amounts of toxic chemicals compared to conventional cigarettes. This study was designed to compare the relative antigen presenting cellular toxicity of Eclipse, a presumed reduced exposure product (PREP) cigarette, when compared with the reference research 3R4F cigarettes (Kentucky University). Utilizing a murine macrophage cell line, murine bone marrow derived dendritic cells (DCs) and human monocyte-derived DCs incubated with extracts generated from Eclipse and Kentucky reference 3R4F cigarettes, we determined the relative toxic effects of the different cigarette smoke extracts on cellular viability, oxidative stress, T-helper-1 (Th-1) polarizing cytokine production and general gene expression. Eclipse and 3R4F cigarette smoke extracts induced equivalent oxidatively-mediated cellular heme oxygenase-1 (HO-1) protein levels in macrophages and DCs. Cellular viability determination demonstrated greater induction of cell death by apoptosis and necrosis by Eclipse extracts in DCs. The production of the key Th-1 polarizing cytokine interleukin-12 (IL-12) by activated DCs or macrophages was suppressed to an equivalent or greater extent by Eclipse extracts. Microarray studies performed on bone marrow derived murine DCs incubated with Eclispe or 3R4F cigarette extracts showed identical genotoxic profiles. These studies imply that presumed reduced harm Eclipse cigarettes induce equivalent or greater antigen presenting cell dysfunction relative to 3R4F cigarettes and illustrate the importance of independent validation and testing of similar products claimed to be associated with reduced toxicity relative to other cigarettes.

  19. Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity.

    PubMed

    Boudreau, Colton; Wee, Tse-Luen Erika; Duh, Yan-Rung Silvia; Couto, Melissa P; Ardakani, Kimya H; Brown, Claire M

    2016-08-03

    It is important to determine the most effective method of delivering light onto a specimen for minimal light induced damage. Assays are presented to measure photo-bleaching of fluorophores and photo-toxicity to living cells under different illumination conditions. Turning the light off during part of the experimental time reduced photo-bleaching in a manner proportional to the time of light exposure. The rate of photo-bleaching of EGFP was reduced by 9-fold with light pulsing on the micro-second scale. Similarly, in living cells, rapid line scanning resulted in reduced cell stress as measured by mitochondrial potential, rapid cell protrusion and reduced cell retraction. This was achieved on a commercial confocal laser scanning microscope, without any compromise in image quality, by using rapid laser scan settings and line averaging. Therefore this technique can be implemented broadly without any software or hardware upgrades. Researchers can use the rapid line scanning option to immediately improve image quality on fixed samples, reduce photo-bleaching for large high resolution 3D datasets and improve cell health in live cell experiments. The assays developed here can be applied to other microscopy platforms to measure and optimize light delivery for minimal sample damage and photo-toxicity.

  20. Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995

    EIA Publications

    1994-01-01

    Provisions of the Clean Air Act Amendments of 1990 designed to reduce ground-level ozone will increase the demand for reformulated motor gasoline in a number of U.S. metropolitan areas. This article discusses the effects of the new regulations on the motor gasoline market and the refining industry.

  1. Chitosan coating of copper nanoparticles reduces in vitro toxicity and increases inflammation in the lung

    NASA Astrophysics Data System (ADS)

    Worthington, Kristan L. S.; Adamcakova-Dodd, Andrea; Wongrakpanich, Amaraporn; Mudunkotuwa, Imali A.; Mapuskar, Kranti A.; Joshi, Vijaya B.; Guymon, C. Allan; Spitz, Douglas R.; Grassian, Vicki H.; Thorne, Peter S.; Salem, Aliasger K.

    2013-10-01

    Despite their potential for a variety of applications, copper nanoparticles induce very strong inflammatory responses and cellular toxicity following aerosolized delivery. Coating metallic nanoparticles with polysaccharides, such as biocompatible and antimicrobial chitosan, has the potential to reduce this toxicity. In this study, copper nanoparticles were coated with chitosan using a newly developed and facile method. The presence of coating was confirmed using x-ray photoelectron spectroscopy, rhodamine tagging of chitosan followed by confocal fluorescence imaging of coated particles and observed increases in particle size and zeta potential. Further physical and chemical characteristics were evaluated using dissolution and x-ray diffraction studies. The chitosan coating was shown to significantly reduce the toxicity of copper nanoparticles after 24 and 52 h and the generation of reactive oxygen species as assayed by DHE oxidation after 24 h in vitro. Conversely, inflammatory response, measured using the number of white blood cells, total protein, and cytokines/chemokines in the bronchoalveolar fluid of mice exposed to chitosan coated versus uncoated copper nanoparticles, was shown to increase, as was the concentration of copper ions. These results suggest that coating metal nanoparticles with mucoadhesive polysaccharides (e.g. chitosan) could increase their potential for use in controlled release of copper ions to cells, but will result in a higher inflammatory response if administered via the lung.

  2. Dissolved organic carbon reduces uranium toxicity to the unicellular eukaryote Euglena gracilis.

    PubMed

    Trenfield, Melanie A; Ng, Jack C; Noller, Barry; Markich, Scott J; van Dam, Rick A

    2012-05-01

    The influence of dissolved organic carbon (DOC), in the form of Suwannee River fulvic acid (SRFA), on uranium (U) toxicity to the unicellular eukaryote, Euglena gracilis (Z strain), was investigated at pH 6. In a background medium without SRFA, exposure of E. gracilis to 57 μg L(-1) U resulted in a 50% reduction in growth (IC(50)). The addition of 20 mg L(-1) DOC (as SRFA), reduced U toxicity 4 to 5-fold (IC(50) increased to 254 μg L(-1) U). This reduction in toxicity was also evident at more sensitive effect levels with a 10% reduction in growth (IC(10)) occurring at 5 μg L(-1) U in the background medium and at 17 μg L(-1) U in the SRFA medium, respectively. This amelioration of toxicity with the addition of SRFA was linked to a decrease in the bioavailability of U, with geochemical speciation modelling predicting 84% of U would be complexed by SRFA. The decrease in bioavailability of U in the presence of SRFA was also evident from the 11-14 fold reduction in the cellular concentration of U compared to that of E. gracilis in the background medium. Stepwise multiple linear regression analyses indicated that UO(2)(2+) alone explained 51% of the variation in measured U toxicity to E. gracilis. Preliminary U exposures to E. gracilis in the presence of a reactive oxygen species probe, suggest exposure to ≥60 μg L(-1) U may induce oxidative stress, but this endpoint was not considered to be a sensitive biological indicator.

  3. Curcumin reduces the toxic effects of iron loading in rat liver epithelial cells

    PubMed Central

    Messner, Donald J.; Sivam, Gowsala; Kowdley, Kris V.

    2008-01-01

    Background/aims Iron overload can cause liver toxicity and increase the risk of liver failure or hepatocellular carcinoma in humans. Curcumin (diferuloylmethane), a component of the food spice turmeric, has antioxidant, iron binding, and hepatoprotective properties. The aim of this study was to quantify its effects on iron overload and resulting downstream toxic effects in cultured T51B rat liver epithelial cells. Methods T51B cells were loaded with ferric ammonium citrate (FAC) with or without the iron delivery agent 8-hydroxyquinoline. Cytotoxicity was measured by MTT assay. Iron uptake and iron bioavailability were documented by chemical assay, quench of calcein fluorescence, and ferritin induction. Reactive oxygen species (ROS) were measured by fluorescence assay using 2′,7′-dichlorodihydrofluorescein diacetate. Oxidative stress signaling to jnk, c-jun, and p38 was measured by western blot with phospho-specific antibodies. Results Curcumin bound iron, but did not block iron uptake or bioavailability in T51B cells given FAC. However, it reduced cytotoxicity, blocked generation of ROS, and eliminated signaling to cellular stress pathways caused by iron. Inhibition was observed over a wide range of FAC concentrations (50 – 500 μM), with an apparent IC50 in all cases between 5 and 10 μM curcumin. In contrast, desferoxamine blocked both iron uptake and toxic effects of iron at concentrations that depended on the FAC concentration. Effects of curcumin also differed from those of α-tocopherol, which did not bind iron and was less effective at blocking iron-stimulated ROS generation. Conclusions Curcumin reduced iron-dependent oxidative stress and iron toxicity in T51B cells without blocking iron uptake. PMID:18492020

  4. The potential for low petroleum gasoline

    SciTech Connect

    Hadder, G.R.; Webb, G.M.; Clauson, M.

    1996-06-01

    The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

  5. Desulfurization of gasoline.

    PubMed Central

    Berger, J E

    1975-01-01

    Although gasoline blending streams exhibit widely varying sulfur concentrations, significant quantities of low-sulfur motor gasoline cannot be manufactured by reallocation of existing components without substantial sacrifices in the useful properties of the remaining fuels having normal sulfur levels. To meet the anticipated demand for low-sulfur unleaded gasoline which may be required for catalyst-equipped automobiles it will be necessary to install process equipment based on known hydrotreating technology. The effects which this construction program would exert on the activities, abilities and needs of one petroleum refiner are sketched for two degrees of sulfur removal. The impacts of installing the process facilities which would be necessary are discussed in terms of time requirements, capital needs, and added energy expenditures. PMID:1157782

  6. Reformulated gasoline study, executive summary

    SciTech Connect

    Cunningham, R.E.; Michalski, G.W.; Baron, R.E.; Lyons, J.M.

    1994-10-01

    The feasibility of adopting alternative standards for reformulated gasoline (RFG) in New York State has been studied for the New York State Energy Research and Development Authority (the Energy Authority). In addition to Federal RFG (EPA 1) and EPA II, California Air Resources Board RFG (CARB 2) and a modified Federal low sulfur RFG (LS-EPA II) were investigated. The effects of these alternative RFGs on petroleum refinery gasoline production costs, gasoline distribution costs, New York State air quality and the New York State economy were considered. New York has already adopted the California low emission vehicle (LEV) and other emission control programs that will affect vehicles and maintenance. From 1998 to 2012 without the introduction of any type of RFG, these programs are estimated to reduce New York State mobile source summer emissions by 341 tons per day (or 40%) of non-methane hydrocarbons (NMHC) and by 292 tons per day (or 28%) of nitrogen oxides (NO{sub x}), and to reduce winter emissions of carbon monoxide (CO) by 3,072 tons per day (or 39%). By 2012, the planned imposition of Federal RFG will produce further reductions (percent of 1998 levels) of 10 %, 4 % and 11%, respectively, for NMHC, NO{sub x} and CO. If New York State goes beyond EPA II and adopts CARB 2 specifications, further reductions achieved in 2012 are estimated to be very small, equaling 2% or less of 1998 levels of NMHC and NO{sub x} emissions, while CO emissions would actually increase by about 2%. When compared to EPA II over the same time frame, LS-EPA II would produce negligible (less than 1%) reductions in each of the above emissions categories.

  7. Probiotic Lactobacillus rhamnosus Reduces Organophosphate Pesticide Absorption and Toxicity to Drosophila melanogaster.

    PubMed

    Trinder, Mark; McDowell, Tim W; Daisley, Brendan A; Ali, Sohrab N; Leong, Hon S; Sumarah, Mark W; Reid, Gregor

    2016-10-15

    Organophosphate pesticides used in agriculture can pose health risks to humans and wildlife. We hypothesized that dietary supplementation with Lactobacillus, a genus of commensal bacteria, would reduce absorption and toxicity of consumed organophosphate pesticides (parathion and chlorpyrifos [CP]). Several Lactobacillus species were screened for toleration of 100 ppm of CP or parathion in MRS broth based on 24-h growth curves. Certain Lactobacillus strains were unable to reach stationary-phase culture maxima and displayed an abnormal culture morphology in response to pesticide. Further characterization of commonly used, pesticide-tolerant and pesticide-susceptible, probiotic Lactobacillus rhamnosus strain GG (LGG) and L. rhamnosus strain GR-1 (LGR-1), respectively, revealed that both strains could significantly sequester organophosphate pesticides from solution after 24-h coincubations. This effect was independent of metabolic activity, as L. rhamnosus GG did not hydrolyze CP and no difference in organophosphate sequestration was observed between live and heat-killed strains. Furthermore, LGR-1 and LGG reduced the absorption of 100 μM parathion or CP in a Caco-2 Transwell model of the small intestine epithelium. To determine the effect of sequestration on acute toxicity, newly eclosed Drosophila melanogaster flies were exposed to food containing 10 μM CP with or without supplementation with live LGG. Supplementation with LGG simultaneously, but not with administration of CP 3 days prior (prophylactically), mitigated CP-induced mortality. In summary, the results suggest that L. rhamnosus may be useful for reducing toxic organophosphate pesticide exposure via passive binding. These findings could be transferable to clinical and livestock applications due to affordability and practical ability to supplement products with food-grade bacteria.

  8. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells

    PubMed Central

    Yu, Junchao; Yu, Qiuhong; Liu, Yaling; Zhang, Ruiyun; Xue, Lianbi

    2017-01-01

    Hyperbaric oxygen (HBO) therapy through breathing oxygen at the pressure of above 1 atmosphere absolute (ATA) is useful for varieties of clinical conditions, especially hypoxic-ischemic diseases. Because of generation of reactive oxygen species (ROS), breathing oxygen gas at high pressures can cause oxygen toxicity in the central nervous system, leading to multiple neurological dysfunction, which limits the use of HBO therapy. Studies have shown that Hydrogen gas (H2) can diminish oxidative stress and effectively reduce active ROS associated with diseases. However, the effect of H2 on ROS generated from HBO therapy remains unclear. In this study, we investigated the effect of H2 on ROS during HBO therapy using PC12 cells. PC12 cells cultured in medium were exposed to oxygen gas or mixed oxygen gas and H2 at 1 ATA or 5 ATA. Cells viability and oxidation products and ROS were determined. The data showed that H2 promoted the cell viability and inhibited the damage in the cell and mitochondria membrane, reduced the levels of lipid peroxidation and DNA oxidation, and selectively decreased the levels of •OH but not disturbing the levels of O2•-, H2O2, or NO• in PC12 cells during HBO therapy. These results indicated that H2 effectively reduced •OH, protected cells against oxygen toxicity resulting from HBO therapy, and had no effect on other ROS. Our data supported that H2 could be potentially used as an antioxidant during HBO therapy. PMID:28362819

  9. Promotion of Ni2+ Removal by Masking Toxicity to Sulfate-Reducing Bacteria: Addition of Citrate

    PubMed Central

    Qian, Junwei; Zhu, Xiaoyu; Tao, Yong; Zhou, Yan; He, Xiaohong; Li, Daping

    2015-01-01

    The sulfate-reducing bioprocess is a promising technology for the treatment of heavy metal-containing wastewater. This work was conducted to investigate the possibility of promoting heavy metal removal by the addition of citrate to mask Ni2+ toxicity to sulfate-reducing bacteria (SRB) in batch reactors. SRB growth was completely inhibited in Ni2+-containing medium (1 mM) when lactate served as the sole carbon resource, leading to no sulfate reduction and Ni2+ removal. However, after the addition of citrate, SRB grew well, and sulfate was quickly reduced to sulfide. Simultaneously, the Ni-citrate complex was biodegraded to Ni2+ and acetate. The NiS precipitate was then formed, and Ni2+ was completely removed from the solution. It was suggested that the addition of citrate greatly alleviates Ni2+ toxicity to SRB and improves the removal of Ni2+, which was confirmed by quantitative real-time PCR targeting dissimilatory sulfite reductase (dsrAB) genes. Analysis of the carbon metabolism indicated that lactate instead of acetate served as the electron donor for sulfate reduction. This study offers a potential approach to increase the removal of heavy metals from wastewater in the single stage SRB-based bioprocess. PMID:25860948

  10. Improving anticancer activity and reducing systemic toxicity of doxorubicin by self-assembled polymeric micelles

    NASA Astrophysics Data System (ADS)

    Gou, MaLing; Shi, HuaShan; Guo, Gang; Men, Ke; Zhang, Juan; Zheng, Lan; Li, ZhiYong; Luo, Feng; Qian, ZhiYong; Zhao, Xia; Wei, YuQuan

    2011-03-01

    In an attempt to improve anticancer activity and reduce systemic toxicity of doxorubicin (Dox), we encapsulated Dox in monomethoxy poly(ethylene glycol)-poly(ɛ-caprolactone) (MPEG-PCL) micelles by a novel self-assembly procedure without using surfactants, organic solvents or vigorous stirring. These Dox encapsulated MPEG-PCL (Dox/MPEG-PCL) micelles with drug loading of 4.2% were monodisperse and ~ 20 nm in diameter. The Dox can be released from the Dox/MPEG-PCL micelles; the Dox-release at pH 5.5 was faster than that at pH 7.0. Encapsulation of Dox in MPEG-PCL micelles enhanced the cellular uptake and cytotoxicity of Dox on the C-26 colon carcinoma cell in vitro, and slowed the extravasation of Dox in the transgenic zebrafish model. Compared to free Dox, Dox/MPEG-PCL micelles were more effective in inhibiting tumor growth in the subcutaneous C-26 colon carcinoma and Lewis lung carcinoma models, and prolonging survival of mice bearing these tumors. Dox/MPEG-PCL micelles also induced lower systemic toxicity than free Dox. In conclusion, incorporation of Dox in MPEG-PCL micelles enhanced the anticancer activity and decreased the systemic toxicity of Dox; these Dox/MPEG-PCL micelles are an interesting formulation of Dox and may have potential clinical applications in cancer therapy.

  11. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity.

    PubMed

    Long, Xingwen; Zhang, Zhihui; Han, Shangcong; Tang, Minjie; Zhou, Junhui; Zhang, Jianhua; Xue, Zhenyi; Li, Yan; Zhang, Rongxin; Deng, Liandong; Dong, Anjie

    2015-04-15

    Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity.

  12. Mitigating with macrophytes: submersed plants reduce the toxicity of pesticide-contaminated water to zooplankton.

    PubMed

    Brogan, William R; Relyea, Rick A

    2013-03-01

    In ecotoxicology, appreciation is growing for the influence that ecological interactions have on the toxicity of contaminants, such as insecticides, to sensitive species. Most previous studies, however, have focused on factors that exacerbate insecticide effects on species, while factors that may mitigate these effects have been relatively ignored. In aquatic habitats, a small number of studies have shown that submersed macrophytes can remove some insecticides from the water column via sorption. Although examining sorption dynamics is important for understanding the environmental fate of insecticides, whether and to what extent macrophytes actually mitigate insecticide effects on aquatic species remains unknown. In the present study, the authors examined how much and how quickly several realistic densities of the macrophyte Elodea canadensis decreased the toxicity of the insecticide malathion to Daphnia magna, a keystone aquatic herbivore. To do this, the authors quantified Daphnia survival in outdoor test systems (0.95 L) exposed to a factorial combination of five Elodea densities crossed with five malathion concentrations. The authors discovered that malathion's lethality to Daphnia decreased with increasing Elodea density. Furthermore, the rate at which Elodea reduced malathion's toxicity in the water column increased with macrophyte density. These results provide strong evidence that submersed macrophytes can mitigate the ecological impacts of a popular insecticide and further support that ecological interactions can strongly influence contaminant environmental effects.

  13. Probiotic Lactobacillus rhamnosus Reduces Organophosphate Pesticide Absorption and Toxicity to Drosophila melanogaster

    PubMed Central

    Trinder, Mark; McDowell, Tim W.; Daisley, Brendan A.; Ali, Sohrab N.; Leong, Hon S.; Sumarah, Mark W.

    2016-01-01

    ABSTRACT Organophosphate pesticides used in agriculture can pose health risks to humans and wildlife. We hypothesized that dietary supplementation with Lactobacillus, a genus of commensal bacteria, would reduce absorption and toxicity of consumed organophosphate pesticides (parathion and chlorpyrifos [CP]). Several Lactobacillus species were screened for toleration of 100 ppm of CP or parathion in MRS broth based on 24-h growth curves. Certain Lactobacillus strains were unable to reach stationary-phase culture maxima and displayed an abnormal culture morphology in response to pesticide. Further characterization of commonly used, pesticide-tolerant and pesticide-susceptible, probiotic Lactobacillus rhamnosus strain GG (LGG) and L. rhamnosus strain GR-1 (LGR-1), respectively, revealed that both strains could significantly sequester organophosphate pesticides from solution after 24-h coincubations. This effect was independent of metabolic activity, as L. rhamnosus GG did not hydrolyze CP and no difference in organophosphate sequestration was observed between live and heat-killed strains. Furthermore, LGR-1 and LGG reduced the absorption of 100 μM parathion or CP in a Caco-2 Transwell model of the small intestine epithelium. To determine the effect of sequestration on acute toxicity, newly eclosed Drosophila melanogaster flies were exposed to food containing 10 μM CP with or without supplementation with live LGG. Supplementation with LGG simultaneously, but not with administration of CP 3 days prior (prophylactically), mitigated CP-induced mortality. In summary, the results suggest that L. rhamnosus may be useful for reducing toxic organophosphate pesticide exposure via passive binding. These findings could be transferable to clinical and livestock applications due to affordability and practical ability to supplement products with food-grade bacteria. IMPORTANCE The consequences of environmental pesticide pollution due to widespread usage in agriculture and soil

  14. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    NASA Astrophysics Data System (ADS)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  15. Comparison of immunotoxic effects induced by the extracts from methanol and gasoline engine exhausts in vitro.

    PubMed

    Che, Wangjun; Liu, Guiming; Qiu, Hong; Zhang, Hao; Ran, Yun; Zeng, Xianggui; Wen, Weihua; Shu, Ya

    2010-06-01

    Gasoline engine exhaust has been considered as a major source of air pollution in China. Due to lower cyto- and geno-toxicity effects of methanol engine exhaust, methanol is regarded as a potential substitute for gasoline. We have previously compared cyto- and geno-toxicities of gasoline engine exhaust with that of methanol engine exhaust in A549 cells (Zhang et al., 2007).To characterize the immunotoxic effects for gasoline and methanol engine exhausts in immune cell, in this study, we further compared effects of gasoline and methanol engine exhausts on immune function in RAW264.7 cell and rabbit alveolar macrophages. Results showed that both gasoline and methanol engine exhaust could evidently inhibit RAW264.7 cell proliferation, promote RAW264.7 cell apoptosis, decrease E-rosette formation rate and inhibit anti-tumor effects of alveolar macrophages, at the same time, these effects of gasoline engine exhaust were far stronger than those of methanol engine exhaust. In addition, gasoline engine exhaust could significantly inhibit activities of ADCC of alveolar macrophages, but methanol engine exhaust could not. These results suggested that both gasoline and methanol engine exhausts might be immunotoxic atmospheric pollutants, but some effects of gasoline engine exhaust on immunotoxicities may be far stronger than that of methanol engine exhaust.

  16. Reduced arsenic clearance and increased toxicity in aquaglyceroporin-9-null mice

    PubMed Central

    Carbrey, Jennifer M.; Song, Linhua; Zhou, Yao; Yoshinaga, Masafumi; Rojek, Aleksandra; Wang, Yiding; Liu, Yangjian; Lujan, Heidi L.; DiCarlo, Stephen E.; Nielsen, Søren; Rosen, Barry P.; Agre, Peter; Mukhopadhyay, Rita

    2009-01-01

    Expressed in liver, aquaglyceroporin-9 (AQP9) is permeated by glycerol, arsenite, and other small, neutral solutes. To evaluate a possible protective role, AQP9-null mice were evaluated for in vivo arsenic toxicity. After injection with NaAsO2, AQP9-null mice suffer reduced survival rates (LD50, 12 mg/kg) compared with WT mice (LD50, 15 mg/kg). The highest tissue level of arsenic is in heart, with AQP9-null mice accumulating 10–20 times more arsenic than WT mice. Within hours after NaAsO2 injection, AQP9-null mice sustain profound bradycardia, despite normal serum electrolytes. Increased arsenic levels are also present in liver, lung, spleen, and testis of AQP9-null mice. Arsenic levels in the feces and urine of AQP9-null mice are only ≈10% of the WT levels, and reduced clearance of multiple arsenic species by the AQP9-null mice suggests that AQP9 is involved in the export of multiple forms of arsenic. Immunohistochemical staining of liver sections revealed that AQP9 is most abundant in basolateral membrane of hepatocytes adjacent to the sinusoids. AQP9 is not detected in heart or kidney by PCR or immunohistochemistry. We propose that AQP9 provides a route for excretion of arsenic by the liver, thereby providing partial protection of the whole animal from arsenic toxicity. PMID:19805235

  17. Allopurinol reduces severity of delayed neurologic sequelae in experimental carbon monoxide toxicity in rats.

    PubMed

    Dong, Guangtao; Ren, Ming; Wang, Xiujie; Jiang, Hongquan; Yin, Xiang; Wang, Shuyu; Wang, Xudong; Feng, Honglin

    2015-05-01

    Approximately half of those who survive severe carbon monoxide (CO) poisoning develop delayed neurologic sequelae. Growing evidence supports the crucial role of free radicals in delayed brain injury associated with CO toxicity. Xanthine oxidase (XO) has been reported to play a pivotal role in the generation of reactive oxygen species (ROS) in CO poisoning. A recent report indicates that allopurinol both attenuated oxidative stress and possessed anti-inflammatory properties in an animal model of acute liver failure. In this study, we aimed to explore the potential of allopurinol to reduce the severity of delayed neurologic sequelae. The rats were first exposed to 1000 ppm CO for 40 min and then to 3000 ppm CO for another 20 min. Following CO poisoning, the rats were injected with allopurinol (50 mg/kg, i.p.) six times. Results showed that allopurinol significantly reduced neuronal death and suppressed expression of pro-inflammatory factors, including tumor necrosis factor-α, intercellular adhesion molecule-1, ionized calcium-binding adapter molecule 1, and degraded myelin basic protein. Furthermore, behavioral studies revealed an improved performance in the Morris water maze test. Our findings indicated that allopurinol may have protective effects against delayed neurologic sequelae caused by CO toxicity.

  18. Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity

    SciTech Connect

    Wang Hongmin; Monteiro, Mervyn J. . E-mail: monteiro@umbi.umd.edu

    2007-08-01

    Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner. Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases.

  19. Gasoline Composition in 2008

    EPA Science Inventory

    Gasoline composition in the U.S is determined by factors related to crude oil source, refinery capacity, geography and regulatory factors. Major regulation derived from the Clean Air Act and its amendments determines the benzene and former oxygenate requirements for reformulated...

  20. Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

    SciTech Connect

    Choi, Jae-Soon; Prikhodko, Vitaly Y; Partridge Jr, William P; Parks, II, James E; Norman, Kevin M; Huff, Shean P; Chambon, Paul H; Thomas, John F

    2010-01-01

    Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

  1. Phenolic compounds prevent the oligomerization of α-synuclein and reduce synaptic toxicity.

    PubMed

    Takahashi, Ryoichi; Ono, Kenjiro; Takamura, Yusaku; Mizuguchi, Mineyuki; Ikeda, Tokuhei; Nishijo, Hisao; Yamada, Masahito

    2015-09-01

    Lewy bodies, mainly composed of α-synuclein (αS), are pathological hallmarks of Parkinson's disease and dementia with Lewy bodies. Epidemiological studies showed that green tea consumption or habitual intake of phenolic compounds reduced Parkinson's disease risk. We previously reported that phenolic compounds inhibited αS fibrillation and destabilized preformed αS fibrils. Cumulative evidence suggests that low-order αS oligomers are neurotoxic and critical species in the pathogenesis of α-synucleinopathies. To develop disease modifying therapies for α-synucleinopathies, we examined effects of phenolic compounds (myricetin (Myr), curcumin, rosmarinic acid (RA), nordihydroguaiaretic acid, and ferulic acid) on αS oligomerization. Using methods such as photo-induced cross-linking of unmodified proteins, circular dichroism spectroscopy, the electron microscope, and the atomic force microscope, we showed that Myr and RA inhibited αS oligomerization and secondary structure conversion. The nuclear magnetic resonance analysis revealed that Myr directly bound to the N-terminal region of αS, whereas direct binding of RA to monomeric αS was not detected. Electrophysiological assays for long-term potentiation in mouse hippocampal slices revealed that Myr and RA ameliorated αS synaptic toxicity by inhibition of αS oligomerization. These results suggest that Myr and RA prevent the αS aggregation process, reducing the neurotoxicity of αS oligomers. To develop disease modifying therapies for α-synucleinopathies, we examined effects of phenolic compounds on α-synuclein (αS) oligomerization. Phenolic compounds, especially Myricetin (Myr) and Rosmarinic acid (RA), inhibited αS oligomerization and secondary structure conversion. Myr and RA ameliorated αS synaptic toxicity on the experiment of long-term potentiation. Our results suggest that Myr and RA prevent αS aggregation process and reduce the neurotoxicity of αS oligomers. Phenolic compounds are good

  2. Cross-Linked Hyaluronan Gel Reduces the Acute Rectal Toxicity of Radiotherapy for Prostate Cancer

    SciTech Connect

    Wilder, Richard B.; Barme, Greg A.; Gilbert, Ronald F.; Holevas, Richard E.; Kobashi, Luis I.; Reed, Richard R.; Solomon, Ronald S.; Walter, Nancy L.; Chittenden, Lucy; Mesa, Albert V.; Agustin, Jeffrey; Lizarde, Jessica; Macedo, Jorge; Ravera, John; Tokita, Kenneth M.

    2010-07-01

    Purpose: To prospectively analyze whether cross-linked hyaluronan gel reduces the mean rectal dose and acute rectal toxicity of radiotherapy for prostate cancer. Methods and Materials: Between September 2008 and March 2009, we transperitoneally injected 9mL of cross-linked hyaluronan gel (Hylaform; Genzyme Corporation, Cambridge, MA) into the anterior perirectal fat of 10 early-stage prostate cancer patients to increase the separation between the prostate and rectum by 8 to 18mm at the start of radiotherapy. Patients then underwent high-dose rate brachytherapy to 2,200cGy followed by intensity-modulated radiation therapy to 5,040cGy. We assessed acute rectal toxicity using the National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 grading scheme. Results: Median follow-up was 3 months. The anteroposterior dimensions of Hylaform at the start and end of radiotherapy were 13 {+-} 3mm (mean {+-} SD) and 10 {+-} 4mm, respectively. At the start of intensity-modulated radiation therapy, daily mean rectal doses were 73 {+-} 13cGy with Hylaform vs. 106 {+-} 20cGy without Hylaform (p = 0.005). There was a 0% incidence of National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 Grade 1, 2, or 3 acute diarrhea in 10 patients who received Hylaform vs. a 29.7% incidence (n = 71) in 239 historical controls who did not receive Hylaform (p = 0.04). Conclusions: By increasing the separation between the prostate and rectum, Hylaform decreased the mean rectal dose. This led to a significant reduction in the acute rectal toxicity of radiotherapy for prostate cancer.

  3. Biostimulation as an attractive technique to reduce phenanthrene toxicity for meiofauna and bacteria in lagoon sediment.

    PubMed

    Louati, Hela; Said, Olfa Ben; Soltani, Amel; Got, Patrice; Cravo-Laureau, Cristiana; Duran, Robert; Aissa, Patricia; Pringault, Olivier; Mahmoudi, Ezzeddine

    2014-03-01

    . Biostimulation using mineral salt medium strongly enhanced phenanthrene removal, leading to a decrease of its toxicity. This finding opens exciting axes for the future use of biostimulation to reduce toxic effects of PAHs for meiofauna and bacteria in lagoon sediment.

  4. The reduced bioavailability of copper by nano-TiO₂ attenuates the toxicity to Microcystis aeruginosa.

    PubMed

    Chen, Jinyuan; Qian, Yi; Li, Herong; Cheng, Yanhong; Zhao, Meirong

    2015-08-01

    Nano-TiO2 is a widely applied nanoparticle (NPs) and co-exists with other pollutants such as heavy metals in aquatic environments. However, minimal knowledge is available concerning the ecological risk of these mixtures. Our study reported that at no toxic effect concentrations of TiO2 nanoparticles (5 mg/L), the toxicity of Cu ions to the algae Microcystis aeruginosa was significantly attenuated by TiO2 nanoparticles. Specifically, the concentration of photosynthetic pigments (i.e., concentration of Chla) increased 37% when comparing only Cu ions treated and the nano-TiO2-Cu co-incubation. The levels of phycocyanin (PC), allophycocyanin (APC), phycoerythrin (PE), and phycobiliprotein (PBPs) were also recovered at levels ranging from 23 to 35% after 72 h. For oxidative indexes, the decreased activities of the superoxide dismutase (SOD), peroxidase (POD) content, and malondialdehyde (MDA) with the existence of nano-TiO2 displayed a lower level compared to Cu ions treatment only at 24 and 48 h. This toxicity attenuation can be confirmed by subcellular structures because the impairment to cellular membranes and organelles reduced with the presence of nano-TiO2. The potential mechanisms of the antagonism between the nano-TiO2 and Cu ions can be partially attributed to the sorption of copper onto TiO2 nanoparticles, which fitted the Freundlich isotherm (coefficient = 0.967). The decreased bioavailability of Cu ions protected algae cells from being attacked by free Cu ions. Given the abundance of released nanoparticles and unique physicochemical property of nanoparticles, our results elucidated the ecosafety of nanoparticles and co-substrates in aquatic systems.

  5. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy.

    PubMed

    Ma, Yan; Chapman, Julia; Levine, Mark; Polireddy, Kishore; Drisko, Jeanne; Chen, Qi

    2014-02-05

    Ascorbate (vitamin C) was an early, unorthodox therapy for cancer, with an outstanding safety profile and anecdotal clinical benefit. Because oral ascorbate was ineffective in two cancer clinical trials, ascorbate was abandoned by conventional oncology but continued to be used in complementary and alternative medicine. Recent studies provide rationale for reexamining ascorbate treatment. Because of marked pharmacokinetic differences, intravenous, but not oral, ascorbate produces millimolar concentrations both in blood and in tissues, killing cancer cells without harming normal tissues. In the interstitial fluid surrounding tumor cells, millimolar concentrations of ascorbate exert local pro-oxidant effects by mediating hydrogen peroxide (H(2)O(2)) formation, which kills cancer cells. We investigated downstream mechanisms of ascorbate-induced cell death. Data show that millimolar ascorbate, acting as a pro-oxidant, induced DNA damage and depleted cellular adenosine triphosphate (ATP), activated the ataxia telangiectasia mutated (ATM)/adenosine monophosphate-activated protein kinase (AMPK) pathway, and resulted in mammalian target of rapamycin (mTOR) inhibition and death in ovarian cancer cells. The combination of parenteral ascorbate with the conventional chemotherapeutic agents carboplatin and paclitaxel synergistically inhibited ovarian cancer in mouse models and reduced chemotherapy-associated toxicity in patients with ovarian cancer. On the basis of its potential benefit and minimal toxicity, examination of intravenous ascorbate in combination with standard chemotherapy is justified in larger clinical trials.

  6. A novel approach for reducing toxic emissions during high temperature processing of electronic waste.

    PubMed

    Saini, R; Khanna, R; Dutta, R K; Cayumil, R; Ikram-Ul-Haq, M; Agarwala, V; Ellamparuthy, G; Jayasankar, K; Mukherjee, P S; Sahajwalla, V

    2017-03-09

    A novel approach is presented to capture some of the potentially toxic elements (PTEs), other particulates and emissions during the heat treatment of e-waste using alumina adsorbents. Waste PCBs from mobile phones were mechanically crushed to sizes less than 1mm; their thermal degradation was investigated using thermo-gravimetric analysis. Observed weight loss was attributed to the degradation of polymers and the vaporization of organic constituents and volatile metals. The sample assembly containing PCB powder and adsorbent was heat treated at 600°C for times ranging between 10 and 30min with air, nitrogen and argon as carrier gases. Weight gains up to ∼17% were recorded in the adsorbent thereby indicating the capture of significant amounts of particulates. The highest level of adsorption was observed in N2 atmosphere for small particle sizes of alumina. SEM/EDS results on the adsorbent indicated the presence of Cu, Pb, Si, Mg and C. These studies were supplemented with ICP-OES analysis to determine the extent of various species captured as a function of operating parameters. This innovative, low-cost approach has the potential for utilization in the informal sector and/or developing countries, and could play a significant role in reducing toxic emissions from e-waste processing towards environmentally safe limits.

  7. Mechanism of perfluoroalkyl halide toxicity: catalysis of perfluoroalkylation by reduced forms of cobalamin (vitamin B12).

    PubMed

    Beda, N V; Nedospasov, A A

    2003-12-01

    Perfluoroalkyl halides (PFHs) are synthetic products widely used in various fields. Perfluorooctyl bromide (PFB) is used in medicine as a component of blood substitutes and for artificial lung ventilation. In both cases, it is considered a completely inert compound acting as a solvent for oxygen. However, there are many reports of PFH-induced intoxication, including lethal cases. Mechanisms underlying toxic effects of this compound remain unknown. In this study, we demonstrate that the reduced form of cobalamin (vitamin B12) typical for B12-dependent enzymes can catalyze the reactions of perfluoroalkylation, aromatic substitution, or addition by double bonds. Synthesis of perfluoro derivatives from PFHs during catalysis by cob(I)alamin-like super nucleophiles is a new possible mechanism responsible for in vivo formation of highly toxic compounds from "chemically inert" substances widely used in medicine. Catalytic perfluoroalkylation might possibly contribute to nitric oxide depletion and modulation of activity of guanylate cyclase, cytochromes, NO-synthases, and other heme-containing proteins.

  8. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis

    PubMed Central

    Verbeke, Len; Mannaerts, Inge; Schierwagen, Robert; Govaere, Olivier; Klein, Sabine; Vander Elst, Ingrid; Windmolders, Petra; Farre, Ricard; Wenes, Mathias; Mazzone, Massimiliano; Nevens, Frederik; van Grunsven, Leo A.; Trebicka, Jonel; Laleman, Wim

    2016-01-01

    Hepatic inflammation drives hepatic stellate cells (HSC), resulting in liver fibrosis. The Farnesoid-X receptor (FXR) antagonizes inflammation through NF-κB inhibition. We investigated preventive and therapeutic effects of FXR agonist obeticholic acid (OCA) on hepatic inflammation and fibrosis in toxic cirrhotic rats. Cirrhosis was induced by thioacetamide (TAA) intoxication. OCA was given during or after intoxication with vehicle-treated rats as controls. At sacrifice, fibrosis, hemodynamic and biochemical parameters were assessed. HSC activation, cell turn-over, hepatic NF-κB activation, pro-inflammatory and pro-fibrotic cytokines were determined. The effect of OCA was further evaluated in isolated HSC, Kupffer cells, hepatocytes and liver sinusoidal endothelial cells (LSEC). OCA decreased hepatic inflammation and fibrogenesis during TAA-administration and reversed fibrosis in established cirrhosis. Portal pressure decreased through reduced intrahepatic vascular resistance. This was paralleled by decreased expression of pro-fibrotic cytokines (transforming growth-factor β, connective tissue growth factor, platelet-derived growth factor β-receptor) as well as markers of hepatic cell turn-over, by blunting effects of pro-inflammatory cytokines (e.g. monocyte chemo-attractant protein-1). In vitro, OCA inhibited both LSEC and Kupffer cell activation; while HSC remained unaffected. This related to NF-κB inhibition via up-regulated IκBα. In conclusion, OCA inhibits hepatic inflammation in toxic cirrhotic rats resulting in decreased HSC activation and fibrosis. PMID:27634375

  9. 75 FR 7426 - Tier 2 Light-Duty Vehicle and Light-Duty Truck Emission Standards and Gasoline Sulfur Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... gasoline they produce. Sulfur in gasoline has a detrimental impact on catalyst performance and the sulfur... much-reduced content of sulfur, primarily to protect the improved catalyst systems anticipated on...

  10. Polymeric nanocapsules as a technological alternative to reduce the toxicity caused by meloxicam in mice.

    PubMed

    Villalba, Benonio T; Ianiski, Francine R; Vogt, Ane G; Pinz, Mikaela P; Reis, Angélica S; Vaucher, Rodrigo A; Soares, Mauro P; Wilhelm, Ethel A; Luchese, Cristiane

    2016-11-01

    This study determined whether meloxicam in nanocapsules modifies stomach and liver damage caused by free meloxicam in mice. Male Swiss mice were treated with blank nanocapsules or meloxicam in nanocapsules or free meloxicam (10 mg/kg, intragastrically, daily for five days). On the seventh day, blood was collected to determine biochemical markers (glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, total bilirubin, unconjugated bilirubin, albumin and alkaline phosphatase). Stomachs and livers were removed for histological analysis. There was no significant difference in the biochemical markers in the plasma of mice. Meloxicam in nanocapsules did not have an ulcerogenic potential in the stomach or cause lipid peroxidation in the stomach and liver. Free meloxicam increased the ulcerogenic potential in the stomach and lipid peroxidation in the stomach and liver. Meloxicam in nanocapsules caused less histological changes than free meloxicam. In conclusion, polymeric nanocapsules can represent a technological alternative to reduce the toxicity caused by meloxicam.

  11. Small Bifunctional Chelators That Do Not Disaggregate Amyloid β Fibrils Exhibit Reduced Cellular Toxicity

    PubMed Central

    2015-01-01

    Multifunctional metal chelators that can modulate the amyloid β (Aβ) peptide aggregation and its interaction with metal ions such as copper and zinc hold considerable promise as therapeutic agents for Alzheimer’s disease (AD). However, specific rather than systemic metal chelation by these compounds is needed in order to limit any side effects. Reported herein are two novel small bifunctional chelators, 2-[2-hydroxy-4-(diethylamino)phenyl]benzothiazole (L1) and 2-(2-hydroxy-3-methoxyphenyl)benzothiazole (L2), in which the metal-binding donor atoms are integrated within a molecular framework derived from the amyloid-binding fluorescent dye thioflavin T (ThT). The metal-binding properties of L1 and L2 were probed by pH spectrophotometric titrations to determine their pKa values and the corresponding metal complex stability constants, and the isolated metal complexes were structurally characterized. The amyloid-fibril-binding properties of L1 and L2 were investigated by fluorescence titrations and ThT competition assays. Interestingly, L1 and L2 do not lead to the formation of neurotoxic Aβ42 oligomers in the presence or absence of metal ions, as observed by native gel electrophoresis, Western blotting, and transmission electron microscopy. In addition, L1 and L2 were able to reduce the cell toxicity of preformed Aβ42 oligomers and of the copper-stabilized Aβ42 oligomers. Given their ability to reduce the toxicity of soluble Aβ42 and Cu-Aβ42 species, L1 and L2 are promising lead compounds for the development of chemical agents that can control the neurotoxicity of soluble Aβ42 species in AD. PMID:25333939

  12. Shiga Toxin (Stx) Type 1a Reduces the Oral Toxicity of Stx Type 2a

    PubMed Central

    Russo, Lisa M.; Melton-Celsa, Angela R.; O'Brien, Alison D.

    2016-01-01

    Background. Shiga toxin (Stx) is the primary virulence factor of Stx-producing Escherichia coli (STEC). STEC can produce Stx1a and/or Stx2a, which are antigenically distinct. However, Stx2a-producing STEC are associated with more severe disease than strains producing both Stx1a and Stx2a. Methods and Results. To address the hypothesis that the reason for the association of Stx2a with more severe disease is because Stx2a crosses the intestinal barrier with greater efficiency that Stx1a, we covalently labeled Stx1a and Stx2a with Alexa Fluor 750 and determined the ex vivo fluorescent intensity of murine systemic organs after oral intoxication. Surprisingly, both Stxs exhibited similar dissemination patterns and accumulated in the kidneys. We next cointoxicated mice to determine whether Stx1a could impede Stx2a. Cointoxication resulted in increased survival and an extended mean time to death, compared with intoxication with Stx2a only. The survival benefit was dose dependent, with the greatest effect observed when 5 times more Stx1a than Stx2a was delivered, and was amplified when Stx1a was delivered 3 hours prior to Stx2a. Cointoxication with an Stx1a active site toxoid also reduced Stx2a toxicity. Conclusions. These studies suggest that Stx1a reduces Stx2a-mediated toxicity, a finding that may explain why STEC that produce only Stx2a are associated with more severe disease than strains producing Stx1a and Stx2a. PMID:26743841

  13. Production of reformulated gasoline

    SciTech Connect

    Schmidt, R.J.; Raghuram, S.

    1992-08-04

    This patent describes a process combination for producing a gasoline component from a naphtha feedstock. It comprises: contacting the naphtha feedstock in a reforming zone at reforming conditions with a reforming catalyst comprising a Group VIII metal on a refractory support to produce a reformate and a hydrogen-rich gas; separating the reformate, in a first separation zone, into a light hydrocarbon product and a heavy reformate; separating the heavy reformate, in a second separation zone, into a low-octane paraffin fraction and an aromatic-rich fraction; contacting a low-octane paraffin fraction in a paraffin-isomerization zone at primary isomerization conditions with a paraffin-isomerizing catalyst to produce an isomerized heavy-paraffin product; and, combining at least a portion of each of the aromatic-rich fraction and the isomerized heavy-paraffin product to produce the gasoline component.

  14. Gasoline Vapor Recovery

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  15. 40 CFR 80.995 - What if a refiner or importer is unable to produce gasoline conforming to the requirements of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... unable to produce gasoline conforming to the requirements of this subpart? 80.995 Section 80.995... FUELS AND FUEL ADDITIVES Gasoline Toxics Exemptions § 80.995 What if a refiner or importer is unable to produce gasoline conforming to the requirements of this subpart? In appropriate extreme and...

  16. Evaporation and air-stripping to assess and reduce ethanolamines toxicity in oily wastewater.

    PubMed

    Libralato, G; Ghirardini, A Volpi; Avezzù, F

    2008-05-30

    Toxicity from industrial oily wastewater remains a problem even after conventional activated sludge treatment process, because of the persistence of some toxicant compounds. This work verified the removal efficiency of organic and inorganic pollutants and the effects of evaporation and air-stripping techniques on oily wastewater toxicity reduction. In a lab-scale plant, a vacuum evaporation procedure at three different temperatures and an air-stripping stage were tested on oily wastewater. Toxicity reduction/removal was observed at each treatment step via Microtox bioassay. A case study monitoring real scale evaporation was also done in a full-size wastewater treatment plant (WWTP). To implement part of a general project of toxicity reduction evaluation, additional investigations took into account the monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) role in toxicity definition after the evaporation phase, both as pure substances and mixtures. Only MEA and TEA appeared to contribute towards effluent toxicity.

  17. Modification in digestive processing strategies to reduce toxic trace metal uptake in a marine bivalve

    SciTech Connect

    Decho, A.W.; Luoma, S.N.

    1994-12-31

    Bivalves possess two major digestion pathways for processing food particles: a rapid ``intestinal`` pathway where digestion is largely extracellular; and a slower ``glandular`` pathway where digestion is largely intracellular. The slower glandular pathway often results in more efficient absorption of carbon but also more efficient uptake of certain metals (e.g. Cr associated with bacteria). In the bivalve Potamocorbula amurensis, large portions (> 90%) of bacteria are selectively routed to the glandular pathway. This results in efficient C uptake but also efficient uptake of associated Cr. The authors further determined if prolonged exposure to Cr-contaminated bacteria would result in high Cr uptake by animals or whether mechanisms exist to reduce Cr exposure and uptake. Bivalves were exposed to natural food + added bacteria (with or without added Cr) for a 6-day period, then pulse-chase experiments were conducted to quantify digestive processing and % absorption efficiencies (%AE) of bacterial Cr. Bivalves compensate at low (2--5 ug/g sed) Cr by reducing overall food ingestion, while digestive processing of food remains statistically similar to controls. At high Cr (200--500 ug/g sed) there are marked decreases in % bacteria processed by glandular digestion. This results in lower overall %AE of Cr. The results suggest that bivalves under natural conditions might balance efficient carbon sequestration against avoiding uptake of potentially toxic metals associated the food.

  18. Does carbonation of steel slag particles reduce their toxicity? An in vitro approach.

    PubMed

    Ibouraadaten, Saloua; van den Brule, Sybille; Lison, Dominique

    2015-06-01

    Mineral carbonation can stabilize industrial residues and, in the steel industry, may contribute to simultaneously valorize CO2 emissions and slag. We hypothesized that, by restricting the leaching of metals of toxicological concern such as Cr and V, carbonation can suppress the toxicity of these materials. The cytotoxic activity (WST1 assay) of slag dusts collected from a stainless and a Linz-Donawitz (LD) steel plant, before and after carbonation, was examined in J774 macrophages. The release of Cr, V, Fe, Mn and Ni was measured after incubation in artificial lung fluids mimicking the extracellular and phagolysosomal milieu to which particles are confronted after inhalation. LD slag had the higher Fe, Mn and V content, and was more cytotoxic than stainless steel slag. The cytotoxic activity of LD but not of stainless dusts was reduced after carbonation. The cytotoxic activity of the dusts toward J774 macrophages necessitated a direct contact with the cells and was reduced in the presence of inhibitors of phagocytosis (cytochalasin D) or phagolysosome acidification (bafilomycin), pointing to a key role of metallic constituents released in phagolysosomes. This in vitro study supports a limited reduction of the cytotoxic activity of LD, but not of stainless, steel dusts upon carbonation.

  19. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Labeling of retail gasoline pumps... of retail gasoline pumps; oxygenated gasoline. (a) For oxygenated gasoline programs with a minimum... following shall apply: (1) Each gasoline pump stand from which oxygenated gasoline is dispensed at a...

  20. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Labeling of retail gasoline pumps... of retail gasoline pumps; oxygenated gasoline. (a) For oxygenated gasoline programs with a minimum... following shall apply: (1) Each gasoline pump stand from which oxygenated gasoline is dispensed at a...

  1. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Labeling of retail gasoline pumps... of retail gasoline pumps; oxygenated gasoline. (a) For oxygenated gasoline programs with a minimum... following shall apply: (1) Each gasoline pump stand from which oxygenated gasoline is dispensed at a...

  2. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Labeling of retail gasoline pumps... of retail gasoline pumps; oxygenated gasoline. (a) For oxygenated gasoline programs with a minimum... following shall apply: (1) Each gasoline pump stand from which oxygenated gasoline is dispensed at a...

  3. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Labeling of retail gasoline pumps... of retail gasoline pumps; oxygenated gasoline. (a) For oxygenated gasoline programs with a minimum... following shall apply: (1) Each gasoline pump stand from which oxygenated gasoline is dispensed at a...

  4. 26 CFR 48.4081-4 - Gasoline; special rules for gasoline blendstocks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Gasoline; special rules for gasoline..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4081-4 Gasoline; special rules for gasoline blendstocks... gasoline blendstocks. Generally, under prescribed conditions, tax is not imposed on gasoline...

  5. 26 CFR 48.4081-4 - Gasoline; special rules for gasoline blendstocks.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Gasoline; special rules for gasoline..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4081-4 Gasoline; special rules for gasoline blendstocks... gasoline blendstocks. Generally, under prescribed conditions, tax is not imposed on gasoline...

  6. 26 CFR 48.4081-4 - Gasoline; special rules for gasoline blendstocks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Gasoline; special rules for gasoline..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4081-4 Gasoline; special rules for gasoline blendstocks... gasoline blendstocks. Generally, under prescribed conditions, tax is not imposed on gasoline...

  7. 26 CFR 48.4081-4 - Gasoline; special rules for gasoline blendstocks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Gasoline; special rules for gasoline blendstocks..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4081-4 Gasoline; special rules for gasoline blendstocks... gasoline blendstocks. Generally, under prescribed conditions, tax is not imposed on gasoline...

  8. Comparison of different advanced oxidation process to reduce toxicity and mineralisation of tannery wastewater.

    PubMed

    Schrank, S G; José, H J; Moreira, R F P M; Schröder, H Fr

    2004-01-01

    Many organic compounds contained in wastewater are resistant to conventional chemical and/or biological treatment. Because of this reason different degradation techniques are studied as an alternative to biological and classical physico-chemical processes. Advanced Oxidation Processes (AOPs) probably have developed to become the best options in the near future. AOP while making use of different reaction systems, are all characterised by the same chemical feature: production of OH radicals (*OH). The versatility of AOPs is also enhanced by the fact that they offer different possibilities for OH radical production, thus allowing them to conform to specific treatment requirements. The main problem with AOPs is their high cost. The application of solar technologies to these processes could help to diminish that problem by reducing the energy consumption required for generating UV radiation. In this work, different AOPs (O3, TiO2/UV, Fenton and H2O2/UV) were examined to treat tannery wastewater or as a pre-treatment step for improving the biodegradation of tannery wastewater, at different pH and dosage of the chemicals. Under certain circumstances retardation in biodegradation and/or an increase in toxicity may be observed within these treatment steps. Two different bioassays (Daphnia magna and Vibrio fischeri) have been used for testing the progress of toxicity during the treatment. In parallel other objectives were to analyse and identify organic compounds present in the untreated wastewater and arising degradation products in AOP treated wastewater samples. For this purpose substance specific techniques, e.g., gas chromatography-mass spectrometry (GC-MS) in positive electron impact (El(+)) mode and atmospheric pressure ionisation (API) in combination with flow injection analysis (FIA) or liquid chromatography-mass and tandem mass spectrometry (LC-MS or LC-MS-MS) were performed.

  9. Diphenyl Diselenide Reduces Oxidative Stress and Toxicity Caused by HSV-2 Infection in Mice.

    PubMed

    Sartori, Gláubia; Jardim, Natália Silva; Sari, Marcel Henrique Marcondes; Flores, Eduardo F; Prigol, Marina; Nogueira, Cristina W

    2017-05-01

    Herpes simplex viruses can cause uncommon systemic complications as acute liver failure (ALT) or urinary tract dysfunctions. Diphenyl diselenide, (PhSe)2 , a classical studied organic selenium compound, has a novel antiviral action against HSV-2 infection and well-known antioxidant and anti-inflammatory properties. This study aimed to investigate if (PhSe)2 reduces oxidative stress and systemic toxicity caused by HSV-2 infection in mice. Adult BALB/c mice were pre-treated with (PhSe)2 (5 mg kg(-1) /day, intragastric, i.g.) during 5 days; at day 6 mice were infected with HSV-2 (10 μl-10(5) PFU/mL(-1) ) and post-treated with (PhSe)2 for more 5 days. At day 11, they were killed and samples of liver and kidney were obtained to determine: reactive species (RS); malondialdehyde (MDA), and non-protein thiols (NPSH) levels; the activities of antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT). The activities of adenosine deaminase (ADA), Na(+) /K(+) -ATPase (liver and kidney); alanine aminotransferase (ALT), aspartate aminotransferase (AST), and the levels of urea (plasma) were determined as markers of hepatic and renal toxicity. The results revealed that (PhSe)2 treatment was effective against the increase of renal and hepatic oxidative stress in infected mice and also normalized hepatic and renal ADA activity. It recovered the activity of Na(+) /K(+) - and was not effective against the increase in urea levels in infected mice. Different from (PhSe)2 , acyclovir (positive control), caused an increase in ADA activity and a decrease in hepatic CAT activity. Considering the interest of alternative therapies to treat HSV-2 infections and secondary complications, (PhSe)2 become a notable candidate. J. Cell. Biochem. 118: 1028-1037, 2017. © 2016 Wiley Periodicals, Inc.

  10. AHR2 morpholino knockdown reduces the toxicity of total particulate matter to zebrafish embryos.

    PubMed

    Massarsky, Andrey; Bone, Audrey J; Dong, Wu; Hinton, David E; Prasad, G L; Di Giulio, Richard T

    2016-10-15

    The zebrafish embryo has been proposed as a 'bridge model' to study the effects of cigarette smoke on early development. Previous studies showed that exposure to total particulate matter (TPM) led to adverse effects in developing zebrafish, and suggested that the antioxidant and aryl hydrocarbon receptor (AHR) pathways play important roles. This study investigated the roles of these two pathways in mediating TPM toxicity. The study consisted of four experiments. In experiment I, zebrafish embryos were exposed from 6h post fertilization (hpf) until 96hpf to TPM0.5 and TPM1.0 (corresponding to 0.5 and 1.0μg/mL equi-nicotine units) in the presence or absence of an antioxidant (N-acetyl cysteine/NAC) or a pro-oxidant (buthionine sulfoximine/BSO). In experiment II, TPM exposures were performed in embryos that were microinjected with nuclear factor erythroid 2-related factor 2 (Nrf2), AHR2, cytochrome P450 1A (CYP1A), or CYP1B1 morpholinos, and deformities were assessed. In experiment III, embryos were exposed to TPM, and embryos/larvae were collected at 24, 48, 72, and 96hpf to assess several genes associated with the antioxidant and AHR pathways. Lastly, experiment IV assessed the activity and protein levels of CYP1A and CYP1B1 after exposure to TPM. We demonstrate that the incidence of TPM-induced deformities was generally not affected by NAC/BSO treatments or Nrf2 knockdown. In contrast, AHR2 knockdown reduced, while CYP1A or CYP1B1 knockdowns elevated the incidence of some deformities. Moreover, as shown by gene expression the AHR pathway, but not the antioxidant pathway, was induced in response to TPM exposure, providing further evidence for its importance in mediating TPM toxicity.

  11. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    PubMed

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  12. The use of a novel tobacco-substitute sheet and smoke dilution to reduce toxicant yields in cigarette smoke.

    PubMed

    McAdam, K G; Gregg, E O; Liu, C; Dittrich, D J; Duke, M G; Proctor, C J

    2011-08-01

    The Institute of Medicine encouraged the pursuit and development of potential reduced-exposure products, tobacco products that substantially reduce exposure to one or more tobacco toxicants and can reasonably be expected to reduce the risk of one or more specific diseases or other adverse health effects. One approach to reducing smoke toxicant yields is to dilute the smoke with glycerol. We report chemical, biological and human exposure data related to experimental cigarettes containing up to 60% of a novel glycerol containing "tobacco-substitute" sheet. Analysis of mainstream smoke from experimental cigarettes showed reductions in yields of most measured constituents, other than some volatile species. In vitro toxicological tests showed reductions in the activity of smoke particulates in proportion to their glycerol content. Human exposure to nicotine was reduced by a mean of 18% as determined by filter studies and by 14% using 24h urinary biomarker analysis. Smoke particulate exposures were reduced by a mean of 29% in filter studies and NNK exposure by similar amounts based on urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol concentrations. These results show that reducing exposure to some smoke toxicants is possible using a tobacco-substitute sheet, although some smoke toxicants, and the sensory attributes of the smoke, remain as technical challenges.

  13. Gasoline: No end in sight

    SciTech Connect

    Cook, L.

    1995-05-01

    In early 1989, ARCO launched the world`s first reformulated gasoline: EC-1 Regular. The decisions made by the company prior to the production of EC-1 are reviewed. Gasoline is the primary transportation fuel in America. Nearly 98% of the 190 million vehicles in this country run on gasoline or diesel fuel. EC-1 Regular was designed for use in old cars without catalytic converters - the pre-1975 vehicles designed for using leaded fuel. EC-1 Regular cut pollution from those old cars in the Los Angeles Basin by 20%, equivalent to removing thousands of these cars from the road. The advantages of using EC-1 Regular gasoline are discussed.

  14. Bioethanol/gasoline blends for fuelling conventional and hybrid scooter. Regulated and unregulated exhaust emissions

    NASA Astrophysics Data System (ADS)

    Costagliola, Maria Antonietta; Prati, Maria Vittoria; Murena, Fabio

    2016-05-01

    The aim of this experimental activity was to evaluate the influence of ethanol fuel on the pollutant emissions measured at the exhaust of a conventional and a hybrid scooter. Both scooters are 4-stroke, 125 cm3 of engine capacity and Euro 3 compliant. They were tested on chassis dynamometer for measuring gaseous emissions of CO, HC, NOx, CO2 and some toxic micro organic pollutants, such as benzene, 1,3-butadiene, formaldehyde and acetaldehyde. The fuel consumption was estimated throughout a carbon balance on the exhaust species. Moreover, total particles number with diameter between 20 nm up to 1 μm was measured. Worldwide and European test cycles were carried out with both scooters fuelled with gasoline and ethanol/gasoline blends (10/90, 20/80 and 30/70% vol). According to the experimental results relative to both scooter technologies, the addiction of ethanol in gasoline reduces CO and particles number emissions. The combustion of conventional scooter becomes unstable when a percentage of 30%v of bioethanol is fed; as consequence a strong increasing of hydrocarbon is monitored, including carcinogenic species. The negative effects of ethanol fuel are related to the increasing of fuel consumption due to the less carbon content for volume unit and to the increasing of formaldehyde and acetaldehyde due to the higher oxygen availability. Almost 70% of Ozone Formation Potential is covered by alkenes and aromatics.

  15. Denatured ethanol release into gasoline residuals, Part 1: source behaviour.

    PubMed

    Freitas, Juliana G; Barker, James F

    2013-05-01

    With the increasing use of ethanol in fuels, it is important to evaluate its fate when released into the environment. While ethanol is less toxic than other organic compounds present in fuels, one of the concerns is the impact ethanol might have on the fate of gasoline hydrocarbons in groundwater. One possible concern is the spill of denatured ethanol (E95: ethanol containing 5% denaturants, usually hydrocarbons) in sites with pre-existing gasoline contamination. In that scenario, ethanol is expected to increase the mobility of the NAPL phase by acting as a cosolvent and decreasing interfacial tension. To evaluate the E95 behaviour and its impacts on pre-existing gasoline, a field test was performed at the CFB-Borden aquifer. Initially gasoline contamination was created releasing 200 L of E10 (gasoline with 10% ethanol) into the unsaturated zone. One year later, 184 L of E95 was released on top of the gasoline contamination. The site was monitored using soil cores, multilevel wells and one glass access tube. At the end of the test, the source zone was excavated and the compounds remaining were quantified. E95 ethanol accumulated and remained within the capillary fringe and unsaturated zone for more than 200 days, despite ~1m oscillations in the water table. The gasoline mobility increased and it was redistributed in the source zone. Gasoline NAPL saturations in the soil increased two fold in the source zone. However, water table oscillations caused a separation between the NAPL and ethanol: NAPL was smeared and remained in deeper positions while ethanol moved upwards following the water table rise. Similarly, the E95 denaturants that initially were within the ethanol-rich phase became separated from ethanol after the water table oscillation, remaining below the ethanol rich zone. The separation between ethanol and hydrocarbons in the source after water table oscillation indicates that ethanol's impact on hydrocarbon residuals is likely limited to early times.

  16. Reduced Glutathione Mediates Resistance to H2S Toxicity in Oral Streptococci

    PubMed Central

    Ooi, Xi Jia

    2016-01-01

    Periodontal disease is associated with changes in the composition of the oral microflora, where health-associated oral streptococci decrease while Gram-negative anaerobes predominate in disease. A key feature of periodontal disease-associated anaerobes is their ability to produce hydrogen sulfide (H2S) abundantly as a by-product of anaerobic metabolism. So far, H2S has been reported to be either cytoprotective or cytotoxic by modulating bacterial antioxidant defense systems. Although oral anaerobes produce large amounts of H2S, the potential effects of H2S on oral streptococci are currently unknown. The aim of this study was to determine the effects of H2S on the survival and biofilm formation of oral streptococci. The growth and biofilm formation of Streptococcus mitis and Streptococcus oralis were inhibited by H2S. However, H2S did not significantly affect the growth of Streptococcus gordonii or Streptococcus sanguinis. The differential susceptibility of oral streptococci to H2S was attributed to differences in the intracellular concentrations of reduced glutathione (GSH). In the absence of GSH, H2S elicited its toxicity through an iron-dependent mechanism. Collectively, our results showed that H2S exerts antimicrobial effects on certain oral streptococci, potentially contributing to the decrease in health-associated plaque microflora. PMID:26801579

  17. Environmental Justice Implications of Reduced Reporting Requirements of the Toxics Release Inventory Burden Reduction Rule

    PubMed Central

    Miranda, Marie Lynn; Keating, Martha H.; Edwards, Sharon E.

    2010-01-01

    This paper presents a geographic information systems (GIS) methodology for evaluating the environmental justice implications of the Toxics Release Inventory (TRI) Burden Reduction Rule, which was issued by the U.S. Environmental Protection Agency in December 2006 under the authority of the Emergency Planning and Community Right-to-Know Act of 1986. This rule exempts industrial facilities meeting certain higher reporting thresholds from filing detailed reports about the quantities of chemicals used, released, or managed as waste. Our analytical approach examines demographic characteristics within a 1 km, 3 km, and 5 km buffer around a georeferenced facility location, applied on a national, regional, and state scale. The distance-based GIS analysis demonstrates that TRI facilities that are eligible for reduced reporting are more likely to be located in proximity to communities with a higher percentage of minority and low-income residents. The differences are more pronounced for percent minority and percent minority under age 5 in comparison to percent in poverty, and the demographic differences are more apparent at increasingly resolved geographic scales. PMID:18754453

  18. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    NASA Astrophysics Data System (ADS)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  19. Reduced Glutathione Mediates Resistance to H2S Toxicity in Oral Streptococci.

    PubMed

    Ooi, Xi Jia; Tan, Kai Soo

    2016-01-22

    Periodontal disease is associated with changes in the composition of the oral microflora, where health-associated oral streptococci decrease while Gram-negative anaerobes predominate in disease. A key feature of periodontal disease-associated anaerobes is their ability to produce hydrogen sulfide (H2S) abundantly as a by-product of anaerobic metabolism. So far, H2S has been reported to be either cytoprotective or cytotoxic by modulating bacterial antioxidant defense systems. Although oral anaerobes produce large amounts of H2S, the potential effects of H2S on oral streptococci are currently unknown. The aim of this study was to determine the effects of H2S on the survival and biofilm formation of oral streptococci. The growth and biofilm formation of Streptococcus mitis and Streptococcus oralis were inhibited by H2S. However, H2S did not significantly affect the growth of Streptococcus gordonii or Streptococcus sanguinis. The differential susceptibility of oral streptococci to H2S was attributed to differences in the intracellular concentrations of reduced glutathione (GSH). In the absence of GSH, H2S elicited its toxicity through an iron-dependent mechanism. Collectively, our results showed that H2S exerts antimicrobial effects on certain oral streptococci, potentially contributing to the decrease in health-associated plaque microflora.

  20. Toxic coral gobies reduce the feeding rate of a corallivorous butterflyfish on Acropora corals

    NASA Astrophysics Data System (ADS)

    Dirnwoeber, M.; Herler, J.

    2013-03-01

    The obligate coral-dwelling gobiid genus Gobiodon inhabits Acropora corals and has developed various physiological, morphological and ethological adaptations towards this life habit. While the advantages of this coral-fish association are well documented for Gobiodon, possible fitness-increasing factors for the host coral are unknown. This study examines the influence of coral-dwelling gobies on the feeding behaviour of obligate corallivorous butterflyfishes. In an aquarium experiment using video observation, the corallivorous butterflyfish Chaetodon austriacus fed significantly less on corals inhabited by two Gobiodon species compared to unoccupied coral colonies of similar size. The more agonistic species G. histrio, which mostly displayed directed movements towards butterflyfishes, decreased butterflyfish bite rate by 62-98 % compared to uninhabited colonies. For Gobiodon sp. 3, which mostly displayed undirected movements in response to visits by C. austriacus, bite rate reduction was 64-68 %. The scale-less skin of Gobiodon spp. is covered by mucus that is toxic and multi-functional by reducing predation as well as affecting parasite attachment. A choice flume experiment suggests that the highly diluted skin mucus of Gobiodon spp. also functions as a corallivore repellent. This study demonstrates that Gobiodon spp. exhibit resource defence against coral-feeding butterflyfishes and also that coral colonies without resident Gobiodon suffer higher predation rates. Although the genus Gobiodon is probably a facultative corallivore, this study shows that by reducing predation on inhabited colonies by other fishes, these obligate coral-dwellers either compensate for their own fitness-decreasing impact on host colonies or live in a mutualistic association with them.

  1. Data on Ethanol in Gasoline

    EPA Science Inventory

    Gasoline composition varies for technical, market and regulatory reasons. Knowledge of any one of these is insufficient for understanding the chemical composition of gasoline at any specific location in the U.S. Historical data collected by the National Institute of Petroleum ...

  2. Plasma amino acids of wether lambs supplemented with novel feed products to reduce locoweed toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Locoweed is a toxic legume that impairs performance and may cause death in grazing livestock. Novel feed and supplement products are needed that counter or minimize the toxic effects of locoweed. The objective was to evaluate the effects of 3 proprietary feed product formulations on plasma amino aci...

  3. Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model

    DOE PAGES

    deLorimier, Elaine; Coonrod, Leslie A.; Copperman, Jeremy; ...

    2014-10-10

    In this study, CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase (DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecular dynamicsmore » and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.« less

  4. Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model

    SciTech Connect

    deLorimier, Elaine; Coonrod, Leslie A.; Copperman, Jeremy; Taber, Alex; Reister, Emily E.; Sharma, Kush; Todd, Peter K.; Guenza, Marina G.; Berglund, J. Andrew

    2014-10-10

    In this study, CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase (DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecular dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.

  5. Health assessment of gasoline and fuel oxygenate vapors: generation and characterization of test materials.

    PubMed

    Henley, Michael; Letinski, Daniel J; Carr, John; Caro, Mario L; Daughtrey, Wayne; White, Russell

    2014-11-01

    In compliance with the Clean Air Act regulations for fuel and fuel additive registration, the petroleum industry, additive manufacturers, and oxygenate manufacturers have conducted comparative toxicology testing on evaporative emissions of gasoline alone and gasoline containing fuel oxygenates. To mimic real world exposures, a generation method was developed that produced test material similar in composition to the re-fueling vapor from an automotive fuel tank at near maximum in-use temperatures. Gasoline vapor was generated by a single-step distillation from a 1000-gallon glass-lined kettle wherein approximately 15-23% of the starting material was slowly vaporized, separated, condensed and recovered as test article. This fraction was termed vapor condensate (VC) and was prepared for each of the seven test materials, namely: baseline gasoline alone (BGVC), or gasoline plus an ether (G/MTBE, G/ETBE, G/TAME, or G/DIPE), or gasoline plus an alcohol (G/EtOH or G/TBA). The VC test articles were used for the inhalation toxicology studies described in the accompanying series of papers in this journal. These studies included evaluations of subchronic toxicity, neurotoxicity, immunotoxicity, genotoxicity, reproductive and developmental toxicity. Results of these studies will be used for comparative risk assessments of gasoline and gasoline/oxygenate blends by the US Environmental Protection Agency.

  6. Utilization of acetic acid-rich pyrolytic bio-oil by microalga Chlamydomonas reinhardtii: reducing bio-oil toxicity and enhancing algal toxicity tolerance.

    PubMed

    Liang, Yi; Zhao, Xuefei; Chi, Zhanyou; Rover, Marjorie; Johnston, Patrick; Brown, Robert; Jarboe, Laura; Wen, Zhiyou

    2013-04-01

    This work was to utilize acetic acid contained in bio-oil for growth and lipid production of the microalga Chlamydomonas reinhardtii. The acetic acid-rich bio-oil fraction derived from fast pyrolysis of softwood contained 26% (w/w) acetic acid, formic acid, methanol, furfural, acetol, and phenolics as identified compounds, and 13% (w/w) unidentified compounds. Among those identified compounds, phenolics were most inhibitory to algal growth, followed by furfural and acetol. To enhance the fermentability of the bio-oil fraction, activated carbon was used to reduce the toxicity of the bio-oil, while metabolic evolution was used to enhance the toxicity tolerance of the microalgae. Combining activated carbon treatment and using evolved algal strain resulted in significant algal growth improvement. The results collectively showed that fast pyrolysis-fermentation process was a viable approach for converting biomass into fuels and chemicals.

  7. Economic and environmental benefits of higher-octane gasoline.

    PubMed

    Speth, Raymond L; Chow, Eric W; Malina, Robert; Barrett, Steven R H; Heywood, John B; Green, William H

    2014-06-17

    We quantify the economic and environmental benefits of designing U.S. light-duty vehicles (LDVs) to attain higher fuel economy by utilizing higher octane (98 RON) gasoline. We use engine simulations, a review of experimental data, and drive cycle simulations to estimate the reduction in fuel consumption associated with using higher-RON gasoline in individual vehicles. Lifecycle CO2 emissions and economic impacts for the U.S. LDV fleet are estimated based on a linear-programming refinery model, a historically calibrated fleet model, and a well-to-wheels emissions analysis. We find that greater use of high-RON gasoline in appropriately tuned vehicles could reduce annual gasoline consumption in the U.S. by 3.0-4.4%. Accounting for the increase in refinery emissions from production of additional high-RON gasoline, net CO2 emissions are reduced by 19-35 Mt/y in 2040 (2.5-4.7% of total direct LDV CO2 emissions). For the strategies studied, the annual direct economic benefit is estimated to be $0.4-6.4 billion in 2040, and the annual net societal benefit including the social cost of carbon is estimated to be $1.7-8.8 billion in 2040. Adoption of a RON standard in the U.S. in place of the current antiknock index (AKI) may enable refineries to produce larger quantities of high-RON gasoline.

  8. Reduced Toxicity, High Performance Monopropellant at the U.S. Air Force Research Laboratory

    DTIC Science & Technology

    2010-04-27

    sensitivity, stability, and toxicity studies have been conducted on the monopropellant and will be described. The results from AF-M315E indicate that a...hydrazine monopropellant for spacecraft propulsion. Hazard and safety/sensitivity, stability, and toxicity studies have been conducted on the...and development. During the 1940s and 1950s efforts focused on evaluations of monopropellants such as hydrogen peroxide, propyl nitrate, ethylene

  9. Acute encephalopathy with biphasic seizures and late reduced diffusion associated with staphylococcal toxic shock syndrome caused by burns.

    PubMed

    Yokochi, Takaoki; Sakanishi, Shinpei; Ishidou, Yuuki; Kawano, Go; Matsuishi, Toyojiro; Akita, Yukihiro; Obu, Keizo

    2016-10-01

    We report a case of acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) associated with toxic shock syndrome caused by burns. A one-year-old girl was admitted to our hospital for treatment of severe burns. On day 3, she exhibited a fever, generalized rash and multiple organ failure. She was diagnosed with toxic shock syndrome after burns. She had seizures with fever twice on the same day, followed by secondary seizures on day 8 and transient deterioration of the gross motor functions involved in sitting alone and rolling over. On day 9, MRI diffusion-weighted images showed bright tree appearance (BTA). We conclude that she developed AESD.

  10. Life cycle assessment of gasoline production and use in Chile.

    PubMed

    Morales, Marjorie; Gonzalez-García, Sara; Aroca, Germán; Moreira, María Teresa

    2015-02-01

    Gasoline is the second most consumed fuel in Chile, accounting for 34% of the total fuel consumption in transportation related activities in 2012. Chilean refineries process more than 97% of the total gasoline commercialized in the national market. When it comes to evaluating the environmental profile of a Chilean process or product, the analysis should consider the characteristics of the Chilean scenario for fuel production and use. Therefore, the identification of the environmental impacts of gasoline production turns to be very relevant for the determination of the associated environmental impacts. For this purpose, Life Cycle Assessment has been selected as a useful methodology to assess the ecological burdens derived from fuel-based systems. In this case study, five subsystems were considered under a "well-to-wheel" analysis: crude oil extraction, gasoline importation, refinery, gasoline storage and distribution/use. The distance of 1 km driven by a middle size passenger car was chosen as functional unit. Moreover, volume, economic and energy-based allocations were also considered in a further sensitivity analysis. According to the results, the main hotspots were the refining activities as well as the tailpipe emissions from car use. When detailing by impact category, climate change was mainly affected by the combustion emissions derived from the gasoline use and refining activities. Refinery was also remarkable in toxicity related categories due to heavy metals emissions. In ozone layer and mineral depletion, transport activities played an important role. Refinery was also predominant in photochemical oxidation and water depletion. In terms of terrestrial acidification and marine eutrophication, the combustion emissions from gasoline use accounted for large contributions. This study provides real inventory data for the Chilean case study and the environmental results give insight into their influence of the assessment of products and processes in the country

  11. Evaluation of aluminosilicate compounds to reduce aflatoxin residues and toxicity to poultry and livestock: a review report.

    PubMed

    Harvey, R B; Kubena, L F; Phillips, T D

    1993-01-01

    The aflatoxins (AFs) are reported to be hepatotoxic, mutagenic, immunosuppressive, and carcinogenic. Methods to prevent, reduce, or remediate AF toxicity and residues in the environment are in great demand. Various AF-detoxification procedures are reviewed with particular emphasis on ammoniation and the use of adsorbent compounds to bind AF. A series of in vivo experiments by the authors are reviewed that evaluated the ability of a specific hydrated sodium calcium aluminosilicate (HSCAS) adsorbent to reduce the toxicity of AF to poultry and livestock and to reduce AF residues in milk. These studies showed that HSCAS forms stable bonds with AF in vitro, and when added to AF-contaminated poultry and livestock feeds, HSCAS is able to protect chickens, swine, and lambs from the deleterious toxic effects of AF and to reduce AF residues in milk of dairy cows and goats. These results indicate that HSCAS, when used in conjunction with other mycotoxin management practices, may prove effective for the preventive management of AF-contaminated feedstuffs in livestock and poultry and may reduce AF residues in the food-chain.

  12. Misunderstood markets: The case of California gasoline

    NASA Astrophysics Data System (ADS)

    Thompson, Jennifer Ruth

    In 1996, the California Air Resources Board (CARB) implemented a new benchmark for cleaner burning gasoline that is unique to California. Since then, government officials have often expressed concern that the uniqueness of petroleum products in California segregates the industry, allowing for gasoline prices in the State that are too high and too volatile. The growing concern about the segmentation of the California markets lends itself to analysis of spatial pricing. Spatial price spreads of wholesale gasoline within the state exhibit some characteristics that seem, on the surface, inconsistent with spatial price theory. Particularly, some spatial price spreads of wholesale gasoline appear larger than accepted transportation rates and other spreads are negative, giving a price signal for transportation against the physical flow of product. Both characteristics suggest some limitation in the arbitrage process. Proprietary data, consisting of daily product prices for the years 2000 through 2002, disaggregated by company, product, grade, and location is used to examine more closely spatial price patterns. My discussion of institutional and physical infrastructure outlines two features of the industry that limit, but do not prohibit, arbitrage. First, a look into branding and wholesale contracting shows that contract terms, specifically branding agreements, reduces the price-responsiveness of would-be arbitrageurs. Second, review of maps and documents illustrating the layout of physical infrastructure, namely petroleum pipelines, confirms the existence of some connections among markets. My analysis of the day-of-the-week effects on wholesale prices demonstrates how the logistics of the use of transportation infrastructure affect market prices. Further examination of spatial price relationships shows that diesel prices follow closely the Augmented Law of One Price (ALOP), and that branding agreements cause gasoline prices to deviate substantially ALOP. Without branding

  13. Encapsulation of Aconitine in Self-Assembled Licorice Protein Nanoparticles Reduces the Toxicity In Vivo

    NASA Astrophysics Data System (ADS)

    Ke, Li-jing; Gao, Guan-zhen; Shen, Yong; Zhou, Jian-wu; Rao, Ping-fan

    2015-11-01

    Many herbal medicines and compositions are clinically effective but challenged by its safety risks, i.e., aconitine (AC) from aconite species. The combined use of Radix glycyrrhizae (licorice) with Radix aconite L. effectively eliminates toxicity of the later while increasing efficacy. In this study, a boiling-stable 31-kDa protein (namely GP) was purified from licorice and self-assembled into nanoparticles (206.2 ± 2.0 nm) at pH 5.0, 25 °C. The aconitine-encapsulated GP nanoparticles (238.2 ± 1.2 nm) were prepared following the same procedure and tested for its toxicity by intraperitoneal injection on ICR mouse ( n = 8). Injection of GP-AC nanoparticles and the mixed licorice-aconite decoction, respectively, caused mild recoverable toxic effects and no death, while the aconitine, particle-free GP-AC mixture and aconite decoction induced sever toxic effects and 100 % death. Encapsulation of poisonous alkaloids into self-assembled herbal protein nanoparticles contributes to toxicity attenuation of combined use of herbs, implying a prototype nanostructure and a universal principle for the safer clinical applications of herbal medicines.

  14. Quantification of toxic and inhibitory impact of copper and zinc on mixed cultures of sulfate-reducing bacteria.

    PubMed

    Utgikar, Vivek P; Tabak, Henry H; Haines, John R; Govind, Rakesh

    2003-05-05

    The adverse effects of copper and zinc on an acetate-utilizing mixed cultures of sulfate-reducing bacteria (SRB) at concentrations below the toxic concentration (minimum metal concentration at which no sulfate reduction is observed) are reported in this paper. Mathematical models were developed to incorporate the toxic and inhibitory effects (defined as the reduction in bacterial population upon exposure to the metal and the decrease in the metabolic rate of sulfate reduction by the SRB, respectively) into the sulfate-reduction biokinetics. The characteristic toxicity and inhibition constants were obtained from the measurements of bacterial populations and dissolved metal concentrations in serum bottle studies conducted at 35 degrees C and pH 6.6. Both copper and zinc had toxic and inhibitory effects on SRB. The toxicity constants for copper and zinc were 10.6 and 2.9 mM(-1), respectively, indicating that exposure to copper resulted in a higher mortality of SRB than did exposure to zinc. The values of the inhibition constants were found to be 17.9 +/- 2.5 and 25.2 +/- 1.0 mM(-1) for copper and zinc, respectively. This implies that dissolved zinc was slightly more inhibitory to SRB than copper. The models presented in the paper can be used to predict the response of a sulfate-reduction bioreactor to heavy metals during acid mine drainage treatment.

  15. Control of metal toxicity, effluent COD and regeneration of gel beads by immobilized sulfate-reducing bacteria.

    PubMed

    Min, Xiaobo; Chai, Liyuan; Zhang, Chuanfu; Takasaki, Yasushi; Okura, Takahiko

    2008-07-01

    Over the last few decades, the use of sulfate-reducing bacteria (SRB) in the treatment of heavy-metal containing wastewaters including acid mine drainage has become a topic of scientific and commercial interest. However, technical difficulties such as the sensitivity of SRB to toxic metals and high effluent COD limit the widespread use of SRB in high heavy-metal containing wastewater. The aim of this study was to clarify the reasons why the immobilized SRB sludge with inner cohesive carbon source (ISIS) process can endure high metal toxicity and decrease effluent COD. The ISIS process can physically set apart SRB and free the system of external influences such as the surrounding toxic metallic ions, as well as form inner carbon sources to avoid high effluent COD. Metal toxicity and bead durability are the two major factors which influence the regeneration and reuse of gel beads. Reuse of suspended SRB sludge and beads crosslinked with boric acid were unsuccessful due to metal toxicity and agglomeration of beads, respectively. However, beads crosslinked with ammonium sulfate prevented agglomeration of beads allowing successful bead regeneration and reuse. The result of four cyclic trials showed that over 99% of zinc was removed in each trial using these beads.

  16. ARCO introduces new low-emission gasoline in Southern California

    SciTech Connect

    Not Available

    1989-10-01

    ARCO announced plans on August 15 to introduce a new low-emission regular gasoline into the Southern California market September 1 that will significantly reduce air pollution from pre-1975 cars and pre-1980 trucks. The new environmentally formulated blend, called EC-1, will replace ARCO's leaded regular gasoline. ARCO's price to its dealers will be the same as it was for leaded regular. EC (Emission Control) -1 is the first phase of ARCO's plan to help make even greater reductions in vehicular air pollution in Southern California during the next decade. The unique lead-free gasoline is for use only in vehicles not equipped with catalytic converters which now operate on leaded regular gasoline. ARCO's tests, shared with the South Coast Air Quality Management District (SCAQMD) and the California Air Resources Board (ARB), show that is all current users of leaded regular gasoline in Southern California switched to the new gasoline about 350 tons of pollutants would be removed from the air each day. It is uniquely formulated to help Southern Californians meet federal and state ambient air quality standards on carbon monoxide, oxides of nitrogen, ozone, and particular matter without any reduction in vehicular performance or engine modification.

  17. Improving the environmental and performance characteristics of vehicles by introducing the surfactant additive into gasoline.

    PubMed

    Magaril, Elena; Magaril, Romen

    2016-09-01

    The operation of modern vehicles requires the introduction of package of fuel additives to ensure the required level of operating characteristics, some of which cannot be achieved by current oil refining methods. The use of additives allows flexibility of impact on the properties of the fuel at minimal cost, increasing the efficiency and environmental safety of vehicles. Among the wide assortment of additives available on the world market, many are surfactants. It has been shown that the introduction of some surfactants into gasoline concurrently reduces losses from gasoline evaporation, improves the mixture formation during injection of gasoline into the engine and improves detergent and anticorrosive properties. The surfactant gasoline additive that provides significant improvement in the quality of gasoline used and environmental and operating characteristics of vehicles has been developed and thoroughly investigated. The results of studies confirming the efficiency of the gasoline additive application are herein presented.

  18. Evaluation of Reduced Sediment Volume Procedures for Acute Toxicity Tests Using the Estuarine Amphipod Leptocheirus plumulosus

    EPA Science Inventory

    The volume of sediment required to perform a sediment toxicity bioassay is a major driver of the overall cost associated with that bioassay. Sediment volume affects bioassay cost due to sediment collection, transportation, storage, and disposal costs as well as labor costs assoc...

  19. Intensity-Modulated Radiotherapy Reduces Gastrointestinal Toxicity in Patients Treated With Androgen Deprivation Therapy for Prostate Cancer

    SciTech Connect

    Sharma, Navesh K.; Li Tianyu; Chen, David Y.; Pollack, Alan; Horwitz, Eric M.; Buyyounouski, Mark K.

    2011-06-01

    Purpose: Androgen deprivation therapy (AD) has been shown to increase late Grade 2 or greater rectal toxicity when used concurrently with three-dimensional conformal radiotherapy (3D-CRT). Intensity-modulated radiotherapy (IMRT) has the potential to reduce toxicity by limiting the radiation dose received by the bowel and bladder. The present study compared the genitourinary and gastrointestinal (GI) toxicity in men treated with 3D-CRT+AD vs. IMRT+AD. Methods and Materials: Between July 1992 and July 2004, 293 men underwent 3D-CRT (n = 170) or IMRT (n = 123) with concurrent AD (<6 months, n = 123; {>=}6 months, n = 170). The median radiation dose was 76 Gy for 3D-CRT (International Commission on Radiation Units and Measurements) and 76 Gy for IMRT (95% to the planning target volume). Toxicity was assessed by a patient symptom questionnaire that was completed at each visit and recorded using a Fox Chase Modified Late Effects Normal Tissue Task radiation morbidity scale. Results: The mean follow-up was 86 months (standard deviation, 29.3) for the 3D-CRT group and 40 months (standard deviation, 9.7) for the IMRT group. Acute GI toxicity (odds ratio, 4; 95% confidence interval, 1.6-11.7; p = .005) was significantly greater with 3D-CRT than with IMRT and was independent of the AD duration (i.e., <6 vs. {>=}6 months). The interval to the development of late GI toxicity was significantly longer in the IMRT group. The 5-year Kaplan-Meier estimate for Grade 2 or greater GI toxicity was 20% for 3D-CRT and 8% for IMRT (p = .01). On multivariate analysis, Grade 2 or greater late GI toxicity (hazard ratio, 2.1; 95% confidence interval, 1.1-4.3; p = .04) was more prevalent in the 3D-CRT patients. Conclusion: Compared with 3D-CRT, IMRT significantly decreased the acute and late GI toxicity in patients treated with AD.

  20. Chemistry Impacts in Gasoline HCCI

    SciTech Connect

    Szybist, James P; Bunting, Bruce G

    2006-09-01

    The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its

  1. Biofiltration of gasoline and ethanol-amended gasoline vapors.

    PubMed

    Soares, Marlene; Woiciechowski, Adenise L; Kozliak, Evguenii I; Paca, Jan; Soccol, Carlos R

    2012-01-01

    Assuming the projected increase in use of ethanol as a biofuel, the current study was conducted to compare the biofiltration efficiencies for plain and 25% ethanol-containing gasoline. Two biofilters were operated in a downflow mode for 7 months, one of them being compost-based whereas the other using a synthetic packing material, granulated tire rubber, inoculated with gasoline-degrading microorganisms. Inlet concentrations measured as total hydrocarbon (TH) ranged from 1.9 to 5.8 g m(-3) at a constant empty bed retention time of 6.84 min. Contrary to the expectations based on microbiological considerations, ethanol-amended gasoline was more readily biodegraded than plain hydrocarbons, with the respective steady state elimination capacities of 26-43 and 14-18 gTH m(-3) h(-1) for the compost biofilter. The efficiency of both biofilters significantly declined upon the application of higher loads of plain gasoline, yet immediately recovering when switched back to ethanol-blended gasoline. The unexpected effect of ethanol in promoting gasoline biodegradation was explained by increasing hydrocarbon partitioning into the aqueous phase, with mass transfer being rate limiting for the bulk of components. The tire rubber biofilter, after a long acclimation, surpassed the compost biofilter in performance, presumably due to the 'buffering' effect of this packing material increasing the accessibility of gasoline hydrocarbons to the biofilm. With improved substrate mass transfer, biodegradable hydrocarbons were removed in the tire rubber biofilter's first reactor stage, with most of the remaining poorly degradable smaller-size hydrocarbons being degraded in the second stage.

  2. Reformulated gasoline quality issues

    SciTech Connect

    Gonzalez, R.G.; Felch, D.E.; Edgar, M.D.

    1995-11-01

    One year ago, a panel of industry experts were interviewed in the November/December 1994 issue of Fuel Reformulation (Vol. 4, No. 6). With the focus then and now on refinery investments, the panelists were asked to forecast which refining processes would grow in importance. It is apparent from their response, and from other articles and discussions throughout the year, that hydroprocessing and catalytic conversion processes are synergistic in the overall refinery design, with flexibility and process objectives varying on a unit-by-unit case. To an extent, future refinery investments in downstream petrochemicals, such as for paraxylene production, are based on available catalytic reforming feedstock. Just a importantly, hydroprocessing units (hydrotreating, hydrocracking) needed for clean fuel production (gasoline, diesel, aviation fuel), are heavily dependent on hydrogen production from the catalytic reformer. Catalytic reforming`s significant influence in the refinery hydrogen balance, as well as its status as a significant naphtha conversion route to higher-quality fuels, make this unit a high-priority issue for engineers and planners striving for flexibility.

  3. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    SciTech Connect

    Fairbanks, J.W.

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  4. A new mechanism of macrophyte mitigation: how submerged plants reduce malathion's acute toxicity to aquatic animals.

    PubMed

    Brogan, William R; Relyea, Rick A

    2014-08-01

    A growing body of evidence suggests that aquatic plants can mitigate the toxicity of insecticides to sensitive aquatic animals. The current paradigm is that this ability is driven primarily by insecticide sorption to plant tissues, especially for hydrophobic compounds. However, recent work shows that submerged plants can strongly mitigate the toxicity of the relatively hydrophilic insecticide malathion, despite the fact that this compound exhibits a slow sorption rate to plants. To examine this disparity, we tested the hypothesis that the mitigating effect of submerged plants on malathion's toxicity is driven primarily by the increased water pH from plant photosynthesis causing the hydrolysis of malathion, rather than by sorption. To do this, we compared zooplankton (Daphnia magna) survival across five environmentally relevant malathion concentrations (0, 1, 4, 6, or 36 μg L(-1)) in test containers where we chemically manipulated water pH in the absence of plants or added the submerged plant (Elodea canadensis) but manipulated plant photosynthetic activity via shading or no shading. We discovered that malathion was equally lethal to Daphnia at all concentrations tested when photosynthetically inactive (i.e. shaded) plants were present (pH at time of dosing=7.8) or when pH was chemically decreased (pH=7.7). In contrast, when photosynthetically active (i.e. unshaded) plants were present (pH=9.8) or when pH was chemically increased (pH=9.5), the effects of 4 and 6 μg L(-1) of malathion on Daphnia were mitigated strongly and to an equal degree. These results demonstrate that the mitigating effect of submerged plants on malathion's toxicity can be explained entirely by a mechanism of photosynthesizing plants causing an increase in water pH, resulting in rapid malathion hydrolysis. Our findings suggest that current ecotoxicological models and phytoremediation strategies may be overlooking a critical mechanism for mitigating pesticides.

  5. Alternative aircraft anti-icing formulations with reduced aquatic toxicity and biochemical oxygen demand

    USGS Publications Warehouse

    Gold, Harris; Joback, Kevin; Geis, Steven; Bowman, George; Mericas, Dean; Corsi, Steven R.; Ferguson, Lee

    2010-01-01

    The current research was conducted to identify alternative aircraft and pavement deicer and anti-icer formulations with improved environmental characteristics compared to currently used commercial products (2007). The environmental characteristics of primary concern are the biochemical oxygen demand (BOD) and aquatic toxicity of the fully formulated products. Except when the distinction among products is necessary for clarity, “deicer” will refer to aircraft-deicing fluids (ADFs), aircraft anti-icing fluids (AAFs), and pavementdeicing materials (PDMs).

  6. Dissolved organic carbon reduces the toxicity of copper to germlings of the macroalgae, Fucus vesiculosus.

    PubMed

    Brooks, Steven J; Bolam, Thi; Tolhurst, Laura; Bassett, Janice; La Roche, Jay; Waldock, Mike; Barry, Jon; Thomas, Kevin V

    2008-05-01

    This study investigates the effects of waterborne copper exposure on germling growth in chemically defined seawater. Germlings of the macroalgae, Fucus vesiculosus were exposed to a range of copper and dissolved organic carbon (DOC as humic acid) concentrations over 14 days. Germling growth was found to be a sensitive indicator of copper exposure with total copper (TCu) and labile copper (LCu) EC(50) values of approximately 40 and 20 microg/L, respectively, in the absence of added DOC. The addition of DOC into the exposure media provided germlings with protection against copper toxicity, with an increased TCu EC(50) value of 117.3 microg/L at a corrected DOC (cDOC from humic acid only) concentration of 2.03 mg/L. The LCu EC(50) was not affected by a cDOC concentration of 1.65 mg/L or less, suggesting that the LCu concentration not the TCu concentration was responsible for inhibiting germling growth. However, at a cDOC concentration of approximately 2mg/L an increase in the LCu EC(50) suggests that the LCu concentration may play a role in the overall toxicity to the germlings. This is contrary to current understanding of aquatic copper toxicity and possible explanations for this are discussed.

  7. Fabrication of novel vesicles of triptolide for antirheumatoid activity with reduced toxicity in vitro and in vivo.

    PubMed

    Zhang, Li; Wang, Tengteng; Li, Qiang; Huang, Jing; Xu, Hao; Li, Jinlong; Wang, Yongjun; Liang, Qianqian

    2016-01-01

    Triptolide (TP) displays a strong immunosuppression function in immune-mediated diseases, especially in the treatment of rheumatoid arthritis. However, in addition to its medical and health-related functions, TP also exhibits diverse pharmacological side effects, for instance, liver and kidney toxicity and myelosuppression. In order to reduce the side effects, a nano drug carrier system (γ-PGA-l-PAE-TP [PPT]), in which TP was loaded by a poly-γ-glutamic acid-grafted l-phenylalanine ethylester copolymer, was developed. PPT was characterized by photon scattering correlation spectroscopy and transmission electron microscopy, which demonstrated that the average diameter of the drug carrier system is 98±15 nm, the polydispersity index is 0.18, the zeta potential is -35 mV, and the TP encapsulation efficiency is 48.6% with a controlled release manner. The methylthiazolyldiphenyl-tetrazolium bromide assay and flow cytometry revealed that PPT could decrease toxicity and apoptosis induced by free TP on RAW264.7 cells, respectively. The detection of reactive oxygen species showed that PPT could decrease the cellular reactive oxygen species induced by TP. Compared with the free TP-treated group, PPT improved the survival rate of the mice (P<0.01) and had no side effects or toxic effects on the thymus index (P>0.05) and spleen index (P>0.05). The blood biochemical indexes revealed that PPT did not cause much damage to the kidney (blood urea nitrogen and creatinine), liver (serum alanine aminotransferase and aspartate aminotransferase), or blood cells (P>0.05). Meanwhile, hematoxylin and eosin staining and terminal-deoxynucleotidyl transferase dUTP nick-end labeling staining indicated that PPT reduced the damage of free TP on the liver, kidney, and spleen. Our results demonstrated that PPT reduced free TP toxicity in vitro and in vivo and that it is a promising fundamental drug delivery system for rheumatoid arthritis treatment.

  8. Fabrication of novel vesicles of triptolide for antirheumatoid activity with reduced toxicity in vitro and in vivo

    PubMed Central

    Zhang, Li; Wang, Tengteng; Li, Qiang; Huang, Jing; Xu, Hao; Li, Jinlong; Wang, Yongjun; Liang, Qianqian

    2016-01-01

    Triptolide (TP) displays a strong immunosuppression function in immune-mediated diseases, especially in the treatment of rheumatoid arthritis. However, in addition to its medical and health-related functions, TP also exhibits diverse pharmacological side effects, for instance, liver and kidney toxicity and myelosuppression. In order to reduce the side effects, a nano drug carrier system (γ-PGA-l-PAE-TP [PPT]), in which TP was loaded by a poly-γ-glutamic acid-grafted l-phenylalanine ethylester copolymer, was developed. PPT was characterized by photon scattering correlation spectroscopy and transmission electron microscopy, which demonstrated that the average diameter of the drug carrier system is 98±15 nm, the polydispersity index is 0.18, the zeta potential is −35 mV, and the TP encapsulation efficiency is 48.6% with a controlled release manner. The methylthiazolyldiphenyl-tetrazolium bromide assay and flow cytometry revealed that PPT could decrease toxicity and apoptosis induced by free TP on RAW264.7 cells, respectively. The detection of reactive oxygen species showed that PPT could decrease the cellular reactive oxygen species induced by TP. Compared with the free TP-treated group, PPT improved the survival rate of the mice (P<0.01) and had no side effects or toxic effects on the thymus index (P>0.05) and spleen index (P>0.05). The blood biochemical indexes revealed that PPT did not cause much damage to the kidney (blood urea nitrogen and creatinine), liver (serum alanine aminotransferase and aspartate aminotransferase), or blood cells (P>0.05). Meanwhile, hematoxylin and eosin staining and terminal-deoxynucleotidyl transferase dUTP nick-end labeling staining indicated that PPT reduced the damage of free TP on the liver, kidney, and spleen. Our results demonstrated that PPT reduced free TP toxicity in vitro and in vivo and that it is a promising fundamental drug delivery system for rheumatoid arthritis treatment. PMID:27354796

  9. Ethanol Demand in United States Regional Production of Oxygenate-limited Gasoline

    SciTech Connect

    Hadder, G.R.

    2000-08-01

    The Energy Policy Act of 1992 (the Act) outlined a national energy strategy that called for reducing the nation's dependency on petroleum imports. The Act directed the Secretary of Energy to establish a program to promote and expand the use of renewable fuels. The Office of Transportation Technologies (OTT) within the U.S. Department of Energy (DOE) has evaluated a wide range of potential fuels and has concluded that cellulosic ethanol is one of the most promising near-term prospects. Ethanol is widely recognized as a clean fuel that helps reduce emissions of toxic air pollutants. Furthermore, cellulosic ethanol produces less greenhouse gas emissions than gasoline or any of the other alternative transportation fuels being considered by DOE.

  10. Toxicological assessments of rats exposed prenatally to inhaled vapors of gasoline and gasoline-ethanol blends.

    PubMed

    Bushnell, Philip J; Beasley, Tracey E; Evansky, Paul A; Martin, Sheppard A; McDaniel, Katherine L; Moser, Virginia C; Luebke, Robert W; Norwood, Joel; Copeland, Carey B; Kleindienst, Tadeusz E; Lonneman, William A; Rogers, John M

    2015-01-01

    The primary alternative to petroleum-based fuels is ethanol, which may be blended with gasoline in the United States at concentrations up to 15% for most automobiles. Efforts to increase the amount of ethanol in gasoline have prompted concerns about the potential toxicity of inhaled ethanol vapors from these fuels. The well-known sensitivity of the developing nervous and immune systems to ingested ethanol and the lack of information about the neurodevelopmental toxicity of ethanol-blended fuels prompted the present work. Pregnant Long-Evans rats were exposed for 6.5h/day on days 9-20 of gestation to clean air or vapors of gasoline containing no ethanol (E0) or gasoline blended with 15% ethanol (E15) or 85% ethanol (E85) at nominal concentrations of 3000, 6000, or 9000 ppm. Estimated maternal peak blood ethanol concentrations were less than 5mg/dL for all exposures. No overt toxicity in the dams was observed, although pregnant dams exposed to 9000 ppm of E0 or E85 gained more weight per gram of food consumed during the 12 days of exposure than did controls. Fuel vapors did not affect litter size or weight, or postnatal weight gain in the offspring. Tests of motor activity and a functional observational battery (FOB) administered to the offspring between post-natal day (PND) 27-29 and PND 56-63 revealed an increase in vertical activity counts in the 3000- and 9000-ppm groups in the E85 experiment on PND 63 and a few small changes in sensorimotor responses in the FOB that were not monotonically related to exposure concentration in any experiment. Neither cell-mediated nor humoral immunity were affected in a concentration-related manner by exposure to any of the vapors in 6-week-old male or female offspring. Systematic concentration-related differences in systolic blood pressure were not observed in rats tested at 3 and 6 months of age in any experiment. No systematic differences were observed in serum glucose or glycated hemoglobin A1c (a marker of long-term glucose

  11. Global progress and backsliding on gasoline taxes and subsidies

    NASA Astrophysics Data System (ADS)

    Ross, Michael L.; Hazlett, Chad; Mahdavi, Paasha

    2017-01-01

    To reduce greenhouse gas emissions in the coming decades, many governments will have to reform their energy policies. These policies are difficult to measure with any precision. As a result, it is unclear whether progress has been made towards important energy policy reforms, such as reducing fossil fuel subsidies. We use new data to measure net taxes and subsidies for gasoline in almost all countries at the monthly level and find evidence of both progress and backsliding. From 2003 to 2015, gasoline taxes rose in 83 states but fell in 46 states. During the same period, the global mean gasoline tax fell by 13.3% due to faster consumption growth in countries with lower taxes. Our results suggest that global progress towards fossil fuel price reform has been mixed, and that many governments are failing to exploit one of the most cost-effective policy tools for limiting greenhouse gas emissions.

  12. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana.

    PubMed

    Zhu, Xiao Fang; Jiang, Tao; Wang, Zhi Wei; Lei, Gui Jie; Shi, Yuan Zhi; Li, Gui Xin; Zheng, Shao Jian

    2012-11-15

    Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 μM for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd2+, GA at 5 μM improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd2+ increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd2+ absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd2+ uptake related gene-IRT1 in Arabidopsis.

  13. Effects of ethanol-blended gasoline on air pollutant emissions from motorcycle.

    PubMed

    Yao, Yung-Chen; Tsai, Jiun-Horng; Chiang, Hung-Lung

    2009-09-15

    The effect of ethanol-gasoline blends on criteria air pollutant emissions was investigated in a four-stroke motorcycle. The ethanol was blended with unleaded gasoline in four percentages (3, 10, 15, and 20% v/v) and controlled at a constant research octane number, RON (95), to accurately represent commercial gasoline. CO, THC, and NOx emissions were evaluated using the Economic Commission for Europe cycle on the chassis dynamometers. The results of the ethanol-gasoline blends were compared to those of commercial unleaded gasoline with methyl tert-butyl ether as the oxygenated additive. In general, the exhaust CO and NOx emissions decreased with increasing oxygen content in fuels. In contrast, ethanol added in the gasoline did not reduce the THC emissions for a constant RON gasoline. The 15% ethanol blend had the highest emission reductions relative to the reference fuel. The high ethanol-gasoline blend ratio (20%) resulted in a less emission reduction than those of low ratio blends (<15%). This may be attributed to the changes in the combustion conditions in the carburetor engine with 20% ethanol addition. Furthermore, the influence of ethanol-gasoline blends on the reduction of exhaust emissions was observed at different driving modes, especially at 15km/h cruising speed for CO and THC and acceleration stages for NOx.

  14. Enhanced inhibition of bacterial biofilm formation and reduced leukocyte toxicity by chloramphenicol:β-cyclodextrin:N-acetylcysteine complex.

    PubMed

    Aiassa, Virginia; Zoppi, Ariana; Becerra, M Cecilia; Albesa, Inés; Longhi, Marcela R

    2016-11-05

    The purpose of this study was to improve the physicochemical and biological properties of chloramphenicol (CP) by multicomponent complexation with β-cyclodextrin (β-CD) and N-acetylcysteine (NAC). The present work describes the ability of solid multicomponent complex (MC) to decrease biomass and cellular activity of Staphylococcus by crystal violet and XTT assay, and leukocyte toxicity, measuring the increase of reactive oxygen species by chemiluminescence, and using 123-dihydrorhodamine. In addition, MC was prepared by the freeze-drying or physical mixture methods, and then characterized by scanning electron microscopy and powder X-ray diffraction. Nuclear magnetic resonance and phase solubility studies provided information at the molecular level on the structure of the MC and its association binding constants, respectively. The results obtained allowed us to conclude that MC formation is an effective pharmaceutical strategy that can reduce CP toxicity against leukocytes, while enhancing its solubility and antibiofilm activity.

  15. Synthesis of Carbohydrate Capped Silicon Nanoparticles and their Reduced Cytotoxicity, In Vivo Toxicity, and Cellular Uptake.

    PubMed

    Ahire, Jayshree H; Behray, Mehrnaz; Webster, Carl A; Wang, Qi; Sherwood, Victoria; Saengkrit, Nattika; Ruktanonchai, Uracha; Woramongkolchai, Noppawan; Chao, Yimin

    2015-08-26

    The development of smart targeted nanoparticles (NPs) that can identify and deliver drugs at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating primary and advanced metastatic tumors. Obtaining knowledge of the diseases at the molecular level can facilitate the identification of biological targets. In particular, carbohydrate-mediated molecular recognitions using nano-vehicles are likely to increasingly affect cancer treatment methods, opening a new area in biomedical applications. Here, silicon NPs (SiNPs) capped with carbohydrates including galactose, glucose, mannose, and lactose are successfully synthesized from amine terminated SiNPs. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] analysis shows an extensive reduction in toxicity of SiNPs by functionalizing with carbohydrate moiety both in vitro and in vivo. Cellular uptake is investigated with flow cytometry and confocal fluorescence microscope. The results show the carbohydrate capped SiNPs can be internalized in the cells within 24 h of incubation, and can be taken up more readily by cancer cells than noncancerous cells. Moreover, these results reinforce the use of carbohydrates for the internalization of a variety of similar compounds into cancer cells.

  16. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations

    PubMed Central

    Salvioni, Lucia; Galbiati, Elisabetta; Collico, Veronica; Alessio, Giulia; Avvakumova, Svetlana; Corsi, Fabio; Tortora, Paolo; Prosperi, Davide; Colombo, Miriam

    2017-01-01

    Background The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases. Methods Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet–visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs. Results In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells. Conclusion We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed.

  17. Large PAHs detected in fine particulate matter emitted from light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Riddle, Sarah G.; Jakober, Chris A.; Robert, Michael A.; Cahill, Thomas M.; Charles, M. Judith; Kleeman, Michael J.

    Emission factors of large PAHs with 6-8 aromatic rings with molecular weights (MW) of 300-374 were measured from 16 light-duty gasoline-powered vehicles (LDGV) and one heavy-duty diesel-powered vehicle (HDDV) operated under realistic driving conditions. LDGVs emitted PAH isomers of MW 302, 326, 350, and 374, while the HDDV did not emit these compounds. This suggests that large PAHs may be useful tracers for the source apportionment of gasoline-powered motor vehicle exhaust in the atmosphere. Emission rates of MW 302, 326, and 350 isomers from LDGVs equipped with three-way catalysts (TWCs) ranged from 2 to 10 (μg L -1 fuel burned), while emissions from LDGVs classified as low emission vehicles (LEVs) were almost a factor of 10 lower. MW 374 PAH isomers were not quantified due to the lack of a quantification-grade standard. The reduced emissions associated with the LEVs are likely attributable to improved vapor recovery during the "cold-start" phase of the Federal Test Procedure (FTP) driving cycle before the catalyst reaches operating temperature. Approximately 2 (μg g -1 PM) of MW 326 and 350 PAH isomer groups were found in the National Institute of Standards and Technology standard reference material (SRM)#1649 (Urban Dust). The pattern of the MW 302, 326, and 350 isomers detected in SRM#1649 qualitatively matched the ratio of these compounds detected in the exhaust of TWC LDGVs suggesting that each gram of Urban Dust SRM contained 5-10 mg of PM originally emitted from gasoline-powered motor vehicles. Large PAHs made up 24% of the total LEV PAH emissions and 39% of the TWC PAH emissions released from gasoline-powered motor vehicles. Recent studies have shown certain large PAH isomers have greater toxicity than benzo[ a]pyrene. Even though the specific toxicity measurements on PAHs with MW >302 have yet to be performed, the detection of significant amounts of MW 326 and 350 PAHs in motor vehicle exhaust in the current study suggests that these compounds may pose

  18. LIFE CYCLE ASSESSMENT OF GASOLINE BLENDING OPTIONS

    EPA Science Inventory

    Most petroleum refineries are facing the challenge of producing gasoline, which contains the desirable properties and complies with the ever-increasing environmental regulations and health restrictions. The impact of gasoline on the environment is directly related to its composit...

  19. Gasoline Composition Regulations Affecting LUST Sites

    EPA Science Inventory

    Passage of the Clean Air Act Amendments in 1990 imposed requirements on gasoline composition in the United States. Impacts to ground water are affected by the provisions that required oxygenated additives and limited benzene concentration. Reformulated and oxygenated gasoline w...

  20. LIFE CYCLE ASSESSMENT OF GASOLINE BLENDING OPTIONS

    EPA Science Inventory

    A life cycle assessment has been done to compare the potential environmental impacts of various gasoline blends that meet octane and vapour pressure specifications. The main blending components of alkylate, cracked gasoline and reformate have different octane and vapour pressure...

  1. Ultra-Low Sulfur Gasoline Emissions Study

    EPA Pesticide Factsheets

    Understanding the effects of gasoline sulfur level on the in-use fleet is important for assessing emissions inventories and impacts of future policy decisions. Test fuels were two non-ethanol gasolines with properties typical of certification fuel.

  2. 40 CFR 80.1652 - Reporting requirements for gasoline refiners, gasoline importers, oxygenate producers, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Reporting requirements for gasoline refiners, gasoline importers, oxygenate producers, and oxygenate importers. 80.1652 Section 80.1652... FUELS AND FUEL ADDITIVES Gasoline Sulfur § 80.1652 Reporting requirements for gasoline...

  3. Proton Beam Craniospinal Irradiation Reduces Acute Toxicity for Adults With Medulloblastoma

    SciTech Connect

    Brown, Aaron P.; Barney, Christian L.; Grosshans, David R.; McAleer, Mary Frances; Groot, John F. de; Puduvalli, Vinay K.; Tucker, Susan L.; Crawford, Cody N.; Khan, Meena; Khatua, Soumen; Gilbert, Mark R.; Brown, Paul D.; Mahajan, Anita

    2013-06-01

    Purpose: Efficacy and acute toxicity of proton craniospinal irradiation (p-CSI) were compared with conventional photon CSI (x-CSI) for adults with medulloblastoma. Methods and Materials: Forty adult medulloblastoma patients treated with x-CSI (n=21) or p-CSI (n=19) at the University of Texas MD Anderson Cancer Center from 2003 to 2011 were retrospectively reviewed. Median CSI and total doses were 30.6 and 54 Gy, respectively. The median follow-up was 57 months (range 4-103) for x-CSI patients and 26 months (range 11-63) for p-CSI. Results: p-CSI patients lost less weight than x-CSI patients (1.2% vs 5.8%; P=.004), and less p-CSI patients had >5% weight loss compared with x-CSI (16% vs 64%; P=.004). p-CSI patients experienced less grade 2 nausea and vomiting compared with x-CSI (26% vs 71%; P=.004). Patients treated with x-CSI were more likely to have medical management of esophagitis than p-CSI patients (57% vs 5%, P<.001). p-CSI patients had a smaller reduction in peripheral white blood cells, hemoglobin, and platelets compared with x-CSI (white blood cells 46% vs 55%, P=.04; hemoglobin 88% vs 97%, P=.009; platelets 48% vs 65%, P=.05). Mean vertebral doses were significantly associated with reductions in blood counts. Conclusions: This report is the first analysis of clinical outcomes for adult medulloblastoma patients treated with p-CSI. Patients treated with p-CSI experienced less treatment-related morbidity including fewer acute gastrointestinal and hematologic toxicities.

  4. p53-Based Strategy to Reduce Hematological Toxicity of Chemotherapy: A Proof of Principle Study

    PubMed Central

    Ha, Chul S.; Michalek, Joel E.; Elledge, Richard; Kelly, Kevin R.; Ganapathy, Suthakar; Su, Hang; Jenkins, Carol A.; Argiris, Athanassios; Swords, Ronan; Eng, Tony Y.; Karnad, Anand; Crownover, Richard L.; Swanson, Gregory P.; Goros, Martin; Pollock, Brad H.; Yuan, Zhi-Min

    2015-01-01

    P53 activation is a primary mechanism underlying pathological responses to DNA-damaging agents such as chemotherapy and radiotherapy. Our recent animal studies showed that low dose arsenic (LDA)-induced transient p53 inhibition selectively protected normal tissues from chemotherapy-induced toxicity. Study objectives were to: 1) define the lowest safe dose of arsenic trioxide that transiently blocks p53 activation in patients and 2) assess the potential of LDA to decrease hematological toxicity from chemotherapy. Patients scheduled to receive minimum 4 cycles of myelosuppressive chemotherapy were eligible. For objective 1, dose escalation of LDA started at 0.005mg/kg/day for 3 days. This dose satisfied objective 1 and was administered before chemotherapy cycles 2, 4 and 6 for objective 2. P53 level in peripheral lymphocytes was measured on day 1 of each cycle by ELISA assay. Chemotherapy cycles 1, 3, and 5 served as the baseline for the subsequent cycles of 2, 4 and 6 respectively. If p53 level for the subsequent cycle was lower (or higher) than the baseline cycle, p53 was defined as “suppressed” (or “activated”) for the pair of cycles. Repeated measures linear models of CBC in terms of day, cycle, p53 activity and interaction terms were used. Twenty-six patients treated with 3 week cycle regimens form the base of analyses. The mean white blood cell, hemoglobin and absolute neutrophil counts were significantly higher in the “suppressed” relative to the “activated” group. These data support the proof of principle that suppression of p53 could lead to protection of bone marrow in patients receiving chemotherapy. PMID:26440706

  5. Bioremediation and Biodegradation: Current Advances in Reducing Toxicity, Exposure and Environmental Consequences

    SciTech Connect

    Kukor, J. J.; Young, L.

    2003-04-01

    Topics discussed at the conference included Approaches to Overcome Bioavailability Limitations in Bioremediation; New Discoveries in Microbial Degradation of Persistent Environmental Contaminants; Biological Activity and Potential Toxicity of the Products of Biodegradation; New Methods to Monitor and Assess the Effectiveness of Remediation Processes; and Strategies for Remediation of Mixed Contaminants. The United States has thousands of hazardous waste sites, most of which are a legacy of many decades of industrial development, mining, manufacturing and military activities. There is considerable uncertainty about the health risks of these sites, such as a lack of understanding about the spectrum of health effects that could result from exposure to hazardous substances and the unique toxicity of these substances to children or the developing fetus. In addition to these kinds of knowledge gaps, the fate and transport of hazardous wastes in soil, surface water and ground water are poorly understood, making it difficult to predict exposures. Moreover, cleaning up hazardous wastes has proven costly and difficult; thus, there is a need for advanced technologies to decrease or eliminate contamination from soil, surface water, and ground water. Since biodegradative processes and bioremediation solutions form a large part of the current science and technology directed at treatment of environmental contaminants at hazardous waste sites, and since there has been an explosion of cutting-edge basic research in these areas over the past several years, it was an opportune time for a meeting of this type. Representatives from the EPA as well as many of the other Federal agencies that helped fund the conference were also in attendance, providing an opportunity for discussions from the regulatory perspective of hazardous site remediation, as well as from the scientific discovery side.

  6. Effect-enhancing and toxicity-reducing activity of usnic acid in ascitic tumor-bearing mice treated with bleomycin.

    PubMed

    Su, Zu-Qing; Liu, Yu-Hong; Guo, Hui-Zhen; Sun, Chao-Yue; Xie, Jian-Hui; Li, Yu-Cui; Chen, Jian-Nan; Lai, Xiao-Ping; Su, Zi-Ren; Chen, Hai-Ming

    2017-03-08

    Usnic acid (UA) can be found in certain lichen species. Growing evidence suggests that UA possesses antitumoral, antioxidative and anti-inflammatory activities. Bleomycin (BLM) is widely used in the treatment of malignant ascites, however, it unexpectedly causes pulmonary fibrosis (PF). Researches show that excessive inflammatory response and oxidative stress in lung tissue is conspicuous causes of BLM-induced PF. Here we investigated mechanism underlying the effect-enhancing and toxicity-reducing activity of UA on H22-bearing mice treated with BLM. UA combined with BLM was significantly more effective than BLM alone in inhibiting the tumor growth, arresting the cell cycle at G0/G1 phase, and promoting the cleaved caspase-3 and cleaved caspase-8 activities to induce cancer cellular apoptosis. The mechanism may be associated with the transcriptional regulation of p53/p21/Cyclin pathway. Furthermore, UA effectively moderated the histopathological changes, reduced the content of MDA, HYP, TNF-α, IL-1β, IL-6 and TGF-β1, and increased the level of SOD when combined with BLM in lung tissues of H22-bearing mice, which was believed to be related to the inhibition on the protein level of p-Smad2/3 and enhancement of Smad7 expression. These findings suggested that UA might be a potential effect-enhancing and toxicity-reducing candidate for BLM in the treatment of malignant ascites.

  7. Decision-Making, Science and Gasoline Additives

    NASA Astrophysics Data System (ADS)

    Weaver, J. W.; Small, M. C.

    2001-12-01

    Methyl-tert butyl ether (MTBE) has been used as a gasoline additive to serve two major purposes. The first use was as an octane-enhancer to replace organic lead, beginning in 1979. The second use, which began about 1992, was as a oxygenated additive to meet requirements of the Clean Air Act Amendments (CAAA) of 1990. Generally, the amount of MTBE used for octane enhancement was lower than that required to meet CAAA requirements. An unintended consequence of MTBE use has been widespread groundwater contamination. The decision to use certain amounts of MTBE or other chemcials as gasoline additives is the outcome of economic, regulatory, policy, political, and scientific considerations. Decision makers ask questions such as "How do ground water impacts change with changing MTBE content? How many wells would be impacted? and What are the associated costs?" These are best answered through scientific inquiry, but many different approaches could be developed. Decision criteria include time, money, comprehensiveness, and complexity of the approach. Because results must be communicated to a non-technical audience, there is a trade off between the complexity of the approach and the ability to convince economists, lawyers and policy makers that results make sense. The question on MTBE content posed above was investigated using transport models, a release scenario and gasoline composition. Because of the inability of transport models to predict future concentrations, an approach was chosen to base comparative assessment on a calibrated model. By taking this approach, "generic" modeling with arbitrarily selected parameters was avoided and the validity of the simulation results rests upon relatively small extrapolations from the original calibrated models. A set of simulations was performed that assumed 3% (octane enhancement) and 11% (CAAA) MTBE in gasoline. The results were that ground water concentrations would be reduced in proportion to the reduction of MTBE in the fuel

  8. Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice

    PubMed Central

    Akahoshi, Mitsuteru; Song, Chang Ho; Piliponsky, Adrian M.; Metz, Martin; Guzzetta, Andrew; Åbrink, Magnus; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.

    2011-01-01

    Mast cell degranulation is important in the pathogenesis of anaphylaxis and allergic disorders. Many animal venoms contain components that can induce mast cell degranulation, and this has been thought to contribute to the pathology and mortality caused by envenomation. However, we recently reported evidence that mast cells can enhance the resistance of mice to the venoms of certain snakes and that mouse mast cell–derived carboxypeptidase A3 (CPA3) can contribute to this effect. Here, we investigated whether mast cells can enhance resistance to the venom of the Gila monster, a toxic component of that venom (helodermin), and the structurally similar mammalian peptide, vasoactive intestinal polypeptide (VIP). Using 2 types of mast cell–deficient mice, as well as mice selectively lacking CPA3 activity or the chymase mouse mast cell protease-4 (MCPT4), we found that mast cells and MCPT4, which can degrade helodermin, can enhance host resistance to the toxicity of Gila monster venom. Mast cells and MCPT4 also can limit the toxicity associated with high concentrations of VIP and can reduce the morbidity and mortality induced by venoms from 2 species of scorpions. Our findings support the notion that mast cells can enhance innate defense by degradation of diverse animal toxins and that release of MCPT4, in addition to CPA3, can contribute to this mast cell function. PMID:21926462

  9. Olive oil hydroxytyrosol reduces toxicity evoked by acrylamide in human Caco-2 cells by preventing oxidative stress.

    PubMed

    Rodríguez-Ramiro, Ildefonso; Martín, María Ángeles; Ramos, Sonia; Bravo, Laura; Goya, Luis

    2011-10-09

    Humans are exposed to dietary acrylamide (AA) during their lifetime, it is therefore necessary to investigate the mechanisms associated with AA-induced toxic effects. Accumulating evidence indicates that oxidative stress contributes to AA cytotoxicity, thus, dietary antioxidants might have a protective role in colonic cells against AA toxicity. We have recently reported that hydroxytyrosol (HTy), a natural antioxidant abundant in olive oil, is able to enhance the cellular antioxidant defence capacity, thereby protecting cells from oxidative stress. In this study, we evaluate the protective role of HTy on alterations of the redox balance induced by AA in Caco-2 intestinal cells. AA cytotoxicity was counteracted by HTy by powerfully reducing ROS generation, recovering the excited enzyme antioxidant defences and decreasing phospho-Jun kinase concentration and caspase-3 activity induced by AA. Therefore, AA-induced cytotoxicity and apoptosis are closely related to oxidative stress in Caco-2 cells and the olive oil natural dietary antioxidant HTy was able to contain AA toxicity by improving the redox status of Caco-2 cells and by partly restraining the apoptotic pathway activated by AA.

  10. Chitosan-ceramide coating on gold nanorod to improve its physiological stability and reduce the lipid surface-related toxicity.

    PubMed

    Battogtokh, Gantumur; Gotov, Oyuntuya; Ko, Young Tag

    2017-03-01

    Gold nanoparticles are promising materials for many applications that include imaging, drug delivery, and photothermal therapy. However, AuNPs can be unstable and/or toxic. We purposed to improve the stability and reduce toxicity of gold nanorods (AuNR) upon coating with biocompatible polymer, chitosan-ceramide (CS-CE), without replacing the original layer, CTAB. CS-CE-coated AuNR was prepared by simple mixing for 24 h and purified by centrifugation. The coating was confirmed by UV-Vis absorption analysis and surface charge and size measurement. We prepared nanorods with CS or CS-CE coating at two different concentrations (5 and 10% AuNR), the resulting in larger nanorods with a more positive surface-charge than that of AuNR. We investigated the UV-absorption and protein adsorption of the polymer coated nanorods. Based on the protein adsorption, AuNR-CS-CE was found to be more stable under physiological conditions than AuNR-CS. The cell internalization assay revealed that Hela cells internalized higher amounts of AuNR-CS-CE than that of AuNR-CS. Cytotoxicity study revealed that AuNR-CS-CE has lower toxicity than AuNR against HeLa cells. The CS-CE coating improved the stability of AuNR under physiological conditions via the hydrophobic interactions between the AuNR lipid surface and the ceramide anchor in the CS backbone as well as.

  11. 27 CFR 21.110 - Gasoline, unleaded.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Gasoline, unleaded. 21.110....110 Gasoline, unleaded. Conforms to specifications as established by the American Society for Testing...-79. Any of the “seasonal and geographical” volatility classes for unleaded gasoline are...

  12. 27 CFR 21.109 - Gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90...

  13. 27 CFR 21.110 - Gasoline, unleaded.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Gasoline, unleaded. 21.110....110 Gasoline, unleaded. Conforms to specifications as established by the American Society for Testing...-79. Any of the “seasonal and geographical” volatility classes for unleaded gasoline are...

  14. 27 CFR 21.110 - Gasoline, unleaded.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Gasoline, unleaded. 21.110....110 Gasoline, unleaded. Conforms to specifications as established by the American Society for Testing...-79. Any of the “seasonal and geographical” volatility classes for unleaded gasoline are...

  15. 27 CFR 21.109 - Gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90...

  16. 27 CFR 21.109 - Gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90...

  17. 27 CFR 21.110 - Gasoline, unleaded.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gasoline, unleaded. 21.110....110 Gasoline, unleaded. Conforms to specifications as established by the American Society for Testing...-79. Any of the “seasonal and geographical” volatility classes for unleaded gasoline are...

  18. 27 CFR 21.109 - Gasoline.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90...

  19. 27 CFR 21.109 - Gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90...

  20. 27 CFR 21.110 - Gasoline, unleaded.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Gasoline, unleaded. 21.110....110 Gasoline, unleaded. Conforms to specifications as established by the American Society for Testing...-79. Any of the “seasonal and geographical” volatility classes for unleaded gasoline are...

  1. Limited recovery of soil microbial activity after transient exposure to gasoline vapors.

    PubMed

    Modrzyński, Jakub J; Christensen, Jan H; Mayer, Philipp; Brandt, Kristian K

    2016-09-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation.

  2. Cytoprotection of pyruvic acid and reduced beta-nicotinamide adenine dinucleotide against hydrogen peroxide toxicity in neuroblastoma cells.

    PubMed

    Mazzio, Elizabeth A; Soliman, Karam F A

    2003-05-01

    Elevated production of hydrogen peroxide (H2O2) in the central nervous system has been implicated in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease, ischemic reperfusion, stroke, and Alzheimer's disease. Pyruvic acid has a critical role in energy metabolism and a capability to nonenzymatically decarboxylate H2O2 into H2O. This study examined the effects of glycolytic regulation of pyruvic acid on H2O2 toxicity in murine neuroblastoma cells. Glycolytic energy substrates including D-(+)-glucose, D-(-) fructose and the adenosine transport blocker dipyridamole, were not effective in providing protection against H2O2 toxicity, negating energy as a factor. On the other hand, pyruvic acid completely prevented H2O2 toxicity, restoring the loss of ATP and cell viability. H2O2 toxicity was also attenuated by D-fructose 1,6 diphosphate (FBP), phospho (enol) pyruvate (PEP), niacinamide, beta-nicotinamide adenine dinucleotide (beta-NAD+), and reduced form (beta-NADH). Both FBP and PEP exerted positive kinetic effects on pyruvate kinase (PK) activity. Interestingly, only pyruvic acid and beta-NADH exhibited powerful stoichiometric H2O2 antioxidant properties. Further, beta-NADH may exert positive effects on PK activity. Subsequent pyruvic acid accumulation can lead to the recycling of beta-NAD+ through lactate dehydrogenase and beta-NADH through glyceraldehyde-3-phosphate dehydrogenase. It was concluded from these studies that intracellular pyruvic acid and beta-NADH appear to act in concert through glycolysis, to enhance H2O2 intracellular antioxidant capacity in neuroblastoma cells. Future research will be required to examine whether similar effects are observed in primary neuronal culture or intact tissue.

  3. AVGAS/AUTOGAS (Aviation Gasoline/Automobile Gasoline) Comparison. Winter Grade Fuels.

    DTIC Science & Technology

    1986-07-01

    simulated conditions found in a general aviation aircraft. In these tests, automobile gasoline was tested and compared with aviation gasoline. The tendency...Distribution Statement Aviation Gasoline (Avgas) Vapor Lock Document is available to the U.S. public Automobile Gasoline (Autogas) through the National... Automobile Gasolines Tested by Sun Refining 19 and Marketing Company. 5 Properties of Several Mixtures of Avgas in Regular Unleaded 28 Autogas vi LIST OF

  4. Heat shock treatment reduces beta amyloid toxicity in vivo by diminishing oligomers.

    PubMed

    Wu, Yanjue; Cao, Zhiming; Klein, William L; Luo, Yuan

    2010-06-01

    Heat shock response, mediated by heat shock proteins, is a highly conserved physiological process in multicellular organisms for reestablishment of cellular homeostasis. Expression of heat shock factors and subsequent heat shock protein plays a role in protection against proteotoxicity in invertebrate and vertebrate models. Proteotoxicity due to beta-amyloid peptide (Abeta) oligomerization has been linked to the pathogenesis of Alzheimer's disease. Previously, we demonstrated that progressive paralysis induced by expression of human Abeta(1-42) in transgenic Caenorhabditis elegans was alleviated by Abeta oligomer inhibitors Ginkgo biloba extract and its constituents [Wu, Y., Wu, Z., Butko, P., Christen, Y., Lambert, M.P., Klein, W.L., Link, C.D., Luo, Y., 2006. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J. Neurosci. 26(50): 13102-13113]. In this study, we apply a protective heat shock to the transgenic C. elegans and demonstrate: (1) a delay in paralysis, (2) increased expression of small heat shock protein HSP16.2, and (3) significant reduction of Abeta oligomers in a heat shock time-dependent manner. These results suggest that transient heat shock lessens Abeta toxicity by diminishing Abeta oligomerization, which provides a link between up regulation of endogenous chaperone proteins and protection against Abeta proteotoxicity in vivo.

  5. Reduced toxicity of F-deficient Sendai virus vector in the mouse fetus.

    PubMed

    Waddington, S N; Buckley, S M K; Bernloehr, C; Bossow, S; Ungerechts, G; Cook, T; Gregory, L; Rahim, A; Themis, M; Neubert, W J; Coutelle, C; Lauer, U M; Bitzer, M

    2004-04-01

    Current concerns over insertional mutagenesis by retroviral vectors mitigate investigations into alternative, potentially persistent gene therapy vector systems not dependent on genomic integration, such as Sendai virus vectors (SeVV). Prenatal gene therapy requires efficient gene delivery to several tissues, which may not be achievable by somatic gene transfer to the adult. Initially, to test the potential and tropism of the SeVV for gene delivery to fetal tissues, first-generation (replication- and propagation-competent) recombinant SeVV, expressing beta-galactosidase was introduced into late gestation immunocompetent mice via the amniotic and peritoneal cavities and the yolk sac vessels. At 2 days, this resulted in very high levels of expression particularly in the airway epithelium, mesothelium and vascular endothelium, respectively. However, as expected, substantial vector toxicity was observed. The efficiency of gene transfer and the level of gene expression were then examined using a second-generation SeVV. The second generation was developed to be still capable of cytoplasmic RNA replication and therefore high-level gene expression, but incapable of vector spread due to lack of the gene for viral F-protein. Vector was introduced into the fetal amniotic and peritoneal cavities, intravascularly, intramuscularly and intraspinally; at 2 days, expression was observed in the airway epithelia, peritoneal mesothelia, unidentified cells in the gut wall, locally at the site of muscle injection and in the dorsal root ganglia, respectively. Mortality was dramatically diminished compared with the first-generation vector.

  6. Ambroxol reduces LPS toxicity mediated by induction of alkaline phosphatases in rat lung.

    PubMed

    Koyama, Iwao; Matsunaga, Toshiyuki; Harada, Tsuyoshi; Kikuno, Akira; Hokari, Shigeru; Komoda, Tsugikazu

    2004-08-01

    Alkaline phosphatases (APs) have been suggested to detoxify lipopolysaccharide (LPS) by dephosphorylation. Ambroxol, a bronchial expectorant, is known to accelerate the secretion of pulmonary surfactant particles including AP molecules as a pharmacological action. In the present study, some beneficial effects of ambroxol on LPS toxicity in the rat lung were investigated. In an experiment using the rat lung organ culture, AP activities were enhanced in a time-dependent manner by incubation with 25 microM of ambroxol in both the tissue and the medium. Western blot analysis indicated that AP activity was elevated by the treatment with ambroxol, due to the induction of surfactant proteins (SPs) and AP molecules. In the in vivo experiment, the serum LPS content was markedly increased after LPS administration to rats by intratracheal instillation of 20 mg/kg. However, when the rats were pretreated with oral ambroxol (1.0 mg/kg) at 1 h before LPS challenge, the area under the concentration--time curve (AUC) of serum LPS was significantly decreased. These results suggest that ambroxol inhibits the translocation of LPS from the lung into the circulation as well as its detoxification effect via the elevation of AP activity. Bromhexine, another expectorant, is less effective than ambroxol as an LPS detoxificant. Maintenance of high AP activity level in the lung suggests APs to have physiological significant effects against the inflammatory events induced by LPS.

  7. Encapsulation of cadmium selenide quantum dots using a self-assembling nanoemulsion (SANE) reduces their in vitro toxicity.

    PubMed

    Edmund, Anton R; Kambalapally, Swetha; Wilson, Thomas A; Nicolosi, Robert J

    2011-02-01

    Although, nanometer-scale semi-conductor quantum dots (QDs) have attracted widespread interest in medical diagnosis and treatment, many can have intrinsic toxicities, especially those composed of CdSe, associated with their elemental composition. Using our self-assembling nanoemulsion (SANE) formulations which we have previously reported to be composed of non-toxic components, i.e., such as vegetable oil, surfactant and water, we hypothesized that their appropriate utilization would reduce the toxicity of QDs by encapsulating the CdSe QDs in our (SANE) system using a modified phase-inversion temperature (PIT) method. SANE encapsulation of the QDs did not alter their emission wavelength of 600nm which remained unchanged during the encapsulation process. In contrast, zeta potential of encapsulated QDs was reduced from -30 to -6.59 mV, which we have previously reported to be associated with beneficial properties (increased bioavailability and efficacy) for SANE-encapsulated bioactives such as pharmaceuticals. Relative to the untreated controls, the viability of HeLa cells exposed for 48 h to un-encapsulated CdSe QDs at a concentration of 115 μg/mL was 22.7±1.7% (p<0.05). In contrast, the percentage of viable HeLa cells following exposure to SANE-encapsulated CdSe QDs at the same concentration was 91.6±3.5% (p<0.05) or a 307% increase in the number of viable cells (p<0.05). When the dose of CdSe QDs was increased to 230 μg/mL, the percentage of viable HeLa cells after exposure to the un-encapsulated CdSe QDs was 16.1±1.3% compared to controls (p<0.05). In contrast, at the same increased concentration (230 μg/mL) of un-encapsulated CdSe QDs, the percentage of viable HeLa cells following exposure to SANE-encapsulated CdSe QDs was 87.9±3.3% relative to controls (p<0.05) or a 448% increase in the number of viable cells (p<0.05). Exposure of HeLa cells to a nanoblank, (nanoemulsion without QDs), showed no significant effect on cell viability (97.2±2.5%) compared to

  8. Diesel vs. gasoline emissions: Does PM from diesel or gasoline vehicles dominate in the US?

    NASA Astrophysics Data System (ADS)

    Gertler, Alan W.

    In the US, the majority of the on-road fleet and vehicle miles travelled are attributed to light-duty vehicles, which are fuelled almost entirely by gasoline. However, due to their significantly higher PM emission rates, emissions inventories have tended to attribute the majority of the mobile source PM to contributions from heavy-duty diesel vehicles and strategies to reduce mobile source PM have focused on the contribution from this source. A limited number of source attribution studies have implied that PM emission inventories over-estimate the diesel contribution and emissions from gasoline vehicles may be greater than previously believed. Other receptor-modelling studies have found diesel vehicles to be the dominant source of motor vehicle PM. The former conclusion is supported by recent on-road PM emission rate results obtained in a highway tunnel and a series of crossroad experiments. This paper describes the often-conflicting results obtained from receptor modelling studies and emission inventories and uses on-road emission factor results to estimate the relative contributions from the diesel and gasoline sectors of the fleet.

  9. Ethanol Demand in United States Production of Oxygenate-limited Gasoline

    SciTech Connect

    Hadder, G.R.

    2000-08-16

    Ethanol competes with methyl tertiary butyl ether (MTBE) to satisfy oxygen, octane, and volume requirements of certain gasolines. However, MTBE has water quality problems that may create significant market opportunities for ethanol. Oak Ridge National Laboratory (ORNL) has used its Refinery Yield Model to estimate ethanol demand in gasolines with restricted use of MTBE. Reduction of the use of MTBE would increase the costs of gasoline production and possibly reduce the gasoline output of U.S. refineries. The potential gasoline supply problems of an MTBE ban could be mitigated by allowing a modest 3 vol percent MTBE in all gasoline. In the U.S. East and Gulf Coast gasoline producing regions, the 3 vol percent MTBE option results in costs that are 40 percent less than an MTBE ban. In the U.S. Midwest gasoline producing region, with already high use of ethanol, an MTBE ban has minimal effect on ethanol demand unless gasoline producers in other regions bid away the local supply of ethanol. The ethanol/MTBE issue gained momentum in March 2000 when the Clinton Administration announced that it would ask Congress to amend the Clean Air Act to provide the authority to significantly reduce or eliminate the use of MTBE; to ensure that air quality gains are not diminished as MTBE use is reduced; and to replace the existing oxygenate requirement in the Clean Air Act with a renewable fuel standard for all gasoline. Premises for the ORNL study are consistent with the Administration announcement, and the ethanol demand curve estimates of this study can be used to evaluate the impact of the Administration principles and related policy initiatives.

  10. Capparis spinosa reduces Doxorubicin-induced cardio-toxicity in cardiomyoblast cells

    PubMed Central

    Mousavi, Seyed Hadi; Hosseini, Azar; Bakhtiari, Elham; Rakhshandeh, Hassan

    2016-01-01

    Objective: Doxorubicin (DOX) is an effective anticancer drug but its clinical application is limited because it induces apoptosis in cardiomyocytes and leads to permanent degenerative cardiomyopathy and heart failure possibly due to oxidative stress. Recent studies showed that Capparis spinosa (C. spinose) exhibits potent antioxidant activity. So, in this study, we explored the protective effect of hydro-alcoholic extract of C. spinosa against DOX-induced cytotoxicity in H9c2 cells. Materials and Methods: Cell viability was quantified by MTT assay. Apoptotic cells were determined using flow cytometry (sub-G1 peak) evaluation of DNA fragmentation following PI staining. Cells were cultured with 5 μM DOX for 24 hr to induce cell damage. H9c2 cells were pretreated with different concentrations (6-200 μg/ml) of C. spinosa extract for 4 hr before DOX treatment in all trials. Results: Pretreatment with 25, 50, 100 and 200 µg/ml of C. spinosa could increase the viability of H9C2 cells to 72.63±2.8% (p<0.05), 77.37±1.8% (p<0.05), 83.56±2.6% (p<0.001) and 90.9±0.5% (p<0.001) of control, respectively. Also, C. spinosa decreased apoptotic induction significantly, at the doses of 50 µg/ml (p<0.05), 100 µg/ml (p<0.01) and 200 µg/ml (p<0.001) Conclusion: Our results showed that C. spinosa could exert cardioprotective effects against DOX-induced toxicity that might be mediated via its antioxidant activity. PMID:27761417

  11. Activated Charcoal Does Not Reduce Duration of Phenytoin Toxicity in Hospitalized Patients.

    PubMed

    Cumpston, Kirk; Stromberg, Paul; Wills, Brandon K; Rose, S Rutherfoord

    2016-01-01

    Phenytoin toxicity frequently results in a prolonged inpatient admission. Several publications avow multidose activated charcoal (MDAC) will enhance the elimination of phenytoin. However, these claims are not consistent, and the mechanism of enhanced eliminaiton is unproven. The aim of this investigation is to compare the time to reach a clinical composite end point in phenytoin overdose patients treated with no activated charcoal (NoAC), single-dose activated charcoal (SDAC), and MDAC. This was a retrospective study using electronic poison center data. Patients treated in a health care facility with phenytoin concentrations >20 mg/L were included. Patients were grouped by use of SDAC, MDAC, and NoAC. The primary end points were either time to resolution of symptoms, hospital discharge, or the case was closed by a toxicologist. After applying inclusion and exclusion criteria, 132 cases were included for analysis. There were 88 NoAC, 13 SDAC, and 31 MDAC cases. The groups were similar in symptomatology, age, and chronicity of expsoure. Mean peak phenytoin concentrations (SD) were 42 mg/L (12), 41 mg/L (11), and 42 mg/L (11) for NoAC, SDAC, and MDAC, respectively. Mean time to reach the study end point was 39 hours [95% confidence interval (CI), 31-48], 52 hours (95% CI, 36-68), and 60 hours (95% CI, 45-75) for NoAC, SDAC, and MDAC, respectively. The groups appeared similar with respect to peak phenytoin concentrations and prevalence of signs and symptoms. In this observational series, the use of activated charcoal was associated with increased time to reach the composite end point of clinical improvement.

  12. Assessment of Gasoline Prices and its Predictive Power on U.S. Consumers' Retail Spending and Savings

    NASA Astrophysics Data System (ADS)

    Alvarado-Bonilla, Joel

    The rising costs of fuels and specifically gasoline pose an economic challenge to U.S. consumers. Thus, the specific problem considered in this study was a rise in gasoline prices can reduce consumer spending, disposable income, food service traffic, and spending on healthy food, medicines, or visits to the doctor. Aligned with the problem, the purpose of this quantitative multiple correlation study was to examine the economic aspects for a rise in gasoline prices to reduce the six elements in the problem. This study consisted of a correlational design based on a retrospective longitudinal analysis (RLA) to examine gasoline prices versus the economic indexes of: (a) Retail Spending and (b) personal savings (PS). The RLA consisted on historic archival public data from 1978 to 2015. This RLA involved two separate linear multiple regression analyses to measure gasoline price's predictive power (PP) on two indexes while controlling for Unemployment Rate (UR). In summary, regression Formula 1 revealed Gasoline Price had a significant 61.1% PP on Retail Spending. In contrast, Formula 2 had Gasoline Price not having a significant PP on PS. Formula 2 yielded UR with 38.8% PP on PS. Results were significant at p<.01. Gasoline Price's PP on Retail Spending means a spending link to retail items such as: food service traffic, healthy food, medicines, and consumer spending. The UR predictive power on PS was unexpected, but logical from an economic view. Also unexpected was Gasoline Price's non-predictive power on PS, which suggests Americans may not save money when gasoline prices drop. These results shed light on the link of gasoline and UR on U.S. consumer's economy through savings and spending, which can be useful for policy design on gasoline and fuels taxing and pricing. The results serve as a basis for future study on gasoline and economics.

  13. Reduced Toxicity Breast Cancer Therapy: Changing the Or to And in Dual Targeted Therapeutics

    DTIC Science & Technology

    2010-10-01

    targeted breast cancer therapeutics with the potentia l to dra matically improve speci ficity, reducing unwanted side effects . Here, we review our...of this work wa s to propose a new type of therapy activate d only in tumors presenting both a first AND second molecular target. Chemotherapy ...design (Figu re 1). With our light trigger system, we should be able to con trol th e position and the tim e of siRNA rele ase, lim iting any unwanted

  14. Reduced salinity increases susceptibility of zooxanthellate jellyfish to herbicide toxicity during a simulated rainfall event.

    PubMed

    Klein, Shannon G; Pitt, Kylie A; Carroll, Anthony R

    2016-02-01

    Accurately predicting how marine biota are likely to respond to changing ocean conditions requires accurate simulation of interacting stressors, exposure regimes and recovery periods. Jellyfish populations have increased in some parts of the world and, despite few direct empirical tests, are hypothesised to be increasing because they are robust to a range of environmental stressors. Here, we investigated the effects of contaminated runoff on a zooxanthellate jellyfish by exposing juvenile Cassiopea sp. medusae to a photosystem II (PSII) herbicide, atrazine and reduced salinity conditions that occur following rainfall. Four levels of atrazine (0ngL(-1), 10ngL(-1), 2μgL(-1), 20μgL(-1)) and three levels of salinity (35 ppt, 25 ppt, 17 ppt) were varied, mimicking the timeline of light, moderate and heavy rainfall events. Normal conditions were then slowly re-established over four days to mimic the recovery of the ecosystem post-rain and the experiment continued for a further 7 days to observe potential recovery of the medusae. Pulse-amplitude modulated (PAM) chlorophyll fluorescence, growth and bell contraction rates of medusae were measured. Medusae exposed to the combination of high atrazine and lowest salinity died. After 3 days of exposure, bell contraction rates were reduced by 88% and medusae were 16% smaller in the lowest salinity treatments. By Day 5 of the experiment, all medusae that survived the initial pulse event began to recover quickly. Although atrazine decreased YII under normal salinity conditions, YII was further reduced when medusae were exposed to both low salinity and atrazine simultaneously. Atrazine breakdown products were more concentrated in jellyfish tissues than atrazine at the end of the experiment, suggesting that although bioaccumulation occurred, atrazine was metabolised. Our results suggest that reduced salinity may increase the susceptibility of medusae to herbicide exposure during heavy rainfall events.

  15. Dehydroepiandrosterone protects mice from endotoxin toxicity and reduces tumor necrosis factor production.

    PubMed Central

    Danenberg, H D; Alpert, G; Lustig, S; Ben-Nathan, D

    1992-01-01

    Recent reports have demonstrated an immunomodulating activity of dehydroepiandrosterone (DHEA) different from that described for glucocorticoids. The present study was designed to test DHEA's activity in endotoxic shock and to investigate its effect on endotoxin-induced production of tumor necrosis factor (TNF). Mortality of CD-1 mice exposed to a lethal dose of lipopolysaccharide (LPS; 800 micrograms per mouse) was reduced from 95 to 24% by treatment with a single dose of DHEA, given 5 min before LPS. LPS administration resulted in high levels of TNF, a response that was significantly blocked by DHEA, both in vivo and in vitro. DHEA treatment also reduced LPS-induced increments in serum corticosterone levels, a parameter considered not to be mediated by TNF. In another experimental model, mice sensitized with D-galactosamine, followed by administration of recombinant human TNF, were subjected to 89% mortality rate, which was reduced to 55% in DHEA-treated mice. These data show that DHEA protects mice from endotoxin lethality. The protective effect is probably mediated by reduction of TNF production as well as by effecting both TNF-induced and non-TNF-induced phenomena. PMID:1444309

  16. The efficacy of raw and concentrated bentonite clay in reducing the toxic effects of aflatoxin in broiler chicks.

    PubMed

    Shannon, T A; Ledoux, D R; Rottinghaus, G E; Shaw, D P; Daković, A; Marković, M

    2016-11-11

    The objective of this study was to evaluate the efficacy of two adsorbents, a raw bentonite clay (RC) and a concentrated bentonite clay (CC), in ameliorating the toxic effects of aflatoxin B1 (AFB1). Results of the in vitro study (pH 3.0) indicated the CC adsorbed more AFB1 than RC (93.39 mg/g vs. 79.30 mg/g) suggesting that CC may be more effective than RC in reducing the toxic effects of AFB1 One hundred and eighty day-old straight run broiler chicks were assigned to 6 replicate pens of 5 chicks each and assigned to 6 dietary treatments from hatch to day 21. Dietary treatments included: 1) basal diet (BD) containing no AFB1 or adsorbents; 2) BD plus 0.50% RC; 3) BD plus 0.50% CC; 4) BD plus 2.0 mg AFB1/kg; 5) BD plus 2.0 mg AFB1/kg plus 0.50% RC; and 6) BD plus 2.0 mg AFB1/kg plus 0.50% CC. Dietary AFB1 concentrations were confirmed by analysis and diets were screened for other mycotoxins prior to the start of the experiment. The addition of AFB1 to the feed reduced (P < 0.05) growth performance and increased (P < 0.05) relative liver weight (RLW) and kidney weight (RKW) of chicks fed AFB1 compared to control chicks on day 21. These changes were ameliorated (P < 0.05) by the addition of RC and CC to the AFB1 diet. Mild to moderate lesions of aflatoxicosis (2.25) were observed in chicks fed AFB1 alone on day 21. The addition of both RC and CC to the AFB1 diet decreased (P < 0.05) but did not prevent liver lesions (0.92 and 1.42, respectively). Results indicate that both RC and CC were effective in reducing the toxic effects of AFB1, however the cost of processing of CC would make the RC a more economical product for reducing the effects of AFB1 in young broiler chicks.

  17. Carcinogenicity of methyl-tertiary butyl ether in gasoline.

    PubMed

    Mehlman, Myron A

    2002-12-01

    Methyl tertiary butyl ether (MTBE) was added to gasoline on a nationwide scale in 1992 without prior testing of adverse, toxic, or carcinogenic effects. Since that time, numerous reports have appeared describing adverse health effects of individuals exposed to MTBE, both from inhalation of fumes in the workplace and while pumping gasoline. Leakage of MTBE, a highly water-soluble compound, from underground storage tanks has led to contamination of the water supply in many areas of the United States. Legislation has been passed by many states to prohibit the addition of MTBE to gasoline. The addition of MTBE to gasoline has not accomplished its stated goal of decreasing air pollution, and it has posed serious health risks to a large portion of the population, particularly the elderly and those with respiratory problems, asthma, and skin sensitivity. Reports of animal studies of carcinogenicity of MTBE began to appear in the 1990s, prior to the widespread introduction of MTBE into gasoline. These reports were largely ignored. In ensuing years, further studies have shown that MTBE causes various types of malignant tumors in mice and rats. The National Toxicology Program (NTP) Board of Scientific Counselors' Report on Carcinogens Subcommittee met in December 1998 to consider listing MTBE as "reasonably anticipated to be a human carcinogen." In spite of recommendations from Dr. Bailer, the primary reviewer, and other scientists on the committee, the motion to list MTBE in the report was defeated by a six to five vote, with one abstention. On the basis of animal studies, it is widely accepted that if a chemical is carcinogenic in appropriate laboratory animal test systems, it must be treated as though it were carcinogenic in humans. In the face of compelling evidence, NTP Committee members who voted not to list MTBE as "reasonably anticipated to be a human carcinogen" did a disservice to the general public; this action may cause needless exposure of many to health risks

  18. Biochar filters reduced the toxic effects of nickel on tomato (Lycopersicon esculentum L.) grown in nutrient film technique hydroponic system.

    PubMed

    Mosa, Ahmed; El-Banna, Mostafa F; Gao, Bin

    2016-04-01

    This work used the nutrient film technique to evaluate the role of biochar filtration in reducing the toxic effects of nickel (Ni(2+)) on tomato growth. Three hydroponic treatments: T1 (control), T2 (with Ni(2+)), and T3 (with Ni(2+) and biochar) were used in the experiments. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and Fourier transform spectroscopy was used to characterize the pre- and post-treatment biochar samples. The results illustrated that precipitation, ion exchange, and complexation with surface functional groups were the potential mechanisms of Ni(2+) removal by biochar. In comparison to the control, the T2 treatment showed severe Ni-stress with alterations in cell wall structure, distortions in cell nucleus, disturbances in mitochondrial system, malformations in stomatal structure, and abnormalities in chloroplast structure. The biochar filters in T3 treatment reduced dysfunctions of cell organelles in root and shoot cells. Total chlorophyll concentration decreased by 41.6% in T2 treatment. This reduction, however, was only 20.8% due to the protective effect of the biochar filters. The presence of Ni(2+) in the systems reduced the tomato fruit yield 58.5% and 31.9% in T2 and T3, respectively. Nickel concentrations reached the toxic limit in roots, shoots, and fruits in T2, which were not observed in T3. Biochar filters in T3 also minimized the dramatic reductions in nutrients concentration in roots, shoots, and fruits, which occurred in T2 treatment due to the severe Ni-stress. Findings from this work suggested that biochar filters can be used on farms as a safeguard for wastewater irrigation.

  19. Sorption and phase distribution of ethanol and butanol blended gasoline vapours in the vadose zone after release.

    PubMed

    Ugwoha, Ejikeme; Andresen, John M

    2014-03-01

    The sorption and phase distribution of 20% ethanol and butanol blended gasoline (E20 and B20) vapours have been examined in soils with varying soil organic matter (SOM) and water contents via laboratory microcosm experiments. The presence of 20% alcohol reduced the sorption of gasoline compounds by soil as well as the mass distribution of the compounds to soil solids. This effect was greater for ethanol than butanol. Compared with the sorption coefficient (Kd) of unblended gasoline compounds, the Kd of E20 gasoline compounds decreased by 54% for pentane, 54% for methylcyclopentane (MCP) and 63% for benzene, while the Kd of B20 gasoline compounds decreased by 39% for pentane, 38% for MCP and 49% for benzene. The retardation factor (R) of E20 gasoline compounds decreased by 53% for pentane, 53% for MCP and 48% for benzene, while the R of B20 gasoline compounds decreased by 39% for pentane, 37% for MCP and 38% for benzene. For all SOM and water contents tested, the Kd and R of all gasoline compounds were in the order of unblended gasoline > B20 > E20, indicating that the use of high ethanol volume in gasoline to combat climate change could put the groundwater at greater risk of contamination.

  20. Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity

    PubMed Central

    Botelho, Danielle J.; Leo, Bey Fen; Massa, Christopher B.; Sarkar, Srijata; Tetley, Terry D.; Chung, Kian Fan; Chen, Shu; Ryan, Mary P.; Porter, Alexandra E.; Zhang, Junfeng; Schwander, Stephan K.; Gow, Andrew J.

    2016-01-01

    Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 µg/g body weight) 20 and 110nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered. PMID:26152688

  1. Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity.

    PubMed

    Botelho, Danielle J; Leo, Bey Fen; Massa, Christopher B; Sarkar, Srijata; Tetley, Terry D; Chung, Kian Fan; Chen, Shu; Ryan, Mary P; Porter, Alexandra E; Zhang, Junfeng; Schwander, Stephan K; Gow, Andrew J

    2016-01-01

    Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 μg/g body weight) 20 and 110 nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110 nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered.

  2. What toxicity may result from the xenobiotic responsible for the finding on this plain film? Answer: reduced iron, found in heating pads and instant hand warmers, may result in elevated serum iron concentrations and subsequent iron toxicity.

    PubMed

    Cole, Jon B; Stellpflug, Samuel J; Lintner, Christian P

    2011-12-01

    Disposable heating pads are commonly used products, with reduced iron as their active ingredient. Reduced iron is not expected to cause significant toxicity when ingested orally. We report a case of accidental heating pad ingestion seen on abdominal plain films that resulted in significantly elevated serum iron concentrations.

  3. Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.).

    PubMed

    Singh, Amit P; Dixit, Garima; Mishra, Seema; Dwivedi, Sanjay; Tiwari, Manish; Mallick, Shekhar; Pandey, Vivek; Trivedi, Prabodh K; Chakrabarty, Debasis; Tripathi, Rudra D

    2015-01-01

    Arsenic (As) is posing serious health concerns in South East Asia where rice, an efficient accumulator of As, is prominent crop. Salicylic acid (SA) is an important signaling molecule and plays a crucial role in resistance against biotic and abiotic stress in plants. In present study, ameliorative effect of SA against arsenate (As(V)) toxicity has been investigated in rice (Oryza sativa L.). Arsenate stress hampered the plant growth in terms of root, shoots length, and biomass as well as it enhanced the level of H2O2 and MDA in dose dependent manner in shoot. Exogenous application of SA, reverted the growth, and oxidative stress caused by As(V) and significantly decreased As translocation to the shoots. Level of As in shoot was positively correlated with the expression of OsLsi2, efflux transporter responsible for root to shoot translocation of As in the form of arsenite (As(III)). SA also overcame As(V) induced oxidative stress and modulated the activities of antioxidant enzymes in a differential manner in shoots. As treatment hampered the translocation of Fe in the shoot which was compensated by the SA treatment. The level of Fe in root and shoot was positively correlated with the transcript level of transporters responsible for the accumulation of Fe, OsNRAMP5, and OsFRDL1, in the root and shoot, respectively. Co-application of SA was more effective than pre-treatment for reducing As accumulation as well as imposed toxicity.

  4. Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy.

    PubMed

    Polanco, Maria Josè; Parodi, Sara; Piol, Diana; Stack, Conor; Chivet, Mathilde; Contestabile, Andrea; Miranda, Helen C; Lievens, Patricia M-J; Espinoza, Stefano; Jochum, Tobias; Rocchi, Anna; Grunseich, Christopher; Gainetdinov, Raul R; Cato, Andrew C B; Lieberman, Andrew P; La Spada, Albert R; Sambataro, Fabio; Fischbeck, Kenneth H; Gozes, Illana; Pennuto, Maria

    2016-12-21

    Spinobulbar muscular atrophy (SBMA) is an X-linked neuromuscular disease caused by polyglutamine (polyQ) expansion in the androgen receptor (AR) gene. SBMA belongs to the family of polyQ diseases, which are fatal neurodegenerative disorders mainly caused by protein-mediated toxic gain-of-function mechanisms and characterized by deposition of misfolded proteins in the form of aggregates. The neurotoxicity of the polyQ proteins can be modified by phosphorylation at specific sites, thereby providing the rationale for the development of disease-specific treatments. We sought to identify signaling pathways that modulate polyQ-AR phosphorylation for therapy development. We report that cyclin-dependent kinase 2 (CDK2) phosphorylates polyQ-AR specifically at Ser(96) Phosphorylation of polyQ-AR by CDK2 increased protein stabilization and toxicity and is negatively regulated by the adenylyl cyclase (AC)/protein kinase A (PKA) signaling pathway. To translate these findings into therapy, we developed an analog of pituitary adenylyl cyclase activating polypeptide (PACAP), a potent activator of the AC/PKA pathway. Chronic intranasal administration of the PACAP analog to knock-in SBMA mice reduced Ser(96) phosphorylation, promoted polyQ-AR degradation, and ameliorated disease outcome. These results provide proof of principle that noninvasive therapy based on the use of PACAP analogs is a therapeutic option for SBMA.

  5. Multifunctional gasoline additives

    SciTech Connect

    Childs, M.E.

    1983-10-18

    The reaction products of epoxides, containing from about 6 to about 20 carbon atoms, with unsubstituted alkylenediamines, N-alkyl alkylenediamines, N-alkoxyalkyl alkylenediamines and poly (ethyleneamines) are effective carburetor detergents and reduce deposits on various components of internal combustion engines. Internal epoxides containing at least one branched alkyl group afford reaction products with particularly desirable properties.

  6. Emissions from light duty gasoline vehicles operating on low blend ethanol gasoline and E85

    NASA Astrophysics Data System (ADS)

    Graham, Lisa A.; Belisle, Sheri L.; Baas, Cara-Lynn

    The results of two recent vehicle emission studies are described in this paper, along with a statistical analysis of the changes in tailpipe emissions due to the use of ethanol that includes the results from these two studies in combination with results from other literature reports. The first study evaluates the effect of two low blend ethanol gasolines (E10, E20) on tailpipe and evaporative emissions from three multi-port fuel injection vehicles and one gasoline direct injection vehicle at two different test temperatures. The second study evaluates the differences in tailpipe emissions and fuel consumptions of paired flexible fuel and conventional gasoline vehicles operating on California RFG Phase 2 and/or E85 fuels at 20 °C. The vehicles were tested over the four-phase FTP or UDDS and US06 driving cycles. Tailpipe emissions were characterized for criteria pollutants (CO, NO X, NMHC, NMOG), greenhouse gases (CO 2, CH 4, N 2O), and a suite of unregulated emissions including important air toxics (benzene, 1,3-butadiene, formaldehyde, acetaldehyde, acrolein), and ozone reactivity. In the low blend ethanol study, evaporative emissions were quantified and characterized for NMHC. While contradicting, results can be seen among the various literature reports and with these two new studies, the statistical analyses of the aggregated data offers much clearer pictures of the changes in tailpipe emissions that may be expected using either low blend ethanol gasoline (E10) or E85. The results of the statistical analysis suggest that the use of E10 results in statistically significant decreases in CO emissions (-16%); statistically significant increases in emissions of NMHC (9%), NMOG (14%), acetaldehyde (108%), 1,3-butadiene (16%), and benzene (15%); and no statistically significant changes in NO X, CO 2, CH 4, N 2O or formaldehyde emissions. The statistical analysis suggests that the use of E85 results in statistically significant decreases in emissions of NO X (-45%), NMHC

  7. Reducing canonical Wingless/Wnt signaling pathway confers protection against mutant Huntingtin toxicity in Drosophila.

    PubMed

    Dupont, Pascale; Besson, Marie-Thérèse; Devaux, Jérôme; Liévens, Jean-Charles

    2012-08-01

    Huntington's disease (HD) is a genetic neurodegenerative disease characterized by movement disorders, cognitive decline and neuropsychiatric symptoms. HD is caused by expanded CAG tract within the coding region of Huntingtin protein. Despite major insights into the molecular mechanisms leading to HD, no effective cure is yet available. Mutant Huntingtin (mHtt) has been reported to alter the stability and levels of β-Catenin, a key molecule in cell adhesion and signal transduction in Wingless (Wg)/Wnt pathway. However it remains to establish whether manipulation of Wg/Wnt signaling can impact HD pathology. We here investigated the phenotypic interactions between mHtt and Wg/Wnt signaling by using the power of Drosophila genetics. We provide compelling evidence that reducing Armadillo/β-Catenin levels confers protection and that this beneficial effect is correlated with the inactivation of the canonical Wg/Wnt signaling pathway. Knockdowns of Wnt ligands or of the downstream transcription factor Pangolin/TCF both ameliorate the survival of HD flies. Similarly, overexpression of one Armadillo/β-Catenin destruction complex component (Axin, APC2 or Shaggy/GSK-3β) increases the lifespan of HD flies. Loss of functional Armadillo/β-Catenin not only abolishes neuronal intrinsic but also glia-induced alterations in HD flies. Our findings highlight that restoring canonical Wg/Wnt signaling may be of therapeutic value.

  8. Comparison of off-cycle and cold-start emissions from dedicated NGVS and gasoline vehicles. Final report, June 1995-August 1996

    SciTech Connect

    Weaver, C.S.; Chan, L.M.

    1997-02-11

    This program compared pollutant emissions from original equipment manufacturer (OEM) produced natural gas vehicles, under realistic driving conditions such as cold start and hard accelerations, to emissions from similar vehicles using gasoline and reformulated gasoline (RFG). The vehicles tested were Ford Crown Victorias, Dodge Caravans, and Dodge Ram Vans. Test results showed that the OEM NGVs produce much lower emissions of non-methane organic gas (NMOG), and toxic air contaminants, and generally lower emissions of oxides of nitrogen (NOx) and carbon monoxide (CO) than similar vehicles using either gasoline or reformulated gasoline.

  9. Warming reduces tall fescue abundance but stimulates toxic alkaloid concentrations in transition zone pastures of the U.S.

    PubMed Central

    McCulley, Rebecca L.; Bush, Lowell P.; Carlisle, Anna E.; Ji, Huihua; Nelson, Jim A.

    2014-01-01

    Tall fescue pastures cover extensive acreage in the eastern half of the United States and contribute to important ecosystem services, including the provisioning of forage for grazing livestock. Yet little is known concerning how these pastures will respond to climate change. Tall fescue's ability to persist and provide forage under a warmer and wetter environment, as is predicted for much of this region as a result of climate change, will likely depend on a symbiotic relationship the plant can form with the fungal endophyte, Epichloë coenophiala. While this symbiosis can confer environmental stress tolerance to the plant, the endophyte also produces alkaloids toxic to insects (e.g., lolines) and mammals (ergots; which can cause “fescue toxicosis” in grazing animals). The negative animal health and economic consequences of fescue toxicosis make understanding the response of the tall fescue symbiosis to climate change critical for the region. We experimentally increased temperature (+3°C) and growing season precipitation (+30% of the long-term mean) from 2009–2013 in a mixed species pasture, that included a tall fescue population that was 40% endophyte-infected. Warming reduced the relative abundance of tall fescue within the plant community, and additional precipitation did not ameliorate this effect. Warming did not alter the incidence of endophyte infection within the tall fescue population; however, warming significantly increased concentrations of ergot alkaloids (by 30–40%) in fall-harvested endophyte-infected individuals. Warming alone did not affect loline alkaloid concentrations, but when combined with additional precipitation, levels increased in fall-harvested material. Although future warming may reduce the dominance of tall fescue in eastern U.S. pastures and have limited effect on the incidence of endophyte infection, persisting endophyte-infected tall fescue will have higher concentrations of toxic alkaloids which may exacerbate fescue

  10. Warming reduces tall fescue abundance but stimulates toxic alkaloid concentrations in transition zone pastures of the U.S.

    NASA Astrophysics Data System (ADS)

    Mcculley, Rebecca; Bush, Lowell; Carlisle, Anna; Ji, Huihua; Nelson, Jim

    2014-10-01

    Tall fescue pastures cover extensive acreage in the eastern half of the United States and contribute to important ecosystem services, including the provisioning of forage for grazing livestock. Yet little is known concerning how these pastures will respond to climate change. Tall fescue’s ability to persist and provide forage under a warmer and wetter environment, as is predicted for much of this region as a result of climate change, will likely depend on a symbiotic relationship the plant can form with the fungal endophyte, Epichloë coenophiala. While this symbiosis can confer environmental stress tolerance to the plant, the endophyte also produces alkaloids toxic to insects (e.g., lolines) and mammals (ergots; which can cause ‘fescue toxicosis’ in grazing animals). The negative animal health and economic consequences of fescue toxicosis make understanding the response of the tall fescue symbiosis to climate change critical for the region. We experimentally increased temperature (+3oC) and growing season precipitation (+30% of the long-term mean) from 2009 - 2013 in a mixed species pasture, that included a tall fescue population that was 40% endophyte-infected. Warming reduced the relative abundance of tall fescue within the plant community, and additional precipitation did not ameliorate this effect. Warming did not alter the incidence of endophyte infection within the tall fescue population; however, warming significantly increased concentrations of ergot alkaloids (by 30-40%) in fall-harvested endophyte-infected individuals. Warming alone did not affect loline alkaloid concentrations, but when combined with additional precipitation, levels increased in fall-harvested material. Although future warming may reduce the dominance of tall fescue in eastern U.S. pastures and have limited effect on the incidence of endophyte infection, persisting endophyte-infected tall fescue will have higher concentrations of toxic alkaloids which may exacerbate fescue

  11. Antioxidant activity, delayed aging, and reduced amyloid-β toxicity of methanol extracts of tea seed pomace from Camellia tenuifolia.

    PubMed

    Wei, Chia-Cheng; Yu, Chan-Wei; Yen, Pei-Ling; Lin, Huan-You; Chang, Shang-Tzen; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2014-11-05

    There is a growing interest in the exploitation of the residues generated by plants. This study explored the potential beneficial health effects from the main biowaste, tea seed pomace, produced when tea seed is processed. DPPH radical scavenging and total phenolic content assays were performed to evaluate the in vitro activities of the extracts. Caenorhabditis elegans was used as in vivo model to evaluate the beneficial health effects, including antioxidant activity, delayed aging, and reduced amyloid-β toxicity. Among all soluble fractions obtained from the extracts of tea seed pomace from Camellia tenuifolia, the methanol (MeOH)-soluble fraction has the best in vivo antioxidant activities. The MeOH-soluble extraction was further divided into six fractions by chromatography with a Diaion HP-20 column eluted with water/MeOH, and fraction 3 showed the best in vitro and in vivo antioxidant activities. Further analysis in C. elegans showed that the MeOH extract (fraction 3) of tea seed pomace significantly decreased intracellular reactive oxygen species, prolonged C. elegans lifespan, and reduced amyloid-β (Aβ) toxicity in transgenic C. elegans expressing human Aβ. Moreover, bioactivity-guided fractionation yielded two potent constituents from fraction 3 of the MeOH extract, namely, kaempferol 3-O-(2″-glucopyranosyl)-rutinoside and kaempferol 3-O-(2″-xylopyranosyl)-rutinoside, and both compounds exhibited excellent in vivo antioxidant activity. Taken together, MeOH extracts of tea seed pomace from C. tenuifolia have multiple beneficial health effects, suggesting that biowaste might be valuable to be explored for further development as nutraceutical products. Furthermore, the reuse of agricultural byproduct tea seed pomace also fulfills the environmental perspective.

  12. Carnitine supplementation modulates high dietary copper-induced oxidative toxicity and reduced performance in laying hens.

    PubMed

    Güçlü, Berrin Kocaoğlu; Kara, Kanber; Çakır, Latife; Çetin, Ebru; Kanbur, Murat

    2011-12-01

    This experiment was conducted to evaluate the effects of L-carnitine on performance, egg quality and certain biochemical parameters in laying hens fed a diet containing high levels of copper proteinate. Forty-eight 42-week-old laying hens were divided into four groups with four replicates. The laying hens were fed with a basal diet (control) or the basal diet supplemented with either 400 mg carnitine (Car)/kg diet, 800 mg copper proteinate (CuP)/kg diet or 400 mg carnitine + 800 mg copper (Car+CuP)/kg diet, for 6 weeks. Supplemental CuP decreased feed consumption (p < 0.01), feed efficiency and egg production (p < 0.001), as compared to control. The combination of Car and CuP increased (p < 0.001) egg production and feed efficiency as compared to CuP. The activities of alanine aminotransferase (p < 0.05) and alkaline phosphatase (p < 0.01) were increased, while lactate dehydrogenase activity was decreased (p < 0.001) by supplemental CuP and Car+CuP. Supplemental CuP caused an increase in plasma malondialdehyde (p < 0.01) and nitric oxide levels (p < 0.05). In the Car+CuP group, this increase was observed to have been reduced significantly (p < 0.05). Furthermore, Car+CuP increased (p < 0.05) glucose level. These results indicate that the carnitine and copper combination may prevent the possible adverse effects of high dietary copper on performance and lipid peroxidation in hens.

  13. Multifunctional gasoline additives

    SciTech Connect

    Childs, M.E.

    1981-10-20

    The reaction products of glycidyl ethers, wherein the alkoxy portion contains from about 6 to about 20 carbon atoms, with alkylenediamines, n-alkyl alkylenediamines, and n-alkoxyalkyl alkylenediamines are effective carburetor detergents and reduce deposits on various components of internal combustion engines. An example is the reaction product of the glycidyl ether whose alkoxy group is a mixture of 12-14 carbon atom chains with n-tallow-1,3-propylenediamine.

  14. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    SciTech Connect

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for higher loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.

  15. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    DOE PAGES

    Dec, John E.; Yang, Yi; Ji, Chunsheng; ...

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for highermore » loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.« less

  16. 40 CFR 80.1654 - California gasoline requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false California gasoline requirements. 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur § 80.1654 California gasoline requirements. (a) California gasoline exemption. California gasoline that complies with all the requirements...

  17. Utilization of Renewable Oxygenates as Gasoline Blending Components

    SciTech Connect

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  18. Properties, performance and emissions of biofuels in blends with gasoline

    NASA Astrophysics Data System (ADS)

    Eslami, Farshad

    The emission performance of fuels and their blends in modern combustion systems have been studied with the purpose of reducing regulated and unregulated emissions, understanding of exhaust products of fuels such as gasoline, ethanol and 2,5-dimethylfuran and comparison of results. A quantitative analysis of individual hydrocarbon species from exhaust emissions of these three fuels were carried out with direct injects spark ignition (DISI) single cylinder engine. The analysis of hydrocarbon species were obtained using gas chromatography-mass spectrometry (GCMS) connected on-line to SI engine. During this project, novel works have been done including the set up of on-line exhaust emission measurement device for detection and quantification of individual volatile hydrocarbons. Setting of a reliable gas chromatography mass spectrometry measurement system required definition and development of a precise method. Lubricity characteristics of biofuels and gasoline were investigated using High Frequency Reciprocating Rig (HFRR). Results showed great enhancing lubricity characteristics of biofuels when added to conventional gasoline. 2,5-dimenthylfuran was found to be the best among the fuels used, addition of this fuel to gasoline also showed better result compared with ethanol addition.

  19. Increasing the octane number of gasoline using functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kish, Sara Safari; Rashidi, Alimorad; Aghabozorg, Hamid Reza; Moradi, Leila

    2010-03-01

    The octane number is one of the characteristics of spark-ignition fuels such as gasoline. Octane number of fuels can be improved by addition of oxygenates such as ethanol, MTBE (methyl tert-butyl ether), TBF (tertiary butyl formate) and TBA (tertiary butyl alcohol) as well as their blends with gasoline that reduce the cost impact of fuels. Carbon nanotubes (CNTs) are as useful additives for increasing the octane number. Functionalized carbon nanotubes containing amide groups have a high reactivity and can react with many chemicals. These compounds can be solubilized in gasoline to increase the octane number. In this study, using octadecylamine and dodecylamine, CNTs were amidated and the amino-functionalized carbon nanotubes were added to gasoline. Research octane number analysis showed that these additives increase octane number of the desired samples. X-ray diffraction (XRD), Fourier transforms infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetry analyses (TGA) were used for characterization of the prepared functionalized carbon nanotubes.

  20. Bisphenol A causes reproductive toxicity, decreases dnmt1 transcription, and reduces global DNA methylation in breeding zebrafish (Danio rerio)

    PubMed Central

    Laing, L. V.; Viana, J.; Dempster, E. L.; Trznadel, M.; Trunkfield, L. A.; Uren Webster, T. M.; van Aerle, R.; Paull, G. C.; Wilson, R. J.; Mill, J.; Santos, E. M.

    2016-01-01

    ABSTRACT Bisphenol A (BPA) is a commercially important high production chemical widely used in epoxy resins and polycarbonate plastics, and is ubiquitous in the environment. Previous studies demonstrated that BPA activates estrogenic signaling pathways associated with adverse effects on reproduction in vertebrates and that exposure can induce epigenetic changes. We aimed to investigate the reproductive effects of BPA in a fish model and to document its mechanisms of toxicity. We exposed breeding groups of zebrafish (Danio rerio) to 0.01, 0.1, and 1 mg/L BPA for 15 d. We observed a significant increase in egg production, together with a reduced rate of fertilization in fish exposed to 1 mg/L BPA, associated with significant alterations in the transcription of genes involved in reproductive function and epigenetic processes in both liver and gonad tissue at concentrations representing hotspots of environmental contamination (0.1 mg/L) and above. Of note, we observed reduced expression of DNA methyltransferase 1 (dnmt1) at environmentally relevant concentrations of BPA, along with a significant reduction in global DNA methylation, in testes and ovaries following exposure to 1 mg/L BPA. Our findings demonstrate that BPA disrupts reproductive processes in zebrafish, likely via estrogenic mechanisms, and that environmentally relevant concentrations of BPA are associated with altered transcription of key enzymes involved in DNA methylation maintenance. These findings provide evidence of the mechanisms of action of BPA in a model vertebrate and advocate for its reduction in the environment. PMID:27120497

  1. Diet-induced obesity in male mice is associated with reduced fertility and potentiation of acrylamide-induced reproductive toxicity.

    PubMed

    Ghanayem, Burhan I; Bai, Re; Kissling, Grace E; Travlos, Greg; Hoffler, Undi

    2010-01-01

    The prevalence of human obesity and related chronic disorders such as diabetes, cardiovascular diseases, and cancer is rapidly increasing. Human studies have shown a direct relationship between obesity and infertility. The objective of the current work was to examine the effect of diet-induced obesity on male fertility and the effect of obesity on susceptibility to chemical-induced reproductive toxicity. From 5 to 30 wk of age, genetically intact male C57Bl/6J mice were fed a normal diet or one in which 60% of the kilocalories were from lard. Obese mice exhibited significant differences in the mRNA of several genes within the testes in comparison to lean males. Pparg was increased 2.2-fold, whereas Crem, Sh2b1, Dhh, Igf1, and Lepr were decreased 6.7, 1.4, 3.2, 1.6, and 7.2-fold, respectively. The fertility of male mice was compared through mating with control females. Acrylamide (AA)-induced reproductive toxicity was assessed in obese or lean males treated with water or 25 mg AA kg(-1) day(-1) via gavage for 5 days and then mated to control females. Percent body fat and weight were significantly increased in mice fed a high-fat vs. a normal diet. Obesity resulted in significant reduction in plugs and pregnancies of control females partnered with obese vs. lean males. Serum leptin and insulin levels were each approximately 5-fold higher in obese vs. age-matched lean mice. Sperm from obese males exhibited decreased motility and reduced hyperactivated progression vs. lean mice. Treatment with AA exacerbated male infertility of obese and lean mice; however, this effect was more pronounced in obese mice. Further, females partnered with AA-treated obese mice exhibited a further decrease in the percentage of live fetuses, whereas the percentage of resorptions increased. This work demonstrated that diet-induced obesity in mice caused a significant reduction in male fertility and exacerbated AA-induced reproductive toxicity and germ cell mutagenicity.

  2. Automobile gasoline -- quality fuel or commodity

    SciTech Connect

    France, W.D.

    1986-01-01

    The commercial availability and use of good quality gasolines are essential for the operation of high-technology automobiles without adverse effects on driveability and emissions. Some current and future fuel requirements for GM vehicles are addressed with a focus on certain trends in fuel composition and properties which are of importance or concern at this time. Examples include the contribution of elevated gasoline volatility to increased evaporative emissions, the compatibility of GM engines with gasolines blended with certain alcohols, and the need for gasolines without contaminants and with sufficient additives, such as detergents to keep port fuel injection systems clean.

  3. Epigallocatechin-3-gallate and tetracycline differently affect ataxin-3 fibrillogenesis and reduce toxicity in spinocerebellar ataxia type 3 model.

    PubMed

    Bonanomi, Marcella; Natalello, Antonino; Visentin, Cristina; Pastori, Valentina; Penco, Amanda; Cornelli, Giuseppina; Colombo, Giorgio; Malabarba, Maria G; Doglia, Silvia M; Relini, Annalisa; Regonesi, Maria E; Tortora, Paolo

    2014-12-15

    The polyglutamine (polyQ)-containing protein ataxin-3 (AT3) triggers the neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) when its polyQ tract is expanded beyond a critical length. This results in protein aggregation and generation of toxic oligomers and fibrils. Currently, no effective treatment is available for such and other polyQ diseases. Therefore, plenty of investigations are being carried on to assess the mechanism of action and the therapeutic potential of anti-amyloid agents. The polyphenol compound epigallocatechin-3-gallate (EGCG) and tetracycline have been shown to exert some effect in preventing fibrillogenesis of amyloidogenic proteins. Here, we have incubated an expanded AT3 variant with either compound to assess their effects on the aggregation pattern. The process was monitored by atomic force microscopy and Fourier transform infrared spectroscopy. Whereas in the absence of any treatment, AT3 gives rise to amyloid β-rich fibrils, whose hallmark is the typical glutamine side-chain hydrogen bonding, when incubated in the presence of EGCG it generated soluble, SDS-resistant aggregates, much poorer in β-sheets and devoid of any ordered side-chain hydrogen bonding. These are off-pathway species that persist until the latest incubation time and are virtually absent in the control sample. In contrast, tetracycline did not produce major alterations in the structural features of the aggregated species compared with the control, but substantially increased their solubility. Both compounds significantly reduced toxicity, as shown by the MTT assay in COS-7 cell line and in a transgenic Caenorhabditis elegans strain expressing in the nervous system an AT3 expanded variant in fusion with GFP.

  4. Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.)

    PubMed Central

    Singh, Amit P.; Dixit, Garima; Mishra, Seema; Dwivedi, Sanjay; Tiwari, Manish; Mallick, Shekhar; Pandey, Vivek; Trivedi, Prabodh K.; Chakrabarty, Debasis; Tripathi, Rudra D.

    2015-01-01

    Arsenic (As) is posing serious health concerns in South East Asia where rice, an efficient accumulator of As, is prominent crop. Salicylic acid (SA) is an important signaling molecule and plays a crucial role in resistance against biotic and abiotic stress in plants. In present study, ameliorative effect of SA against arsenate (AsV) toxicity has been investigated in rice (Oryza sativa L.). Arsenate stress hampered the plant growth in terms of root, shoots length, and biomass as well as it enhanced the level of H2O2 and MDA in dose dependent manner in shoot. Exogenous application of SA, reverted the growth, and oxidative stress caused by AsV and significantly decreased As translocation to the shoots. Level of As in shoot was positively correlated with the expression of OsLsi2, efflux transporter responsible for root to shoot translocation of As in the form of arsenite (AsIII). SA also overcame AsV induced oxidative stress and modulated the activities of antioxidant enzymes in a differential manner in shoots. As treatment hampered the translocation of Fe in the shoot which was compensated by the SA treatment. The level of Fe in root and shoot was positively correlated with the transcript level of transporters responsible for the accumulation of Fe, OsNRAMP5, and OsFRDL1, in the root and shoot, respectively. Co-application of SA was more effective than pre-treatment for reducing As accumulation as well as imposed toxicity. PMID:26042132

  5. Computer Oriented Exercises on Attitudes and U.S. Gasoline Consumption, Attitude. Teacher Guide. Computer Technology Program Environmental Education Units.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    This is the teacher's guide to accompany the student guide which together comprise one of five computer-oriented environmental/energy education units. This unit is concerned with the attitude of people toward gasoline shortages and different steps the government could take to reduce gasoline consumption. Through the exercises, part of which make…

  6. Effects of Ethanol-Gasoline Blended Fuels on Learning and Memory

    EPA Science Inventory

    The potential toxicity of ethanol-gasoline blended fuels to the developing nervous system is of concern. We previously reported an absence of effect on learning and memory as seen in a trace fear conditioning task and water maze task in offspring of dams exposed prenatally to the...

  7. Effects of cold temperature and ethanol content on VOC emissions from light-duty gasoline vehicles

    EPA Science Inventory

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle...

  8. Impact of a new gasoline benzene regulation on ambient air pollutants in Anchorage, Alaska

    NASA Astrophysics Data System (ADS)

    Yano, Yuriko; Morris, Stephen S.; Salerno, Christopher; Schlapia, Anne M.; Stichick, Mathew

    2016-05-01

    The purpose of this study was to quantify the impact of a new U.S. Environmental Protection Agency (EPA) standard that limits the amount of benzene allowed in gasoline on ambient benzene concentrations. This new standard, together with two companion regulations that limit cold-temperature automotive emissions and the permeability of portable fuel containers, was expected to lower the levels of ambient benzene and other volatile organic compounds (VOCs) nationwide. In this study the impact of the gasoline benzene standard was evaluated in Anchorage, Alaska in a two-phase ambient air monitoring study conducted before and after the new gasoline standard was implemented. Gasoline sold by Anchorage retailers was also evaluated in each phase to determine the content of benzene and other gasoline components. The average benzene content in Anchorage gasoline was reduced by 70%, from 5.05% (w/w) to 1.53% (w/w) following the implementation of the standard. The annual mean ambient benzene concentration fell by 51%, from 0.99 ppbv in Phase 1 to 0.49 ppbv in Phase 2. Analysis suggests the change in gasoline benzene content alone reduced benzene emissions by 46%. The changes in toluene, ethylbenzene, and xylene content in gasoline between Phase 1 and 2 were relatively small and the differences in the mean ambient concentrations of these compounds between phases were modest. Our results suggest that cold winter communities in high latitude and mountainous regions may benefit more from the gasoline benzene standard because of high benzene emissions resulting from vehicle cold start and a tendency to develop atmospheric stagnation conditions in the winter.

  9. Nixtamalization Reduces Fumonisin Toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisin B1 is a fungal toxin found in corn and corn-based foods. It causes diseases in animals, and is a suspected risk factor for birth defects in humans depending on contaminated corn as a diet staple. Tortillas, snacks and other foods are made from corn by the alkaline cooking process known as ...

  10. Recent advances in occupational and environmental health hazards of workers exposed to gasoline compounds.

    PubMed

    Ekpenyong, Christopher E; Asuquo, Asuquo E

    2017-02-21

    The impact of health and environmental hazards, associated with the constituents of gasoline, on occupationally exposed workers has been recorded over the past few decades. However, the scientific literature on their pathogenic potential remains incomplete, which could affect the current understanding of the associated health risks. This review provides current information based on recently improved research techniques to evaluate gasoline toxicity profiles for humans. Our current knowledge provides insight into the intricate mechanism of gasoline-induced adverse effects, including the formation of reactive metabolites via bio-activation and subsequent generation of reactive oxygen species (ROS) and oxidative stress, which are involved in multiple mechanisms that are central to the aetiology of gasoline-induced toxicity. These mechanisms include covalent binding to deoxyribonucleic acid (DNA), leading to oxidative damage, tumor-suppression gene activity, and activation of pro-oncogenes. Furthermore, it results in induction of autoimmunity and local inflammatory responses, disruption of multiple neurotransmitters and immune cell function, derangement of various enzyme activities (e.g., sodiumpotassium adenosine triphosphate (Na+/K+/ATPase) activity, cytochrome P450 (CYP450), nitric oxide synthase (NOS), antioxidant enzyme activities, etc.), conjugation of bile, and non-specific cell membrane interaction, leading to damage of the membrane lipid bilayer and proteins. Available data suggests that exposure to gasoline or gasoline constituents have the potential to cause different types of illnesses. The data highlights the need to maintain safety measures via suitable research, medical surveillance, regulatory control, life style modification, early detection, and intervention to minimize exposure and manage suspected cases. They also present novel opportunities to design and develop effective therapeutic strategies against gasoline-induced detrimental effects. Int J

  11. Evaluation of Motor Gasoline Stability

    DTIC Science & Technology

    1990-12-01

    MINUTES 15271-G HC NAPHTHA >2490 D 873,8 HOUR. mg/i00rmL 15272-G REFORMATE >W015 S4*C,12 WEEK. mg/i00asL 15273-G HSR NAHH >53 (ESSENTIALLY THE SAME AS... Reformate - A reformed naphtha , which is upgraded in octane by means of catalytic reforming to convert cycloparaffins to aromatics. Residue...gasoline components, a pyrolysis naphtha was shown to be generally an order of magnitude less stable than all other streams, and coker naphtha was

  12. Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses

    SciTech Connect

    Lammert, M.

    2008-06-01

    This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.

  13. The EPA National Fuels Surveillance Network. I. Trace constituents in gasoline and commercial gasoline fuel additives.

    PubMed Central

    Jungers, R H; Lee, R E; von Lehmden, D J

    1975-01-01

    A National Fuels Surveillance Network has been established to collect gasoline and other fuels through the 10 regional offices of the Environmental Protection Agency. Physical, chemical, and trace element analytical determinations are made on the collected fuel samples to detect components which may present an air pollution hazard or poison exhaust catalytic control devices. A summary of trace elemental constituents in over 50 gasoline samples and 18 commercially marketed consumer purchased gasoline additives is presented. Quantities of Mn, Ni, Cr, Zn, Cu, Fe, Sb, B, Mg, Pb, and S were found in most regular and premium gasoline. Environmental implications of trace constituents in gasoline are discussed. PMID:1157783

  14. Health effects of inhaled gasoline engine emissions.

    PubMed

    McDonald, Jacob D; Reed, Matthew D; Campen, Matthew J; Barrett, Edward G; Seagrave, JeanClare; Mauderly, Joe L

    2007-01-01

    Despite their prevalence in the environment, and the myriad studies that have shown associations between morbidity or mortality with proximity to roadways (proxy for motor vehicle exposures), relatively little is known about the toxicity of gasoline engine emissions (GEE). We review the studies conducted on GEE to date, and summarize the findings from each of these studies. While there have been several studies, most of the studies were conducted prior to 1980 and thus were not conducted with contemporary engines, fuels, and driving cycles. In addition, many of the biological assays conducted during those studies did not include many of the assays that are conducted on contemporary inhalation exposures to air pollutants, including cardiovascular responses and others. None of the exposures from these earlier studies were characterized at the level of detail that would be considered adequate today. A recent GEE study was conducted as part of the National Environmental Respiratory Center (www.nercenter.org). In this study several in-use mid-mileage General Motors (Chevrolet S-10) vehicles were purchased and utilized for inhalation exposures. An exposure protocol was developed where engines were operated with a repeating California Unified Driving Cycle with one cold start per day. Two separate engines were used to provide two cold starts over a 6-h inhalation period. The exposure atmospheres were characterized in detail, including detailed chemical and physical analysis of the gas, vapor, and particle phase. Multiple rodent biological models were studied, including general toxicity and inflammation (e.g., serum chemistry, lung lavage cell counts/differentials, cytokine/chemokine analysis, histopathology), asthma (adult and in utero exposures with pulmonary function and biochemical analysis), cardiovascular effects (biochemical and electrocardiograph changes in susceptible rodent models), and susceptibility to infection (Pseudomonas bacteria challenge). GEE resulted in

  15. Synthetic Triterpenoids Can Protect Against Toxicity Without Reducing the Efficacy of Treatment with Carboplatin and Paclitaxel in Experimental Lung Cancer

    PubMed Central

    Liby, Karen T.

    2014-01-01

    Synthetic oleanane triterpenoids are multifunctional drugs being developed for the prevention and treatment of a variety of chronic diseases driven by inflammation and oxidative stress. Low nanomolar concentrations of triterpenoids inhibit the induction of inflammatory cytokines, and these drugs are potent activators of the Nrf2 cytoprotective pathway. In contrast, low micromolar concentrations of triterpenoids increased the production of ROS and induced apoptosis in a dose-dependent manner in malignant MCF10 CA1a breast cancer cells. Because cancer cells respond differently to ROS than normal cells, it should be possible to exploit these differences therapeutically. In an experimental model of lung cancer, the triterpenoids activated the Nrf2 pathway, as seen by induction of the cytoprotective enzyme NQO1, and reduced the toxicity of carboplatin and paclitaxel. The induction of the Nrf2 pathway in the lung did not suppress the efficacy of treatment with carboplatin and paclitaxel, as the average tumor burden in the group treated with the combination of CDDO-Me and carboplatin/paclitaxel decreased by 90% (P < 0.05 vs. the controls and both single treatment groups). Understanding the dose response of triterpenoids and related drugs will help provide the proper context for optimizing their potential clinical utility. PMID:24659938

  16. Comparison of two ammoniation procedures to reduce the toxicity of endophyte-infected tall fescue seed fed to rats.

    PubMed

    Simeone, A; Boissonneault, G A; Bush, L P; Mitchell, G E

    1998-02-01

    To determine the effect of extending the duration of ammonia (2% dry matter basis) treatment ti'om 1 to 5 wk on the toxicity of endophyte-infected tall fescue seed, 60 male Harlan Sprague-Dawley rats were randomly assigned to the following six treatments during a 28-d trial: endophyte-free (E-), endophyte-infected (E+), 1 wk ammoniated endophyte-fee (1AE-), 1 wk ammoniated endophyte-infected (1AE+), 5 wk ammoniated endophyte-free (5AE-), and 5 wk ammoniated endophyte-infected (5AE+) tall fescue seed. The concentration of total pyrrolizidine alkaloids (N-acetyl and N-formyl loline) or E+ rescue was reduced from 4203 12 g/g to 3009 and 2533 I-tg/g by the 1AE+ and 5AE+ treatments, respectively. Ergovaline was lowered from 3.77 to 1.57 12 g/g by 1AE+ and eliminated by 5AE+. Endophyte-infected treatment groups had depressed (P < 0.0001) dally feed intakes (DFI), daily weight gains (DWG), feed efficiencies (G/F), primary antibody responses, and T cell and B cell mitogenic responses than endophyte-free treatment groups. Ammoniation of endophyte-infected rescue seed improved DFI and DWG (P < 0.0001) and G/F (P < 0.05); however, there was no difference in performance criteria between the 1-wk and 5-wk ammoniation treatments. Endophyte-induced depressions in immune function were not alleviated by ammoniation.

  17. Comparison of two ammoniation procedures to reduce the toxicity of endophyte-infected tall fescue seed fed to rats.

    PubMed

    Simeone, A; Boissonneault, G A; Bush, L P; Mitchell, G E

    1998-08-01

    To determine the effect of extending the duration of ammonia (2% dry matter basis) treatment from 1 to 5 wk on the toxicity of endophyte-infected tall fescue seed, 60 male Harlan Sprague-Dawley rats were randomly assigned to the following six treatments during a 28-d trial: endophyte-free (E-), endophyte-infected (E+), 1 wk ammoniated endophyte-free (1AE-), 1 wk ammoniated endophyte-infected (1AE+), 5 wk ammoniated endophyte-free (5AE-), and 5 wk ammoniated endophyte-infected (5AE+) tall fescue seed. The concentration of total pyrrolizidine alkaloids (N-acetyl and N-formyl loline) of E+ fescue was reduced from 4203 micrograms/g to 3009 and 2533 micrograms/g by the 1AE+ and 5AE+ treatments, respectively. Ergovaline was lowered from 3.77 to 1.57 micrograms/g by 1AE+ and eliminated by 5AE+. Endophyte-infected treatment groups had depressed (P < 0.0001) daily feed intakes (DFI), daily weight gains (DWG), feed efficiencies (G/F), primary antibody responses, and T cell and B cell mitogenic responses than endophyte-free treatment groups. Ammoniation of endophyte-infected fescue seed improved DFI and DWG (P < 0.0001) and G/F (P < 0.05); however, there was no difference in performance criteria between the 1-wk and 5-wk ammoniation treatments. Endophyte-induced depressions in immune function were not alleviated by ammoniation.

  18. PLGA nanoparticle encapsulation reduces toxicity while retaining the therapeutic efficacy of EtNBS-PDT in vitro

    PubMed Central

    Hung, Hsin-I; Klein, Oliver J.; Peterson, Sam W.; Rokosh, Sarah R.; Osseiran, Sam; Nowell, Nicholas H.; Evans, Conor L.

    2016-01-01

    Photodynamic therapy regimens, which use light-activated molecules known as photosensitizers, are highly selective against many malignancies and can bypass certain challenging therapeutic resistance mechanisms. Photosensitizers such as the small cationic molecule EtNBS (5-ethylamino-9-diethyl-aminobenzo[a]phenothiazinium chloride) have proven potent against cancer cells that reside within acidic and hypoxic tumour microenvironments. At higher doses, however, these photosensitizers induce “dark toxicity” through light-independent mechanisms. In this study, we evaluated the use of nanoparticle encapsulation to overcome this limitation. Interestingly, encapsulation of the compound within poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PLGA-EtNBS) was found to significantly reduce EtNBS dark toxicity while completely retaining the molecule’s cytotoxicity in both normoxic and hypoxic conditions. This dual effect can be attributed to the mechanism of release: EtNBS remains encapsulated until external light irradiation, which stimulates an oxygen-independent, radical-mediated process that degrades the PLGA nanoparticles and releases the molecule. As these PLGA-encapsulated EtNBS nanoparticles are capable of penetrating deeply into the hypoxic and acidic cores of 3D spheroid cultures, they may enable the safe and efficacious treatment of otherwise unresponsive tumour regions. PMID:27686626

  19. PLGA nanoparticle encapsulation reduces toxicity while retaining the therapeutic efficacy of EtNBS-PDT in vitro

    NASA Astrophysics Data System (ADS)

    Hung, Hsin-I.; Klein, Oliver J.; Peterson, Sam W.; Rokosh, Sarah R.; Osseiran, Sam; Nowell, Nicholas H.; Evans, Conor L.

    2016-09-01

    Photodynamic therapy regimens, which use light-activated molecules known as photosensitizers, are highly selective against many malignancies and can bypass certain challenging therapeutic resistance mechanisms. Photosensitizers such as the small cationic molecule EtNBS (5-ethylamino-9-diethyl-aminobenzo[a]phenothiazinium chloride) have proven potent against cancer cells that reside within acidic and hypoxic tumour microenvironments. At higher doses, however, these photosensitizers induce “dark toxicity” through light-independent mechanisms. In this study, we evaluated the use of nanoparticle encapsulation to overcome this limitation. Interestingly, encapsulation of the compound within poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PLGA-EtNBS) was found to significantly reduce EtNBS dark toxicity while completely retaining the molecule’s cytotoxicity in both normoxic and hypoxic conditions. This dual effect can be attributed to the mechanism of release: EtNBS remains encapsulated until external light irradiation, which stimulates an oxygen-independent, radical-mediated process that degrades the PLGA nanoparticles and releases the molecule. As these PLGA-encapsulated EtNBS nanoparticles are capable of penetrating deeply into the hypoxic and acidic cores of 3D spheroid cultures, they may enable the safe and efficacious treatment of otherwise unresponsive tumour regions.

  20. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?

    PubMed Central

    Jiang, Qiu-Yun; Zhuo, Feng; Long, Shi-Hui; Zhao, Hai-Di; Yang, Dan-Jing; Ye, Zhi-Hong; Li, Shao-Shan; Jing, Yuan-Xiao

    2016-01-01

    A greenhouse pot experiment was conducted to study the impact of arbuscular mycorrhizal fungi−Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on the growth, Cd uptake, antioxidant indices [glutathione reductase (GR), ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), ascorbate (ASA), glutathione (GSH) and malonaldehyde (MDA)] and phytochelatins (PCs) production of Lonicera japonica in Cd-amended soils. Gv and Ri significantly increased P acquisition, biomass of shoots and roots at all Cd treatments. Gv significantly decreased Cd concentrations in shoots and roots, and Ri also obviously reduced Cd concentrations in shoots but increased Cd concentrations in roots. Meanwhile, activities of CAT, APX and GR, and contents of ASA and PCs were remarkably higher in Gv/Ri-inoculated plants than those of uninoculated plants, but lower MDA and GSH contents in Gv/Ri-inoculated plants were found. In conclusion, Gv and Ri symbiosis alleviated Cd toxicity of L. japonica through the decline of shoot Cd concentrations and the improvement of P nutrition, PCs content and activities of GR, CAT, APX in inoculated plants, and then improved plant growth. The decrease of shoot Cd concentrations in L. japonica inoculated with Gv/Ri would provide a clue for safe production of this plant from Cd-contaminated soils. PMID:26892768

  1. Improved efficacy and reduced toxicity by ultrasound-guided intrahepatic injections of helper-dependent adenoviral vector in Gunn rats.

    PubMed

    Pastore, Nunzia; Nusco, Edoardo; Piccolo, Pasquale; Castaldo, Sigismondo; Vaníkova, Jana; Vetrini, Francesco; Palmer, Donna J; Vitek, Libor; Ng, Philip; Brunetti-Pierri, Nicola

    2013-10-01

    Crigler-Najjar syndrome type I is caused by mutations of the uridine diphospho-glucuronosyl transferase 1A1 (UGT1A1) gene resulting in life-threatening increase of serum bilirubin. Life-long correction of hyperbilirubinemia was previously shown with intravenous injection of high doses of a helper-dependent adenoviral (HDAd) vector expressing UGT1A1 in the Gunn rat, the animal model of Crigler-Najjar syndrome. However, such high vector doses can activate an acute and potentially lethal inflammatory response with elevated serum interleukin-6 (IL-6). To overcome this obstacle, we investigated safety and efficacy of direct injections of low HDAd doses delivered directly into the liver parenchyma of Gunn rats. Direct hepatic injections performed by either laparotomy or ultrasound-guided percutaneous injections were compared with the same doses given by intravenous injections. A greater reduction of hyperbilirubinemia and increased conjugated bilirubin in bile were achieved with 1 × 10(11) vp/kg by direct liver injections compared with intravenous injections. In sharp contrast to intravenous injections, direct hepatic injections neither raised serum IL-6 nor resulted in thrombocytopenia. In conclusion, ultrasound-guided percutaneous injection of HDAd vectors into liver parenchyma resulted in improved hepatocyte transduction and reduced toxicity compared with systemic injections and is clinically attractive for liver-directed gene therapy of Crigler-Najjar syndrome.

  2. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?

    NASA Astrophysics Data System (ADS)

    Jiang, Qiu-Yun; Zhuo, Feng; Long, Shi-Hui; Zhao, Hai-Di; Yang, Dan-Jing; Ye, Zhi-Hong; Li, Shao-Shan; Jing, Yuan-Xiao

    2016-02-01

    A greenhouse pot experiment was conducted to study the impact of arbuscular mycorrhizal fungi‑Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on the growth, Cd uptake, antioxidant indices [glutathione reductase (GR), ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), ascorbate (ASA), glutathione (GSH) and malonaldehyde (MDA)] and phytochelatins (PCs) production of Lonicera japonica in Cd-amended soils. Gv and Ri significantly increased P acquisition, biomass of shoots and roots at all Cd treatments. Gv significantly decreased Cd concentrations in shoots and roots, and Ri also obviously reduced Cd concentrations in shoots but increased Cd concentrations in roots. Meanwhile, activities of CAT, APX and GR, and contents of ASA and PCs were remarkably higher in Gv/Ri-inoculated plants than those of uninoculated plants, but lower MDA and GSH contents in Gv/Ri-inoculated plants were found. In conclusion, Gv and Ri symbiosis alleviated Cd toxicity of L. japonica through the decline of shoot Cd concentrations and the improvement of P nutrition, PCs content and activities of GR, CAT, APX in inoculated plants, and then improved plant growth. The decrease of shoot Cd concentrations in L. japonica inoculated with Gv/Ri would provide a clue for safe production of this plant from Cd-contaminated soils.

  3. Clinical and immunological correction of DOCK8 deficiency by allogeneic hematopoietic stem cell transplantation following a reduced toxicity conditioning regimen.

    PubMed

    Boztug, Heidrun; Karitnig-Weiß, Cäcilia; Ausserer, Bernd; Renner, Ellen D; Albert, Michael H; Sawalle-Belohradsky, Julie; Belohradsky, Bernd H; Mann, Georg; Horcher, Ernst; Rümmele-Waibel, Alexandra; Geyeregger, Rene; Lakatos, Karoly; Peters, Christina; Lawitschka, Anita; Matthes-Martin, Susanne

    2012-10-01

    Dedicator of cytokinesis 8 protein (DOCK8) deficiency is a combined immunodeficiency disorder characterized by an expanding clinical picture with typical features of recurrent respiratory or gastrointestinal tract infections, atopic eczema, food allergies, chronic viral infections of the skin, and blood eosinophilia often accompanied by elevated serum IgE levels. The only definitive treatment option is allogeneic hematopoietic stem cell transplantation (HSCT). We report a patient with early severe manifestation of DOCK8 deficiency, who underwent unrelated allogeneic HSCT at the age of 3 years following a reduced toxicity conditioning regimen. The transplant course was complicated by pulmonary aspergilloma pretransplantation, adenovirus (ADV) reactivation, and cytomegalovirus (CMV) pneumonitis 4 weeks after transplantation. With antifungal and antiviral treatment the patient recovered. Seven months after transplantation the patient is in excellent clinical condition. Eczematous rash, chronic viral skin infections, and food allergies have subsided, associated with normalization of IgE levels and absolute numbers of eosinophils. Chimerism analysis shows stable full donor chimerism. DOCK8 deficiency can be successfully cured by allogeneic HSCT. This treatment option should be considered early after diagnosis, as opportunistic infections and malignancies that occur more frequently during the natural course of the disease are associated with higher morbidity and mortality.

  4. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?

    PubMed

    Jiang, Qiu-Yun; Zhuo, Feng; Long, Shi-Hui; Zhao, Hai-Di; Yang, Dan-Jing; Ye, Zhi-Hong; Li, Shao-Shan; Jing, Yuan-Xiao

    2016-02-19

    A greenhouse pot experiment was conducted to study the impact of arbuscular mycorrhizal fungi--Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on the growth, Cd uptake, antioxidant indices [glutathione reductase (GR), ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), ascorbate (ASA), glutathione (GSH) and malonaldehyde (MDA)] and phytochelatins (PCs) production of Lonicera japonica in Cd-amended soils. Gv and Ri significantly increased P acquisition, biomass of shoots and roots at all Cd treatments. Gv significantly decreased Cd concentrations in shoots and roots, and Ri also obviously reduced Cd concentrations in shoots but increased Cd concentrations in roots. Meanwhile, activities of CAT, APX and GR, and contents of ASA and PCs were remarkably higher in Gv/Ri-inoculated plants than those of uninoculated plants, but lower MDA and GSH contents in Gv/Ri-inoculated plants were found. In conclusion, Gv and Ri symbiosis alleviated Cd toxicity of L. japonica through the decline of shoot Cd concentrations and the improvement of P nutrition, PCs content and activities of GR, CAT, APX in inoculated plants, and then improved plant growth. The decrease of shoot Cd concentrations in L. japonica inoculated with Gv/Ri would provide a clue for safe production of this plant from Cd-contaminated soils.

  5. Historical Gasoline Composition Data 1976 - 2010

    EPA Science Inventory

    Gasoline composition varies for technical, market and regulatory reasons. Knowledge of any one of these is insufficient for understanding the chemical composition of gasoline at any specific location in the U.S. Historical data collected by the National Institute of Petroleum ...

  6. MAPPING GASOLINE REQUIREMENTS, APPLICABLE REGULATIONS AND BANS

    EPA Science Inventory

    Federal and State regulations play an important role in understanding gasoline composition around the United States. Multiple sources of information on these programs were used to develop reliable, up-to-date maps showing gasoline requirements imposed by various regulations. Th...

  7. Gasoline Prices and Motor Vehicle Fatalities

    ERIC Educational Resources Information Center

    Grabowski, David C.; Morrisey, Michael A.

    2004-01-01

    Fatal motor vehicle crashes per capita remained relatively stable over the 1990s, in spite of new traffic safety laws and vehicle innovations. One explanation for this stability is that the price of gasoline declined, which resulted in more vehicle miles traveled and potentially more fatalities. By using 1983-2000 monthly gasoline price and…

  8. What Drives U.S. Gasoline Prices?

    EIA Publications

    2014-01-01

    This analysis provides context for considering the impact of rising domestic light crude oil production on the price that U.S. consumers pay for gasoline, and provides a framework to consider how changes to existing U.S. crude oil export restrictions might affect gasoline prices.

  9. Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process

    SciTech Connect

    Jones, Susanne B.; Zhu, Yunhua

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

  10. Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

    SciTech Connect

    Storey, John Morse; Lewis Sr, Samuel Arthur; Szybist, James P; Thomas, John F; Barone, Teresa L; Eibl, Mary A; Nafziger, Eric J; Kaul, Brian C

    2014-01-01

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

  11. Use of the characteristic Raman lines of toluene (C7 H8) as a precise frequency reference on the spectral analysis of gasoline-ethanol blends

    NASA Astrophysics Data System (ADS)

    Ortega Clavero, Valentin; Javahiraly, Nicolas; Weber, Andreas; Schröder, Werner; Curticapean, Dan; Meyrueis, Patrick P.

    2014-09-01

    In order to reduce some of the toxic emissions produced by internal combustion engines, the fossil-based fuels have been combined with less harmful materials in recent years. However, the fuels used in the automotive industry generally contain different additives, such as toluene, as anti-shock agents and as octane number enhancers. These materials can cause certain negative impact, besides the high volatility implied, on public health or environment due to its chemical composition. Toluene, among several other chemical compounds, is an additive widely used in the commercially-available gasoline-ethanol blends. Despite the negative aspects in terms of toxicity that this material might have, the Raman spectral information of toluene can be used to achieve certain level of frequency calibration without using any additional chemical marker in the sample or any other external device. Moreover, the characteristic and well-defined Raman line of this chemical compound at 1003 cm-1 (even at low v/v content) can be used to quantitatively determine certain aspects of the gasoline-ethanol blend under observation. By using an own-designed Fourier-Transform Raman spectrometer (FT-Raman), we have collected and analyzed different commercially-available and laboratory-prepared gasoline-ethanol blends. By carefully observing the main Raman peaks of toluene in these fuel blends, we have determined the frequency accuracy of the Raman spectra obtained. The spectral information has been obtained in the range of 0 cm-1 to 3500 cm-1 with a spectral resolution of 1.66 cm-1. The Raman spectra obtained presented only reduced frequency deviations in comparison to the standard Raman spectrum of toluene provided by the American Society for Testing and Materials (ASTM).

  12. Chronic Carcinogenicity Study of Gasoline Vapor Condensate (GVC) and GVC Containing Methyl Tertiary-Butyl Ether in F344 Rats

    PubMed Central

    Benson, Janet M.; Gigliotti, Andrew P.; March, Thomas H.; Barr, Edward B.; Tibbetts, Brad M.; Skipper, Betty J.; Clark, Charles R.; Twerdok, Lorraine

    2011-01-01

    Chronic inhalation studies were conducted to compare the toxicity and potential carcinogenicity of evaporative emissions from unleaded gasoline (GVC) and gasoline containing the oxygenate methyl tertiary-butyl ether (MTBE; GMVC). The test materials were manufactured to mimic vapors people would be exposed to during refueling at gas stations. Fifty F344 rats per gender per exposure level per test article were exposed 6 h/d, 5 d/wk for 104 wk in whole body chambers. Target total vapor concentrations were 0, 2, 10, or 20 g/m3 for the control, low-, mid-, and high-level exposures, respectively. Endpoints included survival, body weights, clinical observations, organs weights, and histopathology. GVC and GMVC exerted no marked effects on survival or clinical observations and few effects on organ weights. Terminal body weights were reduced in all mid- and high-level GVC groups and high-level GMVC groups. The major proliferative lesions attributable to gasoline exposure with or without MTBE were renal tubule adenomas and carcinomas in male rats. GMV exposure led to elevated testicular mesothelioma incidence and an increased trend for thyroid carcinomas in males. GVMC inhalation caused an increased trend for testicular tumors with exposure concentration. Mid- and high-level exposures of GVC and GMVC led to elevated incidences of nasal respiratory epithelial degeneration. Overall, in these chronic studies conducted under identical conditions, the health effects in F344 rats following 2 yr of GVC or GMVC exposure were comparable in the production of renal adenomas and carcinomas in male rats and similar in other endpoints. PMID:21432714

  13. Chronic carcinogenicity study of gasoline vapor condensate (GVC) and GVC containing methyl tertiary-butyl ether in F344 rats.

    PubMed

    Benson, Janet M; Gigliotti, Andrew P; March, Thomas H; Barr, Edward B; Tibbetts, Brad M; Skipper, Betty J; Clark, Charles R; Twerdok, Lorraine

    2011-01-01

    Chronic inhalation studies were conducted to compare the toxicity and potential carcinogenicity of evaporative emissions from unleaded gasoline (GVC) and gasoline containing the oxygenate methyl tertiary-butyl ether (MTBE; GMVC). The test materials were manufactured to mimic vapors people would be exposed to during refueling at gas stations. Fifty F344 rats per gender per exposure level per test article were exposed 6 h/d, 5 d/wk for 104 wk in whole body chambers. Target total vapor concentrations were 0, 2, 10, or 20 g/m³ for the control, low-, mid-, and high-level exposures, respectively. Endpoints included survival, body weights, clinical observations, organs weights, and histopathology. GVC and GMVC exerted no marked effects on survival or clinical observations and few effects on organ weights. Terminal body weights were reduced in all mid- and high-level GVC groups and high-level GMVC groups. The major proliferative lesions attributable to gasoline exposure with or without MTBE were renal tubule adenomas and carcinomas in male rats. GMV exposure led to elevated testicular mesothelioma incidence and an increased trend for thyroid carcinomas in males. GVMC inhalation caused an increased trend for testicular tumors with exposure concentration. Mid- and high-level exposures of GVC and GMVC led to elevated incidences of nasal respiratory epithelial degeneration. Overall, in these chronic studies conducted under identical conditions, the health effects in F344 rats following 2 yr of GVC or GMVC exposure were comparable in the production of renal adenomas and carcinomas in male rats and similar in other endpoints.

  14. The comparative toxicity of a reduced, crude comfrey (Symphytum officinale) alkaloid extract and the pure, comfrey-derived pyrrolizidine alkaloids, lycopsamine and intermedine in chicks (Gallus gallus domesticus).

    PubMed

    Brown, Ammon W; Stegelmeier, Bryan L; Colegate, Steven M; Gardner, Dale R; Panter, Kip E; Knoppel, Edward L; Hall, Jeffery O

    2016-05-01

    Comfrey (Symphytum officinale), a commonly used herb, contains dehydropyrrolizidine alkaloids that, as a group of bioactive metabolites, are potentially hepatotoxic, pneumotoxic, genotoxic and carcinogenic. Consequently, regulatory agencies and international health organizations have recommended comfrey be used for external use only. However, in many locations comfrey continues to be ingested as a tisane or as a leafy vegetable. The objective of this work was to compare the toxicity of a crude, reduced comfrey alkaloid extract to purified lycopsamine and intermedine that are major constituents of S. officinale. Male, California White chicks were orally exposed to daily doses of 0.04, 0.13, 0.26, 0.52 and 1.04 mmol lycopsamine, intermedine or reduced comfrey extract per kg bodyweight (BW) for 10 days. After another 7 days chicks were euthanized. Based on clinical signs of poisoning, serum biochemistry, and histopathological analysis the reduced comfrey extract was more toxic than lycopsamine and intermedine. This work suggests a greater than additive effect of the individual alkaloids and/or a more potent toxicity of the acetylated derivatives in the reduced comfrey extract. It also suggests that safety recommendations based on purified compounds may underestimate the potential toxicity of comfrey.

  15. Hydrogen and Gaseous Fuel Safety and Toxicity

    SciTech Connect

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  16. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    SciTech Connect

    Splitter, Derek A; Szybist, James P

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  17. The influence of zinc hydroxystannate on reducing toxic gases (CO, NOx and HCN) generation and fire hazards of thermoplastic polyurethane composites.

    PubMed

    Wang, Bibo; Sheng, Haibo; Shi, Yongqian; Song, Lei; Zhang, Yan; Hu, Yuan; Hu, Weizhao

    2016-08-15

    A uniform zinc hydroxystannate (ZnHS) microcube was synthesized to reduce toxicity and fire hazards of thermoplastic polyurethane (TPU) composites using ammonium polyphosphate as a flame retardant agent. The structure, morphology and thermal properties of ZnHS were characterized by X-ray diffraction, transmission electron microscopy and thermogravimetric analysis, respectively. Smoke suppression properties and synergistic flame retardant effect of ZnHS on flame retardant TPU composites were intensively investigated by smoke density test, cone calorimeter test, and thermalgravimetric analysis. Thermogravimetric analysis/infrared spectrometry and tube furnace were employed to evaluate the toxic gases (CO, NOx and HCN) of TPU composites. The incorporation of ZnHS into TPU matrix effectively improved the fire safety and restrained the smoke density, which is attributed to that the char residue catalyzed by ZnHS enhanced barrier effect that reduced peak heat release rate, total heat release, smoke particles and organic volatiles during combustion. Furthermore, the ZnHS synergist demonstrated high efficiency in catalytic degradation of the toxic gases, which obviously decreased total volatiled product and toxic volatiles evolved, such as the CO, HCN and NOx, indicating suppressed toxicity of the TPU composites.

  18. Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil.

    PubMed

    Rinklebe, Jörg; Shaheen, Sabry M; Frohne, Tina

    2016-01-01

    Biochar (BC) can be used to remediate soils contaminated with potential toxic elements (PTEs). However, the efficiency of BC to immobilize PTEs in highly contaminated floodplain soils under dynamic redox conditions has not been studied up to date. Thus, we have (i) quantified the impact of pre-definite redox conditions on the release dynamics of dissolved aluminum (Al), arsenic (As), cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) in a highly contaminated soil (CS) (non-treated) and in the same soil treated with 10 g kg(-1) biochar based material (CS+BC), and (ii) assessed the efficacy of the material to reduce the concentrations of PTEs in soil solution under dynamic redox conditions using an automated biogeochemical microcosm apparatus. The impact of redox potential (EH), pH, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), iron (Fe), manganese (Mn), and sulfate (SO4(2-)) on dynamics of PTEs was also determined. The EH was lowered to +68 mV and afterwards increased stepwise to +535 mV. Significant negative correlation between EH and pH in CS and CS+BC was detected. The systematic increase of EH along with decrease of pH favors the mobilization of PTEs in CS and CS+BC. The material addition seems to have little effect on redox processes because pattern of EH/pH and release dynamics of PTEs was basically similar in CS and CS+BC. However, concentrations of dissolved PTEs were considerably lower in CS+BC than in CS which demonstrates that BC is able to decrease concentrations of dissolved PTEs even under dynamic redox conditions.

  19. The toxicity and efficacy of donor lymphocyte infusions given after reduced-intensity conditioning allogeneic stem cell transplantation.

    PubMed

    Marks, David I; Lush, Richard; Cavenagh, Jamie; Milligan, Donald W; Schey, Steven; Parker, Anne; Clark, Fiona J; Hunt, Linda; Yin, John; Fuller, Steven; Vandenberghe, Elisabeth; Marsh, Judith; Littlewood, Timothy; Smith, Graeme M; Culligan, Dominic; Hunter, Ann; Chopra, Rajesh; Davies, Andrew; Towlson, Keiren; Williams, Catherine D

    2002-11-01

    We describe the toxicity and efficacy of donor lymphocyte infusions (DLIs) given to 81 patients (median age, 50 years) after reduced-intensity conditioning (RIC) transplantations performed at 16 centers in the United Kingdom. The diseases treated included non-Hodgkin lymphoma (NHL; n = 29), chronic myeloid leukemia (CML; n = 12), myeloma (n = 11), acute myeloid leukemia (AML; n = 10), and chronic lymphocytic leukemia (CLL; n = 9). Eighty-eight percent received stem cells from sibling donors. The patients received 130 infusions (median, 1; range, 1-4). Indications for DLI were unsatisfactory response/disease progression in 51 patients, mixed chimerism in 18, preemptive in 10, and other in 2. Graft hypoplasia was uncommon (11%). Grade II to IV graft-versus-host disease (GVHD) occurred in 23 of 81 patients (28%) and limited and extensive chronic GVHD in 5 of 69 and 18 of 69 evaluable patients (total incidence 33%). Conversion from mixed to full donor chimerism occurred in 19 of 55 evaluable patients (35%) at a median of 48 days after the DLI; partial responses occurred in 6 patients (total response rate 45%). Eighteen of 51 (35%) patients with measurable disease after stem cell transplantation had a complete response (2 molecular), and 5 a partial response (total response rate 45%). Eleven of 17 evaluable complete responders had full donor chimerism. Eight of 13 patients with follicular NHL had complete responses as did 4 of 12 patients with CML. Clinical and chimeric responses correlated strongly with acute and chronic GVHD. Forty-seven patients (58%) survive at a median of 508 days after transplantation (range, 155-1171 days) with a median Karnofsky score of 90. Thirty-four patients (42%) died at a median of 211 days after transplantation with the major causes being progressive disease (26%) and GVHD (9%). Further systematic studies are required to determine the efficacy and optimum use of DLI for patients with each disease treated by nonmyeloablative stem cell

  20. Thermodynamics properties and combustion performance investigation of higher chain alcohol-RON 92 gasoline system

    NASA Astrophysics Data System (ADS)

    Oktavian, Rama; Darmawan, Rhezaldian Eka; Diarahmawati, Ayu; Kartiko, Intan Dyah; Rachmawati, Rizqi Tri

    2017-03-01

    The increasing consumption of fossil fuel in Indonesia is not followed by the rising on domestic oil production. This will lead to the depletion of fossil fuel reserves that will affect the availability of energy resources. Biofuel is considered as the critical solution to solve this problem in Indonesia. In recent years, alcohol produced from biomass has been used as an oxygenated compound in gasoline to increase the octane number and reduce pollutants resulting from motor vehicle exhaust emissions. However, the use of alcohol as an additive compounds is still limited to ethanol. In fact, the use of higher-chain alcohol such as 1-butanol offers more benefits over ethanol due to its higher calorific value. 1-butanol also has good characteristics for gasoline mixture such as less corrosive than ethanol, more resistant to water contamination, its low vapor pressure which leads to more safety application. This work investigated the effect of 1-butanol addition on the thermodynamic properties of gasoline-ethanol blend, in the form of density values, isobaric expansion coefficient, and the calorific value. The addition of 1-butanol up to 15% weight (80% RON 92-5% ethanol-15% 1-butanol) gives higher density to alcohol-gasoline blend up to 2% compared with pure RON 92 gasoline. Moreover, this addition produces the calorific value of gasoline blend of 11,313 cal/gr compared to pure RON 92 gasoline with the calorific value of 12,117 cal/gram. This blend can reduce the RON 92 gasoline consumption up to 15% from calorific value perspective.

  1. Black carbon emissions in gasoline exhaust and a reduction alternative with a gasoline particulate filter.

    PubMed

    Chan, Tak W; Meloche, Eric; Kubsh, Joseph; Brezny, Rasto

    2014-05-20

    Black carbon (BC) mass and solid particle number emissions were obtained from two pairs of gasoline direct injection (GDI) vehicles and port fuel injection (PFI) vehicles over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) drive cycles on gasoline and 10% by volume blended ethanol (E10). BC solid particles were emitted mostly during cold-start from all GDI and PFI vehicles. The reduction in ambient temperature had significant impacts on BC mass and solid particle number emissions, but larger impacts were observed on the PFI vehicles than the GDI vehicles. Over the FTP-75 phase 1 (cold-start) drive cycle, the BC mass emissions from the two GDI vehicles at 0 °F (-18 °C) varied from 57 to 143 mg/mi, which was higher than the emissions at 72 °F (22 °C; 12-29 mg/mi) by a factor of 5. For the two PFI vehicles, the BC mass emissions over the FTP-75 phase 1 drive cycle at 0 °F varied from 111 to 162 mg/mi, higher by a factor of 44-72 when compared to the BC emissions of 2-4 mg/mi at 72 °F. The use of a gasoline particulate filter (GPF) reduced BC emissions from the selected GDI vehicle by 73-88% at various ambient temperatures over the FTP-75 phase 1 drive cycle. The ambient temperature had less of an impact on particle emissions for a warmed-up engine. Over the US06 drive cycle, the GPF reduced BC mass emissions from the GDI vehicle by 59-80% at various temperatures. E10 had limited impact on BC emissions from the selected GDI and PFI vehicles during hot-starts. E10 was found to reduce BC emissions from the GDI vehicle by 15% at standard temperature and by 75% at 19 °F (-7 °C).

  2. Improved antitumor activity and reduced toxicity of doxorubicin encapsulated in poly(ε-caprolactone) nanoparticles in lung and breast cancer treatment: An in vitro and in vivo study.

    PubMed

    Cabeza, Laura; Ortiz, Raul; Prados, Jose; Delgado, Ángel V; Martín-Villena, Maria J; Clares, Beatriz; Perazzoli, Gloria; Entrena, Jose M; Melguizo, Consolación; Arias, Jose L

    2017-02-17

    Poly(ε-caprolactone) (PCL) nanoparticles (NPs) offer many possibilities for drug transport because of their good physicochemical properties and biocompatibility. Doxorubicin-loaded PCL NPs have been synthesized to try to reduce the toxicity of doxorubicin (DOX) for healthy tissues and enhance its antitumor effect in two tumor models, breast and lung cancer, which have a high incidence in the global population. PCL NPs were synthesized using a modified nanoprecipitation solvent evaporation method. The in vitro toxicity of PCL NPs was evaluated in breast and lung cancer cell lines from both humans and mice, as was the inhibition of cell proliferation and cell uptake of DOX-loaded PCL NPs compared to free DOX. Breast and lung cancer xenografts were used to study the in vivo antitumor effect of DOX-loaded NPs. Moreover, healthy mice were used for in vivo toxicity studies including weight loss, blood toxicity and tissue damage. The results showed good biocompatibility of PCL NPs in vitro, as well as a significant increase in the cytotoxicity and cell uptake of the drug-loaded in PCL NPs, which induced almost a 98% decrease of the IC50 (E0771 breast cancer cells). Likewise, DOX-loaded PCL NPs led to a greater reduction in tumor volume (≈36%) in studies with C57BL/6 mice compared to free DOX in both lung and breast tumor xenograft models. Nevertheless, no differences were found in terms of mouse weight. Only in the lung cancer model were significant differences in mice survival observed. In addition, DOX-loaded PCL NPs were able to reduce myocardial and blood toxicity in mice compared to free DOX. Our results showed that DOX-loaded PCL NPs were biocompatible, enhanced the antitumor effect of DOX and reduced its toxicity, suggesting that they may have an important potential application in lung and breast cancer treatments.

  3. 7 CFR 3201.103 - Gasoline fuel additives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Gasoline fuel additives. 3201.103 Section 3201.103... Designated Items § 3201.103 Gasoline fuel additives. (a) Definition. Chemical agents added to gasoline to increase octane levels, improve lubricity, and provide engine cleaning properties to gasoline-fired...

  4. Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil.

    PubMed

    Lachance, Bernard; Renoux, Agnès Y; Sarrazin, Manon; Hawari, Jalal; Sunahara, Geoffrey I

    2004-06-01

    Soils contaminated with 2,4,6-trinitrotoluene (TNT) and TNT primary reduction products have been found to be toxic to certain soil invertebrates, such as earthworms. The mechanism of toxicity of TNT and of its by-products is still not known. To ascertain if one of the TNT reduction products underlies TNT toxicity, we tested the toxicity and bioaccumulation of TNT reduction products. 2-Amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), 2,4-diamino-6-nitrotoluene (2,4-DANT) and 2,6-diamino-4-nitrotoluene (2,6-DANT) were tested separately in adult earthworms (Eisenia andrei) following a 14-d exposure to amended sandy loam forest soil. TNT, 4-ADNT, and 2-ADNT were lethal to earthworms (14-d LC(50) were: 580, 531 and 1088 micromol kg(-1), or 132, 105 and 215 mgkg(-1) dry soil, respectively) and gave the following order of toxicity: 4-ADNT>TNT>2-ADNT. Exposure to 2,4-DANT and to 2,6-DANT caused no mortality at 600 micromol kg(-1) or 100 mgkg(-1) dry soil. We found that all four TNT reduction products accumulated in earthworm tissues and 2-ADNT reached the highest levels at 3.0+/-0.3 micromol g(-1) tissue. The 14-d bioaccumulation factors were 5.1, 6.4, 5.1 and 3.2 for 2-ADNT, 4-ADNT, 2,4-DANT and 2,6-DANT, respectively. Results also suggest that some TNT metabolites are at least as toxic as TNT and should be considered when evaluating the overall toxicity of TNT-contaminated soil to earthworms.

  5. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    SciTech Connect

    Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J; Thomas, John F; Parks, II, James E; West, Brian H

    2015-01-01

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  6. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2...

  7. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2...

  8. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2...

  9. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2...

  10. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2...

  11. 40 CFR 80.1503 - What are the product transfer document requirements for gasoline-ethanol blends, gasolines, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for gasoline-ethanol blends, gasolines, and conventional blendstocks for oxygenate blending... Gasoline-Ethanol Blends § 80.1503 What are the product transfer document requirements for gasoline-ethanol... upstream of an ethanol blending facility. (1) In addition to any other product transfer...

  12. 40 CFR 80.1503 - What are the product transfer document requirements for gasoline-ethanol blends, gasolines, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for gasoline-ethanol blends, gasolines, and conventional blendstocks for oxygenate blending... Gasoline-Ethanol Blends § 80.1503 What are the product transfer document requirements for gasoline-ethanol... upstream of an ethanol blending facility. (1) In addition to any other product transfer...

  13. 40 CFR 80.1503 - What are the product transfer document requirements for gasoline-ethanol blends, gasolines, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for gasoline-ethanol blends, gasolines, and conventional blendstocks for oxygenate blending... Gasoline-Ethanol Blends § 80.1503 What are the product transfer document requirements for gasoline-ethanol... upstream of an ethanol blending facility. (1) In addition to any other product transfer...

  14. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice.

    PubMed

    Zhang, Jinsong; Wang, Xufang; Xu, Tongwen

    2008-01-01

    Selenium (Se) is an essential trace element with a narrow margin between beneficial and toxic effects. As a promising chemopreventive agent, its use requires consumption over the long term, so the toxicity of Se is always a crucial concern. Based on clinical findings and recent studies in selenoprotein gene-modified mice, it is likely that the antioxidant function of one or more selenoproteins is responsible for the chemopreventive effect of Se. Furthermore, upregulation of phase 2 enzymes by Se has been implicated as a possible chemopreventive mechanism at supranutritional dietary levels. Se-methylselenocysteine (SeMSC), a naturally occurring organic Se product, is considered as one of the most effective chemopreventive selenocompounds. The present study revealed that, as compared with SeMSC, elemental Se at nano size (Nano-Se) possessed equal efficacy in increasing the activities of glutathione peroxidase, thioredoxin reductase, and glutathione S-transferase, but had much lower toxicity as indicated by median lethal dose, acute liver injury, survival rate, and short-term toxicity. Our results suggest that Nano-Se can serve as a potential chemopreventive agent with reduced risk of Se toxicity.

  15. Tested Demonstrations. Gasoline Vapor: An Invisible Pollutant

    ERIC Educational Resources Information Center

    Stephens, Edgar R.

    1977-01-01

    Describes a demonstration concerning the air pollution aspects of gasoline vapor which provides an estimation of the vapor pressure of test fuel, the molecular weight of the vapor, and illustrates a method of controlling the pollution. (SL)

  16. Reformulated Gasoline Market Affected Refiners Differently, 1995

    EIA Publications

    1996-01-01

    This article focuses on the costs of producing reformulated gasoline (RFG) as experienced by different types of refiners and on how these refiners fared this past summer, given the prices for RFG at the refinery gate.

  17. Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China

    NASA Astrophysics Data System (ADS)

    Zhang, Yanli; Wang, Xinming; Zhang, Zhou; Lü, Sujun; Shao, Min; Lee, Frank S. C.; Yu, Jianzhen

    2013-11-01

    reducing VOC emission from gasoline distribution sector would particularly benefit ground-level ozone control in China.

  18. Investigation of Knock limited Compression Ratio of Ethanol Gasoline Blends

    SciTech Connect

    Szybist, James P; Youngquist, Adam D; Wagner, Robert M; Moore, Wayne; Foster, Matthew; Confer, Keith

    2010-01-01

    Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock limited compression ratio of ethanol gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single cylinder direct injection spark ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT conditions to determine the knock limited compression ratio (CR) of ethanol fuel blends. The geometric compression ratio is varied by changing pistons, producing CR from 9.2 to 13.66. The effective CR is varied using an electro-hydraulic valvetrain that changed the effective trapped displacement using both Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC). The EIVC and LIVC strategies result in effective CR being reduced while maintaining the geometric expansion ratio. It was found that at substantially similar engine conditions, increasing the ethanol content of the fuel results in higher engine efficiency and higher engine power. These can be partially attributed to a charge cooling effect and a higher heating valve of a stoichiometric mixture for ethanol blends (per unit mass of air). Additional thermodynamic effects on and a mole multiplier are also explored. It was also found that high CR can increase the efficiency of ethanol fuel blends, and as a result, the fuel economy penalty associated with the lower energy content of E85 can be reduced by about a third. Such operation necessitates that the engine be operated in a de-rated manner for

  19. Petroleum fingerprinting: Dating a gasoline release

    SciTech Connect

    Johnson, M.D.; Morrison, R.D.

    1996-09-01

    Dating a gasoline releases is particularly important in situations involving a contaminated gasoline service station. Often the station begins under the control of a major oil company, and as it ages and deteriorates it may be operated by a series of smaller operators. When facing a claim for contamination, often operators blame former operators. Fingerprinting is one of several successful methods used to date petroleum releases on contaminated sites. The topics covered in this article are inventory reconciliation; reverse groundwater modeling; hydrocarbon fingerprinting.

  20. Infrared Analysis of Gasoline/Alcohol Blends.

    DTIC Science & Technology

    1981-02-01

    in storage, routine handling and distribution. As a result, other oxygenates such as methanol , iso-propanol, t-butanoA, methyl -t- butyl ether, and...Table 1 lists TABLE 1. ALCOHOL ANALYTE BAND NUMBERS -1 Component Analytical Frequency, cm Gasoline 967 Methanol 1030 Ethanol 882 iso-propanol 952 t...of varying concen- trations of each alcohol in a gasoline were obtained, with Figure 4 showing a low and high standard for methanol . The net peak

  1. Regimen-related toxicity following reduced-intensity stem-cell transplantation (RIST): comparison between Seattle criteria and National Cancer Center Common Toxicity Criteria (NCI-CTC) version 2.0.

    PubMed

    Sakiyama, M; Kami, M; Hori, A; Imataki, O; Hamaki, T; Murashige, N; Kobayashi, K; Kishi, Y; Kojima, R; Kim, S-W; Kusumi, E; Yuji, K; Miyakoshi, S; Mori, S; Tanosaki, R; Taniguchi, S; Takaue, Y

    2004-11-01

    Acute regimen-related toxicity (RRT) is minimal in reduced-intensity stem-cell transplantation (RIST). However, the Seattle RRT grading (Bearman et al), developed in the context of conventional-intensity transplantation, is frequently applied to RIST. We compared the National Cancer Institute Common Toxicity Criteria (NCI-CTC) version 2.0 with the Seattle criteria after RIST in 86 patients. RRT within 30 days of transplant graded by both sets of criteria were significantly associated with the outcome confirming the predictive value of both the systems. A total of 15 patients died of disease progression, and 12 of transplant-related mortality: RRT (n = 2), graft-versus-host disease (GVHD) (n = 7), infection (n = 1), and others (n = 2). GVHD-related deaths primarily resulted from infections after steroid treatment (n = 6) and bronchiolitis obliterans (n = 1). This study shows that NCI-CTC is appropriate in toxicity evaluation of RIST, and that its application to RIST enables a toxicity comparison between RIST and other types of cancer treatments. Since GVHD is a significant problem in RIST, modifications are required to evaluate immunological complications following RIST.

  2. Multi organ failure following intravenous gasoline for suicide: a case report.

    PubMed

    Mahmoodpoor, Ata; Soleimanpour, Hassan; Hamishehkar, Hadi

    2012-01-01

    Hydrocarbons are ubiquitous in daily life and include plant and animal fats, alcohols, solvents, natural gas, petroleum derivates. Majority of intoxication reports of hydrocarbons are due to inhalation or ingestion, but there is few reports about intravenous injection of gasoline. We report a 58 year-old man who injected gasoline intravenously for suicide. He developed soft tissue necrosis of forearm and bilateral pulmonary infiltration. He underwent fasciotomy and extensive debridement of necrotic tissues, at the operation room. He was intubated and mechanically ventilated because of acute lung injury. He developed acute kidney injury after 2 days. These symptoms seem to be due to extravasation of gasoline from vessels which lead to inflammation, cell damage and organ failure. The patient developed multi organ failure which unfortunately did not respond to our treatment and he died at day 21. Management of gasoline intoxication depends on the rout of exposure. Like other types of toxications, intravenous toxication has pulmonary involvement, however in this case we had multiple organ involvement. It seems that in such cases we should consider early end organ targeted therapy to stop the future organ failure.

  3. Environmental implications on the oxygenation of gasoline with ethanol in the metropolitan area of Mexico City.

    PubMed

    Schifter, I; Vera, M; Díaz, L; Guzmán, E; Ramos, F; López-Salinas, E

    2001-05-15

    Motor vehicle emission tests were performed on 12 in-use light duty vehicles, made up of the most representative emission control technologies in Mexico City: no catalyst, oxidative catalyst, and three way catalyst. Exhaust regulated (CO, NOx, and hydrocarbons) and toxic (benzene, formaldehyde, acetaldehyde, and 1,3-butadiene) emissions were evaluated for MTBE (5 vol %)- and ethanol (3, 6, and 10 vol %)-gasoline blends. The most significant overall emissions variations derived from the use of 6 vol % ethanol (relative to a 5% MTBE base gasoline) were 16% decrease in CO, 28% reduction in formaldehyde, and 80% increase in acetaldehyde emissions. A 26% reduction in CO emissions from the oldest fleet (< MY 1991, without catalytic converter), which represents about 44% of the in-use light duty vehicles in Mexico city, can be attained when using 6 vol% ethanol-gasoline, without significant variation in hydrocarbons and NOx emissions, when compared with a 5% vol MTBE-gasoline. On the basis of the emissions results, an estimation of the change in the motor vehicle emissions of the metropolitan area of Mexico city was calculated for the year 2010 if ethanol were to be used instead of MTBE, and the outcome was a considerable decrease in all regulated and toxic emissions, despite the growing motor vehicle population.

  4. Delineation of a hydrocarbon (weathered gasoline) plume in shallow deposits at the U. S. Naval Weapons Station, Seal Beach, California. Water Resources Investigation

    SciTech Connect

    Schroeder, R.A.

    1991-01-01

    Gasoline from a leaking underground storage tank at the U.S. Naval Weapons Station in Seal Beach, California, was found to have spread almost radially through the shallow subsoil a distance of 150 to 300 feet from the source. Deposits in an area of 160,000 square feet in a zone 1 to 2 feet thick above the shallow water table are contaminated. Seasonal and tidal fluctuations in ground water have spread the gasoline vertically in the subsoil and thereby reduced gasoline concentration below residual saturation in nearly all the contaminated area. Total quantity of gasoline contained in gasoline-unsaturated subsoil is estimated to be 5,800 gallons. The quantity present in gasoline-saturated subsoils was not determined.

  5. Trends in auto emissions and gasoline composition.

    PubMed

    Sawyer, R F

    1993-12-01

    The invention of the spark-ignited internal combustion engine provided a market for a petroleum middle distillate, gasoline, about 100 years ago. The internal combustion engine and gasoline have co-evolved until motor vehicles now annually consume about 110 billion gallons of gasoline in the United States. Continuing air pollution problems and resulting regulatory pressures are driving the need for further automotive emissions reductions. Engine and emissions control technology provided most earlier reductions. Changing the composition of gasoline will play a major role in the next round of reductions. The engineering and regulatory definition of a reformulated gasoline is proceeding rapidly, largely as the result of an auto and oil industry cooperative data generation program. It is likely that this new, reformulated gasoline will be introduced in high-ozone regions of the United States in the mid-1990s. Alternative clean fuels, primarily methane, methanol, and liquid petroleum gas, will become more widely used during this same period, probably first in fleet operations.

  6. Evaporative gasoline emissions and asthma symptoms.

    PubMed

    Gordian, Mary Ellen; Stewart, Alistair W; Morris, Stephen S

    2010-08-01

    Attached garages are known to be associated with indoor air volatile organic compounds (VOCs). This study looked at indoor exposure to VOCs presumably from evaporative emissions of gasoline. Alaskan gasoline contains 5% benzene making benzene a marker for gasoline exposure. A survey of randomly chosen houses with attached garages was done in Anchorage Alaska to determine the exposure and assess respiratory health. Householders were asked to complete a health survey for each person and a household survey. They monitored indoor air in their primary living space for benzene, toluene, ethylbenzene and xylenes for one week using passive organic vapor monitoring badges. Benzene levels in homes ranged from undetectable to 58 parts per billion. The median benzene level in 509 homes tested was 2.96 ppb. Elevated benzene levels in the home were strongly associated with small engines and gasoline stored in the garage. High concentrations of benzene in gasoline increase indoor air levels of benzene in residences with attached garages exposing people to benzene at levels above ATSDR's minimal risk level. Residents reported more severe symptoms of asthma in the homes with high gasoline exposure (16%) where benzene levels exceeded the 9 ppb.

  7. Evaporative Gasoline Emissions and Asthma Symptoms

    PubMed Central

    Gordian, Mary Ellen; Stewart, Alistair W; Morris, Stephen S

    2010-01-01

    Attached garages are known to be associated with indoor air volatile organic compounds (VOCs). This study looked at indoor exposure to VOCs presumably from evaporative emissions of gasoline. Alaskan gasoline contains 5% benzene making benzene a marker for gasoline exposure. A survey of randomly chosen houses with attached garages was done in Anchorage Alaska to determine the exposure and assess respiratory health. Householders were asked to complete a health survey for each person and a household survey. They monitored indoor air in their primary living space for benzene, toluene, ethylbenzene and xylenes for one week using passive organic vapor monitoring badges. Benzene levels in homes ranged from undetectable to 58 parts per billion. The median benzene level in 509 homes tested was 2.96 ppb. Elevated benzene levels in the home were strongly associated with small engines and gasoline stored in the garage. High concentrations of benzene in gasoline increase indoor air levels of benzene in residences with attached garages exposing people to benzene at levels above ATSDR’s minimal risk level. Residents reported more severe symptoms of asthma in the homes with high gasoline exposure (16%) where benzene levels exceeded the 9 ppb. PMID:20948946

  8. Trends in motor gasolines: 1942-1981

    SciTech Connect

    Shelton, E M; Whisman, M L; Woodward, P W

    1982-06-01

    Trends in motor gasolines for the years of 1942 through 1981 have been evaluated based upon data contained in surveys that have been prepared and published by the Bartlesville Energy Technology Center (BETC). These surveys have been published twice annually since 1935 describing the properties of motor gasolines from throughout the country. The surveys have been conducted in cooperation with the American Petroleum Institute (API) since 1948. Various companies from throughout the country obtain samples from retail outlets, analyze the samples by the American Society for Testing and Materials (ASTM) procedures, and report data to the Bartlesville center for compilation, tabulation, calculation, analysis and publication. A typical motor gasoline report covers 2400 samples from service stations throughout the country representing some 48 companies that manufacture and supply gasoline. The reports include trend charts, octane plots, and tables of test results from about a dozen different tests. From these data in 77 semiannual surveys, a summary report has thus been assembled that shows trends in motor gasolines throughout the entire era of winter 1942 to 1943 to the present. Trends of physical properties including octane numbers, antiknock ratings, distillation temperatures, Reid vapor pressure, sulfur and lead content are tabulated, plotted and discussed in the current report. Also included are trend effects of technological advances and the interactions of engine design, societal and political events and prices upon motor gasoline evolution during the 40 year period.

  9. Trends in auto emissions and gasoline composition.

    PubMed Central

    Sawyer, R F

    1993-01-01

    The invention of the spark-ignited internal combustion engine provided a market for a petroleum middle distillate, gasoline, about 100 years ago. The internal combustion engine and gasoline have co-evolved until motor vehicles now annually consume about 110 billion gallons of gasoline in the United States. Continuing air pollution problems and resulting regulatory pressures are driving the need for further automotive emissions reductions. Engine and emissions control technology provided most earlier reductions. Changing the composition of gasoline will play a major role in the next round of reductions. The engineering and regulatory definition of a reformulated gasoline is proceeding rapidly, largely as the result of an auto and oil industry cooperative data generation program. It is likely that this new, reformulated gasoline will be introduced in high-ozone regions of the United States in the mid-1990s. Alternative clean fuels, primarily methane, methanol, and liquid petroleum gas, will become more widely used during this same period, probably first in fleet operations. PMID:7517353

  10. Reduced Toxicity With Intensity Modulated Radiation Therapy (IMRT) for Desmoplastic Small Round Cell Tumor (DSRCT): An Update on the Whole Abdominopelvic Radiation Therapy (WAP-RT) Experience

    SciTech Connect

    Desai, Neil B.; Stein, Nicholas F.; LaQuaglia, Michael P.; Alektiar, Kaled M.; Kushner, Brian H.; Modak, Shakeel; Magnan, Heather M.; Goodman, Karyn; Wolden, Suzanne L.

    2013-01-01

    Purpose: Desmoplastic small round cell tumor (DSRCT) is a rare malignancy typically involving the peritoneum in young men. Whole abdominopelvic radiation therapy (WAP-RT) using conventional 2-dimensional (2D) radiation therapy (RT) is used to address local recurrence but has been limited by toxicity. Our objectives were to assess the benefit of intensity modulated radiation therapy (IMRT) on toxicity and to update the largest series on radiation for DSRCT. Methods and Materials: The records of 31 patients with DSRCT treated with WAP-RT (22 with 2D-RT and 9 with IMRT) between 1992 and 2011 were retrospectively reviewed. All received multi-agent chemotherapy and maximal surgical debulking followed by 30 Gy of WAP-RT. A further focal boost of 12 to 24 Gy was used in 12 cases. Boost RT and autologous stem cell transplantation were nearly exclusive to patients treated with 2D-RT. Toxicities were assessed with the Common Terminology Criteria for Adverse Events. Dosimetric analysis compared IMRT and simulated 2D-RT dose distributions. Results: Of 31 patients, 30 completed WAP-RT, with a median follow-up after RT of 19 months. Acute toxicity was reduced with IMRT versus 2D-RT: P=.04 for gastrointestinal toxicity of grade 2 or higher (33% vs 77%); P=.02 for grade 4 hematologic toxicity (33% vs 86%); P=.01 for rates of granulocyte colony-stimulating factor; and P=.04 for rates of platelet transfusion. Post treatment red blood cell and platelet transfusion rates were also reduced (P=.01). IMRT improved target homogeneity ([D05-D95]/D05 of 21% vs 46%) and resulted in a 21% mean bone dose reduction. Small bowel obstruction was the most common late toxicity (23% overall). Updated 3-year overall survival and progression-free survival rates were 50% and 24%, respectively. Overall survival was associated with distant metastasis at diagnosis on multivariate analysis. Most failures remained intraperitoneal (88%). Conclusions: IMRT for consolidative WAP-RT in DSRCT improves

  11. Copper nanoparticle (CuNP) nanochain arrays with a reduced toxicity response: a biophysical and biochemical outlook on Vigna radiata.

    PubMed

    Pradhan, Saheli; Patra, Prasun; Mitra, Shouvik; Dey, Kushal Kumar; Basu, Satakshi; Chandra, Sourov; Palit, Pratip; Goswami, Arunava

    2015-03-18

    Copper deficiency or toxicity in agricultural soil circumscribes a plant's growth and physiology, hampering photochemical and biochemical networks within the system. So far, copper sulfate (CS) has been used widely despite its toxic effect. To get around this long-standing problem, copper nanoparticles (CuNPs) have been synthesized, characterized, and tested on mung bean plants along with commercially available salt CS, to observe morphological abnormalities enforced if any. CuNPs enhanced photosynthetic activity by modulating fluorescence emission, photophosphorylation, electron transport chain (ETC), and carbon assimilatory pathway under controlled laboratory conditions, as revealed from biochemical and biophysical studies on treated isolated mung bean chloroplast. CuNPs at the recommended dose worked better than CS in plants in terms of basic morphology, pigment contents, and antioxidative activities. CuNPs showed elevated nitrogen assimilation compared to CS. At higher doses CS was found to be toxic to the plant system, whereas CuNP did not impart any toxicity to the system including morphological and/or physiological alterations. This newly synthesized polymer-encapsulated CuNPs can be utilized as nutritional amendment to balance the nutritional disparity enforced by copper imbalance.

  12. Greatly reduced bioavailability and toxicity of polycyclic aromatic hydrocarbons to Hyalella azteca in sediments from manufactured-gas plant sites.

    PubMed

    Kreitinger, Joseph P; Neuhauser, Edward F; Doherty, Francis G; Hawthorne, Steven B

    2007-06-01

    The toxicity of polycyclic aromatic hydrocarbons (PAHs) to Hyalella azteca, was measured in 34 sediment samples collected from four manufactured-gas plant (MGP) sites ranging in total PAH16 (sum of 16 U.S. Environmental Protection Agency priority pollutant PAHs) concentrations from 4 to 5700 mg/kg, total organic carbon content from 0.6 to 11%, and soot carbon from 0.2 to 5.1%. The survival and growth of H. azteca in 28-d bioassays were unrelated to total PAH concentration, with 100% survival in one sediment having 1,730 mg/kg total PAH16, whereas no survival was observed in sediment samples with concentrations as low as 54 mg/kg total PAH16. Twenty-five of the 34 sediment samples exceeded the probable effects concentration screening value of 22.8 mg/kg total PAH13 (sum of 13 PAHs) and equilibrium partitioning sediment benchmarks for PAH mixtures (on the basis of the measurement of 18 parent PAHs and 16 groups of alkylated PAHs, [PAH34]); yet, 19 (76%) of the 25 samples predicted to be toxic were not toxic to H. azteca. However, the toxicity of PAHs to H. azteca was accurately predicted when either the rapidly released concentrations as determined by mild supercritical fluid extraction (SFE) or the pore-water concentrations were used to establish the bioavailability of PAHs. These results demonstrate that the PAHs present in many sediments collected from MGP sites have low bioavailability and that both the measurement of the rapidly released PAH concentrations with mild SFE and the dissolved pore-water concentrations of PAHs are useful tools for estimating chronic toxicity to H. azteca.

  13. Reduced Activity of Double-Strand Break Repair Genes in Prostate Cancer Patients With Late Normal Tissue Radiation Toxicity

    SciTech Connect

    Oorschot, Bregje van; Hovingh, Suzanne E.; Moerland, Perry D.; Medema, Jan Paul; Stalpers, Lukas J.A.; Vrieling, Harry; Franken, Nicolaas A.P.

    2014-03-01

    Purpose: To investigate clinical parameters and DNA damage response as possible risk factors for radiation toxicity in the setting of prostate cancer. Methods and Materials: Clinical parameters of 61 prostate cancer patients, 34 with (overresponding, OR) and 27 without (non-responding, NR) severe late radiation toxicity were assembled. In addition, for a matched subset the DNA damage repair kinetics (γ-H2AX assay) and expression profiles of DNA repair genes were determined in ex vivo irradiated lymphocytes. Results: Examination of clinical data indicated none of the considered clinical parameters to be correlated with the susceptibility of patients to develop late radiation toxicity. Although frequencies of γ-H2AX foci induced immediately after irradiation were similar (P=.32), significantly higher numbers of γ-H2AX foci were found 24 hours after irradiation in OR compared with NR patients (P=.03). Patient-specific γ-H2AX foci decay ratios were significantly higher in NR patients than in OR patients (P<.0001). Consequently, NR patients seem to repair DNA double-strand breaks (DSBs) more efficiently than OR patients. Moreover, gene expression analysis indicated several genes of the homologous recombination pathway to be stronger induced in NR compared with OR patients (P<.05). A similar trend was observed in genes of the nonhomologous end-joining repair pathway (P=.09). This is congruent with more proficient repair of DNA DSBs in patients without late radiation toxicity. Conclusions: Both gene expression profiling and DNA DSB repair kinetics data imply that less-efficient repair of radiation-induced DSBs may contribute to the development of late normal tissue damage. Induction levels of DSB repair genes (eg, RAD51) may potentially be used to assess the risk for late radiation toxicity.

  14. Biomass to Gasoline and Diesel Using Integrated Hydropyrolysis and Hydroconversion

    SciTech Connect

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Kraus, Larry; McLeod, Celeste; DelPaggio, Alan; Tan, Eric; Gephart, John; Gromov, Dmitri; Purtle, Ian; Starr, Jack; Hahn, John; Dorrington, Paul; Stevens, James; Shonnard, David; Maleche, Edwin

    2013-01-02

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

  15. Exhaust Emissions from Gasoline- and LPG-Powered Vehicles Operating at the Altitude of Mexico City.

    PubMed

    Gamas, Erick D; Diaz, Luis; Rodriguez, René; López-Salinas, E; Schifter, Isaac; Ontiveros, Luis

    1999-10-01

    Unburned hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) are the compounds regulated as pollutants by an environmental standard in the Metropolitan Area of Mexico City (MAMC). The main fuel used in vehicular transportation is gasoline, and the use of liquefied petroleum gas (LPG) is now an alternative as low emission technology to decrease the environmental impact of transportation operations. The environmental impact of commercial gasoline consumption in the Valley of Mexico was estimated by on-road and FTP-75 testing of three formulations of gasoline (one leaded [octane 81] and two unleaded [one octane 87 and one octane 93]). A fleet of 30 vehicles was used: 10 were chosen that had pre-1990 technology, while 12 were 1991-1996 vehicles equipped with fuel injection, catalytic converters, and air/ fuel ratio control technology. The remaining eight vehicles were high-performance new model vehicles (1995-1996) equipped with the newest technology available for pollution control. Fifteen vehicles in the fleet were also tested for the effect of changing from leaded to unleaded gasoline. Three different LPG formulations were tested using three vehicles representative of the LPG-powered fleet in the MAMC. Two gasoline-to-LPG conversion certified commercial systems were evaluated following the BAR-90 and the HOT-505 procedures. Emissions corresponding to the high-octane (premium) gasoline showed a 15% higher contribution to HCs with a 6% lower reactivity than the 87 octane gasoline; the HCs in the exhaust for premium gasoline are mainly isoparaffins. When the vehicles were tested on the road at high speeds, an average 3% increase in mileage was obtained when vehicles were switched from leaded to unleaded gasoline, while a 5% increase in mileage was observed when vehicles were switched from 87 octane to premium gasoline. The tests of LPG formulations indicated that a change in composition from 60% vol of propane to 85.5% vol reduces levels of HCs and

  16. Emissions of aldehydes and ketones from a two-stroke engine using ethanol and ethanol-blended gasoline as fuel.

    PubMed

    Magnusson, Roger; Nilsson, Calle; Andersson, Barbro

    2002-04-15

    Besides aliphatic gasoline, ethanol-blended gasoline intended for use in small utility engines was recently introduced on the Swedish market. For small utility engines, little data is available showing the effects of these fuels on exhaust emissions, especially concerning aldehydes and ketones (carbonyls). The objective of the present investigation was to study carbonyl emissions and regulated emissions from a two-stroke chain saw engine using ethanol, gasoline, and ethanol-blended gasoline as fuel (0%, 15%, 50%, 85%, and 100% ethanol). The effects of the ethanol-blending level and mechanical changes of the relative air/fuel ratio, lambda, on exhaust emissions was investigated, both for aliphatic and regular gasoline. Formaldehyde, acetaldehyde, and aromatic aldehydes were the most abundant carbonyls in the exhaust. Acetaldehyde dominated for all ethanol-blended fuels (1.2-12 g/kWh, depending on the fuel and lambda), and formaldehyde dominated for gasoline (0.74-2.3 g/kWh, depending on the type of gasoline and lambda). The main effects of ethanol blending were increased acetaldehyde emissions (30-44 times for pure ethanol), reduced emissions of all other carbonyls exceptformaldehyde and acrolein (which showed a more complex relation to the ethanol content), reduced carbon monoxide (CO) and ntirogen oxide (NO) emissions, and increased hydrocarbon (HC) and nitrogen dixodie (NO2) emissions. The main effects of increasing lambda were increased emissions of carbonyls and nitrogen oxides (NOx) and reduced CO and HC emissions. When the two types of gasoline are considered, benzaldehyde and tolualdehyde could be directly related to the gasoline content of aromatics or olefins, but also acrolein, propanal, crotonaldehyde, and methyl ethyl ketone mainly originated from aromatics or olefins, while the main source for formaldehyde, acetaldehyde, acetone, methacrolein, and butanal was saturated aliphatic hydrocarbons.

  17. 40 CFR 80.46 - Measurement of reformulated gasoline and conventional gasoline fuel parameters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gas Chromatography, approved October 1, 2010. (vii) ASTM D4468-85 (Reapproved 2011), Standard Test..., tertiary-Amyl Alcohol and C1 to C4 Alcohols in Gasoline by Gas Chromatography, approved October 1, 2013... Determination of Oxygenates in Gasoline by Gas Chromatography and Oxygen Selective Flame Ionization...

  18. Alpha-ketoglutarate reduces ethanol toxicity in Drosophila melanogaster by enhancing alcohol dehydrogenase activity and antioxidant capacity.

    PubMed

    Bayliak, Maria M; Shmihel, Halyna V; Lylyk, Maria P; Storey, Kenneth B; Lushchak, Volodymyr I

    2016-09-01

    Ethanol at low concentrations (<4%) can serve as a food source for fruit fly Drosophila melanogaster, whereas at higher concentrations it may be toxic. In this work, protective effects of dietary alpha-ketoglutarate (AKG) against ethanol toxicity were studied. Food supplementation with 10-mM AKG alleviated toxic effects of 8% ethanol added to food, and improved fly development. Two-day-old adult flies, reared on diet containing both AKG and ethanol, possessed higher alcohol dehydrogenase (ADH) activity as compared with those reared on control diet or diet with ethanol only. Native gel electrophoresis data suggested that this combination diet might promote post-translational modifications of ADH protein with the formation of a highly active ADH form. The ethanol-containing diet led to significantly higher levels of triacylglycerides stored in adult flies, and this parameter was not altered by AKG supplement. The influence of diet on antioxidant defenses was also assessed. In ethanol-fed flies, catalase activity was higher in males and the levels of low molecular mass thiols were unchanged in both sexes compared to control values. Feeding on a mixture of AKG and ethanol did not affect catalase activity but caused a higher level of low molecular mass thiols compared to ethanol-fed flies. It can be concluded that both a stimulation of some components of antioxidant defense and the increase in ADH activity may be responsible for the protective effects of AKG diet supplementation in combination with ethanol. The results suggest that AKG might be useful as a treatment option to neutralize toxic effects of excessive ethanol intake and to improve the physiological state of D. melanogaster and other animals, potentially including humans.

  19. Neuroprotective effect of steroidal alkaloids on glutamate-induced toxicity by preserving mitochondrial membrane potential and reducing oxidative stress.

    PubMed

    Taveira, Marcos; Sousa, Carla; Valentão, Patrícia; Ferreres, Federico; Teixeira, João P; Andrade, Paula B

    2014-03-01

    Several evidences suggest that enhanced oxidative stress is involved in the pathogenesis and/or progression of several neurodegenerative diseases. The aim of this study was to investigate for the first time whether both extracts from tomato plant (Lycopersicon esculentum Mill.) leaves and their isolated steroidal alkaloids (tomatine and tomatidine) afford neuroprotective effect against glutamate-induced toxicity in SH-SY5Y neuroblastoma cells and to elucidate the mechanisms underlying this protection. Steroidal alkaloids from tomato are well known for their cholinesterases' inhibitory capacity and the results showed that both purified extracts and isolated compounds, at non-toxic concentrations for gastric (AGS), intestinal (Caco-2) and neuronal (SH-SY5Y) cells, have the capacity to preserve mitochondria membrane potential and to decrease reactive oxygen species levels of SH-SY5Y glutamate-insulted cells. Moreover, the use of specific antagonists of cholinergic receptors allowed observing that tomatine and tomatidine can interact with nicotinic receptors, specifically with the α7 type. No effect on muscarinic receptors was noticed. In addition to the selective cholinesterases' inhibition revealed by the compounds/extracts, these results provide novel and important insights into their neuroprotective mechanism. This work also demystifies the applicability of these compounds in therapeutics, by demonstrating that their toxicity was overestimated for long time.

  20. Motor gasolines, winter 1981-1982

    SciTech Connect

    Shelton, E M

    1982-07-01

    Analytical data for 905 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 30 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.9 for leaded below 93.0. Only one sample was reported as 93.0 for leaded gasolines with an antiknock index (R+M)/2 93.0 and above.

  1. Optimal initial dose of oral cyclosporine in relation to its toxicities for graft-versus-host disease prophylaxis following reduced-intensity stem cell transplantation in Japanese patients.

    PubMed

    Kishi, Y; Murashige, N; Kami, M; Miyakoshi, S; Shibagaki, Y; Hamaki, T; Takaue, Y; Taniguchi, S

    2005-06-01

    Since the introduction of reduced-intensity stem-cell transplantation (RIST), allogeneic stem-cell transplantation has become available for elderly patients. While pharmacokinetics of cyclosporine might differ according to age or other factors, cyclosporine is uniformly started at an oral dose of 6 mg/kg/day. We retrospectively reviewed medical records of 35 patients aged between 32 and 65 (median 52) years who had undergone RIST. Doses of cyclosporine were adjusted to the target blood trough level of 150-250 ng/ml. Cyclosporine dosages were changed in 33 patients (94%). Dose reduction was required in 32 patients because of high blood levels (n=25), renal dysfunction (n=3), hepatic dysfunction (n=2), and hypertension (n=2). Cyclosporine doses were increased in one because of the suboptimal level. The median of the achieved stable doses was 3.1 mg/kg/day (range, 1.0-7.4). Five patients sustained Grade III toxicities according to NCI-CTC version 2.0: renal dysfunction (n=4), hyperbilirubinemia (n=2), and hypertension (n=2). No patients developed grade IV toxicity. There was no statistically significant difference in the frequency and severity of cyclosporine toxicities between patients aged 50 years and above and those below 50 years. The initial oral cyclosporine dose of 6 mg/kg/day was unnecessarily high irrespective of age. The possible overdose of cyclosporine might have aggravated regimen-related toxicities.

  2. In vitro genotoxicity of exhaust emissions of diesel and gasoline engine vehicles operated on a unified driving cycle.

    PubMed

    Liu, Yu-Qing; Keane, Michael; Ensell, Mang; Miller, William; Kashon, Michael; Ong, Tong-man; Mauderly, Joe; Lawson, Doug; Gautam, Mridul; Zielinska, Barbara; Whitney, Kevin; Eberhardt, James; Wallace, William

    2005-01-01

    Acetone extracts of engine exhaust particulate matter (PM) and of vapor-phase semi-volatile organic compounds (SVOCs) collected from a set of 1998-2000 model year normal emitter diesel engine automobile or light trucks and from a set of 1982-1996 normal emitter gasoline engine automobiles or light trucks operated on the California Unified Driving Cycle at 22 [degree]C were assayed for in vitro genotoxic activities. Gasoline and diesel PM were comparably positive mutagens for Salmonella typhimurium strains YG1024 and YG1029 on a mass of PM extract basis with diesel higher on a mileage basis; gasoline SVOC was more active than diesel on an extracted-mass basis, with diesel SVOC more active on a mileage basis. For chromosomal damage indicated by micronucleus induction in Chinese hamster lung fibroblasts (V79 cells), diesel PM expressed about one-tenth that of gasoline PM on a mass of extract basis, but was comparably active on a mileage basis; diesel SVOC was inactive. For DNA damage in V79 cells indicated by the single cell gel electrophoresis (SCGE) assay, gasoline PM was positive while diesel PM was active at the higher doses; gasoline SVOC was active with toxicity preventing measurement at high doses, while diesel SVOC was inactive at all but the highest dose.

  3. 40 CFR 80.1030 - What are the requirements for gasoline produced at foreign refineries having individual refiner...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... documents that reflect movement and storage of the Certified Toxics-FRGAS from the refinery to the load port... description of the gasoline's movement and storage between production at the source refinery and vessel... requirements of this subpart J. (3) A foreign refiner shall be subject to civil liability for violations...

  4. 40 CFR 80.1030 - What are the requirements for gasoline produced at foreign refineries having individual refiner...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... documents that reflect movement and storage of the Certified Toxics-FRGAS from the refinery to the load port... description of the gasoline's movement and storage between production at the source refinery and vessel... requirements of this subpart J. (3) A foreign refiner shall be subject to civil liability for violations...

  5. 40 CFR 80.1030 - What are the requirements for gasoline produced at foreign refineries having individual refiner...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... documents that reflect movement and storage of the Certified Toxics-FRGAS from the refinery to the load port... description of the gasoline's movement and storage between production at the source refinery and vessel... requirements of this subpart J. (3) A foreign refiner shall be subject to civil liability for violations...

  6. Cold temperature effects on speciated MSAT emissions from light duty vehicles operating on gasoline and ethanol blends

    EPA Science Inventory

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty gasoline vehicles. Vehicle testing was conducted using a three phase LA92 driving cycle on a temperature controlled chassis...

  7. Gasoline marketing: Octane mislabeling in New York City

    SciTech Connect

    Not Available

    1987-01-01

    The problem of octane mislabeling at gasoline stations in New York City has grown - from 46 or fewer citations in 1981 to 171 citations in 1986. No single source of octane mislabeling exists but the city has found both gasoline station operators and fuel distributors to blame. The problem does not seem to be unique to any one type of gasoline station but 57 percent of the 171 citations issued involved gasoline sold under the name of a major refiner; the rest involved unbranded gasoline. Octane cheating can be lucrative in New York City. A station intentionally mislabeling its gasoline could realize amounts many times the city's maximum $500 fine for cheating.

  8. Carbonyl and nitrogen dioxide emissions from gasoline- and diesel-powered motor vehicles.

    PubMed

    Ban-Weiss, George A; McLaughlin, John P; Harley, Robert A; Kean, Andrew J; Grosjean, Eric; Grosjean, Daniel

    2008-06-01

    Carbonyls can be toxic and highly reactive in the atmosphere. To quantify trends in carbonyl emissions from light-duty (LD) vehicles, measurements were made in a San Francisco Bay area highwaytunnel bore containing essentially all LD vehicles during the summers of 1999, 2001, and 2006. The LD vehicle emission factor for formaldehyde, the most abundant carbonyl, did not change between 1999 and 2001, then decreased by 61 +/- 7% between 2001 and 2006. This reduction was due to fleet turnover and the removal of MTBE from gasoline. Acetaldehyde emissions decreased by 19 +/- 2% between 1999 and 2001 and by the same amount between 2001 and 2006. Absent the increased use of ethanol in gasoline after 2003, acetaldehyde emissions would have further decreased by 2006. Carbonyl emission factors for medium- (MD) and heavy-duty (HD) diesel trucks were measured in 2006 in a separate mixed-traffic bore of the tunnel. Emission factors for diesel trucks were higher than those for LD vehicles for all reported carbonyls. Diesel engine exhaust dominates over gasoline engines as a direct source of carbonyl emissions in California. Carbonyl concentrations were also measured in liquid-gasoline samples and were found to be low (< 20 ppm). The gasoline brands that contained ethanol showed higher concentrations of acetaldehyde in unburned fuel versus gasoline that was formulated without ethanol. Measurements of NO2 showed a yearly rate of decrease for LD vehicle emissions similar to that of total NOx in this study. The observed NO2/NOx ratio was 1.2 +/- 0.3% and 3.7 +/- 0.3% for LD vehicles and diesel trucks, respectively.

  9. Customer exposure to gasoline vapors during refueling at service stations.

    PubMed

    Hakkola, M A; Saarinen, L H

    2000-09-01

    Gasoline is a volatile complex mixture of hydrocarbon compounds that is easily vaporized during handling under normal conditions. Modern reformulated gasoline also contains oxygenates to enhance octane number and reduce ambient pollution. This study measured the difference in the exposure of customers to gasoline and oxygenate vapors during refueling in service stations with and without vapor recovery systems. Field measurements were carried out at two self-service stations. One was equipped with Stage I and the other with Stage II vapor recovery systems. At Stage I stations there is vapor recovery only during delivery from road tanker, and at Stage II stations additional vapor recovery during refueling. The exposure of 20 customers was measured at both stations by collecting air samples from their breathing zone into charcoal tubes during refueling with 95-octane reformulated gasoline. Each sample represented two consecutive refuelings. The samples were analyzed in the laboratory by gas chromatography using mass-selective detection for vapor components. The Raid vapor pressure of gasoline was 70 kPa and an oxygen content 2 wt%. Oxygenated gasoline contained 7 percent methyl tert-butyl ether (MtBE) and 5 percent methyl tert-amyl ether (MtAE). The geometric mean concentrations of hydrocarbons (C3-C11) in the customers' breathing zone was 85 mg/m3 (range 2.5-531 mg/m3) at the Stage I service station and 18 mg/m3 (range < 0.2-129 mg/m3) at the Stage II service station. The geometric mean of the exposure of customers to MtBE during refueling at the Stage I service station was 15.3 mg/m3 (range 1.8-74 mg/m3), and at the Stage II service station 3.4 mg/m3 (range 0.2-16 mg/m3). The differences in exposure were statistically significant (p < 0.05). The mean refueling times were 57 seconds (range 23-207) at the Stage I and 66 seconds (range 18-120) at the Stage II station. The measurements were done on consecutive days at the various service stations. The temperature ranged

  10. The effects of low-lead and unleaded fuels on gasoline engines

    SciTech Connect

    Weaver, C.S.

    1986-01-01

    The U.S. Environmental Protection Agency has recently reduced the permissible concentration of lead in gasoline from 1.1 to 0.1 gram per gallon, and has proposed to eliminate lead entirely by 1988. In addition to its octane-enhancing properties, lead in gasoline protects exhaust valve seats in older engines from undue wear (''valve-seat recessione), and it and its scavengers have numerous other positive and negative effects. These include changes in octane requirements, hydrocarbon emissions, engine rusting, corrosive wear, oil thickening and degradation, spark-plug fouling, exhaust-valve burning, and exhaust system corrosion. This paper reviews the literature on the harmful and beneficial effects of lead and lead scavengers on engines, and examines some of the substantial body of operating experience that has been accumulated with unleaded gasoline in older engines. Based on this experience, it does not appear that valve-seat recession will be a major problem, even if all lead is eliminated from gasoline. Furthermore, the switch to unleaded gasoline should provide significant benefits in the form of reduced maintance costs and increased engine life.

  11. Refining economics of U.S. gasoline: octane ratings and ethanol content.

    PubMed

    Hirshfeld, David S; Kolb, Jeffrey A; Anderson, James E; Studzinski, William; Frusti, James

    2014-10-07

    Increasing the octane rating of the U.S. gasoline pool (currently ∼ 93 Research Octane Number (RON)) would enable higher engine efficiency for light-duty vehicles (e.g., through higher compression ratio), facilitating compliance with federal fuel economy and greenhouse gas (GHG) emissions standards. The federal Renewable Fuels Standard calls for increased renewable fuel use in U.S. gasoline, primarily ethanol, a high-octane gasoline component. Linear programming modeling of the U.S. refining sector was used to assess the effects on refining economics, CO2 emissions, and crude oil use of increasing average octane rating by increasing (i) the octane rating of refinery-produced hydrocarbon blendstocks for oxygenate blending (BOBs) and (ii) the volume fraction (Exx) of ethanol in finished gasoline. The analysis indicated the refining sector could produce BOBs yielding finished E20 and E30 gasolines with higher octane ratings at modest additional refining cost, for example, ∼ 1¢/gal for 95-RON E20 or 97-RON E30, and 3-5¢/gal for 95-RON E10, 98-RON E20, or 100-RON E30. Reduced BOB volume (from displacement by ethanol) and lower BOB octane could (i) lower refinery CO2 emissions (e.g., ∼ 3% for 98-RON E20, ∼ 10% for 100-RON E30) and (ii) reduce crude oil use (e.g., ∼ 3% for 98-RON E20, ∼ 8% for 100-RON E30).

  12. Ethanol Demand in United States Gasoline Production

    SciTech Connect

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  13. A Cr(VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi.

    PubMed

    Soni, Sumit K; Singh, Rakshapal; Awasthi, Ashutosh; Kalra, Alok

    2014-02-01

    Pot culture experiments were conducted in a glasshouse to evaluate the effects of four efficient Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) isolated from rhizospheric soil, and four arbuscular mycorrhizal fungi (AMF-Glomus mosseae, G. aggregatum, G. fasciculatum, and G. intraradices) alone or in combination, on Zea mays in artificially Cr(VI)-amended soil. Presence of a strain of Microbacterium sp. SUCR140 reduced the chromate toxicity resulting in improved growth and yields of plants compared to control. The bioavailability of Cr(VI) in soil and its uptake by the plant reduced significantly in SUCR140-treated plants; the effects of AMF, however, either alone or in presence of SUCR140 were not significant. On the other hand, presence of AMF significantly restricted the transport of chromium from root to the aerial parts of plants. The populations of AMF chlamydospores in soil and its root colonization improved in presence of SUCR140. This study demonstrates the usefulness of an efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through reducing toxicity to plants by lowering bioavailability and uptake of Cr(VI) and improving nutrient availability through increased mycorrhizal colonization which also restricted the transport of chromium to the aerial parts.

  14. Survival Advantage and Comparable Toxicity in Reduced-Toxicity Treosulfan-Based versus Reduced-Intensity Busulfan-Based Conditioning Regimen in Myelodysplastic Syndrome and Acute Myeloid Leukemia Patients after Allogeneic Hematopoietic Cell Transplantation.

    PubMed

    Sakellari, Ioanna; Mallouri, Despina; Gavriilaki, Eleni; Batsis, Ioannis; Kaliou, Maria; Constantinou, Varnavas; Papalexandri, Apostolia; Lalayanni, Chrysavgi; Vadikolia, Chrysanthi; Athanasiadou, Anastasia; Yannaki, Evangelia; Sotiropoulos, Damianos; Smias, Christos; Anagnostopoulos, Achilles

    2017-03-01

    Treosulfan has been incorporated in conditioning regimens for sustained remission without substantial toxicity and treatment-related mortality (TRM). We aimed to analyze the safety and efficacy of a fludarabine 150 mg/m(2) and treosulfan 42 g/m(2) (FluTreo) conditioning regimen in medically infirm patients. Outcomes were compared with those of a similar historical group treated with fludarabine 150 mg/m(2) to 180 mg/m(2), busulfan 6.4 mg/kg, and antithymocyte globulin (ATG) 5 mg/kg to 7.5 mg/kg (FluBuATG). Thirty-one consecutive patients with acute myeloid leukemia (AML; n = 21), myelodysplastic syndrome (MDS; n = 6), or treatment-related AML (n = 4) received FluTreo conditioning. The historical group consisted of 26 consecutive patients treated with FluBuATG. In the FluTreo group, engraftment was prompt in all patients and 74% achieved >99% donor chimerism by day +30. No grades III or IV organ toxicities were noted. One-year cumulative incidences (CI) of acute and chronic graft-versus-host disease (GVHD) were 19.4% and 58.4%. The groups were similar for age, disease risk, lines of treatment, hematopoietic cell transplantation-specific comorbidity index, and acute or chronic GVHD incidence, except that there were more matched unrelated donor recipients in the FluTreo group (P < .001). With 20 (range, 2 to 36) months follow-up for FluTreo and 14 (range, 2 to 136) for FluBuATG, the 1-year cumulative overall survival (OS) probability was 76% versus 57%, respectively (P = .026); 1-year disease-free survival (DFS) was 79% versus 38% (P < .001). In multivariate analysis, the only significantly favorable factor for OS and DFS was FluTreo (P = .010 and P = .012). The CI of relapse mortality was markedly decreased in FluTreo versus FluBuATG (7.4% versus 42.3%, P < .001). In conclusion, the treosulfan-based regimen resulted in favorable OS and DFS with acceptable toxicity and low relapse rates compared with busulfan-based conditioning.

  15. Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense.

    PubMed

    Pandey, Poonam; Srivastava, Rajneesh Kumar; Dubey, R S

    2013-05-01

    Aluminum toxicity is a major constraint to crop production in acid soils. The present study was undertaken to examine the comparative ameliorating effects of salicylic acid, Ca and Mg on Al toxicity in rice (Oryza sativa L.) seedlings grown in hydroponics. Al treatment (0.5 mM AlCl3) caused decrease in plant vigour, loss of root plasma membrane integrity, increased contents of O 2 (∙-) , H2O2, lipid peroxidation, protein carbonyls and decline in the level of protein thiol. Al treatment caused significant changes in activity of antioxidative enzymes in rice seedlings. Exogenously added salicylic acid (60 μM), Ca (1 mM) and Mg (0.25 mM) significantly alleviated Al toxicity effects in the seedlings marked by restoration of growth, suppression of Al uptake, restoration of root plasma membrane integrity and decline in O 2 (∙-) , H2O2, lipid peroxidation and protein carbonyl contents. Salicylic acid, Ca and Mg suppressed Al-induced increase in SOD, GPX and APX activities while it elevated Al-induced decline in CAT activity. By histochemical staining of O 2 (∙-) using NBT and H2O2 using DAB, it was further confirmed that added salicylic acid, Ca or Mg decreased Al-induced accumulation of O 2 (∙-) and H2O2 in the leaf tissues. Results indicate that exogenously added salicylic acid, Ca or Mg alleviates Al toxicity in rice seedlings by suppressing Al uptake, restoring root membrane integrity, reducing ROS level and ROS induced oxidative damage and regulating the level of antioxidative enzyme activities. Further salicylic appears to be superior to Mg and Ca in alleviating Al toxicity effects in rice plants.

  16. Selective catalytic reduction of nitric oxide with ethanol/gasoline blends over a silver/alumina catalyst

    SciTech Connect

    Pihl, Josh A; Toops, Todd J; Fisher, Galen; West, Brian H

    2014-01-01

    Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NOx conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%. NO2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH3 SCR of NOx does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. The gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.

  17. Compost amendment of Cu-Zn minespoil reduces toxic bioavailable heavy metal concentrations and promotes establishment and biomass production of Bromus carinatus (Hook and Arn.).

    PubMed

    O'Dell, Ryan; Silk, Wendy; Green, Peter; Claassen, Victor

    2007-07-01

    A series of lab and greenhouse studies were undertaken to understand how Cu and Zn toxicity influences Bromus carinatus (Hook and Arn.) growth, to what degree an organic amendment (yard waste compost) may reduce Cu and Zn bioavailability in Cu-Zn minespoil and promote plant growth in combination with fertilizer, and how the vertical distribution of compost in the minespoil influences rooting depth. Root Cu and Zn toxicity thresholds were determined to be 1 mgL(-1) and 10 mgL(-1) in solution, respectively. The compost amendment had exceptionally high Cu and Zn binding capacities (0.17 and 0.08 g metal g C(-1), for Cu and Zn, respectively) that were attributed to high compost humic and fulvic acid concentrations. Maximum plant biomass was achieved when minespoil was amended with compost and fertilizer in combination. Fertilizer alone had no effect on plant growth. Mixing compost into the minespoil was essential to promote adequate rooting depth.

  18. Effects of different mixing ratios on emissions from passenger cars fueled with methanol/gasoline blends.

    PubMed

    Zhao, Hong; Ge, Yunshan; Tan, Jianwei; Yin, Hang; Guo, Jiadong; Zhao, Wei; Dai, Peipei

    2011-01-01

    Regulated and unregulated emissions from four passenger cars fueled with methanol/gasoline blends at different mixing ratios (M15, M20, M30, M50, M85 and M100) were tested over the New European Driving Cycle (NEDC). Volatile organic compounds (VOCs) were sampled by Tenax TA and analyzed by thermal desorption-gas chromatograph/mass spectrometer (TD-GC/MS). Carbonyls were trapped on dinitrophenylhydrazine (DNPH) cartridges and analyzed by high performance liquid chromatography (HPLC). The results showed that total emissions of VOCs and BTEX (benzene, toluene, ethylbenzene, p, m, o-xylene) from all vehicles fueled with methanol/gasoline blends were lower than those from vehicles fueled with only gasoline. Compared to the baseline, the use of M85 decreased BTEX emissions by 97.4%, while the use of M15 decreased it by 19.7%. At low-to-middle mixing ratios (M15, M20, M30 and M50), formaldehyde emissions showed a slight increase while those of high mixing ratios (M85 and M100) were three times compared with the baseline gasoline only. When the vehicles were retrofitted with new three-way catalytic converters (TWC), emissions of carbon monoxide (CO), total hydrocarbon (THC), and nitrogen oxides (NO(x)) were decreased by 24%-50%, 10%-35%, and 24%-58% respectively, compared with the cars using the original equipment manufacture (OEM) TWC. Using the new TWC, emissions of formaldehyde and BTEX were decreased, while those of other carbonyl increased. It is necessary that vehicles fueled with methanol/gasoline blends be retrofitted with a new TWC. In addition, the specific reactivity of emissions of vehicles fueled with M15 and retrofitted with the new TWC was reduced from 4.51 to 4.08 compared to the baseline vehicle. This indicates that the use of methanol/gasoline blend at a low mixing ratio may have lower effect on environment than gasoline.

  19. Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos

    PubMed Central

    Xia, Tian; Zhao, Yan; Sager, Tina; George, Saji; Pokhrel, Suman; Li, Ning; Schoenfeld, David; Meng, Huan; Lin, Sijie; Wang, Xiang; Wang, Meiying; Ji, Zhaoxia; Zink, Jeffrey I.; Mädler, Lutz; Castranova, Vincent; Lin, Shuo; Nel, Andre E.

    2014-01-01

    We have recently shown that the dissolution of ZnO nanoparticles and Zn2+ shedding leads to a series of sub-lethal and lethal toxicological responses at cellular level that can be alleviated by iron-doping. Iron-doping changes the particle matrix and slows the rate of particle dissolution. To determine whether iron doping of ZnO also leads to lesser toxic effects in vivo, toxicity studies were performed in rodent and zebrafish models. First, we synthesized a fresh batch of ZnO nanoparticles doped with 1–10 wt % of Fe. These particles were extensively characterized to confirm their doping status, reduced rate of dissolution in an exposure medium and reduced toxicity in a cellular screen. Subsequent studies compared the effects of undoped to doped particles in the rat lung, mouse lung and the zebrafish embryo. The zebrafish studies looked at embryo hatching and mortality rates as well as the generation of morphological defects, while the endpoints in the rodent lung included an assessment of inflammatory cell infiltrates, LDH release and cytokine levels in the bronchoalveolar lavage fluid. Iron doping, similar to the effect of the metal chelator, DTPA, interfered in the inhibitory effects of Zn2+ on zebrafish hatching. In the oropharyngeal aspiration model in the mouse, iron doping was associated with decreased polymorphonuclear cell counts and IL-6 mRNA production. Doped particles also elicited decreased heme oxygenase 1 expression in the murine lung. In the intratracheal instillation studies in the rat, Fe-doping was associated with decreased polymorphonuclear cell counts, LDH and albumin levels. All considered, the above data show that Fe-doping is a possible safe design strategy for preventing ZnO toxicity in animals and the environment. PMID:21250651

  20. Reduced systemic toxicity from superselective chemoembolization compared with systemic chemotherapy in patients with high-risk metastatic gestational trophoblastic disease

    SciTech Connect

    Lang, Erich K.

    1997-07-15

    Purpose. The efficacy of chemoembolization of primary and metastatic gestational trophoblastic neoplasms was studied. Methods. Six female patients, 19-33 years old, with high-risk trophoblastic disease were subjected to one to five chemoembolizations in 3-week intervals. Three of the patients had metastases to the liver, 2 had local tumor extension to the pelvic wall, and all 5 had failed initial systemic chemotherapy. The sixth patient was treated for a trophoblastic remnant following surgical expression of a tubal pregnancy. For follow-up, beta hCG levels in urine and serum and dynamic or angiocomputed tomograms were obtained in biweekly to 6-month intervals. Results. Two of 3 patients with liver metastases are alive and free of disease 6 and 7 years after initial chemoembolization. The third is alive at 3 years but with evidence of recurrent disease. Two patients treated for locally invasive trophoblastic disease died 3 months and 4 years, respectively, after initial chemoembolization. One had a 21/2-year remission. The patient treated for a trophoblastic remnant in the tube is alive and free of disease at 6-year follow-up. Hematologic toxicity occurred in only one. Conclusion. Selective chemoembolization in our small series of patients with high-risk trophoblastic disease was equally effective as results reported for multi-drug systemic chemotherapy but had markedly lower renal, liver, and hematologic toxicity.

  1. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].

    PubMed

    Shi, Xiao-Qing; Sun, Zhao-Xin; Li, Xiao-Nuo; Li, Jin-Xiang; Yang, Jian-Xin

    2015-03-01

    Tailpipe emission of internal combustion engine vehicle (ICEV) is one of the main sources leading to atmospheric environmental problems such as haze. Substituting electric vehicles for conventional gasoline vehicles is an important solution for reducing urban air pollution. In 2011, as a pilot city of electric vehicle, Beijing launched a promotion plan of electric vehicle. In order to compare the environmental impacts between Midi electric vehicle (Midi EV) and Hyundai gasoline taxi (ICEV), this study created an inventory with local data and well-reasoned assumptions, and contributed a life cycle assessment (LCA) model with GaBi4.4 software and comparative life cycle environmental assessment by Life cycle impact analysis models of CML2001(Problem oriented) and EI99 (Damage oriented), which included the environmental impacts of full life cycle, manufacture phase, use phase and end of life. The sensitivity analysis of lifetime mileage and power structure was also provided. The results indicated that the full life cycle environmental impact of Midi EV was smaller than Hyundai ICEV, which was mainly due to the lower fossil fuel consumption. On the contrary, Midi EV exhibited the potential of increasing the environmental impacts of ecosystem quality influence and Human health influence. By CML2001 model, the results indicated that Midi EV might decrease the impact of Abiotic Depletion Potential, Global Warming Potential, Ozone Layer Depletion Potential and so on. However, in the production phase, the impact of Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Photochemical Ozone Creation Potential, Ozone Layer Depletion Potential, Marine Aquatic Ecotoxicity Potential, Terrestric Ecotoxicity Potential, Human Toxicity Potential of Midi EV were increased relative to Hyundai ICEV because of emissions impacts from its power system especially the battery production. Besides, in the use phase, electricity production was

  2. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    SciTech Connect

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  3. Toxic Encephalopathy

    PubMed Central

    Kim, Jae Woo

    2012-01-01

    This article schematically reviews the clinical features, diagnostic approaches to, and toxicological implications of toxic encephalopathy. The review will focus on the most significant occupational causes of toxic encephalopathy. Chronic toxic encephalopathy, cerebellar syndrome, parkinsonism, and vascular encephalopathy are commonly encountered clinical syndromes of toxic encephalopathy. Few neurotoxins cause patients to present with pathognomonic neurological syndromes. The symptoms and signs of toxic encephalopathy may be mimicked by many psychiatric, metabolic, inflammatory, neoplastic, and degenerative diseases of the nervous system. Thus, the importance of good history-taking that considers exposure and a comprehensive neurological examination cannot be overemphasized in the diagnosis of toxic encephalopathy. Neuropsychological testing and neuroimaging typically play ancillary roles. The recognition of toxic encephalopathy is important because the correct diagnosis of occupational disease can prevent others (e.g., workers at the same worksite) from further harm by reducing their exposure to the toxin, and also often provides some indication of prognosis. Physicians must therefore be aware of the typical signs and symptoms of toxic encephalopathy, and close collaborations between neurologists and occupational physicians are needed to determine whether neurological disorders are related to occupational neurotoxin exposure. PMID:23251840

  4. Motor Gasoline Market Spring 2007 and Implications for Spring 2008

    EIA Publications

    2008-01-01

    This report focuses on the major factors that drove the widening difference between wholesale gasoline and crude oil prices in 2007 and explores how those factors might impact gasoline prices in 2008.

  5. 40 CFR 63.650 - Gasoline loading rack provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants From Petroleum Refineries § 63.650 Gasoline... or operator of a Group 1 gasoline loading rack classified under Standard Industrial...

  6. Carbon Monoxide Hazards from Small Gasoline Powered Engines

    MedlinePlus

    ... gasoline-powered tools such as high-pressure washers, concrete cutting saws (walk-behind/hand-held), power trowels, ... parking garage. A plumber used a gasoline-powered concrete saw in a basement with open doors and ...

  7. Toxic emissions from mobile sources: a total fuel-cycle analysis for conventional and alternative fuel vehicles.

    PubMed

    Winebrake, J J; Wang, M Q; He, D

    2001-07-01

    Mobile sources are among the largest contributors of four hazardous air pollutants--benzene, 1,3-butadiene, acetaldehyde, and formaldehyde--in urban areas. At the same time, federal and state governments are promoting the use of alternative fuel vehicles as a means to curb local air pollution. As yet, the impact of this movement toward alternative fuels with respect to toxic emissions has not been well studied. The purpose of this paper is to compare toxic emissions from vehicles operating on a variety of fuels, including reformulated gasoline (RFG), natural gas, ethanol, methanol, liquid petroleum gas (LPG), and electricity. This study uses a version of Argonne National Laboratory's Greenhouse Gas, Regulated Emissions, and Energy Use in Transportation (GREET) model, appropriately modified to estimate toxic emissions. The GREET model conducts a total fuel-cycle analysis that calculates emissions from both downstream (e.g., operation of the vehicle) and upstream (e.g., fuel production and distribution) stages of the fuel cycle. We find that almost all of the fuels studied reduce 1,3-butadiene emissions compared with conventional gasoline (CG). However, the use of ethanol in E85 (fuel made with 85% ethanol) or RFG leads to increased acetaldehyde emissions, and the use of methanol, ethanol, and compressed natural gas (CNG) may result in increased formaldehyde emissions. When the modeling results for the four air toxics are considered together with their cancer risk factors, all the fuels and vehicle technologies show air toxic emission reduction benefits.

  8. Intravenous application of an anticalin dramatically lowers plasma digoxin levels and reduces its toxic effects in rats

    SciTech Connect

    Eyer, Florian; Steimer, Werner; Nitzsche, Thomas; Jung, Nicole; Neuberger, Heidi; Müller, Christine; Schlapschy, Martin; Zilker, Thomas; Skerra, Arne

    2012-09-15

    Lipocalins tailored with high affinity for prescribed ligands, so-called anticalins, constitute promising candidates as antidotes. Here, we present an animal study to investigate both pharmacokinetic and clinical effects of an anticalin specific for the digitalis compound digoxin. Intravenous digoxin (2.5–50 μg/kg/min) was administered to rats until first changes in the ECG occurred (dose finding study) or a priori for 30 min (kinetic study). The anticalin DigA16(H86N), dubbed DigiCal, was administered intravenously at absolute doses of 1, 5, 10 and 20 mg, while the control group received isotonic saline. Hemodynamic changes, several ECG parameters and digoxin concentration in plasma were monitored at given time intervals. After DigiCal administration free digoxin concentration in plasma ultrafiltrate declined dramatically within 1 min to the presumably non-toxic range. There was also a significant and DigiCal dose-dependent effect on longer survival, less ECG alterations, arrhythmia, and improved hemodynamics. Infusion of a lower digoxin dose (2.5 μg/kg/min) resulted in a more sustained reduction of free digoxin in plasma after DigiCal administration compared to a higher digoxin dose (25 μg/kg/min), whereas ECG and hemodynamic parameters did not markedly differ, reflecting the known relative insensitivity of rats towards digoxin toxicity. Notably, we observed a re-increase of free digoxin in plasma some time after bolus administration of DigiCal, which was presumably due to toxin redistribution from tissue in combination with the relatively fast renal clearance of the rather small protein antidote. We conclude that anticalins with appropriately engineered drug-binding activities and, possibly, prolonged plasma half-life offer prospects for next-generation antidotal therapy. -- Highlights: ► We provide an advanced model of digoxin toxicity in rats. ► We report on binding of digoxin to a novel designed anticalin. ► We report on pharmacokinetics of digoxin

  9. NAFTA and gasoline: Canada, U. S. , Mexico

    SciTech Connect

    Not Available

    1993-03-31

    The North American Free Trade Agreement has become a hotly debated topic all over the world, but especially in the countries involved: Mexico, United States, and Canada. Comments made by high ranking officials imply there are differences to reconcile before the agreement is passed. Toward seeing these countries in trio, this issue compares gasoline markets and some energy perspectives. The purpose of this article is to contribute to understanding of the three countries through their petroleum industry structure. Gasoline consumption and retail delivery infrastructure are compared and contrasted to illustrate the differences among the NAFTA countries.

  10. 40 CFR 80.825 - How is the refinery or importer annual average toxics value determined?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conventional gasoline under this subpart are in milligrams per mile (mg/mile) and volumes are in gallons. (ii..., and the Virgin Islands in accordance with § 80.101(g)(1)(ii). (d) All refinery or importer annual... Certified Toxics-FRGAS under § 80.1030; (3) Blending stocks transferred to others; (4) Gasoline that...

  11. 40 CFR 80.825 - How is the refinery or importer annual average toxics value determined?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conventional gasoline under this subpart are in milligrams per mile (mg/mile) and volumes are in gallons. (ii..., and the Virgin Islands in accordance with § 80.101(g)(1)(ii). (d) All refinery or importer annual... Certified Toxics-FRGAS under § 80.1030; (3) Blending stocks transferred to others; (4) Gasoline that...

  12. Speciation Profiles and Toxic Emission Factors for Nonroad Engines: DRAFT REPORT

    EPA Science Inventory

    This document details the research and development behind how MOVES2014a estimates air toxic emissions for nonroad engines and equipment run on conventional gasoline without ethanol (E0) and gasoline blended with 10% ethanol (E10) as well as diesel fuel, compressed natural gas (C...

  13. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... such gasoline, and any pump stand from which such gasoline is dispensed, identify the gasoline either... racing motor vehicles or racing boats that are used only in sanctioned racing events; (2) The gasoline is... consumer; and (3) The gasoline is not made available for use as motor vehicle gasoline, or dispensed...

  14. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... such gasoline, and any pump stand from which such gasoline is dispensed, identify the gasoline either... racing motor vehicles or racing boats that are used only in sanctioned racing events; (2) The gasoline is... consumer; and (3) The gasoline is not made available for use as motor vehicle gasoline, or dispensed...

  15. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... such gasoline, and any pump stand from which such gasoline is dispensed, identify the gasoline either... racing motor vehicles or racing boats that are used only in sanctioned racing events; (2) The gasoline is... consumer; and (3) The gasoline is not made available for use as motor vehicle gasoline, or dispensed...

  16. 40 CFR 80.210 - What sulfur standards apply to gasoline downstream from refineries and importers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline downstream from refineries and importers? 80.210 Section 80.210 Protection of Environment... Gasoline Sulfur Gasoline Sulfur Standards § 80.210 What sulfur standards apply to gasoline downstream from refineries and importers? The sulfur standard for gasoline at any point in the gasoline distribution...

  17. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who...

  18. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who...

  19. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who...

  20. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who...

  1. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who...

  2. Composition, toxicity, and mutagenicity of particulate and semivolatile emissions from heavy-duty compressed natural gas-powered vehicles.

    PubMed

    Seagrave, JeanClare; Gigliotti, Andrew; McDonald, Jacob D; Seilkop, Steven K; Whitney, Kevin A; Zielinska, Barbara; Mauderly, Joe L

    2005-09-01

    Particulate matter (PM) and vapor-phase semivolatile organic compounds (SVOC) were collected from three buses fueled by compressed natural gas. The bus engines included a well-functioning, conventional engine; a "high emitter" engine; and a new technology engine with an oxidation catalyst. Chemical analysis of the emissions showed differences among these samples, with the high emitter sample containing markers of engine oil constituents. PM + SVOC samples were also collected for mutagenicity and toxicity testing. Extraction efficiencies from the collection media were lower than for similarly collected samples from gasoline or diesel vehicles. Responses to the recovered samples were compared on the basis of exhaust volume, to incorporate the emission rates into the potency factors. Mutagenicity was assessed by Salmonella reverse mutation assay. Mutagenicity was greatest for the high emitter sample and lowest for the new technology sample. Metabolic activation reduced mutagenicity in strain TA100, but not TA98. Toxicity, including inflammation, cytotoxicity, and parenchymal changes, was assessed 24 h after intratracheal instillation into rat lungs. Lung responses were generally mild, with little difference between the responses to equivalent volumes of emissions from the normal emitter and the new technology, but greater responses for the high emitter. These emission sample potencies are further compared on the basis of recovered mass with previously reported samples from normal and high-emitter gasoline and diesel vehicles. While mutagenic potencies for the CNG emission samples were similar to the range observed in the gasoline and diesel emission samples, lung toxicity potency factors were generally lower than those for the gasoline and diesel samples.

  3. Nanospheres Encapsulating Anti-Leishmanial Drugs for Their Specific Macrophage Targeting, Reduced Toxicity, and Deliberate Intracellular Release

    PubMed Central

    Shukla, Anil Kumar; Patra, Sanjukta

    2012-01-01

    Abstract The current work focuses on the study of polymeric, biodegradable nanoparticles (NPs) for the encapsulation of doxorubicin and mitomycin C (anti-leishmanial drugs), and their efficient delivery to macrophages, the parasite's home. The biodegradable polymer methoxypoly-(ethylene glycol)-b-poly (lactic acid) (MPEG-PLA) was used to prepare polymeric NPs encapsulating doxorubicin and mitomycin C. The morphology, mean diameter, and surface area of spherical NPs were determined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and BET surface area analysis. X-ray diffraction was performed to validate drug encapsulation. An in vitro release profile of the drugs suggested a fairly slow release. These polymeric NPs were efficiently capable of releasing drug inside macrophages at a slower pace than the free drug, which was monitored by epi-fluorescence microscopy. Encapsulation of doxorubicin and mitomycin C into NPs also decreases cellular toxicity in mouse macrophages (J774.1A). PMID:22925019

  4. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice.

    PubMed

    Gu, D L; Gonzalez, A M; Printz, M A; Doukas, J; Ying, W; D'Andrea, M; Hoganson, D K; Curiel, D T; Douglas, J T; Sosnowski, B A; Baird, A; Aukerman, S L; Pierce, G F

    1999-06-01

    Adenovirus (Ad) have been used as vectors to deliver genes to a wide variety of tissues. Despite achieving high expression levels in vivo, Ad vectors display normal tissue toxicity, transient expression, and antivector immune responses that limit therapeutic potential. To circumvent these problems, several retargeting strategies to abrogate native tropism and redirect Ad uptake through defined receptors have been attempted. Despite success in cell culture, in vivo results have generally not shown sufficient selectivity for target tissues. We have previously identified (C. K. Goldman et al., Cancer Res., 57: 1447-1451, 1997) the fibroblast growth factor (FGF) ligand and receptor families as conferring sufficient specificity and binding affinity to be useful for targeting DNA in vivo. In the present studies, we retargeted Ad using basic FGF (FGF2) as a targeting ligand. Cellular uptake is redirected through high-affinity FGF receptors (FGFRs) and not the more ubiquitous lower-affinity Ad receptors. Initial in vitro experiments demonstrated a 10- to 100-fold increase in gene expression in numerous FGFR positive (FGFR+) cell lines using FGF2-Ad when compared with Ad. To determine whether increased selectivity could be detected in vivo, FGF2-Ad was administered i.v. to normal mice. FGF2-Ad demonstrates markedly decreased hepatic toxicity and liver transgene expression compared with Ad treatment. Importantly, FGF2-Ad encoding the herpes simplex virus thymidine kinase (TK) gene transduces Ad-resistant FGFR+ tumor cells both ex vivo and in vivo, which results in substantially enhanced survival (180-260%) when the prodrug ganciclovir is administered. Because FGFRs are up-regulated on many types of malignant or injured cells, this broadly useful method to redirect native Ad tropism and to increase the potency of gene expression may offer significant therapeutic advantages.

  5. Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress

    PubMed Central

    Mittal, Sandeep; Kumar, Veeresh; Dhiman, Nitesh; Chauhan, Lalit Kumar Singh; Pasricha, Renu; Pandey, Alok Kumar

    2016-01-01

    Goraphene derivatives (GD) are currently being evaluated for technological and biomedical applications owing to their unique physico-chemical properties over other carbon allotrope such as carbon nanotubes (CNTs). But, the possible association of their properties with underlying in vitro effects have not fully examined. Here, we assessed the comparative interaction of three GD - graphene oxide (GO), thermally reduced GO (TRGO) and chemically reduced GO (CRGO), which significantly differ in their lateral size and functional groups density, with phenotypically different human lung cells; bronchial epithelial cells (BEAS-2B) and alveolar epithelial cells (A549). The cellular studies demonstrate that GD significantly ineternalize and induce oxidative stress mediated cytotoxicity in both cells. The toxicity intensity was in line with the reduced lateral size and increased functional groups revealed more toxicity potential of TRGO and GO respectively. Further, A549 cells showed more susceptibility than BEAS-2B which reflected cell type dependent differential cellular response. Molecular studies revealed that GD induced differential cell death mechanism which was efficiently prevented by their respective inhibitors. This is prior study to the best of our knowledge involving TRGO for its safety evaluation which provided invaluable information and new opportunities for GD based biomedical applications. PMID:28000740

  6. Toll-like receptor-5 agonist Entolimod broadens the therapeutic window of 5-fluorouracil by reducing its toxicity to normal tissues in mice.

    PubMed

    Kojouharov, Bojidar M; Brackett, Craig M; Veith, Jean M; Johnson, Christopher P; Gitlin, Ilya I; Toshkov, Ilia A; Gleiberman, Anatoli S; Gudkov, Andrei V; Burdelya, Lyudmila G

    2014-02-15

    Myelosuppression and gastrointestinal damage are common side effects of cancer treatment limiting efficacy of DNA-damaging chemotherapeutic drugs. The Toll-like receptor 5 (TLR5) agonist Entolimod has demonstrated efficacy in mitigating damage to hematopoietic and gastrointestinal tissues caused by radiation. Here, using 5-Fluorouracil (5-FU) treated mice as a model of chemotherapy-induced side effects, we demonstrated significant reduction in the severity of 5-FU-induced morbidity and increased survival accompanied by the improved integrity of intestinal tissue and stimulated the restoration of hematopoiesis. Entolimod-stimulated IL-6 production was essential for Entolimod's ability to rescue mice from death caused by doses of 5-FU associated with hematopoietic failure. In contrast, IL-6 induction was not necessary for protection and restoration of drug-damaged gastrointestinal tissue by Entolimod. In a syngeneic mouse CT26 colon adenocarcinoma model, Entolimod reduced the systemic toxicity of 5-FU, but did not reduce its antitumor efficacy indicating that the protective effect of Entolimod was selective for normal, non-tumor, tissues. These results suggest that Entolimod has clinical potential to broaden the therapeutic window of genotoxic anticancer drugs by reducing their associated hematopoietic and gastrointestinal toxicities.

  7. Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress

    NASA Astrophysics Data System (ADS)

    Mittal, Sandeep; Kumar, Veeresh; Dhiman, Nitesh; Chauhan, Lalit Kumar Singh; Pasricha, Renu; Pandey, Alok Kumar

    2016-12-01

    Goraphene derivatives (GD) are currently being evaluated for technological and biomedical applications owing to their unique physico-chemical properties over other carbon allotrope such as carbon nanotubes (CNTs). But, the possible association of their properties with underlying in vitro effects have not fully examined. Here, we assessed the comparative interaction of three GD - graphene oxide (GO), thermally reduced GO (TRGO) and chemically reduced GO (CRGO), which significantly differ in their lateral size and functional groups density, with phenotypically different human lung cells; bronchial epithelial cells (BEAS-2B) and alveolar epithelial cells (A549). The cellular studies demonstrate that GD significantly ineternalize and induce oxidative stress mediated cytotoxicity in both cells. The toxicity intensity was in line with the reduced lateral size and increased functional groups revealed more toxicity potential of TRGO and GO respectively. Further, A549 cells showed more susceptibility than BEAS-2B which reflected cell type dependent differential cellular response. Molecular studies revealed that GD induced differential cell death mechanism which was efficiently prevented by their respective inhibitors. This is prior study to the best of our knowledge involving TRGO for its safety evaluation which provided invaluable information and new opportunities for GD based biomedical applications.

  8. ENVIRONMENTAL ANALYSIS OF GASOLINE BLENDING COMPONENTS THROUGH THEIR LIFE CYCLE

    EPA Science Inventory

    The purpose of this study is to access the contribution of the three major gasoline blending components to the potential environmental impacts (PEI), which are the reformate, alkylate and cracked gasoline. This study accounts for losses of the gasoline blending components due to...

  9. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall...

  10. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall...

  11. 46 CFR 56.50-70 - Gasoline fuel systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Gasoline fuel systems. 56.50-70 Section 56.50-70... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-70 Gasoline fuel systems. (a) Material.... Outlets in fuel lines for drawing gasoline for any purpose are prohibited. Valved openings in the...

  12. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall...

  13. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of gasoline machinery spaces. 185.352... (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.352 Ventilation of gasoline machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required...

  14. 40 CFR 80.81 - Enforcement exemptions for California gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline. 80.81 Section 80.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.81 Enforcement exemptions for California gasoline. (a)(1) The requirements of subparts D, E, F, and J of this part...

  15. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation of gasoline machinery spaces. 185.352... (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.352 Ventilation of gasoline machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required...

  16. 40 CFR 63.650 - Gasoline loading rack provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Gasoline loading rack provisions. 63...) National Emission Standards for Hazardous Air Pollutants From Petroleum Refineries § 63.650 Gasoline... or operator of a Group 1 gasoline loading rack classified under Standard Industrial...

  17. 40 CFR 80.90 - Conventional gasoline baseline emissions determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's...

  18. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation of gasoline machinery spaces. 185.352... (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.352 Ventilation of gasoline machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required...

  19. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall...

  20. 40 CFR 80.90 - Conventional gasoline baseline emissions determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's...

  1. 40 CFR 80.81 - Enforcement exemptions for California gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline. 80.81 Section 80.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.81 Enforcement exemptions for California gasoline. (a)(1) The requirements of subparts D, E, F, and J of this part...

  2. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall...

  3. 40 CFR 80.81 - Enforcement exemptions for California gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline. 80.81 Section 80.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.81 Enforcement exemptions for California gasoline. (a)(1) The requirements of subparts D, E, F, and J of this part...

  4. 40 CFR 80.90 - Conventional gasoline baseline emissions determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's...

  5. 40 CFR 80.90 - Conventional gasoline baseline emissions determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's...

  6. 40 CFR 80.90 - Conventional gasoline baseline emissions determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Conventional gasoline baseline... gasoline baseline emissions determination. (a) Annual average baseline values. For any facility of a refiner or importer of conventional gasoline, the annual average baseline values of the facility's...

  7. 46 CFR 169.613 - Gasoline fuel systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Gasoline fuel systems. 169.613 Section 169.613 Shipping... Machinery and Electrical Fuel Systems § 169.613 Gasoline fuel systems. (a) Except as provided in paragraph (b) each gasoline fuel system must meet the requirements of § 56.50-70 of this chapter (b)...

  8. 40 CFR 63.650 - Gasoline loading rack provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Gasoline loading rack provisions. 63...) National Emission Standards for Hazardous Air Pollutants From Petroleum Refineries § 63.650 Gasoline... or operator of a Group 1 gasoline loading rack classified under Standard Industrial...

  9. 40 CFR 80.66 - Calculation of reformulated gasoline properties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Calculation of reformulated gasoline... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.66 Calculation of reformulated gasoline properties. (a) All volume measurements required by these regulations shall...

  10. 40 CFR 63.650 - Gasoline loading rack provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Gasoline loading rack provisions. 63...) National Emission Standards for Hazardous Air Pollutants From Petroleum Refineries § 63.650 Gasoline... or operator of a Group 1 gasoline loading rack classified under Standard Industrial...

  11. 46 CFR 169.613 - Gasoline fuel systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Gasoline fuel systems. 169.613 Section 169.613 Shipping... Machinery and Electrical Fuel Systems § 169.613 Gasoline fuel systems. (a) Except as provided in paragraph (b) each gasoline fuel system must meet the requirements of § 56.50-70 of this chapter (b)...

  12. 40 CFR 63.650 - Gasoline loading rack provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Gasoline loading rack provisions. 63...) National Emission Standards for Hazardous Air Pollutants From Petroleum Refineries § 63.650 Gasoline... or operator of a Group 1 gasoline loading rack classified under Standard Industrial...

  13. 40 CFR 80.66 - Calculation of reformulated gasoline properties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Calculation of reformulated gasoline... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.66 Calculation of reformulated gasoline properties. (a) All volume measurements required by these regulations shall...

  14. 40 CFR 80.81 - Enforcement exemptions for California gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline. 80.81 Section 80.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.81 Enforcement exemptions for California gasoline. (a)(1) The requirements of subparts D, E, F, and J of this part...

  15. 46 CFR 169.613 - Gasoline fuel systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Gasoline fuel systems. 169.613 Section 169.613 Shipping... Machinery and Electrical Fuel Systems § 169.613 Gasoline fuel systems. (a) Except as provided in paragraph (b) each gasoline fuel system must meet the requirements of § 56.50-70 of this chapter (b)...

  16. 46 CFR 169.613 - Gasoline fuel systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Gasoline fuel systems. 169.613 Section 169.613 Shipping... Machinery and Electrical Fuel Systems § 169.613 Gasoline fuel systems. (a) Except as provided in paragraph (b) each gasoline fuel system must meet the requirements of § 56.50-70 of this chapter (b)...

  17. 46 CFR 169.613 - Gasoline fuel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Gasoline fuel systems. 169.613 Section 169.613 Shipping... Machinery and Electrical Fuel Systems § 169.613 Gasoline fuel systems. (a) Except as provided in paragraph (b) each gasoline fuel system must meet the requirements of § 56.50-70 of this chapter (b)...

  18. 40 CFR 80.141 - Interim detergent gasoline program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Interim detergent gasoline program. 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.141 Interim detergent gasoline... ultimate consumer; (ii) All additized post-refinery component (PRC); and (iii) All detergent additives...

  19. 40 CFR 80.141 - Interim detergent gasoline program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Interim detergent gasoline program. 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.141 Interim detergent gasoline... ultimate consumer; (ii) All additized post-refinery component (PRC); and (iii) All detergent additives...

  20. ENVIRONMENTAL COMPARISON OF GASOLINE BLENDING OPTIONS USING LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    A life cycle assessment has been done on various gasoline blends, The purpose of this study is to compare several gasoline blends of 95 and 98 octaine, that meet the vapour pressure upper limit requirement of 60 kPa. This study accounts for the gasoline losses due to evaporation ...

  1. ENVIRONMENTAL ANALYSIS OF GASOLINE BLENDING COMPONENTS THROUGH THEIR LIFE CYCLE

    EPA Science Inventory

    The purpose of this study is to assess the contribution of the three major gasoline blending components to the potential environmental impacts (PEI), which are the reformate, alkylate and cracked gasoline. This study accounts for losses of the gasoline blending components due to ...

  2. 40 CFR 79.32 - Motor vehicle gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Motor vehicle gasoline. 79.32 Section...) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.32 Motor vehicle gasoline. (a) The following fuels commonly or commercially known or sold as motor vehicle gasoline are...

  3. 40 CFR 79.32 - Motor vehicle gasoline.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Motor vehicle gasoline. 79.32 Section...) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.32 Motor vehicle gasoline. (a) The following fuels commonly or commercially known or sold as motor vehicle gasoline are...

  4. An assessment of combustion products of spark ignition engines supplied by ethanol - gasoline blends

    NASA Astrophysics Data System (ADS)

    Uzuneanu, K.; Golgotiu, E.

    2016-08-01

    The causes of environmental pollution by internal combustion engines arise from the use of fuels containing bounded carbon, from the fact that combustion takes place on a cyclic basis and at high temperature. The first and the last causes are directly related to the fuel and therefore there is in principle a possibility to reduce pollution by acting upon the fuel used. The present paper deals with the comparison of the level of combustion products of a spark ignition engine supplied by gasoline and by a mixture of 10 % ethanol - 90% gasoline.

  5. Study of health hazards in use of methanol-gasoline blends

    SciTech Connect

    Kasparov, A.A.; Golovkova, N.P.; Shirokov, Yu.G.

    1986-07-01

    The hygienic evaluation of mehanol for use as an additive to gasoline was performed under conditions of city driving of automotive vehicles operating on the blends MGB and BM 15-93 (the gasoline base stock had an octane number of 66). The workers handling MGB were examined for personality traits, emotional and volitional state, and anxiety level; also, certain features of psychic activity were evaluated (mental capability, attention, memory). The results show that a situation peceding the start of work with MGB was responsible for most of the freases in subjective indexes characterizing the emotion state, and the mobility and rate of occurence of psychic functions in comparison to background activity. The results indicate the possibility of using MGB to replace leaded and unleaded gasoline, since such replacement will reduce the environmental pollution by fuel combustion products, and the level of air pollution in the workplace will remain low.

  6. Reid vapor-pressure regulation of gasoline, 1987-1990. Master's thesis

    SciTech Connect

    Butters, R.A.

    1990-09-30

    Although it is generally only a summertime problem, smog, as represented by its criteria pollutant, ozone, is currently the number one air pollution problem in the United States. Major contributors to smog formation are the various Volatile Organic Compounds (VOC's) which react with other chemicals in the atmosphere to form the ozone and other harmful chemicals known as smog. Gasoline is a major source of VOC's, not only as it is burned in car engines, but as it evaporates. Gasoline evaporates in storage tanks, as it is transferred during loading and refueling operations, and in automobiles, both while they are running and while parked in the driveway. In 1987, the United States Environmental Protection Agency began an almost unprecedented effort to reduce the evaporative quality of commercial gasolines by mandating reductions in its Reid Vapor Pressure (RVP).

  7. Meglumine antımoniate-TiO2@Ag nanoparticle combinations reduce toxicity of the drug while enhancing its antileishmanial effect.

    PubMed

    Abamor, Emrah Sefik; Allahverdiyev, Adil M; Bagirova, Melahat; Rafailovich, Miriam

    2017-05-01

    combinations led to inhibition of L. topica amastigotes at rates ranging between 80% and 95%. Additionally, combinations were found to decrease metabolic activities of each form of the parasite at ranges between 7- to 20-fold, causing programmed-cell death and stimulation of macrophages for intensive production of nitric oxide, which is accepted as an important antileishmanial agent (p<0.05). Furthermore, Σ FIC analysis demonstrated that the tested combinations composed little additive, but mostly synergistic effects for inhibition of promastigotes and amastigotes. According to in vivo screening results, the combinations displayed high antileishmanial activities by successfully healing lesions and significantly reducing parasite burdens. Combined, these results show that TiAgNps-MA combinations were much more effective than use of MA alone at non-toxic concentrations and they possess high potential for development of new antileishmanial drugs to fight against leishmaniasis.

  8. Performance Evaluation of Alcohol-Gasoline Blends in 1980 Model Automobiles. Phase II. Methanol-Gasoline Blends.

    DTIC Science & Technology

    1984-01-01

    renovation, re-inspection, and acceptance by CRC. These cars comprised three models by three automobile makers and two engine-emissions control groups for...EVALUATION OF ALCOHOL.GASOLINE BLENDS IN 1980 MODEL AUTOMOBILES PHASE II METHANOL-GASOLINE BLENDS January 1984 APPROVrD FOR pUBLIC RELEASE" DISTRIBUTION...Members: PERFORMANCE EVALUATION OF ALCOHOL-GASOLINE BLENDS IN 1980 MODEL AUTOMOBILES : PHASE II - METHANOL-GASOLINE BLENDS (CRC Report No. 536) -I

  9. Estimates of the chromium(VI) reducing capacity in human body compartments as a mechanism for attenuating its potential toxicity and carcinogenicity.

    PubMed

    De Flora, S; Camoirano, A; Bagnasco, M; Bennicelli, C; Corbett, G E; Kerger, B D

    1997-03-01

    Estimates of the overall reducing capacity of hexavalent chromium(VI) in some human body compartments were made by relating the specific reducing activity of body fluids, cell populations or organs to their average volume, number, or weight. Although these data do not have absolute precision or universal applicability, they provide a rationale for predicting and interpreting the health effects of chromium(VI). The available evidence strongly indicates that chromium(VI) reduction in body fluids and long-lived non-target cells is expected to greatly attenuate its potential toxicity and genotoxicity, to imprint a threshold character to the carcinogenesis process, and to restrict the possible targets of its activity. For example, the chromium(VI) sequestering capacity of whole blood (187-234 mg per individual) and the reducing capacity of red blood cells (at least 93-128 mg) explain why this metal is not a systemic toxicant, except at very high doses, and also explain its lack of carcinogenicity at a distance from the portal of entry into the organism. Reduction by fluids in the digestive tract, e.g. by saliva (0.7-2.1 mg/day) and gastric juice (at least 84-88 mg/day), and sequestration by intestinal bacteria (11-24 mg eliminated daily with feces) account for the poor intestinal absorption of chromium(VI). The chromium(VI) escaping reduction in the digestive tract will be detoxified in the blood of the portal vein system and then in the liver, having an overall reducing capacity of 3300 mg. These processes give reasons for the poor oral toxicity of chromium(VI) and its lack of carcinogenicity when introduced by the oral route or swallowed following reflux from the respiratory tract. In terminal airways chromium(VI) is reduced in the epithelial lining fluid (0.9-1.8 mg) and in pulmonary alveolar macrophages (136 mg). The peripheral lung parenchyma has an overall reducing capacity of 260 mg chromium(VI), with a slightly higher specific activity as compared to the

  10. Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

    NASA Astrophysics Data System (ADS)

    Wolk, Benjamin Matthew

    Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2

  11. Phase Partitioning from Theanol Blend Gasolines

    EPA Science Inventory

    In recent years, the use of ethanol and other alcohols as motor fuel additives has increased. Additionally, ethanol production has expanded due to the potential use of ethanol as a primary fuel source. Historical patterns of gasoline composition show strong dependency on regulato...

  12. Gasoline Engine Mechanics. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of five terminal objectives presented in this curriculum guide for a basic gasoline engine mechanics course at the secondary level. (For the intermediate course guide see CE 010 946.) The materials were developed for a two semester (2 hours daily)…

  13. Gasoline Engine Mechanics. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This vocational program guide is intended to assist in the organization, operation, and evaluation of a program in gasoline engine mechanics in school districts, area vocational centers, and community colleges. The following topics are covered: job duties of small-engine mechanics; program content (curriculum framework and student performance…

  14. Ferreting Out the Identity of Gasoline Additives

    EPA Science Inventory

    Chemical dispersing agents for oil spills, hydraulic fracturing fluids for natural-gas production, and chemicals serving as gasoline additives share a common characteristic—for the most part, they are proprietary compounds. In the name of competitive advantage, companies carefull...

  15. DECISION-MAKING, SCIENCE AND GASOLINE ADDITIVES

    EPA Science Inventory


    Methyl-tert butyl ether (MTBE) has been used as a gasoline additive to serve two major purposes. The first use was as an octane-enhancer to replace organic lead, beginning in 1979. The second use, which began about 1992, was as an oxygenated additive to meet requirements ...

  16. Eliminating MTBE in Gasoline in 2006

    EIA Publications

    2006-01-01

    A review of the market implications resulting from the rapid change from methyl tertiary butyl ether (MTBE) to ethanol-blended reformulated gasoline (RFG) on the East Coast and in Texas. Strains in ethanol supply and distribution will increase the potential for price volatility in these regions this summer.

  17. Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…

  18. Price changes in the gasoline market: Are Midwestern gasoline prices downward sticky?

    SciTech Connect

    1999-03-01

    This report examines a recurring question about gasoline markets: why, especially in times of high price volatility, do retail gasoline prices seem to rise quickly but fall back more slowly? Do gasoline prices actually rise faster than they fall, or does this just appear to be the case because people tend to pay more attention to prices when they`re rising? This question is more complex than it might appear to be initially, and it has been addressed by numerous analysts in government, academia and industry. The question is very important, because perceived problems with retail gasoline pricing have been used in arguments for government regulation of prices. The phenomenon of prices at different market levels tending to move differently relative to each other depending on direction is known as price asymmetry. This report summarizes the previous work on gasoline price asymmetry and provides a method for testing for asymmetry in a wide variety of situations. The major finding of this paper is that there is some amount of asymmetry and pattern asymmetry, especially at the retail level, in the Midwestern states that are the focus of the analysis. Nevertheless, both the amount asymmetry and pattern asymmetry are relatively small. In addition, much of the pattern asymmetry detected in this and previous studies could be a statistical artifact caused by the time lags between price changes at different points in the gasoline distribution system. In other words, retail gasoline prices do sometimes rise faster than they fall, but this is largely a lagged market response to an upward shock in the underlying wholesale gasoline or crude oil prices, followed by a return toward the previous baseline. After consistent time lags are factored out, most apparent asymmetry disappears.

  19. Gasoline exhaust emissions induce vascular remodeling pathways involved in atherosclerosis.

    PubMed

    Lund, Amie K; Knuckles, Travis L; Obot Akata, Chrys; Shohet, Ralph; McDonald, Jacob D; Gigliotti, Andrew; Seagrave, Jean Clare; Campen, Matthew J

    2007-02-01

    Epidemiological evidence indicates that environmental air pollutants are positively associated with the development of chronic vascular disease; however, the mechanisms involved have not been fully elucidated. In the present study we examined molecular pathways associated with chronic vascular disease in atherosclerosis-prone apolipoprotein E-deficient (ApoE(-/-)) mice, including markers of vascular remodeling and oxidative stress, in response to exposure to the ubiquitous environmental pollutant, gasoline engine emissions. ApoE(-/-) mice, on a high-fat diet, were exposed by inhalation to either filtered air; 8, 40, or 60 mug/m(3) particulate matter whole exhaust; or filtered exhaust with gases matching the 60-mug/m(3) concentration, for 7 weeks. Aortas and plasma were collected and assayed for changes in histochemical markers, real-time reverse transcriptase-polymerase chain reaction, and indicators of oxidative damage. Inhalational exposure to gasoline engine emissions resulted in increased aortic mRNA expression of matrix metalloproteinase-3 (MMP-3), MMP-7, and MMP-9, tissue inhibitor of metalloproteinases-2, endothelin-1 and heme oxygenase-1 in ApoE(-/-) mice; increased aortic MMP-9 protein levels were confirmed through immunohistochemistry. Elevated reactive oxygen species were also observed in arteries from exposed animals, despite absence of plasma markers. Similar findings were also observed in the aortas of ApoE(-/-) mice exposed to particle-filtered atmosphere, implicating the gaseous components of the whole exhaust in mediating the expression of markers associated with the vasculopathy. These findings demonstrate that exposure to gasoline engine emissions results in the transcriptional upregulation of factors associated with vascular remodeling, as well as increased markers of vascular oxidative stress, which may contribute to the progression of atherosclerosis and reduced stability of vulnerable plaques.

  20. A “building block” approach to the new influenza A virus entry inhibitors with reduced cellular toxicities

    NASA Astrophysics Data System (ADS)

    Lin, Dongguo; Li, Fangfang; Wu, Qiuyi; Xie, Xiangkun; Wu, Wenjiao; Wu, Jie; Chen, Qing; Liu, Shuwen; He, Jian

    2016-03-01

    Influenza A virus (IAV) is a severe worldwide threat to public health and economic development that results in the emergence of drug-resistant or highly virulent strains. Therefore, it is imperative to develop potent anti-IAV drugs with different modes of action to currently available drugs. Herein, we show a new class of antiviral peptides generated by conjugating two known short antiviral peptides: part-1 (named Jp with the sequence of ARLPR) and part-2 (named Hp with the sequence of KKWK). The new peptides were thus created by hybridization of these two domains at C- and N- termini, respectively. The anti-IAV screening results identified that C20-Jp-Hp was the most potent peptide with IC50 value of 0.53 μM against A/Puerto Rico/8/34 (H1N1) strain. Interestingly, these new peptides display lower toxicities toward mammalian cells and higher therapeutic indices than their prototypes. In addition, the mechanism of action of C20-Jp-Hp was extensively investigated.

  1. Exotoxin A of Pseudomonas aeruginosa: substitution of glutamic acid 553 with aspartic acid drastically reduces toxicity and enzymatic activity.

    PubMed Central

    Douglas, C M; Collier, R J

    1987-01-01

    Glutamic acid 553 of Pseudomonas aeruginosa exotoxin A (ETA) has been identified by photoaffinity labeling as a residue within the NAD binding site (S.F. Carroll and R.J. Collier, J. Biol. Chem. 262:8707-8711, 1987). To explore the function of Glu-553 we used oligonucleotide-directed mutagenesis to replace this residue with Asp in cloned ETA and expressed the mutant gene in Escherichia coli K-12. ADP-ribosylation activity of Asp-553 ETA in cell extracts was about 1,800-fold lower and toxicity for mouse L-M929 fibroblasts was at least 10,000-fold lower than that of the wild-type toxin. Extracts containing Asp-553 ETA inhibited the cytotoxicity of authentic ETA on L-M929 fibroblasts, suggesting that the mutant toxin competes for ETA receptors. The results indicate that Glu-553 is crucial for ADP-ribosylation activity and, consequently, cytotoxicity of ETA. Substitution or deletion of this residue may be a route to new ETA vaccines. Images PMID:2889718

  2. Competition in the retail gasoline industry

    NASA Astrophysics Data System (ADS)

    Brewer, Jedidiah

    2007-05-01

    This dissertation examines competition in the retail gasoline industry. The first chapter highlights the importance of gasoline in modern society, introduces my work, and places it in the context of the existing academic literature. The second chapter details the institutional structure and profitability of the industry. The vast majority of retail gasoline stations are not directly owned and operated by major oil companies. Instead, most stations are set up under other contractual relationships: lessee-dealer, open-dealer, jobber-owned-and-operated, and independent. Gasoline retailers make relatively low profits, as is the case in many other retail industries, and are substantially less profitable than major oil companies. Gas stations also make less money when retail prices are climbing than when they are falling. As prices rise, total station profits are near zero or negative. When retail prices are constant or falling, retailers can make positive profits. The third chapter describes the entry of big-box stores into the retail gasoline industry over the last decade. The growth of such large retailers, in all markets, has led to a great deal of controversy as smaller competitors with long-term ties to the local community have become less common. I estimate the price impact that big-box stores have on traditional gasoline retailers using cross-sectional data in two geographically diverse cities. I also examine changes in pricing following the entry of The Home Depot into a local retail gasoline market. The results show that big-box stores place statistically and economically significant downward pressure on the prices of nearby gas stations, offering a measure of the impact of the entry of a big-box store. Chapter 4 examines the nature of price competition in markets where some competing retailers sell the same brand. The price effect of having more retailers selling the same brand is theoretically unclear. High brand diversity could give individual retailers

  3. Comparative performance study of spark ignition engines burning alcohols, gasoline, and alcohol-gasoline blends

    SciTech Connect

    Desoky, A.A.; Rabie, L.H.

    1983-12-01

    In recent years it has been clear that the reserves of oil, from which petrol is refined, are becoming limited. In order to conserve these stocks of oil, and to minimize motoring costs as the price of dwindling oil resources escalates, it's obviously desirable to improve the thermal efficiency of the spark ignition engine. There are also obvious benefits to be obtained from making spark ignition engines run efficiently on alternative fuel, (non-crude based fuel). It has been claimed that hydrogen is an ideal fuel for the internal combustion engine it certainly causes little pollution, but is difficult to store, high in price, and difficult to burn efficiently in the engine without it knocking and backfiring. These problems arise because of the very wide flammability limits and the very high flame velocity of hydrogen. Alcohols used an additive or substitute for gasoline could immediately help to solve both energy and pollution problems. An experimental tests were carried out at Mansoura University Laboratories using a small single cylinder SIE, fully instrumented to measure the engine performance. The engine was fueled with pure methonol, pure ethonol, gasoline methanol blends and gasaline ethanol blends. The results showed that in principle, from kechnological aspects it's possible to use alcohols as a gasoline extender or as alcohol's gasoline, blends for automobiles. With regard to energy consumptions alcohols and alcohols gasoline blends lead to interesting results. The fuel economy benefits of using alcohols gasoline blends was found to be interesting in the part throltle operation.

  4. Endogenous macrophage migration inhibitory factor reduces the accumulation and toxicity of misfolded SOD1 in a mouse model of ALS

    PubMed Central

    Leyton-Jaimes, Marcel F.; Benaim, Clara; Abu-Hamad, Salah; Kahn, Joy; Guetta, Amos; Bucala, Richard; Israelson, Adrian

    2016-01-01

    Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons in the brain and spinal cord. It has been suggested that the toxicity of mutant SOD1 results from its misfolding and accumulation on the cytoplasmic faces of intracellular organelles, including the mitochondria and endoplasmic reticulum (ER) of ALS-affected tissues. Recently, macrophage migration inhibitory factor (MIF) was shown to directly inhibit the accumulation of misfolded SOD1 and its binding to intracellular membranes, but the role of endogenous MIF in modulating SOD1 misfolding in vivo remains unknown. To elucidate this role, we bred MIF-deficient mice with SOD1G85R mice, which express a dismutase-inactive mutant of SOD1 and are considered a model of familial ALS. We found that the accumulation of misfolded SOD1, its association with mitochondrial and ER membranes, and the levels of sedimentable insoluble SOD1 aggregates were significantly higher in the spinal cords of SOD1G85R-MIF−/− mice than in their SOD1G85R-MIF+/+ littermates. Moreover, increasing MIF expression in neuronal cultures inhibited the accumulation of misfolded SOD1 and rescued from mutant SOD1-induced cell death. In contrast, the complete elimination of endogenous MIF accelerated disease onset and late disease progression and shortened the lifespan of the SOD1G85R mutant mice. These findings indicate that MIF plays a significant role in the folding and misfolding of SOD1 in vivo, and they have implications for the potential therapeutic role of up-regulating MIF within the nervous system to modulate the selective accumulation of misfolded SOD1. PMID:27551074

  5. H. R. 2289: Deficit Reduction Gasoline Surtax Act of 1989. Introduced in the House of Representatives, One Hundred First Congress, First Session, May 9, 1989

    SciTech Connect

    Not Available

    1989-01-01

    H.R. 2289 would amend the Internal Revenue Code of 1986 to increase the excise tax on gasoline by 9 cents per gallon, and would provide that the increase in revenues be used to reduce Federal budget deficits. The bill provides for an excise tax of 8 cents on gasoline mixed with alcohol, an additional 3 cents per gallon tax if the gasoline is later separated from the gasohol, and provides persons using gasoline for noncommercial aviation to recover 6 cents per gallon on gasoline so used. This bill also establishes within the Treasury the Deficit Reduction Trust Fund whose amounts shall be available only for the retirement of outstanding obligations of the United States.

  6. Assessing the Macroeconomic Importance of Gasoline and Vehicle Spending

    SciTech Connect

    Santini, Danilo J.; Poyer, David A.

    2016-05-01

    Vector error correction (VEC) was used to test the importance of a theoretical causal chain from transportation fuel cost to vehicle sales to macroeconomic activity. Real transportation fuel cost was broken into two cost components: real gasoline price (rpgas) and real personal consumption of gasoline and other goods (gas). Real personal consumption expenditure on vehicles (RMVE) represented vehicle sales. Real gross domestic product (rGDP) was used as the measure of macroeconomic activity. The VEC estimates used quarterly data from the third quarter of 1952 to the first quarter of 2014. Controlling for the financial causes of the recent Great Recession, real homeowners’ equity (equity) and real credit market instruments liability (real consumer debt, rcmdebt) were included. Results supported the primary hypothesis of the research, but also introduced evidence that another financial path through equity is important, and that use of the existing fleet of vehicles (not just sales of vehicles) is an important transport-related contributor to macroeconomic activity. Consumer debt reduction is estimated to be a powerful short-run force reducing vehicle sales. Findings are interpreted in the context of the recent Greene, Lee, and Hopson (2012) (hereafter GLH) estimation of the magnitude of three distinct macroeconomic damage effects that result from dependence on imported oil, the price of which is manipulated by the Organization of Petroleum Exporting Countries (OPEC). The three negative macroeconomic impacts are due to (1) dislocation (positive oil price shock), (2) high oil price levels, and (3) a high value of the quantity of oil imports times an oil price delta (cartel price less competitive price). The third of these is the wealth effect. The VEC model addresses the first two, but the software output from the model (impulse response plots) does not isolate them. Nearly all prior statistical tests in the literature have used vector autoregression (VAR) and

  7. Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates.

    PubMed

    Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen

    2014-05-22

    Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26×10⁷ cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE)/mg (biomass) and 5.1 μg (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline.

  8. Aerobic Degradation of Trichloroethylene by Co-Metabolism Using Phenol and Gasoline as Growth Substrates

    PubMed Central

    Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen

    2014-01-01

    Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26 × 107 cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE)/mg (biomass) and 5.1 μg (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline. PMID:24857922

  9. Effects of enhancing mitochondrial oxidative phosphorylation with reducing equivalents and ubiquinone on 1-methyl-4-phenylpyridinium toxicity and complex I-IV damage in neuroblastoma cells.

    PubMed

    Mazzio, Elizabeth A; Soliman, Karam F A

    2004-03-15

    The effects of increasing mitochondrial oxidative phosphorylation (OXPHOS), by enhancing electron transport chain components, were evaluated on 1-methyl-4-phenylpyridinium (MPP+) toxicity in brain neuroblastoma cells. Although glucose is a direct energy source, ultimately nicotinamide and flavin reducing equivalents fuel ATP produced through OXPHOS. The findings indicate that cell respiration/mitochondrial O(2) consumption (MOC) (in cells not treated with MPP+) is not controlled by the supply of glucose, coenzyme Q(10) (Co-Q(10)), NADH+, NAD or nicotinic acid. In contrast, MOC in whole cells is highly regulated by the supply of flavins: riboflavin, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), where cell respiration reached up to 410% of controls. In isolated mitochondria, FAD and FMN drastically increased complex I rate of reaction (1300%) and (450%), respectively, having no effects on complex II or III. MPP+ reduced MOC in whole cells in a dose-dependent manner. In isolated mitochondria, MPP+ exerted mild inhibition at complex I, negligible effects on complexes II-III, and extensive inhibition of complex IV. Kinetic analysis of complex I revealed that MPP+ was competitive with NADH, and partially reversible by FAD and FMN. Co-Q(10) potentiated complex II ( approximately 200%), but not complex I or III. Despite positive influence of flavins and Co-Q(10) on complexes I-II function, neither protected against MPP+ toxicity, indicating inhibition of complex IV as the predominant target. The nicotinamides and glucose prevented MPP+ toxicity by fueling anaerobic glycolysis, evident by accumulation of lactate in the absence of MOC. The data also define a clear anomaly of neuroblastoma, indicating a preference for anaerobic conditions, and an adverse response to aerobic. An increase in CO(2), CO(2)/O(2) ratio, mitochondrial inhibition or O(2) deprivation was not directly toxic, but activated metabolism through glycolysis prompting depletion of glucose

  10. Removal of gasoline vapors from air streams by biofiltration

    SciTech Connect

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40{degrees}C temperature range with removal being completely inhibited at 54{degrees}C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  11. Removal of gasoline vapors from air streams by biofiltration

    SciTech Connect

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40[degrees]C temperature range with removal being completely inhibited at 54[degrees]C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  12. An experimental investigation of low octane gasoline in diesel engines.

    SciTech Connect

    Ciatti, S. A.; Subramanian, S.

    2011-09-01

    Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

  13. Modular and selective biosynthesis of gasoline-range alkanes.

    PubMed

    Sheppard, Micah J; Kunjapur, Aditya M; Prather, Kristala L J

    2016-01-01

    Typical renewable liquid fuel alternatives to gasoline are not entirely compatible with current infrastructure. We have engineered Escherichia coli to selectively produce alkanes found in gasoline (propane, butane, pentane, heptane, and nonane) from renewable substrates such as glucose or glycerol. Our modular pathway framework achieves carbon-chain extension by two different mechanisms. A fatty acid synthesis route is used to generate longer chains heptane and nonane, while a more energy efficient alternative, reverse-β-oxidation, is used for synthesis of propane, butane, and pentane. We demonstrate that both upstream (thiolase) and intermediate (thioesterase) reactions can act as control points for chain-length specificity. Specific free fatty acids are subsequently converted to alkanes using a broad-specificity carboxylic acid reductase and a cyanobacterial aldehyde decarbonylase (AD). The selectivity obtained by different module pairings provides a foundation for tuning alkane product distribution for desired fuel properties. Alternate ADs that have greater activity on shorter substrates improve observed alkane titer. However, even in an engineered host strain that significantly reduces endogenous conversion of aldehyde intermediates to alcohol byproducts, AD activity is observed to be limiting for all chain lengths. Given these insights, we discuss guiding principles for pathway selection and potential opportunities for pathway improvement.

  14. Bioventing approach to remediate a gasoline contaminated subsurface. Book chapter

    SciTech Connect

    Kampbell, D.H.; Wilson, J.T.; Griffin, C.J.

    1992-01-01

    Bioventing is a subsurface process using an air stream to enhance biodegradation of oily contaminants. Two pilot-scale bioventing systems were installed at a field site. Process operations began in October 1990. The field site is located at an air station. A spill in 1969 of about 100,000 kilograms aviation gasoline was caused by a broken underground transfer line. A major portion of the spilled product still persists as an oily-phase residue in a 80x360 meter plume. The subsurface is a uniform beach sand with the ground water level near five meters. Prior to startup of the venting systems, a grass cover was established and a nutrient solution was dispersed throughout the unsaturated subsurface. Subsurface air flow patterns are being determined with a tracer gas of sulfur hexafloride. Soil gas, core material, and underground water are being monitored to determine the extent of remediation. Objectives of the study are to demonstrate that surface emissions of gasoline are minimal, oily residue will be reduced to <100 mg fuel carbon/Kg core material, and the process will be applicable to full-scale remediation. Flow rate is based on a calculated residence time of 24 hours. Surface emission of fuel hydrocarbons have not exceeded 1 micrograms/liter soil gas.

  15. Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism.

    PubMed

    Kumar, Amit; Dixit, Garima; Singh, Amit Pal; Dwivedi, Sanjay; Srivastava, Sudhakar; Mishra, Kumkum; Tripathi, Rudra Deo

    2016-11-01

    Arsenic (As) is a toxic element with the potential to cause health effects in humans. Besides rice is a source of both amino acids (AAs) and mineral nutrients, it is undesired source of As for billions of people consuming rice as the staple food. Selenium (Se) is an essential metalloid, which can regulate As toxicity by strengthening antioxidant potential. The present study was designed to investigate As(III) stress mitigating effect of Se(VI) in rice. The level of As, thiolic ligands and AAs was analyzed in rice seedlings after exposure to As(III)/Se(VI) alone and As(III)+Se(VI) treatments. Selenate supplementation (As(III) 25μM+Se(VI) 25μM) decreased total As accumulation in both root and shoot (179 & 144%) as compared to As(III) alone treatment. The As(III)+Se(VI) treatment also induced the levels of non-protein thiols (NPTs), glutathione (GSH) and phytochelatins (PCs) as compared to As(III) alone treatment and also modulated the activity of enzymes of thiol metabolism. The content of amino acids (AAs) was significantly altered with Se(VI) supplementation. Importantly, essential amino acids (EAAs) were enhanced in As(III)+Se(VI) treatment as compared to As(III) alone treatment. In contrast, stress related non-essential amino acids (NEAAs) like GABA, Glu, Gly, Pro and Cys showed enhanced levels in As(III) alone treatment. In conclusion, rice supplemented with Se(VI) tolerated As toxicity with reduced As accumulation and increased the nutrition quality by increasing EAAs.

  16. Prevention of Chemically-Induced Urinary Bladder Cancers by Naproxen: Protocols to Reduce Gastric Toxicity in Humans Do Not Alter Preventive Efficacy

    PubMed Central

    Lubet, Ronald A.; Scheiman, James M.; Bode, Ann; White, Jonathan; Minasian, Lori; Juliana, M. Margaret; Boring, Daniel L.; Steele, Vernon E.; Grubbs, Clinton J.

    2015-01-01

    The COX inhibitors (NSAIDs/Coxibs) are a major focus for the chemoprevention of cancer. The COX-2 specific inhibitors have progressed to clinical trials, and have shown preventive efficacy in colon and skin cancers. However, they have significant adverse cardiovascular (CV) effects. Certain NSAIDs (e.g., naproxen (NPX)] have a good cardiac profile, but can cause gastric toxicity. The present studies examined protocols to reduce this toxicity of NPX. Female Fischer-344 rats were treated weekly with the urinary bladder specific carcinogen hydroxybutyl(butyl)nitrosamine (OH-BBN) for 8 weeks. Rats were dosed daily with NPX (40 mg/Kg BW/day, gavage) or with the proton pump inhibitor omeprazole (4.0 mg/Kg BW/day) either singly or in combination beginning 2 weeks after the final OH-BBN. OH-BBN treated rats, 96% developed urinary bladder cancers. While omeprazole alone was ineffective (97% cancers), NPX alone or combined with omeprazole prevented cancers; yielding 27 and 35% cancers, respectively. In a separate study, OH-BBN treated rats were administered NPX: (A) daily, (B) 1 week daily NPX/1wk vehicle, (C) 3 weeks daily NPX/3 week vehicle, or (D) daily vehicle beginning 2 weeks after last OH-BBN treatment. In the intermittent dosing study, protocol A, B, C and D resulted in palpable cancers in 27%, 22%, 19% and 96% of rats (P<0.01). Short-term NPX treatment increased apoptosis, but did not alter proliferation in the urinary bladder cancers. Two different protocols which should decrease the gastric toxicity of NSAIDs in humans did not alter chemopreventive efficacy. This should encourage the use of NSAIDs (e.g. NPX) in clinical prevention trials. PMID:25762530

  17. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx.

    PubMed

    Huang, Xiaoyan; Wang, Yang; Xing, Zhenyu; Du, Ke

    2016-09-15

    The estimation of emission factors (EFs) is the basis of accurate emission inventory. However, the EFs of air pollutants for motor vehicles vary under different operating conditions, which will cause uncertainty in developing emission inventory. Natural gas (NG), considered as a "cleaner" fuel than gasoline, is increasingly being used to reduce combustion emissions. However, information is scarce about how much emission reduction can be achieved by motor vehicles burning NG (NGVs) under real road driving conditions, which is necessary for evaluating the environmental benefits for NGVs. Here, online, in situ measurements of the emissions from nine bi-fuel vehicles were conducted under different operating conditions on the real road. A comparative study was performed for the EFs of black carbon (BC), carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx) for each operating condition when the vehicles using gasoline and compressed NG (CNG) as fuel. BC EFs were reported in part I. The part II in this paper series reports the influence of operating conditions and fuel types on the EFs of CO, HC and NOx. Fuel-based EFs of CO showed good correlations with speed when burning CNG and gasoline. The correlation between fuel-based HC EFs and speed was relatively weak whether burning CNG or gasoline. The fuel-based NOx EFs moderately correlated with speed when burning CNG, but weakly correlated with gasoline. As for HC, the mileage-based EFs of gasoline vehicles are 2.39-12.59 times higher than those of CNG vehicles. The mileage-based NOx EFs of CNG vehicles are slightly higher than those of gasoline vehicles. These results would facilitate a detailed analysis of the environmental benefits for replacing gasoline with CNG in light duty vehicles.

  18. Toxicity of methyl tertiary butyl ether to Daphnia magna and photobacterium phosphoreum

    SciTech Connect

    Gupta, G.; Lin, Y.J.

    1995-10-01

    Methyl tertiary butyl ether (MTBE) is a liquid organic compound added to gasoline to increase its oxygen content and to reduce the emission of carbon monoxide during combustion in many urban areas. In order to meet the 1990 Clean Air Act amendments, gasoline must contain 2.7% oxygen (by weight) or 15% (by volume) of MTBE in gasoline to meet the regulations for the control of carbon monoxide emissions. Health effects caused by inhalation of MTBE include headaches, dizziness, irritated eyes and nausea; MTBE is one of cancer--causing chemicals. Intracaval injection of MTBE (0.2 mg/kg) caused the highest mortality (100%) in rats. General anesthetic effect induced by MTBE was found at or above 1200 mg/kg body weight; Rosenkranz and Klopman (1991) predicted that MTBE is neither a genotoxicant nor a carcinogen. Nevertheless, the safety of using MTBE in oxygenated fuels is now being questioned from its potential as groundwater pollutant. This study measures the toxicity of MTBE to Daphnia magna and Photobacterium phosphoreum. 13 refs.

  19. Heat shock proteins reduce toxicity of 1-methyl-4-phenylpyridinium ion in SK-N-SH cells.

    PubMed

    Fan, Guo-Hua; Qi, Chen; Chen, Sheng-Di

    2005-11-15

    The pathology of Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. However, the pathogenesis of PD remains unclear. Heat shock proteins (HSPs) have many functions, including inhibition of apoptosis and necrosis, protection from oxidative stress, and maintenance of the mitochondrial membrane potential, that are related to neurodegenerative diseases. 1-Methyl-4-phenylpyridinium ion (MPP(+)) is a neurotoxin that selectively inhibits the mitochondrial functions of DA neurons in the substantia nigra. MPP(+) administration is accepted as a model for PD. In the present study, we found that MPP(+) induced a concentration- and time-dependent decrease in cell viability. Lower concentrations of MPP(+) induced mainly early apoptosis, and, as the concentration increased, the number of late apoptotic and necrotic cells significantly increased. However, treated by heat shock preconditioning or transfection with HDJ-1, a homologue of human Hsp40, cells showed marked improvement in viability after exposure to the same concentrations of MPP(+). Compared with heat shock, HDJ-1 appeared to improve cell viability obviously. Similarly, HDJ-1 elicited significantly stronger protective effects against apoptosis and necrosis. In addition, HDJ-1 transfection maintained more injured cells in early apoptotic stages and inhibited the occurrence of late apoptotic/necrotic events. Heat shock and HDJ-1 both ameliorated MPP(+)-induced cytotoxicity by maintaining the mitochondrial membrane potential and reducing reactive oxygen species (ROS). Therefore, the effects of HSPs, such as reducing apoptosis and necrosis, preserving mitochondrial functions and decreasing oxidative stress, may bring a novel approach for PD therapy.

  20. Chelating efficacy of CaNa(2) EDTA on nickel-induced toxicity in Cirrhinus mrigala (Ham.) through its effects on glutathione peroxidase, reduced glutathione and lipid peroxidation.

    PubMed

    Gopal, Rengaswamy; Narmada, S; Vijayakumar, Remya; Jaleel, Cheruth Abdul

    2009-08-01

    In this age of modern biology, aquatic toxicological research has provided potential tools for ecotoxicologic investigations. Heavy metals primarily affect protein structures and induce a stress in the organisms. The present investigation was carried out to assess the effect of nickel chloride on the selected organs of the freshwater fish Cirrhinus mrigala and how CaNa(2) EDTA counters its effects as an antidote. Toxicity experiments were conducted for different exposure periods and also in certain tissues namely gill, liver, kidney and muscle. The total protein content, reduced glutathione, glutathione peroxidase and lipid peroxidation were found to be decreased in the nickel chloride treated tissues and the treatment with CaNa(2) EDTA+nickel chloride returned to near normal levels. Histopathological observations also revealed that after the administration of nickel chloride+CaNa(2) EDTA the chelator induced reduction in nickel toxicity. It has also contributed towards reduction in the pathological damage, thus enabling the organs to attain their near normal histological appearance. The present study shown that CaNa(2) EDTA is an effective chelating agent for the removal of nickel and it has proved efficient in restoring both the biochemical variables and pathological features immediately after a sub lethal exposure of nickel chloride in fish.