Science.gov

Sample records for gastric slow wave

  1. Surface Current Density Mapping for Identification of Gastric Slow Wave Propagation

    PubMed Central

    Bradshaw, L. A.; Cheng, L. K.; Richards, W. O.; Pullan, A. J.

    2009-01-01

    The magnetogastrogram records clinically relevant parameters of the electrical slow wave of the stomach noninvasively. Besides slow wave frequency, gastric slow wave propagation velocity is a potentially useful clinical indicator of the state of health of gastric tissue, but it is a difficult parameter to determine from noninvasive bioelectric or biomagnetic measurements. We present a method for computing the surface current density (SCD) from multichannel magnetogastrogram recordings that allows computation of the propagation velocity of the gastric slow wave. A moving dipole source model with hypothetical as well as realistic biomagnetometer parameters demonstrates that while a relatively sparse array of magnetometer sensors is sufficient to compute a single average propagation velocity, more detailed information about spatial variations in propagation velocity requires higher density magnetometer arrays. Finally, the method is validated with simultaneous MGG and serosal EMG measurements in a porcine subject. PMID:19403355

  2. Propagation of slow waves in the guinea-pig gastric antrum.

    PubMed

    Hirst, G David S; Garcia-Londoño, A Pilar; Edwards, Frank R

    2006-02-15

    Intracellular recordings were made from the circular layer of the intact muscular wall of the guinea-pig gastric antrum in preparations where much of the corpus remained attached. When two electrodes were positioned parallel to and near to the greater curvature, slow waves were first detected at the oral site and subsequently at the anal site: the oro-anal conduction velocity was found to be 2.5 mm s(-1). When one electrode was positioned near the greater curvature and the other at a circumferential location, slow waves were first detected near the greater curvature and subsequently at the circumferential site: the circumferential conduction velocity was 13.9 mm s(-1). When recordings were made from preparations in which the circular muscle layer had been removed, the oro-anal and the circumferential conduction velocities were both about 3.5 mm s(-1). When slow waves were recorded from preparations in which much of the myenteric network of antral interstitial cells (ICC(MY)) had been dissected away, slow waves were first detected near the region of intact ICC(MY) and subsequently at a circumferential location: the circumferential conduction velocity of slow waves in regions devoid of ICC(MY) was 14.7 mm s(-1). When the electrical properties of isolated single bundles of circular muscle were determined, their length constants were about 3 mm and their time constant about 230 ms, giving an asymptotic electrotonic propagation velocity of 25 mm s(-1). Oro-anal electrical coupling between adjacent bundles of circular muscle was found to vary widely: some bundles were well connected to neighbouring bundles whereas others were not. Together the observations suggest that the slow oro-anal progression of slow waves results from a slow conduction velocity of pacemaker potentials in the myenteric network of interstitial cells. The rapid circumferential conduction of slow waves results from the electrical properties of the circular muscle layer which allow intramuscular ICC

  3. Effects of nitric oxide on slow waves and spontaneous contraction of guinea pig gastric antral circular muscle.

    PubMed

    Kim, Taewan; La, Junho; Lee, Janghern; Yang, Ilsuk

    2003-08-01

    We examined the effects of nitric oxide (NO) donors, S-nitroso-L-cysteine (Cys-NO) and 3-morpholinosydnonimine hydrochloride (SIN-1), on slow waves and contractile activity in the circular muscle of guinea pig gastric antrum. In the presence of atropine and guanethidine, electrical field stimulation (EFS) reduced the amplitude of phasic contraction. The effect of EFS was significantly inhibited by both the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester and a soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). Cys-NO and SIN-1 mimicked the effect of EFS on phasic contraction and reduced the amplitude of slow waves in a concentration-dependent manner, with no effect on frequency and resting membrane potential. Phasic contraction was more sensitive to NO donors than slow waves. The inhibitory effects of NO donors were antagonized by ODQ and mimicked by a membrane permeable cGMP analogue 8-bromo-cGMP. Several K(+) channel blockers such as apamin, iberiotoxin, and glibenclamide had no effect on the inhibitory action of SIN-1. These results suggest that NO inhibits the phasic contraction and slow waves through cGMP-dependent mechanisms in guinea pig gastric antrum. The effect of NO is unlikely to be mediated by the activation of Ca(2+)-activated or ATP-sensitive K(+) channels.

  4. Effects of endothelin-1 on the membrane potential and slow waves in circular smooth muscle of rat gastric antrum.

    PubMed

    Imaeda, Kenro; Kato, Takashi; Okayama, Naotsuka; Imai, Seiji; Sasaki, Makoto; Kataoka, Hiromi; Nakazawa, Takahiro; Ohara, Hirotaka; Kito, Yoshihiko; Itoh, Makoto

    2004-10-01

    Electrophysiological effects of endothelin-1 (ET-1) on circular smooth muscle of rat gastric antrum were investigated by using intracellular membrane potential recording techniques. ET-1 (10 nM) caused an initial hyperpolarization of the membrane which was followed by a sustained depolarization. ET-1 also increased the frequency but not the amplitude of slow waves. In the presence of the endothelin type A (ETA) receptor antagonist, BQ123 (1 microM), ET-1 (10 nM) depolarized the membrane and increased the frequency of slow waves, but without the initial hyperpolarization. The selective endothelin type B (ETB) receptor agonist, sarafotoxin S6c (10 nM), also depolarized the membrane and increased the frequency of slow waves. In the presence of the ETB receptor antagonist, BQ788 (1 microM), ET-1 (10 nM) hyperpolarized the membrane. However, in the presence of BQ788, ET-1 caused neither the depolarization nor the increase in the frequency of the slow waves. The ET-1-induced hyperpolarization was completely abolished by apamin (0.1 microM). In the presence of apamin, ET-1 depolarized the membrane and increased the frequency of slow waves. The ET-1-induced depolarization was significantly attenuated by 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS, 0.3 mM). The increase of the frequency by ET-1 was observed both in the presence and absence of DIDS. These results suggest that, ET-1 hyperpolarizes the membrane by the activation of Ca2+-activated K+ channels via ETA receptors, and depolarizes the membrane by the activation of Ca2+-activated Cl- channels via ETB receptors. ET-1 also appears to increase the frequency of slow waves via ETB receptors, however this mechanism would seem to be independent of membrane depolarization.

  5. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in-silico modeling

    PubMed Central

    Du, Peng; Hameed, Ahmer; Angeli, Timothy R.; Lahr, Christopher; Abell, Thomas L.; Cheng, Leo K.; O’Grady, Gregory

    2015-01-01

    Background Gastric contractions are coordinated by slow waves, generated by interstitial cells of Cajal (ICC). Gastric surgery affects slow wave conduction, potentially contributing to post-operative gastric dysfunction. However, the impact of gastric cuts on slow waves has not been comprehensively evaluated. This study aimed to define consequences of surgical excisions on gastric slow waves by applying high-resolution (HR) electrical mapping and in-silico modeling. Methods Patients undergoing gastric stimulator implantation (n=10) underwent full-thickness stapled excisions (25×15 mm, distal corpus) for histological evaluation, enabling HR mapping (256 electrodes; 36cm2) over and adjacent to excisions. A biophysically-based in-silico model of bi-directionally coupled ICC networks was developed and applied to investigate the underlying conduction mechanisms and importance of excision orientation. Results Normal gastric slow waves propagated aborally (3.0±0.2 cycles/min). Excisions induced complete conduction block and wavelets that rotated around blocks, then propagated rapidly circumferentially distal to blocks (8.5±1.2 vs normal 3.6±0.4 mm s−1; p<0.01). This ‘conduction anisotropy’ homeostatically restored antegrade propagating gastric wavefronts distal to excisions. Excisions were associated with complex dysrhythmias in 5 patients: retrograde propagation (3/10), ectopics (3/10), functional blocks (2/10) and collisions (1/10). Simulations demonstrated conduction anisotropy emerged from bidirectional coupling within ICC layers and showed transverse incision length and orientation correlated to degree of conduction distortion. Conclusions Orienting incisions in the longitudinal gastric axis causes least disruption to electrical conduction and motility. However, if transverse incisions are made, a homeostatic mechanism of gastric conduction anisotropy compensates by restoring aborally-propagating wavefronts. Complex dysrhythmias accompanying excisions could

  6. A miniature bidirectional telemetry system for in vivo gastric slow wave recordings.

    PubMed

    Farajidavar, Aydin; O'Grady, Gregory; Rao, Smitha M N; Cheng, Leo K; Abell, Thomas; Chiao, J-C

    2012-06-01

    Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical userinter face. The front-end module conditions the analogue signals, then digitizes and loads the data into a radio for transmission. Data receipt at the backend is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35 × 35 × 27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124 h operation when utilizing a 560 mAh, 3 V battery. In vivo,slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles min−1), automated activation time detection was modestly better for the wireless system (5% versus 14% FP rate), and signal amplitudes were modestly higher via the wireless system (462 versus 3 86μV; p<0.001). This telemetric system for slow wave acquisition is reliable,power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients.0967-3334/

  7. An inductive narrow-pulse RFID telemetry system for gastric slow waves monitoring.

    PubMed

    Javan-Khoskholgh, Amir; Abukhalaf, Zaid; Li, Ji; Miller, Larry S; Kiani, Mehdi; Farajidavar, Aydin; Javan-Khoskholgh, Amir; Abukhalaf, Zaid; Ji Li; Miller, Larry S; Kiani, Mehdi; Farajidavar, Aydin; Miller, Larry S; Javan-Khoskholgh, Amir; Li, Ji; Kiani, Mehdi; Abukhalaf, Zaid

    2016-08-01

    We present a passive data telemetry system for real-time monitoring of gastric electrical activity of a living subject. The system is composed of three subsystems: an implantable unit (IU), a wearable unit (WU), and a stationary unit (SU). Data communication between the IU and WU is based on a radio-frequency identification (RFID) link operating at 13.56 MHz. Since wireless power transmission and reverse data telemetry system share the same inductive interface, a load shift keying (LSK)-based differential pulse position (DPP) coding data communication with only 6.25% duty cycle is developed to guarantee consistent wireless downlink power transmission and uplink high data transfer rate, simultaneously. The clock and data are encoded into one signal by an MSP430 microcontroller (MCU) at the IU side. This signal is sent to the WU through the inductive link, where decoded by an MSP432 MCU. Finally, the retrieved data at the WU are transmitted to the SU connected to a PC via a 2.4 GHz transceiver for real-time display and analysis. The results of the measurements on the implemented test bench, demonstrate IU-WU 125 kb/s and WU-SU 2 Mb/s data transmission rate with no observed mismatch, while the data stream was randomly generated, and matching between the transmitted data by the IU and received by the SU verified by a custom-made automated software.

  8. Slow frictional waves

    NASA Astrophysics Data System (ADS)

    Viswanathan, Koushik; Sundaram, Narayan; Chandrasekar, Srinivasan

    Stick-slip, manifest as intermittent tangential motion between two dry solid surfaces, is a friction instability that governs diverse phenomena from automobile brake squeals to earthquakes. We show, using high-speed in situ imaging of an adhesive polymer interface, that low velocity stick-slip is fundamentally of three kinds, corresponding to passage of three different surface waves -- separation pulses, slip pulses and the well-known Schallamach waves. These waves, traveling much slower than elastic waves, have clear distinguishing properties. Separation pulses and Schallamach waves involve local interface separation, and propagate in opposite directions while slip pulses are characterized by a sharp stress front and do not display any interface detachment. A change in the stick-slip mode from separation to slip pulse is effected simply by increasing the normal force. Together, these three waves constitute all possible stick-slip modes in adhesive friction and are shown to have direct analogues in muscular locomotory waves in soft bodied invertebrates. A theory for slow wave propagation is also presented which is capable of explaining the attendant interface displacements, velocities and stresses.

  9. Slow wave sleep dreaming.

    PubMed

    Cavallero, C; Cicogna, P; Natale, V; Occhionero, M; Zito, A

    1992-12-01

    Fifty volunteers slept two nonconsecutive nights in a sleep laboratory under electropolygraphic control. They were awakened for one report per night. Awakenings were made, in counterbalanced order, from slow wave sleep (SWS--stage 3-4 and stage 4) and rapid eye movement (REM) sleep. Following dream reporting, subjects were asked to identify memory sources of their dream imagery. Two independent judges reliably rated mentation reports for temporal units and for several content and structural dimensions. The same judges also categorized memory sources as autobiographical episodes, abstract self-references, or semantic knowledge. We found that REM reports were significantly longer than SWS reports. Minor content SWS-REM differences were also detected. Moreover, semantic knowledge was more frequently mentioned as a dream source for REM than for SWS dream reports. These findings are interpreted as supporting the hypothesis that dreaming is a continuous process that is not unique to REM sleep. Different levels of engagement of the cognitive system are responsible for the few SWS-REM differences that have been detected.

  10. FEL on slow cyclotron wave

    SciTech Connect

    Silivra, A.

    1995-12-31

    A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.

  11. Slow wave sleep in crayfish.

    PubMed

    Ramón, Fidel; Hernández-Falcón, Jesús; Nguyen, Bao; Bullock, Theodore H

    2004-08-10

    Clear evidence of sleep in invertebrates is still meager. Defined as a distinct state of reduced activity, arousability, attention, and initiative, it is well established in mammals, birds, reptiles, and teleosts. It is commonly defined by additional electroencephalographic criteria that are only well established in mammals and to some extent in birds. Sleep states similar to those in mammals, except for electrical criteria, seem to occur in some invertebrates, based on behavior and some physiological observations. Currently the most compelling evidence for sleep in invertebrates (evidence that meets most standard criteria for sleep) has been obtained in the fruit fly Drosophila melanogaster. However, in mammals, sleep is also characterized by a brain state different from that at rest but awake. The electrophysiological slow wave criterion for this state is not seen in Drosophila or in honey bees. Here, we show that, in crayfish, a behavioral state with elevated threshold for vibratory stimulation is accompanied by a distinctive form of slow wave electrical activity of the brain, quite different from that during waking rest. Therefore, crayfish can attain a sleep state comparable to that of mammals.

  12. Excitation of a slow wave structure

    SciTech Connect

    Zhang Peng; Lau, Y. Y.; Hoff, Brad; French, D. M.; Luginsland, J. W.

    2012-12-15

    The Green's function on a slow wave structure is constructed. The Green's function includes all radial modes, and for each radial mode, all space harmonics. We compare the analytic solution of the frequency response on the slow wave structure with that obtained from a particle-in-cell code. Favorable comparison is obtained when the first few lower order modes are resonantly excited. This gives some confidence in the prediction of converting a pulse train into radiation using a slow wave structure.

  13. Slow wave propagation in soft adhesive interfaces.

    PubMed

    Viswanathan, Koushik; Sundaram, Narayan K; Chandrasekar, Srinivasan

    2016-11-16

    Stick-slip in sliding of soft adhesive surfaces has long been associated with the propagation of Schallamach waves, a type of slow surface wave. Recently it was demonstrated using in situ experiments that two other kinds of slow waves-separation pulses and slip pulses-also mediate stick-slip (Viswanathan et al., Soft Matter, 2016, 12, 5265-5275). While separation pulses, like Schallamach waves, involve local interface detachment, slip pulses are moving stress fronts with no detachment. Here, we present a theoretical analysis of the propagation of these three waves in a linear elastodynamics framework. Different boundary conditions apply depending on whether or not local interface detachment occurs. It is shown that the interface dynamics accompanying slow waves is governed by a system of integral equations. Closed-form analytical expressions are obtained for the interfacial pressure, shear stress, displacements and velocities. Separation pulses and Schallamach waves emerge naturally as wave solutions of the integral equations, with oppositely oriented directions of propagation. Wave propagation is found to be stable in the stress regime where linearized elasticity is a physically valid approximation. Interestingly, the analysis reveals that slow traveling wave solutions are not possible in a Coulomb friction framework for slip pulses. The theory provides a unified picture of stick-slip dynamics and slow wave propagation in adhesive contacts, consistent with experimental observations.

  14. The role of Biot slow waves in electroseismic wave phenomena.

    PubMed

    Pride, Steven R; Garambois, Stéphane

    2002-02-01

    The electromagnetic fields that are generated as a spherical seismic wave (either P or S) traverses an interface separating two porous materials are numerically modeled both with and without the generation of Biot slow waves at the interface. In the case of an incident fast-P wave, the predicted electric-field amplitudes when slow waves are neglected can easily be off by as much as an order of magnitude. In the case of an incident S wave, the error is much smaller (typically on the order of 10% or less) because not much S-wave energy gets converted into slow waves. In neglecting the slow waves, only six plane waves (reflected and transmitted fast-P, S, and EM waves) are available with which to match the eight continuity conditions that hold at each interface. This overdetermined problem is solved by placing weights on the eight continuity conditions so that those conditions that are most important for obtaining the proper response are emphasized. It is demonstrated that when slow waves are neglected, it is best to also neglect the continuity of the Darcy flow and fluid pressure across an interface. The principal conclusion of this work is that to properly model the electromagnetic (EM) fields generated at an interface by an incident seismic wave, the full Biot theory that allows for generation of slow waves must be employed.

  15. Slow deterministic vector rogue waves

    NASA Astrophysics Data System (ADS)

    Sergeyev, S. V.; Kolpakov, S. A.; Mou, Ch.; Jacobsen, G.; Popov, S.; Kalashnikov, V.

    2016-03-01

    For an erbium-doped fiber laser mode-locked by carbon nanotubes, we demonstrate experimentally and theoretically a new type of the vector rogue waves emerging as a result of the chaotic evolution of the trajectories between two orthogonal states of polarization on the Poincare sphere. In terms of fluctuation induced phenomena, by tuning polarization controller for the pump wave and in-cavity polarization controller, we are able to control the Kramers time, i.e. the residence time of the trajectory in vicinity of each orthogonal state of polarization, and so can cause the rare events satisfying rogue wave criteria and having the form of transitions from the state with the long residence time to the state with a short residence time.

  16. [Slow pressure waves during intracranial hypertension].

    PubMed

    Lemaire, J J

    1997-01-01

    Intracranial pressure waves include fast waves (pulse and respiration) and slow waves. Only the latter are considered here. Since the definition of three wave types in the pioneering works of Janny (1950) and Lundberg (1960), their study of frequential characteristics shows they are included in a spectrum where three contiguous frequency bands are individualised: the B wave band (BW) between 8 x 10(-3) Hz and 50 x 10(-3) Hz; the Infra B band (IB) below 8 x 10(-3) Hz; and the Ultra B band (UB) beyond 50 x 10(-3) Hz to 200 x 10(-3) Hz. The origin of these waves is vascular and some may be physiological. They are probably generated by central neuro-pacemakers and/or cyclic phenomena of cerebral autoregulation. They are linked with slow peripheral arterial pressure waves, with biological rhythms and with biomechanics and vasomotricity in the craniospinal enclosure. They are pathological for the slowest (IB), particularly if they are plateau waves, but the physiologic-pathologic boundary is not yet established for each type of slow waves. They can cause severe consequences if they result in major cerebral perfusion pressure changes, and if they induce or worsen herniations.

  17. Clinical markers of slow healing and relapsing gastric ulcer.

    PubMed Central

    Battaglia, G; Di Mario, F; Piccoli, A; Vianello, F; Farinati, F; Naccarato, R

    1987-01-01

    The aim of the study was to identify the clinical markers useful in characterising slow healing and relapsing gastric ulcer patients. Ninety nine subjects entered the short term and 79 the long term study (12 months). The following parameters were taken into account: therapy, sex, age, smoking habit, alcohol consumption, analgesic intake, peptic ulcer family history and onset of the disease. Results of the studies were analysed by means of chi 2 test and logistic regression, both in stepwise and in specifying models. Cigarette smoking was found to be the most important risk factor of non-healing (p = 0.04). In women with late onset of the disease, cigarette smoking identified the gastric ulcer subjects at higher risk of non-healing with a predictive probability of 0.4679. Age under 50 years was found to be the most important risk factor of relapsing throughout the entire 12 month follow up period (p = 0.025). In those under 50 years, cigarette smoking and negative peptic ulcer family history in combination, identified the gastric ulcer subjects at higher risk of relapsing, the predicted probability being 0.6027. It is concluded that cigarette smoking is the most important risk factor for non-healing and those who relapse under the age of 50. The possibility of singling out categories of patients more prone not to heal and to relapse suggests new strategies in the management of gastric ulcer disease. PMID:3557191

  18. Inhomogeneities in the propagation of the slow wave in the stomach.

    PubMed

    Lammers, W J

    2015-10-01

    The propagation of the slow wave in the stomach and its role in inducing sweeping peristaltic contractions toward the pylorus, essential for a proper digestion and emptying, have been studied for many years. Irregularities in the timing or in the pattern of propagation of the slow wave have been known to induce various gastric malfunctions and, recently, several types of gastric dysrhythmias have been described which could lead to gastric contraction abnormalities. In this study, Du et al. have analyzed the disturbances caused by a simple transmural incision in a human stomach, performed to obtain a biopsy of the muscle, on the propagation pattern of the slow wave. In addition, they show that such an incision may by itself also induce new types of gastric dysrhythmias. These results are important in demonstrating that the function of the stomach can easily be disturbed by such procedures. This mini-review describes several ways in which inhomogeneities in propagation may affect the conduction pattern of the slow wave, including the genesis of several dysrhythmias, and what is currently known about their impact on gastric contraction and digestion.

  19. Every slow-wave impulse is associated with motor activity of the human stomach.

    PubMed

    Hocke, Michael; Schöne, Ulrike; Richert, Hendryk; Görnert, Peter; Keller, Jutta; Layer, Peter; Stallmach, Andreas

    2009-04-01

    Using a newly developed high-resolution three-dimensional magnetic detector system (3D-MAGMA), we observed periodical movements of a small magnetic marker in the human stomach at the typical gastric slow-wave frequency, that is 3 min(-1). Thus we hypothesized that each gastric slow wave induces a motor response that is not strong enough to be detected by conventional methods. Electrogastrographies (EGG, Medtronic, Minneapolis, MN) for measurement of gastric slow waves and 3D-MAGMA (Innovent, Jena, Germany) measurements were simultaneously performed in 21 healthy volunteers (10 men, 40.4+/-13.6 yr; 11 women, 35.8+/-11.6 yr). The 3D-MAGMA system contains 27 highly sensitive magnetic field sensors that are able to locate a magnetic pill inside a human body with an accuracy of +/-5 mm or less in position and +/-2 degrees in orientation at a frequency of 50 Hz. Gastric transit time of the magnetic marker ranged from 19 to 154 min. The mean dominant EGG frequency while the marker was in the stomach was 2.87+/-0.15 cpm. The mean dominant 3D-MAGMA frequency during this interval was nearly identical; that is, 2.85+/-0.15 movements per minute. We observed a strong linear correlation between individual dominant EGG and 3D-MAGMA frequency (R=0.66, P=0.0011). Our findings suggest that each gastric slow wave induces a minute contraction that is too small to be detected by conventional motility investigations but can be recorded by the 3D-MAGMA system. The present slow-wave theory that assumes that the slow wave is a pure electrical signal should be reconsidered.

  20. Human Gamma Oscillations during Slow Wave Sleep

    PubMed Central

    Valderrama, Mario; Crépon, Benoît; Botella-Soler, Vicente; Martinerie, Jacques; Hasboun, Dominique; Alvarado-Rojas, Catalina; Baulac, Michel; Adam, Claude; Navarro, Vincent; Le Van Quyen, Michel

    2012-01-01

    Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS). At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30–50 Hz) and high (60–120 Hz) frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves (“IN-phase” pattern), confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave (“ANTI-phase” pattern). This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks. PMID:22496749

  1. Slow Wave Sleep and Long Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Whitmire, Alexandra; Orr, Martin; Arias, Diana; Rueger, Melanie; Johnston, Smith; Leveton, Lauren

    2012-01-01

    While ground research has clearly shown that preserving adequate quantities of sleep is essential for optimal health and performance, changes in the progression, order and /or duration of specific stages of sleep is also associated with deleterious outcomes. As seen in Figure 1, in healthy individuals, REM and Non-REM sleep alternate cyclically, with stages of Non-REM sleep structured chronologically. In the early parts of the night, for instance, Non-REM stages 3 and 4 (Slow Wave Sleep, or SWS) last longer while REM sleep spans shorter; as night progresses, the length of SWS is reduced as REM sleep lengthens. This process allows for SWS to establish precedence , with increases in SWS seen when recovering from sleep deprivation. SWS is indeed regarded as the most restorative portion of sleep. During SWS, physiological activities such as hormone secretion, muscle recovery, and immune responses are underway, while neurological processes required for long term learning and memory consolidation, also occur. The structure and duration of specific sleep stages may vary independent of total sleep duration, and changes in the structure and duration have been shown to be associated with deleterious outcomes. Individuals with narcolepsy enter sleep through REM as opposed to stage 1 of NREM. Disrupting slow wave sleep for several consecutive nights without reducing total sleep duration or sleep efficiency is associated with decreased pain threshold, increased discomfort, fatigue, and the inflammatory flare response in skin. Depression has been shown to be associated with a reduction of slow wave sleep and increased REM sleep. Given research that shows deleterious outcomes are associated with changes in sleep structure, it is essential to characterize and mitigate not only total sleep duration, but also changes in sleep stages.

  2. Slow Wave Sleep and Long Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Orr, M.; Whitmire, A.; Arias, D.; Leveton, L.

    2011-01-01

    To review the literature on slow wave sleep (SWS) in long duration space flight, and place this within the context of the broader literature on SWS particularly with respect to analogous environments such as the Antarctic. Explore how SWS could be measured within the International Space Station (ISS) context with the aim to utilize the ISS as an analog for future extra-orbital long duration missions. Discuss the potential use of emergent minimally intrusive wireless technologies like ZEO for integrated prelaunch, flight, and return to Earth analysis and optimization of SWS (and general quality of sleep).

  3. Coupling between whistler waves and slow-mode solitary waves

    SciTech Connect

    Tenerani, A.; Califano, F.; Pegoraro, F.; Le Contel, O.

    2012-05-15

    The interplay between electron- and ion-scale phenomena is of general interest for both laboratory and space plasma physics. In this paper, we investigate the linear coupling between whistler waves and slow magnetosonic solitons through two-fluid numerical simulations. Whistler waves can be trapped in the presence of inhomogeneous external fields such as a density hump or hole where they can propagate for times much longer than their characteristic time scale, as shown by laboratory experiments and space measurements. Space measurements have detected whistler waves also in correspondence to magnetic holes, i.e., to density humps with magnetic field minima extending on ion-scales. This raises the interesting question of how ion-scale structures can couple to whistler waves. Slow magnetosonic solitons share some of the main features of a magnetic hole. Using the ducting properties of an inhomogeneous plasma as a guide, we present a numerical study of whistler waves that are trapped and transported inside propagating slow magnetosonic solitons.

  4. Slow Magnetoacoustic Waves in Coronal Loops?

    NASA Astrophysics Data System (ADS)

    Robbrecht, E.; Berghmans, D.; Nakariakov, V.; Poedts, S.

    1999-10-01

    On May 13, 1998 the EIT and TRACE instruments produced simultaneous high cadence image sequences of the same active region (AR 8218). TRACE achieved a 25 sec cadence in the 171 deg passband while EIT achieved a 15 sec cadence (operating in 'shutterless mode', SOHO JOP 80) in the 195 deg passband. These high cadence observations in two complementary wavelengths have revealed the existence of weak disturbances in an extended coronal loop system. The disturbances originate from small scale brightenings at the footpoints of the loops and propagate along the loops at an apparant speed of the order of 150 km/s which is close to the expected sound speed. To conclude whether these propagating disturbances should be interpreted as slow magnetoacoustic waves or as mass motions ('microflows'), we compare our observational findings with theoretical models. Our results suggest that the recent discovery of DeForest and Gurman (1998) of slow MHD waves in polar plumes, are in fact not typical of polar plumes but occur also in extended coronal structures elsewhere.

  5. Slow waves in mutually inhibitory neuronal networks

    NASA Astrophysics Data System (ADS)

    Jalics, Jozsi

    2004-05-01

    A variety of experimental and modeling studies have been performed to investigate wave propagation in networks of thalamic neurons and their relationship to spindle sleep rhythms. It is believed that spindle oscillations result from the reciprocal interaction between thalamocortical (TC) and thalamic reticular (RE) neurons. We consider a network of TC and RE cells reduced to a one-layer network model and represented by a system of singularly perturbed integral-differential equations. Geometric singular perturbation methods are used to prove the existence of a locally unique slow wave pulse that propagates along the network. By seeking a slow pulse solution, we reformulate the problem to finding a heteroclinic orbit in a 3D system of ODEs with two additional constraints on the location of the orbit at two distinct points in time. In proving the persistence of the singular heteroclinic orbit, difficulties arising from the solution passing near points where normal hyperbolicity is lost on a 2D critical manifold are overcome by employing results by Wechselberger [Singularly perturbed folds and canards in R3, Thesis, TU-Wien, 1998].

  6. Superconducting niobium thin film slow-wave structures

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.; Petty, S. M.; Allen, L. H.; Beasley, M. R.; Hammond, R. H.

    1983-01-01

    A superconducting comb structure as a slow-wave element in a traveling-wave maser will significantly improve maser noise temperature and gain by reducing the insertion loss. The results of the insertion loss measurements of superconducting niobium slow-wave structures subjected to maser operating conditions at X-Band frequencies are presented.

  7. Slow-wave analysis on double layered substrates

    NASA Astrophysics Data System (ADS)

    Hindy, M. A.

    Full wave analysis of a slow-wave microstrip transmission line on ferromagnetic semiconductor with insulator is presented. Spectral domain method with sampling theorem are used. A new current distribution is applied. The obtained slow-wave factor is higher than that when using lossless ferromagnetic material only. Phase shifting is achieved also by the same structure.

  8. Review of Slow-Wave Structures

    NASA Technical Reports Server (NTRS)

    Wallett, Thomas M.; Qureshi, A. Haq

    1994-01-01

    The majority of recent theoretical and experimental reports published in the literature dealing with helical slow-wave structures focus on the dispersion characteristics and their effects due to the finite helix wire thickness and attenuation, dielectric loading, metal loading, and the introduction of plasma. In many papers, an effective dielectric constant is used to take into account helix wire dimensions and conductivity losses, while the propagation constant of the signal and the interaction impedance of the structure are found to depend on the surface resistivity of the helix. Also, various dielectric supporting rods are simulated by one or several uniform cylinders having an effective dielectric constant, while metal vane loading and plasma effects are incorporated in the effective dielectric constant. The papers dealing with coupled cavities and folded or loaded wave guides describe equivalent circuit models, efficiency enhancement, and the prediction of instabilities for these structures. Equivalent circuit models of various structures are found using computer software programs SUPERFISH and TOUCHSTONE. Efficiency enhancement in tubes is achieved through dynamic velocity and phase adjusted tapers using computer techniques. The stability threshold of unwanted antisymmetric and higher order modes is predicted using SOS and MAGIC codes and the dependence of higher order modes on beam conductance, section length, and effective Q of a cavity is shown.

  9. A model of slow wave propagation and entrainment along the stomach.

    PubMed

    Buist, Martin L; Corrias, Alberto; Poh, Yong Cheng

    2010-09-01

    Interstitial cells of Cajal (ICC) isolated from different regions of the stomach generate spontaneous electrical slow wave activity at different frequencies, with cells from the proximal stomach pacing faster than their distal counterparts. However, in vivo there exists a uniform pacing frequency; slow waves propagate aborally from the proximal stomach and subsequently entrain distal tissues. Significant resting membrane potential (RMP) gradients also exist within the stomach whereby membrane polarization generally increases from the fundus to the antrum. Both of these factors play a major role in the macroscopic electrical behavior of the stomach and as such, any tissue or organ level model of gastric electrophysiology should ensure that these phenomena are properly described. This study details a dual-cable model of gastric electrical activity that incorporates biophysically detailed single-cell models of the two predominant cell types, the ICC and smooth muscle cells. Mechanisms for the entrainment of the intrinsic pacing frequency gradient and for the establishment of the RMP gradient are presented. The resulting construct is able to reproduce experimentally recorded slow wave activity and provides a platform on which our understanding of gastric electrical activity can advance.

  10. Waves in low-beta plasmas - Slow shocks

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.; Hundhausen, A. J.

    1989-01-01

    Results from wave theory and numerical simulation of the nonlinear MHD equations are used to study the response of a conducting fluid containing an embedded magnetic field with beta less than 1 to the sudden injection of material along the field lines. It is shown that the injection produces slow shocks with configurations which are concave toward the ejecta driver. Fast-mode waves which have not steepened into the shock precede the slow shock and alter the ambient medium. When beta equals 0.1, the fast mode becomes a transverse wave for parallel propagation, while the slow wave approaches a longitudinal, or sound, wave.

  11. Slow Wave Enhanced Antennas at RF and Optical Frequencies

    DTIC Science & Technology

    2010-07-21

    RIU . Fig. 1.1 SEM image of (a) an InGaAsP PhC nanobeam slow light slot waveguide, (b) a cavity type InGaAsP PhC nanobeam slow light slot...a high sensitivity of about 900 nm/ RIU . 2. Slow wave RF antenna (a) By introducing complementary split ring resonators (CSRR) and complementary

  12. Enhancement of sleep slow waves: underlying mechanisms and practical consequences

    PubMed Central

    Bellesi, Michele; Riedner, Brady A.; Garcia-Molina, Gary N.; Cirelli, Chiara; Tononi, Giulio

    2014-01-01

    Even modest sleep restriction, especially the loss of sleep slow wave activity (SWA), is invariably associated with slower electroencephalogram (EEG) activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation (tDCS) and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex (KC), a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep (SWS) enhancement. PMID:25389394

  13. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    PubMed

    Bellesi, Michele; Riedner, Brady A; Garcia-Molina, Gary N; Cirelli, Chiara; Tononi, Giulio

    2014-01-01

    Even modest sleep restriction, especially the loss of sleep slow wave activity (SWA), is invariably associated with slower electroencephalogram (EEG) activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation (tDCS) and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex (KC), a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep (SWS) enhancement.

  14. Slow Magnetoacoustic Wave Oscillation of an Expanding Coronal Loop

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Ofman, L.

    2011-10-01

    We simulated an expanding loop or slow coronal mass ejection (CME) in the solar corona dimensioned with size parameters taken from real coronal expanding loops observed with the STEREO spacecraft. We find that the loop expands to Sun's size within about one hour, consistent with slow CME observations. At the top of the loop, plasma is being blown off the loop, enabled with the reconnection between the loop's flux rope magnetic field and the radial magnetic field of the Sun, thus yielding feeding material for the formation of the slow solar wind. This mechanism is in accordance with the observed blob formation of the slow solar wind. We find wave packets traveling with local sound speed downward toward the footpoints of the loop, already seen in coronal seismology observations and simulations of stationary coronal loops. Here, we generalize these results for an expanding medium. We also find a reflection of the wave packets, identified as slow magnetoacoustic waves, at the footpoints of the loop. This confirms the formation of standing waves within the coronal loop. In particular, the reflected waves can partly escape the loop top and contribute to the heating of the solar wind. The present study improves our understanding on how loop material can emerge to form blobs, major ingredients of slow CMEs, and how the release of the wave energy stored in slow magnetoacoustic waves, and transported away from the Sun within expanding loops, contributes to the acceleration and formation of the slow solar wind.

  15. Slow waves, sharp waves, ripples, and REM in sleeping dragons.

    PubMed

    Shein-Idelson, Mark; Ondracek, Janie M; Liaw, Hua-Peng; Reiter, Sam; Laurent, Gilles

    2016-04-29

    Sleep has been described in animals ranging from worms to humans. Yet the electrophysiological characteristics of brain sleep, such as slow-wave (SW) and rapid eye movement (REM) activities, are thought to be restricted to mammals and birds. Recording from the brain of a lizard, the Australian dragon Pogona vitticeps, we identified SW and REM sleep patterns, thus pushing back the probable evolution of these dynamics at least to the emergence of amniotes. The SW and REM sleep patterns that we observed in lizards oscillated continuously for 6 to 10 hours with a period of ~80 seconds. The networks controlling SW-REM antagonism in amniotes may thus originate from a common, ancient oscillator circuit. Lizard SW dynamics closely resemble those observed in rodent hippocampal CA1, yet they originate from a brain area, the dorsal ventricular ridge, that has no obvious hodological similarity with the mammalian hippocampus.

  16. Theory of Slow Waves in Transversely Nonuniform Plasma Waveguides

    SciTech Connect

    Kuzelev, M.V.; Romanov, R.V.; Rukhadze, A.A.

    2005-02-15

    A general method is developed for a numerical analysis of the frequency spectra of internal, internal-surface, and surface slow waves in a waveguide with transverse plasma density variations. For waveguides with a piecewise constant plasma filling, the spectra of slow waves are thoroughly examined in the limits of an infinitely weak and an infinitely strong external magnetic field. For a smooth plasma density profile, the frequency spectrum of long-wavelength surface waves remains unchanged, but a slow damping rate appears that is caused by the conversion of the surface waves into internal plasma waves at the plasma resonance point. As for short-wavelength internal waves, they are strongly damped by this effect. It is pointed out that, for annular plasma geometry, which is of interest from the experimental point of view, the spectrum of the surface waves depends weakly on the magnetic field strength in the waveguide.

  17. Spontaneous neural activity during human slow wave sleep.

    PubMed

    Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Albouy, Geneviève; Boly, Mélanie; Darsaud, Annabelle; Gais, Steffen; Rauchs, Géraldine; Sterpenich, Virginie; Vandewalle, Gilles; Carrier, Julie; Moonen, Gustave; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Phillips, Christophe; Maquet, Pierre

    2008-09-30

    Slow wave sleep (SWS) is associated with spontaneous brain oscillations that are thought to participate in sleep homeostasis and to support the processing of information related to the experiences of the previous awake period. At the cellular level, during SWS, a slow oscillation (<1 Hz) synchronizes firing patterns in large neuronal populations and is reflected on electroencephalography (EEG) recordings as large-amplitude, low-frequency waves. By using simultaneous EEG and event-related functional magnetic resonance imaging (fMRI), we characterized the transient changes in brain activity consistently associated with slow waves (>140 microV) and delta waves (75-140 microV) during SWS in 14 non-sleep-deprived normal human volunteers. Significant increases in activity were associated with these waves in several cortical areas, including the inferior frontal, medial prefrontal, precuneus, and posterior cingulate areas. Compared with baseline activity, slow waves are associated with significant activity in the parahippocampal gyrus, cerebellum, and brainstem, whereas delta waves are related to frontal responses. No decrease in activity was observed. This study demonstrates that SWS is not a state of brain quiescence, but rather is an active state during which brain activity is consistently synchronized to the slow oscillation in specific cerebral regions. The partial overlap between the response pattern related to SWS waves and the waking default mode network is consistent with the fascinating hypothesis that brain responses synchronized by the slow oscillation restore microwake-like activity patterns that facilitate neuronal interactions.

  18. Essential thalamic contribution to slow waves of natural sleep.

    PubMed

    David, François; Schmiedt, Joscha T; Taylor, Hannah L; Orban, Gergely; Di Giovanni, Giuseppe; Uebele, Victor N; Renger, John J; Lambert, Régis C; Leresche, Nathalie; Crunelli, Vincenzo

    2013-12-11

    Slow waves represent one of the prominent EEG signatures of non-rapid eye movement (non-REM) sleep and are thought to play an important role in the cellular and network plasticity that occurs during this behavioral state. These slow waves of natural sleep are currently considered to be exclusively generated by intrinsic and synaptic mechanisms within neocortical territories, although a role for the thalamus in this key physiological rhythm has been suggested but never demonstrated. Combining neuronal ensemble recordings, microdialysis, and optogenetics, here we show that the block of the thalamic output to the neocortex markedly (up to 50%) decreases the frequency of slow waves recorded during non-REM sleep in freely moving, naturally sleeping-waking rats. A smaller volume of thalamic inactivation than during sleep is required for observing similar effects on EEG slow waves recorded during anesthesia, a condition in which both bursts and single action potentials of thalamocortical neurons are almost exclusively dependent on T-type calcium channels. Thalamic inactivation more strongly reduces spindles than slow waves during both anesthesia and natural sleep. Moreover, selective excitation of thalamocortical neurons strongly entrains EEG slow waves in a narrow frequency band (0.75-1.5 Hz) only when thalamic T-type calcium channels are functionally active. These results demonstrate that the thalamus finely tunes the frequency of slow waves during non-REM sleep and anesthesia, and thus provide the first conclusive evidence that a dynamic interplay of the neocortical and thalamic oscillators of slow waves is required for the full expression of this key physiological EEG rhythm.

  19. Global intracellular slow-wave dynamics of the thalamocortical system.

    PubMed

    Sheroziya, Maxim; Timofeev, Igor

    2014-06-25

    It is widely accepted that corticothalamic neurons recruit the thalamus in slow oscillation, but global slow-wave thalamocortical dynamics have never been experimentally shown. We analyzed intracellular activities of neurons either from different cortical areas or from a variety of specific and nonspecific thalamic nuclei in relation to the phase of global EEG signal in ketamine-xylazine anesthetized mice. We found that, on average, slow-wave active states started off within frontal cortical areas as well as higher-order and intralaminar thalamus (posterior and parafascicular nuclei) simultaneously. Then, the leading edge of active states propagated in the anteroposterior/lateral direction over the cortex at ∼40 mm/s. The latest structure we recorded within the slow-wave cycle was the anterior thalamus, which followed active states of the retrosplenial cortex. Active states from different cortical areas tended to terminate simultaneously. Sensory thalamic ventral posterior medial and lateral geniculate nuclei followed cortical active states with major inhibitory and weak tonic-like "modulator" EPSPs. In these nuclei, sharp-rising, large-amplitude EPSPs ("drivers") were not modulated by cortical slow waves, suggesting their origin in ascending pathways. The thalamic active states in other investigated nuclei were composed of depolarization: some revealing "driver"- and "modulator"-like EPSPs, others showing "modulator"-like EPSPs only. We conclude that sensory thalamic nuclei follow the propagating cortical waves, whereas neurons from higher-order thalamic nuclei display "hub dynamics" and thus may contribute to the generation of cortical slow waves.

  20. Supplementing glutamate to partial enteral nutrition slows gastric emptying rate in preterm pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premature infants frequently present with gastroduodenal motor dysfunction, which is manifest clinically as feeding intolerance resulting from slow gastric emptying. Glutamate (GLU) is the major excitatory neurotransmitter in the body and multiple GLU receptors and transporters have been found in th...

  1. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  2. Scattering resonance of elastic wave and low-frequency equivalent slow wave

    NASA Astrophysics Data System (ADS)

    Meng, X.; Liu, H.; Hu, T.; Yang, L.

    2015-12-01

    Transmitted wave occurs as fast p-wave and slow p-wave in certain conditions when seismic waves travel through inhomogeneous layers. Energy of slow p-waves is strongest at some frequency band, but rather weak at both high frequency band and low frequency band, called scattering resonance. For practical seismic exploration, the frequency of slow p-wave occurs is below 10Hz, which cannot be explained by Biot's theory which predicts existence of the slow p-wave at ultrasonic band in the porous media. The slow p-wave equation have been derived, but which only adapted to explaining slow p-wave in the ultrasonic band. Experimental observations exhibit that slow p-wave also exists in nonporous media but with enormous low-velocity interbeds. When vertical incidence, elastic wave is simplified as compressing wave, the generation of slow waves is independent on shear wave. In the case of flat interbed and gas bubble, Liu (2006) has studied the transmission of acoustic waves, and found that the slow waves below the 10Hz frequency band can be explained. In the case of general elastic anisotropy medium, the tiheoretical research on the generation of slow waves is insufficient. Aiming at this problem, this paper presents an exponential mapping method based on transmitted wave (Magnus 1954), which can successfully explain the generation of the slow wave transmission in that case. Using the prediction operator (Claerbout 1985) to represent the transmission wave, this can be derived as first order partial differential equation. Using expansions in the frequency domain and the wave number domain, we find that the solutions have different expressions in the case of weak scattering and strong scattering. Besides, the method of combining the prediction operator and the exponential map is needed to extend to the elastic wave equation. Using the equation (Frazer and Fryer 1984, 1987), we derive the exponential mapping solution for the prediction operator of the general elastic medium

  3. Equivalent circuit model of traveling-wave maser slow-wave structures

    NASA Technical Reports Server (NTRS)

    Shell, J.

    1991-01-01

    An approach is presented for deriving transmission line equivalent circuits that can approximately model the S-parameter response of traveling wave maser slow wave structures. The technique is illustrated by computing the S-parameter responses of an X-band and S-band maser slow wave structure and comparing these with experimental measurements.

  4. Properties of slow oscillation during slow-wave sleep and anesthesia in cats

    PubMed Central

    Chauvette, Sylvain; Crochet, Sylvain; Volgushev, Maxim; Timofeev, Igor

    2011-01-01

    Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat, to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, while under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were largely uniform across cortical areas under anesthesia, but in SWS they were most pronounced in associative and visual areas, but smaller and less regular in somatosensory and motor cortices. We conclude that although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS as compared to ketamine-xylazine anesthesia. PMID:22016533

  5. Characterization of ictal slow waves in epileptic spasms.

    PubMed

    Honda, Ryoko; Saito, Yoshiaki; Okumura, Akihisa; Abe, Shinpei; Saito, Takashi; Nakagawa, Eiji; Sugai, Kenji; Sasaki, Masayuki

    2015-12-01

    We characterized the clinico-neurophysiological features of epileptic spasms, particularly focusing on high-voltage slow waves during ictal EEG. We studied 22 patients with epileptic spasms recorded during digital video-scalp EEG, including five individuals who still had persistent spasms after callosotomy. We analysed the duration, amplitude, latency to onset of electromyographic bursts, and distribution of the highest positive and negative peaks of slow waves in 352 spasms. High-voltage positive slow waves preceded the identifiable muscle contractions of spasms. The mean duration of these positive waves was 569±228 m, and the mean latency to electromyographic onset was 182±127 m. These parameters varied markedly even within a patient. The highest peak of the positive component was distributed in variable regions, which was not consistent with the location of lesions on MRI. The peak of the negative component following the positivity was distributed in the neighbouring or opposite areas of the positive peak distribution. No changes were evident in the pre- or post-surgical distributions of the positive peak, or in the interhemispheric delay between both hemispheres, in individuals with callosotomy. Our data imply that ictal positive slow waves are the most common EEG changes during spasms associated with a massive motor component. Plausible explanations for these widespread positive slow waves include the notion that EEG changes possibly reflect involvement of both cortical and subcortical structures.

  6. Finned-Ladder Slow-Wave Circuit for a TWT

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Wintucky, Edwin G.; Kory, Carol L.

    2004-01-01

    A finned-ladder structure has been invented in an effort to improve the design of the slow-wave circuit of a traveling-wave tube (TWT). The point of departure for the design effort was a prototype TWT that contains a ring-plane slow-wave circuit (see Figure 1). The design effort was a response to the observation that despite the high-power capabilities of the ringplane TWT, its requirement for a high supply voltage and its low bandwidth have made it unacceptable for use outside a laboratory setting.

  7. Slow strain waves in the Earth: observational evidence and models

    NASA Astrophysics Data System (ADS)

    Bykov, Victor

    2014-05-01

    Recent remarkable progress in theoretical studies of the solitary strain waves, that have contributed greatly to the solution of the fundamental problem of strain waves in the Earth, is overviewed. The concept of strain waves generated in the Earth is based on the results of the study of earthquake distribution and slow tectonic deformation processes and the transfer of geophysical field anomalies. Propagation of strain waves is represented quantitatively by the rates of earthquake migration and geophysical responses to active faulting. These processes, and possibly the related strain waves, are either of global (global tectonic waves) or local (strain waves in faults) scales (Bykov, 2005). Global tectonic waves propagating at velocities from 10 to 100 km/yr are detected from migration of large earthquakes (Stein et al., 1997), seismic velocity anomalies (Nevsky et al., 1987), offsets of water level in wells along faults (Barabanov et al. 1988), or from transient displacement of seismic reflectors (Bazavluk and Yudakhin, 1993). Strain waves along crustal faults at velocities of 1-10 km/day are inferred from radon, electrokinetic and hydrogeodynamic signals, such as solitary waves (Nikolaevskiy, 1998). Migration of episodic tremor and slow slip events along plate boundaries in subduction zones and transform fault zones at a rate of 10 km/day, on an average (Schwartz and Rokosky, 2007), may be new evidence and indication of strain waves in the Earth. The detected mechanisms of strain wave exciting are caused by the block and microplate rotation, relative block displacement in crustal fault zones, transform faults, zones of the lithospheric plate collision and subduction and irregularity of the Earth's rotation (Bykov, 2005). These waves in the shape of kinks or solitons moving at velocities a great number of orders less than those of the ordinary seismic waves provide the possibility to explain slow stress redistribution in the crust. During a recent decade the sine

  8. Slow Wave Excitation in the ICRF and HHFW Regimes

    SciTech Connect

    Phillips, C. K.; Valeo, E. J.; Hosea, J. C.; LeBlanc, B. P.; Wilson, J. R.; Jaeger, E. F.; Berry, L. A.; Ryan, P. M.; Bonoli, P. T.; Wright, J. C.; Smithe, D. N.

    2011-12-23

    Theoretical considerations and high spatial resolution numerical simulations of radio frequency (rf) wave heating in tokamaks and in spherical toruses (ST) indicate that fast waves launched into tokamaks in the ion cyclotron range of frequencies (ICRF) or into spherical toruses in the high harmonic fast wave (HHFW) regime may excite a short wavelength slow mode inside of the plasma discharge due to the presence of hot electrons that satisfy the condition {omega}wave frequency, k{sub ||} is the local parallel component of the wave vector, and v{sub te} is the local electron thermal speed. This excited slow wave may be related to the electrostatic ion cyclotron wave that propagates for frequencies above the fundamental ion cyclotron frequency in warm plasmas or to a high frequency version of a kinetic Alfven wave. This slow wave, if physically real, would provide another path for rf power absorption in tokamaks and ST devices.

  9. P- and S-wave Slowness Anomalies in the Mantle

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Thorne, M. S.

    2015-12-01

    Anomalies in the slowness of teleseisms have been observed in numerous studies, with previous efforts focusing on crust and upper mantle sources for their origin. Little attention has been devoted to the global distribution of P- and S-wave slowness anomalies in the deep Earth. In this study, we use large aperture seismic array data to examine slowness anomalies as a function of depth in the lower mantle. We collected seismic recordings from all broadband seismic stations in North America for earthquakes between January 2004 and June 2015 with moment magnitudes between 5.8 and 7.5, event depths greater than 100 km, and epicentral distances from 40° to 90°. We chose the time range to coincide with the Earthscope seismic experiment. The epicentral distance range used in this study ensured the target phases, direct P and S wave arrivals, turned in the mantle at depths ranging from 1000 to 2800 km. The original data set contained 420 events with 171,696 seismograms. We inspected each seismogram manually and discarded traces without clear P or S arrivals. Our final data set consists of 278 events with 129,748 seismograms. For each event, we grouped the data into 3° radius geographic bins and calculated relative time shifts for each bin using the Automated and Interactive Measurement of Body-wave Arrival Times (AIMBAT) technique. AIMBAT is a python tool for measuring teleseismic arrival times based on the multi-channel cross-correlation (MCCC) method. For each bin, we plotted the relative time shifts as a function of epicentral distances and calculated the corresponding least-square regression line. The slowness (dT/dΔ) can be obtained as the slope of the regression line. The slowness values of all geographic bins were collected to build a slowness profile for each event. In order to identify slowness anomalies, these slowness profiles were compared with synthetic slowness profiles calculated using the 2.5-D axi-symmetric finite-difference methods PSVaxi for P waves

  10. Shock Formation of Slow Magnetosonic Waves in Coronal Plumes

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred; Suess, Steve; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We investigate the height of shock formation in coronal plumes for slow magnetosonic waves. The models take into account plume geometric spreading, heat conduction, and radiative damping. The wave parameters as well as the spreading functions of the plumes and the base magnetic field strengths are given by empirical constraints mostly from Solar and Heliospheric Observatory (SOHO)/ Ultraviolet Coronograph Spectrometer (UVCS), Extreme Ultraviolet Imaging Telescope (EIT), Michelson Doppler Imager (MDI), and Large Angle Spectrometric Coronagraph (LASCO). Our models show that shock formation occurs at relatively low coronal heights, typically within 1.2 RsuN, depending on the model parameters. The shock formation is calculated using the well-established wave breaking criterion given by the intersection of C+ characteristics in the space-time plane. Our models show that shock heating by slow magnetosonic waves is expected to be relevant at most heights in solar coronal plumes, although such waves are probably not the main energy supply mechanism.

  11. ON THE SOURCE OF PROPAGATING SLOW MAGNETOACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Prasad, S. Krishna; Jess, D. B.; Khomenko, Elena

    2015-10-10

    Recent high-resolution observations of sunspot oscillations using simultaneously operated ground- and space-based telescopes reveal the intrinsic connection between different layers of the solar atmosphere. However, it is not clear whether these oscillations are externally driven or generated in situ. We address this question by using observations of propagating slow magnetoacoustic waves along a coronal fan loop system. In addition to the generally observed decreases in oscillation amplitudes with distance, the observed wave amplitudes are also found to be modulated with time, with similar variations observed throughout the propagation path of the wave train. Employing multi-wavelength and multi-instrument data, we study the amplitude variations with time as the waves propagate through different layers of the solar atmosphere. By comparing the amplitude modulation period in different layers, we find that slow magnetoacoustic waves observed in sunspots are externally driven by photospheric p-modes, which propagate upward into the corona before becoming dissipated.

  12. Global Intracellular Slow-Wave Dynamics of the Thalamocortical System

    PubMed Central

    Sheroziya, Maxim

    2014-01-01

    It is widely accepted that corticothalamic neurons recruit the thalamus in slow oscillation, but global slow-wave thalamocortical dynamics have never been experimentally shown. We analyzed intracellular activities of neurons either from different cortical areas or from a variety of specific and nonspecific thalamic nuclei in relation to the phase of global EEG signal in ketamine-xylazine anesthetized mice. We found that, on average, slow-wave active states started off within frontal cortical areas as well as higher-order and intralaminar thalamus (posterior and parafascicular nuclei) simultaneously. Then, the leading edge of active states propagated in the anteroposterior/lateral direction over the cortex at ∼40 mm/s. The latest structure we recorded within the slow-wave cycle was the anterior thalamus, which followed active states of the retrosplenial cortex. Active states from different cortical areas tended to terminate simultaneously. Sensory thalamic ventral posterior medial and lateral geniculate nuclei followed cortical active states with major inhibitory and weak tonic-like “modulator” EPSPs. In these nuclei, sharp-rising, large-amplitude EPSPs (“drivers”) were not modulated by cortical slow waves, suggesting their origin in ascending pathways. The thalamic active states in other investigated nuclei were composed of depolarization: some revealing “driver”- and “modulator”-like EPSPs, others showing “modulator”-like EPSPs only. We conclude that sensory thalamic nuclei follow the propagating cortical waves, whereas neurons from higher-order thalamic nuclei display “hub dynamics” and thus may contribute to the generation of cortical slow waves. PMID:24966387

  13. Ponderomotive force effects on slow-wave coupling

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Wong, K. L.

    1982-04-01

    Localized plasma density depressions are observed to form near a multi-ring slow-wave structure when the value of the nonlinearity parameter, s = ω2pe‖Ez‖2/8πω2nκT, is of order unity. Consequent changes in the wave propagation and coupling efficiency are reported. For large enough values of s, the coupling efficiency may be reduced by 50% from the linear value.

  14. Zeta waves: a special type of slow delta waves.

    PubMed

    Magnus, O; Van der Holst, M

    1987-08-01

    A special type of delta waves with a duration of 1-3 sec which, because of their saw-tooth or zed shape in the EEG, we have named 'zeta waves' has been described. They occur particularly in cases with rather severe brain lesions, usually with an acute or subacute onset and a space occupying character. In a period of 2 years during which 2500 EEGs have been reported we have seen zeta waves in 20 patients in whom 76 EEGs have been recorded. The characteristics of these waves and the types of lesions with which they occurred are described. The importance of an adequate recording technique for proper presentation of this EEG pattern is emphasized.

  15. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation.

    PubMed

    Du, Peng; O'Grady, G; Egbuji, J U; Lammers, W J; Budgett, D; Nielsen, P; Windsor, J A; Pullan, A J; Cheng, L K

    2009-04-01

    High-resolution, multi-electrode mapping is providing valuable new insights into the origin, propagation, and abnormalities of gastrointestinal (GI) slow wave activity. Construction of high-resolution mapping arrays has previously been a costly and time-consuming endeavor, and existing arrays are not well suited for human research as they cannot be reliably and repeatedly sterilized. The design and fabrication of a new flexible printed circuit board (PCB) multi-electrode array that is suitable for GI mapping is presented, together with its in vivo validation in a porcine model. A modified methodology for characterizing slow waves and forming spatiotemporal activation maps showing slow waves propagation is also demonstrated. The validation study found that flexible PCB electrode arrays are able to reliably record gastric slow wave activity with signal quality near that achieved by traditional epoxy resin-embedded silver electrode arrays. Flexible PCB electrode arrays provide a clinically viable alternative to previously published devices for the high-resolution mapping of GI slow wave activity. PCBs may be mass-produced at low cost, and are easily sterilized and potentially disposable, making them ideally suited to intra-operative human use.

  16. Analysis of the power capacity of overmoded slow wave structures

    SciTech Connect

    Zhang, Dian; Zhang, Jun; Zhong, Huihuang; Jin, Zhenxing

    2013-07-15

    As the generated wavelength shortens, overmoded slow wave structures (SWSs) with large diameters are employed in O-type Cerenkov high power microwave (HPM) generators to achieve high power capacity. However, reported experimental results suggest that overmoded slow wave HPM generators working at millimeter wavelength output much lower power than those working at X-band do, despite the fact that the value of D/λ (here, D is the average diameter of SWSs and λ is the generated wavelength) of the former is much larger than that of the latter. In order to understand this, the characteristics of the power capacity of the TM{sub 0n} modes in overmoded SWSs are numerically investigated. Our analysis reveals the following facts. First, the power capacity of higher order TM{sub 0n} modes is apparently larger than that of TM{sub 01} mode. This is quite different from the conclusion got in the foregone report, in which the power capacity of overmoded SWSs is estimated by that of smooth cylindrical waveguides. Second, the rate at which the power capacity of TM{sub 01} mode in overmoded SWSs grows with diameter does not slow down as the TM{sub 01} field transforms from “volume wave” to “surface wave.” Third, once the diameter of overmoded SWSs and the beam voltage are fixed, the power capacity of TM{sub 01} wave drops as periodic length L shortens and the generated frequency rises, although the value of D/λ increases significantly. Therefore, it is necessary to investigate the capability of annular electron beam to interact efficiently with higher order TM{sub 0n} modes in overmoded SWSs if we want to improve the power capacity of overmoded O-type Cerenkov HPM generators working at high frequency.

  17. Slowing down fat digestion and absorption by an oxadiazolone inhibitor targeting selectively gastric lipolysis.

    PubMed

    Point, Vanessa; Bénarouche, Anais; Zarrillo, Julie; Guy, Alexandre; Magnez, Romain; Fonseca, Laurence; Raux, Brigitt; Leclaire, Julien; Buono, Gérard; Fotiadu, Frédéric; Durand, Thierry; Carrière, Frédéric; Vaysse, Carole; Couëdelo, Leslie; Cavalier, Jean-François

    2016-11-10

    Based on a previous study and in silico molecular docking experiments, we have designed and synthesized a new series of ten 5-Alkoxy-N-3-(3-PhenoxyPhenyl)-1,3,4-Oxadiazol-2(3H)-one derivatives (RmPPOX). These molecules were further evaluated as selective and potent inhibitors of mammalian digestive lipases: purified dog gastric lipase (DGL) and guinea pig pancreatic lipase related protein 2 (GPLRP2), as well as porcine (PPL) and human (HPL) pancreatic lipases contained in porcine pancreatic extracts (PPE) and human pancreatic juices (HPJ), respectively. These compounds were found to strongly discriminate classical pancreatic lipases (poorly inhibited) from gastric lipase (fully inhibited). Among them, the 5-(2-(Benzyloxy)ethoxy)-3-(3-PhenoxyPhenyl)-1,3,4-Oxadiazol-2(3H)-one (BemPPOX) was identified as the most potent inhibitor of DGL, even more active than the FDA-approved drug Orlistat. BemPPOX and Orlistat were further compared in vitro in the course of test meal digestion, and in vivo with a mesenteric lymph duct cannulated rat model to evaluate their respective impacts on fat absorption. While Orlistat inhibited both gastric and duodenal lipolysis and drastically reduced fat absorption in rats, BemPPOX showed a specific action on gastric lipolysis that slowed down the overall lipolysis process and led to a subsequent reduction of around 55% of the intestinal absorption of fatty acids compared to controls. All these data promote BemPPOX as a potent candidate to efficiently regulate the gastrointestinal lipolysis, and to investigate its link with satiety mechanisms and therefore develop new strategies to "fight against obesity".

  18. Compact FEL`s based on slow wave wigglers

    SciTech Connect

    Riyopoulos, S.

    1995-12-31

    Slow waves excited in magnetron-type cavities are attractive canditates as wigglers for compact Free Electron Lasers. Because of group velocities much below the speed of light, slow waves offer an order of magnitude increase in FEL gain under given circulating power in the wiggler resonator, compared to fast wave wigglers of similar period. In addition, they offer the versatility of operation either at modest beam energy via upshifing of the fundamental wavelength, or at low beam energy benefiting from the submillimeter wiggler harmonics. Because the main electron undulation is in the transverse direction for all spatial harmonics, the radiated power is increased by a factor {gamma}{sup 2} relative to the Smith-Purcell approach that relies on axial electron undulation. Technical advantages offered by magnetron-type wiggles are: the generation of the wiggler microwaves and the FEL interaction take place inside the same cavity, avoiding the issue of high power coupling between cavities; the excitation of wiggler microwaves relies on distributed electron emission from the cavity wall and does not require separate beam injection.

  19. Analysis of waves in the plasma guided by a periodical vane-type slow wave structure

    SciTech Connect

    Wu, T.J.; Kou, C.S.

    2005-10-01

    In this study, the dispersion relation has been derived to characterize the propagation of the waves in the plasma guided by a periodical vane-type slow wave structure. The plasma is confined by a quartz plate. Results indicate that there are two different waves in this structure. One is the plasma mode that originates from the plasma surface wave propagating along the interface between the plasma and the quartz plate, and the other is the guide mode that originally travels along the vane-type slow wave structure. In contrast to its original slow wave characteristics, the guide mode becomes a fast wave in the low-frequency portion of the passband, and there exists a cut-off frequency for the guide mode. The vane-type guiding structure has been shown to limit the upper frequency of the passband of the plasma mode, compared with that of the plasma surface wave. In addition, the passband of the plasma mode increases with the plasma density while it becomes narrower for the guide mode. The influences of the parameters of the guiding structure and plasma density on the propagation of waves are also presented.

  20. Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep.

    PubMed

    Mitra, Anish; Snyder, Abraham Z; Tagliazucchi, Enzo; Laufs, Helmut; Raichle, Marcus E

    2015-11-09

    Propagation of slow intrinsic brain activity has been widely observed in electrophysiogical studies of slow wave sleep (SWS). However, in human resting state fMRI (rs-fMRI), intrinsic activity has been understood predominantly in terms of zero-lag temporal synchrony (functional connectivity) within systems known as resting state networks (RSNs). Prior rs-fMRI studies have found that RSNs are generally preserved across wake and sleep. Here, we use a recently developed analysis technique to study propagation of infra-slow intrinsic blood oxygen level dependent (BOLD) signals in normal adults during wake and SWS. This analysis reveals marked changes in propagation patterns in SWS vs. wake. Broadly, ordered propagation is preserved within traditionally defined RSNs but lost between RSNs. Additionally, propagation between cerebral cortex and subcortical structures reverses directions, and intra-cortical propagation becomes reorganized, especially in visual and sensorimotor cortices. These findings show that propagated rs-fMRI activity informs theoretical accounts of the neural functions of sleep.

  1. Slow Wave Conduction Patterns in the Stomach: From Waller’s Foundations to Current Challenges

    PubMed Central

    2015-01-01

    This review provides an overview of our understanding of motility and slow wave propagation in the stomach. It begins by reviewing seminal studies conducted by Walter Cannon and Augustus Waller on in vivo motility and slow wave patterns. Then our current understanding of slow wave patterns in common laboratory animals and humans is presented. The implications of slow wave dysrhythmic patterns that have been recorded in animals and patients suffering from gastroparesis are discussed. Finally, current challenges in experimental methods and techniques, slow wave modulation and the use of mathematical models are discussed. PMID:25313679

  2. Slow Mode Waves in the Heliospheric Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Smith, Edward. J.; Zhou, Xiaoyan

    2007-01-01

    We report the results of a search for waves/turbulence in the Heliospheric Plasma Sheet (HPS) surrounding the Heliospheric Current Sheet (HCS). The HPS is treated as a distinctive heliospheric structure distinguished by relatively high Beta, slow speed plasma. The data used in the investigation are from a previously published study of the thicknesses of the HPS and HCS that were obtained in January to May 2004 when Ulysses was near aphelion at 5 AU. The advantage of using these data is that the HPS is thicker at large radial distances and the spacecraft spends longer intervals inside the plasma sheet. From the study of the magnetic field and solar wind velocity components, we conclude that, if Alfven waves are present, they are weak and are dominated by variations in the field magnitude, B, and solar wind density, NP, that are anti-correlated.

  3. A real-time weighted-eigenvector MUSIC method for time-frequency analysis of electrogastrogram slow wave.

    PubMed

    Qin, Shujia; Miao, Lei; Xi, Ning; Wang, Yuechao; Yang, Chunmin

    2010-01-01

    The surface electrogastrogram (EGG) records the electrical slow wave of the stomach noninvasively, whose frequency is a useful clinical indicator of the state of gastric motility. Estimators based on the periodogram method are widely adopted to obtain this parameter. But they are with a poor frequency domain resolution when the data window is short in time-frequency analysis, and have not taken full advantage of the slow wave model. We present a modified multiple signal classification (MUSIC) method for computing the frequency from surface EGG records, developing it into a real-time time-frequency analysis algorithm. Simulations indicate that the modified MUSIC method has better performance in resolution and precision in the sinusoid-like resultant signal frequency detecting than periodogram. Volunteer data tests show that the modified MUSIC method is stable and efficient for clinical applications, and reduces the danger of pseudo peaks for the diagnosis.

  4. Energy and energy flux in axisymmetric slow and fast waves

    NASA Astrophysics Data System (ADS)

    Moreels, M. G.; Van Doorsselaere, T.; Grant, S. D. T.; Jess, D. B.; Goossens, M.

    2015-06-01

    Aims: We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations. Methods: The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for axisymmetric sausage modes. Results: The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric conditions. Appendix A is available in electronic form at http://www.aanda.org

  5. The Propagation of Slow Wave Potentials in Pea Epicotyls.

    PubMed Central

    Stahlberg, R.; Cosgrove, D. J.

    1997-01-01

    Slow wave potentials are considered to be electric long-distance signals specific for plants, although there are conflicting ideas about a chemical, electrical, or hydraulic mode of propagation. These ideas were tested by comparing the propagation of hydraulic and electric signals in epicotyls of pea (Pisum sativum L). A hydraulic signal in the form of a defined step increase in xylem pressure (Px) was applied to the root of intact seedlings and propagated nearly instantly through the epicotyl axis while its amplitude decreased with distance from the pressure chamber. This decremental propagation was caused by a leaky xylem and created an axial Px gradient in the epicotyl. Simultaneously along the epicotyl surface, depolarizations appeared with lag times that increased acropetally with distance from the pressure chamber from 5 s to 3 min. When measured at a constant distance, the lag times increased as the size of the applied pressure steps decreased. We conclude that the Px gradient in the epicotyl caused local depolarizations with acropetally increasing lag times, which have the appearance of an electric signal propagating with a rate of 20 to 30 mm min-1. This static description of the slow wave potentials challenges its traditional classification as a propagating electric signal. PMID:12223601

  6. Slow magnetoacoustic waves in coronal loops: EIT and TRACE

    NASA Astrophysics Data System (ADS)

    Robbrecht, E.; Verwichte, E.; Berghmans, D.; Hochedez, J. F.; Poedts, S.; Nakariakov, V. M.

    2001-05-01

    On May 13, 1998 the EIT (Extreme ultraviolet Imaging Telescope) on board of SoHO (Solar and Heliospheric Observatory) and TRACE (Transition Region And Coronal Explorer) instruments produced simultaneous high cadence image sequences of the same active region (AR 8218). TRACE achieved a 25 s cadence in the Fe Ix (171 Å) bandpass while EIT achieved a 15 s cadence (operating in ``shutterless mode'', SoHO JOP 80) in the Fe Xii (195 Å) bandpass. These high cadence observations in two complementary wavelengths have revealed the existence of weak transient disturbances in an extended coronal loop system. These propagating disturbances (PDs) seem to be a common phenomenon in this part of the active region. The disturbances originate from small scale brightenings at the footpoints of the loops and propagate along the loops. The projected propagation speeds roughly vary between 65 and 150 km s-1 for both instruments which is close to and below the expected sound speed in the coronal loops. The measured slow magnetoacoustic propagation speeds seem to suggest that the transients are sound (or slow) wave disturbances. This work differs from previous studies in the sense that it is based on a multi-wavelength observation of an entire loop bundle at high cadence by two EUV imagers. The observation of sound waves along the same path shows that they propagate along the same loop, suggesting that loops contain sharp temperature gradients and consist of either concentric shells or thin loop threads, at different temperatures.

  7. Multiple slow waves in metaporous layers for broadband sound absorption

    NASA Astrophysics Data System (ADS)

    Yang, Jieun; Lee, Joong Seok; Kim, Yoon Young

    2017-01-01

    Sound absorption for a broad frequency range requires sound dissipation. The mechanics of acoustic metamaterials for non-dissipative applications has been extensively studied, but sound absorption using dissipative porous metamaterials has been less explored because of the complexity resulting from the coupling of its dissipative mechanism and metamaterial behavior. We investigated broadband sound absorption by engineering dissipative metaporous layers, which absorb sound by the mechanism of multiple slow waves, and combined local and global resonance phenomena. A set of rigid partitions of varying lengths was elaborately inserted in a hard-backed porous layer of a finite thickness. An effective medium theory was used to explain the physics involved; high performance at a low-frequency range was found to be mainly due to the formation of global resonances caused by multiple slow waves over the thickness of the metaporous layer, while enhancement at a high-frequency range was attributed to the combined effects of the global resonances and the local resonances directly related to the sizes of the inserted partitions.

  8. Supplementing monosodium glutamate to partial enteral nutrition slows gastric emptying in preterm pigs(1-3).

    PubMed

    Bauchart-Thevret, Caroline; Stoll, Barbara; Benight, Nancy M; Olutoye, Oluyinka; Lazar, David; Burrin, Douglas G

    2013-05-01

    Emerging evidence suggests that free glutamate may play a functional role in modulating gastroduodenal motor function. We hypothesized that supplementing monosodium glutamate (MSG) to partial enteral nutrition stimulates gastric emptying in preterm pigs. Ten-day-old preterm, parenterally fed pigs received partial enteral nutrition (25%) as milk-based formula supplemented with MSG at 0, 1.7, 3.0, and 4.3 times the basal protein-bound glutamate intake (468 mg·kg(-1)·d(-1)) from d 4 to 8 of life (n = 5-8). Whole-body respiratory calorimetry and (13)C-octanoic acid breath tests were performed on d 4, 6, and 8. Body weight gain, stomach and intestinal weights, and arterial plasma glutamate and glutamine concentrations were not different among the MSG groups. Arterial plasma glutamate concentrations were significantly higher at birth than after 8 d of partial enteral nutrition. Also at d 8, the significant portal-arterial concentration difference in plasma glutamate was substantial (∼500 μmol/L) among all treatment groups, suggesting that there was substantial net intestinal glutamate absorption in preterm pigs. MSG supplementation dose-dependently increased gastric emptying time and decreased breath (13)CO2 enrichments, (13)CO2 production, percentage of (13)CO2 recovery/h, and cumulative percentage recovery of (13)C-octanoic acid. Circulating glucagon-like peptide-2 (GLP-2) concentration was significantly increased by MSG but was not associated with an increase in intestinal mucosal growth. In contrast to our hypothesis, our results suggest that adding MSG to partial enteral nutrition slows the gastric emptying rate, which may be associated with an inhibitory effect of increased circulating GLP-2.

  9. Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.

    2007-01-01

    A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.

  10. Stability of Brillouin Flow in Slow-Wave Structures

    NASA Astrophysics Data System (ADS)

    Simon, David; Lau, Y. Y.; Greening, Geoffrey; Wong, Patrick; Gilgenbach, Ronald; Hoff, Brad

    2016-10-01

    For the first time, we include a slow-wave structure (SWS) to study the stability of Brillouin flow in the conventional, planar, and inverted magnetron geometry. The resonant interaction of the SWS circuit mode and the corresponding smooth-bore diocotron-like mode is found to be the dominant cause for instability, overwhelming the intrinsic negative (positive) mass property of electrons in the inverted (conventional) magnetron geometry. It severely restricts the wavenumber for instability to the narrow range in which the cold tube frequency of the SWS is within a few percent of the corresponding smooth bore diocotron-like mode in the Brillouin flow. This resonant interaction is absent in a smooth bore magnetron. Work supported by ONR N00014-13-1-0566 and N00014-16-1-2353, AFOSR FA9550-15-1-0097, and L-3 Communications Electron Device Division.

  11. Slow wave sleep and recollection in recognition memory.

    PubMed

    Daurat, Agnès; Terrier, Patrice; Foret, Jean; Tiberge, Michel

    2007-06-01

    Recognition memory performance reflects two distinct memory processes: a conscious process of recollection, which allows remembering specific details of a previous event, and familiarity, which emerges in the absence of any conscious information about the context in which the event occurred. Slow wave sleep (SWS) and rapid eye movement (REM) sleep are differentially involved in the consolidation of different types of memory. The study assessed the effects of SWS and REM sleep on recollection, by means of the "remember"/"know" paradigm. Subjects studied three blocks of 12 words before a 3-h retention interval filled with SWS, REM sleep or wakefulness, placed between 3 a.m. and 6 a.m. Afterwards, recognition and recollection were tested. Recollection was higher after a retention interval rich in SWS than after a retention interval rich in REM sleep or filled with wakefulness. The results suggest that SWS facilitates the process of recollection in recognition memory.

  12. High-power microwave attenuator employing slow wave structure

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsuhiro; Matsumoto, Hiroshi; Shintake, Tsumoru; Nishiyama, Koji; Miura, Sadao

    2012-11-01

    Using present pulsed microwave amplifier, we can obtain RF peak power beyond one hundred MW. However, it is not easy to test such a high-power RF. To overcome this difficulty we developed a high-power microwave attenuator employing a slow wave structure. For example, the output power of RF pulse compressor for present electron linear accelerator reaches a few hundreds MW RF power, but the existing dummy loads can absorb only a few tens MW of RF power. The attenuator we developed has a kind of periodic structure and is made of metal only. We operated this attenuator using a high-power RF source, and found that it could be operated fewer than 50 pps RF output at 40 MW, 2.5 μs or 100 MW, 0.5 μs.

  13. Slow Wave Vane Structure with Elliptical Cross-Section Slots, an Analysis

    NASA Technical Reports Server (NTRS)

    Kosmahl, Henry G.

    1994-01-01

    Mathematical analysis of the wave equation in cylinders with elliptical cross-section slots was performed. Compared to slow wave structures with rectangular slots higher impedance and lower power dissipation losses are evident. These features could lead to improved designs of traveling wave magnetrons and gigahertz backward-wave oscillators as well as linear traveling wave tubes with relatively shallow slots.

  14. SLOW MAGNETOACOUSTIC WAVES OBSERVED ABOVE A QUIET-SUN REGION IN A DARK CAVITY

    SciTech Connect

    Liu Jiajia; Zhou Zhenjun; Wang Yuming; Liu Rui; Liao Chijian; Shen Chenglong; Zheng Huinan; Miao Bin; Su Zhenpeng; Wang, S.; Wang Bin E-mail: ymwang@ustc.edu.cn

    2012-10-20

    Waves play a crucial role in diagnosing the plasma properties of various structures in the solar corona and coronal heating. Slow magnetoacoustic (MA) waves are one of the important types of magnetohydrodynamic waves. In past decades, numerous slow MA waves were detected above active regions and coronal holes, but were rarely found elsewhere. Here, we investigate a 'tornado'-like structure consisting of quasi-periodic streaks within a dark cavity at about 40-110 Mm above a quiet-Sun region on 2011 September 25. Our analysis reveals that these streaks are actually slow MA wave trains. The properties of these wave trains, including phase speed, compression ratio, and kinetic energy density, are similar to those of the reported slow MA waves, except that the period of these waves is about 50 s, much shorter than the typical reported values (3-5 minutes).

  15. A 0.14 THz relativistic coaxial overmoded surface wave oscillator with metamaterial slow wave structure

    SciTech Connect

    Guo, Weijie; Wang, Jianguo Chen, Zaigao; Cai, Libing; Wang, Yue; Wang, Guangqiang; Qiao, Hailiang

    2014-12-15

    This paper presents a new kind of device for generating the high power terahertz wave by using a coaxial overmoded surface wave oscillator with metamaterial slow wave structure (SWS). A metallic metamaterial SWS is used to avoid the damage of the device driven by a high-voltage electron beam pulse. The overmoded structure is adopted to make it much easy to fabricate and assemble the whole device. The coaxial structure is used to suppress the mode competition in the overmoded device. Parameters of an electron beam and geometric structure are provided. Particle-in-cell simulation results show that the high power terahertz wave at the frequency of 0.14 THz is generated with the output power 255 MW and conversion efficiency about 21.3%.

  16. Characterization of slow waves generated by myenteric interstitial cells of Cajal of the rabbit small intestine.

    PubMed

    Kito, Yoshihiko; Mitsui, Retsu; Ward, Sean M; Sanders, Kenton M

    2015-03-01

    Slow waves (slow wavesICC) were recorded from myenteric interstitial cells of Cajal (ICC-MY) in situ in the rabbit small intestine, and their properties were compared with those of mouse small intestine. Rabbit slow wavesICC consisted of an upstroke depolarization followed by a distinct plateau component. Ni(2+) and nominally Ca(2+)-free solutions reduced the rate-of-rise and amplitude of the upstroke depolarization. Replacement of Ca(2+) with Sr(2+) enhanced the upstroke component but decreased the plateau component of rabbit slow wavesICC. In contrast, replacing Ca(2+) with Sr(2+) decreased both components of mouse slow wavesICC. The plateau component of rabbit slow wavesICC was inhibited in low-extracellular-Cl(-)-concentration (low-[Cl(-)]o) solutions and by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of Cl(-) channels, cyclopiazonic acid (CPA), an inhibitor of internal Ca(2+) pumps, or bumetanide, an inhibitor of Na(+)-K(+)-2Cl(-) cotransporter (NKCC1). Bumetanide also inhibited the plateau component of mouse slow wavesICC. NKCC1-like immunoreactivity was observed mainly in ICC-MY in the rabbit small intestine. Membrane depolarization with a high-K(+) solution reduced the upstroke component of rabbit slow wavesICC. In cells depolarized with elevated external K(+), DIDS, CPA, and bumetanide blocked slow wavesICC. These results suggest that the upstroke component of rabbit slow wavesICC is partially mediated by voltage-dependent Ca(2+) influx, whereas the plateau component is dependent on Ca(2+)-activated Cl(-) efflux. NKCC1 is likely to be responsible for Cl(-) accumulation in ICC-MY. The results also suggest that the mechanism of the upstroke component differs in rabbit and mouse slow wavesICC in the small intestine.

  17. Enhanced traveling wave amplification of co-planar slow wave structure by extended phase-matching

    SciTech Connect

    Palm, Andrew; Sirigiri, Jagadishwar; Shin, Young-Min

    2015-09-15

    The electron beam co-propagating with slow waves in a staggered double grating array (SDGA) efficiently amplifies millimeter and sub-millimeter waves over a wide spectrum. Our theoretical and numerical analyses show that the power amplification in the fundamental passband is enhanced by the extended beam-wave phase-matching. Particle-in-cell simulations on the SDGA slow wave structure, designed with 10.4 keV and 50–100 mA sheet beam, indicate that maintaining beam-wave synchronization along the entire length of the circuit improves the gain by 7.3% leading to a total gain of 28 dB, corresponding to 62 W saturated power at the middle of operating band, and a 3-dB bandwidth of 7 GHz with 10.5% at V-band (73.5 GHz center frequency) with saturated peak power reaching 80 W and 28 dB at 71 GHz. These results also show a reasonably good agreement with analytic calculations based on Pierce small signal gain theory.

  18. Slow magnetoacoustic waves in coronal loops: EIT vs TRACE

    NASA Astrophysics Data System (ADS)

    Robbrecht, E.; Verwichte, E.; Berghmans, D.; Hochedez, J. F.; Poedts, S.

    2000-10-01

    On May 13, 1998 the EIT (Extreme-Ultraviolet Imaging Telescope) and TRACE (Transition Region And Coronal Explorer) instruments produced simultaneous high cadence image sequences of the same active region (AR 8218). TRACE achieved a 25 sec cadence in the Fe IX/X (171 Å) bandpass while EIT achieved a 15 sec cadence (operating in `shutterless mode,' SOHO JOP 80) in the Fe XII (195 Å) bandpass. These high cadence observations in two complementary wavelengths have revealed the existence of weak transient disturbances in an extended coronal loop system. These propagating disturbances (PDs) seem to be a common phenomenon in this part of the active region. The disturbances originate from small scale brightenings at the footpoints of the loops and propagate along the loops. The apparent propagation speeds roughly vary between 65 and 150 km s-1 which is close to the expected sound speed of the coronal loops. The measured propagation speeds seem to suggest that the transients are sound (or slow) wave disturbances. .

  19. Cortical thinning explains changes in sleep slow waves during adulthood.

    PubMed

    Dubé, Jonathan; Lafortune, Marjolaine; Bedetti, Christophe; Bouchard, Maude; Gagnon, Jean François; Doyon, Julien; Evans, Alan C; Lina, Jean-Marc; Carrier, Julie

    2015-05-20

    Sleep slow waves (SWs) change considerably throughout normal aging. In humans, SWs are generated and propagate on a structural backbone of highly interconnected cortical regions that form most of the default mode network, such as the insula, cingulate cortices, temporal lobe, parietal lobe, and medial frontal lobe. Regions in this network undergo cortical thinning and breakdown in structural and functional connectivity over the course of normal aging. In this study, we investigated how changes in cortical thickness (CT), a measure of gray matter integrity, are involved in modifications of sleep SWs during adulthood in humans. Thirty young (mean age = 23.49 years; SD = 2.79) and 33 older (mean age = 60.35 years; SD = 5.71) healthy subjects underwent a nocturnal polysomnography and T1 MRI. We show that, when controlling for age, higher SW density (nb/min of nonrapid eye movement sleep) was associated with higher CT in cortical regions involved in SW generation surrounding the lateral fissure (insula, superior temporal, parietal, middle frontal), whereas higher SW amplitude was associated with higher CT in middle frontal, medial prefrontal, and medial posterior regions. Mediation analyses demonstrated that thinning in a network of cortical regions involved in SW generation and propagation, but also in cognitive functions, explained the age-related decrease in SW density and amplitude. Altogether, our results suggest that microstructural degradation of specific cortical regions compromise SW generation and propagation in older subjects, critically contributing to age-related changes in SW oscillations.

  20. Thalamic Atrophy Contributes to Low Slow Wave Sleep in Neuromyelitis Optica Spectrum Disorder

    PubMed Central

    Su, Lei; Han, Yujuan; Xue, Rong; Wood, Kristofer; Shi, Fu-Dong; Liu, Yaou; Fu, Ying

    2016-01-01

    Slow wave sleep abnormality has been reported in neuromyelitis optica spectrum disorder (NMOSD), but mechanism for such abnormality is unknown. To determine the structural defects in the brain that account for the decrease of slow wave sleep in NMOSD patients. Thirty-three NMOSD patients and 18 matched healthy controls (HC) were enrolled. Polysomnography was used to monitor slow wave sleep and three-dimensional T1-weighted MRIs were obtained to assess the alterations of grey matter volume. The percentage of deep slow wave sleep decreased in 93% NMOSD patients. Compared to HC, a reduction of grey matter volume was found in the bilateral thalamus of patients with a lower percentage of slow wave sleep (FWE corrected at cluster-level, p < 0.05, cluster size > 400 voxels). Furthermore, the right thalamic fraction was positively correlated with the decrease in the percentage of slow wave sleep in NMOSD patients (p < 0.05, FDR corrected, cluster size > 200 voxels). Our study identified that thalamic atrophy is associated with the decrease of slow wave sleep in NMOSD patients. Further studies should evaluate whether neurotransmitters or hormones which stem from thalamus are involved in the decrease of slow wave sleep. PMID:28053819

  1. Sounder-accelerated electrons radiate slow-Z-mode waves

    NASA Astrophysics Data System (ADS)

    James, G.

    During the OEDIPUS-C (OC) double-payload rocket experiment, waves were transmitted from a 19-m dipole on one subpayload and received at a distance of 1200 m on a similar dipole. Bistatic propagation was obtained in the slow-Z mode of propagation, i.e., at frequencies f in max{fc, fp} < quad f quad < quad fuh, where fc is the electron gyrofrequency, fp the plasma frequency and fuh the upper-hybrid-resonance frequency. Auroral hiss is generated in the slow-Z mode. In OC, the separation vector between the transmitter and receiver lay along a direction at about 5 from the axis of the Earth's magnetic field B. The Z-mode pulses were strong and significantly dispersed. Propagation near the upper oblique resonance cone was investigated using solutions of the complete electromagnetic hot-plasma dispersion relation. No solutions were found at the operating frequencies with the observed group delays and ray directions. An explanation has been proposed involving incoherent radiation from sounder-accelerated electrons (SAE). Published observations of SAE on OC show that the OC transmitting dipole produces strong SAE at energies from 10 eV up to 10 keV when the transmitting frequency sweeps through Z-mode frequency range. The near field of the transmitting dipole pushes SAE helically downward in the general direction of the receiver. At every instant, each SAE particle creates radiation that obeys the resonance condition f - mfc = (nf/c)cosθ Vcosα , where m is a signed integer, n the Z-mode refractive index, θ the angle between the direction of propagation of the radiation and B, V the electron speed and α its pitch angle. Using the reported SAE energies, it is found that time delays like those observed can be explained with Z-mode n and θ values, for m = 0, 1 or 2. The resonance condition and dispersion relation together require θ values near the upper-oblique resonance cone. Test-particle theory combined with the hot-plasma dispersion solution is used to predict the

  2. Slow wave activity and slow oscillations in sleepwalkers and controls: effects of 38 h of sleep deprivation.

    PubMed

    Perrault, Rosemarie; Carrier, Julie; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio

    2013-08-01

    Sleepwalkers have been shown to have an unusually high number of arousals from slow wave sleep and lower slow wave activity (SWA) power during the night than controls. Because sleep deprivation increases the frequency of slow wave sleep (SWS) arousals in sleepwalkers, it may also affect the expression of the homeostatic process to a greater extent than shown previously. We thus investigated SWA power as well as slow wave oscillation (SWO) density in 10 sleepwalkers and nine controls at baseline and following 38 h of sleep deprivation. There was a significant increase in SWA during participants' recovery sleep, especially during their second non-rapid eye movement (NREM) period. SWO density was similarly increased during recovery sleep's first two NREM periods. A fronto-central gradient in SWA and SWO was also present on both nights. However, no group differences were noted on any of the 2 nights on SWA or SWO. This unexpected result may be related to the heterogeneity of sleepwalkers as a population, as well as our small sample size. SWA pressure after extended sleep deprivation may also result in a ceiling effect in both sleepwalkers and controls.

  3. Late positive slow waves as markers of chunking during encoding

    PubMed Central

    Nogueira, Ana M. L.; Bueno, Orlando F. A.; Manzano, Gilberto M.; Kohn, André F.; Pompéia, Sabine

    2015-01-01

    Electrophysiological markers of chunking of words during encoding have mostly been shown in studies that present pairs of related stimuli. In these cases it is difficult to disentangle cognitive processes that reflect distinctiveness (i.e., conspicuous items because they are related), perceived association between related items and unified representations of various items, or chunking. Here, we propose a paradigm that enables the determination of a separate Event-related Potential (ERP) marker of these cognitive processes using sequentially related word triads. Twenty-three young healthy individuals viewed 80 15-word lists composed of unrelated items except for the three words in the middle serial positions (triads), which could be either unrelated (control list), related perceptually, phonetically or semantically. ERP amplitudes were measured at encoding of each one of the words in the triads. We analyzed two latency intervals (350–400 and 400–800 ms) at midline locations. Behaviorally, we observed a progressive facilitation in the immediate free recall of the words in the triads depending on the relations between their items (control < perceptual < phonetic < semantic), but only semantically related items were recalled as chunks. P300-like deflections were observed for perceptually deviant stimuli. A reduction of amplitude of a component akin to the N400 was found for words that were phonetically and semantically associated with prior items and therefore were not associated to chunking. Positive slow wave (PSW) amplitudes increased as successive phonetically and semantically related items were presented, but they were observed earlier and were more prominent at Fz for semantic associates. PSWs at Fz and Cz also correlated with recall of semantic word chunks. This confirms prior claims that PSWs at Fz are potential markers of chunking which, in the proposed paradigm, were modulated differently from the detection of deviant stimuli and of relations between

  4. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves.

    PubMed

    Frauscher, Birgit; von Ellenrieder, Nicolás; Ferrari-Marinho, Taissa; Avoli, Massimo; Dubeau, François; Gotman, Jean

    2015-06-01

    Epileptic discharges in focal epilepsy are frequently activated during non-rapid eye movement sleep. Sleep slow waves are present during this stage and have been shown to include a deactivated ('down', hyperpolarized) and an activated state ('up', depolarized). The 'up' state enhances physiological rhythms, and we hypothesize that sleep slow waves and particularly the 'up' state are the specific components of non-rapid eye movement sleep that mediate the activation of epileptic activity. We investigated eight patients with pharmaco-resistant focal epilepsies who underwent combined scalp-intracerebral electroencephalography for diagnostic evaluation. We analysed 259 frontal electroencephalographic channels, and manually marked 442 epileptic spikes and 8487 high frequency oscillations during high amplitude widespread slow waves, and during matched control segments with low amplitude widespread slow waves, non-widespread slow waves or no slow waves selected during the same sleep stages (total duration of slow wave and control segments: 49 min each). During the slow waves, spikes and high frequency oscillations were more frequent than during control segments (79% of spikes during slow waves and 65% of high frequency oscillations, both P ∼ 0). The spike and high frequency oscillation density also increased for higher amplitude slow waves. We compared the density of spikes and high frequency oscillations between the 'up' and 'down' states. Spike and high frequency oscillation density was highest during the transition from the 'up' to the 'down' state. Interestingly, high frequency oscillations in channels with normal activity expressed a different peak at the transition from the 'down' to the 'up' state. These results show that the apparent activation of epileptic discharges by non-rapid eye movement sleep is not a state-dependent phenomenon but is predominantly associated with specific events, the high amplitude widespread slow waves that are frequent, but not

  5. A high-power subterahertz surface wave oscillator with separated overmoded slow wave structures

    NASA Astrophysics Data System (ADS)

    Wang, Guang-Qiang; Wang, Jian-Guo; Zeng, Peng; Wang, Dong-Yang; Li, Shuang

    2016-12-01

    A megawatt-level subterahertz surface wave oscillator (SWO) is proposed to obtain high conversion efficiency by using separated overmoded slow wave structures (SWSs). Aiming at the repetitive operation and practical applications, the device driven by electron beam with modest energy and current is theoretically analyzed and verified. Then, the functions of the two SWS sections and the effect of the drift tube are investigated by using a particle-in-cell code to reveal how the proposed device achieves high efficiency. The mode analysis of the beam-wave interaction region in the device is also carried out, and the results indicate that multi-modes participate in the premodulation of the electron beam in the first SWS section, while the TM01 mode surface wave is successfully and dominantly excited and amplified in the second SWS section. Finally, a typical simulation result demonstrates that at a beam energy of 313 keV, beam current of 1.13 kA, and guiding magnetic field of above 3.5 T, a high-power subterahertz wave is obtained with an output power of about 70 MW at frequency 146.3 GHz, corresponding to the conversion efficiency of 20%. Compared with the results of the previous subterahertz overmoded SWOs with integral SWS and similar beam parameters, the efficiency increases almost 50% in the proposed device. Project supported by the National Natural Science Foundation of China (Grant No. 61231003).

  6. Enhancing the efficiency of slow-wave electron cyclotron masers with the tapered refractive index

    SciTech Connect

    Kong Lingbao; Hou Zhiling; Jing Jian; Jin Haibo; Du Chaohai

    2013-04-15

    The nonlinear analysis of slow-wave electron cyclotron masers (ECM) based on anomalous Doppler effect in a slab waveguide is presented. A method of tapered refractive index (TRI) is proposed to enhance the efficiency of slow-wave ECM. The numerical calculations show that the TRI method can significantly enhance the efficiency of slow-wave ECM with the frequency ranging from the microwave to terahertz band. The effect of beam velocity spread on the efficiency has also been studied. Although the velocity spread suppresses the efficiency significantly, a great enhancement of efficiency can still be introduced by the TRI method.

  7. Ionic mechanisms underlying electrical slow waves in canine airway smooth muscle.

    PubMed

    Janssen, L J; Hague, C; Nana, R

    1998-09-01

    In canine bronchial smooth muscle (BSM), spasmogens evoke oscillations in membrane potential ("slow waves"). The depolarizing phase of the slow waves is mediated by voltage-dependent Ca2+ channels; we examined the roles played by Cl- and K+ currents and Na+-K+-ATPase activity in mediating the repolarizing phase. Slow waves were evoked using tetraethylammonium (25 mM) in the presence or absence of niflumic acid (100 microM; Cl- channel blocker) or ouabain (10 microM; block Na+-K+-ATPase) or after elevating external K+ concentration ([K+]) to 36 mM (to block K+ currents); curve fitting was performed to quantitate the rates of rise/fall and frequency under these conditions. Slow waves were markedly slowed, and eventually abolished, by niflumic acid but were unaffected by ouabain or high [K+]. Electrically evoked slow waves were also blocked in similar fashion by niflumic acid. We conclude that the repolarization phase is mediated by Ca2+-dependent Cl- currents. This information, together with our earlier finding that the depolarizing phase is due to voltage-dependent Ca2+ current, suggests that slow waves in canine BSM involve alternating opening and closing of Ca2+ and Cl- channels.

  8. Slow-Mode MHD Wave Penetration into a Coronal Null Point due to the Mode Transmission

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey N.; Uralov, Arkadiy M.

    2016-11-01

    Recent observations of magnetohydrodynamic oscillations and waves in solar active regions revealed their close link to quasi-periodic pulsations in flaring light curves. The nature of that link has not yet been understood in detail. In our analytical modelling we investigate propagation of slow magnetoacoustic waves in a solar active region, taking into account wave refraction and transmission of the slow magnetoacoustic mode into the fast one. The wave propagation is analysed in the geometrical acoustics approximation. Special attention is paid to the penetration of waves in the vicinity of a magnetic null point. The modelling has shown that the interaction of slow magnetoacoustic waves with the magnetic reconnection site is possible due to the mode transmission at the equipartition level where the sound speed is equal to the Alfvén speed. The efficiency of the transmission is also calculated.

  9. Design and Characterization of a W-Band Folded-Waveguide Slow-Wave Structure

    NASA Astrophysics Data System (ADS)

    Sumathy, Murugan; Datta, Subrata Kumar

    2016-12-01

    A single-section slow-wave structure for a W-band folded-waveguide traveling-wave tube with operating bandwidth of around 4% was designed for delivering the output power of 50 W at the operating voltage of 13.5 kV and operating beam current of 80 mA. The design was carried out using analytical formulations and 3D electromagnetic simulations. The beam-wave interaction analysis was carried out using large signal Lagrangian analysis and particle-in-cell simulation. The folded-waveguide slow-wave structure along with input-output couplers and RF windows were fabricated. Cold test measurements were carried out for dispersion characteristics of the slow-wave structure and voltage standing-wave ratio and insertion loss characteristics of the RF window. The measured cold circuit parameters show close agreement with the analysis.

  10. Conventional, Bayesian, and Modified Prony's methods for characterizing fast and slow waves in equine cancellous bone.

    PubMed

    Groopman, Amber M; Katz, Jonathan I; Holland, Mark R; Fujita, Fuminori; Matsukawa, Mami; Mizuno, Katsunori; Wear, Keith A; Miller, James G

    2015-08-01

    Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable.

  11. Origin and propagation of individual slow waves along the intact feline small intestine.

    PubMed

    Lammers, Wim J E P; Stephen, Betty

    2008-03-01

    The pattern of propagation of slow waves in the small intestine is not clear. Specifically, it is not known whether propagation is determined by a single dominant ICC-MP (Interstitial cells of Cajal located in the Myenteric Plexus) pacemaker unit or whether there are multiple active pacemakers. To determine this pattern of propagation, waveforms were recorded simultaneously from 240 electrodes distributed along the whole length of the intact isolated feline small intestine. After the experiments, the propagation patterns of successive individual slow waves were analysed. In the intact small intestine, there was only a single slow wave pacemaker unit active, and this was located at or 6-10 cm from the pyloric junction. From this site, slow waves propagated in the aboral direction at gradually decreasing velocities. The majority of slow waves (73%) reached the ileocaecal junction while the remaining waves were blocked. Ligation of the intestine at one to four locations led to: (a) decrease in the distal frequencies; (b) disappearance of distal propagation blocks; (c) increase in velocities; (d) emergence of multiple and unstable pacemaker sites; and (e) propagation from these sites in the aboral and oral directions. In conclusion, in the quiescent feline small intestine a single pacemaker unit dominates the organ, with occasional propagation blocks of the slow waves, thereby producing the well-known frequency gradient.

  12. Propagation of Long-Wavelength Nonlinear Slow Sausage Waves in Stratified Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Barbulescu, M.; Erdélyi, R.

    2016-05-01

    The propagation of nonlinear, long-wavelength, slow sausage waves in an expanding magnetic flux tube, embedded in a non-magnetic stratified environment, is discussed. The governing equation for surface waves, which is akin to the Leibovich-Roberts equation, is derived using the method of multiple scales. The solitary wave solution of the equation is obtained numerically. The results obtained are illustrative of a solitary wave whose properties are highly dependent on the degree of stratification.

  13. Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone.

    PubMed

    Nelson, Amber M; Hoffman, Joseph J; Anderson, Christian C; Holland, Mark R; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G

    2011-10-01

    Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone.

  14. Slow Waves in Fractures Filled with Viscous Fluid

    SciTech Connect

    Korneev, Valeri

    2008-01-08

    Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.

  15. The activity of thalamus and cerebral cortex neurons in rabbits during "slow wave-spindle" EEG complexes.

    PubMed

    Burikov, A A; Bereshpolova YuI

    1999-01-01

    "Slow wave-spindle" complexes were studied during slow wave sleep in rabbits at the thalamic (medial thalamus) and cortical (upper and lower layers of the sensorimotor cortex) levels. Slow wave complexes are biphasic positive-negative complexes or triphasic complexes with a predominantly negative component. Spindles have characteristics close to those of spontaneous sleep spindles. Complexes arise singly, as though inserted into the rhythm of spontaneous sleep spindles, or in series with periods similar to the spindle rhythm. Medial thalamus neurons and some cortical neurons had the same activity during waves as during spindles: if the neuron decreased (increased) its spike frequency in a spindle, then decreases (increases) in frequency were also seen in slow waves; if the neuron produced trains of discharges during spindles, then trains of activity were also seen from the slow-wave part of "slow wave-spindle" complexes. The membrane potential changed in a similar fashion: on a background of hyperpolarization which started at the slow wave, individual depolarization oscillations appeared in the EEG wave rhythm; these oscillations were not always accompanied by spike trains. The slow wave mechanism, the rhythms of isolated complexes and simultaneous complexes and spontaneous sleep spindles may share a common underlying mechanism: slow, cyclical variations in excitability in thalamocortical neuronal networks, which have previously been demonstrated for spindle-like activity. The possibility that there are common mechanisms for slow waves in complexes and other EEG slow waves, particularly delta activity, remains hypothetical.

  16. Linear analysis of a backward wave oscillator with triangular corrugated slow wave structure

    NASA Astrophysics Data System (ADS)

    Saber, Md. Ghulam; Sagor, Rakibul Hasan; Amin, Md. Ruhul

    2016-05-01

    In this work, a backward wave oscillator (BWO) with triangularly corrugated periodic metallic slow wave structure (TrCSWS) driven by an infinitely thin annular electron beam is studied using linear theory. The electron beam is assumed to be guided by a strong magnetic field. The triangular axial profile of the SWS is approximated by a Fourier series in order to apply the linear Rayleigh-Fourier (R-F) theory that has long been used in the theoretical analysis of BWOs with sinusoidally corrugated SWS (SCSWS). The dispersion equation for various beam parameters has been solved and the temporal growth rate (TGR) of the electromagnetic wave for the fundamental TM_{01} mode is calculated numerically. The TGR values for different beam parameters have been compared with those of the BWO with SCSWS, semi-circularly corrugated SWS (SCCSWS) and trapezoidally corrugated SWS (TCSWS). In order to compare the TGR values, the amplitude of corrugation of the TrCSWS is varied so that its dispersion curve of TM_{01} mode almost coincides with that of the SCSWS and TCSWS. The study reveals that the performance (in terms of TGR) of the proposed BWO with TrCSWS is comparable to that of other BWOs with SCSWS and TCSWS for the same set of beam parameters and it provides significantly better performance than SCCSWS. So, the proposed TrCSWS that can easily be constructed may replace SCSWS, SCCSWS or TCSWS as their viable alternative.

  17. Discrete-State Simulated Annealing For Traveling-Wave Tube Slow-Wave Circuit Optimization

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Bulson, Brian A.; Kory, Carol L.; Williams, W. Dan (Technical Monitor)

    2001-01-01

    Algorithms based on the global optimization technique of simulated annealing (SA) have proven useful in designing traveling-wave tube (TWT) slow-wave circuits for high RF power efficiency. The characteristic of SA that enables it to determine a globally optimized solution is its ability to accept non-improving moves in a controlled manner. In the initial stages of the optimization, the algorithm moves freely through configuration space, accepting most of the proposed designs. This freedom of movement allows non-intuitive designs to be explored rather than restricting the optimization to local improvement upon the initial configuration. As the optimization proceeds, the rate of acceptance of non-improving moves is gradually reduced until the algorithm converges to the optimized solution. The rate at which the freedom of movement is decreased is known as the annealing or cooling schedule of the SA algorithm. The main disadvantage of SA is that there is not a rigorous theoretical foundation for determining the parameters of the cooling schedule. The choice of these parameters is highly problem dependent and the designer needs to experiment in order to determine values that will provide a good optimization in a reasonable amount of computational time. This experimentation can absorb a large amount of time especially when the algorithm is being applied to a new type of design. In order to eliminate this disadvantage, a variation of SA known as discrete-state simulated annealing (DSSA), was recently developed. DSSA provides the theoretical foundation for a generic cooling schedule which is problem independent, Results of similar quality to SA can be obtained, but without the extra computational time required to tune the cooling parameters. Two algorithm variations based on DSSA were developed and programmed into a Microsoft Excel spreadsheet graphical user interface (GUI) to the two-dimensional nonlinear multisignal helix traveling-wave amplifier analysis program TWA3

  18. Gastric dysrhythmias and the current status of electrogastrography

    NASA Technical Reports Server (NTRS)

    Koch, K. L.

    1989-01-01

    Myoelectrical activity recorded simultaneously from mucosal, serosal, and cutaneous electrodes has confirmed that the 3-cpm signal from such electrodes reflects gastric slow-wave activity. Now, the observation that patients with unexplained nausea and vomiting may have very rapid slow-wave frequencies (tachygastrias) and very slow, slow-wave frequencies (bradygastrias) suggests that electrogastrography, a reliable and noninvasive technique, may be useful in the diagnosis and management of patients with upper abdominal symptoms and gastroparesis.

  19. Analyzing critical propagation in a reaction-diffusion-advection model using unstable slow waves.

    PubMed

    Kneer, Frederike; Obermayer, Klaus; Dahlem, Markus A

    2015-02-01

    The effect of advection on the propagation and in particular on the critical minimal speed of traveling waves in a reaction-diffusion model is studied. Previous theoretical studies estimated this effect on the velocity of stable fast waves and predicted the existence of a critical advection strength below which propagating waves are not supported anymore. In this paper, an analytical expression for the advection-velocity relation of the unstable slow wave is derived. In addition, the critical advection strength is calculated taking into account the unstable slow wave solution. We also analyze a two-variable reaction-diffusion-advection model numerically in a wide parameter range. Due to the new control parameter (advection) we can find stable wave propagation in the otherwise non-excitable parameter regime, if the advection strength exceeds a critical value. Comparing theoretical predictions to numerical results, we find that they are in good agreement. Theory provides an explanation for the observed behaviour.

  20. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    NASA Astrophysics Data System (ADS)

    Othman, Mohamed A. K.; Veysi, Mehdi; Figotin, Alexander; Capolino, Filippo

    2016-03-01

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventional Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.

  1. Supplementing monosodium glutamate to partial enteral nutrition slows gastric emptying in preterm pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerging evidence suggests that free glutamate may play a functional role in modulating gastroduodenal motor function. We hypothesized that supplementing monosodium glutamate (MSG) to partial enteral nutrition stimulates gastric emptying in preterm pigs. Ten-day-old preterm, parenterally fed pigs re...

  2. Local Slow Waves in Superficial Layers of Primary Cortical Areas during REM Sleep.

    PubMed

    Funk, Chadd M; Honjoh, Sakiko; Rodriguez, Alexander V; Cirelli, Chiara; Tononi, Giulio

    2016-02-08

    Sleep is traditionally constituted of two global behavioral states, non-rapid eye movement (NREM) and rapid eye movement (REM), characterized by quiescence and reduced responsiveness to sensory stimuli [1]. NREM sleep is distinguished by slow waves and spindles throughout the cerebral cortex and REM sleep by an "activated," low-voltage fast electroencephalogram (EEG) paradoxically similar to that of wake, accompanied by rapid eye movements and muscle atonia. However, recent evidence has shown that cortical activity patterns during wake and NREM sleep are not as global as previously thought. Local slow waves can appear in various cortical regions in both awake humans [2] and rodents [3-5]. Intracranial recordings in humans [6] and rodents [4, 7] have shown that NREM sleep slow waves most often involve only a subset of brain regions that varies from wave to wave rather than occurring near synchronously across all cortical areas. Moreover, some cortical areas can transiently "wake up" [8] in an otherwise sleeping brain. Yet until now, cortical activity during REM sleep was thought to be homogenously wake-like. We show here, using local laminar recordings in freely moving mice, that slow waves occur regularly during REM sleep, but only in primary sensory and motor areas and mostly in layer 4, the main target of relay thalamic inputs, and layer 3. This finding may help explain why, during REM sleep, we remain disconnected from the environment even though the bulk of the cortex shows wake-like, paradoxical activation.

  3. Observation of four-wave mixing in slow-light silicon photonic crystal waveguides.

    PubMed

    McMillan, James F; Yu, Mingbin; Kwong, Dim-Lee; Wong, Chee Wei

    2010-07-19

    Four-wave mixing is observed in a silicon W1 photonic crystal waveguide. The dispersion dependence of the idler conversion efficiency is measured and shown to be enhanced at wavelengths exhibiting slow group velocities. A 12-dB increase in the conversion efficiency is observed. Concurrently, a decrease in the conversion bandwidth is observed due to the increase in group velocity dispersion in the slow-light regime. The experimentally observed conversion efficiencies agree with the numerically modeled results.

  4. Role of slow oscillatory activity and slow wave sleep in consolidation of episodic-like memory in rats.

    PubMed

    Oyanedel, Carlos N; Binder, Sonja; Kelemen, Eduard; Petersen, Kimberley; Born, Jan; Inostroza, Marion

    2014-12-15

    Our previous experiments showed that sleep in rats enhances consolidation of hippocampus dependent episodic-like memory, i.e. the ability to remember an event bound into specific spatio-temporal context. Here we tested the hypothesis that this enhancing effect of sleep is linked to the occurrence of slow oscillatory and spindle activity during slow wave sleep (SWS). Rats were tested on an episodic-like memory task and on three additional tasks covering separately the where (object place recognition), when (temporal memory), and what (novel object recognition) components of episodic memory. In each task, the sample phase (encoding) was followed by an 80-min retention interval that covered either a period of regular morning sleep or sleep deprivation. Memory during retrieval was tested using preferential exploration of novelty vs. familiarity. Consistent with previous findings, the rats which had slept during the retention interval showed significantly stronger episodic-like memory and spatial memory, and a trend of improved temporal memory (although not significant). Object recognition memory was similarly retained across sleep and sleep deprivation retention intervals. Recall of episodic-like memory was associated with increased slow oscillatory activity (0.85-2.0Hz) during SWS in the retention interval. Spatial memory was associated with increased proportions of SWS. Against our hypothesis, a relationship between spindle activity and episodic-like memory performance was not detected, but spindle activity was associated with object recognition memory. The results provide support for the role of SWS and slow oscillatory activity in consolidating hippocampus-dependent memory, the role of spindles in this process needs to be further examined.

  5. Transmission of cochlear distortion products as slow waves: a comparison of experimental and model data.

    PubMed

    Vetešník, Aleš; Gummer, Anthony W

    2012-05-01

    There is a long-lasting question of how distortion products (DPs) arising from nonlinear amplification processes in the cochlea are transmitted from their generation sites to the stapes. Two hypotheses have been proposed: (1) the slow-wave hypothesis whereby transmission is via the transverse pressure difference across the cochlear partition and (2) the fast-wave hypothesis proposing transmission via longitudinal compression waves. Ren with co-workers have addressed this topic experimentally by measuring the spatial vibration pattern of the basilar membrane (BM) in response to two tones of frequency f(1) and f(2). They interpreted the observed negative phase slopes of the stationary BM vibrations at the cubic distortion frequency f(DP) = 2f(1) - f(2) as evidence for the fast-wave hypothesis. Here, using a physically based model, it is shown that their phase data is actually in accordance with the slow-wave hypothesis. The analysis is based on a frequency-domain formulation of the two-dimensional motion equation of a nonlinear hydrodynamic cochlea model. Application of the analysis to their experimental data suggests that the measurement sites of negative phase slope were located at or apical to the DP generation sites. Therefore, current experimental and theoretical evidence supports the slow-wave hypothesis. Nevertheless, the analysis does not allow rejection of the fast-wave hypothesis.

  6. Excitation of low-frequency waves via coupling between slow Alfven waves in the GAMMA 10 tandem mirror

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Okada, T.; Hirata, M.; Sakamoto, M.; Iwamoto, Y.; Sumida, S.; Jang, S.; Itagaki, J.; Onodera, Y.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Wang, X.; Nakashima, Y.

    2015-11-01

    In normal discharges of the GAMMA 10 tandem mirror, confined energy is saturated against heating power and unstable slow Alfven wave named as Alfven-Ion-Cyclotron (AIC) wave is observed in the saturated phase. This saturation may be partly related to (1) the decay of ICRF heating power, which is the main power source in GAMMA 10, due to the coupling with the AIC waves to produce difference-frequency waves and (2) the enhancement of axial transport of high-energy ions owing to nonlinearly excited low-frequency waves. To investigate these phenomena precisely, reflectometry is applied, which can provide assessment of nonlinear process at the location where the nonlinear process are taking place without any disturbance. Bispectral analysis applied to the density fluctuations measured at a wide radial region clearly shows the occurrence of various wave-wave couplings among the heating ICRF wave and the AIC waves. Generation of low-frequency waves via the coupling between coexisting AIC waves is found to be significant only near the core region. Details of measured nonlinear couplings are presented along with the observation showing the clear relation of generated low-frequency waves with the axial transport of high-energy ions. This work is partly supported by JSPS, Japan (25400531, 15K17797) and by NIFS, Japan (NIFS15KUGM101).

  7. Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography.

    PubMed

    Hoffman, Joseph J; Nelson, Amber M; Holland, Mark R; Miller, James G

    2012-09-01

    A Bayesian probability theory approach for separating overlapping ultrasonic fast and slow waves in cancellous bone has been previously introduced. The goals of this study were to investigate whether the fast and slow waves obtained from Bayesian separation of an apparently single mode signal individually correlate with porosity and to isolate the fast and slow waves from medial-lateral insonification of the calcaneus. The Bayesian technique was applied to trabecular bone data from eight human calcanei insonified in the medial-lateral direction. The phase velocity, slope of attenuation (nBUA), and amplitude were determined for both the fast and slow waves. The porosity was assessed by micro-computed tomography (microCT) and ranged from 78.7% to 94.1%. The method successfully separated the fast and slow waves from medial-lateral insonification of the calcaneus. The phase velocity for both the fast and slow wave modes showed an inverse correlation with porosity (R(2) = 0.73 and R(2) = 0.86, respectively). The slope of attenuation for both wave modes also had a negative correlation with porosity (fast wave: R(2) = 0.73, slow wave: R(2) = 0.53). The fast wave amplitude decreased with increasing porosity (R(2) = 0.66). Conversely, the slow wave amplitude modestly increased with increasing porosity (R(2) = 0.39).

  8. Shock Formation and Energy Dissipation of Slow Magnetosonic Waves in Coronal Plumes

    NASA Technical Reports Server (NTRS)

    Cuntz, M.; Suess, S. T.

    2003-01-01

    We study the shock formation and energy dissipation of slow magnetosonic waves in coronal plumes. The wave parameters and the spreading function of the plumes as well as the base magnetic field strength are given by empirical constraints mostly from SOHO/UVCS. Our models show that shock formation occurs at low coronal heights, i.e., within 1.3 bun, depending on the model parameters. In addition, following analytical estimates, we show that scale height of energy dissipation by the shocks ranges between 0.15 and 0.45 Rsun. This implies that shock heating by slow magnetosonic waves is relevant at most heights, even though this type of waves is apparently not a solely operating energy supply mechanism.

  9. Slow wave structures using twisted waveguides for charged particle applications

    DOEpatents

    Kang, Yoon W.; Fathy, Aly E.; Wilson, Joshua L.

    2012-12-11

    A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed. Accordingly, the overall operating frequency may be varied with a tuning/phase shifting device located outside the resonant waveguide structure.

  10. Dynamic Analysis of the Conditional Oscillator Underlying Slow Waves in Thalamocortical Neurons.

    PubMed

    David, François; Crunelli, Vincenzo; Leresche, Nathalie; Lambert, Régis C

    2016-01-01

    During non-REM sleep the EEG shows characteristics waves that are generated by the dynamic interactions between cortical and thalamic oscillators. In thalamic neurons, low-threshold T-type Ca(2+) channels play a pivotal role in almost every type of neuronal oscillations, including slow (< 1 Hz) waves, sleep spindles and delta waves. The transient opening of T channels gives rise to the low threshold spikes (LTSs), and associated high frequency bursts of action potentials, that are characteristically present during sleep spindles and delta waves, whereas the persistent opening of a small fraction of T channels, (i.e., ITwindow) is responsible for the membrane potential bistability underlying sleep slow oscillations. Surprisingly thalamocortical (TC) neurons express a very high density of T channels that largely exceed the amount required to generate LTSs and therefore, to support certain, if not all, sleep oscillations. Here, to clarify the relationship between T current density and sleep oscillations, we systematically investigated the impact of the T conductance level on the intrinsic rhythmic activities generated in TC neurons, combining in vitro experiments and TC neuron simulation. Using bifurcation analysis, we provide insights into the dynamical processes taking place at the transition between slow and delta oscillations. Our results show that although stable delta oscillations can be evoked with minimal T conductance, the full range of slow oscillation patterns, including groups of delta oscillations separated by Up states ("grouped-delta slow waves") requires a high density of T channels. Moreover, high levels of T conductance ensure the robustness of different types of slow oscillations.

  11. A high efficient relativistic backward wave oscillator with coaxial nonuniform slow-wave structure and depth-tunable extractor

    SciTech Connect

    Ge Xingjun; Zhong Huihuang; Zhang Jun; Qian Baoliang

    2013-02-15

    A high efficient relativistic backward wave oscillator with coaxial nonuniform slow-wave structures (SWSs) and depth-tunable extractor is presented. The physical mechanism to increase the power efficiency is investigated theoretically and experimentally. It is shown that the nonuniform SWSs, the guiding magnetic field distribution, and the coaxial extractor depth play key roles in the enhancement of the beam-wave power conversion efficiency. The experimental results show that a 1.609 GHz, 2.3 GW microwave can be generated when the diode voltage is 890 kV and the beam current is 7.7 kA. The corresponding power efficiency reaches 33.6%.

  12. 3D Modeling of Antenna Driven Slow Waves Excited by Antennas Near the Plasma Edge

    NASA Astrophysics Data System (ADS)

    Smithe, David; Jenkins, Thomas

    2016-10-01

    Prior work with the 3D finite-difference time-domain (FDTD) plasma and sheath model used to model ICRF antennas in fusion plasmas has highlighted the possibility of slow wave excitation at the very low end of the SOL density range, and thus the prudent need for a slow-time evolution model to treat SOL density modifications due to the RF itself. At higher frequency, the DIII-D helicon antenna has much easier access to a parasitic slow wave excitation, and in this case the Faraday screen provides the dominant means of controlling the content of the launched mode, with antenna end-effects remaining a concern. In both cases, the danger is the same, with the slow-wave propagating into a lower-hybrid resonance layer a short distance ( cm) away from the antenna, which would parasitically absorb power, transferring energy to the SOL edge plasma, primarily through electron-neutral collisions. We will present 3D modeling of antennas at both ICRF and helicon frequencies. We've added a slow-time evolution capability for the SOL plasma density to include ponderomotive force driven rarefaction from the strong fields in the vicinity of the antenna, and show initial application to NSTX antenna geometry and plasma configurations. The model is based on a Scalar Ponderomotive Potential method, using self-consistently computed local field amplitudes from the 3D simulation.

  13. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    NASA Astrophysics Data System (ADS)

    Solis-Najera, S. E.; Neria-Pérez, J. A.; Medina, L.; Garipov, R.; Rodríguez, A. O.

    2014-11-01

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot's model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot's waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  14. Observations of Alfvén and Slow Waves in the Solar Wind near 1 AU

    NASA Astrophysics Data System (ADS)

    SHI, M. J.; XIAO, C. J.; LI, Q. S.; WANG, H. G.; WANG, X. G.; LI, H.

    2015-12-01

    Magnetohydrodynamic (MHD) waves play a significant role in the processes of the solar wind acceleration and the coronal heating. Based on the in situ measurements of the WIND spacecraft, some MHD waves in the quiet solar wind are identified with two criteria: (1) the correlation coefficients between velocity and magnetic field perturbations (δ {\\boldsymbol{v}} and δ {\\boldsymbol{B}}) and between thermal pressure and magnetic pressure perturbations (δpt and δpb), and (2) the dispersion relations of MHD waves. A preliminary statistics of those MHD modes is also achieved by selecting and analyzing the WIND data of 42,279 samples (45050.4 hr) in the 23rd solar cycle. It is found that the time fraction of Alfvén waves is 8% in this period, while the existence time of slow waves is 3.4%, and the fast wave is rare. The statistical result also shows that the Alfvén waves have a higher time fraction in fast solar wind, while the occurrence of slow waves is higher in moderate-speed solar wind. This work will provide more clues to understanding MHD activities in the solar wind, as well as the studies of solar wind acceleration and heating.

  15. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    SciTech Connect

    Solis-Najera, S. E. E-mail: angel.perez@ciencias.unam.mx Neria-Pérez, J. A. E-mail: angel.perez@ciencias.unam.mx Medina, L. E-mail: angel.perez@ciencias.unam.mx; Garipov, R.; Rodríguez, A. O.

    2014-11-07

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’s waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  16. Landau-Kleffner Syndrome, Electrical Status Epilepticus in Slow Wave Sleep, and Language Regression in Children

    ERIC Educational Resources Information Center

    McVicar, Kathryn A.; Shinnar, Shlomo

    2004-01-01

    The Landau-Kleffner syndrome (LKS) and electrical status epilepticus in slow wave sleep (ESES) are rare childhood-onset epileptic encephalopathies in which loss of language skills occurs in the context of an epileptiform EEG activated in sleep. Although in LKS the loss of function is limited to language, in ESES there is a wider spectrum of…

  17. Neuronal Networks in Children with Continuous Spikes and Waves during Slow Sleep

    ERIC Educational Resources Information Center

    Siniatchkin, Michael; Groening, Kristina; Moehring, Jan; Moeller, Friederike; Boor, Rainer; Brodbeck, Verena; Michel, Christoph M.; Rodionov, Roman; Lemieux, Louis; Stephani, Ulrich

    2010-01-01

    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least greater than 85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and…

  18. Social exclusion in middle childhood: rejection events, slow-wave neural activity, and ostracism distress.

    PubMed

    Crowley, Michael J; Wu, Jia; Molfese, Peter J; Mayes, Linda C

    2010-01-01

    This study examined neural activity with event-related potentials (ERPs) in middle childhood during a computer-simulated ball-toss game, Cyberball. After experiencing fair play initially, children were ultimately excluded by the other players. We focused specifically on “not my turn” events within fair play and rejection events within social exclusion. Dense-array ERPs revealed that rejection events are perceived rapidly. Condition differences (“not my turn” vs. rejection) were evident in a posterior ERP peaking at 420 ms consistent, with a larger P3 effect for rejection events indicating that in middle childhood rejection events are differentiated in <500 ms. Condition differences were evident for slow-wave activity (500-900 ms) in the medial frontal cortical region and the posterior occipital-parietal region, with rejection events more negative frontally and more positive posteriorly. Distress from the rejection experience was associated with a more negative frontal slow wave and a larger late positive slow wave, but only for rejection events. Source modeling with Geosouce software suggested that slow-wave neural activity in cortical regions previously identified in functional imaging studies of ostracism, including subgenual cortex, ventral anterior cingulate cortex, and insula, was greater for rejection events vs. “not my turn” events.

  19. EEG sleep slow-wave activity as a mirror of cortical maturation.

    PubMed

    Buchmann, Andreas; Ringli, Maya; Kurth, Salomé; Schaerer, Margot; Geiger, Anja; Jenni, Oskar G; Huber, Reto

    2011-03-01

    Deep (slow wave) sleep shows extensive maturational changes from childhood through adolescence, which is reflected in a decrease of sleep depth measured as the activity of electroencephalographic (EEG) slow waves. This decrease in sleep depth is paralleled by massive synaptic remodeling during adolescence as observed in anatomical studies, which supports the notion that adolescence represents a sensitive period for cortical maturation. To assess the relationship between slow-wave activity (SWA) and cortical maturation, we acquired sleep EEG and magnetic resonance imaging data in children and adolescents between 8 and 19 years. We observed a tight relationship between sleep SWA and a variety of indexes of cortical maturation derived from magnetic resonance (MR) images. Specifically, gray matter volumes in regions correlating positively with the activity of slow waves largely overlapped with brain areas exhibiting an age-dependent decrease in gray matter. The positive relationship between SWA and cortical gray matter was present also for power in other frequency ranges (theta, alpha, sigma, and beta) and other vigilance states (theta during rapid eye movement sleep). Our findings indicate a strong relationship between sleep EEG activity and cortical maturation. We propose that in particular, sleep SWA represents a good marker for structural changes in neuronal networks reflecting cortical maturation during adolescence.

  20. Simulation of slow cyclotron wave growth on a scattered relativistic electron beam

    SciTech Connect

    Shanahan, W.R.; Faehl, R.J.

    1981-06-01

    Simulations demonstrating effective growth of slow cyclotron waves on a beam exhibiting a scattered distribution of particle velocities are described. No dramatic changes from the cold beam results for the dispersive properties are observed, but significant modifications of radial eigenmode structure appear.

  1. Slow-wave oscillations in the craniosacral space: a hemoliquorodynamic concept of origination.

    PubMed

    Moskalenko, Yu E; Kravchenko, T I; Vainshtein, G B; Halvorson, P; Feilding, A; Mandara, A; Panov, A A; Semernya, V N

    2009-05-01

    The mechanism of formation of rhythmic, slow-wave oscillations in the craniospinal cavity were studied. Synchronous bioimpedance traces were made of the head and lumbosacral part of the spine in five healthy young subjects at rest and during voluntary breath-holding; these reflect changes in the ratios of blood and CSF volumes in these parts of the craniospinal space. Computer amplitude-frequency and spectral analysis of the data (Macintosh G-4, Chart-5.2) demonstrated slow (6-12 cycles/min) and rapid (pulsatile) oscillations in different directions in the cranial and lumbosacral areas. These data suggested a hemoliquorodynamic hypothesis for the craniosacral rhythm. The pulsatile and slow-wave oscillations of cerebrovascular tone and intracranial pressure evidently initiate to-and-fro displacements of the CSF in the caudal direction. The associated tonic contractions of the musculature of the lumbar part of the spine and the mobility of the sacrum are detected manually as the craniosacral rhythm.

  2. Four-wave mixing in slow light engineered silicon photonic crystal waveguides.

    PubMed

    Monat, C; Ebnali-Heidari, M; Grillet, C; Corcoran, B; Eggleton, B J; White, T P; O'Faolain, L; Li, J; Krauss, T F

    2010-10-25

    We experimentally investigate four-wave mixing (FWM) in short (80 μm) dispersion-engineered slow light silicon photonic crystal waveguides. The pump, probe and idler signals all lie in a 14 nm wide low dispersion region with a near-constant group velocity of c/30. We measure an instantaneous conversion efficiency of up to -9dB between the idler and the continuous-wave probe, with 1W peak pump power and 6 nm pump-probe detuning. This conversion efficiency is found to be considerably higher (>10 × ) than that of a Si nanowire with a group velocity ten times larger. In addition, we estimate the FWM bandwidth to be at least that of the flat band slow light window. These results, supported by numerical simulations, emphasize the importance of engineering the dispersion of PhC waveguides to exploit the slow light enhancement of FWM efficiency, even for short device lengths.

  3. Simultaneous realization of negative group velocity, fast and slow acoustic waves in a metamaterial

    NASA Astrophysics Data System (ADS)

    Li, Xiao-juan; Xue, Cheng; Fan, Li; Zhang, Shu-yi; Chen, Zhe; Ding, Jin; Zhang, Hui

    2016-06-01

    An acoustic metamaterial is designed based on a simple and compact structure of one string of side pipes arranged along a waveguide, in which diverse group velocities are achieved. Owing to Fabry-Perot resonance of the side pipes, a negative phase time is achieved, and thus, acoustic waves transmitting with negative group velocities are produced near the resonant frequency. In addition, both fast and slow acoustic waves are also observed in the vicinity of the resonance frequency. The extraordinary group velocities can be explained based on spectral rephasing induced by anomalous dispersion on the analogy of Lorentz dispersion in electromagnetic waves.

  4. Slow and fast ultrasonic wave detection improvement in human trabecular bones using Golay code modulation.

    PubMed

    Lashkari, Bahman; Manbachi, Amir; Mandelis, Andreas; Cobbold, Richard S C

    2012-09-01

    The identification of fast and slow waves propagating through trabecular bone is a challenging task due to temporal wave overlap combined with the high attenuation of the fast wave in the presence of noise. However, it can provide valuable information about bone integrity and become a means for monitoring osteoporosis. The objective of this work is to apply different coded excitation methods for this purpose. The results for single-sine cycle pulse, Golay code, and chirp excitations are compared. It is shown that Golay code is superior to the other techniques due to its signal enhancement while exhibiting excellent resolution without the ambiguity of sidelobes.

  5. Nonlinear elastic wave NDE I : nonlinear resonant ultrasound spectroscopy (NRUS) and slow dynamics diagnostics (SDD)

    SciTech Connect

    Johnson, Paul; Sutin, A.

    2004-01-01

    The nonlinear elastic response of materials (e.g., wave mixing, harmonic generation) is much more sensitive to the presence of damage than the linear response (e.g., wavespeed, dissipation). An overview of the four primary Nonlinear Elastic Wave Spectroscopy (NEWS) methods used in nonlinear damage detection are presented in this and the following paper. Those presented in this paper are Nonlinear Resonant Ultrasound Spectroscopy (NRUS), based on measurement of the nonlinear response of one or more resonant modes in a test sample, and Slow Dynamics Diagnostics (SDD), manifest by an alteration in the material dissipation and elastic modulus after application of relatively high-amplitude wave that slowly recovers in time.

  6. Near infrared spectroscopy as possible non-invasive monitor of slow vasogenic ICP waves.

    PubMed

    Weerakkody, Ruwan Alwis; Czosnyka, Marek; Zweifel, Christian; Castellani, Gianluca; Smielewski, Peter; Brady, Ken; Pickard, John D; Czosnyka, Zofia

    2012-01-01

    We aimed to study synchronisation between ICP and near infrared spectroscopy (NIRS) variables induced by vasogenic waves of ICP during an infusion study in hydrocephalic patients and after TBI. Nineteen patients presenting with hydrocephalus underwent a diagnostic intraventricular constant-flow infusion test. The original concept of the methodology, presented in the current paper, was derived from this material. Then the method was applied in 40 TBI patients, with results reported in an observational manner. During monitoring, NIRS deoxygenated and oxygenated haemoglobin (Hb, HbO(2)) were recorded simultaneously with ICP. Moving correlation coefficient (6 min) between Hb and HbO(2) was tested as a marker of the slow vasogenic waves of ICP.During infusion studies ICP increased from 10.7 (5.1) mmHg to a plateau of 18.9 (7.6) mmHg, which was associated with an increase in the power of slow ICP waves (p = 0.000017). Fluctuations of Hb and HbO(2) at baseline negatively correlated with each other, but switched to high positive values during periods of increased ICP slow-wave activity during infusion (p < 0.001). Similar behaviour was observed in TBI patients: baseline negative Hb/HbO(2) correlation changed to positive values during peaks of ICP of vasogenic nature.Correlating changes in Hb and HbO(2) may be of use as a method of non-invasive detection of vasogenic ICP waves.

  7. Slow strain waves in blocky geological media from GPS and seismological observations on the Amurian plate

    NASA Astrophysics Data System (ADS)

    Bykov, Victor G.; Trofimenko, Sergey V.

    2016-12-01

    Based on the statistical analysis of spatiotemporal distribution of earthquake epicenters and perennial geodetic observation series, new evidence is obtained for the existence of slow strain waves in the Earth. The results of our investigation allow us to identify the dynamics of seismicity along the northern boundary of the Amurian plate as a wave process. Migration of epicenters of weak earthquakes (2 ≤  M ≤ 4) is initiated by the east-west propagation of a strain wave front at an average velocity of 1000 km yr-1. We have found a synchronous quasi-periodic variation of seismicity in equally spaced clusters with spatial periods of 3.5 and 7.26° comparable with the length of slow strain waves. The geodetic observations at GPS sites in proximity to local active faults show that in a number of cases, the GPS site coordinate seasonal variations exhibit a significant phase shift, whereas the time series of these GPS sites differ significantly from a sinusoid. Based on experimental observation data and the developed model of crustal block movement, we have shown that there is one possible interpretation for this fact that the trajectory of GPS station position disturbance is induced by migration of crustal deformation in the form of slow waves.

  8. Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1997-01-01

    Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.

  9. Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1997-01-01

    Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAFIA is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyses required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.

  10. Effects of partial sleep deprivation on slow waves during non-rapid eye movement sleep: a high density EEG investigation

    PubMed Central

    Plante, David T.; Goldstein, Michael R.; Cook, Jesse D.; Smith, Richard; Riedner, Brady A.; Rumble, Meredith E.; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M.; Peterson, Michael J.

    2015-01-01

    Objective Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Methods Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Results Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Conclusions Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. Significance These results demonstrate a homeostatic response to partial sleep loss in humans. PMID:26596212

  11. In-situ measurement of permeability of a porous interface using the ultrasonic slow wave

    NASA Astrophysics Data System (ADS)

    Lin, Lin

    2011-12-01

    Porous materials are an important class of materials. They occur in natural substances such as oil or water bearing rocks, marine sediment, biological tissues (e.g. bones), granular materials and man made materials such as separation membranes, thermal insulators, ceramics and fuel cells. Porous materials have been used in many areas of applied science and engineering. Understanding of porous media plays an important role in areas such as experimental acoustics, geo-mechanics, geophysics, biophysics, material science. Among the number of parameters describing porous materials, the permeability is often the reason the porous structure is of interest. Permeability is a measurement of the ability of a porous material to transmit fluid. At an interface, permeability describes the flow of fluid into or out of a porous media Ultrasound has been widely used for flaw detection and material characterization. Studies show that there are three waves that exist in porous materials: the longitudinal and shear wave that exist in other solid materials and the slow longitudinal wave that only exists in porous materials. This slow longitudinal wave can only be generated and propagated above a critical frequency. Measuring the critical frequency provides information about the intrinsic permeability of a porous interface. This thesis presents a new technique developed for an in-situ permeability measurement using measurement of slow wave. In this work, an exact solution for the critical wave number for the slow wave has been developed and showed suitable for measuring the permeability of porous materials. A computer model of the reflection coefficient at the interface of fluid/porous media has been developed for the acoustic measurement. Ultrasonic experiments confirmed the sensitivity of this technique to changes in permeability and fluid viscosity. A flow cell test has been performed to show one potential industrial application of this technique by showing open pore and closed pore

  12. Frequency-dependent damping in propagating slow magneto-acoustic waves

    SciTech Connect

    Prasad, S. Krishna; Banerjee, D.; Van Doorsselaere, T.

    2014-07-10

    Propagating slow magneto-acoustic waves are often observed in polar plumes and active region fan loops. The observed periodicities of these waves range from a few minutes to a few tens of minutes and their amplitudes were found to decay rapidly as they travel along the supporting structure. Previously, thermal conduction, compressive viscosity, radiation, density stratification, and area divergence were identified to be some of the causes for change in the slow wave amplitude. Our recent studies indicate that the observed damping in these waves is frequency-dependent. We used imaging data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly to study this dependence in detail and for the first time via observations we attempted to deduce a quantitative relation between the damping length and frequency of these oscillations. We developed a new analysis method to obtain this relation. The observed frequency dependence does not seem to agree with the current linear wave theory and it was found that the waves observed in the polar regions show a different dependence from those observed in the on-disk loop structures despite the similarity in their properties.

  13. Type 1 and 2 gastric carcinoid tumors: long-term follow-up of the efficacy of treatment with a slow-release somatostatin analogue.

    PubMed

    Manfredi, Sylvain; Pagenault, Mael; de Lajarte-Thirouard, Anne-Sophie; Bretagne, Jean-François

    2007-11-01

    Little is known about the long-term results of treating gastric carcinoid tumors with a slow-release somatostatin analogue. We report three patients with type 1 and 2 gastric carcinoid tumors who were treated in the above mentioned way and followed for 27-50 months. In all cases, alternative endoscopic or surgical management was considered but deemed inappropriate. Treatment with a slow-release somatostatin analogue was begun in light of a favorable recent report. The result was regression or complete disappearance of macroscopic fundal tumors. No side-effects were reported and, most notably, none of the patients developed gallstones. This small study may help define the optimal duration, dose, and administration interval of the treatment. Slow-release somatostatin analogue is a safe and efficacious treatment for type 1 and 2 gastric carcinoid tumors, and can be used when tumors are growing rapidly. Slow-release somatostatin analogue represents an alternative to repeated endoscopic treatment or high-risk surgery.

  14. Self modulation of slow magnetosonic waves and turbulence generation in solar coronal loops

    NASA Astrophysics Data System (ADS)

    Sharma, R. P.; Sharma, Prachi; Yadav, Nitin

    2017-01-01

    A mechanism based on turbulence for solar coronal heating has been introduced in the present work. Turbulence is considered as an important tool for heating. In the present work, turbulence generation takes place due to the nonlinear interaction of the magnetohydrodynamic waves. Slow magnetosonic waves get localized due to the density perturbations, which are assumed to be present in the background. These perturbations are associated with the low frequency slow magnetosonic waves that are supposed to be propagating in the coronal environment. The dynamics of high (0.01 Hz) and low frequency (0.001 Hz) slow magnetosonic waves have been studied by the two-fluid model and simulate numerically with the pseudo-spectral method. The power law index having a value of nearly -5/3 is obtained, which represents Kolmogorov scaling before the first break point. Based on the fact that the energy flux calculated from the Kolmogorov scaling is sufficient to heat the coronal loops as mentioned in the literature, the proposed interaction can be considered a source for turbulence generation having Kolmogorov scaling.

  15. MODELING OF REFLECTIVE PROPAGATING SLOW-MODE WAVE IN A FLARING LOOP

    SciTech Connect

    Fang, X.; Yuan, D.; Van Doorsselaere, T.; Keppens, R.; Xia, C.

    2015-11-01

    Quasi-periodic propagating intensity disturbances have been observed in large coronal loops in extreme ultraviolet images over a decade, and are widely accepted to be slow magnetosonic waves. However, spectroscopic observations from Hinode/EIS revealed their association with persistent coronal upflows, making this interpretation debatable. We perform a 2.5D magnetohydrodynamic simulation to imitate the chromospheric evaporation and the following reflected patterns in a flare loop. Our model encompasses the corona, transition region, and chromosphere. We demonstrate that the quasi periodic propagating intensity variations captured by the synthesized Solar Dynamics Observatory/Atmospheric Imaging Assembly 131, 94 Å emission images match the previous observations well. With particle tracers in the simulation, we confirm that these quasi periodic propagating intensity variations consist of reflected slow mode waves and mass flows with an average speed of 310 km s{sup −1} in an 80 Mm length loop with an average temperature of 9 MK. With the synthesized Doppler shift velocity and intensity maps of the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Fe xix line emission, we confirm that these reflected slow mode waves are propagating waves.

  16. Entrainment of intestinal slow waves with electrical stimulation using intraluminal electrodes.

    PubMed

    Lin, X; Hayes, J; Peters, L J; Chen, J D

    2000-05-01

    The aim of this study was to investigate whether the intestinal stimulation would be feasible using a less invasive method: intraluminal electrodes. The study was performed in nine healthy hound dogs (15-26 kg). Four pairs of electrodes were implanted on the serosa of the jejunum at an interval of 5 cm with the most proximal pair 35 cm beyond the pylorus. An intestinal fistula was made 20 cm beyond the pylorus. Simultaneous recordings of intestinal myoelectrical activity were made for 2 h in the fasting state from both intraluminal and serosal electrodes. Various pacing parameters were tested. The frequency of the intestinal slow wave recorded from the intraluminal electrodes was identical to that from the serosal electrodes (18.78+/-0.3 cpm vs 18.75+/-0.3 cpm, r=0.99, p <0.001), and so was the percentage of normal 17-22 cycles/ min waves (95.83+/-3.9% vs 98.16+/-1.33%, r=0.96, p<0.01). A complete entrainment of the intestinal slow wave was achieved in every dog with electrical stimulation using intraluminal ring electrodes. The effective pacing parameters were pulse width of 70 ms, amplitude of 4 mA and frequency of 1.1 IF (intrinsic frequency). The time required for the entrainment of the intestinal slow wave with intraluminal pacing was 25.0+/-2.1 s. The maximum driven frequency was found to be 1.43+/-0.01 IF. The results reveal that intraluminal pacing is an effective and efficient method for the entrainment of intestinal slow waves. It may become a potential approach for the treatment of intestinal motor disorders associated with myoelectrical abnormalities.

  17. Evaluation of Some Slow-wave Vane Structures for Aminiature Traveling-wave Tube at 30 Ghz

    NASA Technical Reports Server (NTRS)

    Kavanagh, Frank; Ebihara, Ben; Wallett, Thomas M.; Dayton, James A., Jr.

    1994-01-01

    The dispersion characteristics of six vane type slow wave structures were experimentally measured near 1 GHz to determine applicability in an electrostatically focused 30 GHz miniature traveling wave tube (TWT). From the measured results, the trapezoidal vane structure appeared to be the most promising exhibiting an interaction impedance equal to 337.9 ohms at beta(L)/pi equal to 0.3. A 30 GHz trapezoidal vane structure with coupling irises was fabricated using electrical discharge machining (EDM). This structure, however, was too lossy for a short electrostatically focused tube, but several of the structures are amenable to a tube with permanent magnetic focusing.

  18. Slow Surface Wave Propagation in an Azimuthally-Magnetized Millimeter-Wave Solid-Plasma Coaxial Waveguide

    NASA Astrophysics Data System (ADS)

    Obunai, Tetsuo; Hakamada, Katsuhiro

    1984-08-01

    The propagation characteristics in an azimuthally-magnetized partially-filled solid-plasma coaxial waveguide using n-type InSb at 77 K as the plasma material have been analyzed theoretically and calculated numerically. The results are compared with those for parallel-plate plasma waveguide studied previously. When the proper cross-sectional configuration and field parameters are employed, slow surface wave resonance takes place in the waveguide and a much slower wave propagation velocity at a reduced resonant magnetic field is obtained.

  19. Evidence of Biot Slow Waves in Electroseismic Measurementss on Laboratory-Scale

    NASA Astrophysics Data System (ADS)

    Devi, M. S.

    2015-12-01

    Electroseismic methods which are the opposite of seismo-electric methods have only been little investigated up to now especially in the near surface scale. These methods can generate the solid-fluid relative movement induced by the electric potential in fluid-filled porous media. These methods are the response of electro-osmosis due to the presence of the electrical double layer. Laboratory experiments and numerical simulations of electroseismic studies have been performed. Electroseismic measurements conducted in micro glass beads saturated with demineralized water. Pair of 37 x 37 mm square aluminium grids with 2 mm of aperture and 4 mm of spacing is used as the electric dipole that connected to the electric power source with the voltage output 150 V. A laser doppler vibrometer is the system used to measure velocity of vibrating objects during measurements by placing a line of reflective paper on the surface of media that scattered back a helium-neon laser. The results in homogeneous media shows that the compressional waves induced by an electric signal. We confirm that the results are not the effects of thermal expansion. We also noticed that there are two kinds of the compressional waves are recorded: fast and slow P-waves. The latter, Biot slow waves, indicate the dominant amplitude. Moreover, we found that the transition frequency (ωc) of Biot slow waves depends on mechanical parameters such as porosity and permeability. The ωc is not affected when varying conductivity of the fluid from 25 - 320 μS/cm, although the amplitude slightly changed. For the results in two layer media by placing a sandstone as a top layer shows that a large amount of transmission seismic waves (apparently as Biot slow waves) rather than converted electromagnetic-to-seismic waves. These properties have also been simulated with full waveform numerical simulations relying on Pride's (1994) using our computer code (Garambois & Dietrich, 2002). If it is true that the electric source in

  20. Confirmation of Slow-Waves in a Crosstie Overlay Coplanar Waveguide and Its Application to Band-Reject Gratings and Reflectors.

    DTIC Science & Technology

    1988-03-01

    structures in a printed circuit form constructed with crosstie overlay slow - wave structures . It is well known [31] that the electromagnetic wave propagating...proposed new crosstie overlay slow - wave structures are believed to be potentially useful for miniaturization of distributed circuits in GaAs MMIC’s...candidates for new slow - wave mechanism implementation 10 2.2 Slow - wave principle and waveguide structure for the

  1. Single-unit activity in piriform cortex during slow-wave state is shaped by recent odor experience.

    PubMed

    Wilson, Donald A

    2010-02-03

    Memory and its underlying neural plasticity play important roles in sensory discrimination and cortical pattern recognition in olfaction. Given the reported function of slow-wave sleep states in neocortical and hippocampal memory consolidation, we hypothesized that activity during slow-wave states within the piriform cortex may be shaped by recent olfactory experience. Rats were anesthetized with urethane and allowed to spontaneously shift between slow-wave and fast-wave states as recorded in local field potentials within the anterior piriform cortex. Single-unit activity of piriform cortical layer II/III neurons was recorded simultaneously. The results suggest that piriform cortical activity during slow-wave states is shaped by recent (several minutes) odor experience. The temporal structure of single-unit activity during slow waves was modified if the animal had been stimulated with an odor within the receptive field of that cell. If no odor had been delivered, the activity of the cell during slow-wave activity was stable across the two periods. The results demonstrate that piriform cortical activity during slow-wave state is shaped by recent odor experience, which could contribute to odor memory consolidation.

  2. THE SLOW-MODE NATURE OF COMPRESSIBLE WAVE POWER IN SOLAR WIND TURBULENCE

    SciTech Connect

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.; Bale, S. D.; Chen, C. H. K.; Salem, C. S.

    2012-07-01

    We use a large, statistical set of measurements from the Wind spacecraft at 1 AU, and supporting synthetic spacecraft data based on kinetic plasma theory, to show that the compressible component of inertial range solar wind turbulence is primarily in the kinetic slow mode. The zero-lag cross-correlation C({delta}n, {delta}B{sub ||}) between proton density fluctuations {delta}n and the field-aligned (compressible) component of the magnetic field {delta}B{sub ||} is negative and close to -1. The typical dependence of C({delta}n, {delta}B{sub ||}) on the ion plasma beta {beta}{sub i} is consistent with a spectrum of compressible wave energy that is almost entirely in the kinetic slow mode. This has important implications for both the nature of the density fluctuation spectrum and for the cascade of kinetic turbulence to short wavelengths, favoring evolution to the kinetic Alfven wave mode rather than the (fast) whistler mode.

  3. Efficiency enhancement of high power vacuum BWO's using nonuniform slow wave structures

    SciTech Connect

    Moreland, L.D.; Schamiloglu, E. . Pulsed Power and Plasma Science Lab.); Lemke, R.W. ); Korovin, S.D.; Rostov, V.V.; Roitman, A.M. . Inst. of High Current Electronics); Hendricks, K.J.; Spencer, T.A. . Advanced Weapons and Survivability Directorate)

    1994-10-01

    The Sinus-6, a high-power relativistic repetitively-pulsed electron beam accelerator, is used to drive various slow wave structures in a BWO configuration in vacuum. Peak output power of about 550 MW at 9.45 GHz was radiated in an 8-ns pulse. The authors describe experiments which study the relative efficiencies of microwave generation from a two-stage nonuniform amplitude slow wave structure and its variations without an initial stage. Experimental results are compared with 2.5 D particle-in-cell computer simulations. The results suggest that prebunching the electron beam in the initial section of the nonuniform BWO results in increased microwave generation efficiency. Furthermore, simulations reveal that, in addition to the backward propagating surface harmonic of the TM[sub 01] mode, backward and forward propagating volume harmonics with phase velocity twice that of the surface harmonic play an important role in high-power microwave generation and radiation.

  4. [Language and learning disorders in epilepsy with continuous spike-waves during slow sleep].

    PubMed

    Billard-Daudu, C

    2001-01-01

    Efficacy of antiepileptic drugs in children with epilepsy is usually evaluated on the basis of reduction in seizure frequency. However, in a number of cases, the effect of a drug in reducing EEG paroxysmal activity should be considered. This applies particularly to Landau-Kleffner syndrome and to the syndrome of continuous spike-waves during slow sleep. In developmental language disorders, EEG paroxysmal activity is present in almost 30% of the cases. Paroxysmal abnormalities are usually less frequent than what is observed in epilepsy with continuous spike-waves during slow sleep. Pathogenesis remains unknown and the relationship between EEG evolution and language improvement is not as clear as in Landau-Kleffner syndrome.

  5. Mathematical model and numerical simulation of slow deformation waves in the earth's crust structural elements

    NASA Astrophysics Data System (ADS)

    Makarov, P. V.; Peryshkin, A. Yu.

    2016-11-01

    Numerical calculations of the formation and propagation of slow deformation waves in geological media are performed. The velocities of such a tectonic movements usually lie within the range of 1-100 km/year and these movements are treated as slow deformation waves. The deformation autowaves are shown to make a considerable contribution into the formation of fracture foci. When two such autowaves collide, they behave similar to solitons, reflecting from each other as elastic particles. The deformation autowaves form at the boundaries of structural elements, e.g., blocks of a geomedium during their fast movements. An autowave in a geomedium is developed due to a local loss of stability, and the velocity of its motion is found to be proportional to the velocity of crush movement (motion velocity of the grip during the formation of a Lüders front).

  6. Glutamate microinjection in the medial septum of rats decreases paradoxical sleep and increases slow wave sleep.

    PubMed

    Mukherjee, Didhiti; Kaushik, Mahesh K; Jaryal, Ashok Kumar; Kumar, Velayudhan Mohan; Mallick, Hruda Nanda

    2012-05-09

    The role of the medial septum in suppressing paradoxical sleep and promoting slow wave sleep was suggested on the basis of neurotoxic lesion studies. However, these conclusions need to be substantiated with further experiments, including chemical stimulation studies. In this report, the medial septum was stimulated in adult male rats by microinjection of L-glutamate. Sleep-wakefulness was electrophysiologically recorded, through chronically implanted electrodes, for 2 h before the injection and 4 h after the injection. There was a decrease in paradoxical sleep during the first hour and an increase in slow wave sleep during the second hour after the injection. The present findings not only supported the lesion studies but also showed that the major role of the medial septum is to suppress paradoxical sleep.

  7. Four-wave mixing in slow light photonic crystal waveguides with very high group index.

    PubMed

    Li, Juntao; O'Faolain, Liam; Krauss, Thomas F

    2012-07-30

    We report efficient four-wave mixing in dispersion engineered slow light silicon photonic crystal waveguides with a flat band group index of n(g) = 60. Using only 15 mW continuous wave coupled input power, we observe a conversion efficiency of -28 dB. This efficiency represents a 30 dB enhancement compared to a silicon nanowire of the same length. At higher powers, thermal redshifting due to linear absorption was found to detune the slow light regime preventing the expected improvement in efficiency. We then overcome this thermal limitation by using oxide-clad waveguides, which we demonstrate for group indices of ng = 30. Higher group indices may be achieved with oxide clad-waveguides, and we predict conversion efficiencies approaching -10 dB, which is equivalent to that already achieved in silicon nanowires but for a 50x shorter length.

  8. Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells

    PubMed Central

    Dähne, Sven; Wilbert, Niko; Wiskott, Laurenz

    2014-01-01

    The developing visual system of many mammalian species is partially structured and organized even before the onset of vision. Spontaneous neural activity, which spreads in waves across the retina, has been suggested to play a major role in these prenatal structuring processes. Recently, it has been shown that when employing an efficient coding strategy, such as sparse coding, these retinal activity patterns lead to basis functions that resemble optimal stimuli of simple cells in primary visual cortex (V1). Here we present the results of applying a coding strategy that optimizes for temporal slowness, namely Slow Feature Analysis (SFA), to a biologically plausible model of retinal waves. Previously, SFA has been successfully applied to model parts of the visual system, most notably in reproducing a rich set of complex-cell features by training SFA with quasi-natural image sequences. In the present work, we obtain SFA units that share a number of properties with cortical complex-cells by training on simulated retinal waves. The emergence of two distinct properties of the SFA units (phase invariance and orientation tuning) is thoroughly investigated via control experiments and mathematical analysis of the input-output functions found by SFA. The results support the idea that retinal waves share relevant temporal and spatial properties with natural visual input. Hence, retinal waves seem suitable training stimuli to learn invariances and thereby shape the developing early visual system such that it is best prepared for coding input from the natural world. PMID:24810948

  9. Modulational instability and associated rogue structures of slow magnetosonic wave in Hall magnetohydrodynamic plasmas

    SciTech Connect

    Panwar, Anuraj; Ryu, Chang-Mo

    2014-06-15

    The modulational instability and associated rogue structures of a slow magnetosonic wave are investigated for a Hall magnetohydrodynamic plasma. Nonlinear Schrodinger equation is obtained by using the multiple scale method, which shows a modulationally unstable slow magnetosonic mode evolving into bright wavepackets. The dispersive effects induced by the Hall electron current increase with the increase in plasma β and become weaker as the angle of propagation increases. The growth rate of the modulational instability also increases with the increase in plasma β. The growth rate is greatest for the parallel propagation and drops to zero for perpendicular propagation. The envelope wavepacket of a slow magnetosonic is widened with less oscillations as plasma β increases. But the wavepacket becomes slightly narrower and more oscillatory as the angle of propagation increases. Further a non-stationary envelope solution of the Peregrine soliton is analyzed for rogue waves. The Peregrine soliton contracts temporally and expands spatially with increase in plasma β. However, the width of a slow magnetosonic Peregrine soliton decreases both temporally and spatially with increase of the propagation angle.

  10. Determination of the interaction impedance of coupled cavity slow wave structures

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.

    1976-01-01

    The interaction impedance of coupled cavity slow wave structures can be measured by perturbing the resonances of a shorted length of the structure using a dielectric rod. An analysis of this procedure is presented. The analysis retains radial as well as axial electric fields and all significant space harmonics. The results obtained are easily programmed formulas for calculating total interaction impedance or Pierce impedance using the experimental data.

  11. Neuronal networks in children with continuous spikes and waves during slow sleep.

    PubMed

    Siniatchkin, Michael; Groening, Kristina; Moehring, Jan; Moeller, Friederike; Boor, Rainer; Brodbeck, Verena; Michel, Christoph M; Rodionov, Roman; Lemieux, Louis; Stephani, Ulrich

    2010-09-01

    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least >85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and waves during slow sleep and neuropsychological deficits associated with this condition are still poorly understood. Here, we investigated the haemodynamic changes associated with epileptic activity using simultaneous acquisitions of electroencephalography and functional magnetic resonance imaging in 12 children with symptomatic and cryptogenic continuous spikes and waves during slow sleep. We compared the results of magnetic resonance to electric source analysis carried out using a distributed linear inverse solution at two time points of the averaged epileptic spike. All patients demonstrated highly significant spike-related positive (activations) and negative (deactivations) blood oxygenation-level-dependent changes (P < 0.05, family-wise error corrected). The activations involved bilateral perisylvian region and cingulate gyrus in all cases, bilateral frontal cortex in five, bilateral parietal cortex in one and thalamus in five cases. Electrical source analysis demonstrated a similar involvement of the perisylvian brain regions in all patients, independent of the area of spike generation. The spike-related deactivations were found in structures of the default mode network (precuneus, parietal cortex and medial frontal cortex) in all patients and in caudate nucleus in four. Group analyses emphasized the described individual differences. Despite aetiological heterogeneity, patients with continuous spikes and waves during slow sleep were characterized by activation of the similar neuronal network: perisylvian region, insula and cingulate gyrus. Comparison with the electrical source analysis results suggests that the activations

  12. Fast and slow wave detection in bovine cancellous bone in vitro using bandlimited deconvolution and Prony's method.

    PubMed

    Wear, Keith; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami

    2014-10-01

    Fast and slow waves were detected in a bovine cancellous bone sample for thicknesses ranging from 7 to 12 mm using bandlimited deconvolution and the modified least-squares Prony's method with curve fitting (MLSP + CF). Bandlimited deconvolution consistently isolated two waves with linear-with-frequency attenuation coefficients as evidenced by high correlation coefficients between attenuation coefficient and frequency: 0.997 ± 0.002 (fast wave) and 0.986 ± 0.013 (slow wave) (mean ± standard deviation). Average root-mean-squared (RMS) differences between the two algorithms for phase velocities were 5 m/s (fast wave, 350 kHz) and 13 m/s (slow wave, 750 kHz). Average RMS differences for signal loss were 1.6 dB (fast wave, 350 kHz) and 0.4 dB (slow wave, 750 kHz). Phase velocities for thickness = 10 mm were 1726 m/s (fast wave, 350 kHz) and 1455 m/s (slow wave, 750 kHz). Results show support for the model of two waves with linear-with frequency attenuation, successful isolation of fast and slow waves, good agreement between bandlimited deconvolution and MLSP + CF as well as with a Bayesian algorithm, and potential variations of fast and/or slow wave properties with bone sample thickness.

  13. Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity.

    PubMed

    Klein, Sabine; Seidler, Barbara; Kettenberger, Anna; Sibaev, Andrei; Rohn, Michael; Feil, Robert; Allescher, Hans-Dieter; Vanderwinden, Jean-Marie; Hofmann, Franz; Schemann, Michael; Rad, Roland; Storr, Martin A; Schmid, Roland M; Schneider, Günter; Saur, Dieter

    2013-01-01

    The enteric nervous system contains excitatory and inhibitory neurons, which control contraction and relaxation of smooth muscle cells as well as gastrointestinal motor activity. Little is known about the exact cellular mechanisms of neuronal signal transduction to smooth muscle cells in the gut. Here we generate a c-Kit(CreERT2) knock-in allele to target a distinct population of pacemaker cells called interstitial cells of Cajal. By genetic loss-of-function studies, we show that interstitial cells of Cajal, which generate spontaneous electrical slow waves and thus rhythmic contractions of the smooth musculature, are essential for transmission of signals from enteric neurons to gastrointestinal smooth muscle cells. Interstitial cells of Cajal, therefore, integrate excitatory and inhibitory neurotransmission with slow-wave activity to orchestrate peristaltic motor activity of the gut. Impairment of the function of interstitial cells of Cajal causes severe gastrointestinal motor disorders. The results of our study show at the genetic level that these disorders are not only due to loss of slow-wave activity but also due to disturbed neurotransmission.

  14. [Slow-wave fluctuations in craniosacral space: hemo-liquorodynamic conception of origin].

    PubMed

    Moskalenko, Iu E; Kravchenko, T I; Baĭnshteĭn, G B; Khal'vorson, P; Feĭlding, A; Mandara, A; Panov, A A; Semernia, V N

    2008-04-01

    In the paper, the mechanism of forming of rhythmic slow-wave fluctuations in craniospinal cavity was investigated. In five young healthy persons, at rest and under voluntary respiration arrest test, the bioimpedansograms of head and lumbosacral part of vertebral column were synchronously registered as these recordings reflect the changes of relationships between blood/CSF volumes in cranial and lumbosacral regions, respectively. The recordings were subjected to frequency and spectral computer analysis (PC Macintosh G-4, Chart 5.2. software). The rapid (pulsatile) as well as slow and counter-directed waves (frequency 6-10 cycles/min) of these processes were revealed in cranial and lumbosacral regions. The data obtained suggest the CSF dynamic concept of origin of the craniosacral rhythm. The pulse and slow-frequency oscillations of the cerebral vessels tone initiate corresponding intracranial pressure waves, and the latter are the motivating forces for to-and-fro CSF shifts in caudal direction. This mechanism is accompanied by tonic contractions of lumbar muscles and sacrum movements, and it is manually perceptible as a craniosacral rhythm.

  15. Inverse problems in cancellous bone: estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory.

    PubMed

    Anderson, Christian C; Bauer, Adam Q; Holland, Mark R; Pakula, Michal; Laugier, Pascal; Bretthorst, G Larry; Miller, James G

    2010-11-01

    Quantitative ultrasonic characterization of cancellous bone can be complicated by artifacts introduced by analyzing acquired data consisting of two propagating waves (a fast wave and a slow wave) as if only one wave were present. Recovering the ultrasonic properties of overlapping fast and slow waves could therefore lead to enhancement of bone quality assessment. The current study uses Bayesian probability theory to estimate phase velocity and normalized broadband ultrasonic attenuation (nBUA) parameters in a model of fast and slow wave propagation. Calculations are carried out using Markov chain Monte Carlo with simulated annealing to approximate the marginal posterior probability densities for parameters in the model. The technique is applied to simulated data, to data acquired on two phantoms capable of generating two waves in acquired signals, and to data acquired on a human femur condyle specimen. The models are in good agreement with both the simulated and experimental data, and the values of the estimated ultrasonic parameters fall within expected ranges.

  16. ORIGIN OF CORONAL SHOCK WAVES ASSOCIATED WITH SLOW CORONAL MASS EJECTIONS

    SciTech Connect

    Magdalenic, J.; Marque, C.; Zhukov, A. N.; Vrsnak, B.; Zic, T.

    2010-07-20

    We present a multiwavelength study of five coronal mass ejection/flare events (CME/flare) and associated coronal shock waves manifested as type II radio bursts. The study is focused on the events in which the flare energy release, and not the associated CME, is the most probable source of the shock wave. Therefore, we selected events associated with rather slow CMEs (reported mean velocity below 500 km s{sup -1}). To ensure minimal projection effects, only events related to flares situated close to the solar limb were included in the study. We used radio dynamic spectra, positions of radio sources observed by the Nancay Radioheliograph, GOES soft X-ray flux measurements, Large Angle Spectroscopic Coronagraph, and Extreme-ultraviolet Imaging Telescope observations. The kinematics of the shock wave signatures, type II radio bursts, were analyzed and compared with the flare evolution and the CME kinematics. We found that the velocities of the shock waves were significantly higher, up to one order of magnitude, than the contemporaneous CME velocities. On the other hand, shock waves were closely temporally associated with the flare energy release that was very impulsive in all events. This suggests that the impulsive increase of the pressure in the flare was the source of the shock wave. In four events the shock wave was most probably flare-generated, and in one event results were inconclusive due to a very close temporal synchronization of the CME, flare, and shock.

  17. Experimental observation of sub-terahertz backward-wave amplification in a multi-level microfabricated slow-wave circuit

    SciTech Connect

    Baik, Chan-Wook Ahn, Ho Young; Kim, Yongsung; Lee, Jooho; Hong, Seogwoo; Lee, Sang Hun; Choi, Jun Hee; Kim, Sunil; Kim, Jong Min; Hwang, Sungwoo; Jeon, So-Yeon; Yu, SeGi; Collins, George; Read, Michael E.; Lawrence Ives, R.

    2015-11-09

    In our earlier paper dealing with dispersion retrieval from ultra-deep, reactive-ion-etched, slow-wave circuits on silicon substrates, it was proposed that splitting high-aspect-ratio circuits into multilevels enabled precise characterization in sub-terahertz frequency regime. This achievement prompted us to investigate beam-wave interaction through a vacuum-sealed integration with a 15-kV, 85-mA, thermionic, electron gun. Our experimental study demonstrates sub-terahertz, backward-wave amplification driven by an external oscillator. The measured output shows a frequency downshift, as well as power amplification, from beam loading even with low beam perveance. This offers a promising opportunity for the development of terahertz radiation sources, based on silicon technologies.

  18. Experimental study of a compact P-band coaxial relativistic backward wave oscillator with three periods slow wave structure

    SciTech Connect

    Gao Liang; Qian Baoliang; Ge Xingjun; Zhang Xiaoping; Jin Zhenxing

    2012-08-15

    A compact P-band coaxial relativistic backward wave oscillator with three periods slow wave structure was investigated experimentally. The experimental results show that the frequency of the P-band coaxial relativistic backward wave oscillator is 897 MHz and the microwave power is 1.47 GW with an efficiency of about 32% in the case in which the diode voltage is 572 kV, the beam current is 8.0 kA, and the guide magnetic field is about 0.86 T. In addition, the device can generate a 3.14 GW microwave radiation as the guide magnetic field increases to 1.2 T at the diode voltage of 997 kV and the beam current of 15.3 kA. The experimental results are in good agreement with those obtained earlier by numerical simulations.

  19. Sharp wave-associated synchronized inputs from the piriform cortex activate olfactory tubercle neurons during slow-wave sleep.

    PubMed

    Narikiyo, Kimiya; Manabe, Hiroyuki; Mori, Kensaku

    2014-01-01

    During slow-wave sleep, anterior piriform cortex neurons show highly synchronized discharges that accompany olfactory cortex sharp waves (OC-SPWs). The OC-SPW-related synchronized activity of anterior piriform cortex neurons travel down to the olfactory bulb and is thought to be involved in the reorganization of bulbar neuronal circuitry. However, influences of the OC-SPW-related activity on other regions of the central olfactory system are still unknown. Olfactory tubercle is an area of OC and part of ventral striatum that plays a key role in reward-directed motivational behaviors. In this study, we show that in freely behaving rats, olfactory tubercle receives OC-SPW-associated synchronized inputs during slow-wave sleep. Local field potentials in the olfactory tubercle showed SPW-like activities that were in synchrony with OC-SPWs. Single-unit recordings showed that a subpopulation of olfactory tubercle neurons discharged in synchrony with OC-SPWs. Furthermore, correlation analysis of spike activity of anterior piriform cortex and olfactory tubercle neurons revealed that the discharges of anterior piriform cortex neurons tended to precede those of olfactory tubercle neurons. Current source density analysis in urethane-anesthetized rats indicated that the current sink of the OC-SPW-associated input was located in layer III of the olfactory tubercle. These results indicate that OC-SPW-associated synchronized discharges of piriform cortex neurons travel to the deep layer of the olfactory tubercle and drive discharges of olfactory tubercle neurons. The entrainment of olfactory tubercle neurons in the OC-SPWs suggests that OC-SPWs coordinate reorganization of neuronal circuitry across wide areas of the central olfactory system including olfactory tubercle during slow-wave sleep.

  20. The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread

    SciTech Connect

    Kong, Ling-Bao; Wang, Hong-Yu; Hou, Zhi-Ling; Jin, Hai-Bo; Du, Chao-Hai

    2013-12-15

    The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: •The theory of slow-wave electron cyclotron masers is considered. •The calculation of efficiency under the resonance condition is presented. •The efficiency under Gaussian velocity spreads has been obtained.

  1. Modeling the Slow-Tail of Atmospheric Waves to Approximate the Distance of Propagation

    NASA Astrophysics Data System (ADS)

    Le Cocq, C.; Fraser-Smith, A. C.

    2007-12-01

    A lightning strike emits an electromagnetic wave known as an atmospheric or sferic, which propagates through the earth-ionosphere waveguide. Sferics can be recorded by extremely low and very low frequency, ELF and VLF, receiver systems. The recorded signal is composed of two segments, a pulse containing VLF frequencies, followed by a slow-tail, containing the ELF components. The slow-tail is essentially a single cycle wave, which is delayed with respect to the rest of the sferic due to the dispersive nature of the ionosphere. The recorded time- domain slow-tail varies with the lightning strike's current moment, and the waveguide's media characteristics. It is possible to approximate the location of the lightning source with measurements of the sferic. Many methods require measurements from multiple stations, however the goal of this work is to approximate the distance a sferic propagated with a single station. J.R. Wait developed a mode theory where propagating ELF radio are characterized by the first mode. The research reported here uses the first mode equations to model a slow-tail that propagated a certain distance. We include a comparison to measurements on slow-tails observed at widely variable distances from their causative lightning, and analyze the accuracy of our model. Using the inverse of this method along with sferics from known locations, we approximate the form of the current moment at the source and use an average of this waveform to improve our slow-tail model. With an accurate computed slow-tail we can approximate the distance of propagation by fitting the computed waveform to the observed slow-tail. An analysis is given of the effectiveness of this method. As expected, since this method uses data from only one station, the estimation error from this method are larger than those of the traditional multiple station estimation method. However, in most instances our method was accurate to within hundreds of kilometers. With such accuracy, this method

  2. Coronal Seismology of Flare-Excited Standing Slow-Mode Waves Observed by SDO/AIA

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.

    2016-05-01

    Flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 Å bandpasses. Based on the interpretation in terms of a slow-mode wave, quantitative evidence of thermal conduction suppression in hot (>9 MK) loops has been obtained for the first time from measurements of the polytropic index and phase shift between the temperature and density perturbations (Wang et al. 2015, ApJL, 811, L13). This result has significant implications in two aspects. One is that the thermal conduction suppression suggests the need of greatly enhanced compressive viscosity to interpret the observed strong wave damping. The other is that the conduction suppression provides a reasonable mechanism for explaining the long-duration events where the thermal plasma is sustained well beyond the duration of impulsive hard X-ray bursts in many flares, for a time much longer than expected by the classical Spitzer conductive cooling. In this study, we model the observed standing slow-mode wave in Wang et al. (2015) using a 1D nonlinear MHD code. With the seismology-derived transport coefficients for thermal conduction and compressive viscosity, we successfully simulate the oscillation period and damping time of the observed waves. Based on the parametric study of the effect of thermal conduction suppression and viscosity enhancement on the observables, we discuss the inversion scheme for determining the energy transport coefficients by coronal seismology.

  3. Is There a Relation between EEG-Slow Waves and Memory Dysfunction in Epilepsy? A Critical Appraisal

    PubMed Central

    Höller, Yvonne; Trinka, Eugen

    2015-01-01

    Is there a relationship between peri-ictal slow waves, loss of consciousness, memory, and slow-wave sleep, in patients with different forms of epilepsy? We hypothesize that mechanisms, which result in peri-ictal slow-wave activity as detected by the electroencephalogram, could negatively affect memory processes. Slow waves (≤4 Hz) can be found in seizures with impairment of consciousness and also occur in focal seizures without impairment of consciousness but with inhibited access to memory functions. Peri-ictal slow waves are regarded as dysfunctional and are probably caused by mechanisms, which are essential to disturb the consolidation of memory entries in these patients. This is in strong contrast to physiological slow-wave activity during deep sleep, which is thought to group memory-consolidating fast oscillatory activity. In patients with epilepsy, slow waves may not only correlate with the peri-ictal clouding of consciousness, but could be the epiphenomenon of mechanisms, which interfere with normal brain function in a wider range. These mechanisms may have transient impacts on memory, such as temporary inhibition of memory systems, altered patterns of hippocampal–neocortical interactions during slow-wave sleep, or disturbed cross-frequency coupling of slow and fast oscillations. In addition, repeated tonic–clonic seizures over the years in uncontrolled chronic epilepsy may cause a progressive cognitive decline. This hypothesis can only be assessed in long-term prospective studies. These studies could disentangle the reversible short-term impacts of seizures, and the impacts of chronic uncontrolled seizures. Chronic uncontrolled seizures lead to irreversible memory impairment. By contrast, short-term impacts do not necessarily lead to a progressive cognitive decline but result in significantly impaired peri-ictal memory performance. PMID:26124717

  4. Is There a Relation between EEG-Slow Waves and Memory Dysfunction in Epilepsy? A Critical Appraisal.

    PubMed

    Höller, Yvonne; Trinka, Eugen

    2015-01-01

    Is there a relationship between peri-ictal slow waves, loss of consciousness, memory, and slow-wave sleep, in patients with different forms of epilepsy? We hypothesize that mechanisms, which result in peri-ictal slow-wave activity as detected by the electroencephalogram, could negatively affect memory processes. Slow waves (≤4 Hz) can be found in seizures with impairment of consciousness and also occur in focal seizures without impairment of consciousness but with inhibited access to memory functions. Peri-ictal slow waves are regarded as dysfunctional and are probably caused by mechanisms, which are essential to disturb the consolidation of memory entries in these patients. This is in strong contrast to physiological slow-wave activity during deep sleep, which is thought to group memory-consolidating fast oscillatory activity. In patients with epilepsy, slow waves may not only correlate with the peri-ictal clouding of consciousness, but could be the epiphenomenon of mechanisms, which interfere with normal brain function in a wider range. These mechanisms may have transient impacts on memory, such as temporary inhibition of memory systems, altered patterns of hippocampal-neocortical interactions during slow-wave sleep, or disturbed cross-frequency coupling of slow and fast oscillations. In addition, repeated tonic-clonic seizures over the years in uncontrolled chronic epilepsy may cause a progressive cognitive decline. This hypothesis can only be assessed in long-term prospective studies. These studies could disentangle the reversible short-term impacts of seizures, and the impacts of chronic uncontrolled seizures. Chronic uncontrolled seizures lead to irreversible memory impairment. By contrast, short-term impacts do not necessarily lead to a progressive cognitive decline but result in significantly impaired peri-ictal memory performance.

  5. FORWARD MODELING OF PROPAGATING SLOW WAVES IN CORONAL LOOPS AND THEIR FREQUENCY-DEPENDENT DAMPING

    SciTech Connect

    Mandal, Sudip; Banerjee, Dipankar; Magyar, Norbert; Yuan, Ding; Doorsselaere, Tom Van

    2016-03-20

    Propagating slow waves in coronal loops exhibit a damping that depends upon the frequency of the waves. In this study we aim to investigate the relationship of the damping length (L{sub d}) with the frequency of the propagating wave. We present a 3D coronal loop model with uniform density and temperature and investigate the frequency-dependent damping mechanism for the four chosen wave periods. We include the thermal conduction to damp the waves as they propagate through the loop. The numerical model output has been forward modeled to generate synthetic images of SDO/AIA 171 and 193 Å channels. The use of forward modeling, which incorporates the atomic emission properties into the intensity images, allows us to directly compare our results with the real observations. The results show that the damping lengths vary linearly with the periods. We also measure the contributions of the emission properties on the damping lengths by using density values from the simulation. In addition to that we have also calculated the theoretical dependence of L{sub d} with wave periods and showed that it is consistent with the results we obtained from the numerical modeling and earlier observations.

  6. Resting-state slow wave power, healthy aging and cognitive performance.

    PubMed

    Vlahou, Eleni L; Thurm, Franka; Kolassa, Iris-Tatjana; Schlee, Winfried

    2014-05-29

    Cognitive functions and spontaneous neural activity show significant changes over the life-span, but the interrelations between age, cognition and resting-state brain oscillations are not well understood. Here, we assessed performance on the Trail Making Test and resting-state magnetoencephalographic (MEG) recordings from 53 healthy adults (18-89 years old) to investigate associations between age-dependent changes in spontaneous oscillatory activity and cognitive performance. Results show that healthy aging is accompanied by a marked and linear decrease of resting-state activity in the slow frequency range (0.5-6.5 Hz). The effects of slow wave power on cognitive performance were expressed as interactions with age: For older (>54 years), but not younger participants, enhanced delta and theta power in temporal and central regions was positively associated with perceptual speed and executive functioning. Consistent with previous work, these findings substantiate further the important role of slow wave oscillations in neurocognitive function during healthy aging.

  7. Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1997-01-01

    The helical slow-wave circuit embodies a helical coil of rectangular tape supported in a metal barrel by dielectric support rods. Although the helix slow-wave circuit remains the mainstay of the traveling-wave tube (TWT) industry because of its exceptionally wide bandwidth, a full helical circuit, without significant dimensional approximations, has not been successfully modeled until now. Numerous attempts have been made to analyze the helical slow-wave circuit so that the performance could be accurately predicted without actually building it, but because of its complex geometry, many geometrical approximations became necessary rendering the previous models inaccurate. In the course of this research it has been demonstrated that using the simulation code, MAFIA, the helical structure can be modeled with actual tape width and thickness, dielectric support rod geometry and materials. To demonstrate the accuracy of the MAFIA model, the cold-test parameters including dispersion, on-axis interaction impedance and attenuation have been calculated for several helical TWT slow-wave circuits with a variety of support rod geometries including rectangular and T-shaped rods, as well as various support rod materials including isotropic, anisotropic and partially metal coated dielectrics. Compared with experimentally measured results, the agreement is excellent. With the accuracy of the MAFIA helical model validated, the code was used to investigate several conventional geometric approximations in an attempt to obtain the most computationally efficient model. Several simplifications were made to a standard model including replacing the helical tape with filaments, and replacing rectangular support rods with shapes conforming to the cylindrical coordinate system with effective permittivity. The approximate models are compared with the standard model in terms of cold-test characteristics and computational time. The model was also used to determine the sensitivity of various

  8. Fast and Slow Mode Solitary Waves in a Five-Component Plasma

    NASA Astrophysics Data System (ADS)

    Sebastian, Sijo; Michael, Manesh; Sreekala, G.; Varghese, Anu; Venugopal, Chandu

    2017-02-01

    We have investigated fast- and slow-mode solitary profiles in a five-component plasma consisting of positively and negatively charged pair ions, hydrogen ions, and hotter and colder electrons. Of these, the heavier ions and colder photoelectrons are of cometary origin while the other components are of solar origin; the electrons are described by kappa distributions. The Zakharov-Kuznetsov (ZK) equation is derived, and solutions for fast- and slow-mode solitary structures are plotted for parameters relevant to comet Halley. We found that the presence of hydrogen ions determines the polarity of the fast- and slow-mode solitary structures. Also, variations of equilibrium number density of hydrogen ions and charge numbers on the heavier pair ions act differently on the fast- and slow-mode solitary structures. The addition of hydrogen ions significantly affects the amplitude of the solitary structures for the fast mode. Further, the cyclotron frequency of the lighter and heavier ions has a noticeable effect on the width of the solitary waves.

  9. Do calcium buffers always slow down the propagation of calcium waves?

    PubMed

    Tsai, Je-Chiang

    2013-12-01

    Calcium buffers are large proteins that act as binding sites for free cytosolic calcium. Since a large fraction of cytosolic calcium is bound to calcium buffers, calcium waves are widely observed under the condition that free cytosolic calcium is heavily buffered. In addition, all physiological buffered excitable systems contain multiple buffers with different affinities. It is thus important to understand the properties of waves in excitable systems with the inclusion of buffers. There is an ongoing controversy about whether or not the addition of calcium buffers into the system always slows down the propagation of calcium waves. To solve this controversy, we incorporate the buffering effect into the generic excitable system, the FitzHugh-Nagumo model, to get the buffered FitzHugh-Nagumo model, and then to study the effect of the added buffer with large diffusivity on traveling waves of such a model in one spatial dimension. We can find a critical dissociation constant (K = K(a)) characterized by system excitability parameter a such that calcium buffers can be classified into two types: weak buffers (K ∈ (K(a), ∞)) and strong buffers (K ∈ (0, K(a))). We analytically show that the addition of weak buffers or strong buffers but with its total concentration b(0)(1) below some critical total concentration b(0,c)(1) into the system can generate a traveling wave of the resulting system which propagates faster than that of the origin system, provided that the diffusivity D1 of the added buffers is sufficiently large. Further, the magnitude of the wave speed of traveling waves of the resulting system is proportional to √D1 as D1 --> ∞. In contrast, the addition of strong buffers with the total concentration b(0)(1) > b(0,c)(1) into the system may not be able to support the formation of a biologically acceptable wave provided that the diffusivity D1 of the added buffers is sufficiently large.

  10. Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey

    NASA Astrophysics Data System (ADS)

    Delph, Jonathan R.; Biryol, C. Berk; Beck, Susan L.; Zandt, George; Ward, Kevin M.

    2015-07-01

    The Anatolian Plate is composed of different lithospheric blocks and ribbon continents amalgamated during the closure of the Paleotethys Ocean and Neotethys Ocean along a subduction margin. Using ambient noise tomography, we investigate the crustal and uppermost mantle shear wave velocity structure of the Anatolian Plate. A total of 215 broad-band seismic stations were used spanning 7 yr of recording to compute 13 778 cross-correlations and obtain Rayleigh wave dispersion measurements for periods between 8 and 40 s. We then perform a shear wave inversion to calculate the seismic velocity structure of the crust and uppermost mantle. Our results show that the overall crustal shear wave velocities of the Anatolian crust are low (˜3.4 km s-1), indicative of a felsic overall composition. We find that prominent lateral seismic velocity gradients correlate with Tethyan suture zones, supporting the idea that the neotectonic structures of Turkey are exploiting the lithospheric weaknesses associated with the amalgamation of Anatolia. Anomalously slow shear wave velocities (˜3.15 km s-1 at 25 km) are located in the western limb of the Isparta Angle in southwestern Turkey. In the upper crust, we find that these low shear wave velocities correlate well with the projected location of a carbonate platform unit (Bey Dağlari) beneath the Lycian Nappe complex. In the lower crust and upper mantle of this region, we propose that the anomalously slow velocities are due to the introduction of aqueous fluids related to the underplating of accretionary material from the underthrusting of a buoyant, attenuated continental fragment similar to the Eratosthenes seamount. We suggest that this fragment controlled the location of the formation of the Subduction-Transform Edge Propagator fault in the eastern Aegean Sea during rapid slab rollback of the Aegean Arc in early Miocene times. Lastly, we observe that the uppermost mantle beneath continental Anatolia is generally slow (˜4.2 km s-1

  11. Measurement of the speed and attenuation of the Biot slow wave using a large ultrasonic transmitter

    NASA Astrophysics Data System (ADS)

    Bouzidi, Youcef; Schmitt, Douglas R.

    2009-08-01

    Two compressional wave modes, a fast P1 and a slow P2, propagate through fluid-saturated porous and permeable media. This contribution focuses on new experimental tests of existing theories describing wave propagation in such media. Updated observations of this P2 mode are obtained through a water-loaded, porous sintered glass bead plate with a novel pair of ultrasonic transducers consisting of a large transmitter and a near-point receiver. The properties of the porous plate are measured in independent laboratory experiments. Waveforms are acquired as a function of the angle of incidence over the range from -50° to +50° with respect to the normal. The porous plate is fully characterized, and the physical properties are used to calculate the wave speeds and attenuations of the P1, the P2, and the shear S waves. Comparisons of theory and observation are further facilitated by numerically modeling the observed waveforms. This modeling method incorporates the frequency and angle of incidence-dependent reflectivity, transmissivity, and transducer edge effects; the modeled waveforms match well those observed. Taken together, this study provides further support for existing poroelastic bulk wave propagation and boundary condition theory. However, observed transmitted P1 and S mode amplitudes could not be adequately described unless the attenuation of the medium's frame was also included. The observed P2 amplitudes could be explained without any knowledge of the solid frame attenuation.

  12. Two features of sleep slow waves: homeostatic and reactive aspects--from long term to instant sleep homeostasis.

    PubMed

    Halász, Péter; Bódizs, Róbert; Parrino, Liborio; Terzano, Mario

    2014-10-01

    In this paper we reviewed results of sleep research that have changed the views about sleep slow wave homeostasis, which involve use-dependent and experience-dependent local aspects to understand more of the physiology of plastic changes during sleep. Apart from the traditional homeostatic slow-wave economy, we also overviewed research on the existence and role of reactive aspects of sleep slow waves. Based on the results from spontaneous and artificially evoked slow waves, we offer a new hypothesis on instant slow wave homeostatic regulation. This regulation compensates for any potentially sleep-disturbing events by providing instant "delta injections" to maintain the nightly delta level, thus protecting cognitive functions located in the frontal lobe. We suggest that this double (long-term /instant) homeostasis provides double security for the frontal lobes in order to protect cognitive functions. The incorporation of reactive slow wave activity (SWA) makes sleep regulation more dynamic and provides more room for the internalization of external influences during sleep.

  13. EEG Σ and slow-wave activity during NREM sleep correlate with overnight declarative and procedural memory consolidation.

    PubMed

    Holz, Johannes; Piosczyk, Hannah; Feige, Bernd; Spiegelhalder, Kai; Baglioni, Chiara; Riemann, Dieter; Nissen, Christoph

    2012-12-01

    Previous studies suggest that sleep-specific brain activity patterns such as sleep spindles and electroencephalographic slow-wave activity contribute to the consolidation of novel memories. The generation of both sleep spindles and slow-wave activity relies on synchronized oscillations in a thalamo-cortical network that might be implicated in synaptic strengthening (spindles) and downscaling (slow-wave activity) during sleep. This study further examined the association between electroencephalographic power during non-rapid eye movement sleep in the spindle (sigma, 12-16 Hz) and slow-wave frequency range (0.1-3.5 Hz) and overnight memory consolidation in 20 healthy subjects (10 men, 27.1 ± 4.6 years). We found that both electroencephalographic sigma power and slow-wave activity were positively correlated with the pre-post-sleep consolidation of declarative (word list) and procedural (mirror-tracing) memories. These results, although only correlative in nature, are consistent with the view that processes of synaptic strengthening (sleep spindles) and synaptic downscaling (slow-wave activity) might act in concert to promote synaptic plasticity and the consolidation of both declarative and procedural memories during sleep.

  14. Slow wave structures integrated with ferromagnetic and ferro-electric thin films for smart RF applications

    NASA Astrophysics Data System (ADS)

    Rahman, B. M. Farid

    Modern communications systems are following a common trend to increase the operational frequency, level of integration and number of frequency bands. Although 90-95% components in a cell phone are passives which take 80% of the total board area. High performance RF passive components play limited role and are desired towards this technological advancement. Slow wave structure is one of the most promising candidates to design compact RF and mm-Wave passive components. Slow wave structures are the specially designed transmission line realized by placing the alternate narrow and wide signal conductors in order to reduce the physical size of the components. This dissertation reports multiband slow wave structures integrated with ferromagnetic and ferroelectric thin films and their RF applications. A comparative study on different types of coplanar wave-guide (CPW) slow wave structures (SWS) has been demonstrated for the first time. Slow wave structures with various shapes have been investigated and optimized with various signal conductor shapes, ground conductor shapes and pitch of the sections. Novel techniques i.e. the use of the defected ground structure and the different signal conductor length has been implemented to achieve higher slow wave effect with minimum loss. The measured results have shown the reduction of size over 43.47% and 37.54% in the expense of only 0.27dB and 0.102dB insertion loss respectively which can reduce the area of a designed branch line coupler by 68% and 61% accordingly. Permalloy (Py) is patterned on top of the developed SWS for the first time to further increase the slow wave effect and provide tunable inductance value. High frequency applications of Py are limited by its ferro-magnetic resonance frequency since the inductance value decreases beyond that. Sub-micrometer patterning of Py has increased FMR frequency until 6.3GHz and 3.2GHz by introducing the shape anisotropy. For the SWS with patterned Py, the size of the quarter

  15. Enhancing Slow Wave Sleep with Sodium Oxybate Reduces the Behavioral and Physiological Impact of Sleep Loss

    PubMed Central

    Walsh, James K.; Hall-Porter, Janine M.; Griffin, Kara S.; Dodson, Ehren R.; Forst, Elizabeth H.; Curry, Denise T.; Eisenstein, Rhody D.; Schweitzer, Paula K.

    2010-01-01

    Study Objectives: To investigate whether enhancement of slow wave sleep (SWS) with sodium oxybate reduces the impact of sleep deprivation. Design: Double-blind, parallel group, placebo-controlled design Setting: Sleep research laboratory Participants: Fifty-eight healthy adults (28 placebo, 30 sodium oxybate), ages 18-50 years. Interventions: A 5-day protocol included 2 screening/baseline nights and days, 2 sleep deprivation nights, each followed by a 3-h daytime (08:00-11:00) sleep opportunity and a recovery night. Sodium oxybate or placebo was administered prior to each daytime sleep period. Multiple sleep latency test (MSLT), psychomotor vigilance test (PVT), Karolinska Sleepiness Scale (KSS), and Profile of Mood States were administered during waking hours. Measurements and Results: During daytime sleep, the sodium oxybate group had more SWS, more EEG spectral power in the 1-9 Hz range, and less REM. Mean MSLT latency was longer for the sodium oxybate group on the night following the first daytime sleep period and on the day following the second day sleep period. Median PVT reaction time was faster in the sodium oxybate group following the second day sleep period. The change from baseline in SWS was positively correlated with the change in MSLT and KSS. During recovery sleep the sodium oxybate group had less TST, SWS, REM, and slow wave activity (SWA) than the placebo group. Conclusions: Pharmacological enhancement of SWS with sodium oxybate resulted in a reduced response to sleep loss on measures of alertness and attention. In addition, SWS enhancement during sleep restriction appears to result in a reduced homeostatic response to sleep loss. Citation: Walsh JK; Hall-Porter JM; Griffin KS; Dodson ER; Forst EH; Curry DT; Eisenstein RD; Schweitzer PK. Enhancing slow wave sleep with sodium oxybate reduces the behavioral and physiological impact of sleep loss. SLEEP 2010;33(9):1217-1225. PMID:20857869

  16. Effect of Conditioned Stimulus Exposure during Slow Wave Sleep on Fear Memory Extinction in Humans

    PubMed Central

    He, Jia; Sun, Hong-Qiang; Li, Su-Xia; Zhang, Wei-Hua; Shi, Jie; Ai, Si-Zhi; Li, Yun; Li, Xiao-Jun; Tang, Xiang-Dong; Lu, Lin

    2015-01-01

    Study Objectives: Repeated exposure to a neutral conditioned stimulus (CS) in the absence of a noxious unconditioned stimulus (US) elicits fear memory extinction. The aim of the current study was to investigate the effects of mild tone exposure (CS) during slow wave sleep (SWS) on fear memory extinction in humans. Design: The healthy volunteers underwent an auditory fear conditioning paradigm on the experimental night, during which tones served as the CS, and a mild shock served as the US. They were then randomly assigned to four groups. Three groups were exposed to the CS for 3 or 10 min or an irrelevant tone (control stimulus, CtrS) for 10 min during SWS. The fourth group served as controls and was not subjected to any interventions. All of the subjects completed a memory test 4 h after SWS-rich stage to evaluate the effect on fear extinction. Moreover, we conducted similar experiments using an independent group of subjects during the daytime to test whether the memory extinction effect was specific to the sleep condition. Participants: Ninety-six healthy volunteers (44 males) aged 18–28 y. Measurements and Results: Participants exhibited undisturbed sleep during 2 consecutive nights, as assessed by sleep variables (all P > 0.05) from polysomnographic recordings and power spectral analysis. Participants who were re-exposed to the 10 min CS either during SWS and wakefulness exhibited attenuated fear responses (wake-10 min CS, P < 0.05; SWS-10 min CS, P < 0.01). Conclusions: Conditioned stimulus re-exposure during slow wave sleep promoted fear memory extinction without altering sleep profiles. Citation: He J, Sun HQ, Li SX, Zhang WH, Shi J, Ai SZ, Li Y, Li XJ, Tang XD, Lu L. Effect of conditioned stimulus exposure during slow wave sleep on fear memory extinction in humans. SLEEP 2015;38(3):423–431. PMID:25348121

  17. Analysis of a Stabilized CNLF Method with Fast Slow Wave Splittings for Flow Problems

    SciTech Connect

    Jiang, Nan; Tran, Hoang A.

    2015-04-01

    In this work, we study Crank-Nicolson leap-frog (CNLF) methods with fast-slow wave splittings for Navier-Stokes equations (NSE) with a rotation/Coriolis force term, which is a simplification of geophysical flows. We propose a new stabilized CNLF method where the added stabilization completely removes the method's CFL time step condition. A comprehensive stability and error analysis is given. We also prove that for Oseen equations with the rotation term, the unstable mode (for which u(n+1) + u(n-1) equivalent to 0) of CNLF is asymptotically stable. Numerical results are provided to verify the stability and the convergence of the methods.

  18. Theoretical, Experimental, and Computational Evaluation of Several Vane-Type Slow-Wave Structures

    NASA Technical Reports Server (NTRS)

    Wallett, Thomas M.; Qureshi, A. Haq

    1994-01-01

    Several types of periodic vane slow-wave structures were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the MAFIA code. Computer-generated characteristics agreed to approximately within 2 percent of the experimental characteristics for all structures. The theoretical characteristics, however, deviated increasingly as the width to height ratio became smaller. Interaction impedances were also computed based on the experimental and computer-generated resonance frequency shifts due to the introduction of a perturbing dielectric rod.

  19. Theory of slow light enhanced four-wave mixing in photonic crystal waveguides.

    PubMed

    Santagiustina, M; Someda, C G; Vadalà, G; Combrié, S; De Rossi, A

    2010-09-27

    The equations for Four-Wave-Mixing in a Photonic Crystal waveguide are derived accurately. The dispersive nature of slow-light enhancement, the impact of Bloch mode reshaping in the nonlinear overlap integrals and the tensor nature of the third order polarization are therefore taken into account. Numerical calculations reveal substantial differences with simpler models, which increase with decreasing group velocity. We predict that the gain for a 1.3 mm long, unoptimized GaInP waveguide will exceed 10 dB if the pump power exceeds 1 W.

  20. The epileptic syndromes with continuous spikes and waves during slow sleep: definition and management guidelines.

    PubMed

    Van Bogaert, P; Aeby, A; De Borchgrave, V; De Cocq, C; Deprez, M; De Tiège, X; de Tourtchaninoff, M; Dubru, J M; Foulon, M; Ghariani, S; Grisar, T; Legros, B; Ossemann, M; Tugendhaft, P; van Rijckevorsel, K; Verheulpen, D

    2006-06-01

    The authors propose to define the epileptic syndromes with continuous spikes and waves during slow sleep (CSWS) as a cognitive or behavioral impairment acquired during childhood, associated with a strong activation of the interictal epileptiform discharges during NREM sleep--whatever focal or generalized--and not related to another factor than the presence of CSWS. The type of syndrome will be defined according to the neurological and neuropsychological deficit. These syndromes have to be classified among the localization-related epileptic syndromes. Some cases are idiopathic and others are symptomatic. Guidelines for work-up and treatment are proposed.

  1. Regional differences in the frequency of slow waves in smooth muscle of the guinea-pig stomach.

    PubMed

    Domae, Kazumasa; Hashitani, Hikaru; Suzuki, Hikaru

    2008-12-01

    The frequency of slow waves recorded from circular muscle bundles with attached longitudinal muscle (intact muscle) was compared with that of slow potentials recorded from isolated circular muscle bundles (isolated muscle) from the guinea-pig stomach. In intact muscle preparations, slow waves were generated in the corpus, antrum and pylorus with a higher frequency in the corpus (about 5 min(-1)) than the other regions (about 2 min(-1) in antrum, about 1.5 min(-1) in pylorus). The resting potential amplitude was graded across the stomach, at about -50 mV in the fundus, -60 mV in the corpus, -65 mV in the antrum and -70 mV in the pylorus. A similar distribution of resting membrane potential and slow potential frequency was also observed in isolated muscle bundles from the different regions. Caffeine (1 mM) abolished slow waves in some corpus preparations and inhibited the 2nd component of slow waves in the antrum and pylorus, and also abolished slow potentials in isolated muscle preparations from any region of the stomach. This suggests that myenteric interstitial cells of Cajal (ICC-MY) are heterogeneously distributed in the stomach (pylorus, antrum and part of the corpus regions), with a homogeneous distribution of muscular interstitial cells of Cajal (ICC-IM) within the circular muscle bundles. The frequency of slow potentials in smooth muscle isolated from any region of the stomach changed linearly in response to membrane potential changes produced by either current injection or high potassium solutions. The frequency of slow potentials after setting the membrane potential at -60 mV was larger in the corpus than the antrum, suggesting that the high frequency discharge of corpus muscle is produced by the low membrane potential and additional unidentified factors. We suggest that the regional difference in slow wave discharge is produced mainly by ICC-IM, and the role of ICC-MY may be little, if any.

  2. Using COMSOL Multiphysics Software to Model Anisotropic Dielectric and Metamaterial Effects in Folded-Waveguide Traveling-Wave Tube Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Starinshak, David P.; Smith, Nathan D.; Wilson, Jeffrey D.

    2008-01-01

    The electromagnetic effects of conventional dielectrics, anisotropic dielectrics, and metamaterials were modeled in a terahertz-frequency folded-waveguide slow-wave circuit. Results of attempts to utilize these materials to increase efficiency are presented.

  3. Optimization of relativistic backward wave oscillator with non-uniform slow wave structure and a resonant reflector

    NASA Astrophysics Data System (ADS)

    Chen, Zaigao; Wang, Jianguo; Wang, Yue

    2015-01-01

    This letter optimizes synchronously 18 parameters of a relativistic backward wave oscillator with non-uniform slow wave structure (SWS) and a resonant reflector by using the parallel genetic algorithms and particle-in-cell simulation. The optimization results show that the generation efficiency of microwave from the electron beam has increased 32% compared to that of the original device. After optimization, the electromagnetic mode propagating in the resonant changes from the original TM020 mode of reflector to higher-order TM021 mode, which has a high reflection coefficient in a broader frequency range than that of the former. The modulation of current inside the optimized device is much deeper than that in the original one. The product of the electric field and current is defined. Observing this product, it is found that the interaction of the electron beam with the electromagnetic wave in the optimized device is much stronger than that in the original device, and at the rear part of SWS of the optimized device, the electron beam dominantly gives out the energy to the electromagnetic wave, leading to the higher generation efficiency of microwave than that of the original device.

  4. Optimization of relativistic backward wave oscillator with non-uniform slow wave structure and a resonant reflector

    SciTech Connect

    Chen, Zaigao; Wang, Jianguo; Wang, Yue

    2015-01-15

    This letter optimizes synchronously 18 parameters of a relativistic backward wave oscillator with non-uniform slow wave structure (SWS) and a resonant reflector by using the parallel genetic algorithms and particle-in-cell simulation. The optimization results show that the generation efficiency of microwave from the electron beam has increased 32% compared to that of the original device. After optimization, the electromagnetic mode propagating in the resonant changes from the original TM{sub 020} mode of reflector to higher-order TM{sub 021} mode, which has a high reflection coefficient in a broader frequency range than that of the former. The modulation of current inside the optimized device is much deeper than that in the original one. The product of the electric field and current is defined. Observing this product, it is found that the interaction of the electron beam with the electromagnetic wave in the optimized device is much stronger than that in the original device, and at the rear part of SWS of the optimized device, the electron beam dominantly gives out the energy to the electromagnetic wave, leading to the higher generation efficiency of microwave than that of the original device.

  5. All-metal metamaterial slow-wave structure for high-power sources with high efficiency

    SciTech Connect

    Wang, Yanshuai; Duan, Zhaoyun Tang, Xianfeng; Wang, Zhanliang; Zhang, Yabin; Gong, Yubin; Feng, Jinjun

    2015-10-12

    In this paper, we have proposed a metamaterial (MTM) which is suitable for the compact high-power vacuum electron devices. For example, an S-band slow-wave structure (SWS) based on the all-metal MTMs has been studied by both simulation and experiment. The results show that this MTM SWS is very helpful to miniaturize the high-power vacuum electron devices and largely improve the output power and the electronic efficiency. The simulation model of an S-band MTM backward wave oscillator (BWO) is built, and the particle-in-cell simulated results are presented here: a 2.454 GHz signal is generated and its peak output power is 4.0 MW with a higher electronic efficiency of 31.5% relative to the conventional BWOs.

  6. Effects of oral temazepam on slow waves during non-rapid eye movement sleep in healthy young adults: a high-density EEG investigation

    PubMed Central

    Plante, DT; Goldstein, MR; Cook, JD; Smith, R; Riedner, BA; Rumble, ME; Jelenchick, L; Roth, A; Tononi, G; Benca, RM; Peterson, MJ

    2016-01-01

    Slow waves are characteristic waveforms that occur during non-rapid eye movement (NREM) sleep that play an integral role in sleep quality and brain plasticity. Benzodiazepines are commonly used medications that alter slow waves, however, their effects may depend on the time of night and measure used to characterize slow waves. Prior investigations have utilized minimal scalp derivations to evaluate the effects of benzodiazepines on slow waves, and thus the topography of changes to slow waves induced by benzodiazepines has yet to be fully elucidated. This study used high-density electroencephalography (hdEEG) to evaluate the effects of oral temazepam on slow wave activity, incidence, and morphology during NREM sleep in 18 healthy adults relative to placebo. Temazepam was associated with significant decreases in slow wave activity and incidence, which were most prominent in the latter portions of the sleep period. However, temazepam was also associated with a decrease in the magnitude of high-amplitude slow waves and their slopes in the first NREM sleep episode, which was most prominent in frontal derivations. These findings suggest that benzodiazepines produce changes in slow waves throughout the night that vary depending on cortical topography and measures used to characterize slow waves. Further research that explores the relationships between benzodiazepine-induced changes to slow waves and the functional effects of these waveforms is indicated. PMID:26779596

  7. Effects of oral temazepam on slow waves during non-rapid eye movement sleep in healthy young adults: A high-density EEG investigation.

    PubMed

    Plante, D T; Goldstein, M R; Cook, J D; Smith, R; Riedner, B A; Rumble, M E; Jelenchick, L; Roth, A; Tononi, G; Benca, R M; Peterson, M J

    2016-03-01

    Slow waves are characteristic waveforms that occur during non-rapid eye movement (NREM) sleep that play an integral role in sleep quality and brain plasticity. Benzodiazepines are commonly used medications that alter slow waves, however, their effects may depend on the time of night and measure used to characterize slow waves. Prior investigations have utilized minimal scalp derivations to evaluate the effects of benzodiazepines on slow waves, and thus the topography of changes to slow waves induced by benzodiazepines has yet to be fully elucidated. This study used high-density electroencephalography (hdEEG) to evaluate the effects of oral temazepam on slow wave activity, incidence, and morphology during NREM sleep in 18 healthy adults relative to placebo. Temazepam was associated with significant decreases in slow wave activity and incidence, which were most prominent in the latter portions of the sleep period. However, temazepam was also associated with a decrease in the magnitude of high-amplitude slow waves and their slopes in the first NREM sleep episode, which was most prominent in frontal derivations. These findings suggest that benzodiazepines produce changes in slow waves throughout the night that vary depending on cortical topography and measures used to characterize slow waves. Further research that explores the relationships between benzodiazepine-induced changes to slow waves and the functional effects of these waveforms is indicated.

  8. Transversal and longitudinal mode selections in double-corrugation coaxial slow-wave devices

    SciTech Connect

    Ge Xingjun; Zhong Huihuang; Qian Baoliang; Liu Lie; Liu Yonggui; Li Limin; Shu Ting; Zhang Jiande

    2009-06-15

    To reduce the dimensions of relativistic backward wave oscillators (RBWOs) operating in the low frequency regime of less than 2 GHz, the theory of transversal and longitudinal mode selections are introduced in this paper. The transversal mode selection is achieved using the property of ''surface wave'' of the coaxial slow-wave structure (SWS) to excite the quasi transverse electromagnetic (quasi-TEM) mode without the higher transverse magnetic (TM) modes and it is proved that the coaxial SWS may decrease the transversal dimension of the SWS sections. In addition, the S-parameter method is employed to investigate the longitudinal resonant characteristic of the finite-length SWS, and the scheme of longitudinal mode selection is put forward. It is proposed that the introduction of a well-designed coaxial extractor to slow-wave devices can help to achieve the longitudinal mode selection and reduce the period number of the SWS, which not only can make the devices more compact, but also can avoid the destructive competition between various longitudinal modes, therefore can enhance the efficiency and stabilize the frequency. To sum up, the physical mechanisms of transversal and longitudinal mode selections ensure that the microwave is produced with a single mode and a narrow band. Based on the above discussion, a compact L-band coaxial RBWO is investigated and optimized in detail with the particle-in-cell KARAT code (V. P. Tarakanov, Berkeley Research Associates, Inc., 1992). In simulation, the L-band coaxial RBWO, driven by a 700 kV, 11 kA electron beam, comes to a nonlinear steady state in 20 ns. High-power microwave of quasi-TEM mode is generated with an average power of 2.66 GW, a frequency of 1.6 GHz, and power conversion efficiency of 34.5% in durations of 30-60 ns.

  9. NON-WKB MODELS OF THE FIRST IONIZATION POTENTIAL EFFECT: THE ROLE OF SLOW MODE WAVES

    SciTech Connect

    Laming, J. Martin

    2012-01-10

    A model for element abundance fractionation between the solar chromosphere and corona is further developed. The ponderomotive force due to Alfven waves propagating through or reflecting from the chromosphere in solar conditions generally accelerates chromospheric ions, but not neutrals, into the corona. This gives rise to what has become known as the first ionization potential effect. We incorporate new physical processes into the model. The chromospheric ionization balance is improved and the effect of different approximations is discussed. We also treat the parametric generation of slow mode waves by the parallel propagating Alfven waves. This is also an effect of the ponderomotive force, arising from the periodic variation of the magnetic pressure driving an acoustic mode, which adds to the background longitudinal pressure. This can have subtle effects on the fractionation, rendering it quasi-mass independent in the lower regions of the chromosphere. We also briefly discuss the change in the fractionation with Alfven wave frequency, relative to the frequency of the overlying coronal loop resonance.

  10. Properties of short-wavelength oblique Alfvén and slow waves

    SciTech Connect

    Zhao, J. S.; Wu, D. J.; Voitenko, Y.; Yu, M. Y.; Lu, J. Y.

    2014-10-01

    Linear properties of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) are studied in the framework of two-fluid magnetohydrodynamics. We obtain the wave dispersion relations that are valid in a wide range of the wave frequency ω and plasma-to-magnetic pressure ratio β. The KAW frequency can reach and exceed the ion-cyclotron frequency at ion kinetic scales, whereas the KSW frequency remains sub-cyclotron. At β ∼ 1, the plasma and magnetic pressure perturbations of both modes are in anti-phase, so that there is nearly no total pressure perturbations. However, these modes also exhibit several opposite properties. At high β, the electric polarization ratios of KAWs and KSWs are opposite at the ion gyroradius scale, where KAWs are polarized in the sense of electron gyration (right-hand polarized) and KSWs are left-hand polarized. The magnetic helicity σ ∼ 1 for KAWs and σ ∼ –1 for KSWs, and the ion Alfvén ratio R{sub Ai} << 1 for KAWs and R{sub Ai} >> 1 for KSWs. We also found transition wavenumbers where KAWs change their polarization from left-handed to right-handed. These new properties can be used to discriminate KAWs and KSWs when interpreting kinetic-scale electromagnetic fluctuations observed in various solar-terrestrial plasmas. This concerns, in particular, identification of modes responsible for kinetic-scale pressure-balanced fluctuations and turbulence in the solar wind.

  11. Increased neural correlations in primate auditory cortex during slow-wave sleep.

    PubMed

    Issa, Elias B; Wang, Xiaoqin

    2013-06-01

    During sleep, changes in brain rhythms and neuromodulator levels in cortex modify the properties of individual neurons and the network as a whole. In principle, network-level interactions during sleep can be studied by observing covariation in spontaneous activity between neurons. Spontaneous activity, however, reflects only a portion of the effective functional connectivity that is activated by external and internal inputs (e.g., sensory stimulation, motor behavior, and mental activity), and it has been shown that neural responses are less correlated during external sensory stimulation than during spontaneous activity. Here, we took advantage of the unique property that the auditory cortex continues to respond to sounds during sleep and used external acoustic stimuli to activate cortical networks for studying neural interactions during sleep. We found that during slow-wave sleep (SWS), local (neuron-neuron) correlations are not reduced by acoustic stimulation remaining higher than in wakefulness and rapid eye movement sleep and remaining similar to spontaneous activity correlations. This high level of correlations during SWS complements previous work finding elevated global (local field potential-local field potential) correlations during sleep. Contrary to the prediction that slow oscillations in SWS would increase neural correlations during spontaneous activity, we found little change in neural correlations outside of periods of acoustic stimulation. Rather, these findings suggest that functional connections recruited in sound processing are modified during SWS and that slow rhythms, which in general are suppressed by sensory stimulation, are not the sole mechanism leading to elevated network correlations during sleep.

  12. Coronal seismology of flare-excited longitudinal slow magnetoacoustic waves in hot coronal loops

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ofman, L.; Sun, X.; Provornikova, E. A.; Davila, J. M.

    2015-12-01

    The flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 bandpasses. These oscillations show similar physical properties (such as period, decay time, and trigger) as those slow-mode standing waves previously detected by the SOHO/SUMER spectrometer in Doppler shift of flare lines formed above 6 MK. The multi-wavelength AIA observations with high spatio-temporal resolution and wide temperature coverage enable us to measure both thermal and wave properties of the oscillating hot plasma with unprecedented accuracy. These new measurements can be used to diagnose the complicated energy transport processes in flare plasma by a technique called coronal seismology based on the combination of observations and MHD wave theory. From a detailed case study we have found evidence for thermal conduction suppression in hot loops by measuring the polytropic index and analyzing the phase relationship between the temperature and density wave signals. This result is not only crucial for better understanding the wave dissipation mechanism but also provides an alternative mechanism to explain the puzzles of long-duration events and X-ray loop-top sources which show much slower cooling than expected by the classical Spitzer conductive cooling. This finding may also shed a light on the coronal heating problem because weak thermal conductivity implies slower cooling of hot plasma in nanoflares, so increasing the average coronal temperature for the same heating rate. We will discuss the effects of thermal conduction suppression on the wave damping and loop cooling based on MHD simulations.

  13. Age-Dependency of Location of Epileptic Foci in "Continuous Spike-and-Waves during Sleep": A Parallel to the Posterior-Anterior Trajectory of Slow Wave Activity.

    PubMed

    Heinzle, Bigna Katrin Bölsterli; Bast, Thomas; Critelli, Hanne; Huber, Reto; Schmitt, Bernhard

    2017-02-01

    Background Epileptic encephalopathy with continuous spike-and-waves during sleep (CSWS) occurs during childhood and is characterized by an activation of spike wave complexes during slow wave sleep. The location of epileptic foci is variable, as is etiology. A relationship between the epileptic focus and age has been shown in various focal epilepsies following a posterior-anterior trajectory, and a link to brain maturation has been proposed.We hypothesize that in CSWS, maximal spike wave activity, corresponding to the epileptic focus, is related to age and shows a posterior-anterior evolution. Findings In a retrospective cross-sectional study on CSWS (22 EEGs of 22 patients aged 3.1-13.5 years), the location of the epileptic focus is related to age and follows a posterior-anterior course. Younger patients are more likely to have posterior foci than older ones. Conclusions We propose that the posterior-anterior trajectory of maximal spike waves in CSWS might reflect maturational changes of maximal expression of sleep slow waves, which follow a comparable course. Epileptic spike waves, that is, "hyper-synchronized slow waves" may occur at the place where the highest and therefore most synchronized slow waves meet brain tissue with an increased susceptibility to synchronization.

  14. Bloch FDTD simulation of slow optical wave resonance cavity in optical storage technology

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Lin, Zhaohua; Cai, Lihua

    2013-08-01

    Long chain series resonance cavity is suitable for transferring slow optical wave, which can be served as the basic device for optical storage technology. Micro-ring resonator is one kind of such a long chain structure, which is considered to be the basic component of optical integrated circuit and optical computer in the future. The discrete energy level has the potential to distinguish digital optical data. The optical delay characteristics make such a device possible to store the information for some time. The advantage of this device is that it has the potential to construct an optical storage device in small geometrical dimension and could use mature semiconductor manufacture capability to lower the design and manufacturing expenses. Many experimental results have proved a lot of material and geometrical coefficients are very important for such an optical delay device. New theory method is needed to calculate the periodical energy transfer and time delay characteristics, which can be compared with experimental result. The Bloch FDTD is presented for analysis of such a new optical device, based on the optical Bloch energy band theory. The energy band characteristics of micro-ring periodical optical waveguide device is discussed used that analytical method. This precise calculated method could be served as a useful tool for design the structure of such resonance cavity to achieve desired slow optical wave transfer performance.

  15. High power microwave source with a three dimensional printed metamaterial slow-wave structure.

    PubMed

    French, David M; Shiffler, Don

    2016-05-01

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  16. Amplitude of Biot's slow wave scattered by a spherical inclusion in a fluid-saturated poroelastic medium

    NASA Astrophysics Data System (ADS)

    Ciz, Radim; Gurevich, Boris

    2005-03-01

    Spatial heterogeneity of hydrocarbon reservoirs causes significant attenuation and dispersion of seismic waves due to wave-induced flow of the pore fluid between more compliant and less compliant areas. This paper investigates the interaction between a plane elastic wave in a poroelastic medium with a spherical inhomogeneity of another porous material. The behaviour of both the inclusion and the background medium is described by the low-frequency variant of Biot's equations of poroelasticity with the standard boundary conditions at the inclusion surface, and for the inclusion size much smaller than the wavelength of the fast compressional wave. The scattering problem is formulated as a series expansion of displacements expressed in the spherical harmonics. The resulting scattered wavefield consists of the scattered normal compressional and shear waves and Biot's slow wave, which attenuates rapidly with distance from the inclusion and represents the main difference from the elastic case. This study concentrates on the attenuation effects caused by the mode conversion into Biot's slow wave. The solution obtained for Biot's slow wave is well described by the two terms of order n= 0 and n= 2 of the scattering series. The scattering amplitude for the term of order n= 0 is given by a simple expression. The full expression for the term of order n= 2 is very complicated, but can be simplified assuming that the amplitude of the scattered fast (normal) compressional and shear waves are well approximated by the solution of the equivalent elastic problem. This assumption yields a simple approximation for the amplitude of the scattered slow wave, which is accurate for a wide range of material properties and is sufficient for the analysis of the scattering amplitude as a function of frequency. In the low-frequency limit the scattering amplitude of the slow wave scales with ω3/2, and reduces to the asymptotic long-wavelength solution of Berryman (1985), which is valid for

  17. Statistical detection of slow-mode waves in solar polar regions with SDO/AIA

    SciTech Connect

    Su, J. T.

    2014-10-01

    Observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory are utilized to statistically investigate the propagating quasi-periodic oscillations in the solar polar plume and inter-plume regions. On average, the periods are found to be nearly equal in the three coronal channels of AIA 171 Å, 193 Å, and 211 Å, and the wavelengths increase with temperature from 171 Å, 193 Å, and 211 Å. The phase speeds may be inferred from the above parameters. Furthermore, the speed ratios of v {sub 193}/v {sub 171} and v {sub 211}/v {sub 171} are derived, e.g., 1.4 ± 0.8 and 2.0 ± 1.9 in the plume regions, respectively, which are equivalent to the theoretical ones for acoustic waves. We find that there are no significant differences for the detected parameters between the plume and inter-plume regions. To our knowledge, this is the first time that we have simultaneously obtained the phase speeds of slow-mode waves in the three channels in the open coronal magnetic structures due to the method adopted in the present work, which is able to minimize the influence of the jets or eruptions on wave signals.

  18. Stimulating forebrain communications: Slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states.

    PubMed

    Greenberg, Anastasia; Whitten, Tara A; Dickson, Clayton T

    2016-06-01

    Slow-wave states are characterized by the most global physiological phenomenon in the mammalian brain, the large-amplitude slow oscillation (SO; ~1Hz) composed of alternating states of activity (ON/UP states) and silence (OFF/DOWN states) at the network and single cell levels. The SO is cortically generated and appears as a traveling wave that can propagate across the cortical surface and can invade the hippocampus. This cortical rhythm is thought to be imperative for sleep-dependent memory consolidation, potentially through increased interactions with the hippocampus. The SO is correlated with learning and its presumed enhancement via slow rhythmic electrical field stimulation improves subsequent mnemonic performance. However, the mechanism by which such field stimulation influences the dynamics of ongoing cortico-hippocampal communication is unknown. Here we show - using multi-site recordings in urethane-anesthetized rats - that sinusoidal electrical field stimulation applied to the frontal region of the cerebral cortex creates a platform for improved cortico-hippocampal communication. Moderate-intensity field stimulation entrained hippocampal slow activity (likely by way of the temporoammonic pathway) and also increased sharp-wave ripples, the signature memory replay events of the hippocampus, and further increased cortical spindles. Following cessation of high-intensity stimulation, SO interactions in the cortical-to-hippocampal direction were reduced, while the reversed hippocampal-to-cortical communication at both SO and gamma bandwidths was enhanced. Taken together, these findings suggest that cortical field stimulation may function to boost memory consolidation by strengthening cortico-hippocampal and hippocampo-cortical interplay at multiple nested frequencies in an intensity-dependent fashion.

  19. Fragmentation of slow wave sleep after onset of complete locked-in state.

    PubMed

    Soekadar, Surjo R; Born, Jan; Birbaumer, Niels; Bensch, Michael; Halder, Sebastian; Murguialday, Ander Ramos; Gharabaghi, Alireza; Nijboer, Femke; Schölkopf, Bernhard; Martens, Suzanne

    2013-09-15

    Locked-in syndrome (LIS) as a result of brainstem lesions or progressive neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS), is a severe medical condition in which a person is fully conscious but unable to move or talk. LIS can transition into complete locked-in syndrome (CLIS) in which residual abilities to communicate through muscle twitches are entirely lost. It is unknown how CLIS affects circadian rhythm and sleep/wake patterns. Here we report a 39-year-old ALS patient who transitioned from LIS to CLIS while brain activity was continuously recorded using electrocorticography (ECoG) over one month. While we found no circadian rhythm in heart rate and body temperature, transition into CLIS was associated with increased fragmentation of slow wave sleep (SWS) across the day. Total time in SWS did not change. SWS fragmentation might reflect progressive circadian system impairment and should be considered as a factor further limiting communication capabilities in these patients.

  20. Experimental observation of ultrasound fast and slow waves through three-dimensional printed trabecular bone phantoms.

    PubMed

    Mézière, F; Juskova, P; Woittequand, J; Muller, M; Bossy, E; Boistel, Renaud; Malaquin, L; Derode, A

    2016-02-01

    In this paper, ultrasound measurements of 1:1 scale three-dimensional (3D) printed trabecular bone phantoms are reported. The micro-structure of a trabecular horse bone sample was obtained via synchrotron x-ray microtomography, converted to a 3D binary data set, and successfully 3D-printed at scale 1:1. Ultrasound through-transmission experiments were also performed through a highly anisotropic version of this structure, obtained by elongating the digitized structure prior to 3D printing. As in real anisotropic trabecular bone, both the fast and slow waves were observed. This illustrates the potential of stereolithography and the relevance of such bone phantoms for the study of ultrasound propagation in bone.

  1. Populations of striatal medium spiny neurons encode vibrotactile frequency in rats: modulation by slow wave oscillations.

    PubMed

    Hawking, Thomas G; Gerdjikov, Todor V

    2013-01-01

    Dorsolateral striatum (DLS) is implicated in tactile perception and receives strong projections from somatosensory cortex. However, the sensory representations encoded by striatal projection neurons are not well understood. Here we characterized the contribution of DLS to the encoding of vibrotactile information in rats by assessing striatal responses to precise frequency stimuli delivered to a single vibrissa. We applied stimuli in a frequency range (45-90 Hz) that evokes discriminable percepts and carries most of the power of vibrissa vibration elicited by a range of complex fine textures. Both medium spiny neurons and evoked potentials showed tactile responses that were modulated by slow wave oscillations. Furthermore, medium spiny neuron population responses represented stimulus frequency on par with previously reported behavioral benchmarks. Our results suggest that striatum encodes frequency information of vibrotactile stimuli which is dynamically modulated by ongoing brain state.

  2. Occipital long-interval paired pulse TMS leads to slow wave components in NREM sleep.

    PubMed

    Stamm, Mihkel; Aru, Jaan; Rutiku, Renate; Bachmann, Talis

    2015-09-01

    Neural correlates of conscious vs unconscious states can be studied by contrasting EEG markers of brain activity between those two states. Here, a task-free experimental setup was used to study the state dependent effects of occipital transcranial magnetic stimulation (TMS). EEG responses to single and paired pulse TMS with an inter-stimulus-interval (ISI) of 100 ms were investigated under Non-REM (NREM) sleep and wakefulness. In the paired pulse TMS condition adopting this long ISI, a robust positive deflection starting around 200 ms after the second pulse was found. This component was not obtained under wakefulness or when a single TMS pulse was applied in sleep. These findings are discussed in the context of NREM sleep slow waves. The present results indicate that the long interval paired-pulse paradigm could be used to manipulate plasticity processes in the visual cortex. The present setup might also become useful for evaluating states of consciousness.

  3. Regional differences of the human sleep electroencephalogram in response to selective slow-wave sleep deprivation.

    PubMed

    Ferrara, Michele; De Gennaro, Luigi; Curcio, Giuseppe; Cristiani, Riccardo; Corvasce, Chiara; Bertini, Mario

    2002-07-01

    The purpose of this study was to assess the topographic changes in sleep recuperative processes in response to selective slow-wave sleep (SWS) deprivation. SWS was suppressed on two consecutive nights by means of acoustic stimulation. The electroencephalogram (EEG) power of baseline, deprivation and recovery nights was analysed in 1 Hz bins. During the SWS deprivation nights, large decreases of EEG power were found at frontopolar, central and parietal derivations encompassing the delta, theta and alpha range, while only slow delta (0.5-2 Hz) was affected at the frontal derivation. Recovery sleep was characterized by a generalized increase of power during non-REM sleep encompassing the delta, theta and alpha bands, with a clear antero-posterior gradient. The coherent behaviour of different EEG bands with traditionally different electrophysiological meanings during non-REM sleep suggests that, in light of the recent advances in sleep neurophysiology, a re-examination of the functional role of EEG rhythms during sleep is needed. The 'resistance' to selective SWS deprivation of the frontal area, together with its larger increase of EEG power during recovery, may be interpreted as a sign of a greater sleep need of the frontal cortical areas, confirming that some aspects of the regulatory processes of human sleep are local in nature and may show use-dependent characteristics.

  4. Effects of Skilled Training on Sleep Slow Wave Activity and Cortical Gene Expression in the Rat

    PubMed Central

    Hanlon, Erin C.; Faraguna, Ugo; Vyazovskiy, Vladyslav V.; Tononi, Giulio; Cirelli, Chiara

    2009-01-01

    Study Objective: The best characterized marker of sleep homeostasis is the amount of slow wave activity (SWA, 0.5–4 Hz) during NREM sleep. SWA increases as a function of previous waking time and declines during sleep, but the underlying mechanisms remain unclear. We have suggested that SWA homeostasis is linked to synaptic potentiation associated with learning during wakefulness. Indeed, studies in rodents and humans found that SWA increases after manipulations that presumably enhance synaptic strength, but the evidence remains indirect. Here we trained rats in skilled reaching, a task known to elicit long-term potentiation in the trained motor cortex, and immediately after learning measured SWA and cortical protein levels of c-fos and Arc, 2 activity-dependent genes involved in motor learning. Design: Intracortical local field potential recordings and training on reaching task. Setting: Basic sleep research laboratory. Patients or Participants: Long Evans adult male rats. Interventions: N/A Measurements and Results: SWA increased post-training in the trained cortex (the frontal cortex contralateral to the limb used to learn the task), with smaller or no increase in other cortical areas. This increase was reversible within 1 hour, specific to NREM sleep, and positively correlated with changes in performance during the prior training session, suggesting that it reflects plasticity and not just motor activity. Fos and Arc levels were higher in the trained relative to untrained motor cortex immediately after training, but this asymmetry was no longer present after 1 hour of sleep. Conclusion: Learning to reach specifically affects gene expression in the trained motor cortex and, in the same area, increases sleep need as measured by a local change in SWA. Citation: Hanlon EC; Faraguna U; Vyazovskiy VV; Tononi G; Cirelli C. Effects of skilled training on sleep slow wave activity and cortical gene expression in the rat. SLEEP 2009;32(6):719-729. PMID:19544747

  5. A theoretical model of slow wave regulation using voltage-dependent synthesis of inositol 1,4,5-trisphosphate.

    PubMed Central

    Imtiaz, Mohammad S; Smith, David W; van Helden, Dirk F

    2002-01-01

    A qualitative mathematical model is presented that examines membrane potential feedback on synthesis of inositol 1,4,5-trisphosphate (IP(3)), and its role in generation and modulation of slow waves. Previous experimental studies indicate that slow waves show voltage dependence, and this is likely to result through membrane potential modulation of IP(3). It is proposed that the observed response of the tissue to current pulse, pulse train, and maintained current injection can be explained by changes in IP(3), modulated through a voltage-IP(3) feedback loop. Differences underlying the tissue responses to current injections of opposite polarities are shown to be due to the sequence of events following such currents. Results from this model are consistent with experimental findings and provide further understanding of these experimental observations. Specifically, we find that membrane potential can induce, abolish, and modulate slow wave frequency by altering the excitability of the tissue through the voltage-IP(3) feedback loop. PMID:12324409

  6. Ring-plane traveling-wave tube slow-wave circuit design simulations at V-Band frequencies

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Wilson, Jeffrey D.

    1995-01-01

    The V-Band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for intersatellite communications. As a first effort to develop a high-efficiency V-band TWT, variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite the high-power capabilities of the ring-plane TWT, disadvantages of low bandwidth and high voltage requirements have until now prevented its acceptance outside the laboratory. In this paper, we use the three-dimensional electromagnetic simulation code MAFIA to investigate methods of increasing the bandwidth and lowering the operating voltage. Dispersion, impedance, and attenuation calculations for various geometric variations and loading distributions were performed. Based on the results of the variations, a circuit termed the finned-ladder TWT slowwave circuit was designed and is compared here to the scaled ring-plane prototype and the conventional ferruled coupled-cavity TWT circuit over the V-band frequency range.

  7. Design and Experimental Demonstration of Cherenkov Radiation Source Based on Metallic Photonic Crystal Slow Wave Structure

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Yang, Zi-Qiang; Ouyang, Zheng-Biao

    2016-11-01

    This paper presents a kind of Cherenkov radiation source based on metallic photonic crystal (MPC) slow-wave structure (SWS) cavity. The Cherenkov source designed by linear theory works at 34.7 GHz when the cathode voltage is 550 kV. The three-dimensional particle-in-cell (PIC) simulation of the SWS shows the operating frequency of 35.56 GHz with a single TM01 mode is basically consistent with the theoretically one under the same parameters. An experiment was implemented to testify the results of theory and PIC simulation. The experimental system includes a cathode emitting unit, the SWS, a magnetic system, an output antenna, and detectors. Experimental results show that the operating frequency through detecting the retarded time of wave propagation in waveguides is around 35.5 GHz with a single TM01 mode and an output power reaching 54 MW. It indicates that the MPC structure can reduce mode competition. The purpose of the paper is to show in theory and in preliminary experiment that a SWS with PBG can produce microwaves in TM01 mode. But it still provides a good experimental and theoretical foundation for designing high-power microwave devices.

  8. Strain waves, earthquakes, slow earthquakes, and afterslip in the framework of the Frenkel-Kontorova model.

    PubMed

    Gershenzon, N I; Bykov, V G; Bambakidis, G

    2009-05-01

    The one-dimensional Frenkel-Kontorova (FK) model, well known from the theory of dislocations in crystal materials, is applied to the simulation of the process of nonelastic stress propagation along transform faults. Dynamic parameters of plate boundary earthquakes as well as slow earthquakes and afterslip are quantitatively described, including propagation velocity along the strike, plate boundary velocity during and after the strike, stress drop, displacement, extent of the rupture zone, and spatiotemporal distribution of stress and strain. The three fundamental speeds of plate movement, earthquake migration, and seismic waves are shown to be connected in framework of the continuum FK model. The magnitude of the strain wave velocity is a strong (almost exponential) function of accumulated stress or strain. It changes from a few km/s during earthquakes to a few dozen km per day, month, or year during afterslip and interearthquake periods. Results of the earthquake parameter calculation based on real data are in reasonable agreement with measured values. The distributions of aftershocks in this model are consistent with the Omori law for temporal distribution and a 1/r for the spatial distributions.

  9. Radio-frequency sheath voltages and slow wave electric field spatial structure

    SciTech Connect

    Colas, Laurent Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan

    2015-12-10

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the RF parallel electric field emitted by Ion Cyclotron (IC) wave launchers, using a simple model of Slow Wave (SW) evanescence coupled with Direct Current (DC) plasma biasing via sheath boundary conditions in a plasma-filled 2-dimensional (parallel, radial) rectangle. Within a “wide sheaths” asymptotic regime, valid for large-amplitude near RF fields, our model becomes partly linear: the sheath oscillating voltage at open field line boundaries is a linear combination of elementary contributions by every source point of the radiated RF field map. These individual contributions are all the more intense as the SW emission point is toroidally nearer to the sheath walls. A limit formula is given for a source infinitely close to the sheaths. The decay of sheath RF voltages with the sheath/source parallel distance is quantified as a function of two characteristic SW evanescence lengths. Decay lengths are smaller than antenna parallel extensions. The sheath RF voltages at an IC antenna side limiter are therefore mainly sensitive to SW emission near this limiter, as recent observations suggest. Toroidal proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-symmetry of the radiated field map. They could also justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  10. Differences in electroencephalographic non-rapid-eye movement sleep slow-wave characteristics between young and old mice

    PubMed Central

    Panagiotou, Maria; Vyazovskiy, Vladyslav V.; Meijer, Johanna H.; Deboer, Tom

    2017-01-01

    Changes in sleep pattern are typical for the normal aging process. However, aged mice show an increase in the amount of sleep, whereas humans show a decrease when aging. Mice are considered an important model in aging studies, and this divergence warrants further investigation. Recently, insights into the network dynamics of cortical activity during sleep were obtained by investigating characteristics of individual electroencephalogram (EEG) slow waves in young and elderly humans. In this study, we investigated, for the first time, the parameters of EEG slow waves, including their incidence, amplitude, duration and slopes, in young (6 months) and older (18–24 months) C57BL/6J mice during undisturbed 24 h, and after a 6-h sleep deprivation (SD). As expected, older mice slept more but, in contrast to humans, absolute NREM sleep EEG slow-wave activity (SWA, spectral power density between 0.5–4 Hz) was higher in the older mice, as compared to the young controls. Furthermore, slow waves in the older mice were characterized by increased amplitude, steeper slopes and fewer multipeak waves, indicating increased synchronization of cortical neurons in aging, opposite to what was found in humans. Our results suggest that older mice, in contrast to elderly humans, live under a high sleep pressure. PMID:28255162

  11. Research of dynamical Characteristics of slow deformation Waves as Massif Responses on Explosions

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Oleg; Shipeev, Oleg

    2013-04-01

    The research of massif state with use of approaches of open system theory [1-3] was developed for investigation the criterions of dissipation regimes for real rock massifs, which are under heavy man-caused influence. For realization of that research we used the data of seismic catalogue of Tashtagol mine. As a result of the analyze of that data we defined character morphology of phase trajectories of massif response, which was locally in time in a stable state: on the phase plane with coordinates released by the massif during the dynamic event energy E and lg(dE/dt) there is a local area as a ball of twisted trajectories and some not great bursts from that ball, which are not greater than 105 joules. In some time intervals that burst can be larger, than 105 joules, achieving 106 joules and yet 109 joules. [3]. Evidently there are two reciprocal depend processes: the energy accumulation in the attracted phase trajectories area and resonance fault of the accumulated energy. But after the fault the system returns again to the same attracted phase trajectories area. For analyzing of the thin structure of the chaotic area we decided to add the method of processing of the seismic monitoring data by new parameters. We shall consider each point of explosion as a source of seismic or deformation waves. Using the kinematic approach of seismic information processing we shall each point of the massif response use as a time point of the first arrival of the deformation wave for calculation of the wave velocity, because additionally we know the coordinates of the fixed response and the coordinates of explosion. The use of additional parameter-velocity of slow deformation wave propagation allowed us with use method of phase diagrams identify their hierarchic structure, which allow us to use that information for modeling and interpretation the propagation seismic and deformation waves in hierarchic structures. It is researched with use of that suggested processing method the thin

  12. ON THE PROPERTIES OF SLOW MHD SAUSAGE WAVES WITHIN SMALL-SCALE PHOTOSPHERIC MAGNETIC STRUCTURES

    SciTech Connect

    Freij, N.; Ruderman, M. S.; Erdélyi, R.; Dorotovič, I.; Morton, R. J.; Karlovský, V. E-mail: ivan.dorotovic@suh.sk E-mail: m.s.ruderman@sheffield.ac.uk E-mail: robertus@sheffield.ac.uk

    2016-01-20

    The presence of magnetoacoustic waves in magnetic structures in the solar atmosphere is well-documented. Applying the technique of solar magneto-seismology (SMS) allows us to infer the background properties of these structures. Here, we aim to identify properties of the observed magnetoacoustic waves and study the background properties of magnetic structures within the lower solar atmosphere. Using the Dutch Open Telescope and Rapid Oscillations in the Solar Atmosphere instruments, we captured two series of high-resolution intensity images with short cadences of two isolated magnetic pores. Combining wavelet analysis and empirical mode decomposition (EMD), we determined characteristic periods within the cross-sectional (i.e., area) and intensity time series. Then, by applying the theory of linear magnetohydrodynamics (MHD), we identified the mode of these oscillations within the MHD framework. Several oscillations have been detected within these two magnetic pores. Their periods range from 3 to 20 minutes. Combining wavelet analysis and EMD enables us to confidently find the phase difference between the area and intensity oscillations. From these observed features, we concluded that the detected oscillations can be classified as slow sausage MHD waves. Furthermore, we determined several key properties of these oscillations such as the radial velocity perturbation, the magnetic field perturbation, and the vertical wavenumber using SMS. The estimated range of the related wavenumbers reveals that these oscillations are trapped within these magnetic structures. Our results suggest that the detected oscillations are standing harmonics, and this allows us to estimate the expansion factor of the waveguides by employing SMS. The calculated expansion factor ranges from 4 to 12.

  13. Design of a metamaterial slow wave structure for an O-type high power microwave generator

    NASA Astrophysics Data System (ADS)

    Yurt, Sabahattin C.; Fuks, Mikhail I.; Prasad, Sarita; Schamiloglu, Edl

    2016-12-01

    We describe a new O-type high power microwave oscillator that uses a metamaterial slow wave structure (MSWS) supporting waves with negative dispersion. The MSWS comprises periodically alternating, oppositely oriented split ring resonators (SRRs) connected to a metal tube where the distance between the rings is much less than a wavelength of the radiation generated. The SRRs provide negative permeability μ . The diameter of the metal tube is such that the generated oscillations are below cutoff for a regular waveguide with the same dimension, thus providing negative permittivity ɛ . A tubular electron beam propagates coaxially through this structure. The interaction space is coupled with the outer coaxial channel through gaps between the SRRs. Radiation is extracted in an endfire manner at the end of the outer channel via a conical horn section. Using particle-in-cell (PIC) simulations, it was found that the electron beam in the interaction space forms a sequence of trapped electron bunches by the synchronous operating wave. The output parameters of this oscillator for an applied voltage U = 400 kV, electron beam current I = 4.5 kA, and guide axial magnetic field B = 2 T are radiation power P = 260 MW, radiation frequency f = 1.4 GHz, and electronic efficiency η = 15% when the total SWS length L consisting of 12 split rings is 34.5 cm. The output radiation pattern corresponds to a TE21-like hybrid mode. This article presents details on the simulations of this novel structure and computational and experimental cold tests of a prototype structure in preparation for experimental hot tests.

  14. On the Properties of Slow MHD Sausage Waves within Small-scale Photospheric Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Freij, N.; Dorotovič, I.; Morton, R. J.; Ruderman, M. S.; Karlovský, V.; Erdélyi, R.

    2016-01-01

    The presence of magnetoacoustic waves in magnetic structures in the solar atmosphere is well-documented. Applying the technique of solar magneto-seismology (SMS) allows us to infer the background properties of these structures. Here, we aim to identify properties of the observed magnetoacoustic waves and study the background properties of magnetic structures within the lower solar atmosphere. Using the Dutch Open Telescope and Rapid Oscillations in the Solar Atmosphere instruments, we captured two series of high-resolution intensity images with short cadences of two isolated magnetic pores. Combining wavelet analysis and empirical mode decomposition (EMD), we determined characteristic periods within the cross-sectional (i.e., area) and intensity time series. Then, by applying the theory of linear magnetohydrodynamics (MHD), we identified the mode of these oscillations within the MHD framework. Several oscillations have been detected within these two magnetic pores. Their periods range from 3 to 20 minutes. Combining wavelet analysis and EMD enables us to confidently find the phase difference between the area and intensity oscillations. From these observed features, we concluded that the detected oscillations can be classified as slow sausage MHD waves. Furthermore, we determined several key properties of these oscillations such as the radial velocity perturbation, the magnetic field perturbation, and the vertical wavenumber using SMS. The estimated range of the related wavenumbers reveals that these oscillations are trapped within these magnetic structures. Our results suggest that the detected oscillations are standing harmonics, and this allows us to estimate the expansion factor of the waveguides by employing SMS. The calculated expansion factor ranges from 4 to 12.

  15. Reconstruction of multiple gastric electrical wave fronts using potential-based inverse methods.

    PubMed

    Kim, J H K; Pullan, A J; Cheng, L K

    2012-08-21

    One approach for non-invasively characterizing gastric electrical activity, commonly used in the field of electrocardiography, involves solving an inverse problem whereby electrical potentials on the stomach surface are directly reconstructed from dense potential measurements on the skin surface. To investigate this problem, an anatomically realistic torso model and an electrical stomach model were used to simulate potentials on stomach and skin surfaces arising from normal gastric electrical activity. The effectiveness of the Greensite-Tikhonov or the Tikhonov inverse methods were compared under the presence of 10% Gaussian noise with either 84 or 204 body surface electrodes. The stability and accuracy of the Greensite-Tikhonov method were further investigated by introducing varying levels of Gaussian signal noise or by increasing or decreasing the size of the stomach by 10%. Results showed that the reconstructed solutions were able to represent the presence of propagating multiple wave fronts and the Greensite-Tikhonov method with 204 electrodes performed best (correlation coefficients of activation time: 90%; pacemaker localization error: 3 cm). The Greensite-Tikhonov method was stable with Gaussian noise levels up to 20% and 10% change in stomach size. The use of 204 rather than 84 body surface electrodes improved the performance; however, for all investigated cases, the Greensite-Tikhonov method outperformed the Tikhonov method.

  16. Reconstruction of multiple gastric electrical wave fronts using potential-based inverse methods

    NASA Astrophysics Data System (ADS)

    Kim, J. H. K.; Pullan, A. J.; Cheng, L. K.

    2012-08-01

    One approach for non-invasively characterizing gastric electrical activity, commonly used in the field of electrocardiography, involves solving an inverse problem whereby electrical potentials on the stomach surface are directly reconstructed from dense potential measurements on the skin surface. To investigate this problem, an anatomically realistic torso model and an electrical stomach model were used to simulate potentials on stomach and skin surfaces arising from normal gastric electrical activity. The effectiveness of the Greensite-Tikhonov or the Tikhonov inverse methods were compared under the presence of 10% Gaussian noise with either 84 or 204 body surface electrodes. The stability and accuracy of the Greensite-Tikhonov method were further investigated by introducing varying levels of Gaussian signal noise or by increasing or decreasing the size of the stomach by 10%. Results showed that the reconstructed solutions were able to represent the presence of propagating multiple wave fronts and the Greensite-Tikhonov method with 204 electrodes performed best (correlation coefficients of activation time: 90%; pacemaker localization error: 3 cm). The Greensite-Tikhonov method was stable with Gaussian noise levels up to 20% and 10% change in stomach size. The use of 204 rather than 84 body surface electrodes improved the performance; however, for all investigated cases, the Greensite-Tikhonov method outperformed the Tikhonov method.

  17. A compact P-band coaxial relativistic backward wave oscillator with only three periods slow wave structure

    SciTech Connect

    Gao Liang; Qian Baoliang; Ge Xingjun

    2011-10-15

    A compact P-band coaxial relativistic backward wave oscillator (BWO) with only three periods slow wave structure (SWS) is investigated both theoretically and numerically. The characteristics of the coaxial SWS are analyzed when the SWS is changed from the structure with only outer conductor ripple to the structure with both inner and outer conductor ripples. It is found that the existence of the inner conductor ripple can reduce the period length of coaxial SWS to maintain the same operating frequency of the BWO and can largely increase the temporal growth rate and the spatial growth rate of the device. Then, the effects of SWS period numbers on the generation of the microwave in the P-band relativistic BWO are studied by PIC simulations. The results show that three periods SWS cannot only make the device more compact but also has a wide region of single-frequency operation and relatively large efficiency and output power in a wide range of the diode voltage. Typical simulation results show that, with a 585 kV and 7.85 kA electron beam guided by a 0.8 T solenoidal field, the microwave of 1.65 GW is generated at the frequency of 900 MHz, and the interaction efficiency is about 36%. Compared with the conventional P-band coaxial relativistic BWO with five periods SWS, the axial length of the SWS is reduced by about one half, which is only 38.4 cm, and the saturation time of the microwave signal is reduced by about 10 ns.

  18. Costs of storing colour and complex shape in visual working memory: Insights from pupil size and slow waves.

    PubMed

    Kursawe, Michael A; Zimmer, Hubert D

    2015-06-01

    We investigated the impact of perceptual processing demands on visual working memory of coloured complex random polygons during change detection. Processing load was assessed by pupil size (Exp. 1) and additionally slow wave potentials (Exp. 2). Task difficulty was manipulated by presenting different set sizes (1, 2, 4 items) and by making different features (colour, shape, or both) task-relevant. Memory performance in the colour condition was better than in the shape and both condition which did not differ. Pupil dilation and the posterior N1 increased with set size independent of type of feature. In contrast, slow waves and a posterior P2 component showed set size effects but only if shape was task-relevant. In the colour condition slow waves did not vary with set size. We suggest that pupil size and N1 indicates different states of attentional effort corresponding to the number of presented items. In contrast, slow waves reflect processes related to encoding and maintenance strategies. The observation that their potentials vary with the type of feature (simple colour versus complex shape) indicates that perceptual complexity already influences encoding and storage and not only comparison of targets with memory entries at the moment of testing.

  19. Effect of Slow Wave Sleep Disruption on Metabolic Parameters in Adolescents

    PubMed Central

    Shaw, Natalie D.; McHill, Andrew W.; Schiavon, Michele; Kangarloo, Tairmae; Mankowski, Piotr W.; Cobelli, Claudio; Klerman, Elizabeth B.; Hall, Janet E.

    2016-01-01

    Study Objectives: Cross-sectional studies report a correlation between slow wave sleep (SWS) duration and insulin sensitivity (SI) in children and adults. Suppression of SWS causes insulin resistance in adults but effects in children are unknown. This study was designed to determine the effect of SWS fragmentation on SI in children. Methods: Fourteen pubertal children (11.3–14.1 y, body mass index 29th to 97th percentile) were randomized to sleep studies and mixed meal (MM) tolerance tests with and without SWS disruption. Beta-cell responsiveness (Φ) and SI were determined using oral minimal modeling. Results: During the disruption night, auditory stimuli (68.1 ± 10.7/night; mean ± standard error) decreased SWS by 40.0 ± 8.0%. SWS fragmentation did not affect fasting glucose (non-disrupted 76.9 ± 2.3 versus disrupted 80.6 ± 2.1 mg/dL), insulin (9.2 ± 1.6 versus 10.4 ± 2.0 μIU/mL), or C-peptide (1.9 ± 0.2 versus 1.9 ± 0.1 ng/mL) levels and did not impair SI (12.9 ± 2.3 versus 10.1 ± 1.6 10−4 dL/kg/min per μIU/mL) or Φ (73.4 ± 7.8 versus 74.4 ± 8.4 10−9 min−1) to a MM challenge. Only the subjects in the most insulin-sensitive tertile demonstrated a consistent decrease in SI after SWS disruption. Conclusion: Pubertal children across a range of body mass indices may be resistant to the adverse metabolic effects of acute SWS disruption. Only those subjects with high SI (i.e., having the greatest “metabolic reserve”) demonstrated a consistent decrease in SI. These results suggest that adolescents may have a unique ability to adapt to metabolic stressors, such as acute SWS disruption, to maintain euglycemia. Additional studies are necessary to confirm that this resiliency is maintained in settings of chronic SWS disruption. Citation: Shaw ND, McHill AW, Schiavon M, Kangarloo T, Mankowski PW, Cobelli C, Klerman EB, Hall JE. Effect of slow wave sleep disruption on metabolic parameters in adolescents. SLEEP 2016;39(8):1591–1599. PMID:27166229

  20. Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity.

    PubMed

    Vyazovskiy, Vladyslav V; Faraguna, Ugo; Cirelli, Chiara; Tononi, Giulio

    2009-04-01

    In humans, non-rapid eye movement (NREM) sleep slow waves occur not only spontaneously but can also be induced by transcranial magnetic stimulation. Here we investigated whether slow waves can also be induced by intracortical electrical stimulation during sleep in rats. Intracortical local field potential (LFP) recordings were obtained from several cortical locations while the frontal or the parietal area was stimulated intracortically with brief (0.1 ms) electrical pulses. Recordings were performed in early sleep (1st 2-3 h after light onset) and late sleep (6-8 h after light onset). The stimuli reliably triggered LFP potentials that were visually indistinguishable from naturally occurring slow waves. The induced slow waves shared the following features with spontaneous slow waves: they were followed by spindling activity in the same frequency range ( approximately 15 Hz) as spontaneously occurring sleep spindles; they propagated through the neocortex from the area of the stimulation; and compared with late sleep, waves triggered during early sleep were larger, had steeper slopes and fewer multipeaks. Peristimulus background spontaneous activity had a profound influence on the amplitude of the induced slow waves: they were virtually absent if the stimulus was delivered immediately after the spontaneous slow wave. These results show that in the rat a volley of electrical activity that is sufficiently strong to excite and recruit a large cortical neuronal population is capable of inducing slow waves during natural sleep.

  1. Slow-Wave Sleep-Imposed Replay Modulates Both Strength and Precision of Memory

    PubMed Central

    2014-01-01

    Odor perception is hypothesized to be an experience-dependent process involving the encoding of odor objects by distributed olfactory cortical ensembles. Olfactory cortical neurons coactivated by a specific pattern of odorant evoked input become linked through association fiber synaptic plasticity, creating a template of the familiar odor. In this way, experience and memory play an important role in odor perception and discrimination. In other systems, memory consolidation occurs partially via slow-wave sleep (SWS)-dependent replay of activity patterns originally evoked during waking. SWS is ideal for replay given hyporesponsive sensory systems, and thus reduced interference. Here, using artificial patterns of olfactory bulb stimulation in a fear conditioning procedure in the rat, we tested the effects of imposed post-training replay during SWS and waking on strength and precision of pattern memory. The results show that imposed replay during post-training SWS enhanced the subsequent strength of memory, whereas the identical replay during waking induced extinction. The magnitude of this enhancement was dependent on the timing of imposed replay relative to cortical sharp-waves. Imposed SWS replay of stimuli, which differed from the conditioned stimulus, did not affect conditioned stimulus memory strength but induced generalization of the fear memory to novel artificial patterns. Finally, post-training disruption of piriform cortex intracortical association fiber synapses, hypothesized to be critical for experience-dependent odor coding, also impaired subsequent memory precision but not strength. These results suggest that SWS replay in the olfactory cortex enhances memory consolidation, and that memory precision is dependent on the fidelity of that replay. PMID:24719093

  2. Slow-wave sleep-imposed replay modulates both strength and precision of memory.

    PubMed

    Barnes, Dylan C; Wilson, Donald A

    2014-04-09

    Odor perception is hypothesized to be an experience-dependent process involving the encoding of odor objects by distributed olfactory cortical ensembles. Olfactory cortical neurons coactivated by a specific pattern of odorant evoked input become linked through association fiber synaptic plasticity, creating a template of the familiar odor. In this way, experience and memory play an important role in odor perception and discrimination. In other systems, memory consolidation occurs partially via slow-wave sleep (SWS)-dependent replay of activity patterns originally evoked during waking. SWS is ideal for replay given hyporesponsive sensory systems, and thus reduced interference. Here, using artificial patterns of olfactory bulb stimulation in a fear conditioning procedure in the rat, we tested the effects of imposed post-training replay during SWS and waking on strength and precision of pattern memory. The results show that imposed replay during post-training SWS enhanced the subsequent strength of memory, whereas the identical replay during waking induced extinction. The magnitude of this enhancement was dependent on the timing of imposed replay relative to cortical sharp-waves. Imposed SWS replay of stimuli, which differed from the conditioned stimulus, did not affect conditioned stimulus memory strength but induced generalization of the fear memory to novel artificial patterns. Finally, post-training disruption of piriform cortex intracortical association fiber synapses, hypothesized to be critical for experience-dependent odor coding, also impaired subsequent memory precision but not strength. These results suggest that SWS replay in the olfactory cortex enhances memory consolidation, and that memory precision is dependent on the fidelity of that replay.

  3. Reflection of Propagating Slow Magneto-acoustic Waves in Hot Coronal Loops: Multi-instrument Observations and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Mandal, Sudip; Yuan, Ding; Fang, Xia; Banerjee, Dipankar; Pant, Vaibhav; Van Doorsselaere, Tom

    2016-09-01

    Slow MHD waves are important tools for understanding coronal structures and dynamics. In this paper, we report a number of observations from the X-Ray Telescope (XRT) on board HINODE and Solar Dynamic Observatory/Atmospheric Imaging Assembly (AIA) of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and temperature of the loop plasma by performing differential emission measure (DEM) analysis on the AIA image sequence. The estimated speed of propagation is comparable to or lower than the local sound speed, suggesting it to be a propagating slow wave. The intensity perturbation amplitude, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observation as inputs, and perform forward modeling to synthesize AIA 94 Å images. Analyzing the synthesized images, we obtain the same properties of the observables as for the real observation. From the analysis we conclude that a footpoint heating can generate a slow wave which then reflects back and forth in the coronal loop before fading. Our analysis of the simulated data shows that the main agent for this damping is anisotropic thermal conduction.

  4. Changes in gastric myoelectric activity during space flight

    NASA Technical Reports Server (NTRS)

    Harm, Deborah L.; Sandoz, Gwenn R.; Stern, Robert M.

    2002-01-01

    The purpose of the present study was to examine postprandial myoelectric activity of the stomach and gastric activity associated with space motion sickness using electrogastrography. Three crewmembers participated in this investigation. Preflight, subjects exhibited normal postprandial responses to the ingestion of a meal. Inflight, crewmembers exhibited an abnormal decrease in the power of the normal gastric slow wave after eating on flight day 1, but had a normal postprandial response by flight day 3. Prior to and during episodes of nausea and vomiting, the electrical activity of the stomach became dysrhythmic with 60-80% of the spectral power in the bradygastric and tachygastric frequency ranges. These findings indicate that gastric motility may be decreased during the first few days of space flight. In addition, changes in the frequency of the gastric slow wave associated with space motion sickness symptoms are consistent with those reported for laboratory-induced motion sickness.

  5. Early diagnosis, treatment and prognosis of epilepsy with continuous spikes and waves during slow sleep

    PubMed Central

    Yuan, Qiang; Li, Fengtong; Zhong, Hongping

    2015-01-01

    The study is to investigate the importance of early diagnosis and treatment to the prognosis of epilepsy with continuous spikes and waves during slow sleep (CSWS). A total of 8 cases of CSWS children were followed up for 6 months to 4 years. Retrospective analysis of the clinical and electroencephalographic (EEG) characteristics, treatment and prognosis was performed in these 8 cases. Of the 8 cases of CSWS patients, 5 were males and 3 were females. Epilepsy onset ages were from 3 years and 1 month to 10 years and 6 months. Five cases of the patients were with brain lesions while the other 3 cases appeared normally by imaging detection. After treatment with valproic acid, clonazepam, lamotrigine and hormone for 3 months, clinical symptoms and EEG were improved significantly in 7 cases. Two cases relapsed at 6 months after comprehensive treatment. For atypical early performance of CSWS, early diagnosis and regular treatment could improve the condition of children with seizures and effectively inhibit the epileptic activity with good prognosis. PMID:26064309

  6. Complementary roles of slow-wave sleep and rapid eye movement sleep in emotional memory consolidation.

    PubMed

    Cairney, Scott A; Durrant, Simon J; Power, Rebecca; Lewis, Penelope A

    2015-06-01

    Although rapid eye movement sleep (REM) is regularly implicated in emotional memory consolidation, the role of slow-wave sleep (SWS) in this process is largely uncharacterized. In the present study, we investigated the relative impacts of nocturnal SWS and REM upon the consolidation of emotional memories using functional magnetic resonance imaging (fMRI) and polysomnography (PSG). Participants encoded emotionally positive, negative, and neutral images (remote memories) before a night of PSG-monitored sleep. Twenty-four hours later, they encoded a second set of images (recent memories) immediately before a recognition test in an MRI scanner. SWS predicted superior memory for remote negative images and a reduction in right hippocampal responses during the recollection of these items. REM, however, predicted an overnight increase in hippocampal-neocortical connectivity associated with negative remote memory. These findings provide physiological support for sequential views of sleep-dependent memory processing, demonstrating that SWS and REM serve distinct but complementary functions in consolidation. Furthermore, these findings extend those ideas to emotional memory by showing that, once selectively reorganized away from the hippocampus during SWS, emotionally aversive representations undergo a comparably targeted process during subsequent REM.

  7. Increased frontal sleep slow wave activity in adolescents with major depression.

    PubMed

    Tesler, Noemi; Gerstenberg, Miriam; Franscini, Maurizia; Jenni, Oskar G; Walitza, Susanne; Huber, Reto

    2016-01-01

    Sleep slow wave activity (SWA), the major electrophysiological characteristic of deep sleep, mirrors both cortical restructuring and functioning. The incidence of Major Depressive Disorder (MDD) substantially rises during the vulnerable developmental phase of adolescence, where essential cortical restructuring is taking place. The goal of this study was to assess characteristics of SWA topography in adolescents with MDD, in order to assess abnormalities in both cortical restructuring and functioning on a local level. All night high-density EEG was recorded in 15 patients meeting DSM-5 criteria for MDD and 15 sex- and age-matched healthy controls. The actual symptom severity was assessed using the Children's Depression Rating Scale-Revised (CDRS-R). Topographical power maps were calculated based on the average SWA of the first non-rapid eye movement (NREM) sleep episode. Depressed adolescents exhibited significantly more SWA in a cluster of frontal electrodes compared to controls. SWA over frontal brain regions correlated positively with the CDRS-R subscore "morbid thoughts". Self-reported sleep latency was significantly higher in depressed adolescents compared to controls whereas sleep architecture did not differ between the groups. Higher frontal SWA in depressed adolescents may represent a promising biomarker tracing cortical regions of intense use and/or restructuring.

  8. [General statistical characteristics of the background firing in cat's cortical neurons during slow-wave sleep].

    PubMed

    Bibikov, N G; Pigarev, I N

    2013-03-01

    Background activity of 62 neurons in cat cerebral cortex was recorded in the state of slow-wave sleep for evaluation of the firing statistics. In according to their statistical characteristics neurons were subdivided in three groups. In the first group deviation from the Poisson process were comparatively small, and revealed as fragments of increased excitability following immediately after the refractory period. Second group demonstrated positive correlation of the neighbouring interspike intervals what was conditioned by the changes of the mean firing rate. In these neurons the number of spikes included into the bursts reduced after random permutation of the interspike intervals. The third group was characterized by the big number of spikes included into the bursts (> 15%), and number of bursts usually dropped down after random permutation. Some neurons of this group had constant interspike intervals within the bursts while in other units these intervals monotonically increased toward the end of the burst. Only limited number of neurons demonstrated maximums of the autocorrelation function corresponded to the frequency of the EEG delta activity.

  9. A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; He, Jun-Tao; Zhang, Jian-De; Li, Zhi-Qiang; Ling, Jun-Pu

    2016-12-01

    In order to enhance the power capacity, an improved Ku-band magnetically insulated transmission line oscillator (MILO) with overmoded slow-wave-structure (SWS) is proposed and investigated numerically and experimentally. The analysis of the dispersion relationship and the resonant curve of the cold test indicate that the device can operate at the near π mode of the TM01 mode, which is useful for mode selection and control. In the particle simulation, the improved Ku-band MILO generates a microwave with a power of 1.5 GW and a frequency of 12.3 GHz under an input voltage of 480 kV and input current of 42 kA. Finally, experimental investigation of the improved Ku-band MILO is carried out. A high-power microwave (HPM) with an average power of 800 MW, a frequency of 12.35 GHz, and pulse width of 35 ns is generated under a diode voltage of 500 kV and beam current of 43 kA. The consistency between the experimental and simulated far-field radiation pattern confirms that the operating mode of the improved Ku-band MILO is well controlled in π mode of the TM01 mode. Project supported partly by the National Natural Science Foundation of China (Grant No. 61171021).

  10. Unihemispheric slow wave sleep and the state of the eyes in a white whale.

    PubMed

    Lyamin, O I; Mukhametov, L M; Siegel, J M; Nazarenko, E A; Polyakova, I G; Shpak, O V

    2002-02-01

    We recorded electroencephalogram (EEG) and simultaneously documented the state of both eyelids during sleep and wakefulness in a sub-adult male white whale over a 4-day-period. We showed that the white whale was the fifth species of Cetaceans, which exhibits unihemispheric slow wave sleep. We found that the eye contralateral to the sleeping hemisphere in this whale was usually closed (right eye, 52% of the total sleep time in the contralateral hemisphere; left eye, 40%) or in an intermediate state (31 and 46%, respectively) while the ipsilateral eye was typically open (89 and 80%). Episodes of bilateral eye closure in this whale occupied less than 2% of the observation time and were usually recorded during waking (49% of the bilateral eye closure time) or low amplitude sleep (48%) and rarely in high amplitude sleep (3%). In spite of the evident overall relationship between the sleeping hemisphere and eye state, EEG and eye position in this whale could be independent over short time periods (less than 1 min). Therefore, eye state alone may not accurately reflect sleep state in Cetaceans. Our data support the idea that unihemispheric sleep allows Cetaceans to monitor the environment.

  11. Increased frontal sleep slow wave activity in adolescents with major depression

    PubMed Central

    Tesler, Noemi; Gerstenberg, Miriam; Franscini, Maurizia; Jenni, Oskar G.; Walitza, Susanne; Huber, Reto

    2015-01-01

    Sleep slow wave activity (SWA), the major electrophysiological characteristic of deep sleep, mirrors both cortical restructuring and functioning. The incidence of Major Depressive Disorder (MDD) substantially rises during the vulnerable developmental phase of adolescence, where essential cortical restructuring is taking place. The goal of this study was to assess characteristics of SWA topography in adolescents with MDD, in order to assess abnormalities in both cortical restructuring and functioning on a local level. All night high-density EEG was recorded in 15 patients meeting DSM-5 criteria for MDD and 15 sex- and age-matched healthy controls. The actual symptom severity was assessed using the Children's Depression Rating Scale—Revised (CDRS-R). Topographical power maps were calculated based on the average SWA of the first non-rapid eye movement (NREM) sleep episode. Depressed adolescents exhibited significantly more SWA in a cluster of frontal electrodes compared to controls. SWA over frontal brain regions correlated positively with the CDRS-R subscore “morbid thoughts”. Self-reported sleep latency was significantly higher in depressed adolescents compared to controls whereas sleep architecture did not differ between the groups. Higher frontal SWA in depressed adolescents may represent a promising biomarker tracing cortical regions of intense use and/or restructuring. PMID:26870661

  12. Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation.

    PubMed

    Gais, Steffen; Born, Jan

    2004-02-17

    The neurotransmitter acetylcholine is considered essential for proper functioning of the hippocampus-dependent declarative memory system, and it represents a major neuropharmacological target for the treatment of memory deficits, such as those in Alzheimer's disease. During slow-wave sleep (SWS), however, declarative memory consolidation is particularly strong, while acetylcholine levels in the hippocampus drop to a minimum. Observations in rats led to the hypothesis that the low cholinergic tone during SWS is necessary for the replay of new memories in the hippocampus and their long-term storage in neocortical networks. However, this low tone should not affect nondeclarative memory systems. In this study, increasing central nervous cholinergic activation during SWS-rich sleep by posttrial infusion of 0.75 mg of the cholinesterase inhibitor physostigmine completely blocked SWS-related consolidation of declarative memories for word pairs in human subjects. The treatment did not interfere with consolidation of a nondeclarative mirror tracing task. Also, physostigmine did not alter memory consolidation during waking, when the endogenous central nervous cholinergic tone is maximal. These findings are in line with predictions that a low cholinergic tone during SWS is essential for declarative memory consolidation.

  13. Stability of Brillouin flow in the presence of slow-wave structure

    NASA Astrophysics Data System (ADS)

    Simon, D. H.; Lau, Y. Y.; Greening, G.; Wong, P.; Hoff, B.; Gilgenbach, R. M.

    2016-09-01

    Including a slow-wave structure (SWS) on the anode in the conventional, planar, and inverted magnetron, we systematically study the linear stability of Brillouin flow, which is the prevalent flow in crossed-field devices. The analytic treatment is fully relativistic and fully electromagnetic, and it incorporates the equilibrium density profile, flow profile, and electric field and magnetic field profiles in the linear stability analysis. Using parameters similar to the University of Michigan's recirculating planar magnetron, the numerical data show that the resonant interaction of the vacuum circuit mode and the corresponding smooth-bore diocotron-like mode is the dominant cause for instability. This resonant interaction is far more important than the intrinsic negative (positive) mass property of electrons in the inverted (conventional) magnetron geometry. It is absent in either the smooth-bore magnetron or under the electrostatic assumption, one or both of which was almost always adopted in prior analytical formulation. This resonant interaction severely restricts the wavenumber for instability to the narrow range in which the cold tube frequency of the SWS is within a few percent of the corresponding smooth bore diocotron-like mode in the Brillouin flow.

  14. Habituation and recovery of a slow negative wave of the event-related brain potential.

    PubMed

    Zimmer, Heinz

    2002-03-01

    This study is concerned with the question of whether the late, slow negative wave 2 (SNW2) component of the event-related brain potential is a component of the orienting response (OR). As habituation of the SNW2 would be an argument for such a link with the OR, it was investigated using a variant of the classical repetition/change paradigm. Results supported major claims to be made for a component of the OR: the amplitude of the vertex SNW2 exhibited roughly the typical exponential decline with repeated stimulations (six numeric verbal stimuli presented seriatim in an ascending order) and responded incrementally to a change, at least in a narrow time slot, i.e. it exhibited partial recovery to an out-of-sequence stimulus. These findings were accompanied by similar effects on an exemplary OR component, the skin conductance response, and on such possible components of the OR as heart rate deceleration and the vertex P3 of the event-related brain potential. In so far as OR components should behave in comparable fashion in response to orienting stimuli, it is thus reasonable to suppose that the SNW2 relates to the OR.

  15. Rats Housed on Corncob Bedding Show Less Slow-Wave Sleep

    PubMed Central

    Leys, Laura J; McGaraughty, Steve; Radek, Richard J

    2012-01-01

    Despite the reported advantages of corncob bedding, questions have emerged about how comfortable animals find this type of bedding as a resting surface. In this study, encephalography (EEG) was used to compare the effects of corncob and aspen-chip bedding on rat slow-wave sleep (SWS). According to a facility-wide initiative, rats that were weaned on aspen-chip bedding were switched to corncob bedding in home cages and EEG recording chambers. Spontaneous EEG recordings obtained for 5 wk after the switch to corncob bedding demonstrated that rats spent significantly less time in SWS as compared with levels measured on aspen chips just prior to the bedding switch. SWS remained low even after a 5-wk acclimation period to the corncob bedding. We then acutely switched back to aspen-chip bedding in EEG recording chambers. Acute reinstatement of aspen-chip bedding during EEG recording was associated with an average 22% increase in time spent in SWS, with overall levels of SWS comparable to the levels measured on aspen chips prior to the change to corncob bedding. Aspen-chip bedding subsequently was reinstated in both home cages and EEG recording chambers, and SWS baseline levels were restored. These data raise important concerns about the effects of corncob bedding on rodents used in research. PMID:23294881

  16. β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation

    PubMed Central

    Mander, Bryce A.; Marks, Shawn M.; Vogel, Jacob W.; Rao, Vikram; Lu, Brandon; Saletin, Jared M.; Ancoli-Israel, Sonia; Jagust, William J.; Walker, Matthew P.

    2015-01-01

    Independent evidence associates β-amyloid pathology with both NREM sleep disruption and memory impairment in older adults. However, whether the influence of β-amyloid pathology on hippocampus-dependent memory is, in part, driven by impairments of NREM slow wave activity (SWA) and associated overnight memory consolidation is unknown. Here, we show that β-amyloid burden within medial prefrontal cortex (mPFC) is significantly correlated with the severity of impairment in NREM SWA generation. Moreover, reduced NREM SWA generation was further associated with impaired overnight memory consolidation and impoverished hippocampal-neocortical memory transformation. Furthermore, structural equation models revealed that the association between mPFC β-amyloid pathology and impaired hippocampus-dependent memory consolidation is not direct, but instead, statistically depends on the intermediary factor of diminished NREM SWA. By linking β-amyloid pathology with impaired NREM SWA, these data implicate sleep disruption as a novel mechanistic pathway through which β-amyloid pathology may contribute to hippocampus-dependent cognitive decline in the elderly. PMID:26030850

  17. The dynamics of spindles and EEG slow-wave activity in NREM sleep in mice.

    PubMed

    Vyazovskiy, V V; Achermann, P; Borbély, A A; Tobler, I

    2004-07-01

    A quantitative analysis of spindles and spindle-related EEG activity was performed in C57BL/6 mice. The hypothesis that spindles are involved in sleep regulatory mechanisms was tested by investigating their occurrence during 24 h and after 6 h sleep deprivation (SD; n = 7). In the frontal derivation distinct spindle events were characterized as EEG oscillations with a dominant frequency approximately at 11 Hz. Spindles were most prominent during NREM sleep and increased before NREM-REM sleep transitions. Whereas spindles increased concomitantly with slow wave activity (SWA, EEG power between 0.5 and 4.0 Hz) at the beginning of the NREM sleep episode, these measures showed an opposite evolution prior to the transition to REM sleep. The 24-h time course of spindles showed a maximum at the end of the 12-h light period, and was a mirror image of SWA in NREM sleep. After 6 h SD the spindles in NREM sleep were initially suppressed, and showed a delayed rebound. In contrast, spindles occurring immediately before the transition to REM sleep were enhanced during the first 2 h of recovery. The data suggest that spindles in NREM sleep may be involved in sleep maintenance, while spindles heralding the transition to REM sleep may be related to mechanisms of REM sleep initiation.

  18. Development of the brain's default mode network from wakefulness to slow wave sleep.

    PubMed

    Sämann, Philipp G; Wehrle, Renate; Hoehn, David; Spoormaker, Victor I; Peters, Henning; Tully, Carolin; Holsboer, Florian; Czisch, Michael

    2011-09-01

    Falling asleep is paralleled by a loss of conscious awareness and reduced capacity to process external stimuli. Little is known on sleep-associated changes of spontaneously synchronized anatomical networks as detected by resting-state functional magnetic resonance imaging (rs-fMRI). We employed functional connectivity analysis of rs-fMRI series obtained from 25 healthy participants, covering all non-rapid eye movement (NREM) sleep stages. We focused on the default mode network (DMN) and its anticorrelated network (ACN) that are involved in internal and external awareness during wakefulness. Using independent component analysis, cross-correlation analysis (CCA), and intraindividual dynamic network tracking, we found significant changes in DMN/ACN integrity throughout the NREM sleep. With increasing sleep depth, contributions of the posterior cingulate cortex (PCC)/retrosplenial cortex (RspC), parahippocampal gyrus, and medial prefrontal cortex to the DMN decreased. CCA revealed a breakdown of corticocortical functional connectivity, particularly between the posterior and anterior midline node of the DMN and the DMN and the ACN. Dynamic tracking of the DMN from wakefulness into slow wave sleep in a single subject added insights into intraindividual network fluctuations. Results resonate with a role of the PCC/RspC for the regulation of consciousness. We further submit that preserved corticocortical synchronization could represent a prerequisite for maintaining internal and external awareness.

  19. Relationship of plasma growth hormone to slow-wave sleep in African sleeping sickness.

    PubMed

    Radomski, M W; Buguet, A; Doua, F; Bogui, P; Tapie, P

    1996-04-01

    Human African trypanosomiasis (sleeping sickness) is a unique disease model of disrupted circadian rhythms in the sleep-wake cycle and cortisol and prolactin secretion. This study examined the temporal relationship between growth hormone (GH) secretion and the sleep-wake cycle in 8 infected African patients and 6 healthy indigenous African subjects. Twenty-four-hour sleep patterns were recorded by polysomnography and hourly blood samples analyzed for plasma GH. No relationships between the mean normalized plasma GH levels (Z scores) and the sleep stages (wakefulness, sleep stages 1 and 2 ('light' sleep), slow-wave sleep (stages 3 and 4, SWS), and rapid eye movement (REM) sleep) were found in the patients or healthy subjects. However, when the time of sampling of the plasma GH concentrations was lagged by 16 min with respect to the occurrence of the various sleep stages, significant correlations were found between plasma GH concentrations and SWS in both healthy subjects and patients. Thus, the association between SWS and GH secretion persisted even in the presence of disrupted circadian rhythms, further supporting the concept that sleep and the stimulation of GH secretion are outputs of a common mechanism.

  20. "Slowing" Mechanical Waves with a Consumer-Type High-Speed Digital Camera

    ERIC Educational Resources Information Center

    Ng, Pun-hon; Chan, Kin-lok

    2015-01-01

    In most secondary physics textbooks, waves are first introduced with examples of mechanical waves because they can be illustrated by drawings and photographs. However, these illustrations are static and cannot reflect the dynamic nature of waves. Although many mechanical waves (e.g. water waves and vibrating strings) can be easily shown using…

  1. Slow waves on magnetic metamaterials and on chains of plasmonic nanoparticles: Driven solutions in the presence of retardation

    NASA Astrophysics Data System (ADS)

    Zhuromskyy, O.; Sydoruk, O.; Shamonina, E.; Solymar, L.

    2009-11-01

    Slow waves on chains or lattices of resonant elements offer a unique tool for guiding and manipulating the electromagnetic radiation on a subwavelength scale. Applications range from radio waves to optics with two major classes of structures being used: (i) metamaterials made of coupled ring resonators supporting magnetoinductive waves and (ii) plasmonic crystals made of nanoparticles supporting waves of near-field coupling. We derive dispersion equations of both types of slow waves for the case when the interelement coupling is governed by retardation effects, and show how closely they are related. The current distribution is found from Kirchhoff's equation by inverting the impedance matrix. In contrast to previous treatments power conservation is demonstrated in a form relevant to a finite structure: the input power is shown to be equal to the radiated power plus the powers absorbed in the Ohmic resistance of the elements and the terminal impedance. The relations between frequency and wave number are determined for a 500-element line for two excitations using three different methods. Our approach of retrieval of the dispersion from driven solutions of finite lines is relevant for practical applications and may be used in the design of metamaterials and plasmonic crystals with desired properties.

  2. Inhibitory Effects and Sympathetic Mechanisms of Distension in the Distal Organs on Small Bowel Motility and Slow Waves in Canine.

    PubMed

    Song, Jun; Yin, Jieyun; Chen, Jiande D Z

    2015-12-01

    Rectal distension (RD) is known to induce intestinal dysmotility. Few studies were performed to compare effects of RD, colon distension (CD) and duodenal distension (DD) on small bowel motility. This study aimed to investigate effects and underlying mechanisms of distensions in these regions on intestinal motility and slow waves. Eight dogs chronically implanted with a duodenal fistula, a proximal colon fistula, and intestinal serosal electrodes were studied in six sessions: control, RD, CD, DD, RD + guanethidine, and CD + guanethidine. Postprandial intestinal contractions and slow waves were recorded for the assessment of intestinal motility. The electrocardiogram was recorded for the assessment of autonomic functions. (1) Isobaric RD and CD suppressed intestinal contractions (contractile index: 6.0 ± 0.4 with RD vs. 9.9 ± 0.9 at baseline, P = 0.001, 5.3 ± 0.2 with CD vs. 7.7 ± 0.8 at baseline, P = 0.008). Guanethidine at 3 mg/kg iv was able to partially block the effects. (2) RD and CD reduced the percentage of normal intestinal slow waves from 92.1 ± 2.8 to 64.2 ± 3.4 % (P < 0.001) and from 90 ± 2.7 to 69.2 ± 3.7 % (P = 0.01), respectively. Guanethidine could eliminate these inhibitory effects. (3) DD did not induce any changes in small intestinal contractions and slow waves (P > 0.05). (4) The spectral analysis of the heart rate variability showed that both RD and CD increased sympathetic activity (LF) and reduced vagal activity (HF) (P < 0.05). Isobaric RD and CD could inhibit postprandial intestinal motility and impair intestinal slow waves, which were mediated via the sympathetic pathway. However, DD at a site proximal to the measurement site did not seem to impair small intestinal contractions or slow waves.

  3. Propagation of Biot slow waves in heterogeneous pipe networks: Effect of the pipe radius distribution on the effective wave velocity and attenuation

    NASA Astrophysics Data System (ADS)

    Bernabé, Y.

    2009-11-01

    This paper extends a previous study of the harmonic (or AC) flow of a compressible fluid through a single, elastic, thick-wall pipe. The model previously developed is used to investigate propagation of pore-scale Biot slow waves through heterogeneous one-, two- and three-dimensional networks of pipes. A novel method is applied to the results of the network simulations to numerically determine the dispersion equation of the upscaled Biot slow waves and investigate its dependence on pore-scale heterogeneity. As a function of frequency, the phase velocity of the macroscale Biot slow waves displays an S-shaped curve, increasing from zero at low frequencies (i.e., nonpropagative regime) to C? at high frequencies (i.e., propagative regime with C? lower than the sound velocity in the fluid). The transition between these two regimes is marked by the inflection point at the frequency ωB (where ωB is inversely proportional to the length scale Λ characteristic of fluid flow and permeability). The high-frequency phase velocity C? depends on the dimensionality of the network considered and decreases with increasing heterogeneity. The wave attenuation (as measured by the inverse quality factor) also presents an S-shaped curve, decreasing from 2 (i.e., critical damping) to zero, with the same inflection point at ωB. This behavior is approximately independent on the pore radius distribution, provided that ωB (or the corresponding fluid flow length scale Λ) is held constant. A mechanism based on wave scattering and interferences of forward and backward traveling (pore-scale) Biot slow waves is proposed to explain the observations.

  4. Ca2+ phase waves: a basis for cellular pacemaking and long-range synchronicity in the guinea-pig gastric pylorus

    PubMed Central

    van Helden, Dirk F; Imtiaz, Mohammad S

    2003-01-01

    Ca2+ imaging and multiple microelectrode recording procedures were used to investigate a slow wave-like electrical rhythmicity in single bundle strips from the circular muscle layer of the guinea-pig gastric pylorus. The ‘slow waves’ (SWs) consisted of a pacemaker and regenerative component, with both potentials composed of more elementary events variously termed spontaneous transient depolarizations (STDs) or unitary potentials. STDs and SW pacemaker and regenerative potentials exhibited associated local and distributed Ca2+ transients, respectively. Ca2+ transients were often larger in cellular regions that exhibited higher basal Ca2+ indicator-associated fluorescence, typical of regions likely to contain intramuscular interstitial cells of Cajal (ICCIM). The emergence of rhythmicity arose through entrainment of STDs resulting in pacemaker Ca2+ transients and potentials, events that exhibited considerable spatial synchronicity. Application of ACh to strips exhibiting weak rhythmicity caused marked enhancement of SW synchronicity. SWs and underlying Ca2+ increases exhibited very high ‘apparent conduction velocities’ (‘CVs’) orders of magnitude greater than for sequentially conducting Ca2+ waves. Central interruption of either intercellular connectivity or inositol 1,4,5-trisphosphate receptor (IP3R)-mediated store Ca2+ release in strips caused SWs at the two ends to run independently of each other, consistent with a coupled oscillator-based mechanism. Central inhibition of stores required much wider regions of blockade than inhibition of connectivity indicating that stores were voltage-coupled. Simulations, made using a conventional store array model but now including depolarization coupled to IP3R-mediated Ca2+ release, predicted the experimental findings. The linkage between membrane voltage and Ca2+ release provides a means for stores to interact as strongly coupled oscillators, resulting in the emergence of Ca2+ phase waves and associated pacemaker

  5. Spatial organization and coordination of slow waves in the mouse anorectum.

    PubMed

    Hall, K A; Ward, S M; Cobine, C A; Keef, K D

    2014-09-01

    The internal anal sphincter (IAS) develops tone and is important for maintaining a high anal pressure while tone in the rectum is less. The mechanisms responsible for tone generation in the IAS are still uncertain. The present study addressed this question by comparing the electrical properties and morphology of the mouse IAS and distal rectum. The amplitude of tone and the frequency of phasic contractions was greater in the IAS than in rectum while membrane potential (Em) was less negative in the IAS than in rectum. Slow waves (SWs) were of greatest amplitude and frequency at the distal end of the IAS, declining in the oral direction. Dual microelectrode recordings revealed that SWs were coordinated over a much greater distance in the circumferential direction than in the oral direction. The circular muscle layer of the IAS was divided into five to eight 'minibundles' separated by connective tissue septa whereas few septa were present in the rectum. The limited coordination of SWs in the oral direction suggests that the activity in adjacent minibundles is not coordinated. Intramuscular interstitial cells of Cajal and platelet-derived growth factor receptor alpha-positive cells were present in each minibundle suggesting a role for one or both of these cells in SW generation. In summary, three important properties distinguish the IAS from the distal rectum: (1) a more depolarized Em; (2) larger and higher frequency SWs; and (3) the multiunit configuration of the muscle. All of these characteristics may contribute to greater tone generation in the IAS than in the distal rectum.

  6. Spatial organization and coordination of slow waves in the mouse anorectum

    PubMed Central

    Hall, K A; Ward, S M; Cobine, C A; Keef, K D

    2014-01-01

    The internal anal sphincter (IAS) develops tone and is important for maintaining a high anal pressure while tone in the rectum is less. The mechanisms responsible for tone generation in the IAS are still uncertain. The present study addressed this question by comparing the electrical properties and morphology of the mouse IAS and distal rectum. The amplitude of tone and the frequency of phasic contractions was greater in the IAS than in rectum while membrane potential (Em) was less negative in the IAS than in rectum. Slow waves (SWs) were of greatest amplitude and frequency at the distal end of the IAS, declining in the oral direction. Dual microelectrode recordings revealed that SWs were coordinated over a much greater distance in the circumferential direction than in the oral direction. The circular muscle layer of the IAS was divided into five to eight ‘minibundles’ separated by connective tissue septa whereas few septa were present in the rectum. The limited coordination of SWs in the oral direction suggests that the activity in adjacent minibundles is not coordinated. Intramuscular interstitial cells of Cajal and platelet-derived growth factor receptor alpha-positive cells were present in each minibundle suggesting a role for one or both of these cells in SW generation. In summary, three important properties distinguish the IAS from the distal rectum: (1) a more depolarized Em; (2) larger and higher frequency SWs; and (3) the multiunit configuration of the muscle. All of these characteristics may contribute to greater tone generation in the IAS than in the distal rectum. PMID:24951622

  7. Drosophila wing imaginal discs respond to mechanical injury via slow InsP3R-mediated intercellular calcium waves

    NASA Astrophysics Data System (ADS)

    Restrepo, Simon; Basler, Konrad

    2016-08-01

    Calcium signalling is a highly versatile cellular communication system that modulates basic functions such as cell contractility, essential steps of animal development such as fertilization and higher-order processes such as memory. We probed the function of calcium signalling in Drosophila wing imaginal discs through a combination of ex vivo and in vivo imaging and genetic analysis. Here we discover that wing discs display slow, long-range intercellular calcium waves (ICWs) when mechanically stressed in vivo or cultured ex vivo. These slow imaginal disc intercellular calcium waves (SIDICs) are mediated by the inositol-3-phosphate receptor, the endoplasmic reticulum (ER) calcium pump SERCA and the key gap junction component Inx2. The knockdown of genes required for SIDIC formation and propagation negatively affects wing disc recovery after mechanical injury. Our results reveal a role for ICWs in wing disc homoeostasis and highlight the utility of the wing disc as a model for calcium signalling studies.

  8. Drosophila wing imaginal discs respond to mechanical injury via slow InsP3R-mediated intercellular calcium waves

    PubMed Central

    Restrepo, Simon; Basler, Konrad

    2016-01-01

    Calcium signalling is a highly versatile cellular communication system that modulates basic functions such as cell contractility, essential steps of animal development such as fertilization and higher-order processes such as memory. We probed the function of calcium signalling in Drosophila wing imaginal discs through a combination of ex vivo and in vivo imaging and genetic analysis. Here we discover that wing discs display slow, long-range intercellular calcium waves (ICWs) when mechanically stressed in vivo or cultured ex vivo. These slow imaginal disc intercellular calcium waves (SIDICs) are mediated by the inositol-3-phosphate receptor, the endoplasmic reticulum (ER) calcium pump SERCA and the key gap junction component Inx2. The knockdown of genes required for SIDIC formation and propagation negatively affects wing disc recovery after mechanical injury. Our results reveal a role for ICWs in wing disc homoeostasis and highlight the utility of the wing disc as a model for calcium signalling studies. PMID:27503836

  9. Electrophysiological and Mechanical Characteristics in Human Ileal Motility: Recordings of Slow Waves Conductions and Contractions, In vitro.

    PubMed

    Ryoo, Seung-Bum; Oh, Heung-Kwon; Moon, Sang Hui; Choe, Eun Kyung; Yu, Sung A; Park, Sung-Hye; Park, Kyu Joo

    2015-11-01

    Little human tissue data are available for slow waves and migrating motor complexes, which are the main components of small bowel motility. We investigated the electrophysiological and mechanical characteristics of human ileal motility, in vitro. Ileum was obtained from patients undergoing bowel resection. Electrophysiological microelectrode recordings for membrane potential changes and mechanical tension recordings for contraction from smooth muscle strips and ileal segments were performed. Drugs affecting the enteric nervous system were applied to measure the changes in activity. Slow waves were detected with a frequency of 9~10/min. There were no cross-sectional differences in resting membrane potential (RMP), amplitude or frequency between outer and inner circular muscle (CM), suggesting that electrical activities could be effectively transmitted from outer to inner CM. The presence of the interstitial cell of Cajal (ICC) at the linia septa was verified by immunohistochemistry. Contractions of strips and segments occurred at a frequency of 3~4/min and 1~2/min, respectively. The frequency, amplitude and area under the curve were similar between CM and LM. In segments, contractions of CM were associated with LM, but propagation varied with antegrade and retrograde directions. Atropine, N(W)-oxide-L-arginine, and sodium nitroprusside exhibited different effects on RMP and contractions. There were no cross-sectional differences with regard to the characteristics of slow waves in CM. The frequency of contractions in smooth muscle strips and ileal segments was lower than slow waves. The directions of propagation were diverse, indicating both mixing and transport functions of the ileum.

  10. Intracellular Ca2+ release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal

    PubMed Central

    Zhu, Mei Hong; Sung, Tae Sik; O'Driscoll, Kate; Koh, Sang Don

    2015-01-01

    Interstitial cells of Cajal (ICC) provide pacemaker activity in gastrointestinal muscles that underlies segmental and peristaltic contractions. ICC generate electrical slow waves that are due to large-amplitude inward currents resulting from anoctamin 1 (ANO1) channels, which are Ca2+-activated Cl− channels. We investigated the hypothesis that the Ca2+ responsible for the stochastic activation of ANO1 channels during spontaneous transient inward currents (STICs) and synchronized activation of ANO1 channels during slow wave currents comes from intracellular Ca2+ stores. ICC, obtained from the small intestine of Kit+/copGFP mice, were studied under voltage and current clamp to determine the effects of blocking Ca2+ uptake into stores and release of Ca2+ via inositol 1,4,5-trisphosphate (IP3)-dependent and ryanodine-sensitive channels. Cyclocpiazonic acid, thapsigargin, 2-APB, and xestospongin C inhibited STICs and slow wave currents. Ryanodine and tetracaine also inhibited STICs and slow wave currents. Store-active compounds had no direct effects on ANO1 channels expressed in human embryonic kidney-293 cells. Under current clamp, store-active drugs caused significant depolarization of ICC and reduced spontaneous transient depolarizations (STDs). After block of ryanodine receptors with ryanodine and tetracaine, repolarization did not restore STDs. ANO1 expressed in ICC has limited access to cytoplasmic Ca2+ concentration, suggesting that pacemaker activity depends on Ca2+ dynamics in restricted microdomains. Our data from studies of isolated ICC differ somewhat from studies on intact muscles and suggest that release of Ca2+ from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICC. PMID:25631870

  11. Involvement of Spindles in Memory Consolidation Is Slow Wave Sleep-Specific

    ERIC Educational Resources Information Center

    Cox, Roy; Hofman, Winni F.; Talamini, Lucia M.

    2012-01-01

    Both sleep spindles and slow oscillations have been implicated in sleep-dependent memory consolidation. Whereas spindles occur during both light and deep sleep, slow oscillations are restricted to deep sleep, raising the possibility of greater consolidation-related spindle involvement during deep sleep. We assessed declarative memory retention…

  12. EBG-based transmission lines with slow-wave characteristics and application to miniaturization of microwave components

    NASA Astrophysics Data System (ADS)

    Selga, Jordi; Vélez, Paris; Bonache, Jordi; Martín, Ferran

    2017-01-01

    In this paper, artificial transmission lines implemented by means of electromagnetic band gaps and consisting of a host line periodically loaded with reactive elements (either shunt capacitances or series inductances) are presented. The considered implementations are restricted to microstrip lines either loaded with patch capacitors or with inductive slots (etched in the ground plane). It is demonstrated that these structures are useful for device miniaturization due to the slow-wave effect associated with the presence of the reactive elements. A prototype device example consisting of a microstrip power divider implemented by means of a 35.35 Ω slow-wave impedance inverter with inductive slots is reported. It is shown that, by virtue of the slow-wave effect, the length of the inverter is reduced by a factor of two. The performance of the resulting power divider is comparable to the one based on an ordinary inverter. The possibility to suppress spurious (harmonic) bands by means of the Bragg effect is also discussed.

  13. Neural mechanisms underlying immediate and final action goals in object use reflected by slow wave brain potentials.

    PubMed

    van Schie, Hein T; Bekkering, Harold

    2007-05-07

    Event-related brain potentials were used to study the neural mechanisms underlying goal-directed object use distinguishing between processes supporting immediate and final action goals during action planning and execution. Subjects performed a grasping and transportation task in which actions were cued either with the immediate action goal (the part of the object to grasp) or with the final action goal of the movement (the end position for transportation). Slow wave potentials dissociated between processes supporting immediate and final goals: reaching for the object was accompanied by the development of a parietal-occipital slow wave that peaked in congruency with the grasping event, whereas transport of the object towards the final goal location was found accompanied by slow wave components developing over left frontal regions with a peak towards the movement end. Source localization of cueing differences indicated activation centered around the parieto-occipital sulcus during reaching of the immediate action goal, followed by enhanced activation in the anterior prefrontal cortex during transport to the final action goal. These results suggest the existence of separate neural controllers for immediate and final action goals during the execution of goal-directed actions with objects.

  14. Needleless transcutaneous electroacupuncture improves rectal distension-induced impairment in intestinal motility and slow waves via vagal mechanisms in dogs

    PubMed Central

    Song, Jun; Yin, Jieyun; Chen, Jiande

    2015-01-01

    Aim: This study was designed to compare the effects and mechanisms of transcutaneous electroacupuncture (TEA) on rectal distention (RD)-induced intestinal dysmotility with EA. Methods: six female dogs chronically implanted with a duodenal fistula, a proximal colon fistula and intestinal serosal electrodes were studied. EA and TEA were performed via needles and cutaneous electrodes placed at bilateral ST-36 (Zusanli) acupoints respectively; their effects on postprandial intestinal dysmotility (slow waves, contractions and transit) induced by RD, and autonomic functions were compared. Results: RD at a volume of 140 ml suppressed intestinal contractions; the motility index was reduced with RD (P = 0.001). Both EA and TEA ameliorated the suppressed contractions (P = 0.003 and 0.001) and their effects were comparable. RD reduced the percentage of normal intestinal slow waves (P = 0.002) that was increased with both EA and TEA (P = 0.005 and 0.035). No significant difference was noted between EA and TEA. EA and TEA reduced small bowel transit time (P = 0.001 and 0.007); these prokinetic effects were blocked by atropine. Both EA and TEA increased vagal activity assessed by the spectral analysis of heart rate variability (both P = 0.03). Conclusion: RD inhibits postprandial intestinal motility. Both EA and TEA at ST-36 are able to improve the RD-induced impairment in intestinal contractions, transit and slow waves mediated via the vagal mechanism. Needleless TEA is as effective as EA in ameliorating the intestinal hypomotility. PMID:26064396

  15. Symmetrical serotonin release during asymmetrical slow-wave sleep: implications for the neurochemistry of sleep-waking states

    PubMed Central

    Lapierre, Jennifer L; Kosenko, Peter O; Kodama, Tohru; Peever, John H; Mukhametov, Lev M; Lyamin, Oleg I; Siegel, Jerome M

    2013-01-01

    On land, fur seals predominately display bilaterally synchronized electroencephalogram (EEG) activity during slow-wave sleep (SWS), similar to that observed in all terrestrial mammals. In water, however, fur seals exhibit asymmetric slow-wave sleep (ASWS), resembling the unihemispheric slow-wave sleep of odontocetes (toothed whales). The unique sleeping pattern of fur seals allows us to distinguish neuronal mechanisms mediating EEG changes from those mediating behavioral quiescence. In a prior study we found that cortical acetylcholine release is lateralized during ASWS in the northern fur seal, with greater release in the hemisphere displaying low-voltage (waking) EEG activity, linking acetylcholine release to hemispheric EEG activation (Lapierre et al. 2007). In contrast to acetylcholine, we now report that cortical serotonin release is not lateralized during ASWS. Our data demonstrate that bilaterally symmetric levels of serotonin are compatible with interhemispheric EEG asymmetry in the fur seal. We also find greatly elevated levels during eating and hosing the animals with water, suggesting that serotonin is more closely linked to bilateral variables, such as axial motor and autonomic control, than to the lateralized cortical activation manifested in asymmetrical sleep. PMID:23392683

  16. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials

    PubMed Central

    Zhu, Xuefeng; Li, Kun; Zhang, Peng; Zhu, Jie; Zhang, Jintao; Tian, Chao; Liu, Shengchun

    2016-01-01

    The ability to slow down wave propagation in materials has attracted significant research interest. A successful solution will give rise to manageable enhanced wave–matter interaction, freewheeling phase engineering and spatial compression of wave signals. The existing methods are typically associated with constructing dispersive materials or structures with local resonators, thus resulting in unavoidable distortion of waveforms. Here we show that, with helical-structured acoustic metamaterials, it is now possible to implement dispersion-free sound deceleration. The helical-structured metamaterials present a non-dispersive high effective refractive index that is tunable through adjusting the helicity of structures, while the wavefront revolution plays a dominant role in reducing the group velocity. Finally, we numerically and experimentally demonstrate that the helical-structured metamaterials with designed inhomogeneous unit cells can turn a normally incident plane wave into a self-accelerating beam on the prescribed parabolic trajectory. The helical-structured metamaterials will have profound impact to applications in explorations of slow wave physics. PMID:27198887

  17. Fast and Slow Mode Solitary Waves in a Five Component Plasma

    NASA Astrophysics Data System (ADS)

    Sebastian, Sijo; Michael, Manesh; Varghese, Anu; Sreekala, G.; Venugopal, Chandu

    2016-07-01

    We have investigated fast and slow mode solitary profiles in a five component plasma consisting of positively and negatively charged pair ions, hydrogen ions and hotter and colder electrons. Of these, the heavier ions and colder photo-electrons are of cometary origin while the other components are of solar origin; the electrons being described by kappa distributions. The Zakharov-Kuznetzov (ZK) equation is derived and solutions for fast and slow mode solitary structures are plotted for parameters relevant to that of comet Halley. From the figures, it is seen that the presence of hydrogen ion determines the polarity of fast and slow mode solitary structures. Also different pair ions like He, C and O have significant effect on the width of the fast and slow mode solitary structures.

  18. EVIDENCE OF THERMAL CONDUCTION SUPPRESSION IN A SOLAR FLARING LOOP BY CORONAL SEISMOLOGY OF SLOW-MODE WAVES

    SciTech Connect

    Wang, Tongjiang; Ofman, Leon; Provornikova, Elena; Sun, Xudong; Davila, Joseph M.

    2015-09-20

    Analysis of a longitudinal wave event observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory is presented. A time sequence of 131 Å images reveals that a C-class flare occurred at one footpoint of a large loop and triggered an intensity disturbance (enhancement) propagating along it. The spatial features and temporal evolution suggest that a fundamental standing slow-mode wave could be set up quickly after meeting of two initial disturbances from the opposite footpoints. The oscillations have a period of ∼12 minutes and a decay time of ∼9 minutes. The measured phase speed of 500 ± 50 km s{sup −1} matches the sound speed in the heated loop of ∼10 MK, confirming that the observed waves are of slow mode. We derive the time-dependent temperature and electron density wave signals from six AIA extreme-ultraviolet channels, and find that they are nearly in phase. The measured polytropic index from the temperature and density perturbations is 1.64 ± 0.08 close to the adiabatic index of 5/3 for an ideal monatomic gas. The interpretation based on a 1D linear MHD model suggests that the thermal conductivity is suppressed by at least a factor of 3 in the hot flare loop at 9 MK and above. The viscosity coefficient is determined by coronal seismology from the observed wave when only considering the compressive viscosity dissipation. We find that to interpret the rapid wave damping, the classical compressive viscosity coefficient needs to be enhanced by a factor of 15 as the upper limit.

  19. Novel high-gain, improved-bandwidth, finned-ladder V-band Traveling-Wave Tube slow-wave circuit design

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Wilson, Jeffrey D.

    1994-01-01

    The V-band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for inter-satellite communications. As a first effort to develop a high-efficiency V-band Traveling-Wave Tube (TWT), variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite these advantages, however, low bandwidth and high voltage requirements have, until now, prevented its acceptance outside the laboratory. In this paper, the three-dimensional electrodynamic simulation code MAFIA (solution of MAxwell's Equation by the Finite-Integration-Algorithm) is used to investigate methods of increasing the bandwidth and lowering the operating voltage of the ring-plane circuit. Calculations of frequency-phase dispersion, beam on-axis interaction impedance, attenuation and small-signal gain per wavelength were performed for various geometric variations and loading distributions of the ring-plane TWT slow-wave circuit. Based on the results of the variations, a circuit termed the finned-ladder TWT slow-wave circuit was designed and is compared here to the scaled prototype ring-plane and a conventional ferruled coupled-cavity TWT circuit over the V-band frequency range. The simulation results indicate that this circuit has a much higher gain, significantly wider bandwidth, and a much lower voltage requirement than the scaled ring-plane prototype circuit, while retaining its excellent thermal dissipation properties. The finned-ladder circuit has a much larger small-signal gain per wavelength than the ferruled coupled-cavity circuit, but with a moderate sacrifice in bandwidth.

  20. SLOW PATCHY EXTREME-ULTRAVIOLET PROPAGATING FRONTS ASSOCIATED WITH FAST CORONAL MAGNETO-ACOUSTIC WAVES IN SOLAR ERUPTIONS

    SciTech Connect

    Guo, Y.; Ding, M. D.; Chen, P. F.

    2015-08-15

    Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUV propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.

  1. Slow Patchy Extreme-ultraviolet Propagating Fronts Associated with Fast Coronal Magneto-acoustic Waves in Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Ding, M. D.; Chen, P. F.

    2015-08-01

    Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUV propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.

  2. Frontal slow-wave activity as a predictor of negative symptoms, cognition and functional capacity in schizophrenia

    PubMed Central

    Chen, Yu-Han; Stone-Howell, Breannan; Edgar, J. Christopher; Huang, Mingxiong; Wootton, Cassandra; Hunter, Michael A.; Lu, Brett Y.; Sadek, Joseph R.; Miller, Gregory A.; Cañive, José M.

    2016-01-01

    Background Increased temporal and frontal slow-wave delta (1–4 Hz) and theta (4–7 Hz) activities are the most consistent resting-state neural abnormalities reported in schizophrenia. The frontal lobe is associated with negative symptoms and cognitive abilities such as attention, with negative symptoms and impaired attention associated with poor functional capacity. Aims To establish whether frontal dysfunction, as indexed by slowing, would be associated with functional impairments. Method Eyes-closed magnetoencephalography data were collected in 41 participants with schizophrenia and 37 healthy controls, and frequency-domain source imaging localised delta and theta activity. Results Elevated delta and theta activity in right frontal and right temporoparietal regions was observed in the schizophrenia v. control group. In schizophrenia, right-frontal delta activity was uniquely associated with negative but not positive symptoms. In the full sample, increased right-frontal delta activity predicted poorer attention and functional capacity. Conclusions Our findings suggest that treatment-associated decreases in slow-wave activity could be accompanied by improved functional outcome and thus better prognosis. PMID:26206861

  3. Modulation of slow waves by transmural nerve stimulation of smooth muscle tissue isolated from the corpus of the guinea-pig stomach.

    PubMed

    Tanaka, Chiharu; Domae, Kazumasa; Hashitani, Hikaru; Suzuki, Hikaru

    2009-06-01

    Modulation of slow waves in response to transmural nerve stimulation (TNS) was investigated in smooth muscle preparations isolated from the corpus of the guinea-pig stomach. Single TNS evoked an inhibitory junction potential (i.j.p.) and enhanced the amplitude of the following slow wave. Effects of atropine, N(omega)-nitro-L-arginine (L-NA) and apamin revealed that corpus smooth muscle was innervated by cholinergic excitatory, nitrergic inhibitory and apamin-sensitive inhibitory nerves. In preparations isolated from the upper corpus which generated slow waves of 5-15 mV amplitude, a 1 min train of TNS (0.5 or 1 Hz frequency) increased the amplitude, with further enhancement by L-NA, but inhibition by atropine. In the lower corpus, larger amplitude (20-30 mV) slow waves were generated but these were not altered by a TNS train. However, application of L-NA and neostigmine, or often L-NA alone, resulted in increased frequency and decreased amplitude of slow waves during TNS, with an associated depolarization of the membrane. These changes were inhibited by atropine. In the presence of atropine, TNS reduced slow wave amplitude in an L-NA-sensitive manner. Acetylcholine (ACh) at 1 nM increased the amplitude of slow waves in the upper corpus. In the lower corpus, while low concentrations of ACh (<10 nM) did not increase the frequency and decrease the amplitude of slow waves with an associated depolarization of the membrane, this occurred at high concentrations of ACh (>10 nM). Application of the NO donor, sodium nitroprusside (SNP, 10 nM-1 microM), reduced the amplitude of slow waves. The changes in amplitude of slow waves elicited by ACh or SNP were not associated with a significant change in frequency. These results indicate that in the corpus circular smooth muscle, neural modulation of slow waves appeared to be exerted mainly on the amplitude, but not on the frequency.

  4. Dispersion retrieval from multi-level ultra-deep reactive-ion-etched microstructures for terahertz slow-wave circuits

    SciTech Connect

    Baik, Chan-Wook Young Ahn, Ho; Kim, Yongsung; Lee, Jooho; Hong, Seogwoo; Hee Choi, Jun; Kim, Sunil; Hun Lee, Sang; Min Kim, Jong; Hwang, Sungwoo; Yeon Jun, So; Yu, SeGi; Lawrence Ives, R.

    2014-01-13

    A multi-level microstructure is proposed for terahertz slow-wave circuits, with dispersion relation retrieved by scattering parameter measurements. The measured return loss shows strong resonances above the cutoff with negligible phase shifts compared with finite element analysis. Splitting the circuit into multi levels enables a low aspect ratio configuration that alleviates the loading effect of deep-reactive-ion etching on silicon wafers. This makes it easier to achieve flat-etched bottom and smooth sidewall profiles. The dispersion retrieved from the measurement, therefore, corresponds well to the theoretical estimation. The result provides a straightforward way to the precise determination of dispersions in terahertz vacuum electronics.

  5. SMALL-SCALE PRESSURE-BALANCED STRUCTURES DRIVEN BY OBLIQUE SLOW MODE WAVES MEASURED IN THE SOLAR WIND

    SciTech Connect

    Yao Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.

    2013-09-01

    Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B{sub 0}) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B{sub 0}(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P{sub th} and the magnetic pressure P{sub B}, distributing against the temporal scale and the angle {theta}{sub xB} between B{sub 0}(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of {theta}{sub xB}. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B{sub 0}(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T{sub Parallel-To} derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.

  6. Roles of convective heating and boundary-layer moisture asymmetry in slowing down the convectively coupled Kelvin waves

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Li, Tim

    2016-06-01

    Mechanisms for an in-phase relationship between convection and low-level zonal wind and the slow propagation of the convectively coupled Kelvin wave (CCKW) are investigated by analyzing satellite-based brightness temperature and reanalysis data and by constructing a simple theoretical model. Observational data analysis reveals an eastward shift of the low-level convergence and moisture relative to the CCKW convective center. The composite vertical structures show that the low-level convergence lies in the planetary boundary layer (PBL) (below 800 hPa), and is induced by the pressure trough above the top of PBL through an Ekman-pumping process. A traditional view of a slower eastward propagation speed compared to the dry Kelvin waves is attributed to the reduction of atmospheric static stability in mid-troposphere due to the convective heating effect. The authors' quantitative assessment of the heating effect shows that this effect alone cannot explain the observed CCKW phase speed. We hypothesize that additional slowing process arises from the effect of zonally asymmetric PBL moisture. A simple theoretical model is constructed to understand the relative role of the heating induced effective static stability effect and the PBL moisture effect. The result demonstrates the important role of the both effects. Thus, PBL-free atmosphere interaction is important in explaining the observed structure and propagation of CCKW.

  7. Electrical Slow Waves in the Mouse Oviduct Are Dependent upon a Calcium Activated Chloride Conductance Encoded by Tmem16a1

    PubMed Central

    Dixon, Rose Ellen; Hennig, Grant W.; Baker, Salah A.; Britton, Fiona C.; Harfe, Brian D.; Rock, Jason R.; Sanders, Kenton M.; Ward, Sean M.

    2011-01-01

    ABSTRACT Myosalpinx contractions are critical for oocyte transport along the oviduct. A specialized population of pacemaker cells—oviduct interstitial cells of Cajal—generate slow waves, the electrical events underlying myosalpinx contractions. The ionic basis of oviduct pacemaker activity is unknown. We examined the role of a new class of Ca2+-activated Cl− channels (CaCCs)—anoctamin 1, encoded by Tmem16a—in oviduct slow wave generation. RT-PCR revealed the transcriptional expression of Tmem16a-encoded CaCCs in the myosalpinx. Intracellular microelectrode recordings were performed in the presence of two pharmacologically distinct Cl− channel antagonists, anthracene-9-carboxylic acid and niflumic acid. Both of these inhibitors caused membrane hyperpolarization, reduced the duration of slow waves, and ultimately inhibited pacemaker activity. Niflumic acid also inhibited propagating calcium waves within the myosalpinx. Slow waves were present at birth in wild-type and heterozygous oviducts but failed to develop by birth in mice homozygous for a null allele of Tmem16a (Tmem16atm1Bdh/tm1Bdh). These data suggest that Tmem16a-encoded CaCCs contribute to membrane potential and are responsible for the upstroke and plateau phases of oviduct slow waves. PMID:21976594

  8. Long-term history and immediate preceding state affect EEG slow wave characteristics at NREM sleep onset in C57BL/6 mice.

    PubMed

    Cui, N; Mckillop, L E; Fisher, S P; Oliver, P L; Vyazovskiy, V V

    2014-01-01

    The dynamics of cortical activity across the 24-h day and at vigilance state transitions is regulated by an interaction between global subcortical neuromodulatory influences and local shifts in network synchrony and excitability. To address the role of long-term and immediate preceding history in local and global cortical dynamics, we investigated cortical EEG recorded from both frontal and occipital regions during an undisturbed 24-h recording in mice. As expected, at the beginning of the light period, under physiologically increased sleep pressure, EEG slow waves were more frequent and had higher amplitude and slopes, compared to the rest of the light period. Within discrete NREM sleep episodes, the incidence, amplitude and slopes of individual slow waves increased progressively after episode onset in both derivations by approximately 10-30%. Interestingly, at the beginning of NREM sleep episodes slow waves in the frontal and occipital derivations frequently occurred in isolation, as quantified by longer latencies between consecutive slow waves in the two regions. Notably, slow waves during the initial period of NREM sleep following REM sleep episodes were significantly less frequent, lower in amplitude and exhibited shallower slopes, compared to those that occurred in NREM episodes after prolonged waking. Moreover, the latencies between consecutive frontal and occipital NREM slow waves were substantially longer when they occurred directly after REM sleep compared to following consolidated wakefulness. Overall these data reveal a complex picture, where both time of day and preceding state contribute to the characteristics and dynamics of slow waves within NREM sleep. These findings suggest that NREM sleep initiates in a more "local" fashion when it occurs following REM sleep episodes as opposed to sustained waking bouts. While the mechanisms and functional significance of such a re-setting of brain state after individual REM sleep episodes remains to be

  9. Slow activity transients’ in infant rat visual cortex: a spreading synchronous oscillation patterned by retinal waves

    PubMed Central

    Colonnese, Matthew T.; Khazipov, Rustem

    2010-01-01

    A primary feature of the preterm infant electroencephalogram is the presence of large infra-slow potentials containing rapid oscillations called Slow Activity Transients (SATs). Such activity has not been described in animal models, and their generative mechanisms are unknown. Here we use direct-current and multi-site extracellular, as well as whole-cell, recording in vivo to demonstrate the existence of regularly repeating SATs in the visual cortex of infant rats before eye-opening. Present only in absence of anesthesia, SATs at post-natal day 10-11 were identifiable as a separate group of long-duration (∼10s) events that consisted of large (>1 mV) negative local-field potentials produced by the summation of multiple bursts of rapid oscillatory activity (15-30 Hz). SATs synchronized the vast majority of neuronal activity (87%) in the visual cortex before eye-opening. Enucleation eliminated SATs, and their duration, inter-event interval and sub-burst structure matched those of phase III retinal waves recorded in vitro. Retinal waves, however, lacked rapid oscillations, suggesting they arise centrally. Multi-electrode recordings showed that SATs spread horizontally in cortex and synchronize activity at co-active locales via the rapid oscillations. SATs were clearly different from ongoing cortical activity, which was observable as a separate class of short bursts from P9. Together our data suggest that in vivo, early cortical activity is largely determined by peripheral inputs--retinal waves in visual cortex--which provide excitatory input, and by thalamocortical circuitry, which transforms this input to beta oscillations. We propose that the synchronous oscillations of SATs participate in the formation of visual circuitry. PMID:20335468

  10. Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations.

    PubMed

    Li, Juntao; O'Faolain, Liam; Rey, Isabella H; Krauss, Thomas F

    2011-02-28

    We demonstrate continuous wave four-wave mixing in silicon photonic crystal waveguides of 396 μm length with a group index of ng=30. The highest observed conversion efficiency is -24 dB for 90 mW coupled input pump power. The key question we address is whether the predicted fourth power dependence of the conversion efficiency on the slowdown factor (η≈S4) can indeed be observed in this system, and how the conversion efficiency depends on device length in the presence of propagation losses. We find that the expected dependencies hold as long as both realistic losses and the variation of mode shape with slowdown factor are taken into account. Having achieved a good agreement between a simple analytical model and the experiment, we also predict structures that can achieve the same conversion efficiency as already observed in nanowires for the same input power, yet for a device length that is 50 times shorter.

  11. Theoretical, Experimental, and Computational Evaluation of a Tunnel Ladder Slow-Wave Structure

    NASA Technical Reports Server (NTRS)

    Wallett, Thomas M.; Qureshi, A. Haq

    1994-01-01

    The dispersion characteristics of a tunnel ladder circuit in a ridged wave guide were experimentally measured and determined by computer simulation using the electromagnetic code MAFIA. To qualitatively estimate interaction impedances, resonance frequency shifts due to a perturbing dielectric rod along the axis were also measured indicating the axial electric field strength. A theoretical modeling of the electric and magnetic fields in the tunnel area was also done.

  12. Factors modifying the frequency of spontaneous activity in gastric muscle.

    PubMed

    Suzuki, H; Kito, Y; Hashitani, H; Nakamura, E

    2006-11-01

    The cellular mechanisms that determine the frequency of spontaneous activity were investigated in gastric smooth muscles isolated from the guinea-pig. Intact antral muscle generated slow waves periodically; the interval between slow waves was decreased exponentially by depolarization of the membrane to reach a steady interval value of about 7 s. Isolated circular muscle bundles produced slow potentials spontaneously or were evoked by depolarizing current stimuli. Evoked slow potentials appeared in an all-or-none fashion, with a refractory period of approximately 2-3 s. Low concentrations of chemicals that modify intracellular signalling revealed that the refractory period was causally related to the activity of protein kinase C (PKC). Activation of PKC increased and inhibition of PKC activity decreased the frequency of slow potentials. Chemicals that inhibit mitochondrial functions reduced the frequency of slow waves. Inhibition of internal Ca(2+)-store activity decreased the amplitude, but not the frequency of slow potentials, suggesting that the amplitude is causally related to Ca(2+) release from the internal store. The results suggest that changes in [Ca(2+)](i) caused by the activity of mitochondria may play a key role in determining the frequency of spontaneous activity in gastric pacemaker cells.

  13. Ion thermal effects on slow mode solitary waves in plasmas with two adiabatic ion species

    SciTech Connect

    Nsengiyumva, F. Hellberg, M. A. Mace, R. L.

    2015-09-15

    Using both the Sagdeev and Korteweg-de Vries (KdV) methods, ion thermal effects on slow mode ion acoustic solitons and double layers are investigated in a plasma with two adiabatic positive ion species. It is found that reducing the gap between the two ion thermal speeds by increasing the relative temperature of the cool ions increases the typical soliton/double layer speeds for all values of the ion-ion density ratio and reduces the range in the density ratio that supports double layers. The effect of increasing the relative cool ion temperature on the soliton/double layer amplitudes depends on the relative densities. For lower values of the ion density ratio, an increase in cool ion temperature leads to a significant decrease in soliton/double layer amplitude, so one may find that solitons of all permissible speeds lie within the range of KdV theory.

  14. Sleep, Memory, and Aging: The Link Between Slow-Wave Sleep and Episodic Memory Changes from Younger to Older Adults

    PubMed Central

    Scullin, Michael K.

    2012-01-01

    In younger adults, recently learned episodic memories are reactivated and consolidated during slow-wave sleep (SWS). Interestingly, SWS declines across the lifespan but little research has examined whether sleep-dependent memory consolidation occurs in older adults. In the present study, younger adults and healthy older adults encoded word pairs in the morning or evening and then returned following a sleep or no-sleep interval. Sleep stage scoring was obtained using a home sleep-stage monitoring system. In the younger adult group, there was a positive correlation between word retention and amount of SWS. In contrast, the older adults demonstrated no significant positive correlations, but one significant negative correlation, between memory and SWS. These findings suggest that the link between episodic memory and SWS that is typically observed in younger adults may be weakened or otherwise changed in the healthy elderly. PMID:22708533

  15. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices

    NASA Astrophysics Data System (ADS)

    Pusch, Andreas; de Luca, Andrea; Oh, Sang S.; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C.; Hong, Minghui; Maier, Stefan A.; Udrea, Florin; Hopper, Richard H.; Hess, Ortwin

    2015-12-01

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor.

  16. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices.

    PubMed

    Pusch, Andreas; De Luca, Andrea; Oh, Sang S; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C; Hong, Minghui; Maier, Stefan A; Udrea, Florin; Hopper, Richard H; Hess, Ortwin

    2015-12-07

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff's law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO(2) absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO(2) gas sensor.

  17. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices

    PubMed Central

    Pusch, Andreas; De Luca, Andrea; Oh, Sang S.; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C.; Hong, Minghui; Maier, Stefan A.; Udrea, Florin; Hopper, Richard H.; Hess, Ortwin

    2015-01-01

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor. PMID:26639902

  18. Designing slow-light photonic crystal waveguides for four-wave mixing applications.

    PubMed

    Kanakis, Panagiotis; Kamalakis, Thomas; Sphicopoulos, Thomas

    2014-02-15

    We discuss the optimization of photonic crystal waveguides for four-wave mixing (FWM) applications, taking into account linear loss and free-carrier effects. Suitable figures of merit are introduced in order to guide us through the choice of practical, high-efficiency designs requiring relatively low pump power and small waveguide length. In order to realistically perform the waveguide optimization process, we propose and validate an approximate expression for the FWM efficiency, which significantly alleviates our numerical calculations. Promising waveguide designs are identified by means of an exhaustive search, altering some structural parameters. Our approach aims to optimize the waveguides for nonlinear signal-processing applications based on the FWM.

  19. Heightened Delta Power during Slow-Wave-Sleep in Patients with Rett Syndrome Associated with Poor Sleep Efficiency

    PubMed Central

    Ammanuel, Simon; Chan, Wesley C.; Adler, Daniel A.; Lakshamanan, Balaji M.; Gupta, Siddharth S.; Ewen, Joshua B.; Johnston, Michael V.; Marcus, Carole L.; Naidu, Sakkubai; Kadam, Shilpa D.

    2015-01-01

    Sleep problems are commonly reported in Rett syndrome (RTT); however the electroencephalographic (EEG) biomarkers underlying sleep dysfunction are poorly understood. The aim of this study was to analyze the temporal evolution of quantitative EEG (qEEG) biomarkers in overnight EEGs recorded from girls (2–9 yrs. old) diagnosed with RTT using a non-traditional automated protocol. In this study, EEG spectral analysis identified high delta power cycles representing slow wave sleep (SWS) in 8–9h overnight sleep EEGs from the frontal, central and occipital leads (AP axis), comparing age-matched girls with and without RTT. Automated algorithms quantitated the area under the curve (AUC) within identified SWS cycles for each spectral frequency wave form. Both age-matched RTT and control EEGs showed similar increasing trends for recorded delta wave power in the EEG leads along the antero-posterior (AP). RTT EEGs had significantly fewer numbers of SWS sleep cycles; therefore, the overall time spent in SWS was also significantly lower in RTT. In contrast, the AUC for delta power within each SWS cycle was significantly heightened in RTT and remained heightened over consecutive cycles unlike control EEGs that showed an overnight decrement of delta power in consecutive cycles. Gamma wave power associated with these SWS cycles was similar to controls. However, the negative correlation of gamma power with age (r = -.59; p<0.01) detected in controls (2–5 yrs. vs. 6–9 yrs.) was lost in RTT. Poor % SWS (i.e., time spent in SWS overnight) in RTT was also driven by the younger age-group. Incidence of seizures in RTT was associated with significantly lower number of SWS cycles. Therefore, qEEG biomarkers of SWS in RTT evolved temporally and correlated significantly with clinical severity. PMID:26444000

  20. Heightened Delta Power during Slow-Wave-Sleep in Patients with Rett Syndrome Associated with Poor Sleep Efficiency.

    PubMed

    Ammanuel, Simon; Chan, Wesley C; Adler, Daniel A; Lakshamanan, Balaji M; Gupta, Siddharth S; Ewen, Joshua B; Johnston, Michael V; Marcus, Carole L; Naidu, Sakkubai; Kadam, Shilpa D

    2015-01-01

    Sleep problems are commonly reported in Rett syndrome (RTT); however the electroencephalographic (EEG) biomarkers underlying sleep dysfunction are poorly understood. The aim of this study was to analyze the temporal evolution of quantitative EEG (qEEG) biomarkers in overnight EEGs recorded from girls (2-9 yrs. old) diagnosed with RTT using a non-traditional automated protocol. In this study, EEG spectral analysis identified high delta power cycles representing slow wave sleep (SWS) in 8-9h overnight sleep EEGs from the frontal, central and occipital leads (AP axis), comparing age-matched girls with and without RTT. Automated algorithms quantitated the area under the curve (AUC) within identified SWS cycles for each spectral frequency wave form. Both age-matched RTT and control EEGs showed similar increasing trends for recorded delta wave power in the EEG leads along the antero-posterior (AP). RTT EEGs had significantly fewer numbers of SWS sleep cycles; therefore, the overall time spent in SWS was also significantly lower in RTT. In contrast, the AUC for delta power within each SWS cycle was significantly heightened in RTT and remained heightened over consecutive cycles unlike control EEGs that showed an overnight decrement of delta power in consecutive cycles. Gamma wave power associated with these SWS cycles was similar to controls. However, the negative correlation of gamma power with age (r = -.59; p<0.01) detected in controls (2-5 yrs. vs. 6-9 yrs.) was lost in RTT. Poor % SWS (i.e., time spent in SWS overnight) in RTT was also driven by the younger age-group. Incidence of seizures in RTT was associated with significantly lower number of SWS cycles. Therefore, qEEG biomarkers of SWS in RTT evolved temporally and correlated significantly with clinical severity.

  1. Mortality salience modulates cortical responses to painful somatosensory stimulation: Evidence from slow wave and delta band activity.

    PubMed

    Valentini, Elia; Koch, Katharina; Nicolardi, Valentina; Aglioti, Salvatore Maria

    2015-10-15

    Social psychology studies show that awareness of one's eventual death profoundly influences human cognition and behaviour by inducing defensive reactions against end-of-life-related anxiety. Much less is known about the impact of reminders of mortality on brain activity. Here we tested whether reminders of mortality can induce a modulation of the slow electroencephalographic activity triggered by somatosensory nociceptive or auditory threatening stimulation and if this modulation is related to mood and anxiety as well as personality traits. We found a specific slow wave (SW) modulation only for nociceptive stimulation and only following mortality salience induction (compared to reminders of an important failed exam). The enhancement of SW negativity at the scalp vertex was associated with increased state anxiety and negative mood, whereas higher self-esteem was associated with reduced SW amplitude. In addition, mortality salience was linked to an increased amplitude of frontal delta band, which was correlated also with increased positive mood and higher self-esteem. The results indicate that SW and delta spectral activity may represent both proximal and distal defences associated with reminders of death and that neurophysiological correlates of somatosensory representation of painful and threatening stimuli may be useful for existential neuroscience studies.

  2. Regional differences in cortical electroencephalogram (EEG) slow wave activity and interhemispheric EEG asymmetry in the fur seal.

    PubMed

    Lyamin, Oleg I; Pavlova, Ivetta F; Kosenko, Peter O; Mukhametov, Lev M; Siegel, Jerome M

    2012-12-01

    Slow wave sleep (SWS) in the northern fur seal (Callorhinus ursinus) is characterized by a highly expressed interhemispheric electroencephalogram (EEG) asymmetry, called 'unihemispheric' or 'asymmetrical' SWS. The aim of this study was to examine the regional differences in slow wave activity (SWA; power in the range of 1.2-4.0 Hz) within one hemisphere and differences in the degree of interhemispheric EEG asymmetry within this species. Three seals were implanted with 10 EEG electrodes, positioned bilaterally (five in each hemisphere) over the frontal, occipital and parietal cortex. The expression of interhemispheric SWA asymmetry between symmetrical monopolar recordings was estimated based on the asymmetry index [AI = (L-R)/(L+R), where L and R are the power in the left and right hemispheres, respectively]. Our findings indicate an anterior-posterior gradient in SWA during asymmetrical SWS in fur seals, which is opposite to that described for other mammals, including humans, with a larger SWA recorded in the parietal and occipital cortex. Interhemispheric EEG asymmetry in fur seals was recorded across the entire dorsal cerebral cortex, including sensory (visual and somatosensory), motor and associative (parietal or suprasylvian) cortical areas. The expression of asymmetry was greatest in occipital-lateral and parietal derivations and smallest in frontal-medial derivations. Regardless of regional differences in SWA, the majority (90%) of SWS episodes with interhemispheric EEG asymmetry meet the criteria for 'unihemispheric SWS' (one hemisphere is asleep while the other is awake). The remaining episodes can be described as episodes of bilateral SWS with a local activation in one cerebral hemisphere.

  3. Large Scale Cortical Functional Networks Associated with Slow-Wave and Spindle-Burst-Related Spontaneous Activity

    PubMed Central

    McVea, David A.; Murphy, Timothy H.; Mohajerani, Majid H.

    2016-01-01

    Cortical sensory systems are active with rich patterns of activity during sleep and under light anesthesia. Remarkably, this activity shares many characteristics with those present when the awake brain responds to sensory stimuli. We review two specific forms of such activity: slow-wave activity (SWA) in the adult brain and spindle bursts in developing brain. SWA is composed of 0.5–4 Hz resting potential fluctuations. Although these fluctuations synchronize wide regions of cortex, recent large-scale imaging has shown spatial details of their distribution that reflect underlying cortical structural projections and networks. These networks are regulated, as prior awake experiences alter both the spatial and temporal features of SWA in subsequent sleep. Activity patterns of the immature brain, however, are very different from those of the adult. SWA is absent, and the dominant pattern is spindle bursts, intermittent high frequency oscillations superimposed on slower depolarizations within sensory cortices. These bursts are driven by intrinsic brain activity, which act to generate peripheral inputs, for example via limb twitches. They are present within developing sensory cortex before they are mature enough to exhibit directed movements and respond to external stimuli. Like in the adult, these patterns resemble those evoked by sensory stimulation when awake. It is suggested that spindle-burst activity is generated purposefully by the developing nervous system as a proxy for true external stimuli. While the sleep-related functions of both slow-wave and spindle-burst activity may not be entirely clear, they reflect robust regulated phenomena which can engage select wide-spread cortical circuits. These circuits are similar to those activated during sensory processing and volitional events. We highlight these two patterns of brain activity because both are prominent and well-studied forms of spontaneous activity that will yield valuable insights into brain function in

  4. Effects of Small-World Rewiring Probability and Noisy Synaptic Conductivity on Slow Waves: Cortical Network.

    PubMed

    Tekin, Ramazan; Tagluk, Mehmet Emin

    2017-03-01

    Physiological rhythms play a critical role in the functional development of living beings. Many biological functions are executed with an interaction of rhythms produced by internal characteristics of scores of cells. While synchronized oscillations may be associated with normal brain functions, anomalies in these oscillations may cause or relate the emergence of some neurological or neuropsychological pathologies. This study was designed to investigate the effects of topological structure and synaptic conductivity noise on the spatial synchronization and temporal rhythmicity of the waves generated by cells in the network. Because of holding the ability of clustering and randomizing with change of parameters, small-world (SW) network topology was chosen. The oscillatory activity of network was tried out by manipulating an insulated SW, cortical network model whose morphology is very close to real world. According to the obtained results, it was observed that at the optimal probabilistic rates of conductivity noise and rewiring of SW, powerful synchronized oscillatory small waves are generated in relation to the internal dynamics of cells, which are in line with the network's input. These two parameters were observed to be quite effective on the excitation-inhibition balance of the network. Accordingly, it may be suggested that the topological dynamics of SW and noisy synaptic conductivity may be associated with the normal and abnormal development of neurobiological structure.

  5. Propagating slow magneto-acoustic waves in coronal loops as seen from trace and cds

    NASA Astrophysics Data System (ADS)

    Prasad Samayamanthula, Krishna; Banerjee, Dipankar; Gupta, Girjesh R.

    Propagating intensity disturbances along various Active region loop structures with projected speeds less than and close to acoustic speeds, now commonly called magneto-acoustic waves, are proposed to be photospheric p-modes leaking into solar atmosphere. Though there is a wide range of periodicities observed, the 3 min. and 5 min. periodicities, which are character-istic of sunspot umbral and penumbral regions lifted their importance of study. Simultaneous observations of these waves at different heights from photosphere, through transition region to corona will give us direct evidence for their involvement and contribution to coronal heating. AR 10457 had been extensively studied for the presence of such propagating oscillations, when it is on-disk, on 11th September 2003, using the CDS/SoHO, TRACE, and MDI data of JOP 165 campaign. Different periodicities are found and the resonance feature in the periodicity is observed in few locations, but the speeds are found to be quite low(< 20 km/s). Comparison will be made between sunspot and non-sunspot linked open structures. There is also a signature of decelerating propagation in a structure. Significance of the results in the context of coronal heating and future observations with SDO will be discussed.

  6. Characterization of K-Complexes and Slow Wave Activity in a Neural Mass Model

    PubMed Central

    Ngo, Hong-Viet Victor; Claussen, Jens Christian; Martinetz, Thomas

    2014-01-01

    NREM sleep is characterized by two hallmarks, namely K-complexes (KCs) during sleep stage N2 and cortical slow oscillations (SOs) during sleep stage N3. While the underlying dynamics on the neuronal level is well known and can be easily measured, the resulting behavior on the macroscopic population level remains unclear. On the basis of an extended neural mass model of the cortex, we suggest a new interpretation of the mechanisms responsible for the generation of KCs and SOs. As the cortex transitions from wake to deep sleep, in our model it approaches an oscillatory regime via a Hopf bifurcation. Importantly, there is a canard phenomenon arising from a homoclinic bifurcation, whose orbit determines the shape of large amplitude SOs. A KC corresponds to a single excursion along the homoclinic orbit, while SOs are noise-driven oscillations around a stable focus. The model generates both time series and spectra that strikingly resemble real electroencephalogram data and points out possible differences between the different stages of natural sleep. PMID:25392991

  7. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles.

    PubMed

    Hwang, Sung Jin; Blair, Peter J A; Britton, Fiona C; O'Driscoll, Kate E; Hennig, Grant; Bayguinov, Yulia R; Rock, Jason R; Harfe, Brian D; Sanders, Kenton M; Ward, Sean M

    2009-10-15

    Interstitial cells of Cajal (ICC) generate pacemaker activity (slow waves) in gastrointestinal (GI) smooth muscles, but the mechanism(s) of pacemaker activity are controversial. Several conductances, such as Ca(2+)-activated Cl() channels (CaCC) and non-selective cation channels (NSCC) have been suggested to be involved in slow wave depolarization. We investigated the expression and function of a new class of CaCC, anoctamin 1 (ANO1), encoded by Tmem16a, which was discovered to be highly expressed in ICC in a microarray screen. GI muscles express splice variants of the Tmem16a transcript in addition to other paralogues of the Tmem16a family. ANO1 protein is expressed abundantly and specifically in ICC in all regions of the murine, non-human primate (Macaca fascicularis) and human GI tracts. CaCC blocking drugs, niflumic acid and 4,4-diisothiocyano-2,2-stillbene-disulfonic acid (DIDS) reduced the frequency and blocked slow waves in murine, primate, human small intestine and stomach in a concentration-dependent manner. Unitary potentials, small stochastic membrane depolarizations thought to underlie slow waves, were insensitive to CaCC blockers. Slow waves failed to develop by birth in mice homozygous for a null allele of Tmem16a (Tmem16a(tm1Bdh)(/tm1Bdh)) and did not develop subsequent to birth in organ culture, as in wildtype and heterozygous muscles. Loss of function of ANO1 did not inhibit the development of ICC networks that appeared structurally normal as indicated by Kit antibodies. These data demonstrate the fundamental role of ANO1 in the generation of slow waves in GI ICC.

  8. Nonlinear waves in earth crust faults: application to regular and slow earthquakes

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum; Bambakidis, Gust

    2015-04-01

    The genesis, development and cessation of regular earthquakes continue to be major problems of modern geophysics. How are earthquakes initiated? What factors determine the rapture velocity, slip velocity, rise time and geometry of rupture? How do accumulated stresses relax after the main shock? These and other questions still need to be answered. In addition, slow slip events have attracted much attention as an additional source for monitoring fault dynamics. Recently discovered phenomena such as deep non-volcanic tremor (NVT), low frequency earthquakes (LFE), very low frequency earthquakes (VLF), and episodic tremor and slip (ETS) have enhanced and complemented our knowledge of fault dynamic. At the same time, these phenomena give rise to new questions about their genesis, properties and relation to regular earthquakes. We have developed a model of macroscopic dry friction which efficiently describes laboratory frictional experiments [1], basic properties of regular earthquakes including post-seismic stress relaxation [3], the occurrence of ambient and triggered NVT [4], and ETS events [5, 6]. Here we will discuss the basics of the model and its geophysical applications. References [1] Gershenzon N.I. & G. Bambakidis (2013) Tribology International, 61, 11-18, http://dx.doi.org/10.1016/j.triboint.2012.11.025 [2] Gershenzon, N.I., G. Bambakidis and T. Skinner (2014) Lubricants 2014, 2, 1-x manuscripts; doi:10.3390/lubricants20x000x; arXiv:1411.1030v2 [3] Gershenzon N.I., Bykov V. G. and Bambakidis G., (2009) Physical Review E 79, 056601 [4] Gershenzon, N. I, G. Bambakidis, (2014a), Bull. Seismol. Soc. Am., 104, 4, doi: 10.1785/0120130234 [5] Gershenzon, N. I.,G. Bambakidis, E. Hauser, A. Ghosh, and K. C. Creager (2011), Geophys. Res. Lett., 38, L01309, doi:10.1029/2010GL045225. [6] Gershenzon, N.I. and G. Bambakidis (2014) Bull. Seismol. Soc. Am., (in press); arXiv:1411.1020

  9. Alfven Wave Evolution in an Interaction System of the Fast and Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Tsubouchi, K.

    2007-12-01

    Large-amplitude Alfven waves (AWs) are often embedded in a high-speed stream of the solar wind. As the high- speed streams overtake the low-speed streams ahead, corotating interaction regions (CIRs) are produced in low heliographic latitudes. In this study, the nonlinear evolution of AWs swept into CIRs is numerically investigated by one-dimensional MHD simulations. Ulysses observations suggest that not only AWs amplified through the reverse shock but also magnetic depression structures (MDs) are found in the trailing portions of CIRs (e.g., Tsurutani et al., 1995). Our interest is the generation mechanism of MDs in the context of AWs-CIRs interaction system. While MDs are supposed to be remnants of the mirror instability (e.g., Winterhalter et al., 1994), we give alternative processes from a macroscopic view as follows. A large pressure gradient developed in CIRs results in intensifying the diamagnetic current, which reflects a portion of the incident AW energy in the opposite direction (from a plasma-rest frame) as AWs penetrate into CIRs. Since the reflected AWs also carry the current, the reduction of the background field intensity (i.e. MD formation) is simultaneously taken place in the area sandwiched between the forward-reverse pair of AWs. Further analysis will be given via hybrid simulations to show how these MHD processes are manifested in particle behaviors, such as an acceleration due to a ponderomotive force.

  10. Asynchronous ripple oscillations between left and right hippocampi during slow-wave sleep

    PubMed Central

    Villalobos, Claudio

    2017-01-01

    Spatial memory, among many other brain processes, shows hemispheric lateralization. Most of the published evidence suggests that the right hippocampus plays a leading role in the manipulation of spatial information. Concurrently in the hippocampus, memory consolidation during sleep periods is one of the key steps in the formation of newly acquired spatial memory traces. One of the most characteristic oscillatory patterns in the hippocampus are sharp-wave ripple (SWR) complexes. Within this complex, fast-field oscillations or ripples have been demonstrated to be instrumental in the memory consolidation process. Since these ripples are relevant for the consolidation of memory traces associated with spatial navigation, and this process appears to be lateralized, we hypothesize that ripple events between both hippocampi would exhibit different temporal dynamics. We tested this idea by using a modified "split-hyperdrive" that allows us to record simultaneous LFPs from both right and left hippocampi of Sprague-Dawley rats during sleep. We detected individual events and found that during sleep periods these ripples exhibited a different occurrence patterns between hemispheres. Most ripple events were synchronous between intra- rather than inter-hemispherical recordings, suggesting that ripples in the hippocampus are independently generated and locally propagated within a specific hemisphere. In this study, we propose the ripples’ lack of synchrony between left and right hippocampi as the putative physiological mechanism underlying lateralization of spatial memory. PMID:28158285

  11. Asynchronous ripple oscillations between left and right hippocampi during slow-wave sleep.

    PubMed

    Villalobos, Claudio; Maldonado, Pedro E; Valdés, José L

    2017-01-01

    Spatial memory, among many other brain processes, shows hemispheric lateralization. Most of the published evidence suggests that the right hippocampus plays a leading role in the manipulation of spatial information. Concurrently in the hippocampus, memory consolidation during sleep periods is one of the key steps in the formation of newly acquired spatial memory traces. One of the most characteristic oscillatory patterns in the hippocampus are sharp-wave ripple (SWR) complexes. Within this complex, fast-field oscillations or ripples have been demonstrated to be instrumental in the memory consolidation process. Since these ripples are relevant for the consolidation of memory traces associated with spatial navigation, and this process appears to be lateralized, we hypothesize that ripple events between both hippocampi would exhibit different temporal dynamics. We tested this idea by using a modified "split-hyperdrive" that allows us to record simultaneous LFPs from both right and left hippocampi of Sprague-Dawley rats during sleep. We detected individual events and found that during sleep periods these ripples exhibited a different occurrence patterns between hemispheres. Most ripple events were synchronous between intra- rather than inter-hemispherical recordings, suggesting that ripples in the hippocampus are independently generated and locally propagated within a specific hemisphere. In this study, we propose the ripples' lack of synchrony between left and right hippocampi as the putative physiological mechanism underlying lateralization of spatial memory.

  12. Dispersive characteristics and longitudinal resonance properties in a relativistic backward wave oscillator with the coaxial arbitrary-profile slow-wave structure

    SciTech Connect

    Ge Xingjun; Zhong Huihuang; Qian Baoliang; Zhang Jun; Fan Yuwei; Shu Ting; Liu Jinliang

    2009-11-15

    The method for calculating the dispersion relations of the slow-wave structures (SWSs) with arbitrary geometrical structures is studied in detail by using the Fourier series expansion. In addition, dispersive characteristics and longitudinal resonance properties of the SWSs with the cosinusoidal, trapezoidal, and rectangular corrugations are analyzed by numerical calculation. Based on the above discussion, a comparison on an L-band coaxial relativistic backward wave oscillator (BWO) and an L-band coaxial BWO with a coaxial extractor is investigated in detail with particle-in-cell KARAT code (V. P. Tarakanov, Berkeley Research Associates, Inc., 1992). Furthermore, experiments are carried out at the TORCH-01 accelerator under the low guiding magnetic field. At diode voltage of 647 kV, beam current of 9.3 kA, and guiding magnetic field strength of 0.75 T, the microwave is generated with power of 1.07 GW, mode of TM{sub 01}, and frequency of 1.61 GHz. That is the first experimental report of the L-band BWO.

  13. Conditional genetic deletion of Ano1 in interstitial cells of Cajal impairs Ca(2+) transients and slow waves in adult mouse small intestine.

    PubMed

    Malysz, John; Gibbons, Simon J; Saravanaperumal, Siva A; Du, Peng; Eisenman, Seth T; Cao, Chike; Oh, Uhtaek; Saur, Dieter; Klein, Sabine; Ordog, Tamas; Farrugia, Gianrico

    2017-03-01

    Myenteric plexus interstitial cells of Cajal (ICC-MY) in the small intestine are Kit(+) electrical pacemakers that express the Ano1/TMEM16A Ca(2+)-activated Cl(-) channel, whose functions in the gastrointestinal tract remain incompletely understood. In this study, an inducible Cre-LoxP-based approach was used to advance the understanding of Ano1 in ICC-MY of adult mouse small intestine. Kit(CreERT2/+);Ano1(Fl/Fl) mice were treated with tamoxifen or vehicle, and small intestines (mucosa free) were examined. Quantitative RT-PCR demonstrated ~50% reduction in Ano1 mRNA in intestines of conditional knockouts (cKOs) compared with vehicle-treated controls. Whole mount immunohistochemistry showed a mosaic/patchy pattern loss of Ano1 protein in ICC networks. Ca(2+) transients in ICC-MY network of cKOs displayed reduced duration compared with highly synchronized controls and showed synchronized and desynchronized profiles. When matched, the rank order for Ano1 expression in Ca(2+) signal imaged fields of view was as follows: vehicle controls>cKO(synchronized)>cKO(desynchronized). Maintenance of Ca(2+) transients' synchronicity despite high loss of Ano1 indicates a large functional reserve of Ano1 in the ICC-MY network. Slow waves in cKOs displayed reduced duration and increased inter-slow-wave interval and occurred in regular- and irregular-amplitude oscillating patterns. The latter activity suggested ongoing interaction by independent interacting oscillators. Lack of slow waves and depolarization, previously reported for neonatal constitutive knockouts, were also seen. In summary, Ano1 in adults regulates gastrointestinal function by determining Ca(2+) transients and electrical activity depending on the level of Ano1 expression. Partial Ano1 loss results in Ca(2+) transients and slow waves displaying reduced duration, while complete and widespread absence of Ano1 in ICC-MY causes lack of slow wave and desynchronized Ca(2+) transients.NEW & NOTEWORTHY The Ca(2+)-activated

  14. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury

    PubMed Central

    Huang, Ming-Xiong; Nichols, Sharon; Baker, Dewleen G.; Robb, Ashley; Angeles, Annemarie; Yurgil, Kate A.; Drake, Angela; Levy, Michael; Song, Tao; McLay, Robert; Theilmann, Rebecca J.; Diwakar, Mithun; Risbrough, Victoria B.; Ji, Zhengwei; Huang, Charles W.; Chang, Douglas G.; Harrington, Deborah L.; Muzzatti, Laura; Canive, Jose M.; Christopher Edgar, J.; Chen, Yu-Han; Lee, Roland R.

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI. PMID:25009772

  15. Repetitive transcranial magnetic stimulation induced slow wave activity modification: A possible role in disorder of consciousness differential diagnosis?

    PubMed

    Pisani, Laura Rosa; Naro, Antonino; Leo, Antonino; Aricò, Irene; Pisani, Francesco; Silvestri, Rosalia; Bramanti, Placido; Calabrò, Rocco Salvatore

    2015-12-15

    Slow wave activity (SWA) generation depends on cortico-thalamo-cortical loops that are disrupted in patients with chronic Disorders of Consciousness (DOC), including the Unresponsive Wakefulness Syndrome (UWS) and the Minimally Conscious State (MCS). We hypothesized that the modulation of SWA by means of a repetitive transcranial magnetic stimulation (rTMS) could reveal residual patterns of connectivity, thus supporting the DOC clinical differential diagnosis. We enrolled 10 DOC individuals who underwent a 24hh polysomnography followed by a real or sham 5Hz-rTMS over left primary motor area, and a second polysomnographic recording. A preserved sleep-wake cycle, a standard temporal progression of sleep stages, and a SWA perturbation were found in all of the MCS patients and in none of the UWS individuals, only following the real-rTMS. In conclusion, our combined approach may improve the differential diagnosis between MCS patients, who show a partial preservation of cortical plasticity, and UWS individuals, who lack such properties.

  16. Selective slow wave sleep but not rapid eye movement sleep suppression impairs morning glucose tolerance in healthy men.

    PubMed

    Herzog, Nina; Jauch-Chara, Kamila; Hyzy, Franziska; Richter, Annekatrin; Friedrich, Alexia; Benedict, Christian; Oltmanns, Kerstin M

    2013-10-01

    Shortened nocturnal sleep impairs morning glucose tolerance. The underlying mechanism of this effect is supposed to involve a reduced fraction of slow wave sleep (SWS). However, it remains unanswered if impaired glucose tolerance occurs due to specific SWS reduction or a general disturbance of sleep. Sixteen healthy men participated in three experimental conditions in a crossover design: SWS suppression, rapid eye movement (REM)-sleep disturbance, and regular sleep. Selective sleep stage disturbance was performed by means of an acoustic tone (532Hz) with gradually rising sound intensity. Blood concentrations of glucoregulatory parameters were measured upon an oral glucose tolerance test the next morning. Our data show that morning plasma glucose and serum insulin responses were significantly increased after selective SWS suppression. Moreover, SWS suppression reduced postprandial insulin sensitivity up to 20%, as determined by Matsuda Index. Contrastingly, disturbed REM-sleep did not affect glucose homeostasis. We conclude that specifically SWS reduction is critically involved in the impairment of glucose tolerance associated with disturbed sleep. Therefore, glucose metabolism in subjects predisposed to reduced SWS (e.g. depression, aging, obstructive sleep apnea, pharmacological treatment) should be thoroughly monitored.

  17. Human longevity is associated with regular sleep patterns, maintenance of slow wave sleep, and favorable lipid profile

    PubMed Central

    Mazzotti, Diego Robles; Guindalini, Camila; Moraes, Walter André dos Santos; Andersen, Monica Levy; Cendoroglo, Maysa Seabra; Ramos, Luiz Roberto; Tufik, Sergio

    2014-01-01

    Some individuals are able to successfully reach very old ages, reflecting higher adaptation against age-associated effects. Sleep is one of the processes deeply affected by aging; however few studies evaluating sleep in long-lived individuals (aged over 85) have been reported to date. The aim of this study was to characterize the sleep patterns and biochemical profile of oldest old individuals (N = 10, age 85–105 years old) and compare them to young adults (N = 15, age 20–30 years old) and older adults (N = 13, age 60–70 years old). All subjects underwent full-night polysomnography, 1-week of actigraphic recording and peripheral blood collection. Sleep electroencephalogram spectral analysis was also performed. The oldest old individuals showed lower sleep efficiency and REM sleep when compared to the older adults, while stage N3 percentage and delta power were similar across the groups. Oldest old individuals maintained strictly regular sleep-wake schedules and also presented higher HDL-cholesterol and lower triglyceride levels than older adults. The present study revealed novel data regarding specific sleep patterns and maintenance of slow wave sleep in the oldest old group. Taken together with the favorable lipid profile, these results contribute with evidence to the importance of sleep and lipid metabolism regulation in the maintenance of longevity in humans. PMID:25009494

  18. Active wave experiment on the slow Z mode using a separated transmitter and receiver in the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    James, G.

    2003-04-01

    Slow Z-mode waves were observed during the OEDIPUS-C (OC) mother-son rocket experiment. Waves were transmitted from an active double-V dipole on one subpayload and received at a distance of about 1200 m on a similar dipole connected to a synchronized receiver. Bistatic propagation was obtained at frequencies f in max{fc,fp}

  19. EDITORIAL: Slow light Slow light

    NASA Astrophysics Data System (ADS)

    Boyd, Robert; Hess, Ortwin; Denz, Cornelia; Paspalakis, Emmanuel

    2010-10-01

    Research into slow light began theoretically in 1880 with the paper [1] of H A Lorentz, who is best known for his work on relativity and the speed of light. Experimental work started some 60 years later with the work of S L McCall and E L Hahn [2] who explored non-linear self-induced transparency in ruby. This field of research has burgeoned in the last 10 years, starting with the work of L Vestergaard Hau and coworkers on slow light via electromagnetically induced transparency in a Bose-Einstein condensate [3]. Many groups are now able to slow light down to a few metres per second or even stop the motion of light entirely [4]. Today, slow light - or more often `slow and fast light' - has become its own vibrant field with a strongly increasing number of publications. In broad scope, slow light research can be categorized in terms of the sort of physical mechanism used to slow down the light. One sort of slow light makes use of material dispersion. This dispersion can be the natural dispersion of the ordinary refractive index or can be the frequency dependence of some nonlinear optical process, such as electromagnetically induced transparency, coherent population oscillations, stimulated light scattering, or four-wave mixing processes. The second sort of slow light makes use of the wavelength dependence of artificially structured materials, such as photonic crystals, optical waveguides, and collections of microresonators. Material systems in which slow light has been observed include metal vapours, rare-earth-doped materials, Raman and Brillioun gain media, photonic crystals, microresonators and, more recently, metamaterials. A common feature of all of these schemes is the presence of a sharp single resonance or multiple resonances produced by an atomic transition, a resonance in a photonic structure, or in a nonlinear optical process. Current applications of slow light include a series of attractive topics in optical information processing, such as optical data

  20. Substance P and the neurokinin-1 receptor regulate electroencephalogram non-rapid eye movement sleep slow-wave activity locally.

    PubMed

    Zielinski, M R; Karpova, S A; Yang, X; Gerashchenko, D

    2015-01-22

    The neuropeptide substance P is an excitatory neurotransmitter produced by various cells including neurons and microglia that is involved in regulating inflammation and cerebral blood flow--functions that affect sleep and slow-wave activity (SWA). Substance P is the major ligand for the neurokinin-1 receptor (NK-1R), which is found throughout the brain including the cortex. The NK-1R is found on sleep-active cortical neurons expressing neuronal nitric oxide synthase whose activity is associated with SWA. We determined the effects of local cortical administration of a NK-1R agonist (substance P-fragment 1, 7) and a NK-1R antagonist (CP96345) on sleep and SWA in mice. The NK-1R agonist significantly enhanced SWA for several hours when applied locally to the cortex of the ipsilateral hemisphere as the electroencephalogram (EEG) electrode but not after application to the contralateral hemisphere when compared to saline vehicle control injections. In addition, a significant compensatory reduction in SWA was found after the NK-1R agonist-induced enhancements in SWA. Conversely, injections of the NK-1R antagonist into the cortex of the ipsilateral hemisphere of the EEG electrode attenuated SWA compared to vehicle injections but this effect was not found after injections of the NK-1R antagonist into contralateral hemisphere as the EEG electrode. Non-rapid eye movement sleep and rapid eye movement sleep duration responses after NK-1R agonist and antagonist injections were not significantly different from the responses to the vehicle. Our findings indicate that the substance P and the NK-1R are involved in regulating SWA locally.

  1. Chronic exposure of rats to noise: relationship between long-term memory deficits and slow wave sleep disturbances.

    PubMed

    Rabat, A; Bouyer, J J; George, O; Le Moal, M; Mayo, W

    2006-08-10

    Noise is now recognized as a serious health problem in our modern societies. Although its deleterious and direct effects on cognitive tasks (long-term memory, mental arithmetic activity, visual tasks, etc.) are clearly admitted, no studies have determined a delayed indirect effect of noise on cognitive processes. Furthermore, the link between sleep disturbances related to environmental noise (EN) exposure and these indirect deteriorations of human performances has never been demonstrated. This could be due to inappropriate evaluation of sleep as well as to uncontrolled and confounding factors such as sex, age, and also inter-individual vulnerability. Based on a recently validated animal model [Rabat A, Bouyer JJ, Aran JM, Le Moal M, Mayo W. Chronic exposure to an environmental noise permanently disturbs sleep in rats: inter-individual vulnerability. Brain Res 2005;1059:72-82], aims of the present study were (i) to determine long-term memory (LTM) deficits following a chronic exposure to EN and (ii) to link these behavioral problems to sleep disturbances related to EN. For this purpose in a first experiment, LTM performances were evaluated before and following 9 days of EN. Results show LTM deficits following a chronic exposure to EN with inter-individual vulnerability. Vulnerability profile was related to the psychobiological profile of rats. Results of the second experiment show LTM deficits correlated to both debt of slow wave sleep (SWS) and to daily decrease of SWS bout duration. Our results demonstrate that chronic exposure to noise indirectly disturbs LTM possibly through SWS disturbances and suggest a possible role of the stress hormonal axis in these biological effects of noise.

  2. Redistribution of slow wave activity of sleep during pharmacological treatment of depression with paroxetine but not with nefazodone.

    PubMed

    Argyropoulos, Spilios V; Hicks, Jane A; Nash, John R; Bell, Caroline J; Rich, Anne S; Nutt, David J; Wilson, Sue

    2009-09-01

    It has been suggested that increase in delta sleep ratio (DSR), a marker for the relative distribution of slow wave activity (SWA) over night time, is associated with clinical response to antidepressant treatment. We examined this index and its relationship to rapid eye movement (REM) suppression before and during long-term treatment with nefazodone, which does not suppress REM sleep, and paroxetine which does. The effect of serotonin (5-HT(2A)) receptor blockade on the evolution of SWA during treatment was also investigated. In a double-blind, randomised, parallel group, 8-week study in 29 depressed patients, sleep electroencephalograms were performed at home at baseline, on night 3 and 10, and at 8 weeks of treatment with either paroxetine or nefazodone. SWA was automatically analysed and a modified DSR (mDSR) was derived, being the ratio of amount of SWA in the first 90 min of sleep to that in the second plus third 90-min periods. At baseline, the pattern of SWA over night time was similar to other reports of depressed patients. mDSR improved over the course of treatment; there was no difference between remitters and non-remitters but there was a significant drug effect and a significant drug x time effect with paroxetine patients having a much higher mDSR after treatment, regardless of clinical status. SWA and REM during antidepressant treatment appear to be interdependent and neither of them alone is likely to predict response to treatment. Higher mDSR did not predict therapeutic response. 5-HT(2A) blockade by nefazodone does not increase SWA above normal levels.

  3. Frequency response of a TeO{sub 2} slow shear wave acousto-optic cell exposed to radiation

    SciTech Connect

    Erteza, I.A.; Craft, D.C.; Stalker, K.T.; Taylor, E.W.; Kelley, M.A.; Sanchez, A.D.; Chapman, S.P.; Craig, D.M.; Kinsley, E.

    1994-12-31

    Radiation testing of photonic components is not new, however component level testing to date has not completely addressed quantities which are important to system behavior. One characteristic that is of particular importance for optical processing systems is the frequency response. In this paper, the authors present the results of the analysis of data from an experiment designed to provide a preliminary understanding of the effects of radiation on the frequency response of acousto-optic devices. The goal is to present possible physical mechanisms responsible for the radiation effects and to discuss the effects on signal processing functionality. The experiment discussed in this paper was designed by Sandia National Laboratories (SNL) and performed by SNL and Phillips Laboratory (PL) personnel at White Sands Missile Range (WSMR). In the experiment, a TeO{sub 2} slow shear-wave acousto-optic cell was exposed to radiation from the WSMR linear accelerator. The TeO{sub 2} cell was placed in an experimental configuration which allowed swept frequency diffracted power measurements to be taken during radiation exposure and recovery. A series of exposures was performed. Each exposure consisted of between 1 to 800, 1 {mu}sec radiation pulses (yielding exposures of 2.25 kRad(Si) to 913 kRad(Si)), followed by recovery time. At low total and cumulative doses, the bandshape of the frequency response (i.e. diffracted power vs. frequency) remained almost identical during and after radiation. At the higher exposures, however, the amplitude and width of the frequency response changed as the radiation continued, but returned to the original shape slowly after the radiation stopped and recovery proceeded. It is interesting to note that the location of the Bragg degeneracy does not change significantly with radiation. In this paper, the authors discuss these effects, and they discuss the effect on the signal processing functionality.

  4. Restricting Time in Bed in Early Adolescence Reduces Both NREM and REM Sleep but Does Not Increase Slow Wave EEG

    PubMed Central

    Campbell, Ian G.; Kraus, Amanda M.; Burright, Christopher S.; Feinberg, Irwin

    2016-01-01

    Study Objectives: School night total sleep time decreases across adolescence (9–18 years) by 10 min/year. This decline is comprised entirely of a selective decrease in NREM sleep; REM sleep actually increases slightly. Decreasing sleep duration across adolescence is often attributed to insufficient time in bed. Here we tested whether sleep restriction in early adolescence produces the same sleep stage changes observed on school nights across adolescence. Methods: All-night sleep EEG was recorded in 76 children ranging in age from 9.9 to 14.0 years. Each participant kept 3 different sleep schedules that consisted of 3 nights of 8.5 h in bed followed by 4 nights of either 7, 8.5, or 10 h in bed. Sleep stage durations and NREM delta EEG activity were compared across the 3 time in bed conditions. Results: Shortening time in bed from 10 to 7 hours reduced sleep duration by approximately 2 hours, roughly equal to the decrease in sleep duration we recorded longitudinally across adolescence. However, sleep restriction significantly reduced both NREM (by 83 min) and REM (by 47 min) sleep. Sleep restriction did not affect NREM delta EEG activity. Conclusions: Our findings suggest that the selective NREM reduction and the small increase in REM we observed longitudinally across 9–18 years are not produced by sleep restriction. We hypothesize that the selective NREM decline reflects adolescent brain maturation (synaptic elimination) that reduces the need for the restorative processes of NREM sleep. Citation: Campbell IG, Kraus AM, Burright CS, Feinberg I. Restricting time in bed in early adolescence reduces both NREM and REM sleep but does not increase slow wave EEG. SLEEP 2016;39(9):1663–1670. PMID:27397569

  5. Theta-rhythmic drive between medial septum and hippocampus in slow-wave sleep and microarousal: a Granger causality analysis.

    PubMed

    Kang, D; Ding, M; Topchiy, I; Shifflett, L; Kocsis, B

    2015-11-01

    Medial septum (MS) plays a critical role in controlling the electrical activity of the hippocampus (HIPP). In particular, theta-rhythmic burst firing of MS neurons is thought to drive lasting HIPP theta oscillations in rats during waking motor activity and REM sleep. Less is known about MS-HIPP interactions in nontheta states such as non-REM sleep, in which HIPP theta oscillations are absent but theta-rhythmic burst firing in subsets of MS neurons is preserved. The present study used Granger causality (GC) to examine the interaction patterns between MS and HIPP in slow-wave sleep (SWS, a nontheta state) and during its short interruptions called microarousals (a transient theta state). We found that during SWS, while GC revealed a unidirectional MS→HIPP influence over a wide frequency band (2-12 Hz, maximum: ∼8 Hz), there was no theta peak in the hippocampal power spectra, indicating a lack of theta activity in HIPP. In contrast, during microarousals, theta peaks were seen in both MS and HIPP power spectra and were accompanied by bidirectional GC with MS→HIPP and HIPP→MS theta drives being of equal magnitude. Thus GC in a nontheta state (SWS) vs. a theta state (microarousal) primarily differed in the level of HIPP→MS. The present findings suggest a modification of our understanding of the role of MS as the theta generator in two regards. First, a MS→HIPP theta drive does not necessarily induce theta field oscillations in the hippocampus, as found in SWS. Second, HIPP theta oscillations entail bidirectional theta-rhythmic interactions between MS and HIPP.

  6. Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat.

    PubMed

    Cerri, Matteo; Del Vecchio, Flavia; Mastrotto, Marco; Luppi, Marco; Martelli, Davide; Perez, Emanuele; Tupone, Domenico; Zamboni, Giovanni; Amici, Roberto

    2014-01-01

    Neurons within the lateral hypothalamus (LH) are thought to be able to evoke behavioural responses that are coordinated with an adequate level of autonomic activity. Recently, the acute pharmacological inhibition of LH has been shown to depress wakefulness and promote NREM sleep, while suppressing REM sleep. These effects have been suggested to be the consequence of the inhibition of specific neuronal populations within the LH, i.e. the orexin and the MCH neurons, respectively. However, the interpretation of these results is limited by the lack of quantitative analysis of the electroencephalographic (EEG) activity that is critical for the assessment of NREM sleep quality and the presence of aborted NREM-to-REM sleep transitions. Furthermore, the lack of evaluation of the autonomic and thermoregulatory effects of the treatment does not exclude the possibility that the wake-sleep changes are merely the consequence of the autonomic, in particular thermoregulatory, changes that may follow the inhibition of LH neurons. In the present study, the EEG and autonomic/thermoregulatory effects of a prolonged LH inhibition provoked by the repeated local delivery of the GABAA agonist muscimol were studied in rats kept at thermoneutral (24°C) and at a low (10°C) ambient temperature (Ta), a condition which is known to depress sleep occurrence. Here we show that: 1) at both Tas, LH inhibition promoted a peculiar and sustained bout of NREM sleep characterized by an enhancement of slow-wave activity with no NREM-to-REM sleep transitions; 2) LH inhibition caused a marked transitory decrease in brain temperature at Ta 10°C, but not at Ta 24°C, suggesting that sleep changes induced by LH inhibition at thermoneutrality are not caused by a thermoregulatory impairment. These changes are far different from those observed after the short-term selective inhibition of either orexin or MCH neurons, suggesting that other LH neurons are involved in sleep-wake modulation.

  7. Enhanced Slow-Wave EEG Activity and Thermoregulatory Impairment following the Inhibition of the Lateral Hypothalamus in the Rat

    PubMed Central

    Cerri, Matteo; Vecchio, Flavia Del; Mastrotto, Marco; Luppi, Marco; Martelli, Davide; Perez, Emanuele; Tupone, Domenico; Zamboni, Giovanni; Amici, Roberto

    2014-01-01

    Neurons within the lateral hypothalamus (LH) are thought to be able to evoke behavioural responses that are coordinated with an adequate level of autonomic activity. Recently, the acute pharmacological inhibition of LH has been shown to depress wakefulness and promote NREM sleep, while suppressing REM sleep. These effects have been suggested to be the consequence of the inhibition of specific neuronal populations within the LH, i.e. the orexin and the MCH neurons, respectively. However, the interpretation of these results is limited by the lack of quantitative analysis of the electroencephalographic (EEG) activity that is critical for the assessment of NREM sleep quality and the presence of aborted NREM-to-REM sleep transitions. Furthermore, the lack of evaluation of the autonomic and thermoregulatory effects of the treatment does not exclude the possibility that the wake-sleep changes are merely the consequence of the autonomic, in particular thermoregulatory, changes that may follow the inhibition of LH neurons. In the present study, the EEG and autonomic/thermoregulatory effects of a prolonged LH inhibition provoked by the repeated local delivery of the GABAA agonist muscimol were studied in rats kept at thermoneutral (24°C) and at a low (10°C) ambient temperature (Ta), a condition which is known to depress sleep occurrence. Here we show that: 1) at both Tas, LH inhibition promoted a peculiar and sustained bout of NREM sleep characterized by an enhancement of slow-wave activity with no NREM-to-REM sleep transitions; 2) LH inhibition caused a marked transitory decrease in brain temperature at Ta 10°C, but not at Ta 24°C, suggesting that sleep changes induced by LH inhibition at thermoneutrality are not caused by a thermoregulatory impairment. These changes are far different from those observed after the short-term selective inhibition of either orexin or MCH neurons, suggesting that other LH neurons are involved in sleep-wake modulation. PMID:25398141

  8. Slow wave sleep during a daytime nap is necessary for protection from subsequent interference and long-term retention.

    PubMed

    Alger, Sara E; Lau, Hiuyan; Fishbein, William

    2012-09-01

    While it is now generally accepted that sleep facilitates the processing of newly acquired declarative information, questions still remain as to the type and length of sleep necessary to best benefit declarative memories. A better understanding could lend support in one direction or another as to the much-debated role of sleep, be it passive, permissive, or active, in memory processing. The present study employed a napping paradigm and compared performance on a bimodal paired-associates task of those who obtained a 10-min nap, containing only Stages 1 and 2 sleep, to those whose nap contained slow-wave sleep (SWS) and rapid eye movement (REM) sleep (60-min nap), as well as to subjects who remained awake. Measurements were obtained for baseline performance at training, after a sleep/no sleep interval for short-term retention, after a subsequent stimulus-related interference task, and again after a weeklong retention period. While all groups learned the information similarly, both nap groups performed better than the Wake group when examining short-term retention, approximately 1.5h after training (10-min p=.052, 60-min p=.002). However, performance benefits seen in the 10-min nap group proved to be temporary. Performance after a stimulus-related interference task revealed significantly better memory retention in the 60-min nap group, with interference disrupting the memory trace far less than both the Wake and 10-min nap groups (p<.001, p=.006, respectively). After a weeklong retention period, sleep's benefit to memory persisted in the 60-min nap group, with performance significantly greater than both the Wake and 10-min nap groups (p<.001, p=.004, respectively). It is our conclusion that SWS, obtained only by those in the 60-min nap group, served to actively facilitate the consolidation of learned bimodal paired-associates, supported by theories such as the Standard Theory of Consolidation as well as the Synaptic Homeostasis Hypothesis.

  9. High-resolution entrainment mapping of gastric pacing: a new analytical tool.

    PubMed

    O'Grady, Gregory; Du, Peng; Lammers, Wim J E P; Egbuji, John U; Mithraratne, Pulasthi; Chen, Jiande D Z; Cheng, Leo K; Windsor, John A; Pullan, Andrew J

    2010-02-01

    Gastric pacing has been investigated as a potential treatment for gastroparesis. New pacing protocols are required to improve symptom and motility outcomes; however, research progress has been constrained by a limited understanding of the effects of electrical stimulation on slow-wave activity. This study introduces high-resolution (HR) "entrainment mapping" for the analysis of gastric pacing and presents four demonstrations. Gastric pacing was initiated in a porcine model (typical amplitude 4 mA, pulse width 400 ms, period 17 s). Entrainment mapping was performed using flexible multielectrode arrays (waves in spatiotemporal detail. In the second demonstration, slow-wave velocity was accurately determined with HR field analysis, and paced propagation was found to be anisotropic (longitudinal 2.6 +/- 1.7 vs. circumferential 4.5 +/- 0.6 mm/s; P < 0.001). In the third demonstration, a dysrhythmic episode that occurred during pacing was mapped in HR, revealing an ectopic slow-wave focus and uncoupled propagations. In the fourth demonstration, differences were observed between paced and native slow-wave amplitudes (0.24 +/- 0.08 vs. 0.38 +/- 0.14 mV; P < 0.001), velocities (6.2 +/- 2.8 vs. 11.5 +/- 4.7 mm/s; P < 0.001), and activated areas (20.6 +/- 1.9 vs. 32.8 +/- 2.6 cm(2); P < 0.001). Entrainment mapping enables an accurate quantification of the effects of gastric pacing on slow-wave activity, offering an improved method to assess whether pacing protocols are likely to achieve physiologically and clinically useful outcomes.

  10. Research the dynamical characteristics of slow deformation waves as a rock massif response to explosions during its outworking

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Oleg; Shipeev, Oleg

    2015-04-01

    mine to estimate the changing state of the rock burst in the massif by its outworking. As a result we have selected a typical morphology of massif response phase trajectories, which were locally, over time, in a stable state: on the phase plane the local area presented as a ball of twisted trajectories with some not far removed points from the ball, which had not exceeded energy of more than 105 joules. For some time intervals those removed points exceeded 105 joules, achieving 106 joules and even 109 joules (Hachay et al., 2010). Introduction of the additional velocity parameter of slow deformation wave propagation allowed us, with the use of phase diagrams, to identify the hierarchic structure. Further, we can use that information for the modelling and interpretation of seismic and deformation waves in hierarchic structures (Hachay et al., 2012). That method can be useful in building-up an understanding of the resonance outshooting of catastrophic dynamic events and prevent these events. References 1.Chulichkov A. (2003) Mathematical models of nonlinear dynamics. Moscow: Phismatlit. 294p. 2.Hachay O., Khachay O.Yu., Klimko V., et al. (2010) Reflection of synergetic features of rock massif state under the man-caused influence from the data of a seismological catalogue. Mining Information-Analytic Bulletin, Moscow, Mining book, 6, pp.259-271. 3.Hachay O., Khachay A.Yu. (2012) Research of stress-deforming state of hierarchic medium. Proceedings of the Third Tectonics and Physics Conference at the Institute of the Physics of the Earth 8-12 October 2012, Moscow, IFZ RAS, pp.114-117. 4.Kurlenja M., Oparin V., Vostrikov V. (1993) About forming elastic wave trains by impulse excitation of block medium. Waves of pendulum type Uμ. DAN USSR, V.133, 4, pp.475-481. 5.Naimark Yu., Landa P. (2009). Stochastic and chaotic oscillations. Moscow, Knigniy dom ,'LIBROKOM', 424 p. 7.Oparin V., Vostrikov V., Tapsiev A. et al. (2006) About one kinematic criterion of forecasting of the

  11. Comparisons of shear-wave slowness in the Santa Clara Valley, California using blind interpretations of data from invasive and noninvasive methods

    USGS Publications Warehouse

    Boore, D.M.; Asten, M.W.

    2008-01-01

    Many groups contributed to a blind interpretation exercise for the determination of shear-wave slowness beneath the Santa Clara Valley. The methods included invasive methods in deep boreholes as well as noninvasive methods using active and passive sources, at six sites within the valley (with most investigations being conducted at a pair of closely spaced sites near the center of the valley). Although significant variability exists between the models, the slownesses from the various methods are similar enough that linear site amplifications estimated in several ways are generally within 20% of one another. The methods were able to derive slownesses that increase systematically with distance from the valley edge, corresponding to a tendency for the sites to be underlain by finer-grained materials away from the valley edge. This variation is in agreement with measurements made in the boreholes at the sites.

  12. A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration.

    PubMed

    Ebnali-Heidari, M; Monat, C; Grillet, C; Moravvej-Farshi, M K

    2009-09-28

    In this paper, we investigate both analytically and numerically four-wave mixing (FWM) in short (80 microm) dispersion engineered slow light photonic crystal waveguides. We demonstrate that both a larger FWM conversion efficiency and an increased FWM bandwidth (approximately 10 nm) can be achieved in these waveguides as compared to dispersive PhC waveguides. This improvement is achieved through the net slow light enhancement of the FWM efficiency (almost 30dB as compared to a fast nanowire of similar length), even in the presence of slow light increased linear and nonlinear losses, and the suitable dispersion profile of these waveguides. We show how such improved FWM operation can be advantageously exploited for designing a compact 2R and 3R regenerator with the appropriate nonlinear power transfer function.

  13. Effects of Acoustic Waves on Stick—Slip Behavior in Sheared Granular Media With Implications to Dynamic Earthquake Triggering and Slow Slip

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Marone, C.; Knuth, M. W.; Kaproth, B. M.; Carpenter, B.; Behringer, B.; Guyer, R.; Le Bas, P.

    2009-12-01

    To better understand the physics of dynamic triggering and the influence of dynamic stressing on earthquake recurrence, we are conducting laboratory studies of stick—slip in granular media with and without applied acoustic waves. In our 3-D experiments, glass beads are used to simulate granular fault zone wear material, sheared in a double-direct configuration under constant normal stress, while subject to transient or continuous perturbations by acoustic waves. We find that the horizontal stress applied plays a crucial role in the response of the glass beads to applied waves. Under smaller normal stress (2MPa), and subject to wave amplitudes of >10-6 strain, we observe induced slow (silent) slip and tremor. Under moderate normal stress (4 MPa) and subject to >10-6 strain amplitude we observe both instantaneous and delayed triggering. Waves also cause significant disruption in the recurrence rate. The effects of waves are observed for many major-event cycles after wave excitation ceases, indicating a strain memory of waves in the granular material. Under slightly larger horizontal stress (5MPa), if strain amplitudes exceed 10-6, we observe instantaneous triggering followed by slow dynamics—the shear modulus recovers linearly with the-logarithm-of-time back to equilibrium. Slow dynamics is a classical elastic nonlinear (anelastic) behavior observed in acoustical experiments with rock samples in the lab as well as in Earth. Wave-induced disruption of periodic stick—slip is linked to failure of granular force chains. In 2-D experiments we are applying photoelastic discs in stick—slip measurements in order to visualize the evolution of the force chain network. Photoelastic measurements provide insight into failure, and in particular small adjustments in the force chains network that presage failure. A phenomenological model similar to Knopoff-Burridge shows the same general behaviors. Our results should lead to a new understanding of the importance of seismic

  14. Effects of Acoustic Waves on Stick—Slip Behavior in Sheared Granular Media With Implications to Dynamic Earthquake Triggering and Slow Slip

    NASA Astrophysics Data System (ADS)

    Johnson, Paul; Marone, Chris; Knuth, Matt; Kaproth, Bryan; Carpenter, Brett; Behringer, Bob; Guyer, Robert; Le Bas, Pierre-Yves; Griffa, Michele; Carmeliet, Jan

    2010-05-01

    To better understand the physics of dynamic triggering and the influence of dynamic stressing on earthquake recurrence, we are conducting laboratory studies of stick—slip in granular media with and without applied acoustic waves. In our 3-D experiments, glass beads are used to simulate granular fault zone wear material, sheared in a double-direct configuration under constant normal stress, while subject to transient or continuous perturbations by acoustic waves. We find that the horizontal stress applied plays a crucial role in the response of the glass beads to applied waves. Under smaller normal stress (2MPa), and subject to wave amplitudes of >10-6 strain, we observe induced slow (silent) slip and tremor. Under moderate normal stress (4 MPa) and subject to >10-6 strain amplitude we observe both instantaneous and delayed triggering. Waves also cause significant disruption in the recurrence rate. The effects of waves are observed for many major-event cycles after wave excitation ceases, indicating a strain memory of waves in the granular material. Under slightly larger horizontal stress (5MPa), if strain amplitudes exceed 10-6, we observe instantaneous triggering followed by slow dynamics—the shear modulus recovers linearly with the-logarithm-of-time back to equilibrium. Slow dynamics is a classical elastic nonlinear (anelastic) behavior observed in acoustical experiments with rock samples in the lab as well as in Earth. Wave-induced disruption of periodic stick—slip is linked to failure of granular force chains. In 2-D experiments we are applying photoelastic discs in stick—slip measurements in order to visualize the evolution of the force chain network. Photoelastic measurements provide insight into failure, and in particular small adjustments in the force chains network that presage failure. A phenomenological model similar to Knopoff-Burridge shows the same general behaviors as well. In a companion paper, we show model results emplying a DEM approach

  15. Slow-Wave Phase Shifters, Based on Thin Ferroelectric Films, for Reflectarray Antennas. Frequency-Agile Radio: Systems and Technlogies, WMG 139

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2006-01-01

    We have developed relatively broadband K- and Ka-band phase shifters using synthetic (slow-wave) transmission lines employing coupled microstripline "varactors". The tunable coupled microstripline circuits are based on laser ablated BaSrTiO films on lanthanum aluminate substrates. A model and design criteria for these novel circuits will be presented, along with measured performance including anomalous phase delay characteristics. The critical role of phase shifter loss and transient response in reflectarray antennas will be emphasized.

  16. Nonlinear Dynamical Systems Effects of Homeopathic Remedies on Multiscale Entropy and Correlation Dimension of Slow Wave Sleep EEG in Young Adults with Histories of Coffee-Induced Insomnia

    PubMed Central

    Bell, Iris R.; Howerter, Amy; Jackson, Nicholas; Aickin, Mikel; Bootzin, Richard R.; Brooks, Audrey J.

    2012-01-01

    Background Investigators of homeopathy have proposed that nonlinear dynamical systems (NDS) and complex systems science offer conceptual and analytic tools for evaluating homeopathic remedy effects. Previous animal studies demonstrate that homeopathic medicines alter delta electroencephalographic (EEG) slow wave sleep. The present study extended findings of remedy-related sleep stage alterations in human subjects by testing the feasibility of using two different NDS analytic approaches to assess remedy effects on human slow wave sleep EEG. Methods Subjects (N=54) were young adult male and female college students with a history of coffee-related insomnia who participated in a larger 4-week study of the polysomnographic effects of homeopathic medicines on home-based all-night sleep recordings. Subjects took one bedtime dose of a homeopathic remedy (Coffea cruda or Nux vomica 30c). We computed multiscale entropy (MSE) and the correlation dimension (Mekler-D2) for stage 3 and 4 slow wave sleep EEG sampled in artifact-free 2-minute segments during the first two rapid-eye-movement (REM) cycles for remedy and post-remedy nights, controlling for placebo and post-placebo night effects. Results MSE results indicate significant, remedy-specific directional effects, especially later in the night (REM cycle 2) (CC: remedy night increases and post-remedy night decreases in MSE at multiple sites for both stages 3 and 4 in both REM cycles; NV: remedy night decreases and post-remedy night increases, mainly in stage 3 REM cycle 2 MSE). D2 analyses yielded more sporadic and inconsistent findings. Conclusions Homeopathic medicines Coffea cruda and Nux vomica in 30c potencies alter short-term nonlinear dynamic parameters of slow wave sleep EEG in healthy young adults. MSE may provide a more sensitive NDS analytic method than D2 for evaluating homeopathic remedy effects on human sleep EEG patterns. PMID:22818237

  17. Efficiency enhancement of slow-wave electron-cyclotron maser by a second-order shaping of the magnetic field in the low-gain limit

    NASA Astrophysics Data System (ADS)

    Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang; Li, Yong-Ming; Jing, Jian

    2017-03-01

    Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.

  18. Comparison of shear-wave slowness profiles at 10 strong-motion sites from noninvasive SASW measurements and measurements made in boreholes

    USGS Publications Warehouse

    Brown, L.T.; Boore, D.M.; Stokoe, K.H.

    2002-01-01

    The spectral-analysis-of-surface-waves (SASW) method is a relatively new in situ method for determining shear-wave slownesses. All measurements are made on the ground surface, making it much less costly than methods that require boreholes. The SASW method uses a number of active sources (ranging from a commercial Vibroseis truck to a small handheld hammer for the study conducted here) and different receiver spacings to map a curve of apparent phase velocity versus frequency. With the simplifying assumption that the phase velocities correspond to fundamental mode surface waves, forward modeling yields an estimate of the sub-surface shear-wave slownesses. To establish the reliability of this indirect technique, we conducted a blind evaluation of the SASW method. SASW testing was performed at 10 strong-motion stations at which borehole seismic measurements were previously or subsequently made; if previously made, the borehole results were not used for the interpretation of the SASW data, and vice-versa. Comparisons of the shear-wave slownesses from the SASW and borehole measurements are generally very good. The differences in predicted ground-motion amplifications are less than about 15% for most frequencies. In addition, both methods gave the same NEHRP site classification for seven of the sites. For the other three sites the average velocities from the downhole measurements were only 5-13 m/sec larger than the velocity defining the class C/D boundary. This study demonstrates that in many situations the SASW method can provide subsurface information suitable for site response predictions.

  19. Induction of prolonged, continuous slow-wave sleep by blocking cerebral H1 histamine receptors in rats

    PubMed Central

    Ikeda-Sagara, Masami; Ozaki, Tomoya; Shahid, Mohammad; Morioka, Eri; Wada, Kazuma; Honda, Kazuki; Hori, Ayana; Matsuya, Yuji; Toyooka, Naoki; Ikeda, Masayuki

    2012-01-01

    BACKGROUND AND PURPOSE Classic H1 histamine receptor (H1R) antagonists are non-selective for H1R and known to produce drowsiness. Modern antihistamines are more selective for H1R, and are ‘non-drowsy’ presumably due to reduced permeability through the blood-brain barrier. To characterize both histaminergic sleep regulation and the central actions of antihistamines, in the present study we analysed the effect of classic and modern antihistamines on rats' sleep using continuous i.c.v. infusions. EXPERIMENTAL APPROACH Effects of classic (d-chlorpheniramine; d-CPA) and second-generation (cetirizine) antihistamines on sleep were compared after i.p. injections or continuous i.c.v. infusions into rats. Fluorescent cetirizine/DBD-pz was synthesized to trace the approximate distribution of cerebral cetirizine. Furthermore, the effects of H1R antagonists on cultured preoptic neurons were examined using calcium imaging. KEY RESULTS d-CPA 4 mg·kg−1 i.p. increased non-rapid eye movement (REM) sleep whereas 10–40 mg·kg−1d-CPA decreased non-REM sleep at dark onset time. Nocturnal i.c.v. infusions of d-CPA (10 µmol·100 µL−1·10 h−1) increased drowsiness but not non-REM sleep, whereas the same i.c.v. infusions of cetirizine significantly increased non-REM sleep, abolished REM sleep, and decreased wakefulness for more than 10 h. The medial preoptic area contained the greatest fluorescent labelling after i.c.v. cetirizine/DBD-pz infusions. Histamine-induced Ca2+ increases in medial preoptic neurons were blocked by d-CPA or cetirizine, whereas d-CPA, but not cetirizine, increased Ca2+ irrespective of antihistaminergic activity at ≥100 µM. CONCLUSION AND IMPLICATIONS The excitatory action of d-CPA may explain the seemingly inconsistent actions of d-CPA on sleep. Cerebral H1R inhibition by cetirizine induces synchronization of cerebral activity and prolonged, continuous slow-wave sleep. PMID:21699505

  20. Exposure to extinction-associated contextual tone during slow-wave sleep and wakefulness differentially modulates fear expression.

    PubMed

    Ai, Si-Zhi; Chen, Jie; Liu, Jian-Feng; He, Jia; Xue, Yan-Xue; Bao, Yan-Ping; Han, Fang; Tang, Xiang-Dong; Lu, Lin; Shi, Jie

    2015-09-01

    Recent research has used context cues (odor or auditory cues) to target memories during sleep and has demonstrated that they can enhance declarative and procedural memories. However, the effects of external cues re-presented during sleep on emotional memory are still not fully understood. In the present study, we conducted a Pavlovian fear conditioning/extinction paradigm and examined the effects of re-exposure to extinction memory associated contextual tones during slow-wave sleep (SWS) and wakefulness on fear expression. The participants underwent fear conditioning on the first day, during which colored squares served as the conditioned stimulus (CS) and a mild shock served as the unconditioned stimulus (US). The next day, they underwent extinction, during which the CSs were presented without the US but accompanied by a contextual tone (pink noise). Immediately after extinction, the participants were required to take a nap or remain awake and randomly assigned to six groups. Four of the groups were separately exposed to the associated tone (i.e. SWS-Tone group and Wake-Tone group) or an irrelevant tone (control tone, CtrT) (i.e. SWS-CtrT group and Wake-CtrT group), while the other two groups were not (i.e. SWS-No Tone group and Wake-No Tone group). Subsequently, the conditioned responses to the CSs were tested to evaluate the fear expression. All of the participants included in the final analysis showed successful levels of fear conditioning and extinction. During the recall test, the fear responses were significantly higher in the SWS-Tone group than that in the SWS-No Tone group or the SWS-CtrT group, while the Wake-Tone group exhibited more attenuated fear responses than either the Wake-No Tone group or Wake-CtrT group. Otherwise, re-exposure to auditory tones during SWS did not affect sleep profiles. These results suggest that distinct conditions during which re-exposure to an extinction memory associated contextual cue contributes to differential effects on

  1. Identification of the aspartic proteinases from human erythrocyte membranes and gastric mucosa (slow-moving proteinase) as catalytically equivalent to cathepsin E.

    PubMed Central

    Jupp, R A; Richards, A D; Kay, J; Dunn, B M; Wyckoff, J B; Samloff, I M; Yamamoto, K

    1988-01-01

    Three aspartic proteinases with similar Mr values (approx. 80,000) but from distinct sources (human gastric mucosa, human erythrocyte membranes and rat spleen) were shown to have immunological cross-reactivity and comparable mobilities when subjected to polyacrylamide-gel electrophoresis under non-denaturing conditions. Kinetic parameters (kcat, Km and Ki) were determined for the interactions of the three enzymes with two synthetic chromogenic substrates and five inhibitors (naturally occurring and synthetic). On this basis it would appear that all of the enzymes should be considered equivalent to cathepsin E. pH-activity measurements indicated that the aspartic proteinase that originated from the erythrocyte membranes retained activity at a higher pH value than either of its readily soluble counterparts. Images Fig. 1. Fig. 2. PMID:3058118

  2. DUAL TRIGGER OF TRANSVERSE OSCILLATIONS IN A PROMINENCE BY EUV FAST AND SLOW CORONAL WAVES: SDO/AIA AND STEREO/EUVI OBSERVATIONS

    SciTech Connect

    Gosain, S.; Foullon, C.

    2012-12-20

    We analyze flare-associated transverse oscillations in a quiescent solar prominence on 2010 September 8-9. Both the flaring active region and the prominence were located near the west limb, with a favorable configuration and viewing angle. The full-disk extreme ultraviolet (EUV) images of the Sun obtained with high spatial and temporal resolution by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory show flare-associated lateral oscillations of the prominence sheet. The STEREO-A spacecraft, 81.{sup 0}5 ahead of the Sun-Earth line, provides an on-disk view of the flare-associated coronal disturbances. We derive the temporal profile of the lateral displacement of the prominence sheet by using the image cross-correlation technique. The displacement curve was de-trended and the residual oscillatory pattern was derived. We fit these oscillations with a damped cosine function with a variable period and find that the period is increasing. The initial oscillation period (P{sub 0}) is {approx}28.2 minutes and the damping time ({tau}{sub D}) {approx} 44 minutes. We confirm the presence of fast and slow EUV wave components. Using STEREO-A observations, we derive a propagation speed of {approx}250 km s{sup -1} for the slow EUV wave by applying the time-slice technique to the running difference images. We propose that the prominence oscillations are excited by the fast EUV wave while the increase in oscillation period of the prominence is an apparent effect, related to a phase change due to the slow EUV wave acting as a secondary trigger. We discuss implications of the dual trigger effect for coronal prominence seismology and scaling law studies of damping mechanisms.

  3. Comparative analysis of four-wave mixing of optical pulses in slow- and fast-light regimes of a silicon photonic crystal waveguide.

    PubMed

    Lavdas, Spyros; Panoiu, Nicolae C

    2015-09-15

    We present an in-depth study of four-wave mixing (FWM) of optical pulses in silicon photonic crystal waveguides. Our analysis is based on a rigorous model that includes all relevant linear and nonlinear optical effects and their dependence on the group velocity, as well as the influence of free carriers on pulse dynamics. In particular, we reveal key differences between FWM in the slow- and fast-light regimes and how they are related to the physical parameters of the pulses and waveguide. Finally, we illustrate how these results can be used to design waveguides with optimized FWM conversion efficiency.

  4. Towards a highly-scalable wireless implantable system-on-a-chip for gastric electrophysiology.

    PubMed

    Ibrahim, Ahmed; Farajidavar, Aydin; Kiani, Mehdi

    2015-08-01

    This paper presents the system design of a highly-scalable system-on-a-chip (SoC) to wirelessly and chronically detect the mechanisms underlying gastric dysrhythmias. The proposed wireless implantable gastric-wave recording (WIGR) SoC records gastric slow-wave and spike activities from 256 sites, and establishes transcutaneous data communication with an external reader while being inductively powered. The SoC is highly scalable by employing a modular architecture for the analog front-end (AFE), a near-field pulse-delay modulation (PDM) data transmitter (Tx) that its data rate is proportional to the power carrier frequency (fp), and an adaptive power management equipped with automatic-resonance tuning (ART) that dynamically compensates for environmental and fp variations of the implant power coil. The simulation and measurement results for individual blocks have been presented.

  5. Differing Event-Related Patterns of Gamma-Band Power in Brain Waves of Fast- and Slow-Reacting Subjects

    DTIC Science & Technology

    1994-05-01

    Wilhelm Wundt proposed that there are two types of subjects in sim- ple RT experiments: fast-reacting subjects, who respond before they fully...quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects...accord with the hypothesis of Wundt and others that slower ("sensorial") responders wait to fully perceive a stimulus and then react to their perception

  6. Magnetoencephalography Slow-Wave Detection in Patients with Mild Traumatic Brain Injury and Ongoing Symptoms Correlated with Long-Term Neuropsychological Outcome

    PubMed Central

    Robb Swan, Ashley; Nichols, Sharon; Drake, Angela; Angeles, AnneMarie; Diwakar, Mithun; Song, Tao; Lee, Roland R.

    2015-01-01

    Abstract Mild traumatic brain injury (mTBI) is common in the United States, accounting for as many as 75–80% of all TBIs. It is recognized as a significant public health concern, but there are ongoing controversies regarding the etiology of persistent symptoms post-mTBI. This constellation of nonspecific symptoms is referred to as postconcussive syndrome (PCS). The present study combined results from magnetoencephalography (MEG) and cognitive assessment to examine group differences and relationships between brain activity and cognitive performance in 31 military and civilian individuals with a history of mTBI+PCS and 33 matched healthy control subjects. An operator-free analysis was used for MEG data to increase reliability of the technique. Subjects completed a comprehensive neuropsychological assessment, and measures of abnormal slow-wave activity from MEG were collected. Results demonstrated significant group differences on measures of executive functioning and processing speed. In addition, significant correlations between slow-wave activity on MEG and patterns of cognitive functioning were found in cortical areas, consistent with cognitive impairments on exams. Results provide more objective evidence that there may be subtle changes to the neurobiological integrity of the brain that can be detected by MEG. Further, these findings suggest that these abnormalities are associated with cognitive outcomes and may account, at least in part, for long-term PCS in those who have sustained an mTBI. PMID:25808909

  7. Solar winds driven by nonlinear low-frequency Alfvén waves from the photosphere: Parametric study for fast/slow winds and disappearance of solar winds

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Inutsuka, Shu-Ichiro

    2006-06-01

    We investigate how properties of the corona and solar wind in open coronal holes depend on properties of magnetic fields and their footpoint motions at the surface. We perform one-dimensional magnetohydrodynamical (MHD) simulations for the heating and the acceleration in coronal holes by low-frequency Alfvén waves from the photosphere to 0.3 or 0.1 AU. We impose low-frequency (≲0.05 Hz) transverse fluctuations of the field lines at the photosphere with various amplitude, spectrum, and polarization in the open flux tubes with different photospheric field strength, Br,0, and superradial expansion of the cross section, fmax. We find that transonic solar winds are universal consequences. The atmosphere is also stably heated up to ≳106 K by the dissipation of the Alfvén waves through compressive-wave generation and wave reflection in the cases of the sufficient wave input with photospheric amplitude, ≳ 0.7 km s-1. The density, and accordingly the mass flux, of solar winds show a quite sensitive dependence on because of an unstable aspect of the heating by the nonlinear Alfvén waves. A case with = 0.4 km s-1 gives ≃50 times smaller mass flux than the fiducial case for the fast wind with = 0.7 km s-1; solar wind virtually disappears only if becomes ≃1/2. We also find that the solar wind speed has a positive correlation with Br,0/fmax, which is consistent with recent observations by Kojima et al. On the basis of these findings, we show that both fast and slow solar winds can be explained by the single process, the dissipation of the low-frequency Alfvén waves, with different sets of and Br,0/fmax. Our simulations naturally explain the observed (1) anticorrelation of the solar wind speed and the coronal temperature and (2) larger amplitude of Alfvénic fluctuations in the fast wind. In Appendix A, we also explain our implementation of the outgoing boundary condition of the MHD waves with some

  8. Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects.

    PubMed Central

    Jokeit, H; Makeig, S

    1994-01-01

    Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events. PMID:8022783

  9. [QUANTITATIVE ASSESSMENT OF THE RELATIONSHIP BETWEEN SLOW-WAVE OSCILLATIONS OF HEART RHYTHM AND MOTOR ACTIVITY IN RAT FETUSES WITH FEMALE RESPIRATORY AND CARDIAC ACTIVITY].

    PubMed

    Timofeeva, O P; Vdovichenko, N D; Bursian, A V

    2015-01-01

    A mathematical analysis of correlation of slow-wave processes in the system during the last 4 days of bearing was performed in experiments on rat fetuses with retained placental connection with the female. The parallel recording of physiological indicators of the female and fetus state revealed the existence of a relationship between oscillations of heartbeat rhythms and breathing in about-one-minute and many-minute ranges. The highest values of connection between the heart rhythms of female and fetus are characteristic for days 17 and 20 of gestation. On day 18-19 the interrelationships are slightly weaker. The specific mechanism providing this synchronization between heartbeat oscillations of mother and fetus is unclear. There are two hypothetic possibilities: an oscillation driver close in parameters for mother and fetus, and the maternal rhythm directly affecting the fetus.

  10. Nonlinear phase shifts of modulated light waves with slow and superluminal group delay in stimulated Brillouin scattering.

    PubMed

    Arditi, Tal; Granot, Er'el; Sternklar, Shmuel

    2007-09-15

    Brillouin amplification with counterpropagating modulated pump and Stokes light leads to nonlinear modulation-phase shifts of the interacting intensity waves. This is due to a partial transformation of the nonmodulated light component at the input into modulated light at the output as a result of a mixing process with the counterpropagating modulated component of the pump and results in an advance or delay of the input modulation. This occurs for interactions over less than half of a modulation wavelength. Milliwatts of power in a kilometer of standard single-mode fiber give significant tunability of the modulation phase.

  11. SALSA3D: A Tomographic Model of Compressional Wave Slowness in the Earth’s Mantle for Improved Travel-Time Prediction and Travel-Time Prediction Uncertainty

    SciTech Connect

    Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.; Young, Christopher J.; Encarnacao, Andre V.; Chael, Eric P.; Phillips, W. Scott

    2016-10-11

    The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. In this study, motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source to receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. In addition, the computed pattern of uncertainty differs significantly from that of 1D distance-dependent travel-time uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.

  12. SALSA3D: A Tomographic Model of Compressional Wave Slowness in the Earth’s Mantle for Improved Travel-Time Prediction and Travel-Time Prediction Uncertainty

    DOE PAGES

    Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.; ...

    2016-10-11

    The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. In this study, motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source tomore » receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. In addition, the computed pattern of uncertainty differs significantly from that of 1D distance-dependent travel-time uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.« less

  13. Reduction of nocturnal slow-wave activity affects daytime vigilance lapses and memory encoding but not reaction time or implicit learning.

    PubMed

    Van Der Werf, Ysbrand D; Altena, Ellemarije; Vis, José C; Koene, Teddy; Van Someren, Eus J W

    2011-01-01

    Total sleep deprivation in healthy subjects has a profound effect on the performance on tasks measuring sustained attention or vigilance. We here report how a selective disruption of deep sleep only, that is, selective slow-wave activity (SWA) reduction, affects the performance of healthy well-sleeping subjects on several tasks: a "simple" and a "complex" vigilance task, a declarative learning task, and an implicit learning task despite unchanged duration of sleep. We used automated electroencephalogram (EEG) dependent acoustic feedback aimed at selective interference with-and reduction of-SWA. In a within-subject repeated measures crossover design, performance on the tasks was assessed in 13 elderly adults without sleep complaints after either SWA-reduction or after normal sleep. The number of vigilance lapses increased as a result of SWA reduction, irrespective of the type of vigilance task. Recognition on the declarative memory task was also affected by SWA reduction, associated with a decreased activation of the right hippocampus on encoding (measured with fMRI) suggesting a weaker memory trace. SWA reduction, however, did not affect reaction time on either of the vigilance tasks or implicit memory task performance. These findings suggest a specific role of slow oscillations in the subsequent daytime ability to maintain sustained attention and to encode novel declarative information but not to maintain response speed or to build implicit memories. Of particular interest is that selective SWA reduction can mimic some of the effects of total sleep deprivation, while not affecting sleep duration.

  14. Polysomnographic measures of sleep in cocaine dependence and alcohol dependence: Implications for age‐related loss of slow wave, stage 3 sleep

    PubMed Central

    Bjurstrom, Martin F.; Olmstead, Richard

    2016-01-01

    Abstract Background and aims Sleep disturbance is a prominent complaint in cocaine and alcohol dependence. This controlled study evaluated differences of polysomnographic (PSG) sleep in cocaine‐ and alcohol‐dependent subjects, and examined whether substance dependence interacts with age to alter slow wave sleep and rapid eye movement (REM) sleep. Design Cross‐sectional comparison. Setting Los Angeles and San Diego, CA, USA. Participants Abstinent cocaine‐dependent subjects (n = 32), abstinent alcohol‐dependent subjects (n = 73) and controls (n = 108); mean age 40.3 years recruited 2005–12. Measurements PSG measures of sleep continuity and sleep architecture primary outcomes of Stage 3 sleep and REM sleep. Covariates included age, ethnicity, education, smoking, body mass index and depressive symptoms. Findings Compared with controls, both groups of substance dependent subjects showed loss of Stage 3 sleep (P < 0.001). A substance dependence × age interaction was found in which both cocaine‐ and alcohol‐dependent groups showed loss of Stage 3 sleep at an earlier age than controls (P < 0.05 for all), and cocaine‐dependent subjects showed loss of Stage 3 sleep at an earlier age than alcoholics (P < 0.05). Compared with controls, REM sleep was increased in both substance‐dependent groups (P < 0.001), and cocaine and alcohol dependence were associated with earlier age‐related increase in REM sleep (P < 0.05 for all). Conclusions Cocaine and alcohol dependence appear to be associated with marked disturbances of sleep architecture, including increased rapid eye movement sleep and accelerated age‐related loss of slow wave, Stage 3 sleep. PMID:26749502

  15. A slow mode wave as a possible source of Pi 2 and associated particle precipitation: a case study

    NASA Astrophysics Data System (ADS)

    Saka, O.; Watanabe, O.; Okada, K.; Baker, D. N.

    1999-05-01

    An intensification of auroral luminosity referred to as an auroral break-up often accompanies the onset of geomagnetic pulsation (Pi 2) at the dip-equator. One such auroral break-up occurred at 2239 UT on 16 June, 1986, being accompanied by weak substorm activity (AE~50 nT) which was recorded in all-sky image of Syowa Station, Antarctica (66.2°S, 71.8°E in geomagnetic coordinates). The associated Pi 2 magnetic pulsation was detected by a fluxgate magnetometer in the afternoon sector at the dip-equator (Huancayo, Peru; 1.44°N, 355.9° in geomagnetic coordinates; 12.1°S, 75.2°W in geographic coordinates; L=1.00). In spite of the large separation of the two stations in longitude and latitude, the auroral break-up and subsequent luminosity modulation were seen to be correlated with the wave form of the ground Pi 2 pulsation. This occurred in such a way that the luminosity maximum was seen to occur at the phase of maximum amplitudes of Pi 2 wave form. We argue that the observed correlation could be interpreted as indicating a Pi 2-modulation of a field-aligned acceleration of the low energy electrons that may occur near the equator of the midnight magnetosphere.

  16. Impedance-based analysis and study of phase sensitivity in slow-wave two-beam accelerators

    SciTech Connect

    Wurtele, J.S.; Whittum, D.H.; Sessler, A.M.

    1992-06-01

    This paper presents a new formalism which makes the analysis and understanding of both the relativistic klystron (RK) and the standing-wave free-electron laser (SWFEL) two-beam accelerator (TBA) available to a wide audience of accelerator physicists. A ``coupling impedance`` for both the RK and SWFEWL is introduced, which can include realistic cavity features, such as beam and vacuum ports, in a simple manner. The RK and SWFEL macroparticle equations, which govern the energy and phase evolution of successive bunches in the beam, are of identical form, differing only by multiplicative factors. Expressions are derived for the phase and amplitude sensitivities of the TBA schemes to errors (shot-to-shot jitter) in current and energy. The analysis allows, for the first time, relative comparisons of the RK and the SWFEL TBAs.

  17. Gastric giardiasis.

    PubMed Central

    Doglioni, C.; De Boni, M.; Cielo, R.; Laurino, L.; Pelosio, P.; Braidotti, P.; Viale, G.

    1992-01-01

    AIMS: To assess the prevalence of gastric giardiasis in patients undergoing upper gastrointestinal endoscopy, and to define the clinicopathological correlates of gastric Giardia lamblia infection. METHODS: Consecutive gastric biopsy specimens (n = 15,023) from 11,085 patients, taken at Feltre City Hospital (north eastern Italy) from January 1986 to December 1991, were histologically and immunocytochemically examined for the occurrence of G lamblia trophozoites. Three gastric biopsy specimens from patients harbouring G lamblia infection, who repeated endoscopy before treatment, were also examined electron microscopically. RESULTS: Forty one patients (0.37% of the population study) harboured gastric giardiasis. All patients underwent upper gastrointestinal endoscopy because of dyspepsia, epigastric pain, or abdominal distension. Only two patients had diarrhoea at the time of investigation. Giardiasis was clinically unsuspected in all cases, although the nine patients who also had duodenal biopsies performed had concomitant intestinal giardiasis. Gastric giardiasis was invariably associated with chronic atrophic gastritis. Intestinal metaplasia of the gastric mucosa and Helicobacter pylori infection were found in 32 and 37 of the 41 patients with gastric giardiasis, respectively. CONCLUSIONS: The invariable association of gastric giardiasis with chronic atrophic gastritis, most often showing intestinal metaplasia and H pylori infection, indicates that a decreased gastric acidity is a prerequisite for localisation of G lamblia to the gastric mucosa. Though its possible role as a gastric pathogen remains to be elucidated, these findings suggest that trophozoites should be carefully searched for when examining gastric biopsy specimens showing chronic atrophic gastritis. Images PMID:1452790

  18. Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice.

    PubMed

    Mohajerani, Majid H; McVea, David A; Fingas, Matthew; Murphy, Timothy H

    2010-03-10

    Spontaneous slow-wave oscillations of neuronal membrane potential occur about once every second in the rodent cortex and may serve to shape the efficacy of evoked neuronal responses and consolidate memory during sleep. However, whether these oscillations reflect the entrainment of all cortical regions via propagating waves or whether they exhibit regional and temporal heterogeneity that reflects processing in local cortical circuits is unknown. Using voltage-sensitive dye (VSD) imaging within an adult C57BL/6J mouse cross-midline large craniotomy preparation, we recorded this depolarizing activity across most of both cortical hemispheres simultaneously in both anesthetized and quiet awake animals. Spontaneous oscillations in the VSD signal were highly synchronized between hemispheres, and acallosal I/LnJ mice indicated that synchrony depended on the corpus callosum. In both anesthetized and awake mice (recovered from anesthesia), the oscillations were not necessarily global changes in activity state but were made up of complex local patterns characterized by multiple discrete peaks that were unevenly distributed across cortex. Although the local patterns of depolarizing activity were complex and changed over tens of milliseconds, they were faithfully mirrored in both hemispheres in mice with an intact corpus callosum, to perhaps ensure parallel modification of related circuits in both hemispheres. We conclude that within global rhythms of spontaneous activity are complex events that reflect orchestrated processing within local cortical circuits.

  19. Spatial proximity effects on the excitation of sheath RF voltages by evanescent slow waves in the ion cyclotron range of frequencies

    NASA Astrophysics Data System (ADS)

    Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric

    2017-02-01

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF  +  DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  20. Gastric cancer

    SciTech Connect

    Douglass, H.O. )

    1988-01-01

    This book contains 10 selections. Some of the titles are: Radiation therapy for gastric cancer; Experimental stomach cancer: Drug selection based on in vitro testing; Western surgical adjuvant trials in gastric cancers: Lessons from current trials to be applied in the future; and Chemotherapy of gastric cancer.

  1. Gastric Microbiome and Gastric Cancer

    PubMed Central

    Brawner, Kyle M.; Morrow, Casey D.; Smith, Phillip D.

    2014-01-01

    Cancer of the stomach is the fourth most common cancer worldwide. The single strongest risk factor for gastric cancer is Helicobacter pylori-associated chronic gastric inflammation. Among persons with H. pylori infection, strain-specific components, host immune responses, and environmental factors influence the risk for gastric disease, including adenocarcinoma of the stomach, although only a small proportion of infected persons develop the malignancy. Recent advances in DNA sequencing technology have uncovered a complex community of non-cultivatable inhabitants of the human stomach. The interaction between these inhabitants, collectively referred to as the gastric microbiota, and H. pylori likely impacts gastric immunobiology and possibly the sequelae of H. pylori infection. Thus, characterization of the gastric microbiota in subjects with and without H. pylori infection could provide new insight into gastric homeostasis and the pathogenesis of H. pylori-associated disease, including gastric cancer. PMID:24855010

  2. Changes in the redox potential of the rabbit cerebral cortex accompanying episodes of ECoG arousal during slow-wave sleep.

    PubMed

    Shvets-Ténéta-Gurii, T B; Troshin, G I; Dubinin, A G

    2008-01-01

    The redox potential (E) is a useful measure of the intensity and quality of shifts in energy metabolism. Brain E depends on the ratio of the rates of processes occurred in two compartments of energy metabolism - the glycolysis compartment, in which glucose is split without oxygen, and the oxidative metabolism compartment. The present report describes recording of local changes in E using platinum electrodes implanted into several points in the cortex. In these conditions, decreases in E correspond to local increases in the rates of glycolytic processes in the tissue surrounding the electrode and are related to mitochondrial processes, while increases in E correspond to local acceleration of processes in oxidative metabolism in the tissues around the electrode. Our previous studies in rats showed that during episodes of slow-wave sleep (SWS), metabolically active points of the rat cerebral cortex show significant decreases in E, and it was suggested that these are associated with increases in the rate of glycolysis. At the same time, E showed characteristic oscillations lasting 20-40 sec with amplitudes of tens of millivolts. The experiments reported here demonstrated that slow oscillations in E developing during SWS are created by regular episodes of ECoG arousal occurring during SWS, accompanied by startling of the animal, decreases in E, and inhibition of respiration. We suggest that a homeostasis system operates during SWS to maintain the animal's level of consciousness at a particular level and that this, like any system with feedback, operates in an oscillatory fashion. The role of glycolysis in supplying energy to the cerebral cortex to support the elevated level of consciousness increases.

  3. Amplitude inversion of fast and slow converted waves for fracture characterization of the Montney Formation in Pouce Coupe field, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    MacFarlane, Tyler L.

    The Montney Formation of western Canada is one of the largest economically viable gas resource plays in North America with reserves of 449TCF. As an unconventional tight gas play, the well development costs are high due to the hydraulic stimulations necessary for economic success. The Pouce Coupe research project is a multidisciplinary collaboration between the Reservoir Characterization Project (RCP) and Talisman Energy Inc. with the objective of understanding the reservoir to enable the optimization of well placement and completion design. The work in this thesis focuses on identifying the natural fractures in the reservoir that act as the delivery systems for hydrocarbon flow to the wellbore. Characterization of the Montney Formation at Pouce Coupe is based on time-lapse multicomponent seismic surveys that were acquired before and after the hydraulic stimulation of two horizontal wells. Since shear-wave velocities and amplitudes of the PS-waves are known to be sensitive to near-vertical fractures, I utilize isotropic simultaneous seismic inversions on azimuthally-sectored PS1 and PS2 data sets to obtain measurements of the fast and slow shear-velocities. Specifically, I analyze two orthogonal azimuths that are parallel and perpendicular to the strike of the dominant fracture system in the field. These volumes are used to approximate the shear-wave splitting parameter (gamma(s*)) that is closely related to crack density. Since crack density has a significant impact on defining the percolation zone, the work presented in this thesis provides information that can be utilized to reduce uncertainty in the reservoirs fracture model. Isotropic AVO inversion of azimuthally limited PS-waves demonstrates sufficient sensitivity to detect contrast between the anisotropic elastic properties of the reservoir and is capable of identifying regions with high crack density. This is supported by integration with spinner production logs, hydraulic stimulation history of the field

  4. Enhanced slow wave sleep and improved sleep maintenance after gaboxadol administration during seven nights of exposure to a traffic noise model of transient insomnia.

    PubMed

    Dijk, D-J; Stanley, N; Lundahl, J; Groeger, J A; Legters, A; Trap Huusom, A K; Deacon, S

    2012-08-01

    Slow wave sleep (SWS) has been reported to correlate with sleep maintenance, but whether pharmacological enhancement of SWS also leads to improved sleep maintenance is not known. Here we evaluate the time-course of the effects of gaboxadol, an extra-synaptic gamma-aminobutyric acid (GABA) agonist, on SWS, sleep maintenance, and other sleep measures in a traffic noise model of transient insomnia. After a placebo run-in, 101 healthy subjects (20-78 y) were randomized to gaboxadol (n = 50; 15 mg in subjects <65 y and 10 mg in subjects ≥65 y) or placebo (n = 51) for 7 nights (N1-N7). The model caused some disruption of sleep initiation and maintenance, with greatest effects on N1. Compared with placebo, gaboxadol increased SWS and slow wave activity throughout N1 to N7 (p < 0.05). Gaboxadol reduced latency to persistent sleep overall (N1-N7) by 4.5 min and on N1 by 11 min (both p < 0.05). Gaboxadol increased total sleep time (TST) overall by 16 min (p < 0.001) and on N1 by 38 min (p < 0.0001). Under gaboxadol, wakefulness after sleep onset was reduced by 11 min overall (p < 0.01) and by 29 min on N1 (p < 0.0001), and poly-somnographic awakenings were reduced on N1 (p < 0.05). Gaboxadol reduced self-reported sleep onset latency overall and on N1 (both p < 0.05) and increased self-reported TST overall (p < 0.05) and on N1 (p < 0.01). Subjective sleep quality improved overall (p < 0.01) and on N1 (p < 0.0001). Increases in SWS correlated with objective and subjective measures of sleep maintenance and subjective sleep quality under placebo and gaboxadol (p < 0.05). Gaboxadol enhanced SWS and reduced the disruptive effects of noise on sleep initiation and maintenance.

  5. Rett syndrome and gastric perforation.

    PubMed

    Shah, Malay B; Bittner, James G; Edwards, Michael A

    2008-04-01

    Rett Syndrome is associated with decreased peristaltic esophageal waves and gastric dysmotility, resulting in swallowing difficulties and gastric dilation. Rarely, gastric necrosis and perforation occur. Our case represents the third reported case of gastric necrosis and perforation associated with Rett Syndrome. A 31-year-old female after 11 hours of intermittent emesis and constant, sharp abdominal pain presented with evidence of multiorgan system failure including hypovolemic shock, metabolic acidosis, coagulopathy, and hepatorenal failure. A chest radiograph revealed intra-abdominal free air necessitating emergent laparotomy. During exploration, a severely dilated, thin-walled stomach with an area of necrosis and gross perforation was noted. Wedge resection of the necrotic tissue and primary closure were performed. Despite aggressive perioperative resuscitation and ventilation support, the patient died 3 hours postoperatively secondary to refractory shock and hypoxemia. Severe gastric dilation can occur with Rett Syndrome and may cause gastric necrosis and perforation. Prolonged elevated gastric pressures can decrease perfusion and may contribute to perforation. Timely decompression via percutaneous endoscopic or surgical gastrostomy could decrease the risk of perforation particularly when significant gastric distention is present. Consideration of gastric necrosis and perforation in patients with Rett Syndrome may lead to earlier intervention and decreased mortality.

  6. Slowing of Vortex Rings

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell; Bolster, Diogo; Hershberger, Robert

    2008-11-01

    We have investigated the slowing of vortex rings in water which are created with very thin cores. We find that these rings propagate with no measurable change in diameter or core size. The drag appears to be the result of viscous forces on the core. A simple model for this drag describes experimental data in terms of a drag coefficient, which depends only on Reynolds number. Barenghi's group at Newcastle found that the translational velocity of a ring in an inviscid fluid perturbed by Kelvin waves decreases with increasing amplitude of Kelvin waves. This suggests that the velocity of vortex rings in a viscous fluid may well depend on the amplitude of Kelvin waves at the time of formation. Rings with substantial amplitude of Kelvin waves will be expected to move more slowly than rings with little or no Kelvin wave amplitude. We present experimental data confirming this suggestion.

  7. Self-excitation of microwave oscillations in plasma-assisted slow-wave oscillators by an electron beam with a movable focus.

    PubMed

    Bliokh, Yu P; Nusinovich, G S; Shkvarunets, A G; Carmel, Y

    2004-10-01

    Plasma-assisted slow-wave oscillators (pasotrons) operate without external magnetic fields, which makes these devices quite compact and lightweight. Beam focusing in pasotrons is provided by ions, which appear in the device due to the impact ionization of a neutral gas by beam electrons. Typically, the ionization time is on the order of the rise time of the beam current. This means that, during the rise of the current, beam focusing by ions becomes stronger. Correspondingly, a beam of electrons, which was initially diverging radially due to the self-electric field, starts to be focused by ions, and this focus moves towards the gun as the ion density increases. This feature makes the self-excitation of electromagnetic (em) oscillations in pasotrons quite different from practically all other microwave sources where em oscillations are excited by a stationary electron beam. The process of self-excitation of em oscillations has been studied both theoretically and experimentally. It is shown that in pasotrons, during the beam current rise the amount of current entering the interaction space and the beam coupling to the em field vary. As a result, the self-excitation can proceed faster than in conventional microwave sources with similar operating parameters such as the operating frequency, cavity quality-factor and the beam current and voltage.

  8. Associations between prospective symptom changes and slow-wave activity in patients with Internet gaming disorder: A resting-state EEG study.

    PubMed

    Kim, Yeon Jin; Lee, Jun-Young; Oh, Sohee; Park, Minkyung; Jung, Hee Yeon; Sohn, Bo Kyung; Choi, Sam-Wook; Kim, Dai Jin; Choi, Jung-Seok

    2017-02-01

    The identification of the predictive factors and biological markers associated with treatment-related changes in the symptoms of Internet gaming disorder (IGD) may provide a better understanding of the pathophysiology underlying this condition. Thus, the present study aimed to identify neurophysiological markers associated with symptom changes in IGD patients and to identify factors that may predict symptom improvements following outpatient treatment with pharmacotherapy. The present study included 20 IGD patients (mean age: 22.71 ± 5.47 years) and 29 healthy control subjects (mean age: 23.97 ± 4.36 years); all IGD patients completed a 6-month outpatient management program that included pharmacotherapy with selective serotonin reuptake inhibitors. Resting-state electroencephalography scans were acquired prior to and after treatment, and the primary treatment outcome was changes in scores on Young's Internet Addiction Test (IAT) from pre- to posttreatment. IGD patients showed increased resting-state electroencephalography activity in the delta and theta bands at baseline, but the increased delta band activity was normalized after 6 months of treatment and was significantly correlated with improvements in IGD symptoms. Additionally, higher absolute theta activity at baseline predicted a greater possibility of improvement in addiction symptoms following treatment, even after adjusting for the effects of depressive or anxiety symptoms. The present findings demonstrated that increased slow-wave activity represented a state neurophysiological marker in IGD patients and suggested that increased theta activity at baseline may be a favorable prognostic marker for this population.

  9. Essential Roles of GABA Transporter-1 in Controlling Rapid Eye Movement Sleep and in Increased Slow Wave Activity after Sleep Deprivation

    PubMed Central

    Xu, Xin-Hong; Qu, Wei-Min; Bian, Min-Juan; Huang, Fang; Fei, Jian; Urade, Yoshihiro; Huang, Zhi-Li

    2013-01-01

    GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep. PMID:24155871

  10. Increased alpha (8-12 Hz) activity during slow wave sleep as a marker for the transition from implicit knowledge to explicit insight.

    PubMed

    Yordanova, Juliana; Kolev, Vasil; Wagner, Ullrich; Born, Jan; Verleger, Rolf

    2012-01-01

    The number reduction task (NRT) allows us to study the transition from implicit knowledge of hidden task regularities to explicit insight into these regularities. To identify sleep-associated neurophysiological indicators of this restructuring of knowledge representations, we measured frequency-specific power of EEG while participants slept during the night between two sessions of the NRT. Alpha (8-12 Hz) EEG power during slow wave sleep (SWS) emerged as a specific marker of the transformation of presleep implicit knowledge to postsleep explicit knowledge (ExK). Beta power during SWS was increased whenever ExK was attained after sleep, irrespective of presleep knowledge. No such EEG predictors of insight were found during Sleep Stage 2 and rapid eye movement sleep. These results support the view that it is neuronal memory reprocessing during sleep, in particular during SWS, that lays the foundations for restructuring those task-related representations in the brain that are necessary for promoting the gain of ExK.

  11. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    PubMed

    Xu, Xin-Hong; Qu, Wei-Min; Bian, Min-Juan; Huang, Fang; Fei, Jian; Urade, Yoshihiro; Huang, Zhi-Li

    2013-01-01

    GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  12. Laparoscopic gastric banding

    MedlinePlus

    ... adjustable gastric banding; Bariatric surgery - laparoscopic gastric banding; Obesity - gastric banding; Weight loss - gastric banding ... gastric banding is not a "quick fix" for obesity. It will greatly change your lifestyle. You must ...

  13. Characterization of gastric electrical activity using magnetic field measurements: a simulation study.

    PubMed

    Kim, J H K; Bradshaw, L A; Pullan, A J; Cheng, L K

    2010-01-01

    quantum interference device designs. When multiple slow waves were present in the stomach, the SCD map contained only one maximum point corresponding to the more dominant source located in the distal stomach. Parameters corresponding to the slow wave in the proximal stomach were obtained once the dominant slow terminated at the antrum. Additional validation studies are warranted to address the utility of the SCD method to resolve parameters related to gastric slow waves in a clinical setting.

  14. Electrogastrography in Adults and Children: The Strength, Pitfalls, and Clinical Significance of the Cutaneous Recording of the Gastric Electrical Activity

    PubMed Central

    Indrio, Flavia

    2013-01-01

    Cutaneous electrogastrography (EGG) is a non-invasive technique to record gastric myoelectrical activity from the abdominal surface. Although the recent rapid increase in the development of electrocardiography, EGG still suffers from several limitations. Currently, computer analysis of EGG provides few reliable parameters, such as frequency and the percentage of normal and altered slow wave activity (bradygastria and tachygastria). New EGG hardware and software, along with an appropriate arrangement of abdominal electrodes, could detect the coupling of the gastric slow wave from the EGG. At present, EGG does not diagnose a specific disease, but it puts in evidence stomach motor dysfunctions in different pathological conditions as gastroparesis and functional dyspepsia. Despite the current pitfalls of EGG, a multitasking diagnostic protocol could involve the EGG and the 13C-breath testing for the evaluation of the gastric emptying time—along with validated gastrointestinal questionnaires and biochemical evaluations of the main gastrointestinal peptides—to identify dyspeptic subgroups. The present review tries to report the state of the art about the pathophysiological background of the gastric electrical activity, the recording and processing methodology of the EGG with particular attention to multichannel recording, and the possible clinical application of the EGG in adult and children. PMID:23762836

  15. Analysis of the frequency response of a TeO{sub 2} slow shear wave acousto-optic cell exposed to radiation

    SciTech Connect

    Erteza, I.A.

    1995-04-01

    Radiation testing of photonic components is not new, however component level testing to date has not completely addressed quantities which are important to system behavior. One characteristic that is of particular importance for optical processing systems is the frequency response. In this report, we present the analysis of data from an experiment designed to provide a preliminary understanding of the effects of radiation on the frequency response of acousto-optic devices. The goal of the analysis is to describe possible physical mechanisms responsible for the radiation effects and to discuss the effects on signal processing functionality. The experiment discussed in this report was designed by Sandia National Laboratories and performed by Sandia and Phillips Laboratory personnel at White Sands Missile Range (WSMR). In the experiment, a TeO{sub 2} slow shear wave acousto-optic cell was exposed to radiation from the WSMR linear accelerator. The TeO{sub 2} cell was placed in an experimental configuration which allowed swept frequency diffracted power measurements to be taken during radiation exposure and recovery. A series of exposures was performed. Each exposure consisted of between 1 to 800, 1{mu}sec radiation pulses (yielding exposures of 2.25 kRad(Si) to 913 kRad(Si)), followed by recovery time. At low total and cumulative doses, the bandshape of the frequency response (i.e. diffracted power vs. frequency) remained almost identical during and after radiation. At the higher exposures, however, the amplitude and width of the frequency response changed as the radiation continued, but returned to the original shape slowly after the radiation stopped and recovery proceeded. It is interesting to note that the location of the Bragg degeneracy does not change significantly with radiation. In this report, we discuss these effects from the perspective of anisotropic Bragg diffraction and momentum mismatch, and we discuss the effect on the signal processing functionality.

  16. Randomised clinical trial of the effects of prolonged-release melatonin, temazepam and zolpidem on slow-wave activity during sleep in healthy people.

    PubMed

    Arbon, Emma L; Knurowska, Malgorzata; Dijk, Derk-Jan

    2015-07-01

    Current pharmacological treatments for insomnia include benzodiazepine and non-benzodiazepine hypnotics targeting γ-aminobutyric acid (GABA)A receptors, as well as agonists of the melatonin receptors MT1 and MT2. Melatonin, temazepam and zolpidem are thought to exert their effect through different mechanisms of action, but whether this leads to differential effects on electroencephalogram (EEG) power spectra during sleep in middle-aged people is currently not known. To establish whether the effects of prolonged-release melatonin (2 mg) on the nocturnal sleep EEG are different to those of temazepam (20 mg) and zolpidem (10 mg). Sixteen healthy men and women aged 55-64 years participated in a double-blind, placebo-controlled, four-way cross-over trial. Nocturnal sleep was assessed with polysomnography and spectral analysis of the EEG. The effects of single oral doses of prolonged-release melatonin, temazepam and zolpidem on EEG slow-wave activity (SWA, 0.75-4.5 Hz) and other frequencies during nocturnal non-rapid eye movement (NREM) sleep were compared. In an entire night analysis prolonged-release melatonin did not affect SWA, whereas temazepam and zolpidem significantly reduced SWA compared with placebo. Temazepam significantly reduced SWA compared with prolonged-release melatonin. Prolonged-release melatonin only reduced SWA during the first third of the night compared with placebo. These data show that the effects of prolonged-release melatonin on the nocturnal sleep EEG are minor and are different from those of temazepam and zolpidem; this is likely due to the different mechanisms of action of the medications.

  17. Deep sleep after social stress: NREM sleep slow-wave activity is enhanced in both winners and losers of a conflict.

    PubMed

    Kamphuis, Jeanine; Lancel, Marike; Koolhaas, Jaap M; Meerlo, Peter

    2015-07-01

    Sleep is considered to be a recovery process of prior wakefulness. Not only duration of the waking period affects sleep architecture and sleep EEG, the quality of wakefulness is also highly important. Studies in rats have shown that social defeat stress, in which experimental animals are attacked and defeated by a dominant conspecific, is followed by an acute increase in NREM sleep EEG slow wave activity (SWA). However, it is not known whether this effect is specific for the stress of social defeat or a result of the conflict per se. In the present experiment, we examined how sleep is affected in both the winners and losers of a social conflict. Sleep-wake patterns and sleep EEG were recorded in male wild-type Groningen rats that were subjected to 1h of social conflict in the middle of the light phase. All animals were confronted with a conspecific of similar aggression level and the conflict took place in a neutral arena where both individuals had an equal chance to either win or lose the conflict. NREM sleep SWA was significantly increased after the social conflict compared to baseline values and a gentle stimulation control condition. REM sleep was significantly suppressed in the first hours after the conflict. Winners and losers did not differ significantly in NREM sleep time, NREM sleep SWA and REM sleep time immediately after the conflict. Losers tended to have slightly more NREM sleep later in the recovery period. This study shows that in rats a social conflict with an unpredictable outcome has quantitatively and qualitatively largely similar acute effects on subsequent sleep in winners and losers.

  18. Effects of playing a computer game using a bright display on presleep physiological variables, sleep latency, slow wave sleep and REM sleep.

    PubMed

    Higuchi, Shigekazu; Motohashi, Yutaka; Liu, Yang; Maeda, Akira

    2005-09-01

    Epidemiological studies have shown that playing a computer game at night delays bedtime and shortens sleeping hours, but the effects on sleep architecture and quality have remained unclear. In the present study, the effects of playing a computer game and using a bright display on nocturnal sleep were examined in a laboratory. Seven male adults (24.7+/-5.6 years old) played exciting computer games with a bright display (game-BD) and a dark display (game-DD) and performed simple tasks with low mental load as a control condition in front of a BD (control-BD) and DD (control-DD) between 23:00 and 1:45 hours in randomized order and then went to bed at 2:00 hours and slept until 8:00 hours. Rectal temperature, electroencephalogram (EEG), heart rate and subjective sleepiness were recorded before sleep and a polysomnogram was recorded during sleep. Heart rate was significantly higher after playing games than after the control conditions, and it was also significantly higher after using the BD than after using the DD. Subjective sleepiness and relative theta power of EEG were significantly lower after playing games than after the control conditions. Sleep latency was significantly longer after playing games than after the control conditions. REM sleep was significantly shorter after the playing games than after the control conditions. No significant effects of either computer games or BD were found on slow-wave sleep. These results suggest that playing an exciting computer game affects sleep latency and REM sleep but that a bright display does not affect sleep variables.

  19. Axonal transport of class II and III beta-tubulin: evidence that the slow component wave represents the movement of only a small fraction of the tubulin in mature motor axons

    PubMed Central

    1992-01-01

    Pulse-labeling studies demonstrate that tubulin synthesized in the neuron cell body (soma) moves somatofugally within the axon (at a rate of several millimeters per day) as a well-defined wave corresponding to the slow component of axonal transport. A major goal of the present study was to determine what proportion of the tubulin in mature motor axons is transported in this wave. Lumbar motor neurons in 9-wk-old rats were labeled by injecting [35S]methionine into the spinal cord 2 wk after motor axons were injured (axotomized) by crushing the sciatic nerve. Immunoprecipitation with mAbs which recognize either class II or III beta-tubulin were used to analyze the distributions of radioactivity in these isotypes in intact and axotomized motor fibers 5 d after labeling. We found that both isotypes were associated with the slow component wave, and that the leading edge of this wave was enriched in the class III isotype. Axotomy resulted in significant increases in the labeling and transport rates of both isotypes. Immunohistochemical examination of peripheral nerve fibers demonstrated that nearly all of the class II and III beta-tubulin in nerve fibers is located within axons. Although the amounts of radioactivity per millimeter of nerve in class II and III beta-tubulin were significantly greater in axotomized than in control nerves (with increases of +160% and +58%, respectively), immunoassay revealed no differences in the amounts of these isotypes in axotomized and control motor fibers. We consider several explanations for this paradox; these include the possibility that the total tubulin content is relatively insensitive to changes in the amount of tubulin transported in the slow component wave because this wave represents the movement of only a small fraction of the tubulin in these motor fibers. PMID:1383234

  20. Gastric suction

    MedlinePlus

    Gastric lavage; Stomach pumping; Nasogastric tube suction; Bowel obstruction - suction ... A tube is inserted through your nose or mouth, down the food pipe (esophagus), and into the stomach. Your ...

  1. Gastric sarcoidosis.

    PubMed Central

    Akinyemi, Emmanuel; Rohewal, Upinder; Tangorra, Matthew; Abdullah, Muhammad

    2006-01-01

    A 58-year-old Jamaican male presented with acute-onset, right-sided facial droop and slurred speech. He had an episode of upper gastrointestinal (GI) bleed on the second day of admission and endoscopy with biopsy of antral ulcer revealed gastric sarcoidosis. This case demonstrates the rare entity of gastric sarcoidosis presenting acutely with an upper GI bleed. Images Figure 1 Figure 2 PMID:16775918

  2. Gastric myoelectrical activity in patients with Parkinson's disease: evidence of a primary gastric abnormality.

    PubMed

    Soykan, I; Lin, Z; Bennett, J P; McCallum, R W

    1999-05-01

    Parkinson's disease patients may experience various gastrointestinal symptoms; however, the exact pathophysiology of these symptoms is not fully understood. Therefore, the aim of this study was to investigate the pattern of gastric myoelectrical activity in patients with Parkinson's disease. Eleven patients with Parkinson's disease and 10 healthy subjects participated in the study. Patients were stratified as "receiving dopaminergic therapy" (N = 5) and "off therapy" (N = 6). Gastric myoelectrical activity was measured by means of surface electrogastrography (EGG) for 30 min before and for 90 min after a standardized meal. The dominant frequency, postprandial EGG power change, and the percentage of normal 2-4 cycles/min (cpm) slow-wave activity in the three groups were calculated and compared. The mean postprandial EGG power increase in the untreated patients was smaller than in the treated patients (-3.11 +/- 1.01 and 1.17 +/- 1.96 dB; P = 0.072). Moreover, both of these values were significantly decreased when compared to the control group (untreated vs control: -3.11 +/- 1.01 vs 8.01 +/- 1.86 dB; P = 0.04 and treated vs control: 1.17 +/- 1.96 vs 8.01 +/- 1.86 dB; P = 0.02). The percentage of normal 2-4 cpm slow waves in untreated patients was not different from the treated patients (82.6 +/- 6.6% vs 75.8 +/- 13.6%, P = NS) or from the control group (88.2 +/- 5.4%, P = NS). The dominant frequency after the meal was similar to that in the fasting state both in the untreated (3.3 +/- 0.1 vs 3.2 +/- 0.2 cpm; P = NS) and treated patients (3.2 +/- 0.1 vs 3.1 +/- 0.1 cpm, P = NS), whereas the dominant frequency significantly increased postprandially in the control group (2.88 +/- 0.12 vs 3.05 +/- 0.16; P < 0.05). Abnormalities in gastric myoelectrical activity in untreated Parkinson's disease patients reflect direct involvement of the gastrointestinal tract by the primary disease process. EGG can be regarded as a useful diagnostic tool in evaluating gastrointestinal

  3. [Gastric lymphoma].

    PubMed

    Ruskoné-Fourmestraux, A

    1997-04-15

    The stomach is the most common site involved in primary gastrointestinal lymphoma. Gastric lymphoma originates from the mucosa-associated lymphoid tissue so called MALT. It comprises a group of distinctive clinicopathological entities which are important to take in account for clinical behavior. In recent years, new diagnostic tools and modern modes of treatment have improved their overall prognosis. One of the most exciting recent discoveries is the hypothesis that an infection by a bacterium. Helicobacter pylori has a decisive role in gastric lymphoma.

  4. [Gastric volvulus].

    PubMed

    Solórzano, J; Acosta, D; Morales, H; Vásquez, F; Mora, G; Chávez, M; Andrade, D; Joutteaux, R; Sánchez, I; García, D; Valenzuela, E

    2006-10-01

    Gastric volvulus is a rare condition in pediatric population in which there is an abnormal rotation of one part of the stomach around itself. It's a surgical emergency. We report a six year old female admitted in the emergency due to upper abdominal distention, nausea without vomiting, physical exam revealed upper abdominal distention and abdominal tenderness, no bowel sounds. Laparotomy was performed and a gastric volvulus with occlusive vascular involvement was found. In the post operative period she required a second laparotomy due to adhesions in small bowel.

  5. [Gastric cancer].

    PubMed

    Belén Fraile, M; Serra Bartual, M; Segarra Sánchez, J; Richart Rufino, M J

    1991-11-01

    Gastric cancer represents a disorder which incidence has come down last years. Its etiology is unknown, but diet is the principal determinant risk of suffering it. Clinic history is not much useful, because in the early stage symptoms can fail and in the late stage are inespecific. Election diagnosis is endoscopy. Surgery is the only curative treatment. By these features, it would be useful to left under vigilance to: a) patients 40 years older with dispepsia; b) patients following gastric operations; c) patients with disorders presenting aclorhidria. The authors report a clinic case that can be of frequent presentation in primary assistance.

  6. [Gastric cleansing].

    PubMed

    Zimmermann Serret, Alina; Alcaraz Bravo, Judit; Carballo Alvarez, Montse; Fernández Vargas, Carmen

    2006-10-01

    Numerous cases in emergency wards are due to the ingestion of potentially toxic substances. One of the most utilized procedures under these circumstances is gastric cleansing. This procedure is a technique habitually practiced by nursing personnel but is not without its risks. Therefore, the motive of this article is to make known the indications, contraindications, related complications of gastric cleansing and its integral patient care process in order to offer quality care methods which enable their being performed in an effective and efficient manner, under the maximum security conditions with the minimum inconveniences for the patient while at the same time describing the system most commonly used by our service.

  7. A biophysically-based finite state machine model for analysing gastric experimental entrainment and pacing recordings

    PubMed Central

    Sathar, Shameer; Trew, Mark L.; Du, Peng; O’ Grady, Greg; Cheng, Leo K.

    2014-01-01

    Gastrointestinal motility is coordinated by slow waves (SWs) generated by the interstitial cells of Cajal (ICC). Experimental studies have shown that SWs spontaneously activate at different intrinsic frequencies in isolated tissue, whereas in intact tissues they are entrained to a single frequency. Gastric pacing has been used in an attempt to improve motility in disorders such as gastroparesis by modulating entrainment, but the optimal methods of pacing are currently unknown. Computational models can aid in the interpretation of complex in-vivo recordings and help to determine optical pacing strategies. However, previous computational models of SW entrainment are limited to the intrinsic pacing frequency as the primary determinant of the conduction velocity, and are not able to accurately represent the effects of external stimuli and electrical anisotropies. In this paper, we present a novel computationally efficient method for modelling SW propagation through the ICC network while accounting for conductivity parameters and fiber orientations. The method successfully reproduced experimental recordings of entrainment following gastric transection and the effects of gastric pacing on SW activity. It provides a reliable new tool for investigating gastric electrophysiology in normal and diseased states, and to guide and focus future experimental studies. PMID:24276722

  8. Slow Pseudotachylites

    NASA Astrophysics Data System (ADS)

    Pec, M.; Stunitz, H.; Heilbronner, R.

    2011-12-01

    Tectonic pseudotachylites as solidified, friction induced melts are believed to be the only unequivocal evidence for paleo-earthquakes. Earthquakes occur when fast slip (1 - 3 m/s) propagates on a localized failure plane and are always related with stress drops. The mechanical work expended, together with the rock composition and the efficiency of thermal dissipation, controls whether the temperature increase on a localized slip plane will be sufficient to induce fusion. We report the formation of pseudotachylites during steady-state plastic flow at slow bulk shear strain rates (~10^-3 to ~10^-5 /s corresponding to slip rates of ~10^-6 to ~10^-8 m/s) in experiments performed at high confining pressures (500 MPa) and temperatures (300°C) corresponding to a depth of ~15 km. Crushed granitioid rock (Verzasca gneiss), grain size ≤ 200 μm, with 0.2 wt% water added was placed between alumina forcing blocks pre-cut at 45°, weld-sealed in platinum jackets and deformed with a constant displacement rate in a solid medium deformation apparatus (modified Griggs rig). Microstructural observations show the development of a S-C-C' fabric with C' slip zones being the dominant feature. Strain hardening in the beginning of the experiment is accompanied with compaction which is achieved by closely spaced R1 shears pervasively cutting the whole gouge zone and containing fine-grained material (d < 100 nm). The peak strength is achieved at γ ~ 2 at shear stress levels of 1350-1450 MPa when compaction ceases. During further deformation, large local displacements (γ > 10) are localized in less densely spaced, ~10 μm thick C'-C slip zones which develop predominantly in feldspars and often contain micas. In TEM, they appear to have no porosity consisting of partly amorphous material and small crystalline fragments with the average grain size of 20 nm. After the peak strength, the samples weaken by ~20 MPa and continue deforming up to γ ~ 4 without any stress drops. Strain

  9. Gastric bypass surgery - discharge

    MedlinePlus

    Bariatric surgery - gastric bypass - discharge; Roux-en-Y gastric bypass - discharge; Gastric bypass - Roux-en-Y - discharge; Obesity ... Gloy VL, Briel M, Bhatt DL, et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic ...

  10. A 32-channel wireless system for recording gastric electrical activity.

    PubMed

    Springston, Christopher S; Rui Bao; Farajidavar, Aydin

    2016-08-01

    This paper presents a wireless system designed to collect, store and transmit gastric electrical activity, known as slow waves. The system is composed of a miniaturized front-end module that can record from up to 32 locations of the stomach, and a back-end module. The front-end could either store the recorded slow waves into a flash memory, or wirelessly transmit them to the back-end connected to a computer featuring a custom-made graphical user interface (GUI). The GUI displays signals in real time, and stores them for off-line analysis. The front-end with the dimensions of 12×48×4 mm3, allows for potential implantation through laparoscopic or endoscopic procedure. The system was successfully tested on rigorous bench-top experiments. The results of these tests showed that the system could run as designed and accurately map the signals collected by each sensor, as well as show that the flash memory could store data for almost 34 hours should wireless communication be lost.

  11. The equivalence of quasistatic flow in fluid-saturated porous media and Biot's slow wave in the limit of zero frequency

    NASA Astrophysics Data System (ADS)

    Chandler, Richard N.; Johnson, David Linton

    1981-05-01

    We have established in a simple and straightforward fashion that the analysis of quasistatic flow in fluid-saturated porous media due to Rice and Cleary is derivable from the low-frequency limit of Biot's slow compressional/diffusive mode. The single material parameter of the problem, the diffusivity, is simply related to the bulk and shear moduli and permeability of the skeletal frame and to the viscous and elastic properties of the constitutive media. Since this common theory treats fluid and solid displacements on an equal footing, it is the most general linearized description of the problem; other treatments are special cases. These latter include the rigid frame approximation used in the petroleum industry and the weak frame approximation used by De Gennes to describe the motion of polymer gels.

  12. Gastric Schwannoma: A Case Report

    PubMed Central

    Romdhane, Hayfa; Cheikh, Myriam; Mzoughi, Zeineb; Slama, Sana Ben; Ennaifer, Rym; Belhadj, Najet

    2016-01-01

    Schwannomas are generally benign, slow growing tumors. They are rarely observed in the gastrointestinal tract with the most common site being the stomach. These tumors are usually asymptomatic. The preoperative diagnosis via endoscopy is a challenging issue due to the difficulty of differentiation from other submucosal tumors. A 54-year-old woman presented with epigastric pain persisting for the last 10 months. Upper endoscopy revealed an elevated submucosal mass of the gastric antrum. The overlying mucosa was normal. Biopsy specimens yielded only unspecific signs of mild inactive chronic inflammation. Endoscopic ultrasound examination noted a hypoechoic homogeneous mass lesion located in the gastric antrum. The mass appeared to arise from the muscularis propria, and there was no perigastric lymphadenopathy. A contrast-enhanced computed tomography scan identified a homogeneous round mass and arising from the antrum of the stomach. Submucosal tumor was suspected and surgical intervention was recommended. The patient underwent an elective laparoscopic partial gastrectomy. The histopathologic features and immunohistochemical-staining pattern were consistent with a benign gastric schwannoma. Our patient shows no recurrence with a follow-up of one year. The definitive diagnosis of gastric schwannomas requires immunohistochemical studies. Complete margin negative surgical resection, as in this case, is the curative treatment of choice. The clinical course is generally benign. PMID:28028429

  13. Synchronization Properties of Slow Cortical Oscillations

    NASA Astrophysics Data System (ADS)

    Takekawa, T.; Aoyagi, T.; Fukai, T.

    During slow-wave sleep, the brain shows slow oscillatory activity with remarkable long-range synchrony. Intracellular recordings show that the slow oscillation consists of two phases: an textit{up} state and a textit{down} state. Deriving the phase-response function of simplified neuronal systems, we examine the synchronization properties on slow oscillations between the textit{up} state and the textit{down} state. As a result, the strange interaction functions are found in some parameter ranges. These functions indicate that the states with the smaller phase lag than a critical value are all stable.

  14. Visualization of gastric bands on radionuclide gastric emptying studies

    SciTech Connect

    Alazraki, N.; McIntyre, B.; Elgin, D.; Christian, P.; Moore, J.

    1984-01-01

    In the course of performing many gastric emptying studies with radionuclide labeled solid and liquid meals, the authors have noted the appearance of gastric ''bands'' on images. These bands do not appear to be peristaltic contractions because they persist in individual subjects for hours of imaging. Peristaltic contraction waves move and change appearance within a few seconds. Bands have been described in humans at autopsy and in dogs, pigs, and monkeys, typically in transverse and mid-gastric locations. However, because the bands have not been seen on radiographic studies with barium meals, the finding has been ignored in gastro-intestinal and radiologic textbooks. An anatomic basis or physiologic role in regulating gastric emptying is unknown. SPECT imaging of 5 normal subjects after ingestion of Tc-99m sulfur colloid labeled chicken liver meals on two separate study days was performed. Linear photon deficient regions (''bands'') were identified on gastric images in all subjects. Multiple bands were sometimes seen, including a transverse band across the mid lower body of the stomach and a vertical longitudinal band which appeared to bisect the fundus in three subjects. In one subject, multiple body positions including upright, upside-down, and supine, did not alter the appearance or location of the transverse gastric band. Conventional imaging did not always demonstrate presence of the band, since the optimal projection for imaging the band may not have been part of the planar imaging routine. Sixty-four acquisitions over 360/sup 0/ of SPECT imaging showed that bands were seen in some projections and not in others.

  15. Knockout of the BK β2 subunit abolishes inactivation of BK currents in mouse adrenal chromaffin cells and results in slow-wave burst activity

    PubMed Central

    Martinez-Espinosa, Pedro L.; Yang, Chengtao; Gonzalez-Perez, Vivian; Xia, Xiao-Ming

    2014-01-01

    Rat and mouse adrenal medullary chromaffin cells (CCs) express an inactivating BK current. This inactivation is thought to arise from the assembly of up to four β2 auxiliary subunits (encoded by the kcnmb2 gene) with a tetramer of pore-forming Slo1 α subunits. Although the physiological consequences of inactivation remain unclear, differences in depolarization-evoked firing among CCs have been proposed to arise from the ability of β2 subunits to shift the range of BK channel activation. To investigate the role of BK channels containing β2 subunits, we generated mice in which the gene encoding β2 was deleted (β2 knockout [KO]). Comparison of proteins from wild-type (WT) and β2 KO mice allowed unambiguous demonstration of the presence of β2 subunit in various tissues and its coassembly with the Slo1 α subunit. We compared current properties and cell firing properties of WT and β2 KO CCs in slices and found that β2 KO abolished inactivation, slowed action potential (AP) repolarization, and, during constant current injection, decreased AP firing. These results support the idea that the β2-mediated shift of the BK channel activation range affects repetitive firing and AP properties. Unexpectedly, CCs from β2 KO mice show an increased tendency toward spontaneous burst firing, suggesting that the particular properties of BK channels in the absence of β2 subunits may predispose to burst firing. PMID:25267913

  16. Knockout of the BK β2 subunit abolishes inactivation of BK currents in mouse adrenal chromaffin cells and results in slow-wave burst activity.

    PubMed

    Martinez-Espinosa, Pedro L; Yang, Chengtao; Gonzalez-Perez, Vivian; Xia, Xiao-Ming; Lingle, Christopher J

    2014-10-01

    Rat and mouse adrenal medullary chromaffin cells (CCs) express an inactivating BK current. This inactivation is thought to arise from the assembly of up to four β2 auxiliary subunits (encoded by the kcnmb2 gene) with a tetramer of pore-forming Slo1 α subunits. Although the physiological consequences of inactivation remain unclear, differences in depolarization-evoked firing among CCs have been proposed to arise from the ability of β2 subunits to shift the range of BK channel activation. To investigate the role of BK channels containing β2 subunits, we generated mice in which the gene encoding β2 was deleted (β2 knockout [KO]). Comparison of proteins from wild-type (WT) and β2 KO mice allowed unambiguous demonstration of the presence of β2 subunit in various tissues and its coassembly with the Slo1 α subunit. We compared current properties and cell firing properties of WT and β2 KO CCs in slices and found that β2 KO abolished inactivation, slowed action potential (AP) repolarization, and, during constant current injection, decreased AP firing. These results support the idea that the β2-mediated shift of the BK channel activation range affects repetitive firing and AP properties. Unexpectedly, CCs from β2 KO mice show an increased tendency toward spontaneous burst firing, suggesting that the particular properties of BK channels in the absence of β2 subunits may predispose to burst firing.

  17. Chronic Gastric Ischemia Leading to Gastric Perforation

    PubMed Central

    Lundsmith, Emma; Zheng, Matthew; McCue, Peter

    2016-01-01

    A 69-year-old man with diabetes, peripheral vascular disease, and hypertension presented with 3 months of diffuse abdominal pain that worsened with meals, weight loss, and dysphagia. Esophagogastroduodenoscopy and computed tomography revealed findings consistent with chronic gastric ischemia secondary to atherosclerosis. Gastric ischemia eventually led to perforation. We discuss causes, symptoms, diagnosis, and management of gastric ischemia, an underdiagnosed and potentially fatal condition that requires urgent diagnosis and treatment. PMID:28119945

  18. Apparent AV junctional escape in Wenckebach AV block: markedly slow conduction through the slow AV pathway.

    PubMed

    Kinoshita, Shinji; Katoh, Takakazu; Hagisawa, Kohsuke; Fukushima, Tsutomu; Ikawa, Shinji

    2009-02-01

    We report here two cases of Wenckebach atrioventricular (AV) block in which apparent AV junctional escape was observed, but most likely resulted from markedly slow conduction through the slow pathway of dual AV junctional pathways. In these cases, it seems that a blocked P-wave was followed by an AV junctional escape beat. However, a blocked P-wave occasionally failed to be followed by an escape beat, and the RR interval containing the blocked P-wave was markedly longer than the above escape interval. In one case, apparent AV junctional escape beats with aberrant ventricular conduction were found, and QRS complexes of the same configuration were also found without the preceding ventricular pause. This strengthens the possibility that apparent AV junctional escape occurred because of markedly slow conduction through the slow AV pathway.

  19. Gastric stromal tumor.

    PubMed

    Ovali, Gülgün Yilmaz; Tarhan, Serdar; Serter, Selim; Pabuşçu, Yüksel

    2005-06-01

    Gastric stromal tumors are rare neoplasms of the stomach. In this report we present a gastric stromal tumor with an exophytic growth pattern, and describe magnetic resonance imaging and endoscopic ultrasonography findings.

  20. [Gastric and intestinal bezoars].

    PubMed

    Larbi, Noureddine; Kaâbi, Samarra; Ben Salah, Khiareddine

    2003-12-01

    The authors report a retrospective study of 10 cases of gastric and small bowel bezoars. There was one gastric trichobezoar diagnosed by an abdominal mass and 9 small bowel obstruction due to phytobezoars. All patients underwent surgery: the gastric trichobezoar was removed through a gastrotomy; small bowel bezoars were treated either by enterotomy (n = 3), fragmentation (n = 5) or bowel resection (n = 1). Non operative treatment is efficient in gastric phytobezoars. Surgery is advisable for trichobezoars and small bowel bezoars. Prevention is main and patients who have gastric surgery must be alarmed from consumption of cactus in our country Tunisia.

  1. Variational Analysis of Helical Slow Wave Structures.

    DTIC Science & Technology

    1980-05-01

    fields is shown in detail. Bevensee avoided using these partly because they did not satisfy Maxwell’s equation and thereby introduced volume integrals...both Ez and Hz satisfy Maxwell’s equation . This is the subset Bevensee used because only surface integrals remain in the variational formula for simple

  2. Slowing down bubbles with sound

    NASA Astrophysics Data System (ADS)

    Poulain, Cedric; Dangla, Remie; Guinard, Marion

    2009-11-01

    We present experimental evidence that a bubble moving in a fluid in which a well-chosen acoustic noise is superimposed can be significantly slowed down even for moderate acoustic pressure. Through mean velocity measurements, we show that a condition for this effect to occur is for the acoustic noise spectrum to match or overlap the bubble's fundamental resonant mode. We render the bubble's oscillations and translational movements using high speed video. We show that radial oscillations (Rayleigh-Plesset type) have no effect on the mean velocity, while above a critical pressure, a parametric type instability (Faraday waves) is triggered and gives rise to nonlinear surface oscillations. We evidence that these surface waves are subharmonic and responsible for the bubble's drag increase. When the acoustic intensity is increased, Faraday modes interact and the strongly nonlinear oscillations behave randomly, leading to a random behavior of the bubble's trajectory and consequently to a higher slow down. Our observations may suggest new strategies for bubbly flow control, or two-phase microfluidic devices. It might also be applicable to other elastic objects, such as globules, cells or vesicles, for medical applications such as elasticity-based sorting.

  3. Gastric syphilis - Case report*

    PubMed Central

    Guimarães, Tais Ferreira; Novis, Camila Freitas Lobo; Bottino, Caroline Bertolini; D'Acri, Antonio Macedo; Lima, Ricardo Barbosa; Martins, Carlos José

    2016-01-01

    Gastric syphilis is an uncommon extracutaneous manifestation of syphilis, occurring in less than 1% of patients, presenting nonspecific clinical manifestations. In general, it occurs on secondary stage. The critical point is the recognition of the syphilitic gastric involvement, without which there may be incorrect diagnosis of malignancy of the digestive tract. In this report, a case of secondary syphilis with gastric involvement that had complete remission with benzathine penicillin will be described. PMID:27828649

  4. Gastrin and Gastric Cancer

    PubMed Central

    Waldum, Helge L.; Sagatun, Liv; Mjønes, Patricia

    2017-01-01

    Gastric cancer although occurring in reduced frequency is still an important disease, partly because of the bad prognosis when occurring in western countries. This decline in occurrence may mainly be due to the reduced prevalence of Helicobacter pylori (Hp) infection, which is the most important cause of gastric cancer. There exist many different pathological classifications of gastric carcinomas, but the most useful seems to be the one by Lauren into intestinal and diffuse types since these types seldom transform into the other and also have different epidemiology. During the nearly 30 years that have passed since the groundbreaking description of Hp as the cause of gastritis and gastric cancer, a continuous search for the mechanism by which Hp infection causes gastric cancer has been done. Interestingly, it is mainly atrophic gastritis of the oxyntic mucosa that predisposes to gastric cancer possibly by inducing hypoacidity and hypergastrinemia. There are many arguments in favor of an important role of gastrin and its target cell, the enterochromaffin-like cell, in gastric carcinogenesis. The role of gastrin in gastric carcinogenesis implies caution in the long-term treatment with inhibitors of gastric acid secretion inducing secondary hypergastrinemia, in a common disease like gastroesophageal reflux disease. PMID:28144230

  5. Transformer Industry Productivity Slows.

    ERIC Educational Resources Information Center

    Otto, Phyllis Flohr

    1981-01-01

    Annual productivity increases averaged 2.4 percent during 1963-79, slowing since 1972 to 1.5 percent; computer-assisted design and product standardization aided growth in output per employee-hour. (Author)

  6. Gastric Contraction Imaging System Using a 3-D Endoscope.

    PubMed

    Yoshimoto, Kayo; Yamada, Kenji; Watabe, Kenji; Takeda, Maki; Nishimura, Takahiro; Kido, Michiko; Nagakura, Toshiaki; Takahashi, Hideya; Nishida, Tsutomu; Iijima, Hideki; Tsujii, Masahiko; Takehara, Tetsuo; Ohno, Yuko

    2014-01-01

    This paper presents a gastric contraction imaging system for assessment of gastric motility using a 3-D endoscope. Gastrointestinal diseases are mainly based on morphological abnormalities. However, gastrointestinal symptoms are sometimes apparent without visible abnormalities. One of the major factors for these diseases is abnormal gastrointestinal motility. For assessment of gastric motility, a gastric motility imaging system is needed. To assess the dynamic motility of the stomach, the proposed system measures 3-D gastric contractions derived from a 3-D profile of the stomach wall obtained with a developed 3-D endoscope. After obtaining contraction waves, their frequency, amplitude, and speed of propagation can be calculated using a Gaussian function. The proposed system was evaluated for 3-D measurements of several objects with known geometries. The results showed that the surface profiles could be obtained with an error of [Formula: see text] of the distance between two different points on images. Subsequently, we evaluated the validity of a prototype system using a wave simulated model. In the experiment, the amplitude and position of waves could be measured with 1-mm accuracy. The present results suggest that the proposed system can measure the speed and amplitude of contractions. This system has low invasiveness and can assess the motility of the stomach wall directly in a 3-D manner. Our method can be used for examination of gastric morphological and functional abnormalities.

  7. Weakly nonlinear magnetohydrodynamic wave interactions

    SciTech Connect

    Webb, G.M.; Brio, M.; Kruse, M.T.; Zank, G.P.

    1999-06-01

    Equations describing weakly nonlinear magnetohydrodynamic (MHD) wave interactions in one Cartesian space dimension are discussed. For wave propagation in uniform media, the wave interactions of interest consist of: (a) three-wave resonant interactions in which high frequency waves, may evolve on long space and time scales if the wave phases satisfy the resonance conditions; (b) Burgers self-wave steepening for the magnetoacoustic waves, and (c) mean wave field effects, in which a particular wave interacts with the mean wave field of the other waves. For wave propagation in non-uniform media, further linear wave mixing terms appear in the equations. The equations describe four types of resonant triads: slow-fast magnetosonic wave interaction; Alfv{acute e}n-entropy wave interaction; Alfv{acute e}n-magnetosonic wave interaction; and magnetosonic-entropy wave interaction. The formalism is restricted to coherent wave interactions. {copyright} {ital 1999 American Institute of Physics.}

  8. Slow medical education.

    PubMed

    Wear, Delese; Zarconi, Joseph; Kumagai, Arno; Cole-Kelly, Kathy

    2015-03-01

    Slow medical education borrows from other "slow" movements by offering a complementary orientation to medical education that emphasizes the value of slow and thoughtful reflection and interaction in medical education and clinical care. Such slow experiences, when systematically structured throughout the curriculum, offer ways for learners to engage in thoughtful reflection, dialogue, appreciation, and human understanding, with the hope that they will incorporate these practices throughout their lives as physicians. This Perspective offers several spaces in the medical curriculum where slowing down is possible: while reading and writing at various times in the curriculum and while providing clinical care, focusing particularly on conducting the physical exam and other dimensions of patient care. Time taken to slow down in these ways offers emerging physicians opportunities to more fully incorporate their experiences into a professional identity that embodies reflection, critical awareness, cultural humility, and empathy. The authors argue that these curricular spaces must be created in a very deliberate manner, even on busy ward services, throughout the education of physicians.

  9. Pediatric primary gastric lymphoma.

    PubMed

    Harris, G J; Laszewski, M J

    1992-04-01

    Primary gastric lymphoma in the pediatric population is rare. We have described a case of non-Hodgkin's lymphoma (Burkitt's type) manifested as a gastric mass. Despite its rarity in children, this tumor should be treated aggressively, since long-term survival has been reported.

  10. Highly Alfvenic Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron

    2010-01-01

    It is commonly thought that fast solar wind tends to be highly Alfvenic, with strong correlations between velocity and magnetic fluctuations, but examples have been known for over 20 years in which slow wind is both Alfvenic and has many other properties more typically expected of fast solar wind. This paper will present a search for examples of such flows from more recent data, and will begin to characterize the general characteristics of them. A very preliminary search suggests that such intervals are more common in the rising phase of the solar cycle. These intervals are important for providing constraints on models of solar wind acceleration, and in particular the role waves might or might not play in that process.

  11. Treatment of gastric cancer

    PubMed Central

    Orditura, Michele; Galizia, Gennaro; Sforza, Vincenzo; Gambardella, Valentina; Fabozzi, Alessio; Laterza, Maria Maddalena; Andreozzi, Francesca; Ventriglia, Jole; Savastano, Beatrice; Mabilia, Andrea; Lieto, Eva; Ciardiello, Fortunato; De Vita, Ferdinando

    2014-01-01

    The authors focused on the current surgical treatment of resectable gastric cancer, and significance of peri- and post-operative chemo or chemoradiation. Gastric cancer is the 4th most commonly diagnosed cancer and the second leading cause of cancer death worldwide. Surgery remains the only curative therapy, while perioperative and adjuvant chemotherapy, as well as chemoradiation, can improve outcome of resectable gastric cancer with extended lymph node dissection. More than half of radically resected gastric cancer patients relapse locally or with distant metastases, or receive the diagnosis of gastric cancer when tumor is disseminated; therefore, median survival rarely exceeds 12 mo, and 5-years survival is less than 10%. Cisplatin and fluoropyrimidine-based chemotherapy, with addition of trastuzumab in human epidermal growth factor receptor 2 positive patients, is the widely used treatment in stage IV patients fit for chemotherapy. Recent evidence supports the use of second-line chemotherapy after progression in patients with good performance status PMID:24587643

  12. Localized pulses exhibiting a missilelike slow decay.

    PubMed

    Shaarawi, Amr M; Maged, Maha A; Besieris, Ioannis M; Hashish, Essam

    2006-08-01

    We investigate the quasi-missile behavior of known localized wave solutions, such as the modified power spectrum and splash pulses. We demonstrate that source-free localized waves can exhibit slow decay rates analogous to Wu's missile solutions, which are characterized by an amplitude decay rate slower than 1/R over an unlimited range. When excited from a finite aperture, the missilelike decay is not exhibited by all localized waves showing such behavior in the source-free situation. On the other hand, localized wave missiles generated from a finite aperture have peaks that exhibit quasi-missile decay. In an extended intermediate range between the near- and the far-field regions, these pulses decay at a rate slower than 1/R before switching to the usual 1/R decay.

  13. Localized pulses exhibiting a missilelike slow decay

    NASA Astrophysics Data System (ADS)

    Shaarawi, Amr M.; Maged, Maha A.; Besieris, Ioannis M.; Hashish, Essam

    2006-08-01

    We investigate the quasi-missile behavior of known localized wave solutions, such as the modified power spectrum and splash pulses. We demonstrate that source-free localized waves can exhibit slow decay rates analogous to Wu's missile solutions, which are characterized by an amplitude decay rate slower than 1/R over an unlimited range. When excited from a finite aperture, the missilelike decay is not exhibited by all localized waves showing such behavior in the source-free situation. On the other hand, localized wave missiles generated from a finite aperture have peaks that exhibit quasi-missile decay. In an extended intermediate range between the near- and the far-field regions, these pulses decay at a rate slower than 1/R before switching to the usual 1/R decay.

  14. Genetics of Gastric Cancer.

    PubMed

    Strand, Matthew S; Lockhart, Albert Craig; Fields, Ryan C

    2017-04-01

    Gastric cancer represents a major cause of cancer mortality worldwide despite a declining incidence. New molecular classification schemes developed from genomic and molecular analyses of gastric cancer have provided a framework for understanding this heterogenous disease, and early findings suggest these classifications will be relevant for designing and implementing new targeted therapies. The success of targeted therapy and immunotherapy in breast cancer and melanoma, respectively, has not been duplicated in gastric cancer, but trastuzumab and ramucirumab have demonstrated efficacy in select populations. New markers that predict therapeutic response are needed to improve patient selection for both targeted and immunotherapies.

  15. Psychomotor Slowing in Schizophrenia

    PubMed Central

    Morrens, Manuel; Hulstijn, Wouter; Sabbe, Bernard

    2007-01-01

    Psychomotor slowing (PS) is a cluster of symptoms that was already recognized in schizophrenia by its earliest investigators. Nevertheless, few studies have been dedicated to the clarification of the nature and the role of the phenomenon in this illness. Moreover, slowed psychomotor functioning is often not clearly delineated from reduced processing speed. The current, first review of all existing literature on the subject discusses the key findings. Firstly, PS is a clinically observable feature that is most frequently established by neuropsychological measures assessing speed of fine movements such as writing or tasks that require rapid fingertip manipulations or the maintenance of maximal speed over brief periods of time in manual activities. Moreover, the slowed performance on the various psychomotor measures has been demonstrated independent of medication and has also been found to be associated with negative symptoms and, to a lesser extent, with positive and depressive symptoms. Importantly, performance on the psychomotor tasks proved related to the patients' social, clinical, and functional outcomes. Several imaging studies showed slowed performance to coincide with dopaminergic striatal activity. Finally, conventional neuroleptics do not improve the patients' PS symptoms, in contrast to the atypical agents that do seem to produce modestly improving effects. PMID:17093141

  16. Nonlinear Dynamical Triggering of Slow-Slip

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Knuth, M. W.; Kaproth, B. M.; Carpenter, B. M.; Guyer, R. A.; Le Bas, P.; Daub, E. G.; Marone, C.

    2010-12-01

    Among the most fascinating, recent discoveries in seismology have been the phenomena of triggered slip, including triggered earthquakes and triggered-tremor, as well as triggered slow, silent-slip during which no seismic energy is radiated. Because fault nucleation depths cannot be probed directly, the physical regimes in which these phenomena occur are poorly understood. Thus determining physical properties that control diverse types of triggered fault sliding and what frictional constitutive laws govern triggered faulting variability is challenging. We are characterizing the physical controls of triggered faulting with the goal of developing constitutive relations by conducting laboratory and numerical modeling experiments in sheared granular media at varying load conditions. In order to simulate granular fault zone gouge in the laboratory, glass beads are sheared in a double-direct configuration under constant normal stress, while subject to transient perturbation by acoustic waves. We find that triggered, slow, silent-slip occurs at very small confining loads (~1-3 MPa) that are smaller than those where dynamic earthquake triggering takes place (4-7 MPa), and that triggered slow-slip is associated with bursts of LFE-like acoustic emission. Experimental evidence suggests that the nonlinear dynamical response of the gouge material induced by dynamic waves may be responsible for the triggered slip behavior: the slip-duration, stress-drop and along-strike slip displacement are proportional to the triggering wave amplitude. Further, we observe a shear-modulus decrease corresponding to dynamic-wave triggering relative to the shear modulus of stick-slips. Modulus decrease in response to dynamical wave amplitudes of roughly a microstrain and above is a hallmark of elastic nonlinear behavior. We believe that the dynamical waves increase the material non-affine elastic deformation during shearing, simultaneously leading to instability and slow-slip. The inferred

  17. Nonlinear dynamical triggering of slow slip

    SciTech Connect

    Johnson, Paul A; Knuth, Matthew W; Kaproth, Bryan M; Carpenter, Brett; Guyer, Robert A; Le Bas, Pierre - Yves; Daub, Eric G; Marone, Chris

    2010-12-10

    Among the most fascinating, recent discoveries in seismology have been the phenomena of triggered slip, including triggered earthquakes and triggered-tremor, as well as triggered slow, silent-slip during which no seismic energy is radiated. Because fault nucleation depths cannot be probed directly, the physical regimes in which these phenomena occur are poorly understood. Thus determining physical properties that control diverse types of triggered fault sliding and what frictional constitutive laws govern triggered faulting variability is challenging. We are characterizing the physical controls of triggered faulting with the goal of developing constitutive relations by conducting laboratory and numerical modeling experiments in sheared granular media at varying load conditions. In order to simulate granular fault zone gouge in the laboratory, glass beads are sheared in a double-direct configuration under constant normal stress, while subject to transient perturbation by acoustic waves. We find that triggered, slow, silent-slip occurs at very small confining loads ({approx}1-3 MPa) that are smaller than those where dynamic earthquake triggering takes place (4-7 MPa), and that triggered slow-slip is associated with bursts of LFE-like acoustic emission. Experimental evidence suggests that the nonlinear dynamical response of the gouge material induced by dynamic waves may be responsible for the triggered slip behavior: the slip-duration, stress-drop and along-strike slip displacement are proportional to the triggering wave amplitude. Further, we observe a shear-modulus decrease corresponding to dynamic-wave triggering relative to the shear modulus of stick-slips. Modulus decrease in response to dynamical wave amplitudes of roughly a microstrain and above is a hallmark of elastic nonlinear behavior. We believe that the dynamical waves increase the material non-affine elastic deformation during shearing, simultaneously leading to instability and slow-slip. The inferred

  18. Inhibitory effects of xylitol on gastric emptying and food intake

    SciTech Connect

    Shafer, R.B.; Levine, A.S.; Marlette, J.M.; Morley, J.E.

    1985-05-01

    The authors have previously shown, using a 99m-Tc scrambled egg meal, that pentose sugars (i.e. xylose and arabinose) markedly prolong gastric emptying. Others have reported that slowing of gastric emptying may decrease appetite and thus decrease food intake. In the present study, the authors utilized the effects of xylitol (an FDA-approved pentose sugar) on gastric emptying to study the correlation between gastric emptying and food intake. Initially, gastric emptying was measured in human volunteers utilizing a standardized 99m-Tc-scrambled egg meal washed with 50 cc tap water. Results demonstrated a significant reduction in food intake (892 +- 65 kcal with water vs 654 +- 26 kcal following the ingestion of 25 gm xylitol (p<0.05). We conclude that the effect of pentose sugars in prolonging gastric emptying directly influences food intake and contributes to early satiety. The data suggest a role of xylitol as an essentially non-caloric food additive potentially important in diet control.

  19. Gastric flow and mixing studied using computer simulation.

    PubMed Central

    Pal, Anupam; Indireshkumar, Keshavamurthy; Schwizer, Werner; Abrahamsson, Bertil; Fried, Michael; Brasseur, James G.

    2004-01-01

    The fed human stomach displays regular peristaltic contraction waves that originate in the proximal antrum and propagate to the pylorus. High-resolution concurrent manometry and magnetic resonance imaging (MRI) studies of the stomach suggest a primary function of antral contraction wave (ACW) activity unrelated to gastric emptying. Detailed evaluation is difficult, however, in vivo. Here we analyse the role of ACW activity on intragastric fluid motions, pressure, and mixing with computer simulation. A two-dimensional computer model of the stomach was developed with the 'lattice-Boltzmann' numerical method from the laws of physics, and stomach geometry modelled from MRI. Time changes in gastric volume were specified to match global physiological rates of nutrient liquid emptying. The simulations predicted two basic fluid motions: retrograde 'jets' through ACWs, and circulatory flow between ACWs, both of which contribute to mixing. A well-defined 'zone of mixing', confined to the antrum, was created by the ACWs, with mixing motions enhanced by multiple and narrower ACWs. The simulations also predicted contraction-induced peristaltic pressure waves in the distal antrum consistent with manometric measurements, but with a much lower pressure amplitude than manometric data, indicating that manometric pressure amplitudes reflect direct contact of the catheter with the gastric wall. We conclude that the ACWs are central to gastric mixing, and may also play an indirect role in gastric emptying through local alterations in common cavity pressure. PMID:15615685

  20. Occupation and gastric cancer

    PubMed Central

    Raj, A; Mayberry, J; Podas, T

    2003-01-01

    Gastric cancer is a cause of significant morbidity and mortality. There are several risk factors, with occupation emerging as one of these. There is considerable evidence that occupations in coal and tin mining, metal processing, particularly steel and iron, and rubber manufacturing industries lead to an increased risk of gastric cancer. Other "dusty" occupations—for example, wood processing, or work in high temperature environments have also been implicated but the evidence is not strong. The mechanism of pathogenesis of gastric cancer is unclear and the identification of causative agents can be difficult. Dust is thought to be a contributor to the pathological process, but well known carcinogens such as N-nitroso compounds have been detected in some environments. Further research on responsible agents is necessary and screening for detection of precursor gastric cancer lesions at the workplace merits consideration. PMID:12782770

  1. Gastric Sleeve Surgery

    MedlinePlus

    ... or "sleeve" out of the rest. The new, banana-shaped stomach is much smaller than the original ... of your stomach, leaving you with a smaller banana-shaped stomach called the gastric sleeve. Because it's ...

  2. Gastric bypass surgery

    MedlinePlus

    ... your legs to help prevent blood clots from forming. You will receive shots of medicine to prevent ... diversion with duodenal switch Dumping syndrome References Buchwald H. Laparoscopic Roux-en-Y gastric bypass. In: Buchwald ...

  3. Familial Gastric Cancers

    PubMed Central

    Setia, Namrata; Clark, Jeffrey W.; Duda, Dan G.; Hong, Theodore S.; Kwak, Eunice L.; Mullen, John T.

    2015-01-01

    Although the majority of gastric carcinomas are sporadic, approximately 10% show familial aggregation, and a hereditary cause is determined in 1%–3% cases. Of these, hereditary diffuse gastric cancer is the most recognized predisposition syndrome. Although rare, the less commonly known syndromes also confer a markedly increased risk for development of gastric cancer. Identification and characterization of these syndromes require a multidisciplinary effort involving oncologists, surgeons, genetic counselors, biologists, and pathologists. This article reviews the molecular genetics, clinical and pathologic features, surveillance guidelines, and preventive measures of common and less common hereditary gastric cancer predisposition syndromes. Implications for Practice: Although the majority of gastric adenocarcinomas are sporadic with many of those related to chronic Helicobacter pylori infection, approximately 10% of the cases show familial aggregation, and a specific hereditary cause is determined in 1%–3% cases. This review describes the molecular genetics, clinical and pathologic features, surveillance guidelines, and preventive measures of common and less common hereditary gastric cancer predisposition syndromes. Ultimately, a better understanding of the biology of these conditions should allow early identification and intervention as part of a multidisciplinary approach involving oncologists, surgeons, genetic counselors, and pathologists. PMID:26424758

  4. Gastric cancer and trastuzumab: first biologic therapy in gastric cancer

    PubMed Central

    Gunturu, Krishna S.; Woo, Yanghee; Beaubier, Nike; Remotti, Helen E.

    2013-01-01

    Gastric cancer remains difficult to cure and has a poor overall prognosis. Chemotherapy and multimodality therapy has shown some benefit in the treatment of gastric cancer. Current therapies for gastric cancer have their limitations; thus, we are in need of newer treatment options including targeted therapies. Here, we review the biologic therapy with trastuzumab in human epidermal growth factor receptor 2 (HER2)+ gastric cancer. PMID:23450234

  5. Observations on the relation between alcohol absorption and the rate of gastric emptying.

    PubMed Central

    Holt, S

    1981-01-01

    Alcohol (ethanol) is absorbed slowly from the stomach and rapidly from the small intestine, and the rate of its absorption depends on the rate of gastric emptying. When gastric emptying is fast, the absorption of alcohol is fast. When gastric emptying is slow the absorption of alcohol is delayed and peak blood alcohol concentrations are reduced. Alterations of the gastric emptying rate, which may have a physiologic, pharmacologic or pathologic cause, markedly influence the rate of alcohol absorption. The gastric emptying rate makes an important contribution to inter- and intraindividual variations in the rate of alcohol absorption and therefore the timing and magnitude of the acute intoxicating effect of an oral dose of alcohol. PMID:7459787

  6. A review on gastric diverticulum

    PubMed Central

    2012-01-01

    The gastric fundal diverticulae are rare. They can present with variable symptoms. We are enclosing a literature review on gastric fundal diverticulum. Lessons have emerged which may help in the management of this rare condition in future. PMID:22257431

  7. Quantum gravity slows inflation

    SciTech Connect

    Tsamis, N.C. |; Woodard, R.P.

    1996-02-01

    We consider the quantum gravitational back-reaction on an initially inflating, homogeneous and isotropic universe whose topology is T{sup 3} {times} {Re}. Although there is no secular effect at one loop, an explicit calculation shows that two-loop processes act to slow the rate of expansion by an amount which becomes non-pertubatively large at late times. By exploiting Feynman`s tree theorem we show that all higher loops act in the same sense. 18 refs., 1 fig.

  8. Gastric cancer: basic aspects.

    PubMed

    Resende, Carlos; Thiel, Alexandra; Machado, José C; Ristimäki, Ari

    2011-09-01

    Gastric cancer (GC) is a world health burden, ranging as the second cause of cancer death worldwide. Etiologically, GC arises not only from the combined effects of environmental factors and susceptible genetic variants but also from the accumulation of genetic and epigenetic alterations. In the last years, molecular oncobiology studies brought to light a number of genes that are implicated in gastric carcinogenesis. This review is intended to focus on the recently described basic aspects that play key roles in the process of gastric carcinogenesis. Genetic variants of the genes IL-10, IL-17, MUC1, MUC6, DNMT3B, SMAD4, and SERPINE1 have been reported to modify the risk of developing GC. Several genes have been newly associated with gastric carcinogenesis, both through oncogenic activation (GSK3β, CD133, DSC2, P-Cadherin, CDH17, CD168, CD44, metalloproteinases MMP7 and MMP11, and a subset of miRNAs) and through tumor suppressor gene inactivation mechanisms (TFF1, PDX1, BCL2L10, XRCC, psiTPTE-HERV, HAI-2, GRIK2, and RUNX3). It also addressed the role of the inflammatory mediator cyclooxygenase-2 (COX-2) in the process of gastric carcinogenesis and its importance as a potential molecular target for therapy.

  9. Primary gastric lymphoma

    PubMed Central

    Al-Akwaa, Ahmad M; Siddiqui, Neelam; Al-Mofleh, Ibrahim A

    2004-01-01

    AIM: The purpose of this review is to describe the various aspects of primary gastric lymphoma and the treatment options currently available. METHODS: After a systematic search of Pubmed, Medscape and MDconsult, we reviewed and retrieved literature regarding gastric lymphoma. RESULTS: Primary gastric lymphoma is rare however, the incidence of this malignancy is increasing. Chronic gastritis secondary to Helicobacter pylori (H pylori) infection has been considered a major predisposing factor for MALT lymphoma. Immune histochemical marker studies and molecular biology utilizing polymerase chain reaction have facilitated appropriate diagnosis and abolished the need for diagnostic surgical resection. Advances in imaging techniques including Magnetic Resonance Imaging (MRI) and Endoscopic Ultrasonography (EUS) have helped evaluation of tumor extension and invasion. The clinical course and prognosis of this disease is dependent on histopathological sub-type and stage at the time of diagnosis. Controversy remains regarding the best treatment for early stages of this disease. Chemotherapy, surgery and combination have been studied and shared almost comparable results with survival rate of 70%-90%. However, chemotherapy possesses the advantage of preserving gastric anatomy. Radiotherapy alone has been tried and showed good results. Stage IIIE, IVE disease treatment is solely by chemotherapy and surgical resection has been a remote consideration. CONCLUSION: We conclude that methods of diagnosis and staging of the primary gastric lymphoma have dramatically improved. The modalities of treatment are many and probably chemotherapy is superior because of high success rate, preservation of stomach and tolerable complications. PMID:14695759

  10. Intramural hemorrhage simulating gastric neoplasm.

    PubMed

    Sheward, S E; Davis, M; Amparo, E G; Gogel, H K

    1988-01-01

    We report a case of benign gastric ulcer with secondary extensive intramural hemorrhage causing a radiographic appearance consistent with a large ulcerated gastric neoplasm. This is the second such case reported and the first studied with sonography and computed tomographic scan. A brief review of the literature on intramural gastric hematoma is presented.

  11. Two-wave propagation in in vitro swine distal ulna

    NASA Astrophysics Data System (ADS)

    Mano, Isao; Horii, Kaoru; Matsukawa, Mami; Otani, Takahiko

    2015-07-01

    Ultrasonic transmitted waves were obtained in an in vitro swine distal ulna specimen, which mimics a human distal radius, that consists of interconnected cortical bone and cancellous bone. The transmitted waveforms appeared similar to the fast waves, slow waves, and overlapping fast and slow waves measured in the specimen after removing the surface cortical bone (only cancellous bone). In addition, the circumferential waves in the cortical bone and water did not affect the fast and slow waves. This suggests that the fast-and-slow-wave phenomenon can be observed in an in vivo human distal radius.

  12. Slow Transit Constipation.

    PubMed

    Wald, Arnold

    2002-08-01

    The diagnosis of slow transit functional constipation is based upon diagnostic testing of patients with idiopathic constipation who responded poorly to conservative measures such as fiber supplements, fluids, and stimulant laxatives. These tests include barium enema or colonoscopy, colonic transit of radio-opaque markers, anorectal manometry, and expulsion of a water-filled balloon. Plain abdominal films can identify megacolon, which can be further characterized by barium or gastrografin studies. Colonic transit of radio-opaque markers identifies patients with slow transit with stasis of markers in the proximal colon. However, anorectal function should be characterized to exclude outlet dysfunction, which may coexist with colonic inertia. Because slow colonic transit is defined by studies during which patients consume a high-fiber diet, fiber supplements are generally not effective, nor are osmotic laxatives that consist of unabsorbed sugars. Stimulant laxatives are considered first-line therapy, although studies often show a diminished colonic motor response to such agents. There is no evidence to suggest that chronic use of such laxatives is harmful if they are used two to three times per week. Polyethylene glycol with or without electrolytes may be useful in a minority of patients, often combined with misoprostol. I prefer to start with misoprostol 200 mg every other morning and increase to tolerance or efficacy. I see no advantage in prescribing misoprostol on a TID or QID basis or even daily because it increases cramping unnecessarily. This drug is not acceptable in young women who wish to become pregnant. An alternative may be colchicine, which is reported to be effective when given as 0.6 mg TID. Long-term efficacy has not been studied. Finally, biofeedback is a risk-free approach that has been reported as effective in approximately 60% of patients with slow transit constipation in the absence of outlet dysfunction. Although difficult to understand

  13. Slow earthquakes, preseismic velocity changes, and the origin of slow frictional stick-slip.

    PubMed

    Kaproth, Bryan M; Marone, C

    2013-09-13

    Earthquakes normally occur as frictional stick-slip instabilities, resulting in catastrophic failure and seismic rupture. Tectonic faults also fail in slow earthquakes with rupture durations of months or more, yet their origin is poorly understood. Here, we present laboratory observations of repetitive, slow stick-slip in serpentinite fault zones and mechanical evidence for their origin. We document a transition from unstable to stable frictional behavior with increasing slip velocity, providing a mechanism to limit the speed of slow earthquakes. We also document reduction of P-wave speed within the active shear zone before stick-slip events. If similar mechanisms operate in nature, our results suggest that higher-resolution studies of elastic properties in tectonic fault zones may aid in the search for reliable earthquake precursors.

  14. Immunotherapy in gastric cancer.

    PubMed

    Matsueda, Satoko; Graham, David Y

    2014-02-21

    Gastric cancer is the second most common of cancer-related deaths worldwide. In the majority of cases gastric cancer is advanced at diagnosis and although medical and surgical treatments have improved, survival rates remain poor. Cancer immunotherapy has emerged as a powerful and promising clinical approach for treatment of cancer and has shown major success in breast cancer, prostate cancer and melanoma. Here, we provide an overview of concepts of modern cancer immunotherapy including the theory, current approaches, remaining hurdles to be overcome, and the future prospect of cancer immunotherapy in the treatment of gastric cancer. Adaptive cell therapies, cancer vaccines, gene therapies, monoclonal antibody therapies have all been used with some initial successes in gastric cancer. However, to date the results in gastric cancer have been disappointing as current approaches often do not stimulate immunity efficiently allowing tumors continue to grow despite the presence of a measurable immune response. Here, we discuss the identification of targets for immunotherapy and the role of biomarkers in prospectively identifying appropriate subjects or immunotherapy. We also discuss the molecular mechanisms by which tumor cells escape host immunosurveillance and produce an immunosuppressive tumor microenvironment. We show how advances have provided tools for overcoming the mechanisms of immunosuppression including the use of monoclonal antibodies to block negative regulators normally expressed on the surface of T cells which limit activation and proliferation of cytotoxic T cells. Immunotherapy has greatly improved and is becoming an important factor in such fields as medical care and welfare for human being. Progress has been rapid ensuring that the future of immunotherapy for gastric cancer is bright.

  15. A slow seismic event recorded in Pasadena

    SciTech Connect

    Kanamori, Hiroo )

    1989-12-01

    A prominent long-period wave with a duration of 2,000 sec or longer was recorded with a very-broadband system in Pasadena on June 18, 1988. This wave was not observed elsewhere, and is considered of local origin. The acceleration amplitude is 2.5 {times} 10{sup {minus}5} cm/sec{sup 2} in the northwest direction, with the vertical component less than 10% of the horizontal. The horizontal acceleration can be interpreted as due to a tilt of the ground of 2.5 {times} 10{sup {minus}8} radians to the radians to the northwest. A slowly propagating pressure wave with an amplitude of about 15 mbars could be the cause of the tilt; however, there were no reports suggesting such pressure changes. A more likely cause is a slow tectonic event near Pasadena. The required magnitude of such a slow event is M{sub w} = 0, 2, and 4, for a distance of 0.1, 1, and 10 km respectively. This event could be part of a tectonic episode associated with the larger earthquakes which occurred in southern California around this time, especially the December 3, 1988, Pasadena earthquake (M{sub L} = 4.9) which occurred six months later within 4 km of the Pasadena station.

  16. Slow-walking inflation

    SciTech Connect

    Erdmenger, Johanna; Halter, Sebastian; Núñez, Carlos; Tasinato, Gianmassimo E-mail: s.halter@physik.uni-muenchen.de E-mail: gianmassimo.tasinato@port.ac.uk

    2013-01-01

    We propose a new model of slow-roll inflation in string cosmology, based on warped throat supergravity solutions displaying 'walking' dynamics, i.e. the coupling constant of the dual gauge theory slowly varies over a range of energy scales. The features of the throat geometry are sourced by a rich field content, given by the dilaton and RR and NS fluxes. By considering the motion of a D3-brane probe in this geometry, we are able to analytically calculate the brane potential in a physically interesting regime. This potential has an inflection point: in its proximity we realize a model of inflation lasting sixty e-foldings, and whose robust predictions are in agreement with current observations. We are also able to interpret some of the most interesting aspects of this scenario in terms of the properties of the QFT dual theory.

  17. Slow Scan Telemedicine

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Originally developed under contract for NASA by Ball Bros. Research Corporation for acquiring visual information from lunar and planetary spacecraft, system uses standard closed circuit camera connected to a device called a scan converter, which slows the stream of images to match an audio circuit, such as a telephone line. Transmitted to its destination, the image is reconverted by another scan converter and displayed on a monitor. In addition to assist scans, technique allows transmission of x-rays, nuclear scans, ultrasonic imagery, thermograms, electrocardiograms or live views of patient. Also allows conferencing and consultation among medical centers, general practitioners, specialists and disease control centers. Commercialized by Colorado Video, Inc., major employment is in business and industry for teleconferencing, cable TV news, transmission of scientific/engineering data, security, information retrieval, insurance claim adjustment, instructional programs, and remote viewing of advertising layouts, real estate, construction sites or products.

  18. Slow change deafness.

    PubMed

    Neuhoff, John G; Wayand, Joseph; Ndiaye, Mamoudou C; Berkow, Ann B; Bertacchi, Breanna R; Benton, Catherine A

    2015-05-01

    In four experiments, we demonstrated a new phenomenon called "slow-change deafness." In Experiment 1 we presented listeners with continuous speech that changed three semitones in pitch over time, and we found that nearly 50 % failed to notice the change. Experiments 2 and 3 replicated the finding, demonstrated that the changes in the stimuli were well above threshold, and showed that when listeners were alerted to the possibility of a change, detection rates improved dramatically. Experiment 4 showed that increasing the magnitude of the change that occurred in the stimulus decreased the rate of change deafness. Our results are consistent with previous work that had shown that cueing listeners to potential auditory changes can significantly reduce change deafness. These findings support an account of change deafness that is dependent on both the magnitude of a stimulus change and listener expectations.

  19. Mouse Models of Gastric Carcinogenesis

    PubMed Central

    Yu, Sungsook; Yang, Mijeong

    2014-01-01

    Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field. PMID:25061535

  20. Models of gastric emptying.

    PubMed Central

    Stubbs, D F

    1977-01-01

    Some empirical and theoretical models of the emptying behaviour of the stomach are presented. The laws of Laplace, Hooke, and Poisseuille are used to derive a new model of gastric emptying. Published data on humans are used to test the model and evaluate empirical constants. It is shown that for meals with an initial volume of larger than or equal to 300 ml, the reciprocal of the cube root of the volume of meal remaining is proportional to the time the meal is in the stomach.For meals of initial volume of less than 300 ml the equation has to be corrected for the fact that the 'resting volume' of gastric contents is about 28 ml. The more exact formula is given in the text. As this model invokes no neural or hormonal factors, it is suggested that the gastric emptying response to the volume of a meal does not depend on these factors. The gastric emptying response to the composition of the meal does depend on such factors and a recent model of this process is used to evaluate an empirical constant. PMID:856678

  1. Melanoma with gastric metastases

    PubMed Central

    Wong, Katherine; Serafi, Sam W.; Bhatia, Abhijit S.; Ibarra, Irene; Allen, Elizabeth A.

    2016-01-01

    An 81-year-old woman with a history of malignant melanoma who presented with dyspnea and fatigue was found to have metastases to the stomach detected on endoscopy. Primary cutaneous malignant melanoma with gastric metastases is a rare occurrence, and it is often not detected until autopsy because of its non-specific manifestations. PMID:27609722

  2. Coherent perfect absorption and reflection in slow-light waveguides.

    PubMed

    Gutman, Nadav; Sukhorukov, Andrey A; Chong, Y D; de Sterke, C Martijn

    2013-12-01

    We identify a family of unusual slow-light modes occurring in lossy multimode grating waveguides, for which either the forward or backward mode components, or both, are degenerate. In the fully degenerate case, the response can be modulated between coherent perfect absorption (zero reflection) and perfect reflection by varying the wave amplitudes in a uniform input waveguide. The perfectly absorbed wave has anomalously short absorption length, scaling as the inverse one-third power of the absorptivity.

  3. Gastric cancer and family history

    PubMed Central

    Choi, Yoon Jin; Kim, Nayoung

    2016-01-01

    Gastric cancer is associated with high morbidity and mortality rates worldwide. Identifying individuals at high risk is important for surveillance and prevention of gastric cancer. Having first-degree relatives diagnosed with gastric cancer is a strong and consistent risk factor for gastric cancer, but the pathogenic mechanisms behind this familial aggregation are unclear. Against this background, we reviewed the risk factors for gastric cancer in those with a first-degree relative with gastric cancer, and the possible causes for familial clustering of gastric cancer including bacterial factors, inherited genetic susceptibility, environmental factors or a combination thereof. Among individuals with a family history, current or past Helicobacter pylori infection, having two or more first-degree affected relatives or female gender was associated with an increased risk of developing gastric cancer. To date, no specific single nucleotide polymorphism has been shown to be associated with familial clustering of gastric cancer. H. pylori eradication is the most important strategy for preventing gastric cancer in first-degree relatives of gastric cancer patients, particularly those in their 20s and 30s. Early H. pylori eradication could prevent the progression to intestinal metaplasia and reduce the synergistic effect on gastric carcinogenesis in individuals with both H. pylori infection and a family history. Endoscopic surveillance is also expected to benefit individuals with a family history. Further large-scale, prospective studies are warranted to evaluate the cost-effectiveness and optimal time point for endoscopy in this population. Moreover, genome-wide association studies that incorporate environmental and dietary factors on a ‘big data’ basis will increase our understanding of the pathogenesis of gastric cancer. PMID:27809451

  4. Can ageing be slowed?

    PubMed Central

    Gaman, L; Stoian, I; Atanasiu, V

    2011-01-01

    Redox metabolism has long been considered to play important roles in aging and the development of age-related diseases. Both dietary and pharmacological manipulations of redox metabolism have been associated with the extension of lifespan. Increasing new evidence s also suggests that the process of aging may derive from imperfect clearance of oxidatively damaged material. The accumulation of this molecular “garbage”, relatively indigestible, further hinders cellular functions, induces progressive failure of maintenance and repair and increases the probability of death. One important trend in anti–aging strategy is, therefore, to prevent or even revert the accumulation of these oxidatively altered molecules by stimulating the maintenance and repair systems through hormesis. A promising approach for slowing down ageing and achieving a healthy senescence is represented by repeated exposure to various mild stresses (caloric restriction, moderate exercise, nutritional or pharmacological hormetins). This article reviews the potential therapeutic tools available to date for increasing longevity and obtaining and successful ageing from the redox and hormetic perspective. PMID:22514565

  5. Solitary surface waves on a plasma cylinder

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.

    1983-03-01

    By considering electrostatic surface waves propagating along a plasma cylinder, it is demonstrated that solitary variations in the cylinder radius may appear. The properties of these slow perturbations are determined by the surface wave intensities.

  6. Slow light and slow acoustic phonons in optophononic resonators

    NASA Astrophysics Data System (ADS)

    Villafañe, V.; Soubelet, P.; Bruchhausen, A. E.; Lanzillotti-Kimura, N. D.; Jusserand, B.; Lemaître, A.; Fainstein, A.

    2016-11-01

    Slow and confined light have been exploited in optoelectronics to enhance light-matter interactions. Here we describe the GaAs/AlAs semiconductor microcavity as a device that, depending on the excitation conditions, either confines or slows down both light and optically generated acoustic phonons. The localization of photons and phonons in the same place of space amplifies optomechanical processes. Picosecond laser pulses are used to study through time-resolved reflectivity experiments the coupling between photons and both confined and slow acoustic phonons when the laser is tuned either with the cavity (confined) optical mode or with the stop-band edge (slow) optical modes. A model that fully takes into account the modified propagation of the acoustic phonons and light in these resonant structures is used to describe the laser detuning dependence of the coherently generated phonon spectra and amplitude under these different modes of laser excitation. We observe that confined light couples only to confined mechanical vibrations, while slow light can generate both confined and slow coherent vibrations. A strong enhancement of the optomechanical coupling using confined photons and vibrations, and also with properly designed slow photon and phonon modes, is demonstrated. The prospects for the use of these optoelectronic devices in confined and slow optomechanics are addressed.

  7. Molecular biology of gastric cancer.

    PubMed

    Cervantes, A; Rodríguez Braun, E; Pérez Fidalgo, A; Chirivella González, I

    2007-04-01

    Despite its decreasing incidence overall, gastric cancer is still a challenging disease. Therapy is based mainly upon surgical resection when the tumour remains localised in the stomach. Conventional chemotherapy may play a role in treating micrometastatic disease and is effective as palliative therapy for recurrent or advanced disease. However, the knowledge of molecular pathways implicated in gastric cancer pathogenesis is still in its infancy and the contribution of molecular biology to the development of new targeted therapies in gastric cancer is far behind other more common cancers such as breast, colon or lung. This review will focus first on the difference of two well defined types of gastric cancer: intestinal and diffuse. A discussion of the cell of origin of gastric cancer with some intriguing data implicating bone marrow derived cells will follow, and a comprehensive review of different genetic alterations detected in gastric cancer, underlining those that may have clinical, therapeutic or prognostic implications.

  8. Clinical epidemiology of gastric cancer

    PubMed Central

    Ang, Tiing Leong; Fock, Kwong Ming

    2014-01-01

    Gastric cancer is the second leading cause of cancer-related mortality and the fourth most common cancer globally. There are, however, distinct differences in incidence rates in different geographic regions. While the incidence rate of gastric cancer has been falling, that of gastric cardia cancers is reportedly on the rise in some regions. Helicobacter pylori (H. pylori) infection is a major risk factor of non-cardia gastric cancer, and data has emerged concerning the role of H. pylori eradication for primary prevention of gastric cancer. Dietary, lifestyle and metabolic factors have also been implicated. Although addressing these other factors may contribute to health, the actual impact in terms of cancer prevention is unclear. Once irreversible histological changes have occurred, endoscopic surveillance would be necessary. A molecular classification system offers hope for molecularly tailored, personalised therapies for gastric cancer, which may improve the prognosis for patients. PMID:25630323

  9. Method for monitoring slow dynamics recovery

    NASA Astrophysics Data System (ADS)

    Haller, Kristian C. E.; Hedberg, Claes M.

    2012-11-01

    Slow Dynamics is a specific material property, which for example is connected to the degree of damage. It is therefore of importance to be able to attain proper measurements of it. Usually it has been monitored by acoustic resonance methods which have very high sensitivity as such. However, because the acoustic wave is acting both as conditioner and as probe, the measurement is affecting the result which leads to a mixing of the fast nonlinear response to the excitation and the slow dynamics material recovery. In this article a method is introduced which, for the first time, removes the fast dynamics from the process and allows the behavior of the slow dynamics to be monitored by itself. The new method has the ability to measure at the shortest possible recovery times, and at very small conditioning strains. For the lowest strains the sound speed increases with strain, while at higher strains a linear decreasing dependence is observed. This is the first method and test that has been able to monitor the true material state recovery process.

  10. A gastric acid secretion model.

    PubMed Central

    de Beus, A M; Fabry, T L; Lacker, H M

    1993-01-01

    A theory of gastric acid production and self-protection is formulated mathematically and examined for clinical and experimental correlations, implications, and predictions using analytic and numerical techniques. In our model, gastric acid secretion in the stomach, as represented by an archetypal gastron, consists of two chambers, circulatory and luminal, connected by two different regions of ion exchange. The capillary circulation of the gastric mucosa is arranged in arterial-venous arcades which pass from the gastric glands up to the surface epithelial lining of the lumen; therefore the upstream region of the capillary chamber communicates with oxyntic cells, while the downstream region communicates with epithelial cells. Both cell types abut the gastric lumen. Ion currents across the upstream region are calculated from a steady-state oxyntic cell model with active ion transport, while the downstream ion fluxes are (facilitated) diffusion driven or secondarily active. Water transport is considered iso-osmotic. The steady-state model is solved in closed form for low gastric lumen pH. A wide variety of previously performed static and dynamic experiments on ion and CO2 transport in the gastric lumen and gastric blood supply are for the first time correlated with each other for an (at least) semiquantitative test of current concepts of gastric acid secretion and for the purpose of model verification. Agreement with the data is reported with a few outstanding and instructive exceptions. Model predictions and implications are also discussed. Images FIGURE 1 PMID:8396457

  11. Gastric emptying abnormalities in progressive systemic sclerosis

    SciTech Connect

    Sridhar, K.; Magyar, L.; Lange, R.; McCallum, R.W.

    1985-05-01

    The authors studied gastric emptying (GE) in patients with peripheral manifestations of progressive systemic sclerosis (PSS) using a radionuclide method. 18 patients underwent esophageal manometry and a GE study using chicken liver labeled in vivo with Tc-99m sulfur colloid as a marker of solid emptying. GE was also measured in 13 normal volunteers. 4 PSS patients with normal esophageal motility also had normal GE. The GE of 14 PSS patients with abnormal esophageal motility was significantly (p < 0.05) delayed; with 67.4% retention of isotope after 2 hours compared to 49.8 in normals. The authors conclude that GE of solids is slow in approximately 2/3 of PSS patients with abnormal esophageal motility but is normal if the esophagus is uninvolved; Delayed GE may contribute to the severity of gastroesophageal reflux in PSS patients and the degree of dysphasgia; and Metoclopramide accelerates GE in PSS patients and should have a valuable therapeutic role.

  12. MiR-218 inhibits multidrug resistance (MDR) of gastric cancer cells by targeting Hedgehog/smoothened.

    PubMed

    Zhang, Xiang-Liang; Shi, Hui-Juan; Wang, Ji-Ping; Tang, Hong-Sheng; Cui, Shu-Zhong

    2015-01-01

    Multidrug resistance (MDR) is the main obstacle to successful chemotherapy for patients with gastric cancer. The microRNA miR-218 influences various pathobiological processes in gastric cancer, and its down-regulation in this disease raises the question of whether it normally inhibits MDR. In this study we observed that two MDR gastric cancer cell lines showed lower expression of miR-218 compared with their chemosensitive parental cell line. Overexpressing miR-218 chemosensitizes gastric cancer cells, slowed efflux of adriamycin, and accelerated drug-induced apoptosis. We identified the smoothened (SMO) gene as a functional target of miR-218, and found that SMO overexpression counteracts the chemosensitizing effects of miR-218. These findings suggest that miR-218 inhibits MDR of gastric cancer cells by down-regulating SMO expression.

  13. Functional association between proximal and distal gastric motility during fasting and duodenal nutrient stimulation in humans.

    PubMed

    Nguyen, N Q; Fraser, R J; Bryant, L K; Holloway, R H

    2007-08-01

    A functional integration exists between proximal and distal gastric motor activity in dogs but has not been demonstrated in humans. To determine the relationship between proximal and distal gastric motor activity in humans. Concurrent proximal (barostat) and distal (antro-pyloro-duodenal (APD) manometry) gastric motility were recorded in 10 healthy volunteers (28 +/- 3 years) during (i) fasting and (ii) two 60-min duodenal infusions of Ensure((R)) (1 and 2 kcal min(-1)) in random order. Proximal and APD motor activity and the association between fundic and propagated antral waves (PAWs) were determined. During fasting, 32% of fundic waves (FWs) were followed by a PAW. In a dose-dependent fashion, duodenal nutrients (i) increased proximal gastric volume, (ii) reduced fundic and antral wave (total and propagated) activity, and (iii) increased pyloric contractions. The proportion of FWs followed by a distal PAW was similar between both infusions and did not differ from fasting. During nutrient infusion, nearly all PAWs were antegrade, propagated over a shorter distance and less likely to traverse the pylorus, compared with fasting. In humans, a functional association exists between proximal and distal gastric motility during fasting and duodenal nutrient stimulation. This may have a role in optimizing intra-gastric meal distribution.

  14. Effect of sucralfate on gastric emptying in duodenal ulcer patients

    SciTech Connect

    Petersen, J.M.; Caride, V.J.; Prokop, E.K.; Troncale, F.; McCallum, R.W.

    1985-05-01

    Duodenal ulcer (DU) patients may have accelerated gastric emptying (GE) suggesting that there is an increase in unbuffered gastric acid reaching the duodenum contributing to DU disease. Aluminum-containing antacids were shown to delay GE. The authors' aim was to investigate whether another aluminum-containing compound, Sucralfate, affects GE in normal and DU patients. Nine normal volunteers and 10 patients with documented DU disease were studied. For each test the subject ingested a meal composed of chicken liver Tc-99m-S-C mixed with beef stew and eaten with 4 oz. of water labelled with 100..mu..Ci of III-in-DTPA. On two separate days, subjects received 1 gram of Sucralfate (190 mg of aluminum per gram) or placebo in a randomized double-blind fashion one hour prior to the test meal. GE of liquids and solids in normal subjects was not significantly changed by Sucralfate. Sucralfate in the DU patients significantly slowed liquid emptying in the initial 40 min and solid food throughout the study compared to placebo (p<0.05). This paper summarizes that; GE of solids but not liquids is accelerated in DU patients compared to normal subjects; and sucralfate delays GE of both liquid and solid components of a meal in DU patients but has no effect on GE in normals. The authors conclude that a slowing of gastric emptying possibly mediated by aluminum ions, may be one mechanism by which Sucralfate enhances healing and decreases recurrence of DU.

  15. Slow Earthquakes Triggered by Typhoons

    NASA Astrophysics Data System (ADS)

    Liu, C.; Linde, A. T.; Sacks, I. S.

    2006-12-01

    Taiwan experiences very high deformation rates, particularly along its eastern margins. To investigate this region, we have started (in 2003) to install several small networks of Sacks-Evertson strainmeters. The initial data from all sites show characteristics of good quality: tidal signals with very high signal to noise ratio and large (~10,000 counts on 24 bit ADC system) amplitudes; strains trending into contraction with rates that decrease exponentially with time and earthquakes clearly recorded. Additionally the instruments have recorded a number of slow strain changes with durations ranging from about an hour up to a few days; we interpret these signals in terms of slow earthquakes. All of the slow events identified to date occur at the times of typhoons passing over or very close to the study area, but not all typhoons are associated with slow strain events (9 typhoons in 2004 were accompanied by 5 slow events). Seismicity for the area deliniates a roughly north-south striking steeply dipping (to the west) zone with reverse slip; the shallowest extent of the zone is just inland. We look for source solutions consistent with that tectonic setting. The slow events exhibit a considerable range of amplitude and complexity; small, short amplitude events have a quite simple and smooth waveform; the longest (2 days) and largest (100 to 350 nanostrain at 3 sites) has waveforms with a lot of structure. The similarity among the stations (located in an ~isosceles triangular array with spacing ~10 km and 4 km) is indicative of rupture propagation of a slow slip source (equivalent magnitude about 5). We are able to match the essential character of the data with a very simple model of a downward propagating line source with uniform slip; the largest slow event appears to be comprised of 3 sub-events all starting at a depth of ~3 km with the final sub-event propagating to a depth ~10 km. Typhoon activity produces a large increase in short period (~sec) energy so it is not

  16. Influence of body parameters on gastric bioelectric and biomagnetic fields in a realistic volume conductor

    PubMed Central

    Kim, J HK; Pullan, A J; Bradshaw, L A; Cheng, L K

    2012-01-01

    Electrogastrograms (EGG) and magnetogastrograms (MGG) provide two complementary methods for non-invasively recording electric or magnetic fields resulting from gastric electrical slow wave activity. It is known that EGG signals are relatively weak and difficult to reliably record while magnetic fields are, in theory, less attenuated by the low-conductivity fat layers present in the body. In this paper we quantified the effects of fat thickness and conductivity values on resultant magnetic and electric fields using anatomically realistic torso models and trains of dipole sources reflecting recent experimental results. The results showed that when the fat conductivity was increased there was minimal change in both potential and magnetic fields. However, when the fat conductivity was reduced the magnetic fields were largely unchanged, but electric potentials had a significant change in patterns and amplitudes. When the thickness of the fat layer was increased by 30 mm the amplitude of the magnetic fields decreased 10 % more than potentials but magnetic field patterns were changed about 4 times less than potentials. The ability to localize the underlying sources from the magnetic fields using a surface current density measure was altered by less than 2 mm when the fat layer was increased by 30 mm. In summary, results confirm that MGG provides a favourable method over EGG when there are uncertain levels of fat thickness or conductivity. PMID:22415019

  17. Gut microbiota and gastric disease.

    PubMed

    Sgambato, Dolores; Miranda, Agnese; Romano, Lorenzo; Romano, Marco

    2017-02-15

    The gut microbiota may be considered a crucial "organ" of human body because of its role in the maintenance of the balance between health as well as disease. It is mainly located in the small bowel and colon, while, the stomach was long thought to be sterile in particular for its high acid production. In particular, stomach was considered "an hostile place" for bacterial growth until the identification of Helicobacter pylori (HP). Now, the stomach and its microbiota can be considered as two different "organs" that share the same place and they have an impact on each other. In fact microscopic structures of gastric mucosa (mucus layer and luminal contents) influence local microflora and vice versa. In this article our attention is directed specifically to explain the effects of this "cross-talk" on gastric homeostais. The gastric microbiota grossly consists of two macrogroups: HP and non-HP bacteria. Here, we review the relationship between these two populations and their role in the development of the different gastric disorders: functional dyspepsia, gastric premalignant lesions (chronic atrophic gastritis, intestinal metaplasia and dysplasia of the gastric mucosa) and gastric cancer. Moreover we focus on the effects on the gastric microbiota of exogenous interference as diet and use of proton pump inhibitors (PPIs).

  18. Epigenetic mechanisms in gastric cancer.

    PubMed

    Gigek, Carolina Oliveira; Chen, Elizabeth Suchi; Calcagno, Danielle Queiroz; Wisnieski, Fernanda; Burbano, Rommel Rodriguez; Smith, Marilia Arruda Cardoso

    2012-06-01

    Cancer is considered one of the major health issues worldwide, and gastric cancer accounted for 8% of total cases and 10% of total deaths in 2008. Gastric cancer is considered an age-related disease, and the total number of newly diagnosed cases has been increasing as a result of the higher life expectancy. Therefore, the basic mechanisms underlying gastric tumorigenesis is worth investigation. This review provides an overview of the epigenetic mechanisms, such as DNA methylation, histone modifications, chromatin remodeling complex and miRNA, involved in gastric cancer. As the studies in gastric cancer continue, the mapping of an epigenome code is not far for this disease. In conclusion, an epigenetic therapy might appear in the not too distant future.

  19. Slow light in flight imaging

    NASA Astrophysics Data System (ADS)

    Wilson, Kali; Little, Bethany; Gariepy, Genevieve; Henderson, Robert; Howell, John; Faccio, Daniele

    2017-02-01

    Slow-light media are of interest in the context of quantum computing and enhanced measurement of quantum effects, with particular emphasis on using slow light with single photons. We use light-in-flight imaging with a single-photon avalanche diode camera array to image in situ pulse propagation through a slow-light medium consisting of heated rubidium vapor. Light-in-flight imaging of slow-light propagation enables direct visualization of a series of physical effects, including simultaneous observation of spatial pulse compression and temporal pulse dispersion. Additionally, the single-photon nature of the camera allows for observation of the group velocity of single photons with measured single-photon fractional delays greater than 1 over 1 cm of propagation.

  20. Birth control - slow release methods

    MedlinePlus

    Contraception - slow-release hormonal methods; Progestin implants; Progestin injections; Skin patch; Vaginal ring ... implants while breastfeeding. Progestin implants work better than birth control pills to prevent pregnancy. Very few women who ...

  1. Perovskite photovoltaics: Slow recombination unveiled

    NASA Astrophysics Data System (ADS)

    Moser, Jacques-E.

    2017-01-01

    One of the most salient features of hybrid lead halide perovskites is the extended lifetime of their photogenerated charge carriers. This property has now been shown experimentally to originate from a slow, thermally activated recombination process.

  2. [Characteristics of slow electrical potentials in healthy subjects and in patients with various forms of neuroses].

    PubMed

    Slezin, V B; Kamenskaia, V G; Tomanov, L V; Shchukina, N V

    1988-01-01

    The shapes of the slow brain potentials--conditioned negative wave (CNW) and postimperative negative wave (PNW)--were compared in normal and neurotic subjects. Instruction-directed performance was used to investigate the physiological mechanisms of neuroses and to develop the diagnostic psychophysiologic tests with simultaneous recording of the slow potentials. These were evaluated by calculation of asymmetry and power amplification coefficients for CNW and PNW while more and more complicated instructions were given.

  3. Slow motion increases perceived intent

    PubMed Central

    Caruso, Eugene M.; Burns, Zachary C.; Converse, Benjamin A.

    2016-01-01

    To determine the appropriate punishment for a harmful action, people must often make inferences about the transgressor’s intent. In courtrooms and popular media, such inferences increasingly rely on video evidence, which is often played in “slow motion.” Four experiments (n = 1,610) involving real surveillance footage from a murder or broadcast replays of violent contact in professional football demonstrate that viewing an action in slow motion, compared with regular speed, can cause viewers to perceive an action as more intentional. This slow motion intentionality bias occurred, in part, because slow motion video caused participants to feel like the actor had more time to act, even when they knew how much clock time had actually elapsed. Four additional experiments (n = 2,737) reveal that allowing viewers to see both regular speed and slow motion replay mitigates the bias, but does not eliminate it. We conclude that an empirical understanding of the effect of slow motion on mental state attribution should inform the life-or-death decisions that are currently based on tacit assumptions about the objectivity of human perception. PMID:27482091

  4. Pediatric Gastric Teratoma

    PubMed Central

    Valenzuela-Ramos, Marco Cesar; Mendizábal-Méndez, Ana Luisa; Ríos-Contreras, Carlos Alberto; Rodríguez-Montes, Claudia Esther

    2010-01-01

    Neoplasms from germ cell origin are a heterogeneous group of tumors rarely seen in the pediatric population, teratoma is the most frequent among them. They can occur in either gonadal or extragonadal locations. Extragonadal teratoma arising from abdominal viscera is very unusual. There are less than a hundred reported cases of gastric teratoma in the worldwide literature. Since the occurrence of this pathology in the pediatric age group is quite rare, we describe a case of a teratoma located in the lesser curvature of the stomach in an infant with an emphasis in radiologic-pathologic correlation. PMID:22470691

  5. Collisionless Reconnection with Weak Slow Shocks Under Anisotropic MHD Approximation

    NASA Astrophysics Data System (ADS)

    Hirabayashi, K.; Hoshino, M.

    2014-12-01

    Magnetic reconnection accompanied by a pair of slow-mode shock waves, known as Petschek's theory, has been widely studied as an efficient mechanism to convert magnetically stored energy to thermal and/or kinetic energy in plasmas. Satellite observations in the Earth's magnetotail, on the other hand, report that the detection of slow shocks is rare compared with the theory. As an important step to bridge the gap between the observational fact and the Petschek-type reconnection, we performed one- and two- dimensional collisionless magnetohydrodynamic (MHD) simulations of magnetic reconnection paying special attention to the effect of temperature anisotropy. In high-beta plasmas such as a plasma sheet in the magnetotail, it is expected that even weak temperature anisotropy can greatly modify the dynamics. We demonstrate that the slow shocks do exist in the reconnection layer even under the anisotropic temperature. The resultant shocks, however, are weaker than those in isotropic MHD in terms of plasma compression. In addition, the amount of magnetic energy released across the shock is extremely small, that is, the shock is no longer switch-off type. In spite of the weakness of the shocks, the reconnection rates measured by the inflow velocities are kept at the same level as the isotropic cases. Once the slow shock forms, the downstream plasma is heated in highly anisotropic manner, and the firehose-sense anisotropy affects the wave structure in the system. In particular, it is remarkable that the sequential order of propagation of slow shocks and rotational discontinuities reverses depending upon the magnitude of a superposed guide field. Our result is consistent with the rareness of the slow shock detection in the magnetotail, and implies that shocks do not necessarily play an important role. Furthermore, a variety of wave structure of a reconnection layer shown here will help interpretation of observational data in collisionless reconnection.

  6. Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation.

    PubMed

    Sheroziya, Maxim; Timofeev, Igor

    2015-09-23

    Reduction in temperature depolarizes neurons by a partial closure of potassium channels but decreases the vesicle release probability within synapses. Compared with cooling, neuromodulators produce qualitatively similar effects on intrinsic neuronal properties and synapses in the cortex. We used this similarity of neuronal action in ketamine-xylazine-anesthetized mice and non-anesthetized mice to manipulate the thalamocortical activity. We recorded cortical electroencephalogram/local field potential (LFP) activity and intracellular activities from the somatosensory thalamus in control conditions, during cortical cooling and on rewarming. In the deeply anesthetized mice, moderate cortical cooling was characterized by reversible disruption of the thalamocortical slow-wave pattern rhythmicity and the appearance of fast LFP spikes, with frequencies ranging from 6 to 9 Hz. These LFP spikes were correlated with the rhythmic IPSP activities recorded within the thalamic ventral posterior medial neurons and with depolarizing events in the posterior nucleus neurons. Similar cooling of the cortex during light anesthesia rapidly and reversibly eliminated thalamocortical silent states and evoked thalamocortical persistent activity; conversely, mild heating increased thalamocortical slow-wave rhythmicity. In the non-anesthetized head-restrained mice, cooling also prevented the generation of thalamocortical silent states. We conclude that moderate cortical cooling might be used to manipulate slow-wave network activity and induce neuromodulator-independent transition to activated states. Significance statement: In this study, we demonstrate that moderate local cortical cooling of lightly anesthetized or naturally sleeping mice disrupts thalamocortical slow oscillation and induces the activated local field potential pattern. Mild heating has the opposite effect; it increases the rhythmicity of thalamocortical slow oscillation. Our results demonstrate that slow oscillation can be

  7. Traveling wave tube and method of manufacture

    NASA Technical Reports Server (NTRS)

    Vancil, Bernard K. (Inventor)

    2004-01-01

    A traveling wave tube includes a glass or other insulating envelope having a plurality of substantially parallel glass rods supported therewithin which in turn support an electron gun, a collector and an intermediate slow wave structure. The slow wave structure itself provides electrostatic focussing of a central electron beam thereby eliminating the need for focussing magnetics and materially decreasing the cost of construction as well as enabling miniaturization. The slow wave structure advantageously includes cavities along the electron beam through which the r.f. energy is propagated, or a double, interleaved ring loop structure supported by dielectric fins within a ground plane cylinder disposed coaxially within the glass envelope.

  8. Screening of susceptibility genes and multi-gene risk analysis in gastric cancer.

    PubMed

    Shen, Xiao-bing; Wang, Jia; Li, Peng-fei; Ren, Xiao-feng; Yan, Xiao-luan; Wang, Fan

    2014-10-01

    The aim of the study was to explore the relations between the genetic polymorphism and the susceptibility to the gastric cancer in Chinese Han population, and to analyze the multi-genes risk in the development of gastric carcinoma. A case-control study of 1:1 matching was performed on 564 individuals with primary gastric carcinoma in Nanjing, China. The genotypes of CYP2E1, GSTMl, GSTTl, NAT2, ALDH2, MTHFR, XRCCl, IL-1β, VDR, and TNF were detected by molecular biological techniques (PCR-RFLP and AS-PCR). Sole gene and gene-gene interactions were analyzed using Logistic regression model. The effect of multi-genes on gastric carcinoma was analyzed using multi-gene risk analysis model, which focused on the effect of multi-gene interaction on the development of gastric carcinoma. The genotypes involved in the susceptibility of gastric carcinoma were CYP2E1(c1/c1), NAT2M1(T/T), NAT2M2(A/A), XRCC1194(T/T), NAT2 phenotype (slow acetylator), MTHFR1298(A/C), and VDR TaqI(T/T), respectively. Multi-gene risk analysis model was introduced to analyze the effect of these genes on the gastric carcinoma. The results showed that there was a strong relation between odds ratio (OR) value of polygene combination and the gene frequency. With the increase of susceptibility gene frequency, the risk distribution curve of gastric carcinoma would shift to a more dangerous phase and exhibit a quantitative relation. Our results demonstrated that the OR of each gene can be utilized as an index to assess the effect of multiple susceptible genes on the occurrence of gastric carcinoma.

  9. Association between polymorphisms in segregation genes BUB1B and TTK and gastric cancer risk

    PubMed Central

    Hudler, Petra; Britovsek, Nina Kocevar; Grazio, Snjezana Frkovic; Komel, Radovan

    2016-01-01

    Abstract Background Malignant transformation of normal gastric cells is a complex and multistep process, resulting in development of heterogeneous tumours. Susceptible genetic background, accumulation of genetic changes, and environmental factors play an important role in gastric carcinogenesis. Single nucleotide polymorphisms (SNPs) in mitotic segregation genes could be responsible for inducing the slow process of accumulation of genetic changes, leading to genome instability. Patients and methods We performed a case-control study of polymorphisms in mitotic kinases TTK rs151658 and BUB1B rs1031963 and rs1801376 to assess their effects on gastric cancer risk. We examined the TTK abundance in gastric cancer tissues using immunoblot analysis. Results C/G genotype of rs151658 was more frequent in patients with diffuse type of gastric cancer and G/G genotype was more common in intestinal types of gastric cancers (p = 0.049). Polymorphic genotype A/A of rs1801376 was associated with higher risk for developing diffuse type of gastric cancer in female population (p = 0.007), whereas A/A frequencies were increased in male patients with subserosa tumour cell infiltration (p = 0.009). T/T genotype of rs1031963 was associated with well differentiated tumours (p = 0.035). TT+CT genotypes of rs1031963 and GG+AG genotypes of rs1801376 were significantly associated with gastric cancer risk (dominant model; OR = 2,929, 95% CI: 1.281-6.700; p = 0.017 and dominant model; OR = 0,364, 95% CI: 0.192-0.691; p = 0.003 respectively). Conclusions Our results suggest that polymorphisms in mitotic kinases TTK and BUB1B may contribute to gastric tumorigenesis and risk of tumour development. Further investigations on large populations and populations of different ethnicity are needed to determine their clinical utility. PMID:27679546

  10. Slow neuronal oscillations in the resting brain vs task execution: A BSS investigation of EEG recordings.

    PubMed

    Demanuele, Charmaine; Sonuga-Barke, Edmund J S; James, Christopher J

    2010-01-01

    Spontaneous very low frequency oscillations (< 0.5 Hz) occurring within widely distributed neuroanatomical systems have been increasingly analyzed in brain imaging studies. Whilst being more prominent in the resting brain, these slow waves also persist into task sessions and may potentially interfere with active goal-directed attention, leading to periodic lapses in attention during task execution. This work presents a new experimental framework and a multistage signal processing methodology - comprising blind source separation (BSS) coupled with a neural network feature extraction and classification method - developed for assessing variations in the slow wave characteristics in EEG data recorded during periods of quiet wakefulness (termed as "rest"), and during visual tasks of various difficulty levels. Core results demonstrate that the amplitude and phase of the brain sources in the slow wave band share essential similarities during rest and task conditions, but are distinct enough to be classified separately. These slow wave variations are also significantly correlated with the level of cognitive attention assessed by task performance measures (such as reaction times and error rates). Moreover, the power of the brain sources in the slow wave band is attenuated during task, and the level of attenuation drops as the task difficulty level is increased, whilst the slow wave phase undergoes a change in structure (measured through entropy). The methodology and findings presented here provide a new basis for assessing neural activity during various mental conditions.

  11. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes

    PubMed Central

    Leeman, J. R.; Saffer, D. M.; Scuderi, M. M.; Marone, C.

    2016-01-01

    Slow earthquakes represent an important conundrum in earthquake physics. While regular earthquakes are catastrophic events with rupture velocities governed by elastic wave speed, the processes that underlie slow fault slip phenomena, including recent discoveries of tremor, slow-slip and low-frequency earthquakes, are less understood. Theoretical models and sparse laboratory observations have provided insights, but the physics of slow fault rupture remain enigmatic. Here we report on laboratory observations that illuminate the mechanics of slow-slip phenomena. We show that a spectrum of slow-slip behaviours arises near the threshold between stable and unstable failure, and is governed by frictional dynamics via the interplay of fault frictional properties, effective normal stress and the elastic stiffness of the surrounding material. This generalizable frictional mechanism may act in concert with other hypothesized processes that damp dynamic ruptures, and is consistent with the broad range of geologic environments where slow earthquakes are observed. PMID:27029996

  12. Proximal gastric motility in critically ill patients with type 2 diabetes mellitus

    PubMed Central

    Nguyen, Nam Q; Fraser, Robert J; Bryant, Laura K; Chapman, Marianne; Holloway, Richard H

    2007-01-01

    AIM: To investigate the proximal gastric motor response to duodenal nutrients in critically ill patients with long-standing type 2 diabetes mellitus. METHODS: Proximal gastric motility was assessed (using a barostat) in 10 critically ill patients with type 2 diabetes mellitus (59 ± 3 years) during two 60-min duodenal infusions of Ensure® (1 and 2 kcal/min), in random order, separated by 2 h fasting. Data were compared with 15 non-diabetic critically ill patients (48 ± 5 years) and 10 healthy volunteers (28 ± 3 years). RESULTS: Baseline proximal gastric volumes were similar between the three groups. In diabetic patients, proximal gastric relaxation during 1 kcal/min nutrient infusion was similar to non-diabetic patients and healthy controls. In contrast, relaxation during 2 kcal/min infusion was initially reduced in diabetic patients (p < 0.05) but increased to a level similar to healthy humans, unlike non-diabetic patients where relaxation was impaired throughout the infusion. Duodenal nutrient stimulation reduced the fundic wave frequency in a dose-dependent fashion in both the critically ill diabetic patients and healthy subjects, but not in critically ill patients without diabetes. Fundic wave frequency in diabetic patients and healthy subjects was greater than in non-diabetic patients. CONCLUSION: In patients with diabetes mellitus, proximal gastric motility is less disturbed than non-diabetic patients during critical illness, suggesting that these patients may not be at greater risk of delayed gastric emptying. PMID:17226907

  13. Dose from slow negative muons.

    PubMed

    Siiskonen, T

    2008-01-01

    Conversion coefficients from fluence to ambient dose equivalent, from fluence to maximum dose equivalent and quality factors for slow negative muons are examined in detail. Negative muons, when stopped, produce energetic photons, electrons and a variety of high-LET particles. Contribution from each particle type to the dose equivalent is calculated. The results show that for the high-LET particles the details of energy spectra and decay yields are important for accurate dose estimates. For slow negative muons the ambient dose equivalent does not always yield a conservative estimate for the protection quantities. Especially, the skin equivalent dose is strongly underestimated if the radiation-weighting factor of unity for slow muons is used. Comparisons to earlier studies are presented.

  14. What gastric cancer proteomic studies show about gastric carcinogenesis?

    PubMed

    Leal, Mariana Ferreira; Wisnieski, Fernanda; de Oliveira Gigek, Carolina; do Santos, Leonardo Caires; Calcagno, Danielle Queiroz; Burbano, Rommel Rodriguez; Smith, Marilia Cardoso

    2016-08-01

    Gastric cancer is a complex, heterogeneous, and multistep disease. Over the past decades, several studies have aimed to determine the molecular factors that lead to gastric cancer development and progression. After completing the human genome sequencing, proteomic technologies have presented rapid progress. Differently from the relative static state of genome, the cell proteome is dynamic and changes in pathologic conditions. Proteomic approaches have been used to determine proteome profiles and identify differentially expressed proteins between groups of samples, such as neoplastic and nonneoplastic samples or between samples of different cancer subtypes or stages. Therefore, proteomic technologies are a useful tool toward improving the knowledge of gastric cancer molecular pathogenesis and the understanding of tumor heterogeneity. This review aimed to summarize the proteins or protein families that are frequently identified by using high-throughput screening methods and which thus may have a key role in gastric carcinogenesis. The increased knowledge of gastric carcinogenesis will clearly help in the development of new anticancer treatments. Although the studies are still in their infancy, the reviewed proteins may be useful for gastric cancer diagnosis, prognosis, and patient management.

  15. Slow shocks around the sun

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1982-01-01

    It is inferred from this study that magnetohydrodynamic slow shocks can exist in the vicinity of the sun. The study uses a two-hole corona model, the sub-Alfvenic streams originating from the edge of the polar open-field regions are forced to turn towards equator in coronal space following the curved boundary of the closed field region. When the streamlines from the opposite poles merge at a neutral point, their directions become parallel to the neutral sheet. An oblique slow shock can develop near or at the neutral point, the shock extends polewards to form a surface of discontinuity around the sun.

  16. Slow Crack Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A=1.7), it is not as anisotropic as SiC, NiAl, or Cu, as evidence by consistent fracture toughness on the 100, 110, and 111 planes. Germanium does not exhibit significant slow crack growth in distilled water. (n=100). Practical values for engineering design are a fracture toughness of 0.7 MPam and a Weibull modulus of m=6+/-2. For well ground and reasonable handled coupons, fracture strength should be greater than 30 MPa.

  17. Two slow meteors with spectra

    NASA Astrophysics Data System (ADS)

    Dubs, Martin; Sposetti, Stefano; Spinner, Roger; Booz, Beat

    2017-01-01

    On January 2, 2017 two peculiar meteors (M20170102_001216 and M20170102_015202) were observed by several stations in Switzerland. Both had a long duration, slow velocity, similar brightness and a very similar radiant. As they appeared in a time interval of 100 minutes, a satellite was suspected as a possible origin of these two observations. A closer inspection however showed that this interpretation was incorrect. The two objects were slow meteors. Spectra were taken from both objects, which were nearly identical. Together this points to a common origin of the two meteors.

  18. Fast Deflagration Waves.

    DTIC Science & Technology

    1980-07-01

    Fendell (1970) to finite Mach numbers, and uncovered the existence of very slow deflagration waves. JI.. -2- 2. The governing equations The governing...FlapmSI,$ Cambridge University Press. 2. Buckmaster, J. 1976. The quenching of deflagration vaves. Combust. Flme. 26, 151-162. 3. Bush, W.B. & Fendell , F.E

  19. Inflammation, atrophy, and gastric cancer

    PubMed Central

    Fox, James G.; Wang, Timothy C.

    2006-01-01

    The association between chronic inflammation and cancer is now well established. This association has recently received renewed interest with the recognition that microbial pathogens can be responsible for the chronic inflammation observed in many cancers, particularly those originating in the gastrointestinal system. A prime example is Helicobacter pylori, which infects 50% of the world’s population and is now known to be responsible for inducing chronic gastric inflammation that progresses to atrophy, metaplasia, dysplasia, and gastric cancer. This Review provides an overview of recent progress in elucidating the bacterial properties responsible for colonization of the stomach, persistence in the stomach, and triggering of inflammation, as well as the host factors that have a role in determining whether gastritis progresses to gastric cancer. We also discuss how the increased understanding of the relationship between inflammation and gastric cancer still leaves many questions unanswered regarding recommendations for prevention and treatment. PMID:17200707

  20. Gastric tissue biopsy and culture

    MedlinePlus

    ... Mean Abnormal results may be due to: Stomach (gastric) cancer Gastritis , when the lining of the stomach becomes ... team. Related MedlinePlus Health Topics Biopsy Peptic Ulcer Stomach Cancer Stomach Disorders Browse the Encyclopedia A.D.A. ...

  1. The role of K⁺ conductances in regulating membrane excitability in human gastric corpus smooth muscle.

    PubMed

    Lee, Ji Yeon; Ko, Eun-Ju; Ahn, Ki Duck; Kim, Sung; Rhee, Poong-Lyul

    2015-04-01

    Changes in resting membrane potential (RMP) regulate membrane excitability. K(+) conductance(s) are one of the main factors in regulating RMP. The functional role of K(+) conductances has not been studied the in human gastric corpus smooth muscles (HGCS). To examine the role of K(+) channels in regulation of RMP in HGCS we employed microelectrode recordings, patch-clamp, and molecular approaches. Tetraethylammonium and charybdotoxin did not affect the RMP, suggesting that BK channels are not involved in regulating RMP. Apamin, a selective small conductance Ca(2+)-activated K(+) channel (SK) blocker, did not show a significant effect on the membrane excitability. 4-Aminopyridine, a Kv channel blocker, caused depolarization and increased the duration of slow wave potentials. 4-Aminopyridine also inhibited a delayed rectifying K(+) current in isolated smooth muscle cells. End-product RT-PCR gel detected Kv1.2 and Kv1.5 in human gastric corpus muscles. Glibenclamide, an ATP-sensitive K(+) channel (KATP) blocker, did not induce depolarization, but nicorandil, a KATP opener, hyperpolarized HGCS, suggesting that KATP are expressed but not basally activated. Kir6.2 transcript, a pore-forming subunit of KATP was expressed in HGCS. A low concentration of Ba(2+), a Kir blocker, induced strong depolarization. Interestingly, Ba(2+)-sensitive currents were minimally expressed in isolated smooth muscle cells under whole-cell patch configuration. KCNJ2 (Kir2.1) transcript was expressed in HGCS. Unique K(+) conductances regulate the RMP in HGCS. Delayed and inwardly rectifying K(+) channels are the main candidates in regulating membrane excitability in HGCS. With the development of cell dispersion techniques of interstitial cells, the cell-specific functional significance will require further analysis.

  2. Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations

    PubMed Central

    Wei, Yina; Krishnan, Giri P.

    2016-01-01

    Sleep is critical for regulation of synaptic efficacy, memories, and learning. However, the underlying mechanisms of how sleep rhythms contribute to consolidating memories acquired during wakefulness remain unclear. Here we studied the role of slow oscillations, 0.2–1 Hz rhythmic transitions between Up and Down states during stage 3/4 sleep, on dynamics of synaptic connectivity in the thalamocortical network model implementing spike-timing-dependent synaptic plasticity. We found that the spatiotemporal pattern of Up-state propagation determines the changes of synaptic strengths between neurons. Furthermore, an external input, mimicking hippocampal ripples, delivered to the cortical network results in input-specific changes of synaptic weights, which persisted after stimulation was removed. These synaptic changes promoted replay of specific firing sequences of the cortical neurons. Our study proposes a neuronal mechanism on how an interaction between hippocampal input, such as mediated by sharp wave-ripple events, cortical slow oscillations, and synaptic plasticity, may lead to consolidation of memories through preferential replay of cortical cell spike sequences during slow-wave sleep. SIGNIFICANCE STATEMENT Sleep is critical for memory and learning. Replay during sleep of temporally ordered spike sequences related to a recent experience was proposed to be a neuronal substrate of memory consolidation. However, specific mechanisms of replay or how spike sequence replay leads to synaptic changes that underlie memory consolidation are still poorly understood. Here we used a detailed computational model of the thalamocortical system to report that interaction between slow cortical oscillations and synaptic plasticity during deep sleep can underlie mapping hippocampal memory traces to persistent cortical representation. This study provided, for the first time, a mechanistic explanation of how slow-wave sleep may promote consolidation of recent memory events. PMID

  3. Gene methylation in gastric cancer.

    PubMed

    Qu, Yiping; Dang, Siwen; Hou, Peng

    2013-09-23

    Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field.

  4. Endovascular management of gastric varices.

    PubMed

    Saad, Wael E

    2014-11-01

    Bleeding from gastric varices is a major complication of portal hypertension. Although less common than bleeding associated with esophageal varices, gastric variceal bleeding has a higher mortality. From an endovascular perspective,transjugular intrahepatic portosystemic shunts (TIPS) to decompress the portal circulation and/or balloon-occluded retrograde transvenous obliteration (BRTO) are utilized to address bleeding gastric varices. Until recently, there was a clear medical cultural divide between the strategy of decompressing the portal circulation (TIPS creation, for example) and transvenous obliteration for the management of gastric varices. However, the practice of BRTO is gaining acceptance in the United States and its practice is spreading rapidly. Recently, the American College of Radiology has identified BRTO to be a viable alternative to TIPS in particular anatomical and clinical scenarios. However, the anatomical and clinical applications of BRTO were not defined beyond the conservative approach of resorting to BRTO in non-TIPS candidates. The article discusses the outcomes of BRTO and TIPS for the management of gastric varices individually or in combination. Definitions, endovascular technical concepts and contemporary vascular classifications of gastric variceal systems are described in order to help grasp the complexity of the hemodynamic pathology and hopefully help define the pathology better for future reporting and lay the ground for more defined stratification of patients not only based on comorbidity and hepatic reserve but on anatomy and hemodynamic classifications.

  5. Fast wandering of slow birds.

    PubMed

    Toner, John

    2011-12-01

    I study a single slow bird moving with a flock of birds of a different and faster (or slower) species. I find that every species of flocker has a characteristic speed γ ≠ v(0), where v(0) is the mean speed of the flock such that if the speed v(s) of the slow bird equals γ, it will randomly wander transverse to the mean direction of flock motion far faster than the other birds will: Its mean-squared transverse displacement will grow in d = 2 with time t like t(5/3), in contrast to t(4/3) for the other birds. In d = 3, the slow bird's mean-squared transverse displacement grows like t(5/4), in contrast to t for the other birds. If v(s) ≠ γ, the mean-squared displacement of the slow bird crosses over from t(5/3) to t(4/3) scaling in d = 2 and from t(5/4) to t scaling in d = 3 at a time t(c) that scales according to t(c) proportionally |v(s) - γ|(-2).

  6. Dirac-graphene quasiparticles in strong slow-light pulse

    NASA Astrophysics Data System (ADS)

    Golovinski, P. A.; Astapenko, V. A.; Yakovets, A. V.

    2017-02-01

    An analytical Volkov's solution of the massless Dirac equation for graphene in the field of slow-light pulse with arbitrary time dependence is obtained. Exact solutions are presented for special cases of monochromatic field and a single-cycle pulse. Following the Fock-Schwinger proper time method, the Green's function for quasiparticles is derived with the account of the influence an external classical electromagnetic wave field.

  7. DBGC: A Database of Human Gastric Cancer

    PubMed Central

    Wang, Chao; Zhang, Jun; Cai, Mingdeng; Zhu, Zhenggang; Gu, Wenjie; Yu, Yingyan; Zhang, Xiaoyan

    2015-01-01

    The Database of Human Gastric Cancer (DBGC) is a comprehensive database that integrates various human gastric cancer-related data resources. Human gastric cancer-related transcriptomics projects, proteomics projects, mutations, biomarkers and drug-sensitive genes from different sources were collected and unified in this database. Moreover, epidemiological statistics of gastric cancer patients in China and clinicopathological information annotated with gastric cancer cases were also integrated into the DBGC. We believe that this database will greatly facilitate research regarding human gastric cancer in many fields. DBGC is freely available at http://bminfor.tongji.edu.cn/dbgc/index.do PMID:26566288

  8. DBGC: A Database of Human Gastric Cancer.

    PubMed

    Wang, Chao; Zhang, Jun; Cai, Mingdeng; Zhu, Zhenggang; Gu, Wenjie; Yu, Yingyan; Zhang, Xiaoyan

    2015-01-01

    The Database of Human Gastric Cancer (DBGC) is a comprehensive database that integrates various human gastric cancer-related data resources. Human gastric cancer-related transcriptomics projects, proteomics projects, mutations, biomarkers and drug-sensitive genes from different sources were collected and unified in this database. Moreover, epidemiological statistics of gastric cancer patients in China and clinicopathological information annotated with gastric cancer cases were also integrated into the DBGC. We believe that this database will greatly facilitate research regarding human gastric cancer in many fields. DBGC is freely available at http://bminfor.tongji.edu.cn/dbgc/index.do.

  9. Slow dynamics of the amphibian tympanic membrane

    NASA Astrophysics Data System (ADS)

    Bergevin, Christopher; Meenderink, Sebastiaan W. F.; van der Heijden, Marcel; Narins, Peter M.

    2015-12-01

    Several studies have demonstrated that delays associated with evoked otoacoustic emissions (OAEs) largely originate from filter delays of resonant elements in the inner ear. However, one vertebrate group is an exception: Anuran (frogs and toads) amphibian OAEs exhibit relatively long delays (several milliseconds), yet relatively broad tuning. These delays, also apparent in auditory nerve fiber (ANF) responses, have been partially attributed to the middle ear (ME), with a total forward delay of ˜0.7 ms (˜30 times longer than in gerbil). However, ME forward delays only partially account for the longer delays of OAEs and ANF responses. We used scanning laser Doppler vibrometery to map surface velocity over the tympanic membrane (TyM) of anesthetized bullfrogs (Rana catesbeiana). Our main finding is a circularly-symmetric wave on the TyM surface, starting at the outer edges of the TyM and propagating inward towards the center (the site of the ossicular attachment). This wave exists for frequencies ˜0.75-3 kHz, overlapping the range of bullfrog hearing (˜0.05-1.7 kHz). Group delays associated with this wave varied from 0.4 to 1.2 ms and correlated with with TyM diameter, which ranged from ˜6-16 mm. These delays correspond well to those from previous ME measurements. Presumably the TyM waves stem from biomechanical constraints of semi-aquatic species with a relatively large tympanum. We investigated some of these constraints by measuring the pressure ratio across the TyM (˜10-30 dB drop, delay of ˜0.35 ms), the effects of ossicular interruption, the changes due to physiological state of TyM (`dry-out'), and by calculating the middle-ear input impedance. In summary, we found a slow, inward-traveling wave on the TyM surface that accounts for a substantial fraction of the relatively long otoacoustic and neurophysiological delays previously observed in the anuran inner ear.

  10. Effect of kinesin velocity distribution on slow axonal transport

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey

    2012-08-01

    The goal of this paper is to investigate the effect that a distribution of kinesin motor velocities could have on cytoskeletal element (CE) concentration waves in slow axonal transport. Previous models of slow axonal transport based on the stop-and-go hypothesis (P. Jung, A. Brown, Modeling the slowing of neurofilament transport along the mouse sciatic nerve, Physical Biology 6 (2009) 046002) assumed that in the anterograde running state all CEs move with one and the same velocity as they are propelled by kinesin motors. This paper extends the aforementioned theoretical approach by allowing for a distribution of kinesin motor velocities; the distribution is described by a probability density function (PDF). For a two kinetic state model (that accounts for the pausing and running populations of CEs) an analytical solution describing the propagation of the CE concentration wave is derived. Published experimental data are used to obtain an analytical expression for the PDF characterizing the kinesin velocity distribution; this analytical expression is then utilized as an input for computations. It is demonstrated that accounting for the kinesin velocity distribution increases the rate of spreading of the CE concentration waves, which is a significant improvement in the two kinetic state model.

  11. Pembrolizumab, Combination Chemotherapy, and Radiation Therapy Before Surgery in Treating Adult Patients With Locally Advanced Gastroesophageal Junction or Gastric Cardia Cancer That Can Be Removed by Surgery

    ClinicalTrials.gov

    2016-12-30

    Adenocarcinoma of the Gastroesophageal Junction; Gastric Cardia Adenocarcinoma; Stage IB Gastric Cancer; Stage IIA Gastric Cancer; Stage IIB Gastric Cancer; Stage IIIA Gastric Cancer; Stage IIIB Gastric Cancer

  12. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation

    PubMed Central

    Chen, Jen-Yung; Chauvette, Sylvain; Skorheim, Steven; Timofeev, Igor; Bazhenov, Maxim

    2012-01-01

    The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. PMID:22641778

  13. 64Cu DOTA-Trastuzumab PET/CT in Studying Patients With Gastric Cancer

    ClinicalTrials.gov

    2017-03-24

    Adenocarcinoma of the Gastroesophageal Junction; Diffuse Adenocarcinoma of the Stomach; Intestinal Adenocarcinoma of the Stomach; Mixed Adenocarcinoma of the Stomach; Recurrent Gastric Cancer; Stage IA Gastric Cancer; Stage IB Gastric Cancer; Stage IIA Gastric Cancer; Stage IIB Gastric Cancer; Stage IIIA Gastric Cancer; Stage IIIB Gastric Cancer; Stage IIIC Gastric Cancer; Stage IV Gastric Cancer

  14. Slow Slip Events on a 760 mm Long Granite Sample

    NASA Astrophysics Data System (ADS)

    Mclaskey, G.; Yamashita, F.

    2015-12-01

    We describe slow slip events and dynamic rupture events generated on a newly constructed large-scale biaxial friction apparatus at Cornell University that provide insights into the mechanisms of aseismic and seismic slip. We find that, under nominally similar experimental conditions, the 760 mm long granite sample sometimes slips in dynamic stick-slip events and sometimes relieves accumulated shear stress through slow slip events. To provide insights into this curious behavior and the underlying mechanisms, fault slip and shear stress are each measured at 8 locations along the 760 mm long fault. This allows us to map slow slip fronts and the nucleation and propagation of dynamic fault rupture. The granite sample is also instrumented with an array of piezoelectric sensors that are the laboratory equivalent of a seismic network. When the sample is loaded relatively slowly, at 0.03 MPa/s, slow slip occurs on large sections of the fault and the slow slipping region soon expands to the sample boundary. In this case, stress is released in a slow slip event with peak slip velocities < 2 mm/s. Alternatively, when one end of the sample is loaded rapidly (4 MPa/s), or the sample is allowed to heal in stationary contact for a few minutes, slow slip initiates near the load point and accelerates to slip velocities exceeding 200 mm/s before the slow slipping region expands all the way to the sample boundary. This produces a dynamic slip event (stick-slip). The dynamic slip events radiate seismic waves equivalent to a M = -2.5 earthquake. In contrast, the laboratory-generated slow slip events are predominantly aseismic and produce only bursts of tiny and discrete seismic events (M = -6) reminiscent of swarms of microseismicity. The experiments illustrate how a single fault can slide slowly and aseismically or rapidly and dynamically depending on stress state and loading conditions. We compare the behavior observed on this Cornell apparatus to the behavior of other large

  15. Slow extraction at the SSC

    SciTech Connect

    Colton, E.P.

    1985-01-01

    Resonant slow extraction at the SSC will permit fixed-target operation. Stochastic extraction appears to be a promising technique for achieving spill times of the order of 1000 s. However, systematic sextupole error fields in the SSC dipoles must be reduced a factor of twenty from the design values; otherwise the extraction process will be perturbed or suppressed. In addition, good regulation of the SSC power supplies is essential for smooth extraction over the spill period. 10 refs., 1 fig.

  16. The electrophoresis of human gastric juice

    PubMed Central

    Piper, D. W.; Stiel, Mirjam C.; Builder, Janet E.

    1962-01-01

    The electrophoretic pattern of normal human gastric juice is described. The effect of autodigestion of gastric juice and of the peptic digestion of albumin is described. The fallacies involved in the study of gastric juice proteins where peptic digestion of the protein constituent has not been prevented are emphasized. In this study the gastric juice was neutralized within the stomach to prevent changes due to autodigestion. PMID:13943717

  17. Slow light and saturable absorption

    NASA Astrophysics Data System (ADS)

    Selden, A. C.

    2009-06-01

    Quantitative analysis of slow light experiments utilising coherent population oscillation (CPO) in a range of saturably absorbing media, including ruby and alexandrite, Er3+:Y2SiO5, bacteriorhodopsin, semiconductor quantum devices and erbium-doped optical fibres, shows that the observations may be more simply interpreted as saturable absorption phenomena. A basic two-level model of a saturable absorber displays all the effects normally associated with slow light, namely phase shift and modulation gain of the transmitted signal, hole burning in the modulation frequency spectrum and power broadening of the spectral hole, each arising from the finite response time of the non-linear absorption. Only where hole-burning in the optical spectrum is observed (using independent pump and probe beams), or pulse delays exceeding the limits set by saturable absorption are obtained, can reasonable confidence be placed in the observation of slow light in such experiments. Superluminal (“fast light”) phenomena in media with reverse saturable absorption (RSA) may be similarly explained.

  18. Gastric juice miR-129 as a potential biomarker for screening gastric cancer.

    PubMed

    Yu, Xing; Luo, Lin; Wu, Yibo; Yu, Xiuchong; Liu, Yang; Yu, Xuelin; Zhao, Xiaoyan; Zhang, Xinjun; Cui, Long; Ye, Guoliang; Le, Yanping; Guo, Junming

    2013-03-01

    MicroRNAs (miRNAs) play crucial roles during the occurrence and development of gastric cancer. Conventional serological tests for screening gastric cancer have limits on sensitivity and specificity. Several miRNAs in peripheral blood have been used as biomarkers of gastric cancer. However, most of these miRNAs are shared by several types of cancer. Thanks to the tissue specificity of gastric juice, here we examined the feasibility of using gastric juice miR-129-1/2, which are aberrantly expressed in gastric cancer, to screen gastric cancer. Total of 141 gastric juices samples from gastric cancer, gastric ulcer, atrophic gastritis, and minimal gastritis patients or subjects with normal mucosa were collected by gastroscopy. The gastric juice miR-129-1/2 levels were detected by quantitative reverse transcription-polymerase chain reaction. A receiver operating characteristic (ROC) curve was constructed for differentiating patients with gastric cancer from patients with benign gastric diseases. We showed that, compared with patients with benign gastric diseases, patients with gastric cancer had significantly lower levels of gastric juice miR-129-1-3p and miR-129-2-3p. The areas under ROC curve (AUC) were 0.639 and 0.651 for miR-129-1-3p and miR-129-2-3p, respectively. Using the parallel combination test, the AUC was up to 0.656. In summary, our results suggest that gastric juice miR-129-1-3p and miR-129-2-3p are potential biomarkers for the screening gastric cancer, and the detection of gastric juice miRNAs is a convenient non-invasion method for the diagnosis of gastric cancer.

  19. Acetaldehyde and gastric cancer.

    PubMed

    Salaspuro, Mikko

    2011-04-01

    Aldehyde dehydrogenase (ALDH2) and alcohol dehydrogenase (ADH) gene polymorphisms associating with enhanced acetaldehyde exposure and markedly increased cancer risk in alcohol drinkers provide undisputable evidence for acetaldehyde being a local carcinogen not only in esophageal but also in gastric cancer. Accordingly, acetaldehyde associated with alcoholic beverages has recently been classified as a Group 1 carcinogen to humans. Microbes are responsible for the bulk of acetaldehyde production from ethanol both in saliva and Helicobacter pylori-infected and achlorhydric stomach. Acetaldehyde is the most abundant carcinogen in tobacco smoke and it readily dissolves into saliva during smoking. Many foodstuffs and 'non-alcoholic' beverages are important but unrecognized sources of local acetaldehyde exposure. The cumulative cancer risk associated with increasing acetaldehyde exposure suggests the need for worldwide screening of the acetaldehyde levels of alcoholic beverages and as well of the ethanol and acetaldehyde of food produced by fermentation. The generally regarded as safe status of acetaldehyde should be re-evaluated. The as low as reasonably achievable principle should be applied to the acetaldehyde of alcoholic and non-alcoholic beverages and food. Risk groups with ADH-and ALDH2 gene polymorphisms, H. pylori infection or achlorhydric atrophic gastritis, or both, should be screened and educated in this health issue. L-cysteine formulations binding carcinogenic acetaldehyde locally in the stomach provide new means for intervention studies.

  20. Gastric ulceration in an equine neonate

    PubMed Central

    Lewis, Susan

    2003-01-01

    A 24-hour-old colt presented with clinical signs consistent with gastric ulceration. Treatment was initiated with a histamine type-2 receptor antagonist and clinical signs resolved. Gastroscopy at 16 d confirmed the presence of a gastric ulcer. Although gastric ulceration is common in foals, it is rarely reported in foals this young. PMID:12757136

  1. Esophageal motility disorders after gastric banding.

    PubMed

    O'Rourke, R W; Deveney, C W; McConnell, D B; Wolfe, B M; Jobe, B A

    2007-01-01

    The long-term effects of gastric banding on esophageal function are not well described. This report describes a 28-year-old woman who developed signs and symptoms of abnormal esophageal motility and lower esophageal sphincter hypotension after gastric banding for morbid obesity. The current literature addressing the effects of gastric banding on esophageal function in light of this case report is discussed.

  2. Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1998-01-01

    The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.

  3. Etiology and Prevention of Gastric Cancer

    PubMed Central

    Cheng, Xiao Jiao; Lin, Jia Cheng; Tu, Shui Ping

    2016-01-01

    Background Gastric cancer is a heterogeneous malignant disease associated with environmental and genetic predisposing factors. While gastric cancer incidence and mortality fell greatly globally over the past decades, it remains the fourth cause of cancer-related death worldwide. Thus, prevention of gastric cancer is still a major strategy for improvement of gastric cancer prognosis. Summary Helicobacter pylori infection has been demonstrated to be a major risk factor for the development of gastric cancer. Unhealthy diet and lifestyle, including high-salt food, smoking and drinking, are able to induce genotypic and phenotypic transformation of gastric epithelial cells. Gene mutations (such as E-cadherin) in stomach epithelial cells are major genetic causes for gastric cancer. The eradication of H. pylori has been demonstrated to be an effective approach for primary prevention of gastric cancer. Increased intake of a diet rich in vegetables and fresh fruits as well as smoking cessation have been shown to reduce the incidence of gastric cancer. The secondary prevention strategy is to screen premalignant gastric lesions by endoscopy. Biomarker tests are also reliable methods to identify gastric precancerous lesions. Endoscopy screening is still the gold standard for diagnosis of gastric cancer. Key Message H. pylori infection, a diet rich in salted and/or smoked food and red meat, as well as gene mutations are major risk factors for the development of gastric cancer. Practical Implications The eradication of H. pylori is a major primary preventive strategy of gastric cancer. A healthy lifestyle, including increased intake of a diet rich in fruit and vegetables, reduced intake of salted and smoked food and red meat, a reduction of alcohol intake as well as smoking cessation will be effective approaches for the prevention of gastric cancer. PMID:27722154

  4. Primary gastric mantle cell lymphoma

    PubMed Central

    Petranovic, Duska; Pilcic, Gorazd; Peitl, Milena; Cubranic, Aleksandar; Valkovic, Toni; Nacinovic, Antica Duletic; Lucin, Ksenija; Jonjic, Nives

    2012-01-01

    Mantle cell lymphoma represents 2.5–7% all of non Hodgkin's lymphomas. Stomach is the most common site of extranodal lymphoma. However, that is not the case with mantle cell lymphoma, which is extremely rare. We present a case of 71-year-old woman admitted to the Internal Clinic of the University Clinical Hospital Center Rijeka, because of stomach discomfort and melena. Endoscopy and computed tomography revealed a polyp in gastric antrum. Histopathologic, immunohistochemic and genetic methods were also performed and the results were consistent with primary gastric mantle cell lymphoma without periepigastric and/or local or distant abdominal lymph node involvement. PMID:22567215

  5. Gastric lymphoma: the histology report.

    PubMed

    Doglioni, Claudio; Ponzoni, Maurilio; Ferreri, Andrés J M; Savio, Antonella

    2011-03-01

    The diagnosis of gastric MALT lymphoma is frequently difficult for the general histopathologist. During recent years there have been relevant changes in the therapeutic approach to gastric MALT lymphoma and our knowledge about its pathogenesis has greatly improved. The management of this disease actually requires a close cooperation between the histopathologist and the clinicians. The histology report of biopsies of a newly diagnosed or of an already treated case implies information of clinical and therapeutical relevance. This paper aims at giving the histopathologist a general knowledge about the state of art of this disease and its management. The diagnostic process leading to a complete and competent report is then described step by step.

  6. Gastric cancer in Italy.

    PubMed

    Cipriani, F; Buiatti, E; Palli, D

    1991-01-01

    Although Gastric Cancer (GC) death rates are decreasing worldwide, in high risk areas GC is still a major public health problem. Italy is one of the European countries with the highest mortality rates for GC (males: 17.3; females: 8.2 x 100,000 inhabitants in 1987) which represents the third cause of death due to cancer in 1987, accounting for over 14,000 deaths per year (10% of cancer deaths). Reasons for the geographic variability in GC occurrence within the country are reviewed, discussing the results of two recent analytical epidemiological studies carried out in Italy. These large case-control studies focused on dietary factors, involving high and low-risk areas for GC (Florence, Siena, Forlì, Imola, Cremona, Genoa, Cagliari, and Milan). Low socio-economic status, family history of GC, residence in rural areas were associated to GC risk, while migration from southern areas and body mass index were inversely related to GC. Consumption of traditional soups, meat, salted and dried fish, cold cuts and seasoned cheeses, as well as the intake of animal proteins and nitrites were related to an increased GC risk. On the contrary consumption of fresh fruit, citrus fruit, raw vegetables, spices, garlic and olive oil, and vitamin C, E and beta-carotene intake were found to be protective factors. Among diet-related factors, preference for salty foods and frequent broiling were positively related to GC, while the longstanding availbility of a refrigerator or freezer and the habits of consuming frozen foods were associated with decreased GC risk. These results are discussed in detail, considering the main hypotheses on GC carcinogenesis.

  7. [Comparison of two commercial potassium chloride tablets for slow-release in an in vitro dissolution test].

    PubMed

    Wu, P C; Huang, Y B; Chang, S J; Ko, H M; Tsai, Y H

    1992-03-01

    Two commercial slow-release potassium chloride tablets, Slow-K and Addi-K have the characteristics of slow-release in the different dissolution conditions. The two tablets had similar dissolution profiles in simulated intestinal fluid (pH 6.8), simulated gastric fluid (pH 1.2) and water; which indicates that, the dissolution rates