Folded gastrulation and T48 drive the evolution of coordinated mesoderm internalization in flies
Urbansky, Silvia; González Avalos, Paula; Wosch, Maike; Lemke, Steffen
2016-01-01
Gastrulation constitutes a fundamental yet diverse morphogenetic process of metazoan development. Modes of gastrulation range from stochastic translocation of individual cells to coordinated infolding of an epithelial sheet. How such morphogenetic differences are genetically encoded and whether they have provided specific developmental advantages is unclear. Here we identify two genes, folded gastrulation and t48, which in the evolution of fly gastrulation acted as a likely switch from an ingression of individual cells to the invagination of the blastoderm epithelium. Both genes are expressed and required for mesoderm invagination in the fruit fly Drosophila melanogaster but do not appear during mesoderm ingression of the midge Chironomus riparius. We demonstrate that early expression of either or both of these genes in C.riparius is sufficient to invoke mesoderm invagination similar to D.melanogaster. The possible genetic simplicity and a measurable increase in developmental robustness might explain repeated evolution of similar transitions in animal gastrulation. DOI: http://dx.doi.org/10.7554/eLife.18318.001 PMID:27685537
Video Views and Reviews: Gastrulation and the Fashioning of Animal Embryos
ERIC Educational Resources Information Center
Watters, Christopher
2005-01-01
Most science students readily understand that following fertilization, a single-celled egg must undergo multiple rounds of cell division to become a multicellular organism. This transformation is so universal among animal embryos that developmental biologists refer to the process with a single term: ''gastrulation.'' During gastrulation, many if…
Kaneda, Teruo; Motoki, Jun-ya Doi
2012-09-01
Studies of meso-endoderm and neural induction and subsequent body plan formation have been analyzed using mainly amphibians as the experimental model. Xenopus is currently the predominant model, because it best enables molecular analysis of these induction processes. However, much of the embryological information on these inductions (e.g., those of the Spemann-Mangold organizer), and on the morphogenetic movements of inductively interacting tissues, derives from research on non-model amphibians, especially urodeles. Although the final body pattern is strongly conserved in vertebrates, and although many of the same developmental genes are expressed, it has become evident that there are individually diverse modes of morphogenesis and timing of developmental events. Whether or not this diversity represents essential differences in the early induction processes remains unclear. The aim of this review is to compare the gastrulation process, induction processes, and gene expressions between a urodele, mainly Cynops pyrrhogaster, and an anura, Xenopus laevis, thereby to clarify conserved and diversified aspects. Cynops gastrulation differs significantly from that of Xenopus in that specification of the regions of the Xenopus dorsal marginal zone (DMZ) are specified before the onset of gastrulation, as marked by blastopore formation, whereas the equivalent state of specification does not occur in Cynops until the middle of gastrulation. Detailed comparison of the germ layer structure and morphogenetic movements during the pre-gastrula and gastrula stages shows that the entire gastrulation process should be divided into two phases of notochord induction and neural induction. Cynops undergoes these processes sequentially after the onset of gastrulation, whereas Xenopus undergoes notochord induction during a series of pre-gastrulation movements, and its traditionally defined period of gastrulation only includes the neural induction phase. Comparing the structure, fate, function and state of commitment of each domain of the DMZ of Xenopus and Cynops has revealed that the true form of the Spemann-Mangold organizer is suprablastoporal gsc-expressing endoderm that has notochord-inducing activity. Gsc-expressing deep endoderm and/or superficial endoderm in Xenopus is involved in inducing notochord during pre-gastrulation morphogenesis, rather than both gsc- and bra-expressing tissues being induced at the same time. Copyright © 2012 Elsevier Inc. All rights reserved.
Kraus, Yu A; Markov, A V
2016-01-01
The data revealed by comparative embryology of the basal (diploblastic) metazoans is traditionally considered a valuable potential source of information on the origin and early evolution of the animal kingdom and its major clades. Special attention is paid to the fundamental morphogenetic process of gastrulation during which the cells of the early embryo differentiate into the germ layers and the primary body plan is formed. Comparative analysis of gastrulation in different cnidarian taxa reveals high level of intergroup, intragroup, and individual variation. With few exceptions, there is no robust correlation between the type of gastrulation and the taxon. Current data do not support the idea that morphogenetic processes underlying cnidarian gastrulation can be divided into several distinct types. Rather, there is a continuum of equifinal ontogenetic trajectories. In cnidarians, the mode of gastrulation apparently depends less on the macroevolutionary history of the species than on various evolutionary plastic features, such as the oocyte size, the amount of yolk, the number of cells at the blastula (or morula) stage, the presence of phototrophic symbionts, or the ecology of the larva. Thus, in cnidarians, morphogenetic basis of gastrulation contains only a very weak phylogenetic signal and can have only limited application in phylogenetic reconstructions. On the other hand, comparative studies of the ontogeny of the basal metazoans shed light on the general rules of the evolution of morphogenetic processes that is crucial for understanding the early history of the animal kingdom.
Huggins, L G; Lennarz, W J
2001-08-01
In the sea urchin embryo, inhibition of collagen processing and deposition affects both gastrulation and embryonic skeleton (spicule) formation. It has been found that cell-free extracts of gastrula-stage embryos of Strongylocentrotus purpuratus contain a procollagen C-terminal proteinase (PCP) activity. A rationally designed non-peptidic organic hydroxamate, which is a potent and specific inhibitor of human recombinant PCP (FG-HL1), inhibited both the sea urchin PCP as well as purified chick embryo tendon PCP. In the sea urchin embryo, FG-HL1 inhibited gastrulation and blocked spicule elongation, but not spicule nucleation. A related compound with a terminal carboxylate rather than a hydroxamate (FG-HL2) did not inhibit either chick PCP or sea urchin PCP activity in a procollagen-cleavage assay. However, FG-HL2 did block spicule elongation without affecting spicule nucleation or gastrulation. Neither compound was toxic, because their effects were reversible on removal. It was shown that the inhibition of gastrulation and spicule elongation were independent of tissue specification events, because both the endoderm specific marker Endo1 and the primary mesenchyme cell specific marker SM50 were expressed in embryos treated with FG-HL1 and FG-HL2. These results suggest that disruption of the fibrillar collagen deposition in the blastocoele blocks the cell movements of gastrulation and may disrupt the positional information contained within the extracellular matrix, which is necessary for spicule formation.
Yanagi, Takanori; Ito, Kenta; Nishihara, Akiha; Minamino, Reika; Mori, Shoko; Sumida, Masayuki; Hashimoto, Chikara
2015-01-01
The dorsal blastopore lip (known as the Spemann organizer) is important for making the body plan in amphibian gastrulation. The organizer is believed to involute inward and migrate animally to make physical contact with the prospective head neuroectoderm at the blastocoel roof of mid- to late-gastrula. However, we found that this physical contact was already established at the equatorial region of very early gastrula in a wide variety of amphibian species. Here we propose a unified model of amphibian gastrulation movement. In the model, the organizer is present at the blastocoel roof of blastulae, moves vegetally to locate at the region that lies from the blastocoel floor to the dorsal lip at the onset of gastrulation. The organizer located at the blastocoel floor contributes to the anterior axial mesoderm including the prechordal plate, and the organizer at the dorsal lip ends up as the posterior axial mesoderm. During the early step of gastrulation, the anterior organizer moves to establish the physical contact with the prospective neuroectoderm through the “subduction and zippering” movements. Subduction makes a trench between the anterior organizer and the prospective neuroectoderm, and the tissues face each other via the trench. Zippering movement, with forming Brachet's cleft, gradually closes the gap to establish the contact between them. The contact is completed at the equator of early gastrulae and it continues throughout the gastrulation. After the contact is established, the dorsal axis is formed posteriorly, but not anteriorly. The model also implies the possibility of constructing a common model of gastrulation among chordate species. PMID:25754292
Fyn/Yes and non-canonical Wnt signalling converge on RhoA in vertebrate gastrulation cell movements
Jopling, Chris; den Hertog, Jeroen
2005-01-01
Convergent extension (CE) cell movements during gastrulation mediate extension of the anterior–posterior body axis of vertebrate embryos. Non-canonical Wnt5 and Wnt11 signalling is essential for normal CE movements in vertebrate gastrulation. Here, we show that morpholino (MO)-mediated double knock-down of the Fyn and Yes tyrosine kinases in zebrafish embryos impaired normal CE cell movements, resembling the silberblick and pipetail mutants, caused by mutations in wnt11 and wnt5, respectively. Co-injection of Fyn/Yes- and Wnt11- or Wnt5-MO was synergistic, but wnt11 or wnt5 RNA did not rescue the Fyn/Yes knockdown or vice versa. Remarkably, active RhoA rescued the Fyn/Yes knockdown as well as the Wnt11 knockdown, indicating that Fyn/Yes and Wnt11 signalling converged on RhoA. Our results show that Fyn and Yes act together with non-canonical Wnt signalling via RhoA in CE cell movements during gastrulation. PMID:15815683
Physical-chemical mechanisms of pattern formation during gastrulation
NASA Astrophysics Data System (ADS)
Bozorgui, Behnaz; Kolomeisky, Anatoly B.; Teimouri, Hamid
2018-03-01
Gastrulation is a fundamental phase during the biological development of most animals when a single layer of identical embryo cells is transformed into a three-layer structure, from which the organs start to develop. Despite a remarkable progress in quantifying the gastrulation processes, molecular mechanisms of these processes remain not well understood. Here we theoretically investigate early spatial patterning in a geometrically confined colony of embryonic stem cells. Using a reaction-diffusion model, a role of Bone-Morphogenetic Protein 4 (BMP4) signaling pathway in gastrulation is specifically analyzed. Our results show that for slow diffusion rates of BMP4 molecules, a new length scale appears, which is independent of the size of the system. This length scale separates the central region of the colony with uniform low concentrations of BMP molecules from the region near the colony edge where the concentration of signaling molecules is elevated. The roles of different components of the signaling pathway are also explained. Theoretical results are consistent with recent in vitro experiments, providing microscopic explanations for some features of early embryonic spatial patterning. Physical-chemical mechanisms of these processes are discussed.
Del Pino, Eugenia M
2018-01-03
The study of oogenesis and early development of frogs belonging to the family Hemiphractidae provide important comparison to the aquatic development of other frogs, such as Xenopus laevis, because reproduction on land characterizes the Hemiphractidae. In this review, the multinucleated oogenesis of the marsupial frog Flectonotus pygmaeus (Hemiphractidae) is analyzed and interpreted. In addition, the adaptations associated with the incubation of embryos in the pouch of the female marsupial frog Gastrotheca riobambae (Hemiphractidae) and the embryonic development of this frog are summarized. Moreover, G. riobambae gastrulation is compared with the gastrulation modes of Engystomops randi and Engystomops coloradorum (Leptodactylidae); Ceratophrys stolzmanni (Ceratophryidae); Hyalinobatrachium fleischmanni and Espadarana callistomma (Centrolenidae); Ameerega bilinguis, Dendrobates auratus, Epipedobates anthonyi, Epipedobates machalilla, Epipedobates tricolor, and Hyloxalus vertebralis (Dendrobatidae); Eleutherodactylus coqui (Terrarana: Eleutherodactylidae), and X. laevis (Pipidae). The comparison indicated two modes of frog gastrulation. In X. laevis and in frogs with aquatic reproduction, convergent extension begins during gastrulation. In contrast, convergent extension occurs in the post-gastrula of frogs with terrestrial reproduction. These two modes of gastrulation resemble the transitions toward meroblastic cleavage found in ray-finned fishes (Actinopterygii). In spite of this difference, the genes that guide early development seem to be highly conserved in frogs. I conclude that the shift of convergent extension to the post-gastrula accompanied the diversification of frog egg size and terrestrial reproductive modes. Copyright © 2018 Elsevier B.V. All rights reserved.
Tanaka, Tetsuya S; Ikenishi, Kohji
2002-02-01
An acidic, 38 kDa protein that is present in Xenopus wild-type embryos has been previously shown to be lacking in gastrula-arrested mutant embryos. To gain understanding of the role of this protein, its spatio-temporal distribution and involvement in gastrulation was investigated using the monoclonal antibody (9D10) against it. The protein was prominent in the cortical cytoplasm of cells facing the outside in the animal hemisphere of embryos until the gastrula stage, and in ciliated epithelial cells of embryos at stages later than the late neurula. When the 9D10 antibody was injected into fertilized wild-type eggs, they cleaved normally, but most of them had arrested development, always at the early stage of gastrulation, as in the mutant embryos. In contrast, the majority of the control antibody-injected eggs gastrulated normally and developed further. Cytoskeletal F-actin, which was mainly observed in the area beneath the plasma membrane facing the outside of the epithelial layer of not only the dorsal involuting marginal zone but also the dorsal, vegetal cell mass of the control antibody-injected embryos at the early gastrula stage, was scarcely recognized in the corresponding area of the 9D10 antibody-injected embryos. It is likely that the paucity of the F-actin caused by the 9D10 antibody inhibition of the 38 kDa protein might lead to a failure of cell movement in gastrulation, resulting in developmental arrest.
New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus.
Martik, Megan L; McClay, David R
2017-12-01
Gastrulation is a complex orchestration of movements by cells that are specified early in development. Until now, classical convergent extension was considered to be the main contributor to sea urchin archenteron extension, and the relative contributions of cell divisions were unknown. Active migration of cells along the axis of extension was also not considered as a major factor in invagination. Cell transplantations plus live imaging were used to examine endoderm cell morphogenesis during gastrulation at high-resolution in the optically clear sea urchin embryo. The invagination sequence was imaged throughout gastrulation. One of the eight macromeres was replaced by a fluorescently labeled macromere at the 32 cell stage. At gastrulation those patches of fluorescent endoderm cell progeny initially about 4 cells wide, released a column of cells about 2 cells wide early in gastrulation and then often this column narrowed to one cell wide by the end of archenteron lengthening. The primary movement of the column of cells was in the direction of elongation of the archenteron with the narrowing (convergence) occurring as one of the two cells moved ahead of its neighbor. As the column narrowed, the labeled endoderm cells generally remained as a contiguous population of cells, rarely separated by intrusion of a lateral unlabeled cell. This longitudinal cell migration mechanism was assessed quantitatively and accounted for almost 90% of the elongation process. Much of the extension was the contribution of Veg2 endoderm with a minor contribution late in gastrulation by Veg1 endoderm cells. We also analyzed the contribution of cell divisions to elongation. Endoderm cells in Lytechinus variagatus were determined to go through approximately one cell doubling during gastrulation. That doubling occurs without a net increase in cell mass, but the question remained as to whether oriented divisions might contribute to archenteron elongation. We learned that indeed there was a biased orientation of cell divisions along the plane of archenteron elongation, but when the impact of that bias was analyzed quantitatively, it contributed a maximum 15% to the total elongation of the gut. The major driver of archenteron elongation in the sea urchin, Lytechinus variagatus, is directed movement of Veg2 endoderm cells as a narrowing column along the plane of elongation. The narrowing occurs as cells in the column converge as they migrate, so that the combination of migration and the angular convergence provide the major component of the lengthening. A minor contributor to elongation is oriented cell divisions that contribute to the lengthening but no more than about 15%. Copyright © 2017 Elsevier B.V. All rights reserved.
Exposure of pregnant CD-1 mice to methanol during the period of gastrulation results in exencephaly, cleft palate, and cervical vertebra malformations (Rogers and Mole, 1997, Teratology 55, 364). C57BL/6J mice are sensitive to the teratogenicity of ethanol; fetuses of this strai...
[A case of diprosopus in the cat].
Aharon, D C; Wouda, W; van Weelden, E
1986-06-15
A case of diprosopus in a spontaneously delivered live-born kitten is reported. All facial components were completely duplicated. Fusion of the skulls had occurred in the temporal region; a single ear was present at the site of fusion. Additional defects were a cleft lip in one face and cleft palates in both faces. The cerebral hemispheres and arterior portions of the brain stem were completely duplicated, whereas the cerebellum and caudal brain stem were partially duplicated. The pathogenesis and aetiology are discussed. It is believed that disprosopus originates during the (pre)gastrulation stage of embryonic development, either by coalescence of two embryonic fields following a double process of gastrulation or by bifurcation of the axial mesoderm during a single gastrulation.
Hara, Yusuke; Nagayama, Kazuaki; Yamamoto, Takamasa S; Matsumoto, Takeo; Suzuki, Makoto; Ueno, Naoto
2013-10-15
Gastrulation is a dynamic tissue-remodeling process occurring during early development and fundamental to the later organogenesis. It involves both chemical signals and physical factors. Although much is known about the molecular pathways involved, the roles of physical forces in regulating cellular behavior and tissue remodeling during gastrulation have just begun to be explored. Here, we characterized the force generated by the leading edge mesoderm (LEM) that migrates preceding axial mesoderm (AM), and investigated the contribution of LEM during Xenopus gastrulation. First, we constructed an assay system using micro-needle which could measure physical forces generated by the anterior migration of LEM, and estimated the absolute magnitude of the force to be 20-80nN. Second, laser ablation experiments showed that LEM could affect the force distribution in the AM (i.e. LEM adds stretch force on axial mesoderm along anterior-posterior axis). Third, migrating LEM was found to be necessary for the proper gastrulation cell movements and the establishment of organized notochord structure; a reduction of LEM migratory activity resulted in the disruption of mediolateral cell orientation and convergence in AM. Finally, we found that LEM migration cooperates with Wnt/PCP to form proper notochord. These results suggest that the force generated by the directional migration of LEM is transmitted to AM and assists the tissue organization of notochord in vivo independently of the regulation by Wnt/PCP. We propose that the LEM may have a mechanical role in aiding the AM elongation through the rearrangement of force distribution in the dorsal marginal zone. © 2013 Elsevier Inc. All rights reserved.
Embryonic Cleavage Cycles: How Is a Mouse Like a Fly?
O’Farrell, Patrick H.; Stumpff, Jason; Su, Tin Tin
2009-01-01
The evolutionary advent of uterine support of embryonic growth in mammals is relatively recent. Nonetheless, striking differences in the earliest steps of embryogenesis make it difficult to draw parallels even with other chordates. We suggest that use of fertilization as a reference point misaligns the earliest stages and masks parallels that are evident when development is aligned at conserved stages surrounding gastrulation. In externally deposited eggs from representatives of all the major phyla, gastrulation is preceded by specialized extremely rapid cleavage cell cycles. Mammals also exhibit remarkably fast cell cycles in close association with gastrulation, but instead of beginning development with these rapid cycles, the mammalian egg first devotes itself to the production of extraembryonic structures. Previous attempts to identify common features of cleavage cycles focused on post-fertilization divisions of the mammalian egg. We propose that comparison to the rapid peri-gastrulation cycles is more appropriate and suggest that these cycles are related by evolutionary descent to the early cleavage stages of embryos such as those of frog and fly. The deferral of events in mammalian embryogenesis might be due to an evolutionary shift in the timing of fertilization. PMID:14711435
BACKGROUND: Methanol causes axial skeleton and craniofacial defects in both CD-1 and C57BL/6J mice during gastrulation, but C57BL/6J embryos are more severely affected. We evaluated methanol-induced pathogenesis in CD-1 and C57BL/6J embryos exposed during gastrulation in whole em...
Kreiling, Jill A; Balantac, Zaneta L; Crawford, Andrew R; Ren, Yuexin; Toure, Jamal; Zchut, Sigalit; Kochilas, Lazaros; Creton, Robbert
2008-01-01
Vertebrate embryos generate striking Ca(2+) patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca(2+) during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca(2+) along the dorsal-ventral axis, with higher Ca(2+) concentrations in the ventral margin and lower Ca(2+) concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca(2+) pump with 0.5 microM thapsigargin elevates cytosolic Ca(2+) in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left-right asymmetry. Brain defects include a left-right reversal of pitx2 expression in the dorsal diencephalon and a left-right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca(2+) pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca(2+) pump during gastrulation inhibits expression of no tail (ntl) and left-right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer's vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca(2+) plays a role in Kupffer's vesicle function, influencing ciliary motility and translating the vesicle's counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca(2+) plays an additional role in the formation of Kupffer's vesicle.
Row, Richard H.; Tsotras, Steve R.; Goto, Hana; Martin, Benjamin L.
2016-01-01
Vertebrate body axis formation depends on a population of bipotential neuromesodermal cells along the posterior wall of the tailbud that make a germ layer decision after gastrulation to form spinal cord and mesoderm. Despite exhibiting germ layer plasticity, these cells never give rise to midline tissues of the notochord, floor plate and dorsal endoderm, raising the question of whether midline tissues also arise from basal posterior progenitors after gastrulation. We show in zebrafish that local posterior signals specify germ layer fate in two basal tailbud midline progenitor populations. Wnt signaling induces notochord within a population of notochord/floor plate bipotential cells through negative transcriptional regulation of sox2. Notch signaling, required for hypochord induction during gastrulation, continues to act in the tailbud to specify hypochord from a notochord/hypochord bipotential cell population. Our results lend strong support to a continuous allocation model of midline tissue formation in zebrafish, and provide an embryological basis for zebrafish and mouse bifurcated notochord phenotypes as well as the rare human congenital split notochord syndrome. We demonstrate developmental equivalency between the tailbud progenitor cell populations. Midline progenitors can be transfated from notochord to somite fate after gastrulation by ectopic expression of msgn1, a master regulator of paraxial mesoderm fate, or if transplanted into the bipotential progenitors that normally give rise to somites. Our results indicate that the entire non-epidermal posterior body is derived from discrete, basal tailbud cell populations. These cells remain receptive to extracellular cues after gastrulation and continue to make basic germ layer decisions. PMID:26674311
Cellular basis of gastrulation in the sand dollar Scaphechinus mirabilis.
Kominami, T; Takata, H
2000-12-01
The processes of gastrulation in the sand dollar Scaphechinus mirabilis are quite different from those in regular echinoids. In this study, we explored the cellular basis of gastrulation in this species with several methods. Cell-tracing experiments revealed that the prospective endodermal cells were convoluted throughout the invagination processes. Histological observation showed that the ectodermal layer remained thickened, and the vegetal cells retained an elongated shape until the last step of invagination. Further, most of the vegetal ectodermal cells were skewed or distorted. Wedge-shaped cells were common in the vegetal ectoderm, especially at the subequatorial region. In these embryos, unlike the embryos of regular echinoids, secondary mesenchyme cells did not seem to exert the force to pull up the archenteron toward the inner surface of the apical plate. In fact, the archenteron cells were not stretched along the axis of elongation and were in close contact with each other. Here we found that gastrulation was completely blocked when the embryos were attached to a glass dish coated with poly-L-lysine, in which the movement of the ectodermal layer was inhibited. These results suggest that a force generated by the thickened ectoderm, rather than rearrangement of the archenteron cells, may play a key role in the archenteron elongation in S. mirabilis embryos.
Foo, Shawna A; Dworjanyn, Symon A; Khatkar, Mehar S; Poore, Alistair G B; Byrne, Maria
2014-12-01
To predict the effects of global change on marine populations, it is important to measure the effects of climate stressors on performance and potential for adaptation. Adaptation depends on heritable genetic variance for stress tolerance being present in populations. We determined the effects of near-future ocean conditions on fertilization success of the sea urchin Pseudoboletia indiana. In 16 multiple dam-sire crosses, we quantified genetic variation in tolerance of warming (+3°C) and acidification (-0.3 to 0.5 pH units) at the gastrulation stage. Ocean acidification decreased fertilization across all dam-sire combinations with effects of pH significantly differing among the pairings. Decreased pH reduced the percentage of normal gastrulae with negative effects alleviated by increased temperature. Significant sire by environment interactions indicated the presence of heritable variation in tolerance of stressors at gastrulation and thus the potential for selection of resistant genotypes, which may enhance population persistence. A low genetic correlation indicated that genotypes that performed well at gastrulation in low pH did not necessarily perform well at higher temperatures. Furthermore, performance at fertilization was not necessarily a good predictor of performance at the later stage of gastrulation. Southern range edge populations of Pseudoboletia indiana may benefit from future warming with potential for extension of their distribution in south-east Australia.
Foo, Shawna A; Dworjanyn, Symon A; Khatkar, Mehar S; Poore, Alistair G B; Byrne, Maria
2014-01-01
To predict the effects of global change on marine populations, it is important to measure the effects of climate stressors on performance and potential for adaptation. Adaptation depends on heritable genetic variance for stress tolerance being present in populations. We determined the effects of near-future ocean conditions on fertilization success of the sea urchin Pseudoboletia indiana. In 16 multiple dam-sire crosses, we quantified genetic variation in tolerance of warming (+3°C) and acidification (−0.3 to 0.5 pH units) at the gastrulation stage. Ocean acidification decreased fertilization across all dam-sire combinations with effects of pH significantly differing among the pairings. Decreased pH reduced the percentage of normal gastrulae with negative effects alleviated by increased temperature. Significant sire by environment interactions indicated the presence of heritable variation in tolerance of stressors at gastrulation and thus the potential for selection of resistant genotypes, which may enhance population persistence. A low genetic correlation indicated that genotypes that performed well at gastrulation in low pH did not necessarily perform well at higher temperatures. Furthermore, performance at fertilization was not necessarily a good predictor of performance at the later stage of gastrulation. Southern range edge populations of Pseudoboletia indiana may benefit from future warming with potential for extension of their distribution in south-east Australia. PMID:25558283
Involvement of l(-)-rhamnose in sea urchin gastrulation. Part II: α-l-Rhamnosidase.
Liang, Jing; Aleksanyan, Heghush; Metzenberg, Stan; Oppenheimer, Steven B
2016-06-01
The sea urchin embryo is recognized as a model system to reveal developmental mechanisms involved in human health and disease. In Part I of this series, six carbohydrates were tested for their effects on gastrulation in embryos of the sea urchin Lytechinus pictus. Only l-rhamnose caused dramatic increases in the numbers of unattached archenterons and exogastrulated archenterons in living, swimming embryos. It was found that at 30 h post-fertilization the l-rhamnose had an unusual inverse dose-dependent effect, with low concentrations (1-3 mM) interfering with development and higher concentrations (30 mM) having little to no effect on normal development. In this study, embryos were examined for inhibition of archenteron development after treatment with α-l-rhamnosidase, an endoglycosidase that removes terminal l-rhamnose sugars from glycans. It was observed that the enzyme had profound effects on gastrulation, an effect that could be suppressed by addition of l-rhamnose as a competitive inhibitor. The involvement of l-rhamnose-containing glycans in sea urchin gastrulation was unexpected, since there are no characterized biosynthetic pathways for rhamnose utilization in animals. It is possible there exists a novel l-rhamnose-containing glycan in sea urchins, or that the enzyme and sugar interfere with the function of rhamnose-binding lectins, which are components of the innate immune system in many vertebrate and invertebrate species.
Resolving early mesoderm diversification through single-cell expression profiling.
Scialdone, Antonio; Tanaka, Yosuke; Jawaid, Wajid; Moignard, Victoria; Wilson, Nicola K; Macaulay, Iain C; Marioni, John C; Göttgens, Berthold
2016-07-14
In mammals, specification of the three major germ layers occurs during gastrulation, when cells ingressing through the primitive streak differentiate into the precursor cells of major organ systems. However, the molecular mechanisms underlying this process remain unclear, as numbers of gastrulating cells are very limited. In the mouse embryo at embryonic day 6.5, cells located at the junction between the extra-embryonic region and the epiblast on the posterior side of the embryo undergo an epithelial-to-mesenchymal transition and ingress through the primitive streak. Subsequently, cells migrate, either surrounding the prospective ectoderm contributing to the embryo proper, or into the extra-embryonic region to form the yolk sac, umbilical cord and placenta. Fate mapping has shown that mature tissues such as blood and heart originate from specific regions of the pre-gastrula epiblast, but the plasticity of cells within the embryo and the function of key cell-type-specific transcription factors remain unclear. Here we analyse 1,205 cells from the epiblast and nascent Flk1(+) mesoderm of gastrulating mouse embryos using single-cell RNA sequencing, representing the first transcriptome-wide in vivo view of early mesoderm formation during mammalian gastrulation. Additionally, using knockout mice, we study the function of Tal1, a key haematopoietic transcription factor, and demonstrate, contrary to previous studies performed using retrospective assays, that Tal1 knockout does not immediately bias precursor cells towards a cardiac fate.
Hirose, Mamiko; Hidaka, Michio
2006-10-01
We studied the early development of zooxanthellae-containing eggs of the scleractinian corals Porites cylindrica and Montipora digitata to elucidate how zooxanthellae become localized to the endoderm of planulae during the course of development. In both species, zooxanthellae were distributed evenly in the oocytes and delivered almost equally to the blastomeres during cleavage. In P. cylindrica, gastrulation occurred via delamination or ingression, and blastomeres containing zooxanthellae dropped into the blastocoel during gastrulation. Thus, zooxanthellae were restricted to the endodermal cells at the gastrula or early planula stage in P. cylindrica. In M. digitata, gastrulation occurred by a combination of invagination and epiboly to form a somewhat concave gastrula. Zooxanthellae were present in both endodermal and ectodermal cells of early planulae, but they disappeared from the ectoderm as the planulae matured. In our previous study on two species of Pocillopora, we found that zooxanthellae were localized in eggs as well as in embryos, and that blastomeres containing zooxanthellae later dropped into the blastocoel to become restricted to the endoderm (Hirose et al., 2000). The timing and mechanism of zooxanthella localization and types of gastrulation differed among species belonging to the three genera. These results suggest that zooxanthella localization in the embryos reflects the timing of the determination of presumptive endoderm cells and/or specificity of zooxanthellae toward presumptive endoderm cells.
Grana, Theresa M.; Cox, Elisabeth A.; Lynch, Allison M.; Hardin, Jeff
2010-01-01
Gastrulation is the first major morphogenetic movement in development, and requires dynamic regulation of cell adhesion and the cytoskeleton. C. elegans gastrulation begins with the migration of the two endodermal precursors, Ea and Ep, from the surface of the embryo into the interior. Ea/Ep migration provides a relatively simple system to examine the intersection of cell adhesion, cell signaling, and cell movement. Ea/Ep ingression depends on correct cell fate specification and polarization, apical myosin accumulation, and Wnt activated actomyosin contraction that drives apical constriction and ingression (Lee et al., 2006; Nance et al., 2005). Here, we show that Ea/Ep ingression also requires the function of either HMR-1/cadherin or SAX-7/L1CAM. Both cadherin complex components and L1CAM are localized at all sites of cell-cell contact during gastrulation. Either system is sufficient for Ea/Ep ingression, but loss of both together leads to a failure of apical constriction and ingression. Similar results are seen with isolated blastomeres. Ea/Ep are properly specified and appear to display correct apical-basal polarity in sax-7(eq1); hmr-1(RNAi) embryos. Significantly, in sax-7(eq1); hmr-1(RNAi) embryos Ea and Ep fail to accumulate myosin (NMY-2::GFP) at their apical surfaces, but in either sax-7(eq1) or hmr-1(RNAi) embryos, apical myosin accumulation is comparable to wildtype. Thus, the cadherin and L1CAM adhesion systems are redundantly required for localized myosin accumulation, and hence for actomyosin contractility during gastrulation. We also show that sax-7 and hmr-1 function are redundantly required for Wnt-dependent spindle polarization during division of the ABar blastomere, indicating that these cell surface proteins redundantly regulate multiple developmental events in early embryos. PMID:20515680
Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states
Lyons, Deidre; Kaltenbach, Stacy; McClay, David R.
2013-01-01
Gastrulation in the sea urchin begins with ingression of the primary mesenchyme cells (PMCs) at the vegetal pole of the embryo. After entering the blastocoel the PMCs migrate, form a syncitium, and synthesize the skeleton of the embryo. Several hours after the PMCs ingress the vegetal plate buckles to initiate invagination of the archenteron. That morphogenetic process occurs in several steps. The non-skeletogenic cells produce the initial inbending of the vegetal plate. Endoderm cells then rearrange and extend the length of the gut across the blastocoel to a target near the animal pole. Finally, cells that will form part of the midgut and hindgut are added to complete gastrulation. Later, the stomodeum invaginates from the oral ectoderm and fuses with the foregut to complete the archenteron. In advance of, and during these morphogenetic events an increasingly complex gene regulatory network controls the specification and the cell biological events that conduct the gastrulation movements. PMID:23801438
Weiser, Douglas C; Pyati, Ujwal J; Kimelman, David
2007-06-15
Convergent extension of the mesoderm is the major driving force of vertebrate gastrulation. During this process, mesodermal cells move toward the future dorsal side of the embryo, then radically change behavior as they initiate extension of the body axis. How cells make this transition in behavior is unknown. We have identified the scaffolding protein and tumor suppressor Gravin as a key regulator of this process in zebrafish embryos. We show that Gravin is required for the conversion of mesodermal cells from a highly migratory behavior to the medio-laterally intercalative behavior required for body axis extension. In the absence of Gravin, paraxial mesodermal cells fail to shut down the protrusive activity mediated by the Rho/ROCK/Myosin II pathway, resulting in embryos with severe extension defects. We propose that Gravin functions as an essential scaffold for regulatory proteins that suppress the migratory behavior of the mesoderm during gastrulation, and suggest that this function also explains how Gravin inhibits invasive behaviors in metastatic cells.
Venuti, J M; Gan, L; Kozlowski, M T; Klein, W H
1993-04-01
During sea urchin development, esophageal muscle arises from secondary mesenchyme cells, descendants of the vegetal plate that delaminate from the coelomic epithelium at the end of gastrulation. In lithium-induced exogastrulae, where vegetal plate descendants evert rather than invaginate, myogenesis occurs normally, indicating that myocyte progenitors do not have to be near the future stomodeum for differentiation to occur. Vegetal plate descendants isolated along with the extracellular matrix at different times during gastrulation produce differentiated myocytes in culture as monitored by staining with a myosin heavy chain antibody. Vegetal isolates prepared at mid-gastrulation or later consistently produce differentiated myocytes whose form and position resembled their counterparts in the intact embryo, whereas vegetal isolates prepared a few hours earlier while capable of gut differentiation, as evidenced by the de novo synthesis of the endodermal surface marker Endo 1, did not produce differentiated myocytes. These results suggest that sometime after early gastrulation, a subset of secondary mesenchyme cells are competent to differentiate into muscle cells. RNase protection assays showed that the accumulation of sea urchin myogenic factor (SUM-1) mRNA is likely to be coincident with the earliest demonstrable commitment of myogenic precursors. Premature expression of SUM-1 coding sequences in mesenchyme blastulae resulted in the activation of muscle-specific enhancer elements, demonstrating that SUM-1 can function precociously in the early embryo. However, SUM-1 expressed in this manner did not activate the endogenous MHC gene, nor induce premature or ectopic production of muscle cells.
Resolving Early Mesoderm Diversification through Single Cell Expression Profiling
Wilson, Nicola K.; Macaulay, Iain C.; Marioni, John C.; Göttgens, Berthold
2016-01-01
Summary In mammals, specification of the three major germ layers occurs during gastrulation, when cells ingressing through the primitive streak differentiate into the precursor cells of major organ systems. However, the molecular mechanisms underlying this process remain unclear, as numbers of gastrulating cells are very limited. In the E6.5 mouse embryo, cells located at the junction between the extra-embryonic region and the epiblast on the posterior side of the embryo undergo an epithelial-to-mesenchymal transition (EMT) and ingress through the primitive streak (PS). Subsequently, cells migrate, either surrounding the prospective ectoderm contributing to the embryo proper, or into the extra-embryonic region to form the yolk sac (YS), umbilical cord and placenta. Fate mapping has shown that mature tissues such as blood and heart originate from specific regions of the pre-gastrula epiblast1 but the plasticity of cells within the embryo and the function of key cell type-specific transcription factors remain unclear. Here we analyse 1,205 cells from the epiblast and nascent Flk1+ mesoderm of gastrulating mouse embryos using single cell RNA-sequencing, representing the first transcriptome-wide in vivo view of early mesoderm formation during mammalian gastrulation. Additionally, using knock-out mice, we study the function of Tal1, a key hematopoietic transcription factor (TF), and demonstrate, contrary to previous studies performed using retrospective assays2,3, that Tal1 knock out does not immediately bias precursor cells towards a cardiac fate. PMID:27383781
Generation of organized germ layers from a single mouse embryonic stem cell.
Poh, Yeh-Chuin; Chen, Junwei; Hong, Ying; Yi, Haiying; Zhang, Shuang; Chen, Junjian; Wu, Douglas C; Wang, Lili; Jia, Qiong; Singh, Rishi; Yao, Wenting; Tan, Youhua; Tajik, Arash; Tanaka, Tetsuya S; Wang, Ning
2014-05-30
Mammalian inner cell mass cells undergo lineage-specific differentiation into germ layers of endoderm, mesoderm and ectoderm during gastrulation. It has been a long-standing challenge in developmental biology to replicate these organized germ layer patterns in culture. Here we present a method of generating organized germ layers from a single mouse embryonic stem cell cultured in a soft fibrin matrix. Spatial organization of germ layers is regulated by cortical tension of the colony, matrix dimensionality and softness, and cell-cell adhesion. Remarkably, anchorage of the embryoid colony from the 3D matrix to collagen-1-coated 2D substrates of ~1 kPa results in self-organization of all three germ layers: ectoderm on the outside layer, mesoderm in the middle and endoderm at the centre of the colony, reminiscent of generalized gastrulating chordate embryos. These results suggest that mechanical forces via cell-matrix and cell-cell interactions are crucial in spatial organization of germ layers during mammalian gastrulation. This new in vitro method could be used to gain insights on the mechanisms responsible for the regulation of germ layer formation.
Foo, Shawna A; Dworjanyn, Symon A; Poore, Alistair G B; Byrne, Maria
2012-01-01
Predicting effects of rapid climate change on populations depends on measuring the effects of climate stressors on performance, and potential for adaptation. Adaptation to stressful climatic conditions requires heritable genetic variance for stress tolerance present in populations. We quantified genetic variation in tolerance of early development of the ecologically important sea urchin Centrostephanus rodgersii to near-future (2100) ocean conditions projected for the southeast Australian global change hot spot. Multiple dam-sire crosses were used to quantify the interactive effects of warming (+2-4 °C) and acidification (-0.3-0.5 pH units) across twenty-seven family lines. Acidification, but not temperature, decreased the percentage of cleavage stage embryos. In contrast, temperature, but not acidification decreased the percentage of gastrulation. Cleavage success in response to both stressors was strongly affected by sire identity. Sire and dam identity significantly affected gastrulation and both interacted with temperature to determine developmental success. Positive genetic correlations for gastrulation indicated that genotypes that did well at lower pH also did well in higher temperatures. Significant genotype (sire) by environment interactions for both stressors at gastrulation indicated the presence of heritable variation in thermal tolerance and the ability of embryos to respond to changing environments. The significant influence of dam may be due to maternal provisioning (maternal genotype or environment) and/or offspring genotype. It appears that early development in this ecologically important sea urchin is not constrained in adapting to the multiple stressors of ocean warming and acidification. The presence of tolerant genotypes indicates the potential to adapt to concurrent warming and acidification, contributing to the resilience of C. rodgersii in a changing ocean.
Foo, Shawna A.; Dworjanyn, Symon A.; Poore, Alistair G. B.; Byrne, Maria
2012-01-01
Background Predicting effects of rapid climate change on populations depends on measuring the effects of climate stressors on performance, and potential for adaptation. Adaptation to stressful climatic conditions requires heritable genetic variance for stress tolerance present in populations. Methodology/Principal Findings We quantified genetic variation in tolerance of early development of the ecologically important sea urchin Centrostephanus rodgersii to near-future (2100) ocean conditions projected for the southeast Australian global change hot spot. Multiple dam-sire crosses were used to quantify the interactive effects of warming (+2–4°C) and acidification (−0.3−0.5 pH units) across twenty-seven family lines. Acidification, but not temperature, decreased the percentage of cleavage stage embryos. In contrast, temperature, but not acidification decreased the percentage of gastrulation. Cleavage success in response to both stressors was strongly affected by sire identity. Sire and dam identity significantly affected gastrulation and both interacted with temperature to determine developmental success. Positive genetic correlations for gastrulation indicated that genotypes that did well at lower pH also did well in higher temperatures. Conclusions/Significance Significant genotype (sire) by environment interactions for both stressors at gastrulation indicated the presence of heritable variation in thermal tolerance and the ability of embryos to respond to changing environments. The significant influence of dam may be due to maternal provisioning (maternal genotype or environment) and/or offspring genotype. It appears that early development in this ecologically important sea urchin is not constrained in adapting to the multiple stressors of ocean warming and acidification. The presence of tolerant genotypes indicates the potential to adapt to concurrent warming and acidification, contributing to the resilience of C. rodgersii in a changing ocean. PMID:22880005
NASA Astrophysics Data System (ADS)
Sparks, Kate M.; Foo, Shawna A.; Uthicke, Sven; Byrne, Maria; Lamare, Miles
2017-03-01
The crown-of-thorns sea star Acanthaster planci is a key predator of corals and has had a major influence on the decrease in coral cover across the Indo-Pacific. To understand how this species may adapt to ocean warming and acidification, this study used a quantitative genetic approach to examine the response in offspring of 24 half-sib A. planci families raised in fully crossed treatment combinations of temperature (27, 29 and 31 °C) and pCO2 (450 and 900 ppm) to the gastrulation stage (26 h post-fertilisation). Interactions between genotype and environment were tested using a permutational multivariate ANOVA and restricted error maximum likelihood calculations of variance. High temperature (31 °C) significantly reduced normal (symmetrical, intact) development by 15% at the 16-cell stage. Increased temperature (from 29 to 31 °C) reduced normal gastrulation from 65 to 30%. The extent to which each genotype was affected depended on sire identity, which explained 15% of variation. pCO2 did not significantly influence development at gastrulation. To explore the importance of individual mating pairs, response ratios were calculated for offspring of each family across all treatments. Response ratios demonstrated that the majority of genotypes experienced the highest percentage of normal development to gastrulation in the control treatment, and that family (sire × dam) is important in determining the response to ocean warming and acidification. A positive genetic correlation (overall r* G = 0.76) from sire × environment interactions, however, indicated that individuals which develop `better' at both high temperature and high pCO2 may cope better with near-future predicted warm and acidified conditions for eastern Australia.
Davidson, Lance A; Keller, Raymond; DeSimone, Douglas W
2004-12-01
Fibronectin, a major component of the extracellular matrix is critical for processes of cell traction and cell motility. Whole-mount confocal imaging of the three-dimensional architecture of the extracellular matrix is used to describe dynamic assembly and remodeling of fibronectin fibrils during gastrulation and neurulation in the early frog embryo. As previously reported, fibrils first appear under the prospective ectoderm. We describe here the first evidence for regulated assembly of fibrils along the somitic mesoderm/endoderm boundary as well as at the notochord/somitic mesoderm boundary and clearing of fibrils from the dorsal and ventral surfaces of the notochord that occurs over the course of a few hours. As gastrulation proceeds, fibrils are restored to the dorsal surface of the notochord, where the notochord contacts the prospective floor plate. As the neural folds form, fibrils are again remodeled as deep neural plate cells move medially. The process of neural tube closure leaves a region of the ectoderm overlying the neural crest transiently bare of fibrils. Fibrils are assembled surrounding the dorsal surface of the neural tube as the neural tube lumen is restored. Copyright (c) 2004 Wiley-Liss, Inc.
Nakatsuji, N; Johnson, K E
1984-06-01
Using time-lapse cinemicrography and scanning electron microscopy, we have shown that normal Rana embryos and gastrulating hybrid embryos have extracellular fibrils on the inner surface of the ectodermal layer. These fibrils are absent prior to gastrulation and appear in increasing numbers during gastrulation. They can also be deposited in vitro where they condition substrata in such a way that normal presumptive mesodermal cells placed on them show extensive attachment and unoriented cell movement. These fibrils are also present in some arrested hybrid embryos, but in reduced numbers, or are lacking in other arrested hybrid embryos. Explanted ectodermal fragments from arrested hybrid embryos fail both to condition culture substrata by the deposition of fibrils and to promote cell attachment and translocation. In contrast, ectodermal fragments from normal embryos can condition culture substrata so as to promote moderate cell attachment and, for one particular gamete combination, even cell translocation of presumptive mesodermal cells taken from arrested hybrid embryos. These results provide new evidence to support the hypothesis that extracellular fibrils represent a system that promotes mesodermal cell migration in amphibian embryos. Differences in the fibrillar system in urodele and anuran embryos are discussed in relation to fundamental differences in the mode of mesodermal cell migration in these two classes of Amphibia.
Lee, Soo-Ho; Kim, Chowon; Lee, Hyun-Kyung; Kim, Yoo-Kyung; Ismail, Tayaba; Jeong, Youngeun; Park, Kyungyeon; Park, Mae-Ja; Park, Do-Sim; Lee, Hyun-Shik
2016-10-14
NSrp70 (nuclear speckle-related protein 70), a recently discovered protein and it belongs to the serine/arginine (SR) rich related protein family. NSrp70 is recognized as an important splicing factor comprising RNA recognition motif (RRM) and arginine/serine (RS)-like regions at the N- and C-terminus respectively, along with two coiled coil domains at each terminus. However, other functions of NSrp70 remain unelucidated. In this study, we investigated the role of NSrp70 in Xenopus embryogenesis and found that its maternal expression plays a critical role in embryonic development. Knockdown of NSrp70 resulted in dramatic reduction in the length of developing tadpoles and mild to severe malformation in Xenopus embryos. In addition, knockdown of NSrp70 resulted in an extremely short axis by blocking gastrulation and convergent extension. Further, animal cap assays along with activin A treatment revealed that NSrp70 is an essential factor for dorsal mesoderm induction as knockdown of NSrp70 caused a dramatic down-regulation of dorsal mesoderm specific genes and its loss significantly shortened the elongation region of animal caps. In conclusion, NSrp70 is crucial for early embryonic development, influencing gastrulation and mesoderm induction. Copyright © 2016 Elsevier Inc. All rights reserved.
Self-organization of human embryonic stem cells on micropatterns
Deglincerti, Alessia; Etoc, Fred; Guerra, M. Cecilia; Martyn, Iain; Metzger, Jakob; Ruzo, Albert; Simunovic, Mijo; Yoney, Anna; Brivanlou, Ali H.; Siggia, Eric; Warmflash, Aryeh
2018-01-01
Fate allocation in the gastrulating embryo is spatially organized as cells differentiate to specialized cell types depending on their positions with respect to the body axes. There is a need for in vitro protocols that allow the study of spatial organization associated with this developmental transition. While embryoid bodies and organoids can exhibit some spatial organization of differentiated cells, these methods do not yield consistent and fully reproducible results. Here, we describe a micropatterning approach where human embryonic stem cells are confined to disk-shaped, sub-millimeter colonies. After 42 hours of BMP4 stimulation, cells form self-organized differentiation patterns in concentric radial domains, which express specific markers associated with the embryonic germ layers, reminiscent of gastrulating embryos. Our protocol takes 3 days; it uses commercial microfabricated slides (CYTOO), human laminin-521 (LN-521) as extra-cellular matrix coating, and either conditioned or chemically-defined medium (mTeSR). Differentiation patterns within individual colonies can be determined by immunofluorescence and analyzed with cellular resolution. Both the size of the micropattern and the type of medium affect the patterning outcome. The protocol is appropriate for personnel with basic stem cell culture training. This protocol describes a robust platform for quantitative analysis of the mechanisms associated with pattern formation at the onset of gastrulation. PMID:27735934
Ectoderm exerts the driving force for gastrulation in the sand dollar Scaphechinus mirabilis.
Takata, H; Kominami, T
2001-06-01
How the ectodermal layer relates to the invagination processes was examined in the sand dollar Scaphechinus mirabilis. When the turgor pressure of blastocoele was increased, invagination was completely blocked. In contrast, an increase in turgor pressure did not affect elongation of the gut rudiment in the regular echinoid Hemicentrotus pulcherrimus. Rhodamine-phalloidin staining showed that the distribution of actin filaments was different between two species of embryos. In S. mirabilis gastrulating embryos, abundant actin filaments were seen at the basal cortex of ectoderm in addition to archenteron cells, while the intense signal was restricted to the archenteron in H. pulcherrimus. To investigate whether actin filaments contained in the ectodermal layer exert the force of invagination, a small part of the ectodermal layer was aspirated with a micropipette. If S. mirabilis embryos were aspirated from the onset of gastrulation, invagination did not occur at all, irrespective of the suction site. Even after the archenteron had invaginated to one-half of its full length, further elongation of the archenteron was severely blocked by suction of the lateral ectoderm. In contrast, suction of the ectodermal layer did not affect the elongation processes in H. pulcherrimus. These results strongly suggest that the ectodermal layer, especially in the vegetal half, exerts the driving force of invagination in S. mirabilis.
Clonal and molecular analysis of the prospective anterior neural boundary in the mouse embryo
Cajal, Marieke; Lawson, Kirstie A.; Hill, Bill; Moreau, Anne; Rao, Jianguo; Ross, Allyson; Collignon, Jérôme; Camus, Anne
2012-01-01
In the mouse embryo the anterior ectoderm undergoes extensive growth and morphogenesis to form the forebrain and cephalic non-neural ectoderm. We traced descendants of single ectoderm cells to study cell fate choice and cell behaviour at late gastrulation. In addition, we provide a comprehensive spatiotemporal atlas of anterior gene expression at stages crucial for anterior ectoderm regionalisation and neural plate formation. Our results show that, at late gastrulation stage, expression patterns of anterior ectoderm genes overlap significantly and correlate with areas of distinct prospective fates but do not define lineages. The fate map delineates a rostral limit to forebrain contribution. However, no early subdivision of the presumptive forebrain territory can be detected. Lineage analysis at single-cell resolution revealed that precursors of the anterior neural ridge (ANR), a signalling centre involved in forebrain development and patterning, are clonally related to neural ectoderm. The prospective ANR and the forebrain neuroectoderm arise from cells scattered within the same broad area of anterior ectoderm. This study establishes that although the segregation between non-neural and neural precursors in the anterior midline ectoderm is not complete at late gastrulation stage, this tissue already harbours elements of regionalisation that prefigure the later organisation of the head. PMID:22186731
Stein, David; Charatsi, Iphigenie; Cho, Yong Suk; Zhang, Zhenyu; Nguyen, Jesse; DeLotto, Robert; Luschnig, Stefan; Moussian, Bernard
2010-11-09
Drosophila embryonic dorsal-ventral polarity is generated by a series of serine protease processing events in the egg perivitelline space. Gastrulation Defective processes Snake, which then cleaves Easter, which then processes Spätzle into the activating ligand for the Toll receptor. seele was identified in a screen for mutations that, when homozygous in ovarian germline clones, lead to the formation of progeny embryos with altered embryonic patterning; maternal loss of seele function leads to the production of moderately dorsalized embryos. By combining constitutively active versions of Gastrulation Defective, Snake, Easter, and Spätzle with loss-of-function alleles of seele, we find that Seele activity is dispensable for Spätzle-mediated activation of Toll but is required for Easter, Snake, and Gastrulation Defective to exert their effects on dorsal-ventral patterning. Moreover, Seele function is required specifically for secretion of Easter from the developing embryo into the perivitelline space and for Easter processing. Seele protein resides in the endoplasmic reticulum of blastoderm embryos, suggesting a role in the trafficking of Easter to the perivitelline space, prerequisite to its processing and function. Easter transport to the perivitelline space represents a previously unappreciated control point in the signal transduction pathway that controls Drosophila embryonic dorsal-ventral polarity. Copyright © 2010 Elsevier Ltd. All rights reserved.
Delayed transition to new cell fates during cellular reprogramming
Cheng, Xianrui; Lyons, Deirdre C.; Socolar, Joshua E. S.; McClay, David R.
2014-01-01
In many embryos specification toward one cell fate can be diverted to a different cell fate through a reprogramming process. Understanding how that process works will reveal insights into the developmental regulatory logic that emerged from evolution. In the sea urchin embryo, cells at gastrulation were found to reprogram and replace missing cell types after surgical dissections of the embryo. Non-skeletogenic mesoderm (NSM) cells reprogrammed to replace missing skeletogenic mesoderm cells and animal caps reprogrammed to replace all endomesoderm. In both cases evidence of reprogramming onset was first observed at the early gastrula stage, even if the cells to be replaced were removed earlier in development. Once started however, the reprogramming occurred with compressed gene expression dynamics. The NSM did not require early contact with the skeletogenic cells to reprogram, but the animal cap cells gained the ability to reprogram early in gastrulation only after extended contact with the vegetal halves prior to that time. If the entire vegetal half was removed at early gastrula, the animal caps reprogrammed and replaced the vegetal half endomesoderm. If the animal caps carried morpholinos to either hox11/13b or foxA (endomesoderm specification genes), the isolated animal caps failed to reprogram. Together these data reveal that the emergence of a reprogramming capability occurs at early gastrulation in the sea urchin embryo and requires activation of early specification components of the target tissues. PMID:24780626
Toddler: An Embryonic Signal That Promotes Cell Movement via Apelin Receptors
Pauli, Andrea; Norris, Megan L.; Valen, Eivind; Chew, Guo-Liang; Gagnon, James A.; Zimmerman, Steven; Mitchell, Andrew; Ma, Jiao; Dubrulle, Julien; Reyon, Deepak; Tsai, Shengdar Q.; Joung, J. Keith; Saghatelian, Alan; Schier, Alexander F.
2014-01-01
It has been assumed that most, if not all, signals regulating early development have been identified. Contrary to this expectation, we identified 28 candidate signaling proteins expressed during zebrafish embryogenesis, including Toddler, a short, conserved, and secreted peptide. Both absence and overproduction of Toddler reduce the movement of mesendodermal cells during zebrafish gastrulation. Local and ubiquitous production of Toddler promote cell movement, suggesting that Toddler is neither an attractant nor a repellent but acts globally as a motogen. Toddler drives internalization of G protein–coupled APJ/Apelin receptors, and activation of APJ/Apelin signaling rescues toddler mutants. These results indicate that Toddler is an activator of APJ/Apelin receptor signaling, promotes gastrulation movements, and might be the first in a series of uncharacterized developmental signals. PMID:24407481
NASA Astrophysics Data System (ADS)
Ubbels, Geertje A.; Berendsen, Willem; Kerkvliet, Sonja; Narraway, Jenny
Egg rotation and centrifugation experiments strongly suggest a role for gravity in the determination of the spatial structure of amphibian embryos. Decisive experiments can only be made in Space. Eggs of Xenopus laevis, the South African clawed toad, were the first vertebrate eggs which were successfully fertilized on Sounding Rockets in Space. Unfixed, newly fertilized eggs survived reentry, and a reasonable number showed a seemingly normal gastrulation but died between gastrulation and neurulation. Only a few reached the larval stage, but these developed abnormally. In the future, we inted to test whether this abnormal morphogenesis is due to reentry perturbations, or due to a real microgravity effect, through perturbation of the reinitiation of meiosis and other processes, or started by later sperm penetration.
Ubbels, G A; Berendsen, W; Kerkvliet, S; Narraway, J
1992-01-01
Egg rotation and centrifugation experiments strongly suggest a role for gravity in the determination of the spatial structure of amphibian embryos. Decisive experiments can only be made in Space. Eggs of Xenopus laevis, the South African clawed toad, were the first vertebrate eggs which were successfully fertilized on Sounding Rockets in Space. Unfixed, newly fertilized eggs survived reentry, and a reasonable number showed a seemingly normal gastrulation but died between gastrulation and neurulation. Only a few reached the larval stage, but these developed abnormally. In the future, we intend to test whether this abnormal morphogenesis is due to reentry perturbations, or due to a real microgravity effect, through perturbation of the reinitiation of meiosis and other processes, or started by later sperm penetration.
Emanuelsson, H; Heby, O
1978-01-01
Development eggs of the polychete Ophryotrocha labronica were analyzed for polyamines during the first 6 days after fertilization. The spermine content dominated initially, but gradually decreased. It was surpassed by putrescine, which rapidly increased to a maximum on the 3rd day, i.e., at the inception of grastrulation. The spermidine content was low during the entire period. Treatment of eggs with the putrescine synthesis inhibitor alpha-methylornithine from the onset of development led to developmental arrest at gastrulation and to an abnormally low content of putrescine in the treated embryos. Methylglyoxal bis(guanylhydrazone), an inhibitor of spermine and spermidine synthesis, had no visible effect of development. Our observations strongly suggest that putrescine synthesis is indispensable in early embryonic development of Ophryotrocha. Images PMID:273215
Schambra, Uta B; Nunley, Kevin; Harrison, Theresa A; Lewis, C Nicole
In a previous study we used a mouse model for ethanol exposure during gastrulation or neurulation to investigate the effects of modest and occasional human drinking during the 3rd or 4th week of pregnancy (Schambra et al., 2015). Pregnant C57Bl/6J mice were treated by gavage during gastrulation on gestational day (GD) 7 or neurulation on GD8 with 2 doses 4h apart of either 2.4 or 2.9g ethanol/kg body weight, resulting in peak blood ethanol concentrations (BECs) of 104 and 177mg/dl, respectively. We found that mice exposed to the low dose on either day were significantly delayed in their neonatal sensorimotor development. In the present study, we tested the same cohort of mice in an open field as juveniles on postnatal day (PD) 23-25 and as young adults on PD65-67 for prenatal ethanol effects on exploration and emotionality with measures of activity, rearing, grooming and defecation. We evaluated the effects of dose, sex, day of treatment and day of birth by multiple regression analyses. We found that, compared to the respective gavage controls, juvenile mice that had been prenatally exposed to the low BEC on either GD7 or GD8 were significantly hypoactive on the first 2 test days, reared significantly more on the last 2 test days, and groomed and defecated significantly more on all 3 test days. Only mice that had been treated on GD7 remained hypoactive as adults. Juvenile mice prenatally exposed to the moderate BEC on GD7 groomed significantly more, while those exposed on GD8 reared and defecated significantly more. Sex differences were highly significant in adult control mice, with control males less active and more emotional than females. Similar, but smaller, sex differences were also evident in adults exposed to ethanol prenatally. Persistence into later life of a deleterious effect of premature birth (i.e., birth on GD19 rather than GD20) on weight and behavior was not consistently supported by these data. Importantly, mice shown previously to be delayed in sensorimotor development as neonates, in the present study demonstrated hypoactivity and increased emotionality in open field behaviors as juveniles, and those mice exposed during gastrulation remained hypoactive as adults. Thus, we propose that the delayed motor development, hypoactivity and emotionality we observed in mice exposed to a low BEC during gastrulation or neurulation may relate to an attention deficit-activity disorder in humans, possibly the inattentive subtype, or Sluggish Cognitive Tempo (SCT). We further discuss concerns about occasional light or moderate alcohol consumption during the 3rd or 4th week of human pregnancy. Copyright © 2016 Elsevier Inc. All rights reserved.
Dohn, Michael R; Mundell, Nathan A; Sawyer, Leah M; Dunlap, Julie A; Jessen, Jason R
2013-11-01
Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin-fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular adhesion. These data indicate that Wnt/Glypican4/Frizzled signaling regulates ECM assembly through effects on cadherin-mediated cell cohesion. Together, our results demonstrate that zebrafish Vangl2/Prickle1a and non-canonical Wnt/Frizzled signaling have opposing effects on ECM organization underlying PCP and gastrulation cell movements. © 2013 Elsevier Inc. All rights reserved.
Tian, Jing; Yam, Caleb; Balasundaram, Gayathri; Wang, Hui; Gore, Aniket; Sampath, Karuna
2003-07-01
The floor plate, a specialized group of cells in the ventral midline of the neural tube of vertebrates, plays crucial roles in patterning the central nervous system. Recent work from zebrafish, chick, chick-quail chimeras and mice to investigate the development of the floor plate have led to several models of floor-plate induction. One model suggests that the floor plate is formed by inductive signalling from the notochord to the overlying neural tube. The induction is thought to be mediated by notochord-derived Sonic hedgehog (Shh), a secreted protein, and requires direct cellular contact between the notochord and the neural tube. Another model proposes a role for the organizer in generating midline precursor cells that produce floor plate cells independent of notochord specification, and proposes that floor plate specification occurs early, during gastrulation. We describe a temperature-sensitive mutation that affects the zebrafish Nodal-related secreted signalling factor, Cyclops, and use it to address the issue of when the floor plate is induced in zebrafish. Zebrafish cyclops regulates the expression of shh in the ventral neural tube. Although null mutations in cyclops result in the lack of the medial floor plate, embryos homozygous for the temperature-sensitive mutation have floor plate cells at the permissive temperature and lack floor plate cells at the restrictive temperature. We use this mutant allele in temperature shift-up and shift-down experiments to answer a central question pertaining to the timing of vertebrate floor plate induction. Abrogation of Cyc/Nodal signalling in the temperature-sensitive mutant embryos at various stages indicates that the floor plate in zebrafish is induced early in development, during gastrulation. In addition, continuous Cyclops signalling is required through gastrulation for a complete ventral neural tube throughout the length of the neuraxis. Finally, by modulation of Nodal signalling levels in mutants and in ectopic overexpression experiments, we show that, similar to the requirements for prechordal plate mesendoderm fates, uninterrupted and high levels of Cyclops signalling are required for induction and specification of a complete ventral neural tube.
Rapid Induction of Apoptosis in Gastrulating Mouse Embryos by Ethanol and Its Prevention by HB-EGF
Kilburn, Brian A.; Chiang, Po Jen; Wang, Jun; Flentke, George R.; Smith, Susan M.; Armant, D. Randall
2006-01-01
Background Ethanol exposure during gastrulation and early neurulation induces apoptosis within certain embryonic cell populations, leading to craniofacial and neurological defects. There is currently little information about the initial kinetics of ethanol-induced apoptosis, and interest in the ability of endogenous survival factors to moderate apoptosis is growing. Ethanol alters intracellular signaling, leading to cell death in chick embryos, suggesting that apoptosis could occur rapidly and that signaling pathways activated by survival factors might reduce apoptosis. Methods Pregnant mice were intubated with 1, 2, or 4 g/kg ethanol on day 7.5 of embryogenesis (E7.5) 1, 3, or 6, hours before harvesting gastrulation-stage embryos. Control animals received maltose/dextran. Blood alcohol concentrations (BAC) were determined by gas chromatography. E7.5 embryos isolated from untreated dams were cultured in vitro for 1 or 3 hr with 0 or 400 mg% ethanol and 0 or 5 nM heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF). Apoptosis was quantified using fluorescence microscopy to detect annexin V binding and DNA fragmentation [terminal deoxynucleotidyl transferase-mediated dUTP-X nick end labeling (TUNEL)] in whole-mount or sectioned embryos. Results Both annexin V binding and TUNEL were elevated (p<0.05) in embryos exposed in utero to 1 g/kg ethanol for 3 hours, increasing linearly with time and ethanol concentration. Apoptosis increased (p<0.05) in all germ cell layers. Mice treated with 4 g/kg sustained BAC of 400 mg% for nearly 3 hours, significantly increasing apoptosis within the first hour. Cultured embryos exposed to 400 mg% ethanol displayed 2- to 3-fold more TUNEL than vehicle-treated embryos (p<0.05); however, exogenous HB-EGF prevented apoptosis. Conclusions Ethanol rapidly produced apoptosis in gastrulation-stage embryos, consistent with induction by intracellular signaling. The ethanol-induced apoptotic pathway was blocked by the endogenous survival factor, HB-EGF. Differences in the expression of survival factors within individual embryos could be partly responsible for variations in the teratogenic effects of ethanol among offspring exposed prenatally. PMID:16433740
Contreras, Azalia; Vitale, John; Hutchins-Carroll, Virginia; Carroll, Edward J.; Oppenheimer, Steven B.
2008-01-01
Summary Hyalin is a large glycoprotein, consisting of the hyalin repeat domain and non-repeated regions, and is the major component of the hyaline layer in the early sea urchin embryo of Strongylocentrotus purpuratus. The hyalin repeat domain has been identified in proteins from organisms as diverse as bacteria, sea urchins, worms, flies, mice and humans. While the specific function of hyalin and the hyalin repeat domain is incompletely understood, many studies suggest that it has a functional role in adhesive interactions. In part I of this series, we showed that hyalin isolated from the sea urchin S. purpuratus blocked archenteron elongation and attachment to the blastocoel roof occurring during gastrulation in S. purpuratus embryos, (Razinia et al., 2007). The cellular interactions that occur in the sea urchin, recognized by the U.S. National Institutes of Health as a model system, may provide insights into adhesive interactions that occur in human health and disease. In part II of this series, we showed that S. purpuratus hyalin heterospecifically blocked archenteron-ectoderm interaction in Lytechinus pictus embryos (Alvarez et al, 2007). In the current study, we have isolated hyalin from the sea urchin L. pictus and demonstrated that L. pictus hyalin homospecifically blocks archenteron-ectoderm interaction, suggesting a general role for this glycoprotein in mediating a specific set of adhesive interactions. We also found one major difference in hyalin activity in the two sea urchin species involving hyalin influence on gastrulation invagination. PMID:18925979
Ohkawara, Bisei; Glinka, Andrei; Niehrs, Christof
2011-03-15
The R-Spondin (Rspo) family of secreted Wnt modulators is involved in development and disease and holds therapeutic promise as stem cell growth factors. Despite growing biological importance, their mechanism of action is poorly understood. Here, we show that Rspo3 binds syndecan 4 (Sdc4) and that together they activate Wnt/PCP signaling. In Xenopus embryos, Sdc4 and Rspo3 are essential for two Wnt/PCP-driven processes-gastrulation movements and head cartilage morphogenesis. Rspo3/PCP signaling during gastrulation requires Wnt5a and is transduced via Fz7, Dvl, and JNK. Rspo3 functions by inducing Sdc4-dependent, clathrin-mediated endocytosis. We show that this internalization is essential for PCP signal transduction, suggesting that endocytosis of Wnt-receptor complexes is a key mechanism by which R-spondins promote Wnt signaling. Copyright © 2011 Elsevier Inc. All rights reserved.
Protocadherin PAPC is expressed in the CNC and can compensate for the loss of PCNS.
Schneider, Martina; Huang, Chaolie; Becker, Sarah F S; Gradl, Dietmar; Wedlich, Doris
2014-02-01
Protocadherins represent the biggest subgroup within the cadherin superfamily of transmembrane glycoproteins. In contrast to classical type I cadherins, protocadherins in general exhibit only moderate adhesive activity. During embryogenesis, they are involved in cell signaling and regulate diverse morphogenetic processes, including morphogenetic movements during gastrulation and neural crest migration. The two protocadherins paraxial protocadherin (PAPC) and axial protocadherin (AXPC) are indispensable for proper gastrulation movements in Xenopus and zebrafish. The closest relative PCNS instead, is required for neural crest and somite formation. Here, we show that cranial neural crest (CNC) cells in addition to PCNS express PAPC, but not AXPC. Overexpression of PAPC resulted in comparable migration defects as knockdown of PCNS. Moreover, reconstitution experiments revealed that PAPC is able to replace PCNS in CNC cells, indicating that both protocadherins can regulate CNC migration. Copyright © 2013 Wiley Periodicals, Inc.
Zhang, J; Talbot, W S; Schier, A F
1998-01-23
The zebrafish one-eyed pinhead (oep) mutation disrupts embryonic development, resulting in cyclopia and defects in endoderm, prechordal plate, and ventral neuroectoderm formation. We report the molecular isolation of oep using a positional cloning approach. The oep gene encodes a novel EGF-related protein with similarity to the EGF-CFC proteins cripto, cryptic, and FRL-1. Wild-type oep protein contains a functional signal sequence and is membrane-associated. Following ubiquitous maternal and zygotic expression, highest levels of oep mRNA are found in the gastrula margin and in axial structures and forebrain. Widespread misexpression of both membrane-attached and secreted forms of oep rescues prechordal plate and forebrain development in mutant embryos but does not lead to the ectopic induction of these cell types in wild-type fish. These results establish an essential but permissive role for an EGF-related ligand during vertebrate gastrulation.
Koop, Demian; Holland, Nicholas D; Sémon, Marie; Alvarez, Susana; de Lera, Angel Rodriguez; Laudet, Vincent; Holland, Linda Z; Schubert, Michael
2010-02-01
Previous studies of vertebrate development have shown that retinoic acid (RA) signaling at the gastrula stage strongly influences anterior-posterior (A-P) patterning of the neurula and later stages. However, much less is known about the more immediate effects of RA signaling on gene transcription and developmental patterning at the gastrula stage. To investigate the targets of RA signaling during the gastrula stage, we used the basal chordate amphioxus, in which gastrulation involves very minimal tissue movements. First, we determined the effect of altered RA signaling on expression of 42 genes (encoding transcription factors and components of major signaling cascades) known to be expressed in restricted domains along the A-P axis during the gastrula and early neurula stage. Of these 42 genes, the expression domains during gastrulation of only four (Hox1, Hox3, HNF3-1 and Wnt3) were spatially altered by exposure of the embryos to excess RA or to the RA antagonist BMS009. Moreover, blocking protein synthesis with puromycin before adding RA or BMS009 showed that only three of these genes (Hox1, Hox3 and HNF3-1) are direct RA targets at the gastrula stage. From these results we conclude that in the amphioxus gastrula RA signaling primarily acts via regulation of Hox transcription to establish positional identities along the A-P axis and that Hox1, Hox3, HNF3-1 and Wnt3 constitute a basal module of RA action during chordate gastrulation.
Hibino, Taku; Harada, Yoshito; Minokawa, Takuya; Nonaka, Masaru; Amemiya, Shonan
2004-11-01
The expression patterns of Brachyury (Bra) orthologs in the development of four species of sand dollars (order: Clypeasteroida), including a direct-developing species, and of a sea urchin species (order: Echinoida) were investigated during the period from blastula to the pluteus stage, with special attention paid to the relationship between the expression pattern and the mode of gastrulation. The sand dollar species shared two expression domains of the Bra orthologs with the Echinoida species, in the vegetal ring (the first domain) and the oral ectoderm (the second domain). The following heterotopic changes in the expression of the Bra genes were found among the sand dollar species and between the sand dollars and the Echinoida species. (1) The vegetal ring expressing Bra in the sand dollars was much wider and was located at a higher position along the AV axis, compared with that in the Echinoida species. The characteristic Bra expression in the vegetal ring of the sand dollar embryos was thought to be involved in the mode of gastrulation, in which involution continues from the beginning of invagination until the end of gastrulation. (2) Two of the three indirect-developing sand dollar species that were examined exhibited a third domain, in which Bra was expressed on the oral side of the archenteron. (3) In the direct-developing sand dollar embryos, Bra was expressed with an oral-aboral asymmetry in the vegetal ring and with a left-right asymmetry in the oral ectoderm. In the Echinoida species, Bra was expressed in the vestibule at the six-armed pluteus stage.
Localization of Brachyury (T) in embryonic and extraembryonic tissues during mouse gastrulation.
Inman, Kimberly E; Downs, Karen M
2006-10-01
T-box gene family members have important roles during murine embryogenesis, gastrulation, and organogenesis. Although relatively little is known about how T-box genes are regulated, published gene expression studies have revealed dynamic and specific patterns in both embryonic and extraembryonic tissues of the mouse conceptus. Mutant alleles of the T-box gene Brachyury (T) have identified roles in formation of mesoderm and its derivatives, such as somites and the allantois. However, given the cell autonomous nature of T gene activity and conflicting results of gene expression studies, it has been difficult to attribute a primary function to T in normal allantoic development. We report localization of T protein by sectional immunohistochemistry in both embryonic and extraembryonic tissues during mouse gastrulation, emphasizing T localization within the allantois. T was detected in all previously reported sites within the conceptus, including the primitive streak and its derivatives, nascent embryonic mesoderm, the node and notochord, as well as notochord-associated endoderm and posterior neurectoderm. In addition, we have clarified T within the allantois, where it was first detected in the proximal midline of the late allantoic bud (approximately 7.5 days postcoitum, dpc) and persisted within an expanded midline domain until 6-somite pairs (s; approximately 8.5 dpc). Lastly, we have discovered several novel T sites, including the developing heart, visceral endoderm, extraembryonic ectoderm, and its derivative, chorionic ectoderm. Together, these data provide a unified picture of T in the mammalian conceptus, and demonstrate T's presence in unrelated cell types and tissues in highly dynamic spatiotemporal patterns in both embryonic and extraembryonic tissues.
PATHOGENESIS OF METHANOL-INDUCED CRANIOFACIAL DEFECTS IN C57BL/6J MICE
BACKGROUND: Methanol administered to C57BL/6J mice during gastrulation causes severe craniofacial dysmorphology. We describe dysmorphogenesis, cell death, cell cycle assessment, and effects on development of cranial ganglia and nerves observed following administration of methanol...
Hannibal, Roberta L; Price, Alivia L; Parchem, Ronald J; Patel, Nipam H
2012-05-01
The transcriptional repressor snail was first discovered in Drosophila melanogaster, where it initially plays a role in gastrulation and mesoderm formation, and later plays a role in neurogenesis. Among arthropods, this role of snail appears to be conserved in the insects Tribolium and Anopheles gambiae, but not in the chelicerates Cupiennius salei and Achaearanea tepidariorum, the myriapod Glomeris marginata, or the Branchiopod crustacean Daphnia magna. These data imply that within arthropoda, snail acquired its role in gastrulation and mesoderm formation in the insect lineage. However, crustaceans are a diverse group with several major taxa, making analysis of more crustaceans necessary to potentially understand the ancestral role of snail in Pancrustacea (crustaceans + insects) and thus in the ancestor of insects as well. To address these questions, we examined the snail family in the Malacostracan crustacean Parhyale hawaiensis. We found three snail homologs, Ph-snail1, Ph-snail2 and Ph-snail3, and one scratch homolog, Ph-scratch. Parhyale snail genes are expressed after gastrulation, during germband formation and elongation. Ph-snail1, Ph-snail2, and Ph-snail3 are expressed in distinct patterns in the neuroectoderm. Ph-snail1 is the only Parhyale snail gene expressed in the mesoderm, where its expression cycles in the mesodermal stem cells, called mesoteloblasts. The mesoteloblasts go through a series of cycles, where each cycle is composed of a migration phase and a division phase. Ph-snail1 is expressed during the migration phase, but not during the division phase. We found that as each mesoteloblast division produces one segment's worth of mesoderm, Ph-snail1 expression is linked to both the cell cycle and the segmental production of mesoderm.
Fuchs, Christiane; Scheinast, Matthias; Pasteiner, Waltraud; Lagger, Sabine; Hofner, Manuela; Hoellrigl, Alexandra; Schultheis, Martina; Weitzer, Georg
2012-01-01
Aggregation of embryonic stem cells gives rise to embryoid bodies (EBs) which undergo developmental processes reminiscent of early eutherian embryonic development. Development of the three germ layers suggests that gastrulation takes place. In vivo, gastrulation is a highly ordered process but in EBs only few data support the hypothesis that self-organization of differentiating cells leads to morphology, reminiscent of the early gastrula. Here we demonstrate that a timely implantation-like process is a prerequisite for the breaking of the radial symmetry of suspended EBs. Attached to a surface, EBs develop a bilateral symmetry and presumptive mesodermal cells emerge between the center of the EBs and a horseshoe-shaped ridge of cells. The development of an epithelial sheet of cells on one side of the EBs allows us to define an 'anterior' and a 'posterior' end of the EBs. In the mesodermal area, first cardiomyocytes (CMCs) develop mainly next to this epithelial sheet of cells. Development of twice as many CMCs at the 'left' side of the EBs breaks the bilateral symmetry and suggests that cardiomyogenesis reflects a local or temporal asymmetry in EBs. The asymmetric appearance of CMCs but not the development of mesoderm can be disturbed by ectopic expression of the muscle-specific protein Desmin. Later, the bilateral morphology becomes blurred by an apparently chaotic differentiation of many cell types. The absence of comparable structures in aggregates of cardiovascular progenitor cells isolated from the heart demonstrates that the self-organization of cells during a gastrulation-like process is a unique feature of embryonic stem cells. Copyright © 2011 S. Karger AG, Basel.
Taylor, H H; Seneviratna, Deepani
2005-04-01
The adults of Hemigrapsus edwardsii and Hemigrapsus crenulatus are euryhaline crabs and strong hyper-osmoregulators. Their embryos are carried externally attached to the abdominal pleopods of female crabs, where they are exposed to temporal and spatial changes in salinity associated with their intertidal and estuarine habitats. Although embryos lack the branchial and excretory organs responsible for adult osmoregulation, post-gastrula embryos were highly tolerant of exposure to hypo-osmotic sea water. Detached eggs (embryos+envelopes), of both species, at all developmental stages between gastrulation and hatching, exhibited 80-100% survival for periods up to 96 h in sea water (osmolality, 1050 mmol kg(-1)) and in dilutions to 50%, 10%, and 1%. Cleavage stages were less tolerant of dilution; H. edwardsii, <50% survived 24 h in 10% sea water; H. crenulatus <50% survived 6 h in 10% sea water. Post-gastrulation stages strongly hyper-osmoregulated but cleavage stages were hyper-osmoconformers (maintaining internal osmolality approximately 150 mmol kg(-1) above external). Osmoregulatory capacity was reduced just prior hatching, particularly in H. crenulatus, although salinity tolerance remained high. Gastrulation therefore marks a critical stage in the ontogeny of osmoregulation and salinity tolerance. Total Na+/K(+)-ATPase activity increased greatly during embryogenesis of H. crenulatus (undetectable in blastulae; gastrulae 0.31+/-0.05 pmol P(i) embryo(-1) min(-1); pre-hatching 16.4+/-1.0 pmol P(i) embryo(-1) min(-1)). Na+/K(+)-ATPase activity increased in embryos exposed to dilute sea water for 24 h implicating regulation of this transporter in a short-term acclimation response.
Kasprowicz, Eric M; Davidson, Lance A; Keller, Raymond
2018-01-01
Indirect evidence suggests that blastopore closure during gastrulation of anamniotes, including amphibians such as Xenopus laevis, depends on circumblastoporal convergence forces generated by the marginal zone (MZ), but direct evidence is lacking. We show that explanted MZs generate tensile convergence forces up to 1.5 μN during gastrulation and over 4 μN thereafter. These forces are generated by convergent thickening (CT) until the midgastrula and increasingly by convergent extension (CE) thereafter. Explants from ventralized embryos, which lack tissues expressing CE but close their blastopores, produce up to 2 μN of tensile force, showing that CT alone generates forces sufficient to close the blastopore. Uniaxial tensile stress relaxation assays show stiffening of mesodermal and ectodermal tissues around the onset of neurulation, potentially enhancing long-range transmission of convergence forces. These results illuminate the mechanobiology of early vertebrate morphogenic mechanisms, aid interpretation of phenotypes, and give insight into the evolution of blastopore closure mechanisms. PMID:29533180
Dysferlin is essential for endocytosis in the sea star oocyte.
Oulhen, Nathalie; Onorato, Thomas M; Ramos, Isabela; Wessel, Gary M
2014-04-01
Dysferlin is a calcium-binding transmembrane protein involved in membrane fusion and membrane repair. In humans, mutations in the dysferlin gene are associated with muscular dystrophy. In this study, we isolated plasma membrane-enriched fractions from full-grown immature oocytes of the sea star, and identified dysferlin by mass spectrometry analysis. The full-length dysferlin sequence is highly conserved between human and the sea star. We learned that in the sea star Patiria miniata, dysferlin RNA and protein are expressed from oogenesis to gastrulation. Interestingly, the protein is highly enriched in the plasma membrane of oocytes. Injection of a morpholino against dysferlin leads to a decrease of endocytosis in oocytes, and to a developmental arrest during gastrulation. These results suggest that dysferlin is critical for normal endocytosis during oogenesis and for embryogenesis in the sea star and that this animal may be a useful model for studying the relationship of dysferlin structure as it relates to its function. Copyright © 2014 Elsevier Inc. All rights reserved.
Dysferlin is essential for endocytosis in the sea star oocyte
Oulhen, Nathalie; Onorato, Thomas M.; Ramos, Isabela; Wessel, Gary M.
2014-01-01
Dysferlin is a calcium-binding transmembrane protein involved in membrane fusion and membrane repair. In humans, mutations in the dysferlin gene are associated with muscular dystrophy. In this study, we isolated plasma membrane-enriched fractions from full-grown immature oocytes of the sea star, and identified dysferlin by mass spectrometry analysis. The full-length dysferlin sequence is highly conserved between human and the sea star. We learned that in the sea star Patiria miniata, dysferlin RNA and protein are expressed from oogenesis to gastrulation. Interestingly, the protein is highly enriched in the plasma membrane of oocytes. Injection of a morpholino against dysferlin leads to a decrease of endocytosis in oocytes, and to a developmental arrest during gastrulation. These results suggest that dysferlin is critical for normal endocytosis during oogenesis and for embryogenesis in the sea star and that this animal may be a useful model for studying the relationship of dysferlin structure as it relates to its function. PMID:24368072
Mechanical analysis of a heat-shock induced developmental defect
NASA Astrophysics Data System (ADS)
Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane
2014-03-01
Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.
Ingression-type cell migration drives vegetal endoderm internalisation in the Xenopus gastrula
Wen, Jason WH
2017-01-01
During amphibian gastrulation, presumptive endoderm is internalised as part of vegetal rotation, a large-scale movement that encompasses the whole vegetal half of the embryo. It has been considered a gastrulation process unique to amphibians, but we show that at the cell level, endoderm internalisation exhibits characteristics reminiscent of bottle cell formation and ingression, known mechanisms of germ layer internalisation. During ingression proper, cells leave a single-layered epithelium. In vegetal rotation, the process occurs in a multilayered cell mass; we refer to it as ingression-type cell migration. Endoderm cells move by amoeboid shape changes, but in contrast to other instances of amoeboid migration, trailing edge retraction involves ephrinB1-dependent macropinocytosis and trans-endocytosis. Moreover, although cells are separated by wide gaps, they are connected by filiform protrusions, and their migration depends on C-cadherin and the matrix protein fibronectin. Cells move in the same direction but at different velocities, to rearrange by differential migration. PMID:28826499
Lamers, W H; Spliet, W G; Langemeyer, R A
1987-01-01
A light microscopical study of the morphogenesis of the gut in the rat embryo was undertaken to provide a careful map of temporal changes in the topographical relations of the (definitive) endoderm, the notochord and the hypoblast (primary endoderm). The borderline between the (definitive) endoderm and the hypoblast that appears upon gastrulation defines the lateral extension of the future gut epithelium. Within this initially semiglobular disk, the foregut and hindgut originate sequentially as blind, rapidly growing pouches. Upon the turning of the embryo, the hardly growing peripheral part of the disk becomes located in the vitelline duct. Within the head process, endodermal and notochordal cells could not be separately identified. However, slightly more posteriorly notochordal cells are seen to become embedded into the endoderm of the foregut during gastrulation. This process is not seen over the hindgut and may explain why the detachment of the notochord from the (fore)gut begins caudally.
Weng, Mo
2016-01-01
Although Snail is essential for disassembly of adherens junctions during epithelial–mesenchymal transitions (EMTs), loss of adherens junctions in Drosophila melanogaster gastrula is delayed until mesoderm is internalized, despite the early expression of Snail in that primordium. By combining live imaging and quantitative image analysis, we track the behavior of E-cadherin–rich junction clusters, demonstrating that in the early stages of gastrulation most subapical clusters in mesoderm not only persist, but move apically and enhance in density and total intensity. All three phenomena depend on myosin II and are temporally correlated with the pulses of actomyosin accumulation that drive initial cell shape changes during gastrulation. When contractile myosin is absent, the normal Snail expression in mesoderm, or ectopic Snail expression in ectoderm, is sufficient to drive early disassembly of junctions. In both cases, junctional disassembly can be blocked by simultaneous induction of myosin contractility. Our findings provide in vivo evidence for mechanosensitivity of cell–cell junctions and imply that myosin-mediated tension can prevent Snail-driven EMT. PMID:26754645
Early patterning and specification of cardiac progenitors in gastrulating mesoderm
Devine, W Patrick; Wythe, Joshua D; George, Matthew; Koshiba-Takeuchi, Kazuko; Bruneau, Benoit G
2014-01-01
Mammalian heart development requires precise allocation of cardiac progenitors. The existence of a multipotent progenitor for all anatomic and cellular components of the heart has been predicted but its identity and contribution to the two cardiac progenitor ‘fields’ has remained undefined. Here we show, using clonal genetic fate mapping, that Mesp1+ cells in gastrulating mesoderm are rapidly specified into committed cardiac precursors fated for distinct anatomic regions of the heart. We identify Smarcd3 as a marker of early specified cardiac precursors and identify within these precursors a compartment boundary at the future junction of the left and right ventricles that arises prior to morphogenesis. Our studies define the timing and hierarchy of cardiac progenitor specification and demonstrate that the cellular and anatomical fate of mesoderm-derived cardiac cells is specified very early. These findings will be important to understand the basis of congenital heart defects and to derive cardiac regeneration strategies. DOI: http://dx.doi.org/10.7554/eLife.03848.001 PMID:25296024
An interview with Patrick Tam by Kathryn Senior.
Tam, Patrick
2010-12-01
Patrick Tam's research is focused on the cellular and molecular mechanisms of body patterning during mouse development. He agreed to be interviewed by Development to talk about his interest in mouse development, new concepts in gastrulation, X-linked diseases and his dream of an African safari.
USDA-ARS?s Scientific Manuscript database
Interindividual epigenetic variation that occurs systemically must be established prior to gastrulation in the very early embryo and, because it is systemic, can be assessed in easily biopsiable tissues. We employ two independent genome-wide approaches to search for such variants. First, we screen f...
Specification of posterior midbrain region in zebrafish neuroepithelium.
Miyagawa, T; Amanuma, H; Kuroiwa, A; Takeda, H
1996-04-01
The developing vertebrate nervous system displays a pronounced anterior-posterior (A-P) pattern, but the mechanism that generates this pattern is poorly understood. We examined through cell-transplantation experiments, when and how the cells in the zebrafish posterior midbrain acquire regional specificity along the A-P axis as shown by pax[b] gene expression. Labelled donor cells from the presumptive midbrain region at various stages were transplanted into more anterior part of unlabelled host embryos of the same developmental stage, and the expression of pax[b] in the donor cells were examined by in situ hybridization. The results indicated that, in the cells from the presumptive midbrain region, expression of pax[b] was determined as early as the 55%-epiboly (6.5 h, early gastrulation) when the underlying hypoblastic layer reached the presumptive midbrain region. We also found that when transplanted heterotopically, anterior, but not posterior, hypoblast cells induced expression of pax[b] in the overlying ectoderm. Expression of a midbrain specific gene is determined during early gastrulation and the hypoblastic layer plays an important role in this determination process.
Kobayashi, Naomasa; Okamura, Hideo
2005-12-01
Interactive toxic effects between heavy metals were investigated using a sea urchin (Anthocidaris crassispina) bioassay. An effluent from an abandoned mine showed significant inhibitory effects on embryo development as well as producing specific malformations. The effects on the embryos were reproduced by synthetic polluted seawater consisting of eight metals (manganese, lead, cadmium, nickel, zinc, chromium, iron, and copper) at the concentrations detected in the mine effluent. This indicated that the heavy metals were responsible for the effects observed. Five heavy metals were ranked in decreasing order of toxicity as follows: Cu>Zn>Pb>Fe>Mn. Among these, zinc and manganese could cause malformation of the embryos. From bioassay results using 27 combinations of heavy metals, 16 combinations including zinc could produce specific malformations, such as radialized, exo-gastrulal, and spaceship Apollo-like gastrulal embryos. Zinc was one of the elements responsible for causing malformations and its effects were intensified by the presence of the other metals, such as manganese, lead, iron, and copper.
Mammalian Twisted Gastrulation Is Essential for Skeleto-Lymphogenesis
Nosaka, Tetsuya; Morita, Sumiyo; Kitamura, Hidetomo; Nakajima, Hideaki; Shibata, Fumi; Morikawa, Yoshihiro; Kataoka, Yuki; Ebihara, Yasuhiro; Kawashima, Toshiyuki; Itoh, Tsuneo; Ozaki, Katsutoshi; Senba, Emiko; Tsuji, Kohichiro; Makishima, Fusao; Yoshida, Nobuaki; Kitamura, Toshio
2003-01-01
Dorsoventral patterning depends on the local concentrations of the morphogens. Twisted gastrulation (TSG) regulates the extracellular availability of a mesoderm inducer, bone morphogenetic protein 4 (BMP-4). However, TSG function in vivo is still unclear. We isolated a TSG cDNA as a secreted molecule from the mouse aorta-gonad-mesonephros region. Here we show that TSG-deficient mice were born healthy, but more than half of the neonatal pups showed severe growth retardation shortly after birth and displayed dwarfism with delayed endochondral ossification and lymphopenia, followed by death within a month. TSG-deficient thymus was atrophic, and phosphorylation of SMAD1 was augmented in the thymocytes, suggesting enhanced BMP-4 signaling in the thymus. Since BMP-4 promotes skeletogenesis and inhibits thymus development, our findings suggest that TSG acts as both a BMP-4 agonist in skeletogenesis and a BMP-4 antagonist in T-cell development. Although lymphopenia in TSG-deficient mice would partly be ascribed to systemic effects of runtiness and wasting, our findings may also provide a clue for understanding the pathogenesis of human dwarfism with combined immunodeficiency. PMID:12665593
Development, triploblastism, physics of wetting and the Cambrian explosion.
Fleury, Vincent
2013-09-01
The Cambrian explosion is characterized by the sudden outburst of organized animal plans, which occurred circa 530 M years ago. Around that time, many forms of animal life appeared, including several which have since disappeared. There is no general consensus about "why" this happened, and why it had any form of suddenness. However, all organized animal plans share a common feature: they are triploblastic, i.e., composed of 3 layers of tissue, endoderm, ectoderm and mesoderm. I show here that, within simple hypotheses, the formation of the mesoderm has intrinsically a physical exponential dynamics, leading rapidly to triploblastism, and eventually, to animal formation. A novel physico-mathematical framework including epithelium-mesenchyme transition, visco-elastic constitutive equations, and conservation laws, is presented which allows one to describe gastrulation as a self-wetting phenomenon of a soft solid onto itself. This phenomenon couples differentiation and migration during gastrulation, and leads in a closed form to an exponential scaling law for the formation of the mesoderm. Therefore, the Cambrian explosion might have started, actually, by a true viscoelastic "explosion": the exponential run-away of mesenchymal cells.
Song, Sungmin; Eckerle, Stephanie; Onichtchouk, Daria; Marrs, James A.; Nitschke, Roland; Driever, Wolfgang
2013-01-01
Summary Initiation of motile cell behavior in embryonic development occurs during late blastula stages when gastrulation begins. At this stage, the strong adhesion of blastomeres has to be modulated to enable dynamic behavior, similar to epithelial-to-mesenchymal transitions. We show that in zebrafish MZspg embryos mutant for the stem cell transcription factor Pou5f1/Oct4, which are severely delayed in the epiboly gastrulation movement, all blastomeres are defective in E-cad endosomal trafficking and E-cad accumulates at the plasma membrane. We find that Pou5f1-dependent control of EGF expression regulates endosomal E-cad trafficking. EGFR may act via modulation of p120 activity. Loss of E-cad dynamics reduces cohesion of cells in reaggregation assays. Quantitative analysis of cell behavior indicates that dynamic E-cad endosomal trafficking is required for epiboly cell movements. We hypothesize that dynamic control of E-cad trafficking is essential to effectively generate new adhesion sites when cells move relative to each other. PMID:23484854
Cell tracking supports secondary gastrulation in the moon jellyfish Aurelia.
Gold, David A; Nakanishi, Nagayasu; Hensley, Nicholai M; Hartenstein, Volker; Jacobs, David K
2016-11-01
The moon jellyfish Aurelia exhibits a dramatic reorganization of tissue during its metamorphosis from planula larva to polyp. There are currently two competing hypotheses regarding the fate of embryonic germ layers during this metamorphosis. In one scenario, the original endoderm undergoes apoptosis and is replaced by a secondary endoderm derived from ectodermal cells. In the second scenario, both ectoderm and endoderm remain intact through development. In this study, we performed a pulse-chase experiment to trace the fate of larval ectodermal cells. We observed that prior to metamorphosis, ectodermal cells that proliferated early in larval development concentrate at the future oral end of the polyp. During metamorphosis, these cells migrate into the endoderm, extending all the way to the aboral portion of the gut. We therefore reject the hypothesis that larval endoderm remains intact during metamorphosis and provide additional support for the "secondary gastrulation" hypothesis. Aurelia appears to offer the first and only described case where a cnidarian derives its endoderm twice during normal development, adding to a growing body of evidence that germ layers can be dramatically reorganized in cnidarian life cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ting; Zhao, Jing; Hu, Ping
Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed thatmore » 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay. - Highlights: • We treat zebrafish embryos with PCP at gastrula stage. • PCP acts as an oxidative phosphorylation inhibitor, not an uncoupler, in gastrulation. • Exogenous ATP injection will rescue the development of effected embryos. • The transcriptome of PCP-treated embryo exhibits a Warburg-like effect in tumor cell.« less
Isolation and characterization of the human CDX1 gene: A candidate gene for diastrophic dysplasia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonner, C.; Loftus, S.; Wasmuth, J.J.
1994-09-01
Diastrophic dysplasia is an autosomal recessive disorder characterized by short stature, dislocation of the joints, spinal deformities and malformation of the hands and feet. Multipoint linkage analysis places the diastrophic dysplasia (DTD) locus in 5q31-5q34. Linkage disequilibrium mapping places the DTD locus near CSFIR in the direction of PDGFRB (which is tandem to CSFIR). This same study tentatively placed PDGFRB and DTD proximal to CSFIR. Our results, as well as recently reported work from other laboratories, suggest that PDGFRB (and possibly DTD) is distal rather than proximal to CSFIR. We have constructed a cosmid contig covering approximately 200 kb ofmore » the region containing CSFIR. Several exons have been {open_quotes}trapped{close_quotes} from these cosmids using exon amplification. One of these exons was trapped from a cosmid isolated from a walk from PDGFRB, approximately 80 kb from CSFIR. This exon was sequenced and was determined to be 89% identical to the nucleotide sequence of exon two of the murine CDX1 gene (100% amino acid identity). The exon was used to isolate the human CDX gene. Sequence analysis of the human CDX1 gene indicates a very high degree of homology to the murine gene. CDX1 is a caudal type homeobox gene expressed during gastrulation. In the mouse, expression during gastrulation begins in the primitive streak and subsequently localizes to the ectodermal and mesodermal cells of the primitive streak, neural tube, somites, and limb buds. Later in gastrulation, CDX1 expression becomes most prominent in the mesoderm of the forelimbs, and, to a lesser extent, the hindlimbs. CDX1 is an intriguing candidate gene for diastrophic dysplasia. We are currently screening DNA from affected individuals and hope to shortly determine whether CDX1 is involved in this disorder.« less
PITX2 and NODAL expression during axis formation in the early rabbit embryo.
Plöger, Ruben; Viebahn, Christoph
2018-04-26
Attaining molecular and morphological axial polarity during gastrulation is a fundamental early requirement for normal development of the embryo. In mammals, the first morphological sign of the anterior-posterior axis appears anteriorly in the form of the anterior marginal crescent (or anterior visceral endoderm) while in the avian the first such sign is the Koller's sickle at the posterior pole of the embryonic disc. Despite this inverse mode of axis formation many genes and molecular pathways involved in various steps of this process seem to be evolutionary conserved amongst amniotes, the nodal gene being a well-known example with its functional involvement prior and during gastrulation. The pitx2 gene, however, is a new candidate described in the chick as an early marker for anterior-posterior polarity and as regulator of axis formation including twinning. To find out whether pitx2 has retained its inductive and early marker function during the evolution of mammals, this study analyzes pitx2 and nodal expression at parallel stages during formation of the anterior-posterior polarity in the early rabbit embryo using whole-mount in situ hybridization and serial light-microscopical sections. At a late pre-gastrulation stage a localized reduction of nodal expression presages the position of the anterior pole of the embryonic disc and thus serves as the earliest molecular marker of anterior-posterior polarity known so far. pitx2 is expressed in a polarized manner in the anterior marginal crescent and in the posterior half of the embryonic disc during further development only while nodal expression in the anterior segment of the posterior pitx2 expression domain helps to define the so-called anterior streak domain (ASD), a novel progenitor region of the anterior half of the primitive streak. The expression patterns of both genes thus serve as signs of a conserved involvement in early axis formation in amniotes and, possibly, in twinning in mammals as well. Copyright © 2018 Elsevier GmbH. All rights reserved.
Popov, Ivan K; Kwon, Taejoon; Crossman, David K; Crowley, Michael R; Wallingford, John B; Chang, Chenbei
2017-06-15
During early vertebrate embryogenesis, cell fate specification is often coupled with cell acquisition of specific adhesive, polar and/or motile behaviors. In Xenopus gastrulae, tissues fated to form different axial structures display distinct motility. The cells in the early organizer move collectively and directionally toward the animal pole and contribute to anterior mesendoderm, whereas the dorsal and the ventral-posterior trunk tissues surrounding the blastopore of mid-gastrula embryos undergo convergent extension and convergent thickening movements, respectively. While factors regulating cell lineage specification have been described in some detail, the molecular machinery that controls cell motility is not understood in depth. To gain insight into the gene battery that regulates both cell fates and motility in particular embryonic tissues, we performed RNA sequencing (RNA-seq) to investigate differentially expressed genes in the early organizer, the dorsal and the ventral marginal zone of Xenopus gastrulae. We uncovered many known signaling and transcription factors that have been reported to play roles in embryonic patterning during gastrulation. We also identified many uncharacterized genes as well as genes that encoded extracellular matrix (ECM) proteins or potential regulators of actin cytoskeleton. Co-expression of a selected subset of the differentially expressed genes with activin in animal caps revealed that they had distinct ability to block activin-induced animal cap elongation. Most of these factors did not interfere with mesodermal induction by activin, but an ECM protein, EFEMP2, inhibited activin signaling and acted downstream of the activated type I receptor. By focusing on a secreted protein kinase PKDCC1, we showed with overexpression and knockdown experiments that PKDCC1 regulated gastrulation movements as well as anterior neural patterning during early Xenopus development. Overall, our studies identify many differentially expressed signaling and cytoskeleton regulators in different embryonic regions of Xenopus gastrulae and imply their functions in regulating cell fates and/or behaviors during gastrulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Gut endoderm takes flight from the wings of mesoderm.
McDonald, Angela C H; Rossant, Janet
2014-12-01
The endoderm layer destined to be primitive gut is a mosaic of earlier visceral endoderm and definitive endoderm that arises later, during gastrulation. Live imaging now reveals that in mouse embryos, definitive endoderm cells egress from underlying mesoderm and intercalate into the overlying cell layer. This process requires SOX17-mediated control of basement membrane organization.
Padrón-Barthe, Laura; Temiño, Susana; Villa del Campo, Cristina; Carramolino, Laura; Isern, Joan
2014-01-01
The first blood and endothelial cells of amniote embryos appear in close association in the blood islands of the yolk sac (YS). This association and in vitro lineage analyses have suggested a common origin from mesodermal precursors called hemangioblasts, specified in the primitive streak during gastrulation. Fate mapping and chimera studies, however, failed to provide strong evidence for a common origin in the early mouse YS. Additional in vitro studies suggest instead that mesodermal precursors first generate hemogenic endothelium, which then generate blood cells in a linear sequence. We conducted an in vivo clonal analysis to determine the potential of individual cells in the mouse epiblast, primitive streak, and early YS. We found that early YS blood and endothelial lineages mostly derive from independent epiblast populations, specified before gastrulation. Additionally, a subpopulation of the YS endothelium has hemogenic activity and displays characteristics similar to those found later in the embryonic hemogenic endothelium. Our results show that the earliest blood and endothelial cell populations in the mouse embryo are specified independently, and that hemogenic endothelium first appears in the YS and produces blood precursors with markers related to definitive hematopoiesis. PMID:25139355
Nagano, Yatsuhisa; Ode, Koji L
2014-08-01
The thermal dissipation of activated eggs and embryos undergoing development from cleavage to the tailbud stage of the African clawed frog Xenopus laevis was measured as a function of incubation time at temperatures ranging from T = 288.2 K to 295.2 K, using a high-precision isothermal calorimeter. A23187-mediated activation of mature eggs induced stable periodic thermal oscillations lasting for 8-34 h. The frequency agreed well with the cell cycle frequency of initial cleavages at the identical temperature. In the developing embryo, energy metabolism switches from embryonic to adult features during gastrulation. The thermal dissipation after gastrulation fit well with a single modified Avrami equation, which has been used for modeling crystal-growth. Both the oscillation frequency of the activated egg and the growth rate of the embryo strongly depend on temperature with the same apparent activation energy of approximately 87 kJ mole(-1). This result suggests that early development proceeds as a single biological time, attributable to a single metabolic rate. A temperature-independent growth curve was derived by scaling the thermogram to the biological time, indicating that the amount of energy expenditure during each developmental stage is constant over the optimal temperature range.
Perez-Camps, Mireia; Tian, Jing; Chng, Serene C; Sem, Kai Pin; Sudhaharan, Thankiah; Teh, Cathleen; Wachsmuth, Malte; Korzh, Vladimir; Ahmed, Sohail; Reversade, Bruno
2016-01-01
Formation of the three embryonic germ layers is a fundamental developmental process that initiates differentiation. How the zebrafish pluripotency factor Pou5f3 (homologous to mammalian Oct4) drives lineage commitment is unclear. Here, we introduce fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to assess the formation of Pou5f3 complexes with other transcription factors in real-time in gastrulating zebrafish embryos. We show, at single-cell resolution in vivo, that Pou5f3 complexes with Nanog to pattern mesendoderm differentiation at the blastula stage. Later, during gastrulation, Sox32 restricts Pou5f3–Nanog complexes to the ventrolateral mesendoderm by binding Pou5f3 or Nanog in prospective dorsal endoderm. In the ventrolateral endoderm, the Elabela / Aplnr pathway limits Sox32 levels, allowing the formation of Pou5f3–Nanog complexes and the activation of downstream BMP signaling. This quantitative model shows that a balance in the spatiotemporal distribution of Pou5f3–Nanog complexes, modulated by Sox32, regulates mesendoderm specification along the dorsoventral axis. DOI: http://dx.doi.org/10.7554/eLife.11475.001 PMID:27684073
NASA Technical Reports Server (NTRS)
Wikramanayake, Athula H.; Hong, Melanie; Lee, Patricia N.; Pang, Kevin; Byrum, Christine A.; Bince, Joanna M.; Xu, Ronghui; Martindale, Mark Q.
2003-01-01
The human oncogene beta-catenin is a bifunctional protein with critical roles in both cell adhesion and transcriptional regulation in the Wnt pathway. Wnt/beta-catenin signalling has been implicated in developmental processes as diverse as elaboration of embryonic polarity, formation of germ layers, neural patterning, spindle orientation and gap junction communication, but the ancestral function of beta-catenin remains unclear. In many animal embryos, activation of beta-catenin signalling occurs in blastomeres that mark the site of gastrulation and endomesoderm formation, raising the possibility that asymmetric activation of beta-catenin signalling specified embryonic polarity and segregated germ layers in the common ancestor of bilaterally symmetrical animals. To test whether nuclear translocation of beta-catenin is involved in axial identity and/or germ layer formation in 'pre-bilaterians', we examined the in vivo distribution, stability and function of beta-catenin protein in embryos of the sea anemone Nematostella vectensis (Cnidaria, Anthozoa). Here we show that N. vectensis beta-catenin is differentially stabilized along the oral-aboral axis, translocated into nuclei in cells at the site of gastrulation and used to specify entoderm, indicating an evolutionarily ancient role for this protein in early pattern formation.
Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation
He, Bing; Doubrovinski, Konstantin; Polyakov, Oleg; Wieschaus, Eric
2014-01-01
Epithelial folding mediated by apical constriction converts flat epithelial sheets into multilayered, complex tissue structures and is employed throughout the development in most animals1. Little is known, however, how forces produced near the apical surface of the tissue are transmitted within individual cells to generate the global changes in cell shape that characterize tissue deformation. Here we apply particle tracking velocimetry in gastrulating Drosophila embryos to measure the movement of cytoplasm and plasma membrane during ventral furrow (VF) formation2, 3. We find that cytoplasmic redistribution during the lengthening phase of VF formation can be precisely described by viscous flows that quantitatively match the predictions of hydrodynamics. Cell membranes move with the ambient cytoplasm, with little resistance to or driving force on the flow. Strikingly, apical constriction produces similar flow patterns in mutant embryos that fail to form cells prior to gastrulation (“acellular” embryos), such that the global redistribution of cytoplasm mirrors the summed redistribution occurring in individual cells of wild type embryos. Our results suggest that during the lengthening phase of VF formation, hydrodynamic behavior of the cytoplasm provides the predominant mechanism transmitting apically generated forces deep into the tissue and that cell individualization is dispensable. PMID:24590071
Ohta, Kazumasa; Takahashi, Chifumi; Tosuji, Hiroaki
2009-08-01
The activity of acetylcholinesterase (AchE) increases rapidly after the gastrula stage of sea urchin development. In this report, changes in activity and in the molecular differentiation of AchE were investigated. AchE activity increased slightly during gastrulation and rose sharply thereafter, and was dependent on new RNA synthesis. No activity of butyrylcholinesterase was found. Morphogenesis in sea urchin embryos was inhibited by the AchE inhibitor eserine, which specifically inhibited arm rod formation but not body rod formation. Spicule formation and enzyme activity in cultured micromeres were inhibited by eserine in a dose-dependent manner. During gastrulation, two molecular forms of AchE were detected with polyacrylamide gel electrophoresis. The appearance of an additional band on the gel was consistent with the occurrence of a remarkable increase in the enzyme activity. This additional band appeared as a larger molecular form in Anthocidaris crassispina, Hemicentrotus pulcherrimus, Stomopneustes variolaris, and Strongylocentrotus nudus, and as a smaller form in Clypeaster japonicus and Temnopleurus hardwicki. These results suggest that the change in the molecular form of AchE induced a change in enzymatic activity that in turn may play a role in spicule elongation in sea urchin embryos.
Eme, J; Mueller, C A; Manzon, R G; Somers, C M; Boreham, D R; Wilson, J Y
2015-01-01
Critical windows are periods of developmental susceptibility when the phenotype of an embryonic, juvenile or adult animal may be vulnerable to environmental fluctuations. Temperature has pervasive effects on poikilotherm physiology, and embryos are especially vulnerable to temperature shifts. To identify critical windows, we incubated whitefish embryos at control temperatures of 2°C, 5°C, or 8°C, and shifted treatments among temperatures at the end of gastrulation or organogenesis. Heart rate (fH) and oxygen consumption ( [Formula: see text] ) were measured across embryonic development, and [Formula: see text] was measured in 1-day old hatchlings. Thermal shifts, up or down, from initial incubation temperatures caused persistent changes in fH and [Formula: see text] compared to control embryos measured at the same temperature (2°C, 5°C, or 8°C). Most prominently, when embryos were measured at organogenesis, shifting incubation temperature after gastrulation significantly lowered [Formula: see text] or fH. Incubation at 2°C or 5°C through gastrulation significantly lowered [Formula: see text] (42% decrease) and fH (20% decrease) at 8°C, incubation at 2°C significantly lowered [Formula: see text] (40% decrease) and fH (30% decrease) at 5°C, and incubation at 5°C and 8°C significantly lowered [Formula: see text] at 2°C (27% decrease). Through the latter half of development, [Formula: see text] and fH in embryos were not different from control values for thermally shifted treatments. However, in hatchlings measured at 2°C, [Formula: see text] was higher in groups incubated at 5°C or 8°C through organogenesis, compared to 2°C controls (43 or 65% increase, respectively). Collectively, these data suggest that embryonic development through organogenesis represents a critical window of embryonic and hatchling phenotypic plasticity. This study presents an experimental design that identified thermally sensitive periods for fish embryos. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Ma, L; Swalla, B J; Zhou, J; Dobias, S L; Bell, J R; Chen, J; Maxson, R E; Jeffery, W R
1996-03-01
The Msx homeobox genes are expressed in complex patterns during vertebrate development in conjunction with inductive tissue interactions. As a means of understanding the archetypal role of Msx genes in chordates, we have isolated and characterized an Msx gene in ascidians, protochordates with a relatively simple body plan. The Mocu Msx-a and McMsx-a genes, isolated from the ascidians Molgula oculata and Molgula citrina, respectively, have homeodomains that place them in the msh-like subclass of Msx genes. Therefore, the Molgula Msx-a genes are most closely related to the msh genes previously identified in a number of invertebrates. Southern blot analysis suggests that there are one or two copies of the Msx-a gene in the Molgula genome. Northern blot and RNase protection analysis indicate that Msx-a transcripts are restricted to the developmental stages of the life cycle. In situ hybridization showed that Msx-a mRNA first appears just before gastrulation in the mesoderm (presumptive notochord and muscle) and ectoderm (neural plate) cells. Transcript levels decline in mesoderm cells after the completion of gastrulation, but are enhanced in the folding neural plate during neurulation. Later, Msx-a mRNA is also expressed in the posterior ectoderm and in a subset of the tail muscle cells. The ectoderm and mesoderm cells that express Msx-a are undergoing morphogenetic movements during gastrulation, neurulation, and tail formation. Msx-a expression ceases after these cells stop migrating. The ascidian M. citrina, in which adult tissues and organs begin to develop precociously in the larva, was used to study Msx-a expression during adult development. Msx-a transcripts are expressed in the heart primordium and the rudiments of the ampullae, epidermal protrusions with diverse functions in the juvenile. The heart and ampullae develop in regions where mesenchyme cells interact with endodermal or epidermal epithelia. A comparison of the expression patterns of the Molgula genes with those of their vertebrate congeners suggests that the archetypal roles of the Msx genes may be in morphogenetic movements during embryogenesis and in mesenchymal-epithelial interactions during organogenesis.
Mechanisms of cell transformation in the embryonic heart.
Huang, J X; Potts, J D; Vincent, E B; Weeks, D L; Runyan, R B
1995-03-27
The process of cell transformation in the heart is a complex one. By use of the invasion bioassay, we have been able to identify several critical components of the cell transformation process in the heart. TGF beta 3 can be visualized as a switch in the environment that contributes to the initial process of cell transformation. Our data show that it is a critical switch in the transformation process. Even so, it is apparently only one of the factors involved. Others may include other TGF beta family members, the ES antigens described by Markwald and co-workers and additional unknown substances. Observing the sensitivity of the process to pertussis toxin, there is likely to be a G-protein-linked receptor involved, yet we have not identified a known ligand for this type of receptor. Clearly, there are several different signal transduction processes involved. The existence of multiple pathways is consistent with the idea that the target endothelial cells receive a variety of environmental imputs, the sum of which will produce cell transformation at the correct time and place. Adjacent endothelial cells of the ventricle that do not undergo cell transformation are apparently refractory to one or more of the stimuli. Figure 4 depicts a summary diagram of this invasion process with localization of most of the molecules mentioned in this narrative. As hypothesized here, elements of the transformation process may recapitulate aspects of gastrulation. Since some conservation of mechanism is expected in cells, it is not surprising that cells undergoing phenotypic change might reutilize mechanisms used previously to produce mesenchyme from the blastodisk. Though we have preliminary data to suggest this point, confirmation of the hypothesis by perturbation of genes such as brachyury, msx-1, etc. will be required to establish this point. The advantage of this hypothesis is that it provides, from the work of others in the area of gastrulation, a ready source of molecules and mechanisms that can be tested in the transforming heart. Whereas, perturbation of such mechanisms at gastrulation may be lethal to the embryo, such molecules and mechanisms may be responsible for the high incidence of birth defects in the heart.
Schambra, Uta B; Goldsmith, Jeff; Nunley, Kevin; Liu, Yali; Harirforoosh, Sam; Schambra, Heidi M
2015-01-01
Human and animal studies show significant delays in neurobehavioral development in offspring after prolonged prenatal exposure to moderate and high ethanol doses resulting in high blood alcohol concentration (BECs). However, none have investigated the effects of lower ethanol doses given acutely during specific developmental time periods. Here, we sought to create a mouse model for modest and circumscribed human drinking during the 3rd and 4th weeks of pregnancy. We acutely treated mice during embryo gastrulation on gestational day (GD) 7 or neurulation on GD8 with a low or moderate ethanol dose given via gavage that resulted in BECs of 107 and 177 mg/dl, respectively. We assessed neonatal physical development (pinnae unfolding, and eye opening); weight gain from postnatal day (PD) 3-65; and neurobehavioral maturation (pivoting, walking, cliff aversion, surface righting, vertical screen grasp, and rope balance) from PD3 to 17. We used a multiple linear regression model to determine the effects of dose, sex, day of treatment and birth in animals dosed during gastrulation or neurulation, relative to their vehicle controls. We found that ethanol exposure during both time points (GD7 and GD8) resulted in some delays of physical development and significant sensorimotor delays of pivoting, walking, and thick rope balance, as well as additional significant delays in cliff aversion and surface righting after GD8 treatment. We also found that treatment with the low ethanol dose more frequently affected neurobehavioral development of the surviving pups than treatment with the moderate ethanol dose, possibly due to a loss of severely affected offspring. Finally, mice born prematurely were delayed in their physical and sensorimotor development. Importantly, we showed that brief exposure to low dose ethanol, if administered during vulnerable periods of neuroanatomical development, results in significant neurobehavioral delays in neonatal mice. We thus expand concerns about alcohol consumption during the 3rd and 4th weeks of human pregnancy to include occasional light to moderate drinking. Copyright © 2015 Elsevier Inc. All rights reserved.
Conditions that influence the response to Fgf during otic placode induction
Padanad, Mahesh S.; Bhat, Neha; Guo, BiWei; Riley, Bruce B.
2016-01-01
Despite the vital importance of Fgf for otic induction, previous attempts to study otic induction through Fgf misexpression have yielded widely varying and contradictory results. There are also discrepancies regarding the ability of Fgf to induce otic tissue in ectopic locations, raising questions about the sufficiency of Fgf and the degree to which other local factors enhance or restrict otic potential. Using heat shock-inducible transgenes to misexpress Fgf3 or Fgf8 in zebrafish, we found that the stage, distribution and level of misexpression strongly influence the response to Fgf. Fgf misexpression during gastrulation can inhibit or promote otic development, depending on context, whereas misexpression after gastrulation leads to expansion of otic markers throughout preplacodal ectoderm surrounding the head. Elevated Fgf also expands expression of the putative competence factor Foxi1, which is required for Fgf to expand other otic markers. Misexpression of downstream factors Pax2a or Pax8 also expands otic markers but cannot bypass the requirement for Fgf or Foxi1. Co-misexpression of Pax2/8 with Fgf8 potentiates formation of ectopic otic vesicles expressing a full range of otic markers. These findings document the variables critically affecting the response to Fgf and clarify the roles of foxi1 and pax2/8 in the otic response. PMID:22327005
Sarmah, Swapnalee; Marrs, James A.
2014-01-01
BACKGROUND Fetal alcohol spectrum disorder (FASD) describes a range of birth defects including various congenital heart defects (CHDs). Mechanisms of FASD-associated CHDs are not understood. Whether alcohol interferes with a single critical event or with multiple events in heart formation is not known. RESULTS Our zebrafish embryo experiments showed that ethanol interrupts different cardiac regulatory networks and perturbed multiple steps of cardiogenesis (specification, myocardial migration, looping, chamber morphogenesis and endocardial cushion formation). Ethanol exposure during gastrulation until cardiac specification or during myocardial midline migration did not produce severe or persistent heart development defects. However, exposure comprising gastrulation until myocardial precursor midline fusion or during heart patterning stages produced aberrant heart looping and defective endocardial cushions. Continuous exposure during entire cardiogenesis produced complex cardiac defects leading to severely defective myocardium, endocardium, and endocardial cushions. Supplementation of retinoic acid with ethanol partially rescued early heart developmental defects, but the endocardial cushions did not form correctly. In contrast, supplementation of folic acid rescued normal heart development, including the endocardial cushions. CONCLUSIONS Our results indicate that ethanol exposure interrupted divergent cardiac morphogenesis events causing heart defects. Folic acid supplementation was effective in preventing a wide spectrum of ethanol-induced heart developmental defects. PMID:23832875
Pathway to a Phenocopy: Heat Stress Effects in Early Embryogenesis
Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane
2015-01-01
Background Heat shocks applied at the onset of gastrulation in early Drosophila embryos frequently lead to phenocopies of U-shaped mutants – having characteristic failures in the late morphogenetic processes of germband retraction and dorsal closure. The pathway from non-specific heat stress to phenocopied abnormalities is unknown. Results Drosophila embryos subjected to 30-min, 38-°C heat shocks at gastrulation appear to recover and restart morphogenesis. Post-heat-shock development appears normal, albeit slower, until a large fraction of embryos develop amnioserosa holes (diameters > 100 μm). These holes are positively correlated with terminal U-shaped phenocopies. They initiate between amnioserosa cells and open over tens of minutes by evading normal wound healing responses. They are not caused by tissue-wide increases in mechanical stress or decreases in cell-cell adhesion, but instead appear to initiate from isolated apoptosis of amnioserosa cells. Conclusions The pathway from heat shock to U-shaped phenocopies involves the opening of one or more large holes in the amnioserosa that compromise its structural integrity and lead to failures in morphogenetic processes that rely on amnioserosa-generated tensile forces. The proposed mechanism by which heat shock leads to hole initiation and expansion is heterochonicity – i.e., disruption of morphogenetic coordination between embryonic and extra-embryonic cell types. PMID:26498920
Amphibian gastrulation: history and evolution of a 125 year-old concept.
Beetschen, J C
2001-10-01
The hypothetical gastraea concept, proposed by Haeckel (1874) to be an ancestral form common to all Metazoans, relied on the characterization of a gastrula stage in their embryonic development. The first steps that led to this characterization in Amphibian embryos fell into oblivion and deserve mention. Similarly, controversial debates about gastrula formation from the blastula, about simultaneous appearance of the three germ layers as opposed to a theoretical diploblastic embryo and about the occurrence of inward morphogenetic cell movements versus that of delamination processes, lasted for years. Following a half-century of polemic (1875-1925), Vogt's studies clearly and definitively established the reality and the complexity of morphogenetic movements, but this breakthrough long remained without further consequences. Holtfreter (1943,1944) illuminated unknown aspects of living gastrula cells and his observations helped to define many problems to be solved. During the second half of the 20th century, cell and molecular biology techniques, applied to the study of cell-cell and cell-matrix interactions, have brought new insights into the mechanisms of gastrula cell movements. Gene expression during these phenomena still remains an open question, as shown by a few recent studies: this situation strikingly contrasts with the many achievements that have been accomplished during the last decade in the analysis of induction phenomena during gastrulation.
Chism, Grady W.; Vaughan, Martin A.; Muralidharan, Pooja; Marrs, Jim A.
2016-01-01
Abstract A course-based undergraduate research experience (CURE) spanning three semesters was introduced into freshman and sophomore biology classes, with the hypothesis that participation in a CURE affects skills in research, communication, and collaboration, which may help students persist in science. Student research projects were centered on the hypothesis that nicotine and caffeine exposure during early development affects gastrulation and heart development in zebrafish. First, freshmen generated original data showing distinct effects of embryonic nicotine and caffeine exposure on zebrafish heart development and function. Next, Cell Biology laboratory students continued the CURE studies and identified novel teratogenic effects of nicotine and caffeine during gastrulation. Finally, new freshmen continued the CURE research, examining additional toxicant effects on development. Students designed new protocols, made measurements, presented results, and generated high-quality preliminary data that were studied in successive semesters. By implementing this project, the CURE extended faculty research and provided a scalable model to address national goals to involve more undergraduates in authentic scientific research. In addition, student survey results support the hypothesis that CUREs provide significant gains in student ability to (1) design experiments, (2) analyze data, and (3) make scientific presentations, translating into high student satisfaction and enhanced learning. PMID:26829498
Warr, Nicholas; Powles-Glover, Nicola; Chappell, Anna; Robson, Joan; Norris, Dominic; Arkell, Ruth M
2008-10-01
The putative transcription factor ZIC2 is associated with a defect of forebrain development, known as Holoprosencephaly (HPE), in humans and mouse, yet the mechanism by which aberrant ZIC2 function causes classical HPE is unexplained. The zinc finger domain of all mammalian Zic genes is highly homologous with that of the Gli genes, which are transcriptional mediators of Shh signalling. Mutations in Shh and many other Hh pathway members cause HPE and it has been proposed that Zic2 acts within the Shh pathway to cause HPE. We have investigated the embryological cause of Zic2-associated HPE and the relationship between Zic2 and the Shh pathway using mouse genetics. We show that Zic2 does not interact with Shh to produce HPE. Moreover, molecular defects that are able to account for the HPE phenotype are present in Zic2 mutants before the onset of Shh signalling. Mutation of Zic2 causes HPE via a transient defect in the function of the organizer region at mid-gastrulation which causes an arrest in the development of the prechordal plate (PCP), a structure required for forebrain midline morphogenesis. The analysis provides genetic evidence that Zic2 functions during organizer formation and that the PCP develops via a multi-step process.
Embryonic exposure to propylthiouracil disrupts left-right patterning in Xenopus embryos.
van Veenendaal, Nicole R; Ulmer, Bärbel; Boskovski, Marko T; Fang, Xiefan; Khokha, Mustafa K; Wendler, Christopher C; Blum, Martin; Rivkees, Scott A
2013-02-01
Antithyroid medications are the preferred therapy for the treatment of Graves' disease during pregnancy. Propylthiouracil (PTU) is favored over methimazole (MMI) due to potential teratogenic concerns with MMI. This study was to determine the teratogenic potential of MMI and PTU using a validated Xenopus tropicalis embryo model. Embryos were exposed to 1 mM PTU (EC(50)=0.88 mM), 1 mM MMI, or vehicle control (water) from stages 2 to 45. Treated embryos were examined for gross morphological defects, ciliary function, and gene expression by in situ hybridization. Exposure to PTU, but not MMI, led to cardiac and gut looping defects and shortening along the anterior-posterior axis. PTU exposure during gastrulation (stage 8-12.5) was identified as the critical period of exposure leading to left-right (LR) patterning defects. Abnormal cilia polarization, abnormal cilia-driven leftward flow at the gastrocoel roof plate (GRP), and aberrant expression of both Coco and Pitx2c were associated with abnormal LR symmetry observed following PTU exposure. PTU is teratogenic during late blastula, gastrulation, and neurulation; whereas MMI is not. PTU alters ciliary-driven flow and disrupts the normal genetic program involved in LR axis determination. These studies have important implications for women taking PTU during early pregnancy.
Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo.
Sepúlveda-Ramírez, Silvia P; Toledo-Jacobo, Leslie; Henson, John H; Shuster, Charles B
2018-05-15
In the sea urchin embryo, gastrulation is characterized by the ingression and directed cell migration of primary mesenchyme cells (PMCs), as well as the primary invagination and convergent extension of the endomesoderm. Like all cell shape changes, individual and collective cell motility is orchestrated by Rho family GTPases and their modulation of the actomyosin cytoskeleton. And while endomesoderm specification has been intensively studied in echinoids, much less is known about the proximate regulators driving cell motility. Toward these ends, we employed anti-sense morpholinos, mutant alleles and pharmacological inhibitors to assess the role of Cdc42 during sea urchin gastrulation. While inhibition of Cdc42 expression or activity had only mild effects on PMC ingression, PMC migration, alignment and skeletogenesis were disrupted in the absence of Cdc42, as well as elongation of the archenteron. PMC migration and patterning of the larval skeleton relies on the extension of filopodia, and Cdc42 was required for filopodia in vivo as well as in cultured PMCs. Lastly, filopodial extension required both Arp2/3 and formin actin-nucleating factors, supporting models of filopodial nucleation observed in other systems. Together, these results suggest that Cdc42 plays essential roles during PMC cell motility and organogenesis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Tumor suppressor Lzap regulates cell cycle progression, doming and zebrafish epiboly
Liu, Dan; Wang, Wen-Der; Melville, David B.; Cha, Yong I.; Yin, Zhirong; Issaeva, Natalia; Knapik, Ela W.; Yarbrough, Wendell G.
2012-01-01
Initial stages of embryonic development rely on rapid, synchronized cell divisions of the fertilized egg followed by a set of morphogenetic movements collectively called epiboly and gastrulation. Lzap is a putative tumor suppressor whose expression is lost in 30% of head and neck squamous cell carcinomas. Lzap activities include regulation of cell cycle progression and response to therapeutic agents. Here we explore developmental roles of the lzap gene during zebrafish morphogenesis. Lzap is highly conserved among vertebrates and is maternally deposited. Expression is initially ubiquitous during gastrulation, and later becomes more prominent in the pharyngeal arches, digestive tract and brain. Antisense morpholino-mediated depletion of Lzap resulted in delayed cell divisions and apoptosis during blastomere formation, resulting in fewer, larger cells. Cell cycle analysis suggested that Lzap loss in early embryonic cells resulted in a G2/M arrest. Furthermore, the Lzap-deficient embryos failed to initiate epiboly – the earliest morphogenetic movement in animal development – which has been shown to be dependent on cell adhesion and migration of epithelial sheets. Our results strongly implicate Lzap in regulation of cell cycle progression, adhesion and migratory activity of epithelial cell sheets during early development. These functions provide further insight into Lzap activity that may contribute not only to development, but also to tumor formation. PMID:21523853
Sarmah, Swapnalee; Chism, Grady W; Vaughan, Martin A; Muralidharan, Pooja; Marrs, Jim A; Marrs, Kathleen A
2016-08-01
A course-based undergraduate research experience (CURE) spanning three semesters was introduced into freshman and sophomore biology classes, with the hypothesis that participation in a CURE affects skills in research, communication, and collaboration, which may help students persist in science. Student research projects were centered on the hypothesis that nicotine and caffeine exposure during early development affects gastrulation and heart development in zebrafish. First, freshmen generated original data showing distinct effects of embryonic nicotine and caffeine exposure on zebrafish heart development and function. Next, Cell Biology laboratory students continued the CURE studies and identified novel teratogenic effects of nicotine and caffeine during gastrulation. Finally, new freshmen continued the CURE research, examining additional toxicant effects on development. Students designed new protocols, made measurements, presented results, and generated high-quality preliminary data that were studied in successive semesters. By implementing this project, the CURE extended faculty research and provided a scalable model to address national goals to involve more undergraduates in authentic scientific research. In addition, student survey results support the hypothesis that CUREs provide significant gains in student ability to (1) design experiments, (2) analyze data, and (3) make scientific presentations, translating into high student satisfaction and enhanced learning.
Twisted Gastrulation as a BMP Modulator during Mammary Gland Development and Tumorigenesis
2014-05-01
present at the onset of puberty , roughly 6 weeks of age, but not at later time points we began our Q-PCR analysis at this time point. Analyzing...rudimentary ductal tree that during puberty , pregnancy and lactation undergoes complex morphological changes (Hens and Wysolmerski, 2005; Hovey and Trott...proliferates and elongates into the developing fat pad forming a rudimentary tree. Development is arrested at this point until puberty . At puberty , terminal
BMP4 density gradient in disk-shaped confinement
NASA Astrophysics Data System (ADS)
Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.
We present a quantitative model that explains the scaling of BMP4 gradients during gastrulation and the recent experimental observation that geometric confinement of human embryonic stem cells is sufficient to recapitulate much of germ layer patterning. Based on a assumption that BMP4 diffusion rate is much smaller than the diffusion rate of it's inhibitor molecules, our results confirm that the length-scale which defines germ layer territories does not depend on system size.
Conditions that influence the response to Fgf during otic placode induction.
Padanad, Mahesh S; Bhat, Neha; Guo, Biwei; Riley, Bruce B
2012-04-01
Despite the vital importance of Fgf for otic induction, previous attempts to study otic induction through Fgf misexpression have yielded widely varying and contradictory results. There are also discrepancies regarding the ability of Fgf to induce otic tissue in ectopic locations, raising questions about the sufficiency of Fgf and the degree to which other local factors enhance or restrict otic potential. Using heat shock-inducible transgenes to misexpress Fgf3 or Fgf8 in zebrafish, we found that the stage, distribution and level of misexpression strongly influence the response to Fgf. Fgf misexpression during gastrulation can inhibit or promote otic development, depending on context, whereas misexpression after gastrulation leads to expansion of otic markers throughout preplacodal ectoderm surrounding the head. Elevated Fgf also expands expression of the putative competence factor Foxi1, which is required for Fgf to expand other otic markers. Misexpression of downstream factors Pax2a or Pax8 also expands otic markers but cannot bypass the requirement for Fgf or Foxi1. Co-misexpression of Pax2/8 with Fgf8 potentiates formation of ectopic otic vesicles expressing a full range of otic markers. These findings document the variables critically affecting the response to Fgf and clarify the roles of foxi1 and pax2/8 in the otic response. © 2012 Elsevier Inc. All rights reserved.
Miles, Lee B; Darido, Charbel; Kaslin, Jan; Heath, Joan K; Jane, Stephen M; Dworkin, Sebastian
2017-12-14
The grainyhead-like (grhl) transcription factors play crucial roles in craniofacial development, epithelial morphogenesis, neural tube closure, and dorso-ventral patterning. By utilising the zebrafish to differentially regulate expression of family members grhl2b and grhl3, we show that both genes regulate epithelial migration, particularly convergence-extension (CE) type movements, during embryogenesis. Genetic deletion of grhl3 via CRISPR/Cas9 results in failure to complete epiboly and pre-gastrulation embryonic rupture, whereas morpholino (MO)-mediated knockdown of grhl3 signalling leads to aberrant neural tube morphogenesis at the midbrain-hindbrain boundary (MHB), a phenotype likely due to a compromised overlying enveloping layer (EVL). Further disruptions of grhl3-dependent pathways (through co-knockdown of grhl3 with target genes spec1 and arhgef19) confirm significant MHB morphogenesis and neural tube closure defects. Concomitant MO-mediated disruption of both grhl2b and grhl3 results in further extensive CE-like defects in body patterning, notochord and somite morphogenesis. Interestingly, over-expression of either grhl2b or grhl3 also leads to numerous phenotypes consistent with disrupted cellular migration during gastrulation, including embryo dorsalisation, axial duplication and impaired neural tube migration leading to cyclopia. Taken together, our study ascribes novel roles to the Grhl family in the context of embryonic development and morphogenesis.
Carstens, Michael H
2004-01-01
This review presents a brief synopsis of neuromeric theory. Neuromeres are developmental units of the nervous system with specific anatomic content. Outlying each neuromere are tissues of ectoderm, mesoderm and endoderm that bear an anatomic relationship to the neuromere in three basic ways. This relationship is physical in that motor and sensory connections exist between a given neuromeric level and its target tissues. The relationship is also developmental because the target cells exit during gastrulation precisely at that same level. Finally the relationship is chemical because the genetic definition of a neuromere is shared with those tissues with which it interacts. The model developed by Puelles and Rubenstein is used to describe the neuroanatomy of the neuromeres. Although important details of the model are currently being refined it has immediate clinical relevance for practicing clinicians because it permits us to understand many pathologic states as relationships between the brain and the surrounding tissues. Relationships between the processes of neurulation and gastrulation have been presented to demonstrate the manner in which neuromeric anatomy is established in the embryo. We are now in a position to describe in detail the static anatomic structures that result from this system. The neuromeric 'map' of craniofacial bones, dermis, dura, muscles, and fascia will be the subject of the next part of this series.
Marston, Daniel J.; Higgins, Christopher D.; Peters, Kimberly A.; Cupp, Timothy D.; Dickinson, Daniel J.; Pani, Ariel M.; Moore, Regan P.; Cox, Amanda H.; Kiehart, Daniel P.; Goldstein, Bob
2016-01-01
Summary Apical constriction is a change in cell shape that drives key morphogenetic events including gastrulation and neural tube formation. Apical force-producing actomyosin networks drive apical constriction by contracting while connected to cell-cell junctions. The mechanisms by which developmental patterning regulates these actomyosin networks and associated junctions with spatial precision are not fully understood. Here, we identify a myosin light chain kinase MRCK-1 as a key regulator of C. elegans gastrulation that integrates spatial and developmental patterning information. We show that MRCK-1 is required for activation of contractile actomyosin dynamics and elevated cortical tension in the apical cell cortex of endodermal precursor cells. MRCK-1 is apically localized by active Cdc42 at the external, cell-cell contact-free surfaces of apically constricting cells, downstream of cell fate determination mechanisms. We establish that the junctional components α-catenin, β-catenin, and cadherin become highly enriched at the apical junctions of apically-constricting cells, and that MRCK-1 and myosin activity are required in vivo for this enrichment. Taken together, our results define mechanisms that position a myosin activator to a specific cell surface where it both locally increases cortical tension and locally enriches junctional components to facilitate apical constriction. These results reveal crucial links that can tie spatial information to local force generation to drive morphogenesis. PMID:27451898
Martin, Lisa K.; Bratoeva, Momka; Mezentseva, Nadejda V.; Bernanke, Jayne M.; Rémond, Mathieu C.; Ramsdell, Ann F.; Eisenberg, Carol A.; Eisenberg, Leonard M.
2011-01-01
Lithium is a commonly used drug for the treatment of bipolar disorder. At high doses, lithium becomes teratogenic, which is a property that has allowed this agent to serve as a useful tool for dissecting molecular pathways that regulate embryogenesis. This study was designed to examine the impact of lithium on heart formation in the developing frog for insights into the molecular regulation of cardiac specification. Embryos were exposed to lithium at the beginning of gastrulation, which produced severe malformations of the anterior end of the embryo. Although previous reports characterized this deformity as a posteriorized phenotype, histological analysis revealed that the defects were more comprehensive, with disfigurement and disorganization of all interior tissues along the anterior-posterior axis. Emerging tissues were poorly segregated and cavity formation was decreased within the embryo. Lithium exposure also completely ablated formation of the heart and prevented myocardial cell differentiation. Despite the complete absence of cardiac tissue in lithium treated embryos, exposure to lithium did not prevent myocardial differentiation of precardiac DMZ explants. Moreover, precardiac tissue freed from the embryo subsequent to lithium treatment at gastrulation gave rise to cardiac tissue, as demonstrated by upregulation of cardiac gene expression, display of sarcomeric proteins, and formation of a contractile phenotype. Together these data indicate that lithium’s effect on the developing heart was not due to direct regulation of cardiac differentiation, but an indirect consequence of disrupted tissue organization within the embryo. PMID:22150286
NASA Technical Reports Server (NTRS)
Fredieu, J. R.; Cui, Y.; Maier, D.; Danilchik, M. V.; Christian, J. L.
1997-01-01
When Xenopus gastrulae are made to misexpress Xwnt-8, or are exposed to lithium ions, they develop with a loss of anterior structures. In the current study, we have characterized the neural defects produced by either Xwnt-8 or lithium and have examined potential cellular mechanisms underlying this anterior truncation. We find that the primary defect in embryos exposed to lithium at successively earlier stages during gastrulation is a progressive rostral to caudal deletion of the forebrain, while hindbrain and spinal regions of the CNS remain intact. Misexpression of Xwnt-8 during gastrulation produces an identical loss of forebrain. Our results demonstrate that lithium and Wnts can act upon either prospective neural ectodermal cells, or upon dorsal mesodermal cells, to cause a loss of anterior pattern. Specifically, ectodermal cells isolated from lithium- or Wnt-exposed embryos are unable to form anterior neural tissue in response to inductive signals from normal dorsal mesoderm. In addition, although dorsal mesodermal cells from lithium- or Wnt-exposed embryos are specified properly, and produce normal levels of the anterior neural inducing molecules noggin and chordin, they show a greatly reduced capacity to induce anterior neural tissue in conjugated ectoderm. Taken together, our results are consistent with a model in which Wnt- or lithium-mediated signals can induce either mesodermal or ectodermal cells to produce a dominant posteriorizing morphogen which respecifies anterior neural tissue as posterior.
Microfluidic-based patterning of embryonic stem cells for in vitro development studies.
Suri, Shalu; Singh, Ankur; Nguyen, Anh H; Bratt-Leal, Andres M; McDevitt, Todd C; Lu, Hang
2013-12-07
In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments.
Microfluidic-based patterning of embryonic stem cells for in vitro development studies
Suri, Shalu; Singh, Ankur; Nguyen, Anh H.; Bratt-Leal, Andres M.; McDevitt, Todd C.
2013-01-01
In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments. PMID:24113509
Germ layer differentiation during early hindgut and cloaca formation in rabbit and pig embryos
Hassoun, Romia; Schwartz, Peter; Rath, Detlef; Viebahn, Christoph; Männer, Jörg
2010-01-01
Relative to recent advances in understanding molecular requirements for endoderm differentiation, the dynamics of germ layer morphology and the topographical distribution of molecular factors involved in endoderm formation at the caudal pole of the embryonic disc are still poorly defined. To discover common principles of mammalian germ layer development, pig and rabbit embryos at late gastrulation and early neurulation stages were analysed as species with a human-like embryonic disc morphology, using correlative light and electron microscopy. Close intercellular contact but no direct structural evidence of endoderm formation such as mesenchymal–epithelial transition between posterior primitive streak mesoderm and the emerging posterior endoderm were found. However, a two-step process closely related to posterior germ layer differentiation emerged for the formation of the cloacal membrane: (i) a continuous mesoderm layer and numerous patches of electron-dense flocculent extracellular matrix mark the prospective region of cloacal membrane formation; and (ii) mesoderm cells and all extracellular matrix including the basement membrane are lost locally and close intercellular contact between the endoderm and ectoderm is established. The latter process involves single cells at first and then gradually spreads to form a longitudinally oriented seam-like cloacal membrane. These gradual changes were found from gastrulation to early somite stages in the pig, whereas they were found from early somite to mid-somite stages in the rabbit; in both species cloacal membrane formation is complete prior to secondary neurulation. The results highlight the structural requirements for endoderm formation during development of the hindgut and suggest new mechanisms for the pathogenesis of common urogenital and anorectal malformations. PMID:20874819
Hammond, LaTisha M; Hofmann, Gretchen E
2012-07-15
Ocean acidification, or the increased uptake of CO(2) by the ocean due to elevated atmospheric CO(2) concentrations, may variably impact marine early life history stages, as they may be especially susceptible to changes in ocean chemistry. Investigating the regulatory mechanisms of early development in an environmental context, or ecological development, will contribute to increased understanding of potential organismal responses to such rapid, large-scale environmental changes. We examined transcript-level responses to elevated seawater CO(2) during gastrulation and the initiation of spiculogenesis, two crucial developmental processes in the purple sea urchin, Strongylocentrotus purpuratus. Embryos were reared at the current, accepted oceanic CO(2) concentration of 380 microatmospheres (μatm), and at the elevated levels of 1000 and 1350 μatm, simulating predictions for oceans and upwelling regions, respectively. The seven genes of interest comprised a subset of pathways in the primary mesenchyme cell gene regulatory network (PMC GRN) shown to be necessary for the regulation and execution of gastrulation and spiculogenesis. Of the seven genes, qPCR analysis indicated that elevated CO(2) concentrations only had a significant but subtle effect on two genes, one important for early embryo patterning, Wnt8, and the other an integral component in spiculogenesis and biomineralization, SM30b. Protein levels of another spicule matrix component, SM50, demonstrated significant variable responses to elevated CO(2). These data link the regulation of crucial early developmental processes with the environment that these embryos would be developing within, situating the study of organismal responses to ocean acidification in a developmental context.
Scholpp, Steffen; Brand, Michael
2003-11-01
Initial anterior-posterior patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs already during gastrulation, in response to signals patterning the gastrula embryo. After the initial establishment, further development within each brain part is thought to proceed largely independently of the others. However, mechanisms should exist that ensure proper delineation of brain subdivisions also at later stages; such mechanisms are, however, poorly understood. In zebrafish no isthmus mutant embryos, inactivation of the pax2.1 gene leads to a failure of the midbrain and isthmus primordium to develop normally from the gastrula stage onward (Lun and Brand [1998] Development 125:3049-3062). Here, we report that, after the initially correct establishment during gastrulation stages, the neighbouring forebrain primordium and, partially, the hindbrain primordium expand into the misspecified midbrain territory in no isthmus mutant embryos. The expansion is particularly evident for the posterior part of the diencephalon and less so for the first rhombomeric segment, the territories immediately abutting the midbrain/isthmus primordium. The nucleus of the posterior commissure is expanded in size, and marker genes of the forebrain and rhombomere 1 expand progressively into the misspecified midbrain primordium, eventually resulting in respecification of the midbrain primordium. We therefore suggest that the genetic program controlled by Pax2.1 is not only involved in initiating but also in maintaining the identity of midbrain and isthmus cells to prevent them from assuming a forebrain or hindbrain fate. Copyright 2003 Wiley-Liss, Inc.
Xiao, Qing; Xia, Jian-Hong; Zhang, Xiao-Juan; Li, Zhi; Wang, Yang; Zhou, Li; Gui, Jian-Fang
2014-01-01
Many organisms in extremely cold environments such as the Antarctic Pole have evolved antifreeze molecules to prevent ice formation. There are four types of antifreeze proteins (AFPs). Type-IV antifreeze proteins (AFP4s) are present also in certain temperate and even tropical fish, which has raised a question as to whether these AFP4s have important functions in addition to antifreeze activity. Here we report the identification and functional analyses of AFP4s in cyprinid fish. Two genes, namely afp4a and afp4b coding for AFP4s, were identified in gibel carp (Carassius auratus gibelio) and zebrafish (Danio rerio). In both species, afp4a and afp4b display a head-to-tail tandem arrangement and share a common 4-exonic gene structure. In zebrafish, both afp4a and afp4b were found to express specifically in the yolk syncytial layer (YSL). Interestingly, afp4a expression continues in YSL and digestive system from early embryos to adults, whereas afp4b expression is restricted to embryogenesis. Importantly, we have shown by using afp4a-specific and afp4b-specifc morpholino knockdown and cell lineage tracing approaches that AFP4a participates in epiboly progression by stabilizing yolk cytoplasmic layer microtubules, and AFP4b is primarily related to convergence movement. Therefore, both AFP4 proteins are essential for gastrulation of zebrafish embryos. Our current results provide first evidence that AFP such as AFP4 has important roles in regulating developmental processes besides its well-known function as antifreeze factors.
Delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.
Meenakumari, Karukayil J; Krishna, Amitabh
2005-01-01
The unusual feature of the breeding cycle of Cynopterus sphinx at Varanasi is the significant variation in gestation length of the two successive pregnancies of the year. The aim of this study was to investigate whether the prolongation of the first pregnancy in C. sphinx is due to delayed embryonic development. The first (winter) pregnancy commences in late October and lasts until late March and has a gestation period of about 150 days. The second (summer) pregnancy commences in April and lasts until the end of July or early August with a gestation period of about 125 days. Changes in the size and weight of uterine cornua during the two successive pregnancies suggest retarded embryonic growth during November and December. Histological analysis during the period of retarded embryonic development in November and December showed a slow gastrulation process. The process of amniogenesis was particularly slow. When the embryos attained the early primitive streak stage, their developmental rate suddenly increased considerably. During the summer pregnancy, on the other hand, the process of gastrulation was much faster and proceeded quickly. A comparison of the pattern of embryonic development for 4 consecutive years consistently showed retarded or delayed embryonic development during November and December. The time of parturition and post-partum oestrus showed only a limited variation from 1 year to another. This suggests that delayed embryonic development in C. sphinx may function to synchronize parturition among females. The period of delayed embryonic development in this species clearly coincides with the period of fat deposition. The significance of this correlation warrants further investigation.
Maternal organism and embryo biosensoring: insights from ruminants.
Sandra, Olivier; Constant, Fabienne; Vitorino Carvalho, Anais; Eozénou, Caroline; Valour, Damien; Mauffré, Vincent; Hue, Isabelle; Charpigny, Gilles
2015-04-01
In terms of contribution to pregnancy, the mother not only produces gametes, but also hosts gestation, whose progression in the uterus is conditioned by early events during implantation. In ruminants, this period is associated with elongation of the extra-embryonic tissues, gastrulation of the embryonic disk and cross-talk with the endometrium. Recent data have prompted the need for accurate staging of the bovine conceptus and shown that asynchrony between elongation and gastrulation processes may account for pregnancy failure. Data mining of endometrial gene signatures has allowed the identification of molecular pathways and new factors regulated by the conceptus (e.g. FOXL2, SOCS6). Interferon-tau has been recognised to be the major signal of pregnancy recognition, but prostaglandins and lysophospholipids have also been demonstrated to be critical players at the conceptus-endometrium interface. Interestingly, up-regulation of interferon-regulated gene expression has been identified in circulating immune cells during implantation, making these factors a potential source of non-invasive biomarkers for early pregnancy. Distinct endometrial responses have been shown to be elicited by embryos produced by artificial insemination, in vitro fertilisation or somatic cell nuclear transfer. These findings have led to the concept that endometrium is an early biosensor of embryo quality. This biological property first demonstrated in cattle has been recently extended and associated with embryo selection in humans. Hence, compromised or suboptimal endometrial quality can subtly or deeply affect embryo development, with visible and sometimes severe consequences for placentation, foetal development, pregnancy outcome and the long-term health of the offspring. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Xu, Rui; Li, Qi; Yu, Hong; Kong, Lingfeng
2018-04-13
Nanos gene plays an important role in germline development in animals. However, the molecular mechanisms involved in germline development in Mollusca, the second largest animal phylum, are still poorly understood. Here we identified the Nanos orthologue from the Pacific oyster Crassostrea gigas (Cg-Nanos-like), and investigated the expression patterns of Nanos during gametogenesis and embryogenesis in C. gigas. Tissue expression analysis showed that Cg-Nanos-like was specifically expressed in female gonads. During the reproductive cycle, the expression of Cg-Nanos-like mRNA increased matching the seasonal development of the ovarian tissues in diploids, while the expression levels were significantly lower in the ovaries of sterile triploids compared to diploids. High expression of Cg-Nanos-like transcripts were detected in early embryonic stages, while the expression significantly dropped at gastrulation and was barely detectable in veliger stages. In situ hybridization showed that Cg-Nanos-like was expressed at different stages of developing oocytes, whereas positive signals were detected only in spermatogonia during the spermatogenic cycle. These findings indicated that Cg-Nanos-like was involved in the development of germ cells, and maintenance of oocyte maturation. In early embryogenesis, the transcripts were broadly expressed; following gastrulation, the expression was restricted to two cell clumps, which might be the putative primordial germ cells (PGCs) or their precursors. Based on the results, the formation of the PGCs in C. gigas was consistent with the model of transition from epigenesis to preformation. Copyright © 2017. Published by Elsevier B.V.
Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo.
Barriga, Elias H; Franze, Kristian; Charras, Guillaume; Mayor, Roberto
2018-02-22
Collective cell migration is essential for morphogenesis, tissue remodelling and cancer invasion. In vivo, groups of cells move in an orchestrated way through tissues. This movement involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in collective cell migration is comparatively well understood, how tissue mechanics influence collective cell migration in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiates an epithelial-to-mesenchymal transition in neural crest cells and triggers their collective migration. To detect changes in their mechanical environment, neural crest cells use mechanosensation mediated by the integrin-vinculin-talin complex. By performing mechanical and molecular manipulations, we show that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrate that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results show that convergent extension of the mesoderm has a role as a mechanical coordinator of morphogenesis, and reveal a link between two apparently unconnected processes-gastrulation and neural crest migration-via changes in tissue mechanics. Overall, we demonstrate that changes in substrate stiffness can trigger collective cell migration by promoting epithelial-to-mesenchymal transition in vivo. More broadly, our results raise the idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis.
Behr, Rüdiger; Heneweer, Carola; Viebahn, Christoph; Denker, Hans-Werner; Thie, Michael
2005-01-01
Rhesus monkey embryonic stem (rhES) cells were grown on mouse embryonic fibroblast (MEF) feeder layers for up to 10 days to form multilayered colonies. Within this period, stem cell colonies differentiated transiently into complex structures with a disc-like morphology. These complex colonies were characterized by morphology, immunohistochemistry, and marker mRNA expression to identify processes of epithelialization as well as epithelial-mesenchymal transition (EMT) and pattern formation. Typically, differentiated colonies were comprised of an upper and a lower ES cell layer, the former growing on top of the layer of MEF cells whereas the lower ES cell layer spread out underneath the MEF cells. Interestingly, in the central part of the colonies, a roundish pit developed. Here the feeder layer disappeared, and upper layer cells seemed to ingress and migrate through the pit downward to form the lower layer while undergoing a transition from the epithelial to the mesenchymal phenotype, which was indicated by the loss of the marker proteins E-cadherin and ZO-1 in the lower layer. In support of this, we found a concomitant 10-fold upregulation of the gene Snail2, which is a key regulator of the EMT process. Conversion of epiblast to mesoderm was also indicated by the regulated expression of the mesoderm marker Brachyury. An EMT is a characteristic process of vertebrate gastrulation. Thus, these rhES cell colonies may be an interesting model for studies on some basic processes involved in early primate embryogenesis and may open new ways to study the regulation of EMT in vitro.
Relocation of mitochondria to the prospective dorsal marginal zone during Xenopus embryogenesis
NASA Technical Reports Server (NTRS)
Yost, H. J.; Phillips, C. R.; Boore, J. L.; Bertman, J.; Whalon, B.; Danilchik, M. V.
1995-01-01
Dorsal-ventral axis formation in Xenopus laevis begins with a cytoplasmic rotation during the first cell cycle and culminates in a series of cell interactions and movements during gastrulation and neurulation that lead to the formation of dorsal-anterior structures. Evidence reported here indicates that mitochondria are differentially redistributed along the prospective dorsal-ventral axis as a consequence of the cortical-cytoplasmic rotation during the first cell cycle. This finding reinvigorates a possibility that has been considered for many years: asymmetries in cytoplasmic components and metabolic activities contribute to the development of morphological asymmetries.
Billington, Charles J; Schmidt, Brian; Zhang, Lei; Hodges, James S; Georgieff, Michael K; Schotta, Gunnar; Gopalakrishnan, Rajaram; Petryk, Anna
2013-03-01
Diets rich in methyl-donating compounds, including folate, can provide protection against neural tube defects, but their role in preventing craniofacial defects is less clear. Mice deficient in Twisted gastrulation (TWSG1), an extracellular modulator of bone morphogenetic protein signaling, manifest both midline facial defects and jaw defects, allowing study of the effects of methyl donors on various craniofacial defects in an experimentally tractable animal model. The goal of this study was to examine the effects of maternal dietary supplementation with methyl donors on the incidence and type of craniofacial defects among Twsg1(-/-) offspring. Nulliparous and primiparous female mice were fed an NIH31 standard diet (control) or a methyl donor supplemented (MDS) diet (folate, vitamin B-12, betaine, and choline). Observed defects in the pups were divided into those derived mostly from the first branchial arch (BA1) (micrognathia, agnathia, cleft palate) and midline facial defects in the holoprosencephaly spectrum (cyclopia, proboscis, and anterior truncation). In the first pregnancy, offspring of mice fed the MDS diet had lower incidence of BA1-derived defects (12.8% in MDS vs. 32.5% in control; P = 0.02) but similar incidence of midline facial defects (6.4% in MDS vs. 5.2% in control; P = 1.0). Increased maternal parity was independently associated with increased incidence of craniofacial defects after adjusting for diet (from 37.7 to 59.5% in control, P = 0.04 and from 19.1 to 45.3% in MDS, P = 0.045). In conclusion, methyl donor supplementation shows protective effects against jaw defects, but not midline facial defects, and increased parity can be a risk factor for some craniofacial defects.
Superina, Simone; Borovina, Antonia; Ciruna, Brian
2014-03-15
Growth factors and morphogens regulate embryonic patterning, cell fate specification, cell migration, and morphogenesis. The activity and behavior of these signaling molecules are regulated in the extracellular space through interactions with proteoglycans (Bernfield et al., 1999; Perrimon and Bernfield 2000; Lander and Selleck 2000; Selleck 2000). Proteoglycans are high molecular-weight proteins consisting of a core protein with covalently linked glycosaminoglycan (GAG) side chains, which are thought to mediate ligand interaction. Drosophila mutant embryos deficient for UDP-glucose dehydrogenase activity (Ugdh, required for GAG synthesis) exhibit abnormal Fgf, Wnt and TGFß signaling and die during gastrulation, indicating a broad and critical role for proteoglycans during early embryonic development (Lin et al., 1999; Lin and Perrimon 2000) (Hacker et al., 1997). Mouse Ugdh mutants also die at gastrulation, however, only Fgf signaling appears disrupted (Garcia-Garcia and Anderson, 2003). These findings suggested a possible divergence in the requirement for proteoglycans during Drosophila and mouse embryogenesis, and that mammals may have evolved alternative means of regulating Wnt and TGFß activity. To further examine the function of proteoglycans in vertebrate development, we have characterized zebrafish mutants devoid of both maternal and zygotic Ugdh/Jekyll activity (MZjekyll). We demonstrate that MZjekyll mutant embryos display abnormal Fgf, Shh, and Wnt signaling activities, with concomitant defects in central nervous system patterning, cardiac ventricular fate specification and axial morphogenesis. Furthermore, we uncover a novel role for proteoglycans in left-right pattern formation. Our findings resolve longstanding questions into the evolutionary conservation of Ugdh function and provide new mechanistic insights into the initiation of left-right asymmetry. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Ramlan, Nurul Farhana; Sata, Nurul Syafida Asma Mohd; Hassan, Siti Norhidayah; Bakar, Noraini Abu; Ahmad, Syahida; Zulkifli, Syaizwan Zahmir; Abdullah, Che Azurahanim Che; Ibrahim, Wan Norhamidah Wan
2017-08-14
Exposure to ethanol during critical period of development can cause severe impairments in the central nervous system (CNS). This study was conducted to assess the neurotoxic effects of chronic embryonic exposure to ethanol in the zebrafish, taking into consideration the time dependent effect. Two types of exposure regimen were applied in this study. Withdrawal exposure group received daily exposure starting from gastrulation until hatching, while continuous exposure group received daily exposure from gastrulation until behavioural assessment at 6dpf (days post fertilization). Chronic embryonic exposure to ethanol decreased spontaneous tail coiling at 24hpf (hour post fertilization), heart rate at 48hpf and increased mortality rate at 72hpf. The number of apoptotic cells in the embryos treated with ethanol was significantly increased as compared to the control. We also measured the morphological abnormalities and the most prominent effects can be observed in the treated embryos exposed to 1.50% and 2.00%. The treated embryos showed shorter body length, larger egg yolk, smaller eye diameter and heart edema as compared to the control. Larvae received 0.75% continuous ethanol exposure exhibited decreased swimming activity and increased anxiety related behavior, while withdrawal ethanol exposure showed increased swimming activity and decreased anxiety related behavior as compared to the respective control. Biochemical analysis exhibited that ethanol exposure for both exposure regimens altered proteins, lipids, carbohydrates and nucleic acids of the zebrafish larvae. Our results indicated that time dependent effect of ethanol exposure during development could target the biochemical processes thus leading to induction of apoptosis and neurobehavioral deficits in the zebrafish larvae. Thus it raised our concern about the safe limit of alcohol consumption for pregnant mother especially during critical periods of vulnerability for developing nervous system. Copyright © 2017 Elsevier B.V. All rights reserved.
Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination
Sherrard, Kristin; Robin, François; Lemaire, Patrick; Munro1, Edwin
2014-01-01
SUMMARY Background Epithelial invagination is a fundamental morphogenetic behavior that transforms a flat cell sheet into a pit or groove. Previous studies of invagination have focused on the role of actomyosin-dependent apical contraction; other mechanisms remain largely unexplored. Results We combined experimental and computational approaches to identify a two-step mechanism for endoderm invagination during ascidian gastrulation. During Step 1, which immediately precedes invagination, endoderm cells constrict their apices due to Rho/Rhokinase-dependent apical enrichment of 1P–myosin. Our data suggest that endoderm invagination itself occurs during Step 2, without further apical shrinkage, via a novel mechanism we call collared rounding: Rho/Rho-kinase-independent lateral enrichment of 1P–myosin drives apico-basal shortening, while Rho/Rho-kinase-dependent enrichment of 1P and 2P myosin in circumapical collars is required to prevent apical expansion and for deep invagination. Simulations show that boundary-specific tension values consistent with these distributions of active myosin can explain the cell shape changes observed during invagination both in normal embryos and in embryos treated with pharmacological inhibitors of either Rho-kinase or Myosin II ATPase. Indeed, we find that the balance of strong circumapical and basolateral tension is the only mechanism based on differential cortical tension that can explain ascidian endoderm invagination. Finally, simulations suggest that mesectoderm cells resist endoderm shape changes during both steps and we confirm this prediction experimentally. Conclusions Our findings suggest that early ascidian gastrulation is driven by the coordinated apposition of circumapical and lateral endoderm contraction, working against a resisting mesectoderm. We propose that similar mechanisms may operate during other invaginations. PMID:20691592
Du, Jianguang; Takeuchi, Hideyuki; Leonhard-Melief, Christina; Shroyer, Kenneth R.; Dlugosz, Malgosia; Haltiwanger, Robert S.; Holdener, Bernadette C.
2010-01-01
Thrombospondin type 1 repeat (TSR) superfamily members regulate diverse biological activities ranging from cell motility to inhibition of angiogenesis. In this study, we verified that mouse protein O-fucosyltransferase-2 (POFUT2) specifically adds O-fucose to TSRs. Using two Pofut2 gene trap lines, we demonstrated that O-fucosylation of TSRs was essential for restricting epithelial to mesenchymal transition in the primitive streak, correct patterning of mesoderm, and localization of the definitive endoderm. Although Pofut2 mutant embryos established anterior/posterior polarity, they underwent extensive mesoderm differentiation at the expense of maintaining epiblast pluripotency. Moreover, mesoderm differentiation was biased towards the vascular endothelial cell lineage. Localization of Foxa2 and Cer1 expressing cells within the interior of Pofut2 mutant embryos suggested that POFUT2 activity was also required for the displacement of the primitive endoderm by definitive endoderm. Notably, Nodal, BMP4, Fgf8, and Wnt3 expression were markedly elevated and expanded in Pofut2 mutants, providing evidence that O-fucose modification of TSRs was essential for modulation of growth factor signaling during gastrulation. The ability of Pofut2 mutant embryos to form teratomas comprised of tissues from all three germ layer origins suggested that defects in Pofut2 mutant embryos resulted from abnormalities in the extracellular environment. This prediction is consistent with the observation that POFUT2 targets are constitutive components of the extracellular matrix (ECM) or associate with the ECM. For this reason, the Pofut2 mutants represent a valuable tool for studying the role of O-fucosylation in ECM synthesis and remodeling, and will be a valuable model to study how post-translational modification of ECM components regulates the formation of tissue boundaries, cell movements, and signaling. PMID:20637190
Wnt5a and Wnt11 regulate mammalian anterior-posterior axis elongation
Andre, Philipp; Song, Hai; Kim, Wantae; Kispert, Andreas; Yang, Yingzi
2015-01-01
Mesoderm formation and subsequent anterior-posterior (A-P) axis elongation are fundamental aspects of gastrulation, which is initiated by formation of the primitive streak (PS). Convergent extension (CE) movements and epithelial-mesenchymal transition (EMT) are important for A-P axis elongation in vertebrate embryos. The evolutionarily conserved planar cell polarity (PCP) pathway regulates CE, and Wnts regulate many aspects of gastrulation including CE and EMT. However, the Wnt ligands that regulate A-P axis elongation in mammalian development remain unknown. Wnt11 and Wnt5a regulate axis elongation in lower vertebrates, but only Wnt5a, not Wnt11, regulates mammalian PCP signaling and A-P axis elongation in development. Here, by generating Wnt5a; Wnt11 compound mutants, we show that Wnt11 and Wnt5a play redundant roles during mouse A-P axis elongation. Both genes regulate trunk notochord extension through PCP-controlled CE of notochord cells, establishing a role for Wnt11 in mammalian PCP. We show that Wnt5a and Wnt11 are required for proper patterning of the neural tube and somites by regulating notochord formation, and provide evidence that both genes are required for the generation and migration of axial and paraxial mesodermal precursor cells by regulating EMT. Axial and paraxial mesodermal precursors ectopically accumulate in the PS at late gastrula stages in Wnt5a−/−; Wnt11−/− embryos and these cells ectopically express epithelial cell adhesion molecules. Our data suggest that Wnt5a and Wnt11 regulate EMT by inducing p38 (Mapk14) phosphorylation. Our findings provide new insights into the role of Wnt5a and Wnt11 in mouse early development and also in cancer metastasis, during which EMT plays a crucial role. PMID:25813538
PTBP1 Is Required for Embryonic Development before Gastrulation
Suckale, Jakob; Wendling, Olivia; Masjkur, Jimmy; Jäger, Melanie; Münster, Carla; Anastassiadis, Konstantinos; Stewart, A. Francis; Solimena, Michele
2011-01-01
Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures. PMID:21423341
PTBP1 is required for embryonic development before gastrulation.
Suckale, Jakob; Wendling, Olivia; Masjkur, Jimmy; Jäger, Melanie; Münster, Carla; Anastassiadis, Konstantinos; Stewart, A Francis; Solimena, Michele
2011-02-17
Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.
A Systematic Survey of Expression and Function of Zebrafish frizzled Genes
Nikaido, Masataka; Law, Edward W. P.; Kelsh, Robert N.
2013-01-01
Wnt signaling is crucial for the regulation of numerous processes in development. Consistent with this, the gene families for both the ligands (Wnts) and receptors (Frizzleds) are very large. Surprisingly, while we have a reasonable understanding of the Wnt ligands likely to mediate specific Wnt-dependent processes, the corresponding receptors usually remain to be elucidated. Taking advantage of the zebrafish model's excellent genomic and genetic properties, we undertook a comprehensive analysis of the expression patterns of frizzled (fzd) genes in zebrafish. To explore their functions, we focused on testing their requirement in several developmental events known to be regulated by Wnt signaling, convergent extension movements of gastrulation, neural crest induction, and melanocyte specification. We found fourteen distinct fzd genes in the zebrafish genome. Systematic analysis of their expression patterns between 1-somite and 30 hours post-fertilization revealed complex, dynamic and overlapping expression patterns. This analysis demonstrated that only fzd3a, fzd9b, and fzd10 are expressed in the dorsal neural tube at stages corresponding to the timing of melanocyte specification. Surprisingly, however, morpholino knockdown of these, alone or in combination, gave no indication of reduction of melanocytes, suggesting the important involvement of untested fzds or another type of Wnt receptor in this process. Likewise, we found only fzd7b and fzd10 expressed at the border of the neural plate at stages appropriate for neural crest induction. However, neural crest markers were not reduced by knockdown of these receptors. Instead, these morpholino knockdown studies showed that fzd7a and fzd7b work co-operatively to regulate convergent extension movement during gastrulation. Furthermore, we show that the two fzd7 genes function together with fzd10 to regulate epiboly movements and mesoderm differentiation. PMID:23349976
Wijesena, Naveen; Simmons, David K.
2017-01-01
Gastrulation was arguably the key evolutionary innovation that enabled metazoan diversification, leading to the formation of distinct germ layers and specialized tissues. Differential gene expression specifying cell fate is governed by the inputs of intracellular and/or extracellular signals. Beta-catenin/Tcf and the TGF-beta bone morphogenetic protein (BMP) provide critical molecular signaling inputs during germ layer specification in bilaterian metazoans, but there has been no direct experimental evidence for a specific role for BMP signaling during endomesoderm specification in the early branching metazoan Nematostella vectensis (an anthozoan cnidarian). Using forward transcriptomics, we show that beta-catenin/Tcf signaling and BMP2/4 signaling provide differential inputs into the cnidarian endomesodermal gene regulatory network (GRN) at the onset of gastrulation (24 h postfertilization) in N. vectensis. Surprisingly, beta-catenin/Tcf signaling and BMP2/4 signaling regulate a subset of common downstream target genes in the GRN in opposite ways, leading to the spatial and temporal differentiation of fields of cells in the developing embryo. Thus, we show that regulatory interactions between beta-catenin/Tcf signaling and BMP2/4 signaling are required for the specification and determination of different embryonic regions and the patterning of the oral–aboral axis in Nematostella. We also show functionally that the conserved “kernel” of the bilaterian heart mesoderm GRN is operational in N. vectensis, which reinforces the hypothesis that the endoderm and mesoderm in triploblastic bilaterians evolved from the bifunctional endomesoderm (gastrodermis) of a diploblastic ancestor, and that slow rhythmic contractions might have been one of the earliest functions of mesodermal tissue. PMID:28652368
Edelman, David B; McMenamin, Mark; Sheesley, Peter; Pivar, Stuart
2016-09-01
We present a plausible account of the origin of the archetypal vertebrate bauplan. We offer a theoretical reconstruction of the geometrically regular structure of the blastula resulting from the sequential subdivision of the egg, followed by mechanical deformations of the blastula in subsequent stages of gastrulation. We suggest that the formation of the vertebrate bauplan during development, as well as fixation of its variants over the course of evolution, have been constrained and guided by global mechanical biases. Arguably, the role of such biases in directing morphology-though all but neglected in previous accounts of both development and macroevolution-is critical to any substantive explanation for the origin of the archetypal vertebrate bauplan. We surmise that the blastula inherently preserves the underlying geometry of the cuboidal array of eight cells produced by the first three cleavages that ultimately define the medial-lateral, dorsal-ventral, and anterior-posterior axes of the future body plan. Through graphical depictions, we demonstrate the formation of principal structures of the vertebrate body via mechanical deformation of predictable geometrical patterns during gastrulation. The descriptive rigor of our model is supported through comparisons with previous characterizations of the embryonic and adult vertebrate bauplane. Though speculative, the model addresses the poignant absence in the literature of any plausible account of the origin of vertebrate morphology. A robust solution to the problem of morphogenesis-currently an elusive goal-will only emerge from consideration of both top-down (e.g., the mechanical constraints and geometric properties considered here) and bottom-up (e.g., molecular and mechano-chemical) influences. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zebrafish E-cadherin: expression during early embryogenesis and regulation during brain development.
Babb, S G; Barnett, J; Doedens, A L; Cobb, N; Liu, Q; Sorkin, B C; Yelick, P C; Raymond, P A; Marrs, J A
2001-06-01
Zebrafish E-cadherin (cdh1) cell adhesion molecule cDNAs were cloned. We investigated spatial and temporal expression of cdh1 during early embryogenesis. Expression was observed in blastomeres, the anterior mesoderm during gastrulation, and developing epithelial structures. In the developing nervous system, cdh1 was detected at the pharyngula stage (24 hpf) in the midbrain-hindbrain boundary (MHB). Developmental regulation of MHB formation involves wnt1 and pax2.1. wnt1 expression preceded cdh1 expression during MHB formation, and cdh1 expression in the MHB was dependent on normal development of this structure. Copyright 2001 Wiley-Liss, Inc.
Conservation of Planar Polarity Pathway Function Across the Animal Kingdom.
Hale, Rosalind; Strutt, David
2015-01-01
Planar polarity is a well-studied phenomenon resulting in the directional coordination of cells in the plane of a tissue. In invertebrates and vertebrates, planar polarity is established and maintained by the largely independent core and Fat/Dachsous/Four-jointed (Ft-Ds-Fj) pathways. Loss of function of these pathways can result in a wide range of developmental or cellular defects, including failure of gastrulation and problems with placement and function of cilia. This review discusses the conservation of these pathways across the animal kingdom. The lack of vital core pathway components in basal metazoans suggests that the core planar polarity pathway evolved shortly after, but not necessarily alongside, the emergence of multicellularity.
An amphioxus Msx gene expressed predominantly in the dorsal neural tube.
Sharman, A C; Shimeld, S M; Holland, P W
1999-04-01
Genomic and cDNA clones of an Msx class homeobox gene were isolated from amphioxus (Branchiostoma floridae). The gene, AmphiMsx, is expressed in the neural plate from late gastrulation; in later embryos it is expressed in dorsal cells of the neural tube, excluding anterior and posterior regions, in an irregular reiterated pattern. There is transient expression in dorsal cells within somites, reminiscent of migrating neural crest cells of vertebrates. In larvae, mRNA is detected in two patches of anterior ectoderm proposed to be placodes. Evolutionary analyses show there is little phylogenetic information in Msx protein sequences; however, it is likely that duplication of Msx genes occurred in the vertebrate lineage.
Davy, Simon K; Turner, John R
2003-08-01
The ova of Anthopleura ballii become infected with zooxanthellae (endosymbiotic dinoflagellates) of maternal origin just prior to spawning. After fertilization, the zygotes undergo radial, holoblastic cleavage, and then gastrulate by invagination to form ciliated planulae. Because the zooxanthellae are localized on one side of the ovum-and later, within the blastomeres at one end of the embryo-invagination leads to the zooxanthellae being restricted to the planular endoderm and hence to the gastrodermal cells of the adult anemone. We propose that maternal inheritance of zooxanthellae plays an important part in the success of these temperate sea anemones, which live in regions where potential sources of zooxanthellae are scarce.
Han, Mingda
2016-01-01
Background Embryonic acute exposure to ethanol (EtOH), lithium, and homocysteine (HCy) induces cardiac defects at the time of exposure; folic acid (FA) supplementation protects normal cardiogenesis (Han et al., 2009, 2012; Serrano et al., 2010). Our hypothesis is that EtOH exposure and FA protection relate to lipid and FA metabolism during mouse cardiogenesis and placentation. Methods On the morning of conception, pregnant C57BL/6J mice were placed on either of two FA‐containing diets: a 3.3 mg health maintenance diet or a high FA diet of 10.5 mg/kg. Mice were injected a binge level of EtOH, HCy, or saline on embryonic day (E) 6.75, targeting gastrulation. On E15.5, cardiac and umbilical blood flow were examined by ultrasound. Embryonic cardiac tissues were processed for gene expression of lipid and FA metabolism; the placenta and heart tissues for neutral lipid droplets, or for medium chain acyl‐dehydrogenase (MCAD) protein. Results EtOH exposure altered lipid‐related gene expression on E7.5 in comparison to control or FA‐supplemented groups and remained altered on E15.5 similarly to changes with HCy, signifying FA deficiency. In comparison to control tissues, the lipid‐related acyl CoA dehydrogenase medium length chain gene and its protein MCAD were altered with EtOH exposure, as were neutral lipid droplet localization in the heart and placenta. Conclusion EtOH altered gene expression associated with lipid and folate metabolism, as well as neutral lipids, in the E15.5 abnormally functioning heart and placenta. In comparison to controls, the high FA diet protected the embryo and placenta from these effects allowing normal development. Birth Defects Research (Part A) 106:749–760, 2016. © 2016 The Authors Birth Defects Research Part A: Clinical and Molecular Teratology Published by Wiley Periodicals, Inc. PMID:27296863
Zebrafish fgf3 and fgf8 encode redundant functions required for otic placode induction.
Phillips, B T; Bolding, K; Riley, B B
2001-07-15
Members of the fibroblast growth factor (FGF) family of peptide ligands have been implicated in otic placode induction in several vertebrate species. Here, we have functionally analyzed the roles of fgf3 and fgf8 in zebrafish otic development. The role of fgf8 was assessed by analyzing acerebellar (ace) mutants. fgf3 function was disrupted by injecting embryos with antisense morpholino oligomers (MO) specifically designed to block translation of fgf3 transcripts. Disruption of either fgf3 or fgf8 causes moderate reduction in the size of the otic vesicle. Injection of fgf3-MO into ace/ace mutants causes much more severe reduction or complete loss of otic tissue. Moreover, preplacode cells fail to express pax8 and pax2.1, indicating disruption of early stages of otic induction in fgf3-depleted ace/ace mutants. Both fgf3 and fgf8 are normally expressed in the germring by 50% epiboly and are induced in the primordium of rhombomere 4 by 80% epibloy. In addition, fgf3 is expressed during the latter half of gastrulation in the prechordal plate and paraxial cephalic mesendoderm, tissues that either pass beneath or persist near the prospective otic ectoderm. Conditions that alter the pattern of expression of fgf3 and/or fgf8 cause corresponding changes in otic induction. Loss of maternal and zygotic one-eyed pinhead (oep) does not alter expression of fgf3 or fgf8 in the hindbrain, but ablates mesendodermal sources of fgf signaling and delays otic induction by several hours. Conversely, treatment of wild-type embryos with retinoic acid greatly expands the periotic domains of expression of fgf3, fgf8, and pax8 and leads to formation of supernumerary and ectopic otic vesicles. These data support the hypothesis that fgf3 and fgf8 cooperate during the latter half of gastrulation to induce differentiation of otic placodes. Copyright 2001 Academic Press.
Tallafuss, Alexandra; Bally-Cuif, Laure
2003-09-01
The midbrain-hindbrain domain (MH) of the vertebrate embryonic neural tube develops in response to the isthmic organizer (IsO), located at the midbrain-hindbrain boundary (MHB). MH derivatives are largely missing in mutants affected in IsO activity; however, the potentialities and fate of MH precursors in these conditions have not been directly determined. To follow the dynamics of MH maintenance in vivo, we used artificial chromosome transgenesis in zebrafish to construct lines where egfp transcription is driven by the complete set of regulatory elements of her5, the first known gene expressed in the MH area. In these lines, egfp transcription faithfully recapitulates her5 expression from its induction phase onwards. Using the stability of GFP protein as lineage tracer, we first demonstrate that her5 expression at gastrulation is a selective marker of MH precursor fate. By comparing GFP protein and her5 transcription, we further reveal the spatiotemporal dynamics of her5 expression that conditions neurogenesis progression towards the MHB over time. Finally, we trace the molecular identity of GFP-positive cells in the acerebellar (ace) and no-isthmus (noi) mutant backgrounds to analyze directly fgf8 and pax2.1 mutant gene activities for their ultimate effect on cell fate. We demonstrate that most MH precursors are maintained in both mutants but express abnormal identities, in a manner that strikingly differs between the ace and noi contexts. Our observations directly support a role for Fgf8 in protecting anterior tectal and metencephalic precursors from acquiring anterior identities, while Pax2.1 controls the choice of MH identity as a whole. Together, our results suggest a model where an ordered MH pro-domain is identified at gastrulation, and where cell identity choices within this domain are subsequently differentially controlled by Fgf8 and Pax2.1 functions.
A computational model for BMP movement in sea urchin embryos.
van Heijster, Peter; Hardway, Heather; Kaper, Tasso J; Bradham, Cynthia A
2014-12-21
Bone morphogen proteins (BMPs) are distributed along a dorsal-ventral (DV) gradient in many developing embryos. The spatial distribution of this signaling ligand is critical for correct DV axis specification. In various species, BMP expression is spatially localized, and BMP gradient formation relies on BMP transport, which in turn requires interactions with the extracellular proteins Short gastrulation/Chordin (Chd) and Twisted gastrulation (Tsg). These binding interactions promote BMP movement and concomitantly inhibit BMP signaling. The protease Tolloid (Tld) cleaves Chd, which releases BMP from the complex and permits it to bind the BMP receptor and signal. In sea urchin embryos, BMP is produced in the ventral ectoderm, but signals in the dorsal ectoderm. The transport of BMP from the ventral ectoderm to the dorsal ectoderm in sea urchin embryos is not understood. Therefore, using information from a series of experiments, we adapt the mathematical model of Mizutani et al. (2005) and embed it as the reaction part of a one-dimensional reaction-diffusion model. We use it to study aspects of this transport process in sea urchin embryos. We demonstrate that the receptor-bound BMP concentration exhibits dorsally centered peaks of the same type as those observed experimentally when the ternary transport complex (Chd-Tsg-BMP) forms relatively quickly and BMP receptor binding is relatively slow. Similarly, dorsally centered peaks are created when the diffusivities of BMP, Chd, and Chd-Tsg are relatively low and that of Chd-Tsg-BMP is relatively high, and the model dynamics also suggest that Tld is a principal regulator of the system. At the end of this paper, we briefly compare the observed dynamics in the sea urchin model to a version that applies to the fly embryo, and we find that the same conditions can account for BMP transport in the two types of embryos only if Tld levels are reduced in sea urchin compared to fly. Copyright © 2014 Elsevier Ltd. All rights reserved.
Noda, Takeshi
2011-12-01
I isolated a Ciona intestinalis homolog of p53, Ci-p53/p73-a, in a microarray screen of rapidly degraded maternal mRNA by comparing the transcriptomes of unfertilized eggs and 32-cell stage embryos. Higher expression of the gene in eggs and lower expression in later embryonic stages were confirmed by whole-mount in situ hybridization (WISH) and quantitative reverse transcription-PCR (qRT-PCR); expression was ubiquitous in eggs and early embryos. Knockdown of Ci-p53/p73-a by injection of antisense morpholino oligonucleotides (MOs) severely perturbed gastrulation cell movements and expression of notochord marker genes. A key regulator of notochord differentiation in Ciona embryos is Brachyury (Ci-Bra), which is directly activated by a zic-like gene (Ci-ZicL). The expression of Ci-ZicL and Ci-Bra in A-line notochord precursors was downregulated in Ci-p53/p73-a knockdown embryos. Maternal expression of Ci-p53/p73-b, a homolog of Ci-p53/p73-a, was also detected. In Ci-p53/p73-b knockdown embryos, gastrulation cell movements, expression of Ci-ZicL and Ci-Bra in A-line notochord precursors, and expression of notochord marker gene at later stages were perturbed. The upstream region of Ci-ZicL contains putative p53-binding sites. Cis-regulatory analysis of Ci-ZicL showed that these sites are involved in expression of Ci-ZicL in A-line notochord precursors at the 32-cell and early gastrula stages. These results suggest that p53 genes are maternal factors that play a crucial role in A-line notochord differentiation in C. intestinalis embryos by regulating Ci-ZicL expression. Copyright © 2011 Elsevier Inc. All rights reserved.
Xavier-Neto, Jose; Carvalho, Murilo; Pascoalino, Bruno dos Santos; Cardoso, Alisson Campos; Costa, Ângela Maria Sousa; Pereira, Ana Helena Macedo; Santos, Luana Nunes; Saito, Ângela; Marques, Rafael Elias; Smetana, Juliana Helena Costa; Consonni, Silvio Roberto; Bandeira, Carla; Costa, Vivian Vasconcelos; Bajgelman, Marcio Chaim; de Oliveira, Paulo Sérgio Lopes; Cordeiro, Marli Tenorio; Gonzales Gil, Laura Helena Vega; Pauletti, Bianca Alves; Granato, Daniela Campos; Paes Leme, Adriana Franco; Freitas-Junior, Lucio; Holanda de Freitas, Carolina Borsoi Moraes; Teixeira, Mauro Martins; Bevilacqua, Estela; Franchini, Kleber
2017-01-01
The teratogenic mechanisms triggered by ZIKV are still obscure due to the lack of a suitable animal model. Here we present a mouse model of developmental disruption induced by ZIKV hematogenic infection. The model utilizes immunocompetent animals from wild-type FVB/NJ and C57BL/6J strains, providing a better analogy to the human condition than approaches involving immunodeficient, genetically modified animals, or direct ZIKV injection into the brain. When injected via the jugular vein into the blood of pregnant females harboring conceptuses from early gastrulation to organogenesis stages, akin to the human second and fifth week of pregnancy, ZIKV infects maternal tissues, placentas and embryos/fetuses. Early exposure to ZIKV at developmental day 5 (second week in humans) produced complex manifestations of anterior and posterior dysraphia and hydrocephalus, as well as severe malformations and delayed development in 10.5 days post-coitum (dpc) embryos. Exposure to the virus at 7.5–9.5 dpc induces intra-amniotic hemorrhage, widespread edema, and vascular rarefaction, often prominent in the cephalic region. At these stages, most affected embryos/fetuses displayed gross malformations and/or intrauterine growth restriction (IUGR), rather than isolated microcephaly. Disrupted conceptuses failed to achieve normal developmental landmarks and died in utero. Importantly, this is the only model so far to display dysraphia and hydrocephalus, the harbinger of microcephaly in humans, as well as arthrogryposis, a set of abnormal joint postures observed in the human setting. Late exposure to ZIKV at 12.5 dpc failed to produce noticeable malformations. We have thus characterized a developmental window of opportunity for ZIKV-induced teratogenesis encompassing early gastrulation, neurulation and early organogenesis stages. This should not, however, be interpreted as evidence for any safe developmental windows for ZIKV exposure. Late developmental abnormalities correlated with damage to the placenta, particularly to the labyrinthine layer, suggesting that circulatory changes are integral to the altered phenotypes. PMID:28231241
Bellomo, D; Lander, A; Harragan, I; Brown, N A
1996-04-01
During gastrulation, the node of the mammalian embryo appears to be an organising centre, homologous to Hensen's node in the chick and the dorsal lip of the amphibian blastopore. In addition, the node serves as a precursor population for the head process, notochord and foregut endoderm. We have studied node architecture and cell morphology by electron microscopy, and cell proliferation using bromodeoxyuridine incorporation and mitotic counts. The dorsal (ectodermal) and ventral (endodermal) components of the node are two distinct populations, separated by a basement membrane. The ventral node, contiguous with the head process, is characterised by a relatively low proliferation rate, with only approximately 10% of cells incorporating BrdU over 4 hr, compared to > 95% in surrounding mesodermal and ectodermal tissues. This is the case from the beginning of node formation, at the no-allantoic-bud stage, until the 7 somite stage, and is not compatible with the idea that the ventral node is a stem cell population. The dorsal node is highly proliferative, its rate of division being indistinguishable from the neurectoderm, with which it is contiguous. In the ventral node, two regions can be recognised: cells in the "pit" are columnar and all monociliated; around them lies a "crown" of cells arranged radially in a horseshoe shape and less often ciliated. Node derivatives share common features with the ventral node; the head process and the notochord are relatively quiescent; and some head process cells are also monociliated. Node and head process monocilia are immotile and appear to be associated with non-proliferation. We suggest that the ventral node contains all the properties of the organiser, while the dorsal node is indistinct from the surrounding epiblast. The cranial end of the foregut pouch, the thyroid diverticulum, and the promyocardium of early somite stage embryos are also areas of low cell division. All the described regions of relative quiescence are sites of expression of members of the TGF beta family, which may be involved in maintaining non-proliferation.
DEVELOPMENTAL DIVERSITY OF AMPHIBIANS
Elinson, Richard P.; del Pino, Eugenia M.
2011-01-01
The current model amphibian, Xenopus laevis, develops rapidly in water to a tadpole which metamorphoses into a frog. Many amphibians deviate from the X. laevis developmental pattern. Among other adaptations, their embryos develop in foam nests on land or in pouches on their mother’s back or on a leaf guarded by a parent. The diversity of developmental patterns includes multinucleated oogenesis, lack of RNA localization, huge non-pigmented eggs, and asynchronous, irregular early cleavages. Variations in patterns of gastrulation highlight the modularity of this critical developmental period. Many species have eliminated the larva or tadpole and directly develop to the adult. The wealth of developmental diversity among amphibians coupled with the wealth of mechanistic information from X. laevis permit comparisons that provide deeper insights into developmental processes. PMID:22662314
ADP-ribosyl cyclases regulate early development of the sea urchin.
Ramakrishnan, Latha; Uhlinger, Kevin; Dale, Leslie; Hamdoun, Amro; Patel, Sandip
2016-06-01
ADP-ribosyl cyclases are multifunctional enzymes involved in the metabolism of nucleotide derivatives necessary for Ca 2+ signalling such as cADPR and NAADP. Although Ca 2+ signalling is a critical regulator of early development, little is known of the role of ADP-ribosyl cyclases during embryogenesis. Here we analyze the expression, activity and function of ADP-ribosyl cyclases in the embryo of the sea urchin - a key organism for study of both Ca 2+ signalling and embryonic development. ADP-ribosyl cyclase isoforms (SpARC1-4) showed unique changes in expression during early development. These changes were associated with an increase in the ratio of cADPR:NAADP production. Over-expression of SpARC4 (a preferential cyclase) disrupted gastrulation. Our data highlight the importance of ADP-ribosyl cyclases during embryogenesis.
Wang, Zhe; Nakayama, Yukiko; Tsuda, Sachiko; Yamasu, Kyo
During vertebrate brain development, the gastrulation brain homeobox 2 gene (gbx2) is expressed in the forebrain, but its precise roles are still unknown. In this study, we addressed this issue in zebrafish (Danio rerio) first by carefully examining gbx2 expression in the developing forebrain. We showed that gbx2 was expressed in the telencephalon during late somitogenesis, from 18h post-fertilization (hpf) to 24 hpf, and in the thalamic primordium after 26 hpf. In contrast, another gbx gene, gbx1, was expressed in the anterior-most ventral telencephalon after 36 hpf. Thus, the expression patterns of these two gbx genes did not overlap, arguing against their redundant function in the forebrain. Two-color fluorescence in situ hybridization (FISH) showed close relationships between the telencephalic expression of gbx2 and other forebrain-forming genes, suggesting that their interactions contribute to the regionalization of the telencephalon. FISH further revealed that gbx2 is expressed in the ventricular region of the telencephalon. By using transgenic fish in which gbx2 can be induced by heat shock, we found that gbx2 induction at 16 hpf repressed the expression of emx3, dlx2a, and six3b in the ventral telencephalon. Among secreted factor genes, bmp2b and wnt1 were repressed in the vicinity of the gbx2 domain in the telencephalon. The expression of forebrain-forming genes was examined in mutant embryos lacking gbx2, showing emx3 and dlx2a to be upregulated in the subpallium at 24 hpf. Taken together, these findings indicate that gbx2 contributes to the development of the subpallium through its repressive activities against other telencephalon-forming genes. We further showed that inhibiting FGF signaling and activating Wnt signaling repressed gbx2 and affected the regionalization of the telencephalon, supporting a functional link between gbx2, intracellular signaling, and telencephalon development. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
A Synthetic Lethal Screen Identifies a Role for Lin-44/Wnt in C. elegans Embryogenesis.
Hartin, Samantha N; Hudson, Martin L; Yingling, Curtis; Ackley, Brian D
2015-01-01
The C. elegans proteins PTP-3/LAR-RPTP and SDN-1/Syndecan are conserved cell adhesion molecules. Loss-of-function (LOF) mutations in either ptp-3 or sdn-1 result in low penetrance embryonic developmental defects. Work from other systems has shown that syndecans can function as ligands for LAR receptors in vivo. We used double mutant analysis to test whether ptp-3 and sdn-1 function in a linear genetic pathway during C. elegans embryogenesis. We found animals with LOF in both sdn-1 and ptp-3 exhibited a highly penetrant synthetic lethality (SynLet), with only a small percentage of animals surviving to adulthood. Analysis of the survivors demonstrated that these animals had a synergistic increase in the penetrance of embryonic developmental defects. Together, these data strongly suggested PTP-3 and SDN-1 function in parallel during embryogenesis. We subsequently used RNAi to knockdown ~3,600 genes predicted to encode secreted and/or transmembrane molecules to identify genes that interacted with ptp-3 or sdn-1. We found that the Wnt ligand, lin-44, was SynLet with sdn-1, but not ptp-3. We used 4-dimensional time-lapse analysis to characterize the interaction between lin-44 and sdn-1. We found evidence that loss of lin-44 caused defects in the polarization and migration of endodermal precursors during gastrulation, a previously undescribed role for lin-44 that is strongly enhanced by the loss of sdn-1. PTP-3 and SDN-1 function in compensatory pathways during C. elegans embryonic and larval development, as simultaneous loss of both genes has dire consequences for organismal survival. The Wnt ligand lin-44 contributes to the early stages of gastrulation in parallel to sdn-1, but in a genetic pathway with ptp-3. Overall, the SynLet phenotype provides a robust platform to identify ptp-3 and sdn-1 interacting genes, as well as other genes that function in development, yet might be missed in traditional forward genetic screens.
A Synthetic Lethal Screen Identifies a Role for Lin-44/Wnt in C. elegans Embryogenesis
Hartin, Samantha N.; Hudson, Martin L.; Yingling, Curtis; Ackley, Brian D.
2015-01-01
Background The C. elegans proteins PTP-3/LAR-RPTP and SDN-1/Syndecan are conserved cell adhesion molecules. Loss-of-function (LOF) mutations in either ptp-3 or sdn-1 result in low penetrance embryonic developmental defects. Work from other systems has shown that syndecans can function as ligands for LAR receptors in vivo. We used double mutant analysis to test whether ptp-3 and sdn-1 function in a linear genetic pathway during C. elegans embryogenesis. Results We found animals with LOF in both sdn-1 and ptp-3 exhibited a highly penetrant synthetic lethality (SynLet), with only a small percentage of animals surviving to adulthood. Analysis of the survivors demonstrated that these animals had a synergistic increase in the penetrance of embryonic developmental defects. Together, these data strongly suggested PTP-3 and SDN-1 function in parallel during embryogenesis. We subsequently used RNAi to knockdown ~3,600 genes predicted to encode secreted and/or transmembrane molecules to identify genes that interacted with ptp-3 or sdn-1. We found that the Wnt ligand, lin-44, was SynLet with sdn-1, but not ptp-3. We used 4-dimensional time-lapse analysis to characterize the interaction between lin-44 and sdn-1. We found evidence that loss of lin-44 caused defects in the polarization and migration of endodermal precursors during gastrulation, a previously undescribed role for lin-44 that is strongly enhanced by the loss of sdn-1. Conclusions PTP-3 and SDN-1 function in compensatory pathways during C. elegans embryonic and larval development, as simultaneous loss of both genes has dire consequences for organismal survival. The Wnt ligand lin-44 contributes to the early stages of gastrulation in parallel to sdn-1, but in a genetic pathway with ptp-3. Overall, the SynLet phenotype provides a robust platform to identify ptp-3 and sdn-1 interacting genes, as well as other genes that function in development, yet might be missed in traditional forward genetic screens. PMID:25938228
Mueller, Casey A; Eme, John; Manzon, Richard G; Somers, Christopher M; Boreham, Douglas R; Wilson, Joanna Y
2015-04-01
The timing, success and energetics of fish embryonic development are strongly influenced by temperature. However, it is unclear if there are developmental periods, or critical windows, when oxygen use, survival and hatchling phenotypic characteristics are particularly influenced by changes in the thermal environment. Therefore, we examined the effects of constant incubation temperature and thermal shifts on survival, hatchling phenotype, and cost of development in lake whitefish (Coregonus clupeaformis) embryos. We incubated whitefish embryos at control temperatures of 2, 5, or 8 °C, and shifted embryos across these three temperatures at the end of gastrulation or organogenesis. We assessed hatch timing, mass at hatch, and yolk conversion efficiency (YCE). We determined cost of development, the amount of oxygen required to build a unit of mass, for the periods from fertilization-organogenesis, organogenesis-fin flutter, fin flutter-hatch, and for total development. An increase in incubation temperature decreased time to 50 % hatch (164 days at 2 °C, 104 days at 5 °C, and 63 days at 8 °C), survival decreased from 55 % at 2 °C, to 38 % at 5 °C, and 17 % at 8 °C, and hatchling yolk-free dry mass decreased from 1.27 mg at 2 °C to 0.61 mg at 8 °C. Thermal shifts altered time to 50 % hatch and hatchling yolk-free dry mass and revealed a critical window during gastrulation in which a temperature change reduced survival. YCE decreased and cost of development increased with increased incubation temperature, but embryos that hatched at 8 °C and were incubated at colder temperatures during fertilization-organogenesis had reduced cost. The relationship between cost of development and temperature was altered during fin flutter-hatch, indicating it may be a critical window during which temperature has the greatest impact on energetic processes. The increase in cost of development with an increase in temperature has not been documented in other fishes and suggests whitefish embryos are more energy efficient at colder temperatures.
NASA Astrophysics Data System (ADS)
Yen, WeiWei; Burdsal, Carol; Periasamy, Ammasi; Sutherland, Ann E.
2006-02-01
The cell mechanical and signaling pathways involved in gastrulation have been studied extensively in invertebrates and amphibians, such as Xenopus, and more recently in non-mammalian vertebrates such as zebrafish and chick. However, because culturing mouse embryos extra-utero is very difficult, this fundamental process has been least characterized in the mouse. As the primary mammalian model for genetics, biochemistry, and the study of human disease and birth defects, it is important to investigate how gastrulation proceeds in murine embryos. We have developed a method of using 4D multiphoton excitation microscopy and extra-utero culture to visualize and characterize the morphogenetic movements in mouse embryos dissected at 8.5 days of gestation. Cells are labeled by expression of an X chromosome-linked enhanced green fluorescent protein (EGFP) transgene. This method has provided a unique approach, where, for the first time, patterns of cell behavior in the notochord and surrounding paraxial mesoderm can be visualized and traced quantitatively. Our observations of mouse embryos reveal both distinct differences as well as striking similarities in patterned cell motility relative to other vertebrate models such as Xenopus, where axial extension is driven primarily by mediolateral oriented cell behaviors in the notochord and paraxial somitic mesoderm. Unlike Xenopus, the width of the mouse notochord remains the same between 4-somite stage and 8-somite stage embryos. This implies the mouse notochord plays a lesser role in driving axial extension compared to Xenopus, although intercalation may occur where the anterior region of the node becomes notochordal plate. In contrast, the width of mouse paraxial mesoderm narrows significantly during this period and cells within the paraxial mesoderm are both elongated and aligned perpendicular to the midline. In addition, these cells are observed to intercalate, consistent with a role for paraxial mesoderm in driving convergence and extension. These cell behaviors are similar to those characterized in the axial mesoderm of frog embryos during convergence and extension[1], and suggests that tissues may play different roles in axial elongation between the frog and the mouse.
Dobias, S L; Ma, L; Wu, H; Bell, J R; Maxson, R
1997-01-01
Msx- class homeobox genes, characterized by a distinct and highly conserved homeodomain, have been identified in a wide variety of metazoans from vertebrates to coelenterates. Although there is evidence that they participate in inductive tissue interactions that underlie vertebrate organogenesis, including those that pattern the neural crest, there is little information about their function in simple deuterostomes. Both to learn more about the ancient function of Msx genes, and to shed light on the evolution of developmental mechanisms within the lineage that gave rise to vertebrates, we have isolated and characterized Msx genes from ascidians and echinoderms. Here we describe the sequence and expression of a sea urchin (Strongylocentrotus purpouratus) Msx gene whose homeodomain is very similar to that of vertebrate Msx2. This gene, designated SpMsx, is first expressed in blastula stage embryos, apparently in a non-localized manner. Subsequently, during the early phases of gastrulation, SpMsx transcripts are expressed intensely in the invaginating archenteron and secondary mesenchyme, and at reduced levels in the ectoderm. In the latter part of gastrulation, SpMsx transcripts are concentrated in the oral ectoderm and gut, and continue to be expressed at those sites through the remainder of embryonic development. That vertebrate Msx genes are regulated by inductive tissue interactions and growth factors suggested to us that the restriction of SpMsx gene expression to the oral ectoderm and derivatives of the vegetal plate might similarly be regulated by the series of signaling events that pattern these embryonic territories. As a first test of this hypothesis, we examined the influence of exogastrulation and cell-dissociation on SpMsx gene expression. In experimentally-induced exogastrulae, SpMsx transcripts were distributed normally in the oral ectoderm, evaginated gut, and secondary mesenchyme. However, when embryos were dissociated into their component cells, SpMsx transcripts failed to accumulate. These data show that the localization of SpMsx transcripts in gastrulae does not depend on interactions between germ layers, yet the activation and maintenance of SpMsx expression does require cell-cell or cell-matrix interactions.
Apical constriction: themes and variations on a cellular mechanism driving morphogenesis
Martin, Adam C.; Goldstein, Bob
2014-01-01
Apical constriction is a cell shape change that promotes tissue remodeling in a variety of homeostatic and developmental contexts, including gastrulation in many organisms and neural tube formation in vertebrates. In recent years, progress has been made towards understanding how the distinct cell biological processes that together drive apical constriction are coordinated. These processes include the contraction of actin-myosin networks, which generates force, and the attachment of actin networks to cell-cell junctions, which allows forces to be transmitted between cells. Different cell types regulate contractility and adhesion in unique ways, resulting in apical constriction with varying dynamics and subcellular organizations, as well as a variety of resulting tissue shape changes. Understanding both the common themes and the variations in apical constriction mechanisms promises to provide insight into the mechanics that underlie tissue morphogenesis. PMID:24803648
Measurement of cortical elasticity in Drosophila melanogaster embryos using ferrofluids
Doubrovinski, Konstantin; Swan, Michael; Polyakov, Oleg; Wieschaus, Eric F.
2017-01-01
Many models of morphogenesis are forced to assume specific mechanical properties of cells, because the actual mechanical properties of living tissues are largely unknown. Here, we measure the rheology of epithelial cells in the cellularizing Drosophila embryo by injecting magnetic particles and studying their response to external actuation. We establish that, on timescales relevant to epithelial morphogenesis, the cytoplasm is predominantly viscous, whereas the cellular cortex is elastic. The timescale of elastic stress relaxation has a lower bound of 4 min, which is comparable to the time required for internalization of the ventral furrow during gastrulation. The cytoplasm was measured to be ∼103-fold as viscous as water. We show that elasticity depends on the actin cytoskeleton and conclude by discussing how these results relate to existing mechanical models of morphogenesis. PMID:28096360
spadetail-dependent cell compaction of the dorsal zebrafish blastula.
Warga, R M; Nüsslein-volhard, C
1998-11-01
The dorsal marginal zone of the zebrafish blastula, equivalent to the amphibian Spemann organizer, is destined to become the tissues of the notochord and prechordal plate. Preceding gastrulation in the zebrafish, we find that these future mesendodermal cells acquire a cohesive cell behavior characterized by flattening and maximization of intercellular contacts, somewhat resembling cell compaction in mouse blastocysts. This behavior may suppress cell intermingling. Surprisingly, this blastula cell compaction requires normal function of spadetail, a gene known to be necessary for the dorsal convergent cell movement of paraxial mesoderm later in the gastrula. We propose that spadetail-dependent cell compaction subtly controls the early mixing and dispersal of dorsal cells that coalesce into the prospective organizer region. This early process may be necessary for the correct location of the boundary separating axial and paraxial cells. Copyright 1998 Academic Press.
The planar cell polarity protein VANGL2 coordinates remodeling of the extracellular matrix.
Williams, B Blairanne; Mundell, Nathan; Dunlap, Julie; Jessen, Jason
2012-07-01
Understanding how planar cell polarity (PCP) is established, maintained, and coordinated in migrating cell populations is an important area of research with implications for both embryonic morphogenesis and tumor cell invasion. We recently reported that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell surface level of membrane type-1 matrix metalloproteinase (MMP14 or MT1-MMP). Here, we further discuss these findings in terms of extracellular matrix (ECM) remodeling, cell migration, and zebrafish gastrulation. We also demonstrate that VANGL2 function impacts the focal degradation of ECM by human cancer cells including the formation or stability of invadopodia. Together, our findings implicate MMP14 as a downstream effector of VANGL2 signaling and suggest a model whereby the regulation of pericellular proteolysis is a fundamental aspect of PCP in migrating cells.
Flotillins control zebrafish epiboly through their role in cadherin-mediated cell-cell adhesion.
Morris, Eduardo A Rios; Bodin, Stéphane; Delaval, Bénédicte; Comunale, Franck; Georget, Virginie; Costa, Manoel L; Lutfalla, Georges; Gauthier-Rouvière, Cécile
2017-05-01
Zebrafish gastrulation and particularly epiboly that involves coordinated movements of several cell layers is a dynamic process for which regulators remain to be identified. We show here that Flotillin 1 and 2, ubiquitous and highly conserved proteins, are required for epiboly. Flotillins knockdown compromised embryo survival, strongly delayed epiboly and impaired deep cell radial intercalation and directed collective migration without affecting enveloping layer cell movement. At the molecular level, we identified that Flotillins are required for the formation of E-cadherin-mediated cell-cell junctions. These results provide the first in vivo evidence that Flotillins regulate E-cadherin-mediated cell-cell junctions to allow epiboly progression. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
Formation of the Embryonic Head in the Mouse: Attributes of a Gene Regulatory Network.
Tam, Patrick P L; Fossat, Nicolas; Wilkie, Emilie; Loebel, David A F; Ip, Chi Kin; Ramialison, Mirana
2016-01-01
The embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors. These factors constitute the central nodes of a gene regulatory network (GRN) which encompasses and intersects with signaling pathways involved with head formation. It is predicted that the functional output of this "head GRN" impacts on cellular function and cell-cell interactions that are essential for lineage differentiation and tissue modeling, which are key processes underpinning the formation of the head. © 2016 Elsevier Inc. All rights reserved.
Lack of centrioles and primary cilia in STIL−/− mouse embryos
David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin
2014-01-01
Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL−/− mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL−/− cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL−/− cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development. PMID:25486474
Lack of centrioles and primary cilia in STIL(-/-) mouse embryos.
David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin
2014-01-01
Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.
NASA Astrophysics Data System (ADS)
Lau, Jeffrey M. C.; Muslin, Anthony J.
The 14-3-3 intracellular phosphoserine/threonine-binding proteins are adapter molecules that regulate signal transduction, cell cycle, nutrient sensing, apoptotic, and cytoskeletal pathways. There are seven 14-3-3 family members, encoded by separate genes, in vertebrate organisms. To evaluate the role of individual 14-3-3 proteins in vertebrate embryonic development, we utilized an antisense morpholino oligo microinjection technique in Xenopus laevis embryos. By use of this method, we showed that embryos lacking specific 14-3-3 proteins displayed unique phenotypic abnormalities. Specifically, embryos lacking 14-3-3 τ exhibited gastrulation and axial patterning defects, but embryos lacking 14-3-3 γ exhibited eye defects without other abnormalities, and embryos lacking 14-3-3 ζ appeared completely normal. These and other results demonstrate the power and specificity of the morpholino antisense oligo microinjection technique.
BMP signaling restricts hemato-vascular development from lateral mesoderm during somitogenesis.
Gupta, Sunny; Zhu, Hao; Zon, Leonard I; Evans, Todd
2006-06-01
The bone morphogenetic protein (BMP) signaling pathway is essential during gastrulation for the generation of ventral mesoderm, which makes it a challenge to define functions for this pathway at later stages of development. We have established an approach to disrupt BMP signaling specifically in lateral mesoderm during somitogenesis, by targeting a dominant-negative BMP receptor to Lmo2+ cells in developing zebrafish embryos. This results in expansion of hematopoietic and endothelial cells, while restricting the expression domain of the pronephric marker pax2.1. Expression of a constitutively active receptor and transplantation experiments were used to confirm that BMP signaling in lateral mesoderm restricts subsequent hemato-vascular development. The results show that the BMP signaling pathway continues to function after cells are committed to a lateral mesoderm fate, and influences subsequent lineage decisions by restricting hemato-vascular fate in favor of pronephric development.
Mechanical Control of Tissue Morphogenesis
Patwari, Parth; Lee, Richard T.
2008-01-01
Mechanical forces participate in morphogenesis from the level of individual cells to whole organism patterning. This manuscript reviews recent research that has identified specific roles for mechanical forces in important developmental events. One well-defined example is that dynein-driven cilia create fluid flow that determines left-right patterning in the early mammalian embryo. Fluid flow is also important for vasculogenesis, and evidence suggests that fluid shear stress rather than fluid transport is primarily required for remodeling the early vasculature. Contraction of the actin cytoskeleton, driven by nonmuscle myosins and regulated by the Rho family GTPases, is a recurring mechanism for controlling morphogenesis throughout development, from gastrulation to cardiogenesis. Finally, novel experimental approaches suggest critical roles for the actin cytoskeleton and the mechanical environment in determining differentiation of mesenchymal stem cells. Insights into the mechanisms linking mechanical forces to cell and tissue differentiation pathways are important for understanding many congenital diseases and for developing regenerative medicine strategies. PMID:18669930
Pla, Patrick; Monsoro-Burq, Anne H
2018-05-28
The neural crest is induced at the edge between the neural plate and the nonneural ectoderm, in an area called the neural (plate) border, during gastrulation and neurulation. In recent years, many studies have explored how this domain is patterned, and how the neural crest is induced within this territory, that also participates to the prospective dorsal neural tube, the dorsalmost nonneural ectoderm, as well as placode derivatives in the anterior area. This review highlights the tissue interactions, the cell-cell signaling and the molecular mechanisms involved in this dynamic spatiotemporal patterning, resulting in the induction of the premigratory neural crest. Collectively, these studies allow building a complex neural border and early neural crest gene regulatory network, mostly composed by transcriptional regulations but also, more recently, including novel signaling interactions. Copyright © 2018. Published by Elsevier Inc.
Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling
Norris, Megan L; Pauli, Andrea; Gagnon, James A; Lord, Nathan D; Rogers, Katherine W; Mosimann, Christian; Zon, Leonard I
2017-01-01
Toddler/Apela/Elabela is a conserved secreted peptide that regulates mesendoderm development during zebrafish gastrulation. Two non-exclusive models have been proposed to explain Toddler function. The ‘specification model’ postulates that Toddler signaling enhances Nodal signaling to properly specify endoderm, whereas the ‘migration model’ posits that Toddler signaling regulates mesendodermal cell migration downstream of Nodal signaling. Here, we test key predictions of both models. We find that in toddler mutants Nodal signaling is initially normal and increasing endoderm specification does not rescue mesendodermal cell migration. Mesodermal cell migration defects in toddler mutants result from a decrease in animal pole-directed migration and are independent of endoderm. Conversely, endodermal cell migration defects are dependent on a Cxcr4a-regulated tether of the endoderm to mesoderm. These results suggest that Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling and indirectly affects endodermal cell migration via Cxcr4a-signaling. PMID:29117894
Isolation and characterization of node/notochord-like cells from mouse embryonic stem cells.
Winzi, Maria K; Hyttel, Poul; Dale, Jacqueline Kim; Serup, Palle
2011-11-01
The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP(+) cells expressed the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen's node of gastrulating chicken embryos. The ability to generate node/notochord-like cells in vitro will aid the biochemical characterization of these developmentally important structures.
Axial protocadherin (AXPC) regulates cell fate during notochordal morphogenesis.
Yoder, Michael D; Gumbiner, Barry M
2011-11-01
The separation and specification of mesoderm into the notochord and somites involves members of the non-clustered δ-protocadherins. Axial (AXPC) and paraxial (PAPC) protocadherins are expressed in the early dorsal mesoderm and later become refined to the developing notochordal and somitic mesoderm, respectively. The role of PAPC in this process has been studied extensively, but the role of AXPC is poorly understood. Partial knockdown of AXPC causes a specific bent-axis phenotype, while more severe knockdown results in the loss of notochord formation. The inability of these embryos to develop a notochord is not due to a cell-sorting event via changes in cell adhesion during gastrulation, but rather this defect is manifested through the loss of axial mesoderm specification, but not general mesoderm induction. The results presented here show that AXPC functions in notochord morphogenesis by directing cell-fate decisions rather than cell-cell adhesion. Copyright © 2011 Wiley Periodicals, Inc.
Surface tension and modeling of cellular intercalation during zebrafish gastrulation.
Calmelet, Colette; Sepich, Diane
2010-04-01
In this paper we discuss a model of zebrafish embryo notochord development based on the effect of surface tension of cells at the boundaries. We study the process of interaction of mesodermal cells at the boundaries due to adhesion and cortical tension, resulting in cellular intercalation. From in vivo experiments, we obtain cell outlines of time-lapse images of cell movements during zebrafish embryo development. Using Cellular Potts Model, we calculate the total surface energy of the system of cells at different time intervals at cell contacts. We analyze the variations of total energy depending on nature of cell contacts. We demonstrate that our model can be viable by calculating the total surface energy value for experimentally observed configurations of cells and showing that in our model these configurations correspond to a decrease in total energy values in both two and three dimensions.
Isolation and Characterization of Node/Notochord-Like Cells from Mouse Embryonic Stem Cells
Winzi, Maria K.; Hyttel, Poul; Dale, Jacqueline Kim; Serup, Palle
2014-01-01
The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP+ cells expressed the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen’s node of gastrulating chicken embryos. The ability to generate node/notochord-like cells in vitro will aid the biochemical characterization of these developmentally important structures. PMID:21351873
The planar cell polarity protein VANGL2 coordinates remodeling of the extracellular matrix
Williams, B. Blairanne; Mundell, Nathan; Dunlap, Julie; Jessen, Jason
2012-01-01
Understanding how planar cell polarity (PCP) is established, maintained, and coordinated in migrating cell populations is an important area of research with implications for both embryonic morphogenesis and tumor cell invasion. We recently reported that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell surface level of membrane type-1 matrix metalloproteinase (MMP14 or MT1-MMP). Here, we further discuss these findings in terms of extracellular matrix (ECM) remodeling, cell migration, and zebrafish gastrulation. We also demonstrate that VANGL2 function impacts the focal degradation of ECM by human cancer cells including the formation or stability of invadopodia. Together, our findings implicate MMP14 as a downstream effector of VANGL2 signaling and suggest a model whereby the regulation of pericellular proteolysis is a fundamental aspect of PCP in migrating cells. PMID:23060953
Dhandapani, Sivashanmugam; Srinivasan, Anirudh
2016-01-01
Triple spinal dysraphism is extremely rare. There are published reports of multiple discrete neural tube defects with intervening normal segments that are explained by the multisite closure theory of primary neurulation, having an association with Chiari malformation Type II consistent with the unified theory of McLone. The authors report on a 1-year-old child with contiguous myelomeningocele and lipomyelomeningocele centered on Type I split cord malformation with Chiari malformation Type II and hydrocephalus. This composite anomaly is probably due to select abnormalities of the neurenteric canal during gastrulation, with a contiguous cascading impact on both dysjunction of the neural tube and closure of the neuropore, resulting in a small posterior fossa, probably bringing the unified theory of McLone closer to the unified theory of Pang.
From egg to gastrula: How the cell cycle is remodeled during the Drosophila mid-blastula transition
Farrell, Jeffrey A.; O’Farrell, Patrick H.
2015-01-01
Many, if not most, embryos begin development with extremely short cell cycles that exhibit unusually rapid DNA replication and no gap phases. The commitment to the cell cycle in the early embryo appears to preclude many other cellular processes which only emerge as the cell cycle slows, at a major embryonic transition known as the mid-blastula transition (MBT) just prior to gastrulation. As reviewed here, genetic and molecular studies in Drosophila have identified changes that extend S phase and introduce a post-replicative gap phase, G2, to slow the cell cycle. While many mysteries remain about the upstream regulators of these changes, we review the core mechanisms of the change in cell cycle regulation and discuss advances in our understanding of how these might be timed and triggered. Finally, we consider how the elements of this program may be conserved or changed in other organisms. PMID:25195504
Sullivan, Kelly G.; Levin, Michael
2016-01-01
Neurotransmitters are not only involved in brain function but are also important signaling molecules for many diverse cell types. Neurotransmitters are widely conserved, from evolutionarily ancient organisms lacking nervous systems through man. Here, we report results from a loss- and gain-of-function survey, using pharmacologic modulators of several neurotransmitter pathways to examine possible roles in normal embryogenesis. Applying reagents targeting the glutamatergic, adrenergic, and dopaminergic pathways to embryos of Xenopus laevis from gastrulation to organogenesis stages, we observed and quantified numerous malformations including craniofacial defects, hyperpigmentation, muscle mispatterning, and miscoiling of the gut. These data implicate several key neurotransmitters in new embryonic patterning roles, reveal novel earlier stages for processes involved in eye development, suggest new targets for subsequent molecular-genetic investigation, and highlight the necessity for in-depth toxicology studies of psychoactive compounds to which human embryos might be exposed during pregnancy. PMID:27060969
Calcium at fertilization and in early development
Whitaker, Michael
2012-01-01
Fertilization calcium waves are introduced and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypothesis put forward to explain the generation of the fertilization calcium wave are set out and it is concluded that initiation of the fertilization calcium wave can be most generally explained in inverterbrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signalling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signalling during resumption of meiosis. Changes to the calcium signalling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signalling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed. Evidence that the Wingless/calcium signalling pathway is a strong ventralizing signal in Xenopus, mediated by phoshoinositide signalling is adumbrated. The central role that calcium channels play in morphogenetic movements during gastrulation and in ectodermal and mesodermal gene expression during late gastrulation is demonstrated. Experiments in zebrafish provide a strong indication that calcium signals are essential for pattern formation and organogenesis. PMID:16371595
Economou, Constantinos; Tsakiridis, Anestis; Wymeersch, Filip J; Gordon-Keylock, Sabrina; Dewhurst, Robert E; Fisher, Dawn; Medvinsky, Alexander; Smith, Andrew J H; Wilson, Valerie
2015-10-09
Pluripotent cells are present in early embryos until the levels of the pluripotency regulator Oct4 drop at the beginning of somitogenesis. Elevating Oct4 levels in explanted post-pluripotent cells in vitro restores their pluripotency. Cultured pluripotent cells can participate in normal development when introduced into host embryos up to the end of gastrulation. In contrast, pluripotent cells efficiently seed malignant teratocarcinomas in adult animals. In humans, extragonadal teratomas and teratocarcinomas are most frequently found in the sacrococcygeal region of neonates, suggesting that these tumours originate from cells in the posterior of the embryo that either reactivate or fail to switch off their pluripotent status. However, experimental models for the persistence or reactivation of pluripotency during embryonic development are lacking. We manually injected embryonic stem cells into conceptuses at E9.5 to test whether the presence of pluripotent cells at this stage correlates with teratocarcinoma formation. We then examined the effects of reactivating embryonic Oct4 expression ubiquitously or in combination with Nanog within the primitive streak (PS)/tail bud (TB) using a transgenic mouse line and embryo chimeras carrying a PS/TB-specific heterologous gene expression cassette respectively. Here, we show that pluripotent cells seed teratomas in post-gastrulation embryos. However, at these stages, induced ubiquitous expression of Oct4 does not lead to restoration of pluripotency (indicated by Nanog expression) and tumour formation in utero, but instead causes a severe phenotype in the extending anteroposterior axis. Use of a more restricted T(Bra) promoter transgenic system enabling inducible ectopic expression of Oct4 and Nanog specifically in the posteriorly-located primitive streak (PS) and tail bud (TB) led to similar axial malformations to those induced by Oct4 alone. These cells underwent induction of pluripotency marker expression in Epiblast Stem Cell (EpiSC) explants derived from somitogenesis-stage embryos, but no teratocarcinoma formation was observed in vivo. Our findings show that although pluripotent cells with teratocarcinogenic potential can be produced in vitro by the overexpression of pluripotency regulators in explanted somitogenesis-stage somatic cells, the in vivo induction of these genes does not yield tumours. This suggests a restrictive regulatory role of the embryonic microenvironment in the induction of pluripotency.
Seneviratna, Deepani; Taylor, H H
2006-04-01
This study examined whether the existence of hyperosmotic internal fluids in embryos of euryhaline crabs (Hemigrapsus sexdentatus and H. crenulatus) in dilute seawater reflects osmotic isolation due to impermeability of the egg envelope, as proposed for other decapods, or active osmoregulation. When ovigerous crabs with eggs at gastrula stage were transferred from 100% seawater (osmolality 1000 mmol kg(-1)) to 50% seawater, embryogenesis and hatching of zoea were completed normally, but were delayed. Hatching failed if the transfer to 50% seawater occurred before gastrulation, and embryogenesis was abnormal in 25% seawater. In 100% seawater, embryos at all stages were internally hyperosmotic by 150-250 mmol kg(-1). On transfer to 50% seawater, osmolality initially decreased but remained 200-350 mmol kg(-1) hyperosmotic to the medium for several weeks until hatching. High efflux rates of tritium-labelled water (t((1/2)) 16-75 min) and (22)Na (t(1/2) 109-374 min) from H. crenulatus embryos were inconsistent with the osmotic isolation hypothesis. It is concluded that post-gastrula embryos were actively hyper-osmoregulating. The diffusional water permeability of the embryos decreased during development while the sodium efflux rate increased 10-fold. Very rapidly exchanging pools of water and sodium (t(1/2) a few seconds to minutes) probably corresponded to peri-embryonic fluid and implied that the egg envelope was a negligible barrier to diffusion of water and salts. Higher Na(+)/K(+)-ATPase activities in late embryos of H. crenulatus incubated in 50% seawater than in embryos incubated in full strength seawater were consistent with an acclimation response. An area of the embryonic surface located over the yolk in the region of the embryonic dorsal organ stained with AgNO(3). Staining appeared at gastrulation, persisted throughout development and was lost at hatching. Deposits of AgCl between the outer and inner membranes, identified by X-ray microanalysis, suggest that the dorsal organ was a site of chloride extrusion. A model for osmoregulation in post-gastrula embryos is proposed: osmotic uptake of water is balanced by excretion of water and salts via the dorsal organ and salt loss is balanced by active uptake over the general embryonic ectoderm.
Modulation of WNT signaling activity is key to the formation of the embryonic head.
Fossat, Nicolas; Jones, Vanessa; Garcia-Garcia, Maria J; Tam, Patrick P L
2012-01-01
The formation of the embryonic head begins with the assembly of the progenitor tissues of the brain, the head and face primordia and the foregut that are derived from the primary germ layers during gastrulation. Specification of the anterior-posterior polarity of major body parts and the morphogenesis of the head and brain specifically is driven by inductive signals including those mediated by BMP, Nodal, FGF and WNT. A critical role of β-catenin dependent WNT signalling activity for head morphogenesis has been revealed through the analysis of the phenotypic impact of loss of function mutation of an antagonist: DKK1, a transcriptional repressor: GSC; and the outcome of interaction of Dkk1 with genes coding three components of the canonical signalling pathway: the ligand WNT3, the co-receptor LRP6 and the transcriptional co-factor, β-catenin. The findings highlight the requirement of a stringent control of the timing, domain and level of canonical WNT signalling activity for the formation of the embryonic head.
Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamano, Noriko; Kimura, Tohru, E-mail: tkimura@patho.med.osaka-u.ac.jp; Watanabe-Kushima, Shoko
Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were culturedmore » on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.« less
Forces Generated by Cell Intercalation Tow Epidermal Sheets in Mammalian Tissue Morphogenesis
Heller, Evan; Kumar, K. Vijay; Grill, Stephan W.; Fuchs, Elaine
2014-01-01
Summary While gastrulation movements offer mechanistic paradigms for how collective cellular movements shape developing embryos, far less is known about coordinated cellular movements that occur later in development. Studying eyelid closure, we explore a case where an epithelium locally reshapes, expands, and moves over another epithelium. Live imaging, gene targeting and cell cycle inhibitors reveal that closure does not require overlying periderm, proliferation or supracellular actin cable assembly. Laser ablation and quantitative analyses of tissue deformations further distinguish the mechanism from wound-repair and dorsal closure. Rather, cell intercalations parallel to the tissue front locally compress it perpendicularly, pulling the surrounding epidermis along the closure axis. Functional analyses in vivo show that the mechanism requires localized myosin-IIA and α5β1-fibronectin-mediated migration, and E-cadherin downregulation likely stimulated by Wnt signaling. These studies uncover a mode of epithelial closure in which forces generated by cell intercalation are leveraged to tow the surrounding tissue. PMID:24697897
Mitrossilis, Démosthène; Röper, Jens-Christian; Le Roy, Damien; Driquez, Benjamin; Michel, Aude; Ménager, Christine; Shaw, Gorky; Le Denmat, Simon; Ranno, Laurent; Dumas-Bouchiat, Frédéric; Dempsey, Nora M.; Farge, Emmanuel
2017-01-01
Animal development consists of a cascade of tissue differentiation and shape change. Associated mechanical signals regulate tissue differentiation. Here we demonstrate that endogenous mechanical cues also trigger biochemical pathways, generating the active morphogenetic movements shaping animal development through a mechanotransductive cascade of Myo-II medio-apical stabilization. To mimic physiological tissue deformation with a cell scale resolution, liposomes containing magnetic nanoparticles are injected into embryonic epithelia and submitted to time-variable forces generated by a linear array of micrometric soft magnets. Periodic magnetically induced deformations quantitatively phenocopy the soft mechanical endogenous snail-dependent apex pulsations, rescue the medio-apical accumulation of Rok, Myo-II and subsequent mesoderm invagination lacking in sna mutants, in a Fog-dependent mechanotransductive process. Mesoderm invagination then activates Myo-II apical accumulation, in a similar Fog-dependent mechanotransductive process, which in turn initiates endoderm invagination. This reveals the existence of a highly dynamic self-inductive cascade of mesoderm and endoderm invaginations, regulated by mechano-induced medio-apical stabilization of Myo-II. PMID:28112149
Regulation of early Xenopus development by ErbB signaling
Nie, Shuyi; Chang, Chenbei
2008-01-01
ErbB signaling has long been implicated in cancer formation and progression and is shown to regulate cell division, migration and death during tumorigenesis. The functions of the ErbB pathway during early vertebrate embryogenesis, however, are not well understood. Here we report characterization of ErbB activities during early frog development. Gain-of-function analyses show that EGFR, ErbB2 and ErbB4 induce ectopic tumor-like cell mass that contains increased numbers of mitotic cells. Both the muscle and the neural markers are expressed in these ectopic protrusions. ErbBs also induce mesodermal markers in ectodermal explants. Loss-of-function studies using carboxyl terminal-truncated dominant-negative ErbB receptors demonstrate that blocking ErbB signals leads to defective gastrulation movements and malformation of the embryonic axis with a reduction in the head structures in early frog embryos. These data, together with the observation that ErbBs are expressed early during frog embryogenesis, suggest that ErbBs regulate cell proliferation, movements and embryonic patterning during early Xenopus development. PMID:16258939
Modeling human infertility with pluripotent stem cells.
Chen, Di; Gell, Joanna J; Tao, Yu; Sosa, Enrique; Clark, Amander T
2017-05-01
Human fertility is dependent upon the correct establishment and differentiation of the germline. This is because no other cell type in the body is capable of passing a genome and epigenome from parent to child. Terminally differentiated germline cells in the adult testis and ovary are called gametes. However, the initial specification of germline cells occurs in the embryo around the time of gastrulation. Most of our knowledge regarding the cell and molecular events that govern human germline specification involves extrapolating scientific principles from model organisms, most notably the mouse. However, recent work using next generation sequencing, gene editing and differentiation of germline cells from pluripotent stem cells has revealed that the core molecular mechanisms that regulate human germline development are different from rodents. Here, we will discuss the major molecular pathways required for human germline differentiation and how pluripotent stem cells have revolutionized our ability to study the earliest steps in human embryonic lineage specification in order to understand human fertility. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish.
Lovely, C Ben; Swartz, Mary E; McCarthy, Neil; Norrie, Jacqueline L; Eberhart, Johann K
2016-06-01
The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face. © 2016. Published by The Company of Biologists Ltd.
Craniofacial skeletal defects of adult zebrafish glypican 4 (knypek) mutants
LeClair, Elizabeth E.; Mui, Stephanie R.; Huang, Angela; Topczewska, Jolanta M.; Topczewski, Jacek
2010-01-01
The heparan sulfate proteoglycan Glypican 4 (Gpc4) is part of the Wnt/planar cell polarity pathway, which is required for convergence and extension during zebrafish gastrulation. To observe Glypican 4-deficient phenotypes at later stages, we rescued gpc4−/− (knypek) homozygotes and raised them for more than one year. Adult mutants showed diverse cranial malformations of both dermal and endochondral bones, ranging from shortening of the rostral-most skull to loss of the symplectic. Additionally, the adult palatoquadrate cartilage was disorganized, with abnormal chondrocyte orientation. To understand how the palatoquadrate cartilage normally develops, we examined a juvenile series of wild type and mutant specimens. This identified two novel domains of elongated chondrocytes in the larval palatoquadrate, which normally form prior to endochondral ossification. In contrast, gpc4−/− larvae never form these domains, suggesting a failure of chondrocyte orientation, though not differentiation. Our findings implicate Gpc4 in the regulation of zebrafish cartilage and bone morphogenesis. PMID:19777561
Morgani, Sophie M; Metzger, Jakob J; Nichols, Jennifer
2018-01-01
During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species. PMID:29412136
Egg buoyancy variability in local populations of Atlantic cod (Gadus morhua).
Jung, Kyung-Mi; Folkvord, Arild; Kjesbu, Olav Sigurd; Agnalt, Ann Lisbeth; Thorsen, Anders; Sundby, Svein
2012-01-01
Previous studies have found strong evidences for Atlantic cod ( Gadus morhua ) egg retention in fjords, which are caused by the combination of vertical salinity structure, estuarine circulation, and egg specific gravity, supporting small-scaled geographical differentiations of local populations. Here, we assess the variability in egg specific gravity for selected local populations of this species, that is, two fjord-spawning populations and one coastal-spawning population from Northern Norway (66-71°N/10-25°E). Eggs were naturally spawned by raised broodstocks (March to April 2009), and egg specific gravity was measured by a density-gradient column. The phenotype of egg specific gravity was similar among the three local populations. However, the associated variability was greater at the individual level than at the population level. The noted gradual decrease in specific gravity from gastrulation to hatching with an increase just before hatching could be a generic pattern in pelagic marine fish eggs. This study provides needed input to adequately understand and model fish egg dispersal.
Active Tension Network model reveals an exotic mechanical state realized in epithelial tissues
NASA Astrophysics Data System (ADS)
Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streicha, Sebastian; Shraiman, Boris
Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that mechanical balance of cells is dominated by cortical tension and introduces tension dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties: i) ATN behaves as a fluid at short times, but at long times it supports external tension, like a solid; ii) its mechanical equilibrium state has extensive degeneracy associated with a discrete conformal - ''isogonal'' - deformation of cells. ATN model predicts a constraint on equilibrium cell geometry, which we demonstrate to hold in certain epithelial tissues. We further show that isogonal modes are observed in a fruit fly embryo, accounting for the striking variability of apical area of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, understanding which helps understand biological phenomena.
Zebrafish embryo developmental toxicology assay.
Panzica-Kelly, Julieta M; Zhang, Cindy X; Augustine-Rauch, Karen
2012-01-01
A promising in vitro zebrafish developmental toxicology assay was generated to test compounds for their teratogenic potential. The assay's predictivity is approximately 87% in AB strain fish (Brannen KC et al., Birth Defects Res B Dev Reprod Toxicol 89:66-77, 2010). The procedure entails exposing dechorionated gastrulation-stage embryos to a range of compound concentrations for 5 days throughout embryonic and larva development. The larvae are evaluated for viability in order to identify an LC25 (the compound concentration in which 25% lethality is observed) and morphological anomalies using a numerical score system to identify the NOAEL (no observed adverse effect level). These values are used to calculate the teratogenic index (LC25/NOAEL ratio) of each compound. If the teratogenic index is equal to or greater than 10 then the compound is classified as a teratogen, and if the ratio is less than 10 then the compound is classified as a nonteratogen (Brannen KC et al., Birth Defects Res B Dev Reprod Toxicol 89:66-77, 2010).
Reyes-Bermudez, Alejandro; Miller, David J.; Sprungala, Susanne
2012-01-01
To understand the calcium-mediated signalling pathways underlying settlement and metamorphosis in the Scleractinian coral Acropora millepora, a predicted protein set derived from larval cDNAs was scanned for the presence of EF-hand domains (Pfam Id: PF00036). This approach led to the identification of a canonical calmodulin (AmCaM) protein and an uncharacterised member of the Neuronal Calcium Sensor (NCS) family of proteins known here as Acrocalcin (AmAC). While AmCaM transcripts were present throughout development, AmAC transcripts were not detected prior to gastrulation, after which relatively constant mRNA levels were detected until metamorphosis and settlement. The AmAC protein contains an internal CaM-binding site and was shown to interact in vitro with AmCaM. These results are consistent with the idea that AmAC is a target of AmCaM in vivo, suggesting that this interaction may regulate calcium-dependent processes during the development of Acropora millepora. PMID:23284743
Rodent Zic Genes in Neural Network Wiring.
Herrera, Eloísa
2018-01-01
The formation of the nervous system is a multistep process that yields a mature brain. Failure in any of the steps of this process may cause brain malfunction. In the early stages of embryonic development, neural progenitors quickly proliferate and then, at a specific moment, differentiate into neurons or glia. Once they become postmitotic neurons, they migrate to their final destinations and begin to extend their axons to connect with other neurons, sometimes located in quite distant regions, to establish different neural circuits. During the last decade, it has become evident that Zic genes, in addition to playing important roles in early development (e.g., gastrulation and neural tube closure), are involved in different processes of late brain development, such as neuronal migration, axon guidance, and refinement of axon terminals. ZIC proteins are therefore essential for the proper wiring and connectivity of the brain. In this chapter, we review our current knowledge of the role of Zic genes in the late stages of neural circuit formation.
NASA Astrophysics Data System (ADS)
Mitrossilis, Démosthène; Röper, Jens-Christian; Le Roy, Damien; Driquez, Benjamin; Michel, Aude; Ménager, Christine; Shaw, Gorky; Le Denmat, Simon; Ranno, Laurent; Dumas-Bouchiat, Frédéric; Dempsey, Nora M.; Farge, Emmanuel
2017-01-01
Animal development consists of a cascade of tissue differentiation and shape change. Associated mechanical signals regulate tissue differentiation. Here we demonstrate that endogenous mechanical cues also trigger biochemical pathways, generating the active morphogenetic movements shaping animal development through a mechanotransductive cascade of Myo-II medio-apical stabilization. To mimic physiological tissue deformation with a cell scale resolution, liposomes containing magnetic nanoparticles are injected into embryonic epithelia and submitted to time-variable forces generated by a linear array of micrometric soft magnets. Periodic magnetically induced deformations quantitatively phenocopy the soft mechanical endogenous snail-dependent apex pulsations, rescue the medio-apical accumulation of Rok, Myo-II and subsequent mesoderm invagination lacking in sna mutants, in a Fog-dependent mechanotransductive process. Mesoderm invagination then activates Myo-II apical accumulation, in a similar Fog-dependent mechanotransductive process, which in turn initiates endoderm invagination. This reveals the existence of a highly dynamic self-inductive cascade of mesoderm and endoderm invaginations, regulated by mechano-induced medio-apical stabilization of Myo-II.
Chien, Yuan-Hung; Srinivasan, Shyam; Keller, Ray; Kintner, Chris
2018-05-07
The Xenopus left-right organizer (LRO) breaks symmetry along the left-right axis of the early embryo by producing and sensing directed ciliary flow as a patterning cue. To carry out this process, the LRO contains different ciliated cell types that vary in cilia length, whether they are motile or sensory, and how they position their cilia along the anterior-posterior (A-P) planar axis. Here, we show that these different cilia features are specified in the prospective LRO during gastrulation, based on anisotropic mechanical strain that is oriented along the A-P axis, and graded in levels along the medial-lateral axis. Strain instructs ciliated cell differentiation by acting on a mesodermal prepattern present at blastula stages, involving foxj1. We propose that differential strain is a graded, developmental cue, linking the establishment of an A-P planar axis to cilia length, motility, and planar location during formation of the Xenopus LRO. Copyright © 2018 Elsevier Inc. All rights reserved.
Uncoupling apical constriction from tissue invagination
Chung, SeYeon; Kim, Sangjoon; Andrew, Deborah J
2017-01-01
Apical constriction is a widely utilized cell shape change linked to folding, bending and invagination of polarized epithelia. It remains unclear how apical constriction is regulated spatiotemporally during tissue invagination and how this cellular process contributes to tube formation in different developmental contexts. Using Drosophila salivary gland (SG) invagination as a model, we show that regulation of folded gastrulation expression by the Fork head transcription factor is required for apicomedial accumulation of Rho kinase and non-muscle myosin II, which coordinate apical constriction. We demonstrate that neither loss of spatially coordinated apical constriction nor its complete blockage prevent internalization and tube formation, although such manipulations affect the geometry of invagination. When apical constriction is disrupted, compressing force generated by a tissue-level myosin cable contributes to SG invagination. We demonstrate that fully elongated polarized SGs can form outside the embryo, suggesting that tube formation and elongation are intrinsic properties of the SG. DOI: http://dx.doi.org/10.7554/eLife.22235.001 PMID:28263180
Mechanics of epithelial closure over non-adherent environments
NASA Astrophysics Data System (ADS)
Vedula, Sri Ram Krishna; Peyret, Grégoire; Cheddadi, Ibrahim; Chen, Tianchi; Brugués, Agustí; Hirata, Hiroaki; Lopez-Menendez, Horacio; Toyama, Yusuke; Neves de Almeida, Luís; Trepat, Xavier; Lim, Chwee Teck; Ladoux, Benoit
2015-01-01
The closure of gaps within epithelia is crucial to maintain its integrity during biological processes such as wound healing and gastrulation. Depending on the distribution of extracellular matrix, gap closure occurs through assembly of multicellular actin-based contractile cables or protrusive activity of border cells into the gap. Here we show that the supracellular actomyosin contractility of cells near the gap edge exerts sufficient tension on the surrounding tissue to promote closure of non-adherent gaps. Using traction force microscopy, we observe that cell-generated forces on the substrate at the gap edge first point away from the centre of the gap and then increase in the radial direction pointing into the gap as closure proceeds. Combining with numerical simulations, we show that the increase in force relies less on localized purse-string contractility and more on large-scale remodelling of the suspended tissue around the gap. Our results provide a framework for understanding the assembly and the mechanics of cellular contractility at the tissue level.
Catala, M
2014-06-01
The development of the embryo and foetus fascinates, but its study in humans is difficult because of both technical and ethical problems. Auguste d'Eternod, Swiss embryologist, published in 1913 an article entitled "The early stages of the human egg" in the Comptes Rendus de l'Association des Anatomistes, the ancestor of the journal Morphologie. This work is focused not only on the early stages of development: fertilization, cleavage of the egg, blastocyst formation, gastrulation, but also on the extra-embryonic processes characteristic of mammals. On the occasion of the centenary of the publication of this work, I propose a critical review by placing the data published in the literature and historical context of the time. Finally, I try to extract from these observations the concepts that are still used today by embryologists. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Mechanics of epithelial closure over non-adherent environments
Vedula, Sri Ram Krishna; Peyret, Grégoire; Cheddadi, Ibrahim; Chen, Tianchi; Brugués, Agustí; Hirata, Hiroaki; Lopez-Menendez, Horacio; Toyama, Yusuke; Neves de Almeida, Luís; Trepat, Xavier; Lim, Chwee Teck; Ladoux, Benoit
2015-01-01
The closure of gaps within epithelia is crucial to maintain its integrity during biological processes such as wound healing and gastrulation. Depending on the distribution of extracellular matrix, gap closure occurs through assembly of multicellular actin-based contractile cables or protrusive activity of border cells into the gap. Here we show that the supracellular actomyosin contractility of cells near the gap edge exerts sufficient tension on the surrounding tissue to promote closure of non-adherent gaps. Using traction force microscopy, we observe that cell-generated forces on the substrate at the gap edge first point away from the centre of the gap and then increase in the radial direction pointing into the gap as closure proceeds. Combining with numerical simulations, we show that the increase in force relies less on localized purse-string contractility and more on large-scale remodelling of the suspended tissue around the gap. Our results provide a framework for understanding the assembly and the mechanics of cellular contractility at the tissue level. PMID:25608921
Reijns, Martin A.M.; Rabe, Björn; Rigby, Rachel E.; Mill, Pleasantine; Astell, Katy R.; Lettice, Laura A.; Boyle, Shelagh; Leitch, Andrea; Keighren, Margaret; Kilanowski, Fiona; Devenney, Paul S.; Sexton, David; Grimes, Graeme; Holt, Ian J.; Hill, Robert E.; Taylor, Martin S.; Lawson, Kirstie A.; Dorin, Julia R.; Jackson, Andrew P.
2012-01-01
Summary The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells. PMID:22579044
Identification and expression analysis of zebrafish glypicans during embryonic development.
Gupta, Mansi; Brand, Michael
2013-01-01
Heparan sulfate Proteoglycans (HSPG) are ubiquitous molecules with indispensable functions in various biological processes. Glypicans are a family of HSPG's, characterized by a Gpi-anchor which directs them to the cell surface and/or extracellular matrix where they regulate growth factor signaling during development and disease. We report the identification and expression pattern of glypican genes from zebrafish. The zebrafish genome contains 10 glypican homologs, as opposed to six in mammals, which are highly conserved and are phylogenetically related to the mammalian genes. Some of the fish glypicans like Gpc1a, Gpc3, Gpc4, Gpc6a and Gpc6b show conserved synteny with their mammalian cognate genes. Many glypicans are expressed during the gastrulation stage, but their expression becomes more tissue specific and defined during somitogenesis stages, particularly in the developing central nervous system. Existence of multiple glypican orthologs in fish with diverse expression pattern suggests highly specialized and/or redundant function of these genes during embryonic development.
The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling.
Wang, Feng; Hu, Wanzhou; Xian, Jian; Ohnuma, Shin-ichi; Brenton, James D
2013-07-01
Tgfbi, a fasciclin family extracellular matrix protein, has various roles in human diseases from corneal dystrophies to cancer. However, the molecular mechanisms that underlie its functions are poorly understood. Here, we studied the role of Tgfbi during Xenopus embryogenesis. During gastrulation and immediately after, Xtgfbi is expressed at developmentally important signaling centers including the dorsal marginal zone, notochord and floorplate. Xtgfbi knockdown by anti-sense morpholinos causes defective organizer induction, patterning and differentiation of muscle, neuron and neural crests, similar to suppression of canonical Wnt signaling. In Xenopus embryos and animal caps as well as DLD-1 cells, we show that Tgfbi is strongly required for the full activation of the canonical Wnt pathway by promoting phosphorylation of GSK3β and consequently enhancing the stabilization and nuclear localization of β-catenin. Further analysis shows that Tgfbi is likely to promote GSK3β phosphorylation through integrin-linked kinase. Copyright © 2013 Elsevier Inc. All rights reserved.
The Ornithine Decarboxylase Gene Is Essential for Cell Survival during Early Murine Development
Pendeville, Hélène; Carpino, Nick; Marine, Jean-Christophe; Takahashi, Yutaka; Muller, Marc; Martial, Joseph A.; Cleveland, John L.
2001-01-01
Overexpression and inhibitor studies have suggested that the c-Myc target gene for ornithine decarboxylase (ODC), the enzyme which converts ornithine to putrescine, plays an important role in diverse biological processes, including cell growth, differentiation, transformation, and apoptosis. To explore the physiological function of ODC in mammalian development, we generated mice harboring a disrupted ODC gene. ODC-heterozygous mice were viable, normal, and fertile. Although zygotic ODC is expressed throughout the embryo prior to implantation, loss of ODC did not block normal development to the blastocyst stage. Embryonic day E3.5 ODC-deficient embryos were capable of uterine implantation and induced maternal decidualization yet failed to develop substantially thereafter. Surprisingly, analysis of ODC-deficient blastocysts suggests that loss of ODC does not affect cell growth per se but rather is required for survival of the pluripotent cells of the inner cell mass. Therefore, ODC plays an essential role in murine development, and proper homeostasis of polyamine pools appears to be required for cell survival prior to gastrulation. PMID:11533243
Deshpande, Girish; Calhoun, Gretchen; Schedl, Paul
2006-11-01
The FMR family of KH domain RNA-binding proteins is conserved from invertebrates to humans. In humans, inactivation of the X-linked FMR gene fragile X is the most common cause of mental retardation and leads to defects in neuronal architecture. While there are three FMR family members in humans, there is only a single gene, dfmr1, in flies. As in humans, inactivation of dfmr1 causes defects in neuronal architecture and in behavior. dfmr1 has other functions in the fly in addition to neurogenesis. Here we have analyzed its role during early embryonic development. We found that dfmr1 embryos display defects in the rapid nuclear division cycles that precede gastrulation in nuclear migration and in pole cell formation. While the aberrations in nuclear division are correlated with a defect in the assembly of centromeric/centric heterochromatin, the defects in pole cell formation are associated with alterations in the actin-myosin cytoskeleton.
Simons, Matias; Gloy, Joachim; Ganner, Athina; Bullerkotte, Axel; Bashkurov, Mikhail; Krönig, Corinna; Schermer, Bernhard; Benzing, Thomas; Cabello, Olga A; Jenny, Andreas; Mlodzik, Marek; Polok, Bozena; Driever, Wolfgang; Obara, Tomoko; Walz, Gerd
2013-01-01
Cystic renal diseases are caused by mutations of proteins that share a unique subcellular localization: the primary cilium of tubular epithelial cells1. Mutations of the ciliary protein inversin cause nephronophthisis type II, an autosomal recessive cystic kidney disease characterized by extensive renal cysts, situs inversus and renal failure2. Here we report that inversin acts as a molecular switch between different Wnt signaling cascades. Inversin inhibits the canonical Wnt pathway by targeting cytoplasmic dishevelled (Dsh or Dvl1) for degradation; concomitantly, it is required for convergent extension movements in gastrulating Xenopus laevis embryos and elongation of animal cap explants, both regulated by noncanonical Wnt signaling. In zebrafish, the structurally related switch molecule diversin ameliorates renal cysts caused by the depletion of inversin, implying that an inhibition of canonical Wnt signaling is required for normal renal development. Fluid flow increases inversin levels in ciliated tubular epithelial cells and seems to regulate this crucial switch between Wnt signaling pathways during renal development. PMID:15852005
The birth of embryonic pluripotency
Boroviak, Thorsten; Nichols, Jennifer
2014-01-01
Formation of a eutherian mammal requires concurrent establishment of embryonic and extraembryonic lineages. The functions of the trophectoderm and primitive endoderm are to enable implantation in the maternal uterus, axis specification and delivery of nutrients. The pluripotent epiblast represents the founding cell population of the embryo proper, which is protected from ectopic and premature differentiation until it is required to respond to inductive cues to form the fetus. While positional information plays a major role in specifying the trophoblast lineage, segregation of primitive endoderm from epiblast depends upon gradual acquisition of transcriptional identity, directed but not initiated by fibroblast growth factor (FGF) signalling. Following early cleavage divisions and formation of the blastocyst, cells of the inner cell mass lose totipotency. Developing epiblast cells transiently attain the state of naive pluripotency and competence to self-renew in vitro as embryonic stem cells and in vivo by means of diapause. This property is lost after implantation as the epiblast epithelializes and becomes primed in preparation for gastrulation and subsequent organogenesis. PMID:25349450
Cardiogenic programming of human pluripotent stem cells by dose-controlled activation of EOMES.
Pfeiffer, Martin J; Quaranta, Roberto; Piccini, Ilaria; Fell, Jakob; Rao, Jyoti; Röpke, Albrecht; Seebohm, Guiscard; Greber, Boris
2018-01-30
Master cell fate determinants are thought to induce specific cell lineages in gastrulation by orchestrating entire gene programs. The T-box transcription factor EOMES (eomesodermin) is crucially required for the development of the heart-yet it is equally important for endoderm specification suggesting that it may act in a context-dependent manner. Here, we define an unrecognized interplay between EOMES and the WNT signaling pathway in controlling cardiac induction by using loss and gain-of-function approaches in human embryonic stem cells. Dose-dependent EOMES induction alone can fully replace a cocktail of signaling molecules otherwise essential for the specification of cardiogenic mesoderm. Highly efficient cardiomyocyte programming by EOMES mechanistically involves autocrine activation of canonical WNT signaling via the WNT3 ligand, which necessitates a shutdown of this axis at a subsequent stage. Our findings provide insights into human germ layer induction and bear biotechnological potential for the robust production of cardiomyocytes from engineered stem cells.
Embryonic development of the sea bass Dicentrarchus labrax
NASA Astrophysics Data System (ADS)
Cucchi, Patricia; Sucré, Elliott; Santos, Raphaël; Leclère, Jeremy; Charmantier, Guy; Castille, René
2012-06-01
The embryonic development of the sea bass Dicentrarchus labrax during the endotrophic period is discussed. An 8 cells stage, not reported for other studied species, results from two rapid successive cleavages. Blastula occurs at the eighth division when the embryo is made of 128 cells. During gastrulation, the infolded blastoderm creates the endomesoblastic layer. The Kupffer's vesicle is reported to drive the left/right patterning of brain, heart and digestive tract. Heart formation starts at 8 pairs of somites, differentiation of myotomes and sclerotomes starts at the stage 18 pairs of somites; main parts of the digestive tract are entirely formed at 25 pairs of somites. At 28 pairs of somites, a rectal region is detected, however, the digestive tube is closed at both ends, the jaw appears the fourth day after hatching, but the mouth is not opened before the fifth day. Although cardiac beating and blood circulation are observed, gills are not reported in newly hatched individuals; eye melanization appears concomitant with exotrophic behavior.
Tbx16 regulates hox gene activation in mesodermal progenitor cells
Payumo, Alexander Y.; McQuade, Lindsey E.; Walker, Whitney J.; Yamazoe, Sayumi; Chen, James K.
2016-01-01
The transcription factor T-box 16 (Tbx16/Spadetail) is an essential regulator of paraxial mesoderm development in zebrafish (Danio rerio). Mesodermal progenitor cells (MPCs) fail to differentiate into trunk somites in tbx16 mutants and instead accumulate within the tailbud in an immature state. The mechanisms by which Tbx16 controls mesoderm patterning have remained enigmatic, and we describe here the application of photoactivatable morpholino oligonucleotides to determine the Tbx16 transcriptome in MPCs. We identify 124 Tbx16-regulated genes that are expressed in zebrafish gastrulae, including several developmental signaling proteins and regulators of gastrulation, myogenesis, and somitogenesis. Unexpectedly, we observe that loss of Tbx16 function precociously activates posterior hox genes in MPCs, and overexpression of a single posterior hox gene is sufficient to disrupt MPC migration. Our studies support a model in which Tbx16 regulates the timing of collinear hox gene activation to coordinate the anterior-posterior fates and positions of paraxial MPCs. PMID:27376691
Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish
Swartz, Mary E.; McCarthy, Neil; Norrie, Jacqueline L.; Eberhart, Johann K.
2016-01-01
The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face. PMID:27122171
Genetic analysis of tissue interactions required for otic placode induction in the zebrafish.
Mendonsa, E S; Riley, B B
1999-02-01
Development of the vertebrate inner ear begins during gastrulation with induction of the otic placode. Several embryonic tissues, including cephalic mesendoderm, notochord, and hindbrain, have been implicated as potential sources of otic-inducing signals. However, the relative contributions of these tissues have not been determined, nor have any genes affecting placode induction been identified. To address these issues, we analyzed otic placode induction in zebrafish mutants that are deficient in prospective otic-inducing tissues. Otic development was monitored by examining mutant embryos for morphological changes and, in some cases, by visualizing expression patterns of dlx-3 or pax-2.1 in preotic cells several hours before otic placode formation. In cyclops (cyc-) mutants, which develop with a partial deficiency of prechordal mesendoderm, otic induction is delayed by up to 1 h. In one-eyed pinhead (oep-) mutants, which are more completely deficient in prechordal mesendoderm, otic induction is delayed by 1.5 h, and morphology of the otic vesicles is abnormal. Expression of marker genes in other regions of the neural plate is normal, suggesting that ablation of prechordal mesendoderm selectively inhibits otic induction. In contrast, the timing and morphology of otic development is not affected by mutations in no tail (ntl) or floating head (flh), which prevent notochord differentiation. Similarly, a mutation in valentino (val), which blocks early differentiation of rhombomeres 5 and 6 in the hindbrain, does not delay otic induction, although subsequent patterning of the otic vesicle is impaired. To test whether inductive signals from one tissue can compensate for loss of another, we generated double or triple mutants with various combinations of the above mutations. In none of the multiple mutants do the flh or val mutations exacerbate delays in placode induction, although val does contribute additively to defects in subsequent patterning of the otic vesicle. In contrast, mutants homozygous for both oep and ntl, which interact synergistically to disrupt differentiation of cephalic and axial mesendoderm, show a delay in otic development of about 3 h. These data suggest that cephalic mesendoderm, including prechordal mesendoderm and anterior paraxial mesendoderm, provides the first otic-inducing signals during gastrulation, whereas chordamesoderm plays no discernible role in this process. Because val- mutants are deficient for only a portion of the hindbrain, we cannot rule out a role for that tissue in otic placode induction. However, if the hindbrain does provide otic-inducing signals, they apparently differ quantitatively or qualitatively from the signals required for vesicle patterning, as val disrupts only the latter. Copyright 1999 Academic Press.
Conjoined twins: implications for blastogenesis.
Machin, G A
1993-01-01
It is difficult to draw sweeping general conclusions about the blastogenesis of CT, principally because so few thoroughly studied cases are reported. It is to be hoped that methods such as painstaking gross or electronic dissection will increase the number of well-documented cases. Nevertheless, the following conclusions can be proposed: 1. Most CT can be classified into a few main anatomic types (or paradigms), and there are also rare transitional types that show gradation between the main types. 2. Most CT have two full notochordal axes (Fig. 5); the ventral organs induced along these axes may be severely disorientated, malformed, or aplastic in the process of being arranged within one body. Reported anatomic types of CT represent those notochordal arrangements that are compatible with reasonably complete embryogenesis. New ventro-lateral axes are formed in many types of CT because of space constriction in the ventral zones. The new structures represent areas of "mutual recognition and organization" rather than "fusion" (Fig. 17). 3. Orientations of the pairs of axes in the embryonic disc can be deduced from the resulting anatomy. Except for dicephalus, the axes are not side by side. Notochords are usually "end-on" or ventro-ventral in orientation (Fig. 5). 4. A single gastrulation event or only partial duplicated gastrulation event seems to occur in dicephalics, despite a full double notochord. 5. The anatomy of diprosopus requires further clarification, particularly in cases with complete crania rather than anencephaly-equivalent. Diprosopus CT offer the best opportunity to study the effects of true forking of the notochord, if this actually occurs. 6. In cephalothoracopagus, thoracopagus, and ischiopagus, remarkably complete new body forms are constructed at right angles to the notochordal axes. The extent of expression of viscera in these types depends on the degree of noncongruity of their ventro-ventral axes (Figs. 4, 11, 15b). 7. Some organs and tissues fail to develop (interaction aplasia) because of conflicting migrational pathways or abnormal concentrations of morphogens in and around the neoaxes. 8. Where the cardiovascular system is discordantly expressed in dicephalus and thoracopagus twins, the right heart is more severely malformed, depending on the degree of interaction of the two embryonic septa transversa. 9. The septum transversum provides mesenchymal components to the heawrt and liver; the epithelial components (derived fro the foregut[s]) may vary in number from the number of mesenchymal septa transversa contributing to the liver of the CT embryo.(ABSTRACT TRUNCATED AT 400 WORDS)
2008-01-01
Introduction The Jewish religion is characterized by a strict association between faith and practical precept. Jewish law has two sections, the written and the oral tradition. The foundation of the written law and the origin of authority is the Torah, the first five books of the Scripture. It is an expression of God’s revelation, teaching and guiding humanity. The oral laws interpret, expand, and elucidate the written Torah and behavior patterns regulate new rules and customs. The main parts of the oral law are as follows: the Mishnah, the Talmud, Post-Talmudic Codes and. Responsa Literature. Discussion Life is a process that has a beginning and an end. The consensus about the time when human life really begins is still not reached among scientists, philosophers, ethicists, sociologists and theologizes. The scientific data suggested that a single developmental moment marking the beginning of human life does not exist. Current biological perspectives on when human life begins range through fertilization, gastrulation, to birth and even after. The development of a newborn is a smoothly continuous process. Results Procreation is acknowledged in the Bible to be the gift of God. The (Halachic) Jewish interpretation of when human life begins is extracted predominantly from procreation is acknowledged in the Bible to be the gift of God. The Jewish interpretation of when human life begins is extracted predominantly from The Halachic sources. The Bible does not make any other direct references regarding the beginning of human life. Conclusion While the Talmud gives the full status of humanness to a child at birth, the rabbinical writings have partially extended the acquisition of humanness to the 13th postnatal day of life for full-term infants. The Babylonian Talmud Yevamot 69b states that: “the embryo is considered to be mere water until the fortieth day.” Afterwards, it is considered subhuman until it is born. The issues of abortion, embryo research, multifetal reduction and cloning will be discussed according to Jewish Law perspectives. Life is a process that has a beginning and an end. The consensus about the time when human life really begins is still not reached among scientists, philosophers, ethicists, sociologists and theologizes. The scientific data suggested that a single developmental moment marking the beginning of human life does not exist. Current biological perspectives on when human life begins range through fertilization, gastrulation, to birth and even after. The development of a newborn is a smoothly continuous process. PMID:18551364
The beginning of human life : status of embryo. Perspectives in Halakha (Jewish Religious Law).
Schenker, Joseph G
2008-06-01
The Jewish religion is characterized by a strict association between faith and practical precept. Jewish law has two sections, the written and the oral tradition. The foundation of the written law and the origin of authority is the Torah, the first five books of the Scripture. It is an expression of God's revelation, teaching and guiding humanity. The oral laws interpret, expand, and elucidate the written Torah and behavior patterns regulate new rules and customs. The main parts of the oral law are as follows: the Mishnah, the Talmud, Post-Talmudic Codes and. Responsa Literature. Life is a process that has a beginning and an end. The consensus about the time when human life really begins is still not reached among scientists, philosophers, ethicists, sociologists and theologizes. The scientific data suggested that a single developmental moment marking the beginning of human life does not exist. Current biological perspectives on when human life begins range through fertilization, gastrulation, to birth and even after. The development of a newborn is a smoothly continuous process. Procreation is acknowledged in the Bible to be the gift of God. The (Halachic) Jewish interpretation of when human life begins is extracted predominantly from procreation is acknowledged in the Bible to be the gift of God. The Jewish interpretation of when human life begins is extracted predominantly from The Halachic sources. The Bible does not make any other direct references regarding the beginning of human life. While the Talmud gives the full status of humanness to a child at birth, the rabbinical writings have partially extended the acquisition of humanness to the 13th postnatal day of life for full-term infants. The Babylonian Talmud Yevamot 69b states that: "the embryo is considered to be mere water until the fortieth day." Afterwards, it is considered subhuman until it is born. The issues of abortion, embryo research, multifetal reduction and cloning will be discussed according to Jewish Law perspectives. Life is a process that has a beginning and an end. The consensus about the time when human life really begins is still not reached among scientists, philosophers, ethicists, sociologists and theologizes. The scientific data suggested that a single developmental moment marking the beginning of human life does not exist. Current biological perspectives on when human life begins range through fertilization, gastrulation, to birth and even after. The development of a newborn is a smoothly continuous process.
Multiple Roles of Pitx2 in Cardiac Development and Disease
2017-01-01
Cardiac development is a complex morphogenetic process initiated as bilateral cardiogenic mesoderm is specified at both sides of the gastrulating embryo. Soon thereafter, these cardiogenic cells fuse at the embryonic midline configuring a symmetrical linear cardiac tube. Left/right bilateral asymmetry is first detected in the forming heart as the cardiac tube bends to the right, and subsequently, atrial and ventricular chambers develop. Molecular signals emanating from the node confer distinct left/right signalling pathways that ultimately lead to activation of the homeobox transcription factor Pitx2 in the left side of distinct embryonic organ anlagen, including the developing heart. Asymmetric expression of Pitx2 has therefore been reported during different cardiac developmental stages, and genetic deletion of Pitx2 provided evidence of key regulatory roles of this transcription factor during cardiogenesis and thus congenital heart diseases. More recently, impaired Pitx2 function has also been linked to arrhythmogenic processes, providing novel roles in the adult heart. In this manuscript, we provide a state-of-the-art review of the fundamental roles of Pitx2 during cardiogenesis, arrhythmogenesis and its contribution to congenital heart diseases. PMID:29367545
Mutations in the Katnb1 gene cause left-right asymmetry and heart defects.
Furtado, Milena B; Merriner, D Jo; Berger, Silke; Rhodes, Danielle; Jamsai, Duangporn; O'Bryan, Moira K
2017-12-01
The microtubule-severing protein complex katanin is composed two subunits, the ATPase subunit, KATNA1, and the noncatalytic regulatory subunit, KATNB1. Recently, the Katnb1 gene has been linked to infertility, regulation of centriole and cilia formation in fish and mammals, as well as neocortical brain development. KATNB1 protein is expressed in germ cells in humans and mouse, mitotic/meiotic spindles and cilia, although the full expression pattern of the Katnb1 gene has not been described. Using a knockin-knockout mouse model of Katnb1 dysfunction we demonstrate that Katnb1 is ubiquitously expressed during embryonic development, although a stronger expression is seen in the crown cells of the gastrulation organizer, the murine node. Furthermore, null and hypomorphic Katnb1 gene mutations show a novel correlation between Katnb1 dysregulation and the development of impaired left-right signaling, including cardiac malformations. Katanin function is a critical regulator of heart development in mice. These findings are potentially relevant to human cardiac development. Developmental Dynamics 246:1027-1035, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Alkbh4 and Atrn Act Maternally to Regulate Zebrafish Epiboly
Sun, Qingrui; Liu, Xingfeng; Gong, Bo; Wu, Di; Meng, Anming; Jia, Shunji
2017-01-01
During embryonic gastrulation, coordinated cell movements occur to bring cells to their correct position. Among them, epiboly produces the first distinct morphological changes, which is essential for the early development of zebrafish. Despite its fundamental importance, little is known to understand the underlying molecular mechanisms. By generating maternal mutant lines with CRISPR/Cas9 technology and using morpholino knockdown strategy, we showed that maternal Alkbh4 depletion leads to severe epiboly defects in zebrafish. Immunofluorescence assays revealed that Alkbh4 promotes zebrafish embryonic epiboly through regulating actomyosin contractile ring formation, which is composed of Actin and non-muscular myosin II (NMII). To further investigate this process, yeast two hybridization assay was performed and Atrn was identified as a binding partner of Alkbh4. Combining with the functional results of Alkbh4, we found that maternal Atrn plays a similar role in zebrafish embryonic morphogenesis by regulating actomyosin formation. On the molecular level, our data revealed that Atrn prefers to interact with the active form of Alkbh4 and functions together with it to regulate the demethylation of Actin, the actomyosin formation, and subsequently the embryonic epiboly. PMID:28924386
Fox (forkhead) genes are involved in the dorso-ventral patterning of the Xenopus mesoderm.
El-Hodiri, H; Bhatia-Dey, N; Kenyon, K; Ault, K; Dirksen, M; Jamrich, M
2001-01-01
Fox (forkhead/winged helix) genes encode a family of transcription factors that are involved in embryonic pattern formation, regulation of tissue specific gene expression and tumorigenesis. Several of them are transcribed during Xenopus embryogenesis and are important for the patterning of ectoderm, mesoderm and endoderm. We have isolated three forkhead genes that are activated during gastrulation and play an important role in the dorso-ventral patterning of the mesoderm. XFKH1 (FoxA4b), the first vertebrate forkhead gene to be implicated in embryonic pattern formation, is expressed in the Spemann-Mangold organizer region and later in the embryonic notochord. XFKH7, the Xenopus orthologue of the murine Mfh1(Foxc2), is expressed in the presomitic mesoderm, but not in the notochord or lateral plate mesoderm. Finally, XFD-13'(FoxF1b)1 is expressed in the lateral plate mesoderm, but not in the notochord or presomitic mesoderm. Expression pattern and functional experiments indicate that these three forkhead genes are involved in the dorso-ventral patterning of the mesoderm.
The TINS Lecture. Understanding the roles of Otx1 and Otx2 in the control of brain morphogenesis.
Acampora, D; Simeone, A
1999-03-01
The murine homologs of the orthodenticle (otd) gene of Drosophila, Otx1 and Otx2, have an important role in brain morphogenesis. Analysis of Otx1 and Otx2 null mice reveals that Otx1 is required primarily for corticogenesis and sense-organ development,while Otx2 is necessary for specification and maintenance of anterior neural plate as well as for proper gastrulation. Cross-phylum recoveries of Otx1 abnormalities by Drosophila otd, and vice versa, indicate that genetic functions required in mammalian-brain development evolved in a primitive ancestor of flies and mice. Knock-in mouse models in which Otx2 was replaced with Otx1, and vice versa, provide evidence that the existence of Otx1-/- and Otx2-/- divergent phenotypes largely reflects differences in expression patterns rather than in the biochemical activity of OTX1 and OTX2. In evolutionary terms, some of these findings lead us to hypothesize a fascinating and crucial role for Otx genes that contributes to the genetic program required for the specification of the development of the vertebrate head.
Trepat, Xavier; Chen, Zaozao; Jacobson, Ken
2015-01-01
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251
Towards a unified theory for morphomechanics
Taber, Larry A.
2009-01-01
Mechanical forces are closely involved in the construction of an embryo. Experiments have suggested that mechanical feedback plays a role in regulating these forces, but the nature of this feedback is poorly understood. Here, we propose a general principle for the mechanics of morphogenesis, as governed by a pair of evolution equations based on feedback from tissue stress. In one equation, the rate of growth (or contraction) depends on the difference between the current tissue stress and a target (homeostatic) stress. In the other equation, the target stress changes at a rate that depends on the same stress difference. The parameters in these morphomechanical laws are assumed to depend on stress rate. Computational models are used to illustrate how these equations can capture a relatively wide range of behaviours observed in developing embryos, as well as show the limitations of this theory. Specific applications include growth of pressure vessels (e.g. the heart, arteries and brain), wound healing and sea urchin gastrulation. Understanding the fundamental principles of tissue construction can help engineers design new strategies for creating replacement tissues and organs in vitro. PMID:19657011
Changing Faces of Transcriptional Regulation Reflected by Zic3
Winata, Cecilia Lanny; Kondrychyn, Igor; Deddens, J.C.; Korzh, Vladimir
2015-01-01
The advent of genomics in the study of developmental mechanisms has brought a trove of information on gene datasets and regulation during development, where the Zic family of zinc-finger proteins plays an important role. Genomic analysis of the modes of action of Zic3 in pluripotent cells demonstrated its requirement for maintenance of stem cells pluripotency upon binding to the proximal regulatory regions (promoters) of genes associated with cell pluripotency (Nanog, Sox2, Oct4, etc.) as well as cell cycle, proliferation, oncogenesis and early embryogenesis. In contrast, during gastrulation and neurulation Zic3 acts by binding the distal regulatory regions (enhancers, etc) associated with control of gene transcription in the Nodal and Wnt signaling pathways, including genes that act to break body symmetry. This illustrates a general role of Zic3 as a transcriptional regulator that acts not only alone, but in many instances in conjunction with other transcription factors. The latter is done by binding to adjacent sites in the context of multi-transcription factor complexes associated with regulatory elements. PMID:26085810
Isern, Joan; He, Zhiyong; Fraser, Stuart T.; Nowotschin, Sonja; Ferrer-Vaquer, Anna; Moore, Rebecca; Hadjantonakis, Anna-Katerina; Schulz, Vincent; Tuck, David; Gallagher, Patrick G.
2011-01-01
Primitive erythroid (EryP) progenitors are the first cell type specified from the mesoderm late in gastrulation. We used a transgenic reporter to image and purify the earliest blood progenitors and their descendants from developing mouse embryos. EryP progenitors exhibited remarkable proliferative capacity in the yolk sac immediately before the onset of circulation, when these cells comprise nearly half of all cells of the embryo. Global expression profiles generated at 24-hour intervals from embryonic day 7.5 through 2.5 revealed 2 abrupt changes in transcript diversity that coincided with the entry of EryPs into the circulation and with their late maturation and enucleation, respectively. These changes were paralleled by the expression of critical regulatory factors. Experiments designed to test predictions from these data demonstrated that the Wnt-signaling pathway is active in EryP progenitors, which display an aerobic glycolytic profile and the numbers of which are regulated by transforming growth factor-β1 and hypoxia. This is the first transcriptome assembled for a single hematopoietic lineage of the embryo over the course of its differentiation. PMID:21263157
Method of Electroporation for the Early Chick Embryo
NASA Astrophysics Data System (ADS)
Hatakeyama, Jun; Shimamura, Kenji
Chick embryos have long been one of the favored model systems in the field of embryology and developmental biology. Recent advances in the gene manipulation technologies (Muramatsu et al., 1997; Nakamura et al., 2004) make this model system even more attractive for the developmental biologists (see review by Stern, 2005). Thanks to its two dimensional geometry, easiness in accessibility and observation, and well-established fate maps (e.g. Couly and Le Douarin, 1988; Garcia-Martinez et al., 1993; Hatada and Stern, 1994; Psychoyos and Stern, 1996; Sawada and Aoyama, 1999; Cobos et al., 2001; Lopez-Sanchez et al., 2001; Redkar et al., 2001; Fernandez-Garre et al., 2002; Kimura et al., 2006; Matsushita et al., 2008), it has great advantages especially for studies at the early embryonic stages, such as the processes of gastrulation, neural induction, left-right patterning, etc. For such purposes, a whole embryo culture system, originally invented by Dennis A. T. New (New, 1955), and its derivatives (Flamme, 1987; Sundin and Eichele, 1992; Stern, 1993; Chapman et al., 2001) have been widely used.
Benoit, Beatrice; He, Chun Hua; Zhang, Fan; Votruba, Sarah M; Tadros, Wael; Westwood, J Timothy; Smibert, Craig A; Lipshitz, Howard D; Theurkauf, William E
2009-03-01
Genetic control of embryogenesis switches from the maternal to the zygotic genome during the maternal-to-zygotic transition (MZT), when maternal mRNAs are destroyed, high-level zygotic transcription is initiated, the replication checkpoint is activated and the cell cycle slows. The midblastula transition (MBT) is the first morphological event that requires zygotic gene expression. The Drosophila MBT is marked by blastoderm cellularization and follows 13 cleavage-stage divisions. The RNA-binding protein Smaug is required for cleavage-independent maternal transcript destruction during the Drosophila MZT. Here, we show that smaug mutants also disrupt syncytial blastoderm stage cell-cycle delays, DNA replication checkpoint activation, cellularization, and high-level zygotic expression of protein coding and micro RNA genes. We also show that Smaug protein levels increase through the cleavage divisions and peak when the checkpoint is activated and zygotic transcription initiates, and that transgenic expression of Smaug in an anterior-to-posterior gradient produces a concomitant gradient in the timing of maternal transcript destruction, cleavage cell cycle delays, zygotic gene transcription, cellularization and gastrulation. Smaug accumulation thus coordinates progression through the MZT.
The roles of ERAS during cell lineage specification of mouse early embryonic development.
Zhao, Zhen-Ao; Yu, Yang; Ma, Huai-Xiao; Wang, Xiao-Xiao; Lu, Xukun; Zhai, Yanhua; Zhang, Xiaoxin; Wang, Haibin; Li, Lei
2015-08-01
Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β-catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development. © 2015 The Authors.
Siegert, F; Weijer, C J; Nomura, A; Miike, H
1994-01-01
We describe the application of a novel image processing method, which allows quantitative analysis of cell and tissue movement in a series of digitized video images. The result is a vector velocity field showing average direction and velocity of movement for every pixel in the frame. We apply this method to the analysis of cell movement during different stages of the Dictyostelium developmental cycle. We analysed time-lapse video recordings of cell movement in single cells, mounds and slugs. The program can correctly assess the speed and direction of movement of either unlabelled or labelled cells in a time series of video images depending on the illumination conditions. Our analysis of cell movement during multicellular development shows that the entire morphogenesis of Dictyostelium is characterized by rotational cell movement. The analysis of cell and tissue movement by the velocity field method should be applicable to the analysis of morphogenetic processes in other systems such as gastrulation and neurulation in vertebrate embryos.
Survey of O-GlcNAc level variations in Xenopus laevis from oogenesis to early development.
Dehennaut, Vanessa; Lefebvre, Tony; Leroy, Yves; Vilain, Jean-Pierre; Michalski, Jean-Claude; Bodart, Jean-François
2009-04-01
Little is known about the impact of O-linked-N-acetylglucosaminylation (O-GlcNAc) in gametes production and developmental processes. Here we investigated changes in O-GlcNAc, UDP-GlcNAc and O-GlcNAc transferase (OGT) levels in Xenopus laevis from oogenesis to embryo hatching. We showed that in comparison to stage VI, stages I-V oocytes expressed higher levels of O-GlcNAc correlating changes in OGT expression, but not in UDP-GlcNAc pools. Upon progesterone stimulation, an O-GlcNAc level burst occurred during meiotic resumption long before MPF and Mos-Erk2 pathways activations. Finally, we observed high levels of O-GlcNAc, UDP-GlcNAc and OGT during segmentation that decreased concomitantly at the onset of gastrulation. Nevertheless, no correlation between the glycosylation, the nucleotide-sugar and the glycosyltransferase was observed after neurulation. Our results show that O-GlcNAc is regulated throughout oogenesis and development within a complex pattern and suggest that dysfunctions in the dynamics of this glycosylation could lead to developmental abnormalities.
Mathematical modelling in developmental biology.
Vasieva, Olga; Rasolonjanahary, Manan'Iarivo; Vasiev, Bakhtier
2013-06-01
In recent decades, molecular and cellular biology has benefited from numerous fascinating developments in experimental technique, generating an overwhelming amount of data on various biological objects and processes. This, in turn, has led biologists to look for appropriate tools to facilitate systematic analysis of data. Thus, the need for mathematical techniques, which can be used to aid the classification and understanding of this ever-growing body of experimental data, is more profound now than ever before. Mathematical modelling is becoming increasingly integrated into biological studies in general and into developmental biology particularly. This review outlines some achievements of mathematics as applied to developmental biology and demonstrates the mathematical formulation of basic principles driving morphogenesis. We begin by describing a mathematical formalism used to analyse the formation and scaling of morphogen gradients. Then we address a problem of interplay between the dynamics of morphogen gradients and movement of cells, referring to mathematical models of gastrulation in the chick embryo. In the last section, we give an overview of various mathematical models used in the study of the developmental cycle of Dictyostelium discoideum, which is probably the best example of successful mathematical modelling in developmental biology.
Active tension network model suggests an exotic mechanical state realized in epithelial tissues
NASA Astrophysics Data System (ADS)
Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streichan, Sebastian J.; Shraiman, Boris I.
2017-12-01
Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behaviour remains an open problem. Here we formulate and analyse the active tension network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodelling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal--`isogonal'--deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit fly embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena.
Eriksson, Bo Joakim; Tait, Noel N.
2012-01-01
We present here a description of early development in the onychophoran Euperipatoides kanangrensis with emphasis on processes that are ambiguously described in older literature. Special focus has been on the pattern of early cleavage, blastoderm and germinal disc development and gastrulation. The formation of the blastopore, stomodeum and proctodeum is described from sectioned material using light and transmission electron microscopy as well as whole-mount material stained for nuclei and gene expression. The early cleavages were found to be superficial, contrary to earlier descriptions of cleavage in yolky, ovoviviparous onychophorans. Also, contrary to earlier descriptions, the embryonic anterior-posterior axis is not predetermined in the egg. Our data support the view of a blastopore that becomes elongated and slit-like, resembling some of the earliest descriptions. From gene expression data, we concluded that the position of the proctodeum is the most posterior pit in the developing embryo. This description of early development adds to our knowledge of the staging of embryonic development in onychophorans necessary for studies on the role of developmental changes in evolution. PMID:22430148
Analysis of Cytoskeletal and Motility Proteins in the Sea Urchin Genome Assembly
RL, Morris; MP, Hoffman; RA, Obar; SS, McCafferty; IR, Gibbons; AD, Leone; J, Cool; EL, Allgood; AM, Musante; KM, Judkins; BJ, Rossetti; AP, Rawson; DR, Burgess
2007-01-01
The sea urchin embryo is a classical model system for studying the role of the cytoskeleton in such events as fertilization, mitosis, cleavage, cell migration and gastrulation. We have conducted an analysis of gene models derived from the Strongylocentrotus purpuratus genome assembly and have gathered strong evidence for the existence of multiple gene families encoding cytoskeletal proteins and their regulators in sea urchin. While many cytoskeletal genes have been cloned from sea urchin with sequences already existing in public databases, genome analysis reveals a significantly higher degree of diversity within certain gene families. Furthermore, genes are described corresponding to homologs of cytoskeletal proteins not previously documented in sea urchins. To illustrate the varying degree of sequence diversity that exists within cytoskeletal gene families, we conducted an analysis of genes encoding actins, specific actin-binding proteins, myosins, tubulins, kinesins, dyneins, specific microtubule-associated proteins, and intermediate filaments. We conducted ontological analysis of select genes to better understand the relatedness of urchin cytoskeletal genes to those of other deuterostomes. We analyzed developmental expression (EST) data to confirm the existence of select gene models and to understand their differential expression during various stages of early development. PMID:17027957
Tbx6 controls left-right asymmetry through regulation of Gdf1.
Concepcion, Daniel; Hamada, Hiroshi; Papaioannou, Virginia E
2018-05-04
The Tbx6 transcription factor plays multiple roles during gastrulation, somite formation and body axis determination. One of the notable features of the Tbx6 homozygous mutant phenotype is randomization of left/right axis determination. Cilia of the node are morphologically abnormal, leading to the hypothesis that disrupted nodal flow is the cause of the laterality defect. However, Tbx6 is expressed around but not in the node, leading to uncertainty as to the mechanism of this effect. In this study, we have examined the molecular characteristics of the node and the genetic cascade determining left/right axis determination. We found evidence that a leftward nodal flow is generated in Tbx6 homozygous mutants despite the cilia defect, establishing the initial asymmetric gene expression in Dand5 around the node, but that the transduction of the signal from the node to the left lateral plate mesoderm is disrupted due to lack of expression of the Nodal coligand Gdf1 around the node. Gdf1 was shown to be a downstream target of Tbx6 and a Gdf1 transgene partially rescues the laterality defect. © 2018. Published by The Company of Biologists Ltd.
Probing transcription-specific outputs of β-catenin in vivo
Valenta, Tomas; Gay, Max; Steiner, Sarah; Draganova, Kalina; Zemke, Martina; Hoffmans, Raymond; Cinelli, Paolo; Aguet, Michel; Sommer, Lukas; Basler, Konrad
2011-01-01
β-Catenin, apart from playing a cell-adhesive role, is a key nuclear effector of Wnt signaling. Based on activity assays in Drosophila, we generated mouse strains where the endogenous β-catenin protein is replaced by mutant forms, which retain the cell adhesion function but lack either or both of the N- and the C-terminal transcriptional outputs. The C-terminal activity is essential for mesoderm formation and proper gastrulation, whereas N-terminal outputs are required later during embryonic development. By combining the double-mutant β-catenin with a conditional null allele and a Wnt1-Cre driver, we probed the role of Wnt/β-catenin signaling in dorsal neural tube development. While loss of β-catenin protein in the neural tube results in severe cell adhesion defects, the morphology of cells and tissues expressing the double-mutant form is normal. Surprisingly, Wnt/β-catenin signaling activity only moderately regulates cell proliferation, but is crucial for maintaining neural progenitor identity and for neuronal differentiation in the dorsal spinal cord. Our model animals thus allow dissecting signaling and structural functions of β-catenin in vivo and provide the first genetic tool to generate cells and tissues that entirely and exclusively lack canonical Wnt pathway activity. PMID:22190459
Role of platelet-derived growth factors in physiology and medicine
Andrae, Johanna; Gallini, Radiosa; Betsholtz, Christer
2008-01-01
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) have served as prototypes for growth factor and receptor tyrosine kinase function for more than 25 years. Studies of PDGFs and PDGFRs in animal development have revealed roles for PDGFR-α signaling in gastrulation and in the development of the cranial and cardiac neural crest, gonads, lung, intestine, skin, CNS, and skeleton. Similarly, roles for PDGFR-β signaling have been established in blood vessel formation and early hematopoiesis. PDGF signaling is implicated in a range of diseases. Autocrine activation of PDGF signaling pathways is involved in certain gliomas, sarcomas, and leukemias. Paracrine PDGF signaling is commonly observed in epithelial cancers, where it triggers stromal recruitment and may be involved in epithelial–mesenchymal transition, thereby affecting tumor growth, angiogenesis, invasion, and metastasis. PDGFs drive pathological mesenchymal responses in vascular disorders such as atherosclerosis, restenosis, pulmonary hypertension, and retinal diseases, as well as in fibrotic diseases, including pulmonary fibrosis, liver cirrhosis, scleroderma, glomerulosclerosis, and cardiac fibrosis. We review basic aspects of the PDGF ligands and receptors, their developmental and pathological functions, principles of their pharmacological inhibition, and results using PDGF pathway-inhibitory or stimulatory drugs in preclinical and clinical contexts. PMID:18483217
Vitorino, Marta; Silva, Ana Cristina; Inácio, José Manuel; Ramalho, José Silva; Gur, Michal; Fainsod, Abraham; Steinbeisser, Herbert; Belo, José António
2015-01-01
Protein Kinase Domain Containing, Cytoplasmic (PKDCC) is a protein kinase which has been implicated in longitudinal bone growth through regulation of chondrocytes formation. Nevertheless, the mechanism by which this occurs remains unknown. Here, we identified two new members of the PKDCC family, Pkdcc1 and Pkdcc2 from Xenopus laevis. Interestingly, our knockdown experiments revealed that these two proteins are both involved on blastopore and neural tube closure during gastrula and neurula stages, respectively. In vertebrates, tissue polarity and cell movement observed during gastrulation and neural tube closure are controlled by Wnt/Planar Cell Polarity (PCP) molecular pathway. Our results showed that Pkdcc1 and Pkdcc2 promote the recruitment of Dvl to the plasma membrane. But surprisingly, they revealed different roles in the induction of a luciferase reporter under the control of Atf2 promoter. While Pkdcc1 induces Atf2 expression, Pkdcc2 does not, and furthermore inhibits its normal induction by Wnt11 and Wnt5a. Altogether our data show, for the first time, that members of the PKDCC family are involved in the regulation of JNK dependent Wnt/PCP signaling pathway. PMID:26270962
Meenakumari, Karukayil J; Banerjee, Arnab; Krishna, Amitabh
2009-01-01
The primary aim of this study was to determine the possible cause of slow or delayed embryonic development in Cynopterus sphinx by investigating morphological and steroidogenic changes in the corpus luteum (CL) and circulating hormone concentrations during two pregnancies of a year. This species showed delayed post-implantational embryonic development during gastrulation of the first pregnancy. Morphological features of the CL showed normal luteinization during both pregnancies. The CL did not change significantly in luteal cell size during the delay period of the first pregnancy as compared with the second pregnancy. The circulating progesterone and 17beta-estradiol concentrations were significantly lower during the period of delayed embryonic development as compared with the same stage of embryonic development during the second pregnancy. We also showed a marked decline in the activity of 3beta-hydroxysteroid dehydrogenase, P450 side chain cleavage enzyme, and steroidogenic acute regulatory peptide in the CL during the delay period. This may cause low circulating progesterone and estradiol synthesis and consequently delay embryonic development. What causes the decrease in steroidogenic factors in the CL during the period of delayed development in C. sphinx is under investigation.
Cilia are required for asymmetric nodal induction in the sea urchin embryo.
Tisler, Matthias; Wetzel, Franziska; Mantino, Sabrina; Kremnyov, Stanislav; Thumberger, Thomas; Schweickert, Axel; Blum, Martin; Vick, Philipp
2016-08-23
Left-right (LR) organ asymmetries are a common feature of metazoan animals. In many cases, laterality is established by a conserved asymmetric Nodal signaling cascade during embryogenesis. In most vertebrates, asymmetric nodal induction results from a cilia-driven leftward fluid flow at the left-right organizer (LRO), a ciliated epithelium present during gastrula/neurula stages. Conservation of LRO and flow beyond the vertebrates has not been reported yet. Here we study sea urchin embryos, which use nodal to establish larval LR asymmetry as well. Cilia were found in the archenteron of embryos undergoing gastrulation. Expression of foxj1 and dnah9 suggested that archenteron cilia were motile. Cilia were polarized to the posterior pole of cells, a prerequisite of directed flow. High-speed videography revealed rotating cilia in the archenteron slightly before asymmetric nodal induction. Removal of cilia through brief high salt treatments resulted in aberrant patterns of nodal expression. Our data demonstrate that cilia - like in vertebrates - are required for asymmetric nodal induction in sea urchin embryos. Based on these results we argue that the anterior archenteron represents a bona fide LRO and propose that cilia-based symmetry breakage is a synapomorphy of the deuterostomes.
Feinstein, P. G.; Kornfeld, K.; Hogness, D. S.; Mann, R. S.
1995-01-01
In Drosophila, the specific morphological characteristics of each segment are determined by the homeotic genes that regulate the expression of downstream target genes. We used a subtractive hybridization procedure to isolate activated target genes of the homeotic gene Ultrabithorax (Ubx). In addition, we constructed a set of mutant genotypes that measures the regulatory contribution of individual homeotic genes to a complex target gene expression pattern. Using these mutants, we demonstrate that homeotic genes can regulate target gene expression at the start of gastrulation, suggesting a previously unknown role for the homeotic genes at this early stage. We also show that, in abdominal segments, the levels of expression for two target genes increase in response to high levels of Ubx, demonstrating that the normal down-regulation of Ubx in these segments is functional. Finally, the DNA sequence of cDNAs for one of these genes predicts a protein that is similar to a human proto-oncogene involved in acute myeloid leukemias. These results illustrate potentially general rules about the homeotic control of target gene expression and suggest that subtractive hybridization can be used to isolate interesting homeotic target genes. PMID:7498738
The origin of mesoderm in phoronids
NASA Technical Reports Server (NTRS)
Freeman, Gary; Martindale, Mark Q.
2002-01-01
Descriptive studies of phoronid development have concluded that the mesoderm of these animals originates from the endoderm during gastrulation. This interpretation has been tested by labeling one blastomere of 4- through 16-cell embryos and examining the position and germ layers occupied by the labeled clones of cells in the larva. No 2 injections gave rise to identical clones of cells, suggesting that the cleavage program does not generate cells of unique identity and that cell fates are established at later developmental time points. In many cases, a relatively large sector composed of ectodermal cells was labeled. When these labeled cells were adjacent to the mouth or anus of the larva, muscle and mesenchyme cells originated from the labeled clones. Under these circumstances, nerve cells also originated from these labeled sectors. These labeling studies also showed that endodermal cells can give rise to mesodermal and neural cells. These results suggest that nerve and muscle cells are induced to form at ectodermal-endodermal boundaries from both germ layers. These marking experiments also confirmed the observation that nerve cells originate both from the apical organ and the trunk region and show for the first time that the intestine originates by ingression of posterior ectoderm.
Muralidharan, Pooja; Connors, Craig T; Mohammed, Arooj S; Sarmah, Swapnalee; Marrs, Kathleen; Marrs, James A; Chism, Grady W
2017-09-01
Prenatal ethanol exposure causes the most frequent preventable birth disorder, fetal alcohol spectrum disorder (FASD). The effect of turmeric extracts in rescuing an ethanol-induced developmental defect using zebrafish as a model was determined. Ethanol-induced oxidative stress is one of the major mechanisms underlying FASD. We hypothesize that antioxidant inducing properties of turmeric may alleviate ethanol-induced defects. Curcuminoid content of the turmeric powder extract (5 mg/mL turmeric in ethanol) was determined by UPLC and found to contain Curcumin (124.1 ± 0.2 μg/mL), Desmethoxycurcumin (43.4 ± 0.1 μg/mL), and Bisdemethoxycurcumin (36.6 ± 0.1 μg/mL). Zebrafish embryos were treated with 100 mM (0.6% v/v) ethanol during gastrulation through organogenesis (2 to 48 h postfertilization (hpf)) and supplemented with turmeric extract to obtain total curcuminoid concentrations of 0, 1.16, 1.72, or 2.32 μM. Turmeric supplementation showed significant rescue of the body length at 72 hpf compared to ethanol-treated embryos. The mechanism underlying the rescue remains to be determined. © 2017 Institute of Food Technologists®.
Fish embryo toxicity of carbamazepine, diclofenac and metoprolol.
van den Brandhof, Evert-Jan; Montforts, Mark
2010-11-01
Frequently measured pharmaceuticals in environmental samples were tested in fish embryo toxicity (FET) tests with Danio rerio, based on the draft OECD test protocol. In this FET test 2-h-old zebrafish embryos were exposed for 72 h to carbamazepine, diclofenac and metoprolol to observe effects on embryo mortality, gastrulation, somite formation, tail movement and detachment, pigmentation, heartbeat, malformation of head, otoliths and heart, scoliosis, deformity of yolk, and hatching success at 24, 48 and 72 h. We found specific effects on growth retardation above 30.6 mg/l for carbamazepine, on hatching, yolk sac and tail deformation above 1.5mg/l for diclofenac, and on scoliosis and growth retardation above 12.6 mg/l for metoprolol. Scoring all effect parameters, the 72-h-EC(50) values were: for carbamazepine 86.5mg/l, for diclofenac 5.3mg/l and for metoprolol 31.0mg/l (mean measured concentrations). In conclusion, our results for carbamazepine and metoprolol are in agreement with other findings for aquatic toxicity, and also fish embryos responded in much the same way as rat embryos did. For diclofenac, the FET test performs comparably to Early Life Stage testing. Copyright © 2010 Elsevier Inc. All rights reserved.
Phillips, Bryan T; Kwon, Hye-Joo; Melton, Colt; Houghtaling, Paul; Fritz, Andreas; Riley, Bruce B
2006-06-15
The zebrafish muscle segment homeobox genes msxB, msxC and msxE are expressed in partially overlapping domains in the neural crest and preplacodal ectoderm. We examined the roles of these msx genes in early development. Disrupting individual msx genes causes modest variable defects, whereas disrupting all three produces a reproducible severe phenotype, suggesting functional redundancy. Neural crest differentiation is blocked at an early stage. Preplacodal development begins normally, but placodes arising from the msx expression domain later show elevated apoptosis and are reduced in size. Cell proliferation is normal in these tissues. Unexpectedly, Msx-deficient embryos become ventralized by late gastrulation whereas misexpression of msxB dorsalizes the embryo. These effects appear to involve Distal-less (Dlx) protein activity, as loss of dlx3b and dlx4b suppresses ventralization in Msx-depleted embryos. At the same time, Msx-depletion restores normal preplacodal gene expression to dlx3b-dlx4b mutants. These data suggest that mutual antagonism between Msx and Dlx proteins achieves a balance of function required for normal preplacodal differentiation and placement of the neural-nonneural border.
Notochord Morphogenesis in Mice: Current Understanding & Open Questions
Balmer, Sophie; Nowotschin, Sonja; Hadjantonakis, Anna-Katerina
2016-01-01
The notochord is the structure which defines chordates. It is a rod-like mesodermal structure that runs the anterior-posterior length of the embryo, adjacent to the ventral neural tube. The notochord plays a critical role in embryonic tissue patterning, for example the dorsal-ventral patterning of the neural tube. The cells that will come to form the notochord are specified at gastrulation. Axial mesodermal cells arising at the anterior primitive streak migrate anteriorly as the precursors of the notochord and populate the notochordal plate. Interestingly, even though a lot of interest has centered on investigating the functional and structural roles of the notochord, we still have a very rudimentary understanding of notochord morphogenesis. The events driving the formation of the notochord are rapid, taking place over the period of approximately a day in mice. In this commentary we provide an overview of our current understanding of mouse notochord morphogenesis, from the initial specification of axial mesendodermal cells at the primitive streak, the emergence of these cells at the midline on the surface of the embryo, to their submergence and organization of the stereotypically positioned notochord. We will also discuss some key open questions. PMID:26845388
Duncan, S A
2005-12-01
Gene targeting in ES (embryonic stem) cells has been used extensively to study the role of proteins during embryonic development. In the traditional procedure, this requires the generation of chimaeric mice by introducing ES cells into blastocysts and allowing them to develop to term. Once chimaeric mice are produced, they are bred into a recipient mouse strain to establish germline transmission of the allele of interest. Although this approach has been used very successfully, the breeding cycles involved are time consuming. In addition, genes that are essential for organogenesis often have roles in the formation of extra-embryonic tissues that are essential for early stages of post-implantation development. For example, mice lacking the GATA transcription factors, GATA4 or GATA6, arrest during gastrulation due to an essential role for these factors in differentiation of extra-embryonic endoderm. This lethality has frustrated the study of these factors during the development of organs such as the liver and heart. Extraembryonic defects can, however, be circumvented by generating clonal mouse embryos directly from ES cells by tetraploid complementation. Here, we describe the usefulness and efficacy of this approach using GATA factors as an example.
Characterization of TALE genes expression during the first lineage segregation in mammalian embryos.
Sonnet, Wendy; Rezsöhazy, Rene; Donnay, Isabelle
2012-11-01
Three amino acid loop extension (TALE) homeodomain-containing transcription factors are generally recognized for their role in organogenesis and differentiation during embryogenesis. However, very little is known about the expression and function of Meis, Pbx, and Prep genes during early development. In order to determine whether TALE proteins could contribute to the early cell fate decisions in mammalian development, this study aimed to characterize in a systematic manner the pattern of expression of all Meis, Pbx, and Prep genes from the precompaction to blastocyst stage corresponding to the first step of cell differentiation in mammals. To reveal to what extent TALE genes expression at these early stages is a conserved feature among mammals, this study was performed in parallel in the bovine and mouse models. We demonstrated the transcription and translation of TALE genes, before gastrulation in the two species. At least one member of Meis, Pbx, and Prep subfamilies was found expressed at the RNA and protein levels but different patterns of expression were observed between genes and between species, suggesting specific gene regulations. Taken together, these results suggest a previously unexpected involvement of these factors during the early development in mammals. Copyright © 2012 Wiley Periodicals, Inc.
Ratajczak, Mariusz Z.; Zuba-Surma, Ewa K.; Shin, Dong-Myung; Ratajczak, Janina; Kucia, Magda
2011-01-01
Recently, we purified rare CXC chemokine receptor 4 expressing (CXCR4+) small stem cells (SCs) from the murine bone marrow (BM) that express markers characteristic for embryonic (E)SCs, epiblast (EP)SCs, and primordial germ cells (PGCs). We named these primitive cells very small embryonic-like (VSEL) SCs (VSELs). Our data indicate that VSELs are also present in many other organs in mice and that they may differentiate into cells from all three germ layers. Similar SCs were also isolated from human cord blood (CB) and mobilized peripheral blood (mPB). We hypothesize that VSELs are deposited during gastrulation and organogenesis in developing organs/tissues of mammals as a population of pluripotent stem cells (PSCs) that give rise to tissue committed monopotent SCs and that their number decreases with age. Therefore VSELs could play a pivotal role in normal rejuvenation of adult tissues as well as involvement in regeneration of damaged organs. Thus, these cells are potential SCs candidates for regenerative medicine and we envision that the regenerative potential of these cells could be harnessed to decelerate the aging processes. PMID:18601995
RIC8A is essential for the organisation of actin cytoskeleton and cell-matrix interaction.
Ruisu, Katrin; Meier, Riho; Kask, Keiu; Tõnissoo, Tambet; Velling, Teet; Pooga, Margus
2017-08-15
RIC8A functions as a chaperone and guanine nucleotide exchange factor for a subset of G protein α subunits. Multiple G protein subunits mediate various signalling events that regulate cell adhesion and migration and the involvement of RIC8A in some of these processes has been demonstrated. We have previously shown that the deficiency of RIC8A causes a failure in mouse gastrulation and neurogenesis - major events in embryogenesis that rely on proper association of cells with the extracellular matrix (ECM) and involve active cell migration. To elaborate on these findings, we used Ric8a -/- mouse embryonic stem cells and Ric8a-deficient mouse embryonic fibroblasts, and found that RIC8A plays an important role in the organisation and remodelling of actin cytoskeleton and cell-ECM association. Ric8a-deficient cells were able to attach to different ECM components, but were unable to spread correctly, and did not form stress fibres or focal adhesion complexes. We also found that the presence of RIC8A is necessary for the activation of β1 integrins and integrin-mediated cell migration. Copyright © 2017 Elsevier Inc. All rights reserved.
VANGL2 regulates membrane trafficking of MMP14 to control cell polarity and migration.
Williams, B Blairanne; Cantrell, V Ashley; Mundell, Nathan A; Bennett, Andrea C; Quick, Rachel E; Jessen, Jason R
2012-05-01
Planar cell polarity (PCP) describes the polarized orientation of cells within the plane of a tissue. Unlike epithelial PCP, the mechanisms underlying PCP signaling in migrating cells remain undefined. Here, the establishment of PCP must be coordinated with dynamic changes in cell adhesion and extracellular matrix (ECM) organization. During gastrulation, the membrane type-1 matrix metalloproteinase (MT1-MMP or MMP14) is required for PCP and convergence and extension cell movements. We report that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell-surface availability of MMP14 in manner that is dependent on focal adhesion kinase. We demonstrate that zebrafish trilobite/vangl2 mutant embryos exhibit increased Mmp14 activity and decreased ECM. Furthermore, in vivo knockdown of Mmp14 partially rescues the Vangl2 loss-of-function convergence and extension phenotype. This study identifies a mechanism linking VANGL2 with MMP14 trafficking and suggests that establishment of PCP in migrating gastrula cells requires regulated proteolytic degradation or remodeling of the ECM. Our findings implicate matrix metalloproteinases as downstream effectors of PCP and suggest a broadly applicable mechanism whereby VANGL2 affects diverse morphogenetic processes.
Plank-Bazinet, Jennifer L; Mundell, Nathan A
2016-01-01
Uncommitted cells of the early mammalian embryo transition through distinct stages of pluripotency, including establishment of ground state "naïve" pluripotency in the early epiblast, transition to a post-implantation "primed" state, and subsequent lineage commitment of the gastrulating epiblast. Previous transcriptional profiling of in vitro models to recapitulate early to late epiblast transition and differentiation suggest that distinct gene regulatory networks are likely to function in each of these states. While the mechanisms underlying transition between pluripotent states are poorly understood, the forkhead family transcription factor Foxd3 has emerged as a key regulatory factor. Foxd3 is required to maintain pluripotent cells of the murine epiblast and for survival, self-renewal and pluripotency of embryonic stem cells (ESCs). Two recent, simultaneous studies have shed light on how Foxd3 regulates gene expression in early cell fate transitions of progenitor cells. While the two publications shared some common findings, they also presented some conflicting results and suggest different models for the mechanisms underlying Foxd3 function. Here, we discuss the key similarities and differences between the publications, highlight data from the literature relevant to their findings, and hypothesize a potential mechanism of Foxd3 action.
Assessment of the effects of the carbamazepine on the endogenous endocrine system of Daphnia magna.
Oropesa, A L; Floro, A M; Palma, P
2016-09-01
In the present study, the endocrine activity of the antiepileptic pharmaceutical carbamazepine (CBZ) in the crustacean Daphnia magna was assessed. To assess the hormonal activity of the drug, we exposed maternal daphnids and embryos to environmental relevant concentrations of CBZ (ranging from 10 to 200 μg/L) and to mixtures of CBZ with fenoxycarb (FEN; 1 μg/L). Chronic exposure to CBZ significantly decreased the reproductive output and the number of molts of D. magna at 200 μg/L. This compound induced the production of male offspring (12 ± 1.7 %), in a non-concentration-dependent manner, acting as a weak juvenile hormone analog. Results showed that this substance, at tested concentrations, did not antagonize the juvenoid action of FEN. Further, CBZ has shown to be toxic to daphnid embryos through maternal exposure interfering with their normal gastrulation and organogenesis stages but not producing direct embryo toxicity. These findings suggest that CBZ could act as an endocrine disruptor in D. magna as it decreases the reproductive output, interferes with sex determination, and causes development abnormality in offspring. Therefore, CBZ could directly affect the population sustainability.
RBP-Jκ-Dependent Notch Signaling Is Dispensable for Mouse Early Embryonic Development
Souilhol, Céline; Cormier, Sarah; Tanigaki, Kenji; Babinet, Charles; Cohen-Tannoudji, Michel
2006-01-01
The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jκ-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion. PMID:16782866
RBP-Jkappa-dependent notch signaling is dispensable for mouse early embryonic development.
Souilhol, Céline; Cormier, Sarah; Tanigaki, Kenji; Babinet, Charles; Cohen-Tannoudji, Michel
2006-07-01
The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jkappa-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion.
Lopez-Escobar, Beatriz; De Felipe, Beatriz; Sanchez-Alcazar, Jose Antonio; Sasaki, Takako; Copp, Andrew J; Ybot-Gonzalez, Patricia
2012-11-01
The ventral ectodermal ridge (VER) is an important signalling centre in the mouse tail-bud following completion of gastrulation. BMP regulation is essential for VER function, but how these signals are transmitted between adjacent tissues is unclear. We investigated the idea that extracellular matrix components might be involved, using immunohistochemistry and in situ hybridisation to detect all known α, β, and γ laminin chains and their mRNAs in the early tail bud. We identified an apparently novel laminin variant, comprising α5, β3 and γ2 chains, as a major component of the VER basement membrane at E9.5. Strikingly, only the mRNAs for these chains were co-expressed in VER cells, suggesting that lamin532 may be the sole basement membrane laminin at this stage. Since α6 integrin was also expressed in VER cells, this raises the possibility of cell-matrix interactions regulating BMP signalling at this site of caudal morphogenesis. Laminin532 could interact with α6-containing integrin to direct differentiation of the specialised VER cells from surface ectoderm. Copyright © 2012 Wiley Periodicals, Inc.
Lopez-Escobar, Beatriz; de Felipe, Beatriz; Sanchez-Alcazar, Jose Antonio; Sasaki, Takako; Copp, Andrew J.; Ybot-Gonzalez, Patricia
2013-01-01
Background The ventral ectodermal ridge (VER) is an important signalling centre in the mouse tail-bud following completion of gastrulation. BMP regulation is essential for VER function, but how these signals are transmitted between adjacent tissues is unclear. Results We investigated the idea that extracellular matrix components might be involved, using immunohistochemistry and in situ hybridisation to detect all known α, β and γ laminin chains and their mRNAs in the early tail bud. We identified an apparently novel laminin variant, comprising α5, β3 and γ2 chains, as a major component of the VER basement membrane at E9.5. Strikingly, only the mRNAs for these chains were co-expressed in VER cells, suggesting that lamin532 may be the sole basement membrane laminin at this stage. Since α6 integrin was also expressed in VER cells, this raises the possibility of cell-matrix interactions regulating BMP signalling at this site of caudal morphogenesis. Conclusions Laminin532 could interact with α6-containing integrin to direct differentiation of the specialised VER cells from surface ectoderm. PMID:22911573
A zinc finger protein Zfp521 directs neural differentiation and beyond
2011-01-01
Neural induction is largely considered a default process, whereas little is known about intrinsic factors that drive neural differentiation. Kamiya and colleagues now demonstrate that a transcription factor, Zfp521, is capable of directing embryonic stem (ES) cells into neural progenitors. They discovered that Zfp521 transcripts were enriched in early neural lineage of ES cell differentiation. Forced expression of Zfp521 turned ES cells into neural progenitors in culture conditions that would normally inhibit neural differentiation. Zfp521 was expressed in mouse embryos during gastrulation. The protein was shown to associate with a co-activator p300 and directly induce expression of early neural genes. Knockdown of the Zfp521 by shRNA halted cells at the epiblast stage and suppressed neural differentiation. Zfp521 is a nuclear protein with 30 Krüppel-like zinc fingers mediating multiple protein-protein interactions, and regulates transcription in diverse tissues and organs. The protein promotes proliferation, delays differentiation and reduces apoptosis. The findings by Kamiya and colleagues that Zfp521 directs and sustains early neural differentiation now opens up a series of studies to investigate roles of Zfp521 in stem cells and brain development of mice and men. PMID:21539723
Student-oriented learning: an inquiry-based developmental biology lecture course.
Malacinski, George M
2003-01-01
In this junior-level undergraduate course, developmental life cycles exhibited by various organisms are reviewed, with special attention--where relevant--to the human embryo. Morphological features and processes are described and recent insights into the molecular biology of gene expression are discussed. Ways are studied in which model systems, including marine invertebrates, amphibia, fruit flies and other laboratory species are employed to elucidate general principles which apply to fertilization, cleavage, gastrulation and organogenesis. Special attention is given to insights into those topics which will soon be researched with data from the Human Genome Project. The learning experience is divided into three parts: Part I is a
Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development.
Tadjuidje, Emmanuel; Kofron, Matthew; Mir, Adnan; Wylie, Christopher; Heasman, Janet; Cha, Sang-Wook
2016-08-01
Nodal class TGF-β signalling molecules play essential roles in establishing the vertebrate body plan. In all vertebrates, nodal family members have specific waves of expression required for tissue specification and axis formation. In Xenopus laevis, six nodal genes are expressed before gastrulation, raising the question of whether they have specific roles or act redundantly with each other. Here, we examine the role of Xnr5. We find it acts at the late blastula stage as a mesoderm inducer and repressor of ectodermal gene expression, a role it shares with Vg1. However, unlike Vg1, Xnr5 depletion reduces the expression of the nodal family member xnr1 at the gastrula stage. It is also required for left/right laterality by controlling the expression of the laterality genes xnr1, antivin (lefty) and pitx2 at the tailbud stage. In Xnr5-depleted embryos, the heart field is established normally, but symmetrical reduction in Xnr5 levels causes a severely stunted midline heart, first evidenced by a reduction in cardiac troponin mRNA levels, while left-sided reduction leads to randomization of the left/right axis. This work identifies Xnr5 as the earliest step in the signalling pathway establishing normal heart laterality in Xenopus. © 2016 The Authors.
Cho, Yong Suk; Stevens, Leslie M; Stein, David
2010-06-22
The establishment of Drosophila embryonic dorsal-ventral (DV) polarity relies on serine proteolytic activity in the perivitelline space between the embryonic membrane and the eggshell. Gastrulation Defective cleaves and activates Snake, which processes and activates Easter, which cleaves Spätzle to form the activating ligand for the Toll receptor. Ventral restriction of ligand formation depends on the Pipe sulfotransferase, which is expressed in ventral cells of the follicular epithelium surrounding the developing oocyte. Pipe modifies components of the developing eggshell to produce a ventral cue embedded in the vitelline membrane. This ventral cue is believed to promote one or more of the proteolysis steps in the perivitelline space. By examining the processing of transgenic, tagged versions of the perivitelline proteins during DV patterning, we find that the proteolysis of Easter by Snake is the first Pipe-dependent step and therefore the key ventrally restricted event in the protease cascade. We also find that Snake and Easter associate together in a complex in both wild-type and pipe mutant-derived embryos. This observation suggests a mechanism in which the sulfated target of Pipe promotes a productive interaction between Snake and Easter, perhaps by facilitating conformational changes in a complex containing the two proteins. Copyright 2010 Elsevier Ltd. All rights reserved.
Zebrafish Pronephros Development.
Naylor, Richard W; Qubisi, Sarah S; Davidson, Alan J
The pronephros is the first kidney type to form in vertebrate embryos. The first step of pronephrogenesis in the zebrafish is the formation of the intermediate mesoderm during gastrulation, which occurs in response to secreted morphogens such as BMPs and Nodals. Patterning of the intermediate mesoderm into proximal and distal cell fates is induced by retinoic acid signaling with downstream transcription factors including wt1a, pax2a, pax8, hnf1b, sim1a, mecom, and irx3b. In the anterior intermediate mesoderm, progenitors of the glomerular blood filter migrate and fuse at the midline and recruit a blood supply. More posteriorly localized tubule progenitors undergo epithelialization and fuse with the cloaca. The Notch signaling pathway regulates the formation of multi-ciliated cells in the tubules and these cells help propel the filtrate to the cloaca. The lumenal sheer stress caused by flow down the tubule activates anterior collective migration of the proximal tubules and induces stretching and proliferation of the more distal segments. Ultimately these processes create a simple two-nephron kidney that is capable of reabsorbing and secreting solutes and expelling excess water-processes that are critical to the homeostasis of the body fluids. The zebrafish pronephric kidney provides a simple, yet powerful, model system to better understand the conserved molecular and cellular progresses that drive nephron formation, structure, and function.
5-Mehtyltetrahydrofolate rescues alcohol-induced neural crest cell migration abnormalities.
Shi, Yu; Li, Jiejing; Chen, Chunjiang; Gong, Manzi; Chen, Yuan; Liu, Youxue; Chen, Jie; Li, Tingyu; Song, Weihong
2014-09-16
Alcohol is detrimental to early development. Fetal alcohol spectrum disorders (FASD) due to maternal alcohol abuse results in a series of developmental abnormalities including cranial facial dysmorphology, ocular anomalies, congenital heart defects, microcephaly and intellectual disabilities. Previous studies have been shown that ethanol exposure causes neural crest (NC) apoptosis and perturbation of neural crest migration. However, the underlying mechanism remains elusive. In this report we investigated the fetal effect of alcohol on the process of neural crest development in the Xenopus leavis. Pre-gastrulation exposure of 2-4% alcohol induces apoptosis in Xenopus embryo whereas 1% alcohol specifically impairs neural crest migration without observing discernible apoptosis. Additionally, 1% alcohol treatment considerably increased the phenotype of small head (43.4% ± 4.4%, total embryo n = 234), and 1.5% and 2.0% dramatically augment the deformation to 81.2% ± 6.5% (n = 205) and 91.6% ± 3.0% (n = 235), respectively (P < 0.05). Significant accumulation of Homocysteine was caused by alcohol treatment in embryos and 5-mehtyltetrahydrofolate restores neural crest migration and alleviates homocysteine accumulation, resulting in inhibition of the alcohol-induced neurocristopathies. Our study demonstrates that prenatal alcohol exposure causes neural crest cell migration abnormality and 5-mehtyltetrahydrofolate could be beneficial for treating FASD.
NASA Technical Reports Server (NTRS)
Wakahara, M.; Neff, A. W.; Malacinski, G. M.
1984-01-01
Several media were tested for the extent to which they promoted high fertilization efficiencies in ovulated, stripped Xenopus eggs. One medium was selected for maintaining eggs in a 'delayed fertilization' (DelF) condition. DelF eggs displayed several unusual characteristics, including shift of the center of gravity, prominent sperm entrance site, and occasional polyspermy. The frequency of normal pattern formation varied according to the length of time eggs were maintained in the DelF condition. Various developmental abnormalities were observed during gastrulation, neurulation, and organogenesis. Most abnormalities appeared, however, to be related to morphogenesis of the endoderm. Primordial germ cell (PGC) development was examined in DelF eggs which displayed normal external morphological features at the swimming tadpole stage. PGC counts were usually normal in short-duration (eg, 5 hr) DelF eggs, but frequently substantially reduced or completely diminished in longer-duration (eg, 25h) tadpoles. Six spawnings were compared and shown to exhibit considerable variability in fertility, morphogenesis, and PGC development. Yolk platelet shifts and developmental parameters were examined in two additional spawnings. The subcortical cytoplasm in which the germ plasm is normally localized appeared to be disrupted in longer duration DelF eggs. That observation may account for low PGC counts in DelF tadpoles.
Probing transcription-specific outputs of β-catenin in vivo.
Valenta, Tomas; Gay, Max; Steiner, Sarah; Draganova, Kalina; Zemke, Martina; Hoffmans, Raymond; Cinelli, Paolo; Aguet, Michel; Sommer, Lukas; Basler, Konrad
2011-12-15
β-Catenin, apart from playing a cell-adhesive role, is a key nuclear effector of Wnt signaling. Based on activity assays in Drosophila, we generated mouse strains where the endogenous β-catenin protein is replaced by mutant forms, which retain the cell adhesion function but lack either or both of the N- and the C-terminal transcriptional outputs. The C-terminal activity is essential for mesoderm formation and proper gastrulation, whereas N-terminal outputs are required later during embryonic development. By combining the double-mutant β-catenin with a conditional null allele and a Wnt1-Cre driver, we probed the role of Wnt/β-catenin signaling in dorsal neural tube development. While loss of β-catenin protein in the neural tube results in severe cell adhesion defects, the morphology of cells and tissues expressing the double-mutant form is normal. Surprisingly, Wnt/β-catenin signaling activity only moderately regulates cell proliferation, but is crucial for maintaining neural progenitor identity and for neuronal differentiation in the dorsal spinal cord. Our model animals thus allow dissecting signaling and structural functions of β-catenin in vivo and provide the first genetic tool to generate cells and tissues that entirely and exclusively lack canonical Wnt pathway activity. © 2011 by Cold Spring Harbor Laboratory Press
Dunipace, Leslie; Ozdemir, Anil; Stathopoulos, Angelike
2011-01-01
It has been shown in several organisms that multiple cis-regulatory modules (CRMs) of a gene locus can be active concurrently to support similar spatiotemporal expression. To understand the functional importance of such seemingly redundant CRMs, we examined two CRMs from the Drosophila snail gene locus, which are both active in the ventral region of pre-gastrulation embryos. By performing a deletion series in a ∼25 kb DNA rescue construct using BAC recombineering and site-directed transgenesis, we demonstrate that the two CRMs are not redundant. The distal CRM is absolutely required for viability, whereas the proximal CRM is required only under extreme conditions such as high temperature. Consistent with their distinct requirements, the CRMs support distinct expression patterns: the proximal CRM exhibits an expanded expression domain relative to endogenous snail, whereas the distal CRM exhibits almost complete overlap with snail except at the anterior-most pole. We further show that the distal CRM normally limits the increased expression domain of the proximal CRM and that the proximal CRM serves as a `damper' for the expression levels driven by the distal CRM. Thus, the two CRMs interact in cis in a non-additive fashion and these interactions may be important for fine-tuning the domains and levels of gene expression. PMID:21813571
Sambi, Manpreet; Chow, Theresa; Whiteley, Jennifer; Li, Mira; Chua, Shawn; Raileanu, Vanessa; Rogers, Ian M
2017-08-01
The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.
Hughes, James; Piltz, Sandra; Rogers, Nicholas; McAninch, Dale; Rowley, Lynn; Thomas, Paul
2013-01-01
Polyalanine expansions in transcription factors have been associated with eight distinct congenital human diseases. It is thought that in each case the polyalanine expansion causes misfolding of the protein that abrogates protein function. Misfolded proteins form aggregates when expressed in vitro; however, it is less clear whether aggregation is of relevance to these diseases in vivo. To investigate this issue, we used targeted mutagenesis of embryonic stem (ES) cells to generate mice with a polyalanine expansion mutation in Sox3 (Sox3-26ala) that is associated with X-linked Hypopituitarism (XH) in humans. By investigating both ES cells and chimeric mice, we show that endogenous polyalanine expanded SOX3 does not form protein aggregates in vivo but rather is present at dramatically reduced levels within the nucleus of mutant cells. Importantly, the residual mutant protein of chimeric embryos is able to rescue a block in gastrulation but is not sufficient for normal development of the hypothalamus, a region that is functionally compromised in Sox3 null embryos and individuals with XH. Together, these data provide the first definitive example of a disease-relevant PA mutant protein that is both nuclear and functional, thereby manifesting as a partial loss-of-function allele. PMID:23505376
Planar induction of convergence and extension of the neural plate by the organizer of Xenopus.
Keller, R; Shih, J; Sater, A K; Moreno, C
1992-03-01
This paper demonstrates that convergence and extension within the neural plate of Xenopus laevis are regulated by planar inductive interactions with the adjacent Spemann organizer. The companion article (Keller et al.: Developmental Dynamics 193:199-217, 1992) showed that the prospective hindbrain and spinal cord occupy a very short and very wide area just above the Spemann organizer in the early gastrula and that these regions converge and extend greatly during gastrulation and neurulation, using a sequence of radial and mediolateral cell intercalations. In this article, we show that "planar" contact of these regions with the organizer at their vegetal edge until stage 11 is sufficient to induce convergence and extension, after which their convergence and extension become autonomous. Grafts of the organizer in planar contact with uninduced ectodermal tissues induce these ectodermal tissues to converge and extend by a planar inductive signal from the organizer. Labeling of the inducing or responding tissues confirms that only planar interactions occur. Neural convergence and extension are actually hindered in explants deliberately constructed so that vertical interactions occur. These results show unambiguously that the Spemann organizer induces the extraordinary and precocious convergence and extension movements of the Xenopus neural plate by planar interactions acting over short distances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, H.S.
1963-06-01
Females of the mealy bug were mated to males previously irradiated with heavy doses of Co/sup 60/ gamma rays (30000 to 120000 rep), the progeny is mostly female. Observations are made on diploid, triploid andd mosaic survivors. These Xi females are gynogenetic, with unbroken chromosomes. Detailed cytology of 17 such gynogenetic females showed triploids, diploids, 3N/2N and 2N/N mosaics. Most of the embryos produced by triploid mothers were aneuploid and these degenerated before gastrulation. Regardless of aneuploidy, male embryos showed the typical lecanoid heterochromatization of the paternal set of chromosomes. Just prior to degeneration, the euchromatic chromosomes in the aneuploidmore » male embryos showed endomitotic splitting while the heterochromatic did not. Among the progeny of triploid female and diploid male matings, only females with five euchromatic plus five heterochromatic chromosomes andd females with 10 or 15 euchromatic chromsomes were found. A search for adults with 5 heterochromatic + 10 euchromatic chromosomes among the progeny of triploid mothers was unsuccessful. Chromosomal variables such as aneuploidy of the euchromatic set, haploidy and fragmentation are discussed in relation to the problems of heterochromatization of the paternal set andd sex determination of this species. (BBB)« less
Mellott, Dan O; Thisdelle, Jordan; Burke, Robert D
2017-10-01
We have examined regulation of neurogenesis by Delta/Notch signaling in sea urchin embryos. At gastrulation, neural progenitors enter S phase coincident with expression of Sp-SoxC. We used a BAC containing GFP knocked into the Sp-SoxC locus to label neural progenitors. Live imaging and immunolocalizations indicate that Sp-SoxC-expressing cells divide to produce pairs of adjacent cells expressing GFP. Over an interval of about 6 h, one cell fragments, undergoes apoptosis and expresses high levels of activated Caspase3. A Notch reporter indicates that Notch signaling is activated in cells adjacent to cells expressing Sp-SoxC. Inhibition of γ-secretase, injection of Sp-Delta morpholinos or CRISPR/Cas9-induced mutation of Sp-Delta results in supernumerary neural progenitors and neurons. Interfering with Notch signaling increases neural progenitor recruitment and pairs of neural progenitors. Thus, Notch signaling restricts the number of neural progenitors recruited and regulates the fate of progeny of the asymmetric division. We propose a model in which localized signaling converts ectodermal and ciliary band cells to neural progenitors that divide asymmetrically to produce a neural precursor and an apoptotic cell. © 2017. Published by The Company of Biologists Ltd.
Quantitative 4D analyses of epithelial folding during Drosophila gastrulation.
Khan, Zia; Wang, Yu-Chiun; Wieschaus, Eric F; Kaschube, Matthias
2014-07-01
Understanding the cellular and mechanical processes that underlie the shape changes of individual cells and their collective behaviors in a tissue during dynamic and complex morphogenetic events is currently one of the major frontiers in developmental biology. The advent of high-speed time-lapse microscopy and its use in monitoring the cellular events in fluorescently labeled developing organisms demonstrate tremendous promise in establishing detailed descriptions of these events and could potentially provide a foundation for subsequent hypothesis-driven research strategies. However, obtaining quantitative measurements of dynamic shapes and behaviors of cells and tissues in a rapidly developing metazoan embryo using time-lapse 3D microscopy remains technically challenging, with the main hurdle being the shortage of robust imaging processing and analysis tools. We have developed EDGE4D, a software tool for segmenting and tracking membrane-labeled cells using multi-photon microscopy data. Our results demonstrate that EDGE4D enables quantification of the dynamics of cell shape changes, cell interfaces and neighbor relations at single-cell resolution during a complex epithelial folding event in the early Drosophila embryo. We expect this tool to be broadly useful for the analysis of epithelial cell geometries and movements in a wide variety of developmental contexts. © 2014. Published by The Company of Biologists Ltd.
Lethality in PARP-1/Ku80 double mutant mice reveals physiologicalsynergy during early embryogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henrie, Melinda S.; Kurimasa, Akihiro; Burma, Sandeep
2002-09-24
Ku is an abundant heterodimeric nuclear protein, consisting of 70-kDa and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP)ribose polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significancemore » or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.« less
Glyphosate induces cardiovascular toxicity in Danio rerio.
Roy, Nicole M; Ochs, Jeremy; Zambrzycka, Ewelina; Anderson, Ariann
2016-09-01
Glyphosate is a broad spectrum herbicide used aggressively in agricultural practices as well as home garden care. Although labeled "safe" by the chemical industry, doses tested by industry do not mimic chronic exposures to sublethal doses that organisms in the environment are exposed to over long periods of time. Given the widespread uses of and exposure to glyphosate, studies on developmental toxicity are needed. Here we utilize the zebrafish vertebrate model system to study early effects of glyphosate on the developing heart. Treatment by embryo soaking with 50μg/ml glyphosate starting at gastrulation results in structural abnormalities in the atrium and ventricle, irregular heart looping, situs inversus as well as decreased heartbeats by 48h as determined by live imaging and immunohistochemistry. Vasculature in the body was also affected as determined using fli-1 transgenic embryos. To determine if the effects noted at 48h post fertilization are due to early stage alterations in myocardial precursors, we also investigate cardiomyocyte development with a Mef2 antibody and by mef2ca in situ hybridization and find alterations in the Mef2/mef2ca staining patterns during early cardiac patterning stages. We conclude that glyphosate is developmentally toxic to the zebrafish heart. Copyright © 2016 Elsevier B.V. All rights reserved.
McCune-Albright syndrome and the extraskeletal manifestations of fibrous dysplasia.
Collins, Michael T; Singer, Frederick R; Eugster, Erica
2012-05-24
Fibrous dysplasia (FD) is sometimes accompanied by extraskeletal manifestations that can include any combination of café-au-lait macules, hyperfunctioning endocrinopathies, such as gonadotropin-independent precocious puberty, hyperthyroidism, growth hormone excess, FGF23-mediated renal phosphate wasting, and/or Cushing syndrome, as well as other less common features. The combination of any of these findings, with or without FD, is known as McCune-Albright syndrome (MAS). The broad spectrum of involved tissues and the unpredictable combination of findings owe to the fact that molecular defect is due to dominant activating mutations in the widely expressed signaling protein, Gsα, and the fact these mutations arises sporadically, often times early in development, prior to gastrulation, and can distribute across many or few tissues.The complexity can be mastered by a systematic screening of potentially involved tissues and cognizance that the pattern of involved tissues is established, to some degree, in utero. Thorough testing allows the clinician to establish, often times at presentation, the full extent of the disease, and importantly as well what tissues are unaffected. Treatment and follow-up can then be focused on affected systems and a meaningful prognosis can be offered to the patient and family. The authors outline screening and treatment strategies that allow for effective management of the extraskeletal manifestations of FD.
McCune-Albright syndrome and the extraskeletal manifestations of fibrous dysplasia
2012-01-01
Fibrous dysplasia (FD) is sometimes accompanied by extraskeletal manifestations that can include any combination of café-au-lait macules, hyperfunctioning endocrinopathies, such as gonadotropin-independent precocious puberty, hyperthyroidism, growth hormone excess, FGF23-mediated renal phosphate wasting, and/or Cushing syndrome, as well as other less common features. The combination of any of these findings, with or without FD, is known as McCune-Albright syndrome (MAS). The broad spectrum of involved tissues and the unpredictable combination of findings owe to the fact that molecular defect is due to dominant activating mutations in the widely expressed signaling protein, Gsα, and the fact these mutations arises sporadically, often times early in development, prior to gastrulation, and can distribute across many or few tissues. The complexity can be mastered by a systematic screening of potentially involved tissues and cognizance that the pattern of involved tissues is established, to some degree, in utero. Thorough testing allows the clinician to establish, often times at presentation, the full extent of the disease, and importantly as well what tissues are unaffected. Treatment and follow-up can then be focused on affected systems and a meaningful prognosis can be offered to the patient and family. The authors outline screening and treatment strategies that allow for effective management of the extraskeletal manifestations of FD. PMID:22640971
Notochord morphogenesis in mice: Current understanding & open questions.
Balmer, Sophie; Nowotschin, Sonja; Hadjantonakis, Anna-Katerina
2016-05-01
The notochord is a structure common to all chordates, and the feature that the phylum Chordata has been named after. It is a rod-like mesodermal structure that runs the anterior-posterior length of the embryo, adjacent to the ventral neural tube. The notochord plays a critical role in embryonic tissue patterning, for example the dorsal-ventral patterning of the neural tube. The cells that will come to form the notochord are specified at gastrulation. Axial mesodermal cells arising at the anterior primitive streak migrate anteriorly as the precursors of the notochord and populate the notochordal plate. Yet, even though a lot of interest has centered on investigating the functional and structural roles of the notochord, we still have a very rudimentary understanding of notochord morphogenesis. The events driving the formation of the notochord are rapid, taking place over the period of approximately a day in mice. In this commentary, we provide an overview of our current understanding of mouse notochord morphogenesis, from the initial specification of axial mesendodermal cells at the primitive streak, the emergence of these cells at the midline on the surface of the embryo, to their submergence and organization of the stereotypically positioned notochord. We will also discuss some key open questions. Developmental Dynamics 245:547-557, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The Midblastula Transition Defines the Onset of Y RNA-Dependent DNA Replication in Xenopus laevis ▿
Collart, Clara; Christov, Christo P.; Smith, James C.; Krude, Torsten
2011-01-01
Noncoding Y RNAs are essential for the initiation of chromosomal DNA replication in mammalian cell extracts, but their role in this process during early vertebrate development is unknown. Here, we use antisense morpholino nucleotides (MOs) to investigate Y RNA function in Xenopus laevis and zebrafish embryos. We show that embryos in which Y RNA function is inhibited by MOs develop normally until the midblastula transition (MBT) but then fail to replicate their DNA and die before gastrulation. Consistent with this observation, Y RNA function is not required for DNA replication in Xenopus egg extracts but is required for replication in a post-MBT cell line. Y RNAs do not bind chromatin in karyomeres before MBT, but they associate with interphase nuclei after MBT in an origin recognition complex (ORC)-dependent manner. Y RNA-specific MOs inhibit the association of Y RNAs with ORC, Cdt1, and HMGA1a proteins, suggesting that these molecular associations are essential for Y RNA function in DNA replication. The MBT is thus a transition point between Y RNA-independent and Y RNA-dependent control of vertebrate DNA replication. Our data suggest that in vertebrates Y RNAs function as a developmentally regulated layer of control over the evolutionarily conserved eukaryotic DNA replication machinery. PMID:21791613
Pan, Xiufang; Sittaramane, Vinoth; Gurung, Suman; Chandrasekhar, Anand
2014-02-01
Van gogh-like 2 (Vangl2), a core component of the Wnt/planar cell polarity (PCP) signaling pathway, is a four-pass transmembrane protein with N-terminal and C-terminal domains located in the cytosol, and is structurally conserved from flies to mammals. In vertebrates, Vangl2 plays an essential role in convergence and extension (CE) movements during gastrulation and in facial branchiomotor (FBM) neuron migration in the hindbrain. However, the roles of specific Vangl2 domains, of membrane association, and of specific extracellular and intracellular motifs have not been examined, especially in the context of FBM neuron migration. Through heat shock-inducible expression of various Vangl2 transgenes, we found that membrane associated functions of the N-terminal and C-terminal domains of Vangl2 are involved in regulating FBM neuron migration. Importantly, through temperature shift experiments, we found that the critical period for Vangl2 function coincides with the initial stages of FBM neuron migration out of rhombomere 4. Intriguingly, we have also uncovered a putative nuclear localization motif in the C-terminal domain that may play a role in regulating CE movements. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Specification of ion transport cells in the Xenopus larval skin
Quigley, Ian K.; Stubbs, Jennifer L.; Kintner, Chris
2011-01-01
Specialized epithelial cells in the amphibian skin play important roles in ion transport, but how they arise developmentally is largely unknown. Here we show that proton-secreting cells (PSCs) differentiate in the X. laevis larval skin soon after gastrulation, based on the expression of a `kidney-specific' form of the H+v-ATPase that localizes to the plasma membrane, orthologs of the Cl–/HCO –3 antiporters ae1 and pendrin, and two isoforms of carbonic anhydrase. Like PSCs in other species, we show that the expression of these genes is likely to be driven by an ortholog of foxi1, which is also sufficient to promote the formation of PSC precursors. Strikingly, the PSCs form in the skin as two distinct subtypes that resemble the alpha- and beta-intercalated cells of the kidney. The alpha-subtype expresses ae1 and localizes H+v-ATPases to the apical plasma membrane, whereas the beta-subtype expresses pendrin and localizes the H+v-ATPase cytosolically or basolaterally. These two subtypes are specified during early PSC differentiation by a binary switch that can be regulated by Notch signaling and by the expression of ubp1, a transcription factor of the grainyhead family. These results have implications for how PSCs are specified in vertebrates and become functionally heterogeneous. PMID:21266406
Bingsohn, L; Knorr, E; Billion, A; Narva, K E; Vilcinskas, A
2017-02-01
RNA interference (RNAi) is a promising alternative strategy for ecologically friendly pest management. However, the identification of RNAi candidate genes is challenging owing to the absence of laboratory strains and the seasonality of most pest species. Tribolium castaneum is a well-established model, with a strong and robust RNAi response, which can be used as a high-throughput screening platform to identify potential RNAi target genes. Recently, the cactus gene was identified as a sensitive RNAi target for pest control. To explore whether the spectrum of promising RNAi targets can be expanded beyond those found by random large-scale screening, to encompass others identified using targeted knowledge-based approaches, we constructed a Cactus interaction network. We tested nine genes in this network and found that the delivery of double-stranded RNA corresponding to fusilli and cactin showed lethal effects. The silencing of cactin resulted in 100% lethality at every developmental stage from the larva to the adult. The knockdown of pelle, Dorsal-related immunity factor and short gastrulation reduced or even prevented egg hatching in the next generation. The combination of such targets with lethal and parental RNAi effects can now be tested against different pest species in field studies. © 2016 The Royal Entomological Society.
Schierenberg, Einhard; Junkersdorf, Bernd
1992-12-01
The embryo of the nematode Caenorhabditis elegans is surrounded by an inconspicuous inner vitelline membrane and a prominent outer chitinous eggshell proper. We demonstrate that the complete removal of the chitinous eggshell does not interfere with successful development to yield a normal worm. The same result can be obtained when the vitelline membrane is penetrated with laser microbeam irradiation of only the eggshell proper, gently enough to permit its resealing after a while. However, when large holes are made into the eggshell the concomitantly penetrated vitelline membrane does not reseal. While early development is quite normal under these conditions, gastrulation is defective in that gut precursor cells do not migrate in properly, eventually leading to embryonic arrest. This suggests a crucial role for pattern formation of the "micro-environment" around the embryo preserved by the intact vitelline membrane. Removing both eggshell and vitelline membrane results in a string-like arrangement of founder cells and subsequent grossly abnormal cell patterns. Our experiments support the idea that the prominent eggshell proper just functions as a mechanical protection while the thin vitelline membrane directly or indirectly serves as a necessary control element affecting the positions of cells which to begin with are determined by the orientation of the cleavage spindle.
The small GTPase Arf6 regulates sea urchin morphogenesis
Stepicheva, Nadezda A.; Dumas, Megan; Kobi, Priscilla; Donaldson, Julie G.; Song, Jia L.
2017-01-01
The small GTPase Arf6 is a conserved protein that is expressed in all metazoans. Arf6 remodels cytoskeletal actin and mediates membrane protein trafficking between the plasma membrane in its active form and endosomal compartments in its inactive form. While a rich knowledge exists for the cellular functions of Arf6, relatively little is known about its physiological role in development. This study examines the function of Arf6 in mediating cellular morphogenesis in early development. We dissect the function of Arf6 with a loss-of-function morpholino and constitutively active Arf6-Q67L construct. We focus on the two cell types that undergo active directed migration: the primary mesenchyme cells (PMCs) that give rise to the sea urchin skeleton and endodermal cells that form the gut. Our results indicate that Arf6 plays an important role in skeleton formation and PMC migration, in part due to its ability to remodel actin. We also found that embryos injected with Arf6 morpholino have gastrulation defects and embryos injected with constitutively active Arf6 have endodermal cells detached from the gut epithelium with decreased junctional cadherin staining, indicating that Arf6 may mediate the recycling of cadherin. Thus, Arf6 impacts cells that undergo coordinated movement to form embryonic structures in the developing embryo. PMID:28188999
Focus on: epigenetics and fetal alcohol spectrum disorders.
Kobor, Michael S; Weinberg, Joanne
2011-01-01
Epigenetic changes-stable but potentially reversible alterations in a cell's genetic information that result in changes in gene expression but do not involve changes in the underlying DNA sequence-may mediate some of the detrimental effects of prenatal alcohol exposure and contribute to the deficits and abnormalities associated with fetal alcohol spectrum disorders. These epigenetic processes are linked to the chromatin (i.e., DNA, histone proteins, and other associated proteins) and commonly involve chemical modifications (e.g., methylation) of these molecules, which may result in altered expression of the affected genes. Even alcohol exposure prior to conception appears to be able to induce epigenetic changes in the parental genetic material that can be passed on to the offspring and affect offspring outcome. Similarly, epigenetic processes may occur as a result of maternal alcohol consumption during the period between fertilization of the egg and implantation in the uterus. The period most sensitive to alcohol's adverse effects appears to be gastrulation, which corresponds to prenatal weeks 3 to 8 in the human and prenatal days 7 to 14 in the mouse, when cells are differentiating to form organs. One way in which alcohol exposure may induce epigenetic changes, particularly abnormal DNA methylation, is by affecting a set of biochemical reactions called the methionine-homocysteine cycle.
Focus On: Epigenetics and Fetal Alcohol Spectrum Disorders
Kobor, Michael S.; Weinberg, Joanne
2011-01-01
Epigenetic changes—stable but potentially reversible alterations in a cell’s genetic information that result in changes in gene expression but do not involve changes in the underlying DNA sequence—may mediate some of the detrimental effects of prenatal alcohol exposure and contribute to the deficits and abnormalities associated with fetal alcohol spectrum disorders. These epigenetic processes are linked to the chromatin (i.e., DNA, histone proteins, and other associated proteins) and commonly involve chemical modifications (e.g., methylation) of these molecules, which may result in altered expression of the affected genes. Even alcohol exposure prior to conception appears to be able to induce epigenetic changes in the parental genetic material that can be passed on to the offspring and affect offspring outcome. Similarly, epigenetic processes may occur as a result of maternal alcohol consumption during the period between fertilization of the egg and implantation in the uterus. The period most sensitive to alcohol’s adverse effects appears to be gastrulation, which corresponds to prenatal weeks 3 to 8 in the human and prenatal days 7 to 14 in the mouse, when cells are differentiating to form organs. One way in which alcohol exposure may induce epigenetic changes, particularly abnormal DNA methylation, is by affecting a set of biochemical reactions called the methionine–homocysteine cycle. PMID:23580038
Gao, Lin-Rui; Wang, Guang; Zhang, Jing; Li, Shuai; Chuai, Manli; Bao, Yongping; Hocher, Berthold; Yang, Xuesong
2018-09-01
An association has been proved between high salt consumption and cardiovascular mortality. In vertebrates, the heart is the first functional organ to be formed. However, it is not clear whether high-salt exposure has an adverse impact on cardiogenesis. Here we report high-salt exposure inhibited basement membrane breakdown by affecting RhoA, thus disturbing the expression of Slug/E-cadherin/N-cadherin/Laminin and interfering with mesoderm formation during the epithelial-mesenchymal transition(EMT). Furthermore, the DiI + cell migration trajectory in vivo and scratch wound assays in vitro indicated that high-salt exposure restricted cell migration of cardiac progenitors, which was caused by the weaker cytoskeleton structure and unaltered corresponding adhesion junctions at HH7. Besides, down-regulation of GATA4/5/6, Nkx2.5, TBX5, and Mef2c and up-regulation of Wnt3a/β-catenin caused aberrant cardiomyocyte differentiation at HH7 and HH10. High-salt exposure also inhibited cell proliferation and promoted apoptosis. Most importantly, our study revealed that excessive reactive oxygen species(ROS)generated by high salt disturbed the expression of cardiac-related genes, detrimentally affecting the above process including EMT, cell migration, differentiation, cell proliferation and apoptosis, which is the major cause of malformation of heart tubes. © 2018 Wiley Periodicals, Inc.
Cunningham, John A; Thomas, Ceri-Wyn; Bengtson, Stefan; Kearns, Stuart L; Xiao, Shuhai; Marone, Federica; Stampanoni, Marco; Donoghue, Philip C J
2012-06-22
The Ediacaran Doushantuo biota has yielded fossils that include the oldest widely accepted record of the animal evolutionary lineage, as well as specimens with alleged bilaterian affinity. However, these systematic interpretations are contingent on the presence of key biological structures that have been reinterpreted by some workers as artefacts of diagenetic mineralization. On the basis of chemistry and crystallographic fabric, we characterize and discriminate phases of mineralization that reflect: (i) replication of original biological structure, and (ii) void-filling diagenetic mineralization. The results indicate that all fossils from the Doushantuo assemblage preserve a complex mélange of mineral phases, even where subcellular anatomy appears to be preserved. The findings allow these phases to be distinguished in more controversial fossils, facilitating a critical re-evaluation of the Doushantuo fossil assemblage and its implications as an archive of Ediacaran animal diversity. We find that putative subcellular structures exhibit fabrics consistent with preservation of original morphology. Cells in later developmental stages are not in original configuration and are therefore uninformative concerning gastrulation. Key structures used to identify Doushantuo bilaterians can be dismissed as late diagenetic artefacts. Therefore, when diagenetic mineralization is considered, there is no convincing evidence for bilaterians in the Doushantuo assemblage.
Cadmium affects muscle type development and axon growth in zebrafish embryonic somitogenesis.
Hen Chow, Elly Suk; Cheng, Shuk Han
2003-05-01
We have previously reported that exposure to cadmium during zebrafish embryonic development caused morphological malformations of organs and ectopic expression of genes involved in regulating developmental process. One of the most common developmental defects observed was altered axial curvature resulting from defects in the myotomes of the somites. In this study, we investigated the mechanisms of cadmium-induced toxicity in zebrafish somitogenesis. We showed that the critical period of exposure was the gastrulation period, which actually preceded the formation of the first morphologically distinct somites. The somites thus formed lost the typical chevron V-shape and are packed disorderly. The myogenic lineage commitment of the axial mesodermal cells was not affected, as the myogenic regulatory transcription factors were expressed normally. There were, however, losses of fast and slow muscle fibers in the myotomes. The innervation of the muscle blocks by spinal motoneurons is an important process of the somitogenesis. Both primary and secondary motoneurons appear to form normally while the axon growth is affected in cadmium-treated embryos. The notochord, which is essential in the patterning of the somites and the central nervous system, showed abnormal morphological features and failed to extend to the tail region. Taken together, it appears that cadmium exposure led to abnormal somite patterning of the muscle fibers and defects in axonogenesis.
Dey, Alivia; Jin, Qi; Chen, Yen-Chu; Cutter, Asher D.
2014-01-01
Determining the causes and evolution of reproductive barriers to gene flow between populations, speciation, is the key to understanding the origin of diversity in nature. Many species manifest hybrid breakdown when they intercross, characterized by increasingly exacerbated problems in later generations of hybrids. Recently, Caenorhabditis nematodes have emerged as a genetic model for studying speciation, and here we investigate the nature and causes of hybrid breakdown between C. remanei and C. latens. We quantify partial F1 hybrid inviability and extensive F2 hybrid inviability; the ~75% F2 embryonic arrest occurs primarily during gastrulation or embryonic elongation. Moreover, F1 hybrid males exhibit Haldane’s rule asymmetrically for both sterility and inviability, being strongest when C. remanei serves as maternal parent. We show that the mechanism by which sterile hybrid males are incapable of transferring sperm or a copulatory plug involves defective gonad morphogenesis, which we hypothesize results from linker cell defects in migration and/or cell death during development. This first documented case of partial hybrid male sterility in Caenorhabditis follows expectations of Darwin’s corollary to Haldane’s rule for asymmetric male fitness, providing a powerful foundation for molecular dissection of intrinsic reproductive barriers and divergence of genetic pathways controlling organ morphogenesis. PMID:25196892
Dey, Alivia; Jin, Qi; Chen, Yen-Chu; Cutter, Asher D
2014-01-01
Determining the causes and evolution of reproductive barriers to gene flow between populations, speciation, is the key to understanding the origin of diversity in nature. Many species manifest hybrid breakdown when they intercross, characterized by increasingly exacerbated problems in later generations of hybrids. Recently, Caenorhabditis nematodes have emerged as a genetic model for studying speciation, and here we investigate the nature and causes of hybrid breakdown between Caenorhabditis remanei and C. latens. We quantify partial F1 hybrid inviability and extensive F2 hybrid inviability; the ~75% F2 embryonic arrest occurs primarily during gastrulation or embryonic elongation. Moreover, F1 hybrid males exhibit Haldane's rule asymmetrically for both sterility and inviability, being strongest when C. remanei serves as maternal parent. We show that the mechanism by which sterile hybrid males are incapable of transferring sperm or a copulatory plug involves defective gonad morphogenesis, which we hypothesize results from linker cell defects in migration and/or cell death during development. This first documented case of partial hybrid male sterility in Caenorhabditis follows expectations of Darwin's corollary to Haldane's rule for asymmetric male fitness, providing a powerful foundation for molecular dissection of intrinsic reproductive barriers and divergence of genetic pathways controlling organ morphogenesis. © 2014 Wiley Periodicals, Inc.
Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong
2016-06-15
Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.
Nong, Quang Dang; Mohamad Ishak, Nur Syafiqah; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime
2017-11-02
Sexually dimorphic traits are common and widespread among animals. The expression of the Doublesex-/Mab-3-domain (DM-domain) gene family has been widely studied in model organisms and has been proven to be essential for the development and maintenance of sex-specific traits. However, little is known about the detailed expression patterns in non-model organisms. In the present study, we demonstrated the spatiotemporal expression of the DM-domain gene, doublesex1 (dsx1), in the crustacean Daphnia magna, which parthenogenetically produces males in response to environmental cues. We developed a dsx1 reporter strain to track dsx1 activity in vivo by inserting the mCherry gene into the dsx1 locus using the TALEN-mediated knock-in approach. After confirming dsx1 expression in male-specific traits in juveniles and adults, we performed time-lapse imaging of embryogenesis. Shortly after gastrulation stage, a presumptive primary organiser, named cumulus, first showed male-specific dsx1 expression. This cell mass moved to the posterior growth zone that distributes dsx1-expressing progenitor cells across the body during axial elongation, before embryos start male-specific dsx1 expression in sexually dimorphic structures. The present study demonstrated the sex-specific dsx1 expression in cell populations involved in basal body formation.
Hai, Tang; Hao, Jie; Wang, Liu; Jouneau, Alice; Zhou, Qi
2011-02-01
Reprogramming of somatic cells to pluripotency can be achieved by nuclear transfer into enucleated oocytes (SCNT). A key event of this process is the demethylation of the Oct4 gene and its temporally and spatially regulated expression. Different studies have shown that it occurs abnormally in some SCNT embryos. TSA is a histone deacetylase inhibitor known to increase the efficiency of development to term of SCNT embryos, but its impact on the developmental features of SCNT embryos is poorly understood. Here, we have followed the fate of the pluripotent cells within SCNT embryos, from the late blastocyst to the early epiblast prior to gastrulation. Our data show a delay in development correlated with a defect in forming and maintaining a correct number of Oct4 expressing ICM and epiblast cells in SCNT embryos. As a consequence, during the outgrowth phase of embryonic stem cell derivation as well as during diapause in vivo, part of the SCNT blastocysts completely lose their ICM cells. Meanwhile, the others display a correctly reprogrammed ICM compatible with the derivation of ES cells and development of the epiblast. Our data also indicate that TSA favors the establishment of pluripotency in SCNT embryos.
Karunamuni, Ganga; Gu, Shi; Doughman, Yong Qiu; Noonan, Amanda I.; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko
2014-01-01
Background The most commonly used method to analyze congenital heart defects involves serial sectioning and histology. However, this is often a time-consuming process where the quantification of cardiac defects can be difficult due to problems with accurate section registration. Here we demonstrate the advantages of using optical coherence tomography, a comparatively new and rising technology, to phenotype avian embryo hearts in a model of Fetal Alcohol Syndrome where a binge-like quantity of alcohol/ethanol was introduced at gastrulation. Results The rapid, consistent imaging protocols allowed for the immediate identification of cardiac anomalies, including ventricular septal defects and misaligned/missing vessels. Interventricular septum thicknesses and vessel diameters for three of the five outflow arteries were also significantly reduced. Outflow and atrio-ventricular valves were segmented using image processing software and had significantly reduced volumes compared to controls. This is the first study to our knowledge that has 3-D reconstructed the late-stage cardiac valves in precise detail in order to examine their morphology and dimensions. Conclusion We believe therefore that OCT, with its ability to rapidly image and quantify tiny embryonic structures in high resolution, will serve as an excellent and cost-effective preliminary screening tool for developmental biologists working with a variety of experimental/disease models. PMID:25546089
Involvement of L(-)-rhamnose in sea urchin gastrulation: a live embryo assay.
Smith, Tiffany N; Oppenheimer, Steven B
2015-04-01
The sea urchin embryo is a National Institutes of Health model system that has provided major developments, and is important in human health and disease. To obtain initial insights to identify glycans that mediate cellular interactions, Lytechinus pictus sea urchin embryos were incubated at 24 or 30 h post-fertilization with 0.0009-0.03 M alpha-cyclodextrin, melibiose, L(-)-rhamnose, trehalose, D(+)-xylose or L(-)-xylose in lower-calcium artificial sea water (pH 8.0, 15°C), which speeds the entry of molecules into the interior of the embryos. While α-cyclodextrin killed the embryos, and L(-)-xylose had small effects at one concentration tested, L(-)-rhamnose caused substantially increased numbers of unattached archenterons and exogastrulated embryos at low glycan concentrations after 18-24 h incubation with the sugar. The results were statistically significant compared with the control embryos in the absence of sugar (P < 0.05). The other sugars (melibiose, trehalose, D(+)-xylose) had no statistically significant effects whatsoever at any of the concentrations tested. In total, in the current study, 39,369 embryos were examined. This study is the first demonstration that uses a live embryo assay for a likely role for L(-)-rhamnose in sea urchin gastrula cellular interactions, which have interested investigators for over a century.
Li, Meng Amy; Amaral, Paulo P; Cheung, Priscilla; Bergmann, Jan H; Kinoshita, Masaki; Kalkan, Tüzer; Ralser, Meryem; Robson, Sam; von Meyenn, Ferdinand; Paramor, Maike; Yang, Fengtang; Chen, Caifu; Nichols, Jennifer; Spector, David L; Kouzarides, Tony; He, Lin; Smith, Austin
2017-01-01
Execution of pluripotency requires progression from the naïve status represented by mouse embryonic stem cells (ESCs) to a state capacitated for lineage specification. This transition is coordinated at multiple levels. Non-coding RNAs may contribute to this regulatory orchestra. We identified a rodent-specific long non-coding RNA (lncRNA) linc1281, hereafter Ephemeron (Eprn), that modulates the dynamics of exit from naïve pluripotency. Eprn deletion delays the extinction of ESC identity, an effect associated with perduring Nanog expression. In the absence of Eprn, Lin28a expression is reduced which results in persistence of let-7 microRNAs, and the up-regulation of de novo methyltransferases Dnmt3a/b is delayed. Dnmt3a/b deletion retards ES cell transition, correlating with delayed Nanog promoter methylation and phenocopying loss of Eprn or Lin28a. The connection from lncRNA to miRNA and DNA methylation facilitates the acute extinction of naïve pluripotency, a pre-requisite for rapid progression from preimplantation epiblast to gastrulation in rodents. Eprn illustrates how lncRNAs may introduce species-specific network modulations. DOI: http://dx.doi.org/10.7554/eLife.23468.001 PMID:28820723
Plank-Bazinet, Jennifer L.
2016-01-01
Uncommitted cells of the early mammalian embryo transition through distinct stages of pluripotency, including establishment of ground state “naïve” pluripotency in the early epiblast, transition to a post-implantation “primed” state, and subsequent lineage commitment of the gastrulating epiblast. Previous transcriptional profiling of in vitro models to recapitulate early to late epiblast transition and differentiation suggest that distinct gene regulatory networks are likely to function in each of these states. While the mechanisms underlying transition between pluripotent states are poorly understood, the forkhead family transcription factor Foxd3 has emerged as a key regulatory factor. Foxd3 is required to maintain pluripotent cells of the murine epiblast and for survival, self-renewal and pluripotency of embryonic stem cells (ESCs). Two recent, simultaneous studies have shed light on how Foxd3 regulates gene expression in early cell fate transitions of progenitor cells. While the two publications shared some common findings, they also presented some conflicting results and suggest different models for the mechanisms underlying Foxd3 function. Here, we discuss the key similarities and differences between the publications, highlight data from the literature relevant to their findings, and hypothesize a potential mechanism of Foxd3 action. PMID:27868055
Characterization of Cer-1 cis-regulatory region during early Xenopus development.
Silva, Ana Cristina; Filipe, Mário; Steinbeisser, Herbert; Belo, José António
2011-05-01
Cerberus-related molecules are well-known Wnt, Nodal, and BMP inhibitors that have been implicated in different processes including anterior–posterior patterning and left–right asymmetry. In both mouse and frog, two Cerberus-related genes have been isolated, mCer-1 and mCer-2, and Xcer and Xcoco, respectively. Until now, little is known about the mechanisms involved in their transcriptional regulation. Here, we report a heterologous analysis of the mouse Cerberus-1 gene upstream regulatory regions, responsible for its expression in the visceral endodermal cells. Our analysis showed that the consensus sequences for a TATA, CAAT, or GC boxes were absent but a TGTGG sequence was present at position -172 to -168 bp, relative to the ATG. Using a series of deletion constructs and transient expression in Xenopus embryos, we found that a fragment of 1.4 kb of Cer-1 promoter sequence could reproduce the endogenous expression pattern of Xenopus cerberus. A 0.7-kb mcer-1 upstream region was able to drive reporter expression to the involuting mesendodermal cells, while further deletions abolished reporter gene expression. Our results suggest that although no sequence similarity was found between mouse and Xenopus cerberus cis-regulatory regions, the signaling cascades regulating cerberus expression, during gastrulation, is conserved.
Bjerke, Maureen A.; Dzamba, Bette; Wang, Chong; DeSimone, Douglas W.
2014-01-01
Collective cell movements are integral to biological processes such as embryonic development and wound healing and also have a prominent role in some metastatic cancers. In migrating Xenopus mesendoderm, traction forces are generated by cells through integrin-based adhesions and tension transmitted across cadherin adhesions. This is accompanied by assembly of a mechanoresponsive cadherin adhesion complex containing keratin intermediate filaments and the catenin-family member plakoglobin. We demonstrate that focal adhesion kinase (FAK), a major component of integrin adhesion complexes, is required for normal morphogenesis at gastrulation, closure of the anterior neural tube, axial elongation and somitogenesis. Depletion of zygotically expressed FAK results in disruption of mesendoderm tissue polarity similar to that observed when expression of keratin or plakoglobin is inhibited. Both individual and collective migrations of mesendoderm cells from FAK depleted embryos are slowed, cell protrusions are disordered, and cell spreading and traction forces are decreased. Additionally, keratin filaments fail to organize at the rear of cells in the tissue and association of plakoglobin with cadherin is diminished. These findings suggest that FAK is required for the tension-dependent assembly of the cadherin adhesion complex that guides collective mesendoderm migration, perhaps by modulating the dynamic balance of substrate traction forces and cell cohesion needed to establish cell polarity. PMID:25127991
QU, YING; ZHOU, CHENFEI; ZHANG, JIANIAN; CAI, QU; LI, JIANFANG; DU, TAO; ZHU, ZHENGGANG; CUI, XIAOJIANG; LIU, BINGYA
2014-01-01
SOX11 is involved in gastrulation and in malignant diseases. The aim of this study was to investigate the role of SOX11 in gastric cancer and its expression pattern and clinical significance. SOX11 overexpression cell model was used to examine in vitro and in vivo the role of SOX11 in cell growth and metastasis. Cell cycle analysis and Annexin V/PI double staining were used to investigate the effect of SOX11 on cell cycle progression and apoptosis. The expression of SOX11 in human gastric cancer was examined by immunohistochemistry. The correlation of SOX11 expression with clinicopathological characteristics and survival of patients was analyzed by Pearson’s χ2 and Kaplan-Meier analyses, respectively. Cox’s proportional hazard model was employed in multivariate analysis. SOX11 overexpression did not inhibit cell growth but strongly suppressed cell migration/invasion in vitro and in vivo. We found a significant correlation between high SOX11 protein levels and Lauren’s classification (intestinal type), differentiation status (high and medium), and early TNM stage. SOX11 is an independent prognostic factor for improved survival in gastric cancer patients. SOX11 was a potential tumor-suppressor and an independent positive prognostic factor in gastric cancer patients with less advanced clinicopathological features. PMID:24604109
Requirement for the Murine Zinc Finger Protein ZFR in Perigastrulation Growth and Survival
Meagher, Madeleine J.; Braun, Robert E.
2001-01-01
The transition from preimplantation to postimplantation development leads to the initiation of complex cellular differentiation and morphogenetic movements, a dramatic decrease in cell cycle length, and a commensurate increase in the size of the embryo. Accompanying these changes is the need for the transfer of nutrients from the mother to the embryo and the elaboration of sophisticated genetic networks that monitor genomic integrity and the homeostatic control of cellular growth, differentiation, and programmed cell death. To determine the function of the murine zinc finger protein ZFR in these events, we generated mice carrying a null mutation in the gene encoding it. Homozygous mutant embryos form normal-appearing blastocysts that implant and initiate the process of gastrulation. Mutant embryos form mesoderm but they are delayed in their development and fail to form normal anterior embryonic structures. Loss of ZFR function leads to both an increase in programmed cell death and a decrease in mitotic index, especially in the region of the distal tip of the embryonic ectoderm. Mutant embryos also have an apparent reduction in apical vacuoles in the columnar visceral endoderm cells in the extraembryonic region. Together, these cellular phenotypes lead to a dramatic development delay and embryonic death by 8 to 9 days of gestation, which are independent of p53 function. PMID:11283266
Li, Nan; Wei, Chunyao; Olena, Abigail F.; Patton, James G.
2011-01-01
microRNAs (miRNAs) are a family of 21-23 nucleotide endogenous non-coding RNAs that post-transcriptionally regulate gene expression in a sequence-specific manner. Typically, miRNAs downregulate target genes by recognizing and recruiting protein complexes to 3′UTRs, followed by translation repression or mRNA degradation. miR-92 is a well-studied oncogene in mammalian systems. Here, using zebrafish as a model system, we uncovered a novel tissue-inductive role for miR-92 during early vertebrate development. Overexpression resulted in reduced endoderm formation during gastrulation with consequent cardia and viscera bifida. By contrast, depletion of miR-92 increased endoderm formation, which led to abnormal Kupffer's vesicle development and left-right patterning defects. Using target prediction algorithms and reporter constructs, we show that gata5 is a target of miR-92. Alteration of gata5 levels reciprocally mirrored the effects of gain and loss of function of miR-92. Moreover, genetic epistasis experiments showed that miR-92-mediated defects could be substantially suppressed by modulating gata5 levels. We propose that miR-92 is a critical regulator of endoderm formation and left-right asymmetry during early zebrafish development and provide the first evidence for a regulatory function for gata5 in the formation of Kupffer's vesicle and left-right patterning. PMID:21447552
Sanchez-Soriano, Natalia; Travis, Mark; Dajas-Bailador, Federico; Gonçalves-Pimentel, Catarina; Whitmarsh, Alan J; Prokop, Andreas
2009-07-15
Spectraplakins are large actin-microtubule linker molecules implicated in various processes, including gastrulation, wound healing, skin blistering and neuronal degeneration. Expression data for the mammalian spectraplakin ACF7 and genetic analyses of the Drosophila spectraplakin Short stop (Shot) suggest an important role during neurogenesis. Using three parallel neuronal culture systems we demonstrate that, like Shot, ACF7 is essential for axon extension and describe, for the first time, their subcellular functions during axonal growth. Firstly, both ACF7 and Shot regulate the organisation of neuronal microtubules, a role dependent on both the F-actin- and microtubule-binding domains. This role in microtubule organisation is probably the key mechanism underlying the roles of Shot and ACF7 in growth cone advance. Secondly, we found a novel role for ACF7 and Shot in regulating the actin cytoskeleton through their ability to control the formation of filopodia. This function in F-actin regulation requires EF-hand motifs and interaction with the translational regulator Krasavietz/eIF5C, indicating that the underlying mechanisms are completely different from those used to control microtubules. Our data provide the basis for the first mechanistic explanation for the role of Shot and ACF7 in the developing nervous system and demonstrate their ability to coordinate the organisation of both actin and microtubule networks during axonal growth.
Bazzi, Hisham; Soroka, Ekaterina; Alcorn, Heather L; Anderson, Kathryn V
2017-12-19
Regulated mesoderm migration is necessary for the proper morphogenesis and organ formation during embryonic development. Cell migration and its dependence on the cytoskeleton and signaling machines have been studied extensively in cultured cells; in contrast, remarkably little is known about the mechanisms that regulate mesoderm cell migration in vivo. Here, we report the identification and characterization of a mouse mutation in striatin-interacting protein 1 ( Strip1 ) that disrupts migration of the mesoderm after the gastrulation epithelial-to-mesenchymal transition (EMT). STRIP1 is a core component of the biochemically defined mammalian striatin-interacting phosphatases and kinase (STRIPAK) complexes that appear to act through regulation of protein phosphatase 2A (PP2A), but their functions in mammals in vivo have not been examined. Strip1 -null mutants arrest development at midgestation with profound disruptions in the organization of the mesoderm and its derivatives, including a complete failure of the anterior extension of axial mesoderm. Analysis of cultured mesoderm explants and mouse embryonic fibroblasts from null mutants shows that the mesoderm migration defect is correlated with decreased cell spreading, abnormal focal adhesions, changes in the organization of the actin cytoskeleton, and decreased velocity of cell migration. The results show that STRIPAK complexes are essential for cell migration and tissue morphogenesis in vivo. Copyright © 2017 the Author(s). Published by PNAS.
Untangling cell tracks: Quantifying cell migration by time lapse image data analysis.
Svensson, Carl-Magnus; Medyukhina, Anna; Belyaev, Ivan; Al-Zaben, Naim; Figge, Marc Thilo
2018-03-01
Automated microscopy has given researchers access to great amounts of live cell imaging data from in vitro and in vivo experiments. Much focus has been put on extracting cell tracks from such data using a plethora of segmentation and tracking algorithms, but further analysis is normally required to draw biologically relevant conclusions. Such relevant conclusions may be whether the migration is directed or not, whether the population has homogeneous or heterogeneous migration patterns. This review focuses on the analysis of cell migration data that are extracted from time lapse images. We discuss a range of measures and models used to analyze cell tracks independent of the biological system or the way the tracks were obtained. For single-cell migration, we focus on measures and models giving examples of biological systems where they have been applied, for example, migration of bacteria, fibroblasts, and immune cells. For collective migration, we describe the model systems wound healing, neural crest migration, and Drosophila gastrulation and discuss methods for cell migration within these systems. We also discuss the role of the extracellular matrix and subsequent differences between track analysis in vitro and in vivo. Besides methods and measures, we are putting special focus on the need for openly available data and code, as well as a lack of common vocabulary in cell track analysis. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Steering cell migration by alternating blebs and actin-rich protrusions.
Diz-Muñoz, Alba; Romanczuk, Pawel; Yu, Weimiao; Bergert, Martin; Ivanovitch, Kenzo; Salbreux, Guillaume; Heisenberg, Carl-Philipp; Paluch, Ewa K
2016-09-02
High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood. Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision. Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times.
Recent Advances in Oncogenic Roles of the TRPM7 Chanzyme.
Gautier, Mathieu; Perrière, Marianne; Monet, Michael; Vanlaeys, Alison; Korichneva, Irina; Dhennin-Duthille, Isabelle; Ouadid-Ahidouch, Halima
2016-01-01
Transient Receptor Potential Melastatin-related 7 (TRPM7) is a non-selective cation channel fused with a functional kinase domain. Physiologically, TRPM7 channel is involved in magnesium homeostasis, cell survival and gastrulation. The channel part is responsible for calcium, magnesium, and metal trace entries. Cation current through TRPM7 channel is inhibited by both intracellular magnesium and magnesium complexed with nucleotides. In parallel, the kinase is able to phosphorylate cytoskeleton proteins like myosin chain regulating cell tension and motility. Moreover, TRPM7 kinase domain can be cleaved by caspase and participates to apoptosis signaling. Importantly, TRPM7 channel expression is aberrant in numerous cancers including breast, glioblastoma, nasopharynx, ovarian, and pancreatic. Moreover, TRPM7 high expression is an independent biomarker of poor outcome in breast cancer. Pharmacological modulation or silencing of TRPM7 strongly affects proliferation, adhesion, migration or invasion in cancer cell lines. Nevertheless, it is still not clear by which mechanism TRPM7 channels may disturb cancer cell hallmarks. In the present review, we will discuss the role of TRPM7 channels in malignancies. In particular, we will distinguish the role of cation signaling from kinase function in order to better understand how TRPM7 channels may play a central role in cancer progression. We will also discuss the recent advances in pharmacological blockers of TRPM7 and their potential use for cancer therapy.
Yajima, Mamiko
2007-01-01
Peronella japonica, an intermediate type of direct-developing sand dollar, forms an abbreviated pluteus, followed by metamorphosis within 3 days without feeding. In this species, ingression of mesenchyme cells starts before hatching and continues until gastrulation, but no typical secondary mesenchyme cells (SMCs) migrate from the tip of the archenteron. Here, I investigated the cell lineage of mesenchyme cells through metamorphosis in P. japonica and found that mesenchyme cells migrating before hatching (early mesenchyme cells [EMCs]) were exclusively derived from micromeres and became larval skeletogenic cells, whereas cells migrating after hatching (late mesenchyme cells [LMCs]) appeared to contain several nonskeletogenic cells. Thus, it is likely that EMCs are homologous to primary mesenchyme cells (PMCs) and LMCs are similar to the SMCs of typical indirect developers, suggesting that heterochrony in the timing of mesenchyme cell ingression may have occurred in this species. EMCs disappeared after metamorphosis and LMCs were involved in adult skeletogenesis. Embryos from which micromeres were removed at the 16-cell stage formed armless plutei that went on to form adult skeletons and resulted in juveniles with normal morphology. These results suggest that in P. japonica, LMCs form adult skeletal elements, whereas EMCs are specialized for larval spicule formation. The occurrence of evolutionary modifications in mesenchyme cells in the transition from indirect to direct development of sand dollars is discussed.
Puah, Wee Choo; Chinta, Rambabu; Wasser, Martin
2017-03-15
Time-lapse microscopy is a powerful tool to investigate cellular and developmental dynamics. In Drosophila melanogaster , it can be used to study division cycles in embryogenesis. To obtain quantitative information from 3D time-lapse data and track proliferating nuclei from the syncytial stage until gastrulation, we developed an image analysis pipeline consisting of nuclear segmentation, tracking, annotation and quantification. Image analysis of maternal-haploid ( mh ) embryos revealed that a fraction of haploid syncytial nuclei fused to give rise to nuclei of higher ploidy (2n, 3n, 4n). Moreover, nuclear densities in mh embryos at the mid-blastula transition varied over threefold. By tracking synchronized nuclei of different karyotypes side-by-side, we show that DNA content determines nuclear growth rate and size in early interphase, while the nuclear to cytoplasmic ratio constrains nuclear growth during late interphase. mh encodes the Drosophila ortholog of human Spartan, a protein involved in DNA damage tolerance. To explore the link between mh and chromosome instability, we fluorescently tagged Mh protein to study its subcellular localization. We show Mh-mKO2 localizes to nuclear speckles that increase in numbers as nuclei expand in interphase. In summary, quantitative microscopy can provide new insights into well-studied genes and biological processes. © 2017. Published by The Company of Biologists Ltd.
RADIATION-INDUCED GENETIC DAMAGE IN THE MEXICAN TOAD (BUFO VALLICEPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, W.F.
1960-10-01
Lines of Mexican toads (Bufo valliceps) bearing x-ray induced genetic damage were established by mating normal females with males that had received gonadal x-ray doses ranging from 300 to 3000 r. Survival in the first generation was inversely proportional to dose,-as was expected. Toads of the 300-r and l000- r lines were inbred, and toads of these lines and of the 700-r line were outcrossed to normal ones. Two crosses were made between toads of the 500-r and 1000-r lines. Developmental abnormalities of various kinds appeared at life history stages rangthg from early embryonic development to post-metamorphic life in bothmore » inbred and outcross generations. These included abnormal gastrulation and neurulation, larval and post-metamorphic edema, abnormally positioned or missing limbs, optical deficiencies, prognathous jaw due to excessive elongation of the lower jaw, and melanin deficiency. The prognathous jaw, in its extreme expression, would probably be lethal in natural populations because of difficulty of feeding. The melanin deficiency, in its extreme expression, is lethal as metamorphosis fails to occur, and in lesser expression, it appears to be lethal or detrimental. The various abnormalities do not appear to be inherited in any simple way, but instead they vary in expression both within and between generations, possibly in relation to genotype and environment. (auth)« less
Bonneau, Benjamin; Nougarède, Adrien; Prudent, Julien; Popgeorgiev, Nikolay; Peyriéras, Nadine; Rimokh, Ruth; Gillet, Germain
2014-02-11
Members of the Bcl-2 protein family regulate mitochondrial membrane permeability and also localize to the endoplasmic reticulum where they control Ca(2+) homeostasis by interacting with inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs). In zebrafish, Bcl-2-like 10 (Nrz) is required for Ca(2+) signaling during epiboly and gastrulation. We characterized the mechanism by which Nrz controls IP3-mediated Ca(2+) release during this process. We showed that Nrz was phosphorylated during early epiboly, and that in embryos in which Nrz was knocked down, reconstitution with Nrz bearing mutations designed to prevent its phosphorylation disrupted cyclic Ca(2+) transients and the assembly of the actin-myosin ring and led to epiboly arrest. In cultured cells, wild-type Nrz, but not Nrz with phosphomimetic mutations, interacted with the IP3 binding domain of IP3R1, inhibited binding of IP3 to IP3R1, and prevented histamine-induced increases in cytosolic Ca(2+). Collectively, these data suggest that Nrz phosphorylation is necessary for the generation of IP3-mediated Ca(2+) transients and the formation of circumferential actin-myosin cables required for epiboly. Thus, in addition to their role in apoptosis, by tightly regulating Ca(2+) signaling, Bcl-2 family members participate in the cellular events associated with early vertebrate development, including cytoskeletal dynamics and cell movement.
Choi, Wangsun; Harris, Nathan J.; Sumigray, Kaelyn D.; Peifer, Mark
2013-01-01
The establishment and maintenance of apical–basal cell polarity is critical for assembling epithelia and maintaining organ architecture. Drosophila embryos provide a superb model. In the current view, apically positioned Bazooka/Par3 is the initial polarity cue as cells form during cellularization. Bazooka then helps to position both adherens junctions and atypical protein kinase C (aPKC). Although a polarized cytoskeleton is critical for Bazooka positioning, proteins mediating this remained unknown. We found that the small GTPase Rap1 and the actin-junctional linker Canoe/afadin are essential for polarity establishment, as both adherens junctions and Bazooka are mispositioned in their absence. Rap1 and Canoe do not simply organize the cytoskeleton, as actin and microtubules become properly polarized in their absence. Canoe can recruit Bazooka when ectopically expressed, but they do not obligatorily colocalize. Rap1 and Canoe play continuing roles in Bazooka localization during gastrulation, but other polarity cues partially restore apical Bazooka in the absence of Rap1 or Canoe. We next tested the current linear model for polarity establishment. Both Bazooka and aPKC regulate Canoe localization despite being “downstream” of Canoe. Further, Rap1, Bazooka, and aPKC, but not Canoe, regulate columnar cell shape. These data reshape our view, suggesting that polarity establishment is regulated by a protein network rather than a linear pathway. PMID:23363604
Oh, Denise; Houston, Douglas W
2017-12-15
The localization and organization of mitochondria- and ribonucleoprotein granule-rich germ plasm is essential for many aspects of germ cell development. In Xenopus, germ plasm is maternally inherited and is required for the specification of primordial germ cells (PGCs). Germ plasm is aggregated into larger patches during egg activation and cleavage and is ultimately translocated perinuclearly during gastrulation. Although microtubule dynamics and a kinesin (Kif4a) have been implicated in Xenopus germ plasm localization, little is known about how germ plasm distribution is regulated. Here, we identify a role for maternal Xenopus Syntabulin in the aggregation of germ plasm following fertilization. We show that depletion of sybu mRNA using antisense oligonucleotides injected into oocytes results in defects in the aggregation and perinuclear transport of germ plasm and subsequently in reduced PGC numbers. Using live imaging analysis, we also characterize a novel role for Sybu in the collection of germ plasm in vegetal cleavage furrows by surface contraction waves. Additionally, we show that a localized kinesin-like protein, Kif3b, is also required for germ plasm aggregation and that Sybu functionally interacts with Kif3b and Kif4a in germ plasm aggregation. Overall, these data suggest multiple coordinate roles for kinesins and adaptor proteins in controlling the localization and distribution of a cytoplasmic determinant in early development. Copyright © 2017 Elsevier Inc. All rights reserved.
Boettner, Benjamin; Van Aelst, Linda
2007-01-01
Epithelial morphogenesis is characterized by an exquisite control of cell shape and position. Progression through dorsal closure in Drosophila gastrulation depends on the ability of Rap1 GTPase to signal through the adherens junctional multidomain protein Canoe. Here, we provide genetic evidence that epithelial Rap activation and Canoe effector usage are conferred by the Drosophila PDZ-GEF (dPDZ-GEF) exchange factor. We demonstrate that dPDZ-GEF/Rap/Canoe signaling modulates cell shape and apicolateral cell constriction in embryonic and wing disc epithelia. In dPDZ-GEF mutant embryos with strong dorsal closure defects, cells in the lateral ectoderm fail to properly elongate. Postembryonic dPDZ-GEF mutant cells generated in mosaic tissue display a striking extension of lateral cell perimeters in the proximity of junctional complexes, suggesting a loss of normal cell contractility. Furthermore, our data indicate that dPDZ-GEF signaling is linked to myosin II function. Both dPDZ-GEF and cno show strong genetic interactions with the myosin II-encoding gene, and myosin II distribution is severely perturbed in epithelia of both mutants. These findings provide the first insight into the molecular machinery targeted by Rap signaling to modulate epithelial plasticity. We propose that dPDZ-GEF-dependent signaling functions as a rheostat linking Rap activity to the regulation of cell shape in epithelial morphogenesis at different developmental stages. PMID:17846121
Sanchez-Soriano, Natalia; Travis, Mark; Dajas-Bailador, Federico; Gonçalves-Pimentel, Catarina; Whitmarsh, Alan J.; Prokop, Andreas
2009-01-01
Summary Spectraplakins are large actin-microtubule linker molecules implicated in various processes, including gastrulation, wound healing, skin blistering and neuronal degeneration. Expression data for the mammalian spectraplakin ACF7 and genetic analyses of the Drosophila spectraplakin Short stop (Shot) suggest an important role during neurogenesis. Using three parallel neuronal culture systems we demonstrate that, like Shot, ACF7 is essential for axon extension and describe, for the first time, their subcellular functions during axonal growth. Firstly, both ACF7 and Shot regulate the organisation of neuronal microtubules, a role dependent on both the F-actin- and microtubule-binding domains. This role in microtubule organisation is probably the key mechanism underlying the roles of Shot and ACF7 in growth cone advance. Secondly, we found a novel role for ACF7 and Shot in regulating the actin cytoskeleton through their ability to control the formation of filopodia. This function in F-actin regulation requires EF-hand motifs and interaction with the translational regulator Krasavietz/eIF5C, indicating that the underlying mechanisms are completely different from those used to control microtubules. Our data provide the basis for the first mechanistic explanation for the role of Shot and ACF7 in the developing nervous system and demonstrate their ability to coordinate the organisation of both actin and microtubule networks during axonal growth. PMID:19571116
Variation in the schedules of somite and neural development in frogs
Sáenz-Ponce, Natalia; Mitgutsch, Christian; del Pino, Eugenia M.
2012-01-01
The timing of notochord, somite, and neural development was analyzed in the embryos of six different frog species, which have been divided into two groups, according to their developmental speed. Rapid developing species investigated were Xenopus laevis (Pipidae), Engystomops coloradorum, and Engystomops randi (Leiuperidae). The slow developers were Epipedobates machalilla and Epipedobates tricolor (Dendrobatidae) and Gastrotheca riobambae (Hemiphractidae). Blastopore closure, notochord formation, somite development, neural tube closure, and the formation of cranial neural crest cell-streams were detected by light and scanning electron microscopy and by immuno-histochemical detection of somite and neural crest marker proteins. The data were analyzed using event pairing to determine common developmental aspects and their relationship to life-history traits. In embryos of rapidly developing frogs, elongation of the notochord occurred earlier relative to the time point of blastopore closure in comparison with slowly developing species. The development of cranial neural crest cell-streams relative to somite formation is accelerated in rapidly developing frogs, and it is delayed in slowly developing frogs. The timing of neural tube closure seemed to be temporally uncoupled with somite formation. We propose that these changes are achieved through differential timing of developmental modules that begin with the elongation of the notochord during gastrulation in the rapidly developing species. The differences might be related to the necessity of developing a free-living tadpole quickly in rapid developers. PMID:23184997
Hawkins, Thomas A; Cavodeassi, Florencia; Erdélyi, Ferenc; Szabó, Gábor; Lele, Zsolt
2008-04-17
Key molecules involved in notochord differentiation and function have been identified through genetic analysis in zebrafish and mice, but MEK1 and 2 have so far not been implicated in this process due to early lethality (Mek1-/-) and functional redundancy (Mek2-/-) in the knockout animals. Here, we reveal a potential role for Mek1/2 during notochord development by using the small molecule Mek1/2 inhibitor U0126 which blocks phosphorylation of the Mek1/2 target gene Erk1/2 in vivo. Applying the inhibitor from early gastrulation until the 18-somite stage produces a specific and consistent phenotype with lack of dark pigmentation, shorter tail and an abnormal, undulated notochord. Using morphological analysis, in situ hybridization, immunhistochemistry, TUNEL staining and electron microscopy, we demonstrate that in treated embryos the chordamesoderm to notochord transition is disrupted and identify disorganization in the medial layer of the perinotochordal basement mebrane as the probable cause of the undulations and bulges in the notochord. We also examined and excluded FGF as the upstream signal during this process. Using the small chemical U0126, we have established a novel link between MAPK-signaling and notochord differentiation. Our phenotypic analysis suggests a potential connection between the MAPK-pathway, the COPI-mediated intracellular transport and/or the copper-dependent posttranslational regulatory processes during notochord differentiation.
Partial Müllerian Duct Retention in Smad4 Conditional Mutant Male Mice.
Petit, Fabrice G; Deng, Chuxia; Jamin, Soazik P
2016-01-01
Müllerian duct regression is a complex process which involves the AMH signalling pathway. We have previously demonstrated that besides AMH and its specific type II receptor (AMHRII), BMPR-IA and Smad5 are two essential factors implicated in this mechanism. Mothers against decapentaplegic homolog 4 (Smad4) is a transcription factor and the common Smad (co-Smad) involved in transforming growth factor beta (TGF-β) signalling pathway superfamily. Since Smad4 null mutants die early during gastrulation, we have inactivated Smad4 in the Müllerian duct mesenchyme. Specific inactivation of Smad4 in the urogenital ridge leads to the partial persistence of the Müllerian duct in adult male mice. Careful examination of the urogenital tract reveals that the Müllerian duct retention is randomly distributed either on one side or both sides. Histological analysis shows a uterus-like structure, which is confirmed by the expression of estrogen receptor α. As previously described in a β-catenin conditional mutant mouse model, β-catenin contributes to Müllerian duct regression. In our mutant male embryos, it appears that β-catenin expression is locally reduced along the urogenital ridge as compared to control mice. Moreover, the expression pattern is similar to those observed in control female mice. This study shows that reduced Smad4 expression disrupts the Wnt/β-catenin signalling leading to the partial persistence of Müllerian duct.
Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.
Oliveri, Paola; Walton, Katherine D; Davidson, Eric H; McClay, David R
2006-11-01
The foxa gene is an integral component of the endoderm specification subcircuit of the endomesoderm gene regulatory network in the Strongylocentrotus purpuratus embryo. Its transcripts become confined to veg2, then veg1 endodermal territories, and, following gastrulation, throughout the gut. It is also expressed in the stomodeal ectoderm. gatae and otx genes provide input into the pregastrular regulatory system of foxa, and Foxa represses its own transcription, resulting in an oscillatory temporal expression profile. Here, we report three separate essential functions of the foxa gene: it represses mesodermal fate in the veg2 endomesoderm; it is required in postgastrular development for the expression of gut-specific genes; and it is necessary for stomodaeum formation. If its expression is reduced by a morpholino, more endomesoderm cells become pigment and other mesenchymal cell types, less gut is specified, and the larva has no mouth. Experiments in which blastomere transplantation is combined with foxa MASO treatment demonstrate that, in the normal endoderm, a crucial role of Foxa is to repress gcm expression in response to a Notch signal, and hence to repress mesodermal fate. Chimeric recombination experiments in which veg2, veg1 or ectoderm cells contained foxa MASO show which region of foxa expression controls each of the three functions. These experiments show that the foxa gene is a component of three distinct embryonic gene regulatory networks.
Zhang, Lixia; Kendrick, Christina; Jülich, Dörthe; Holley, Scott A.
2010-01-01
Summary Cell division, differentiation and morphogenesis are coordinated during embryonic development and frequently in disarray in pathologies such as cancer. Here, we present a zebrafish mutant that ceases mitosis at the beginning of gastrulation, but undergoes axis elongation and develops blood, muscle and a beating heart. We identify the mutation as being in early mitotic inhibitor 1 (emi1), a negative regulator of the Anaphase Promoting Complex, and utilize the mutant to examine the role of the cell cycle in somitogenesis. The mutant phenotype indicates that axis elongation during the segmentation period is substantially driven by cell migration. We find that the segmentation clock, which regulates somitogenesis, functions normally in the absence of cell cycle progression and observe that mitosis is a modest source of noise for the clock. Somite morphogenesis involves the epithelialization of the somite border cells around a core of mesenchyme. As in wild-type embryos, somite boundary cells are polarized along a Fibronectin matrix in emi1−/−. The mutants also display evidence of segment polarity. However, in the absence of a normal cell cycle, somites appear to hyper-epithelialize as the internal mesenchymal cells exit the core of the somite after initial boundary formation. Thus, cell cycle progression is not required during the segmentation period for segmentation clock function but is necessary for normal segmental arrangement of epithelial borders and internal mesenchymal cells. PMID:18480162
Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects
Runtuwene, Vincent; van Eekelen, Mark; Overvoorde, John; Rehmann, Holger; Yntema, Helger G.; Nillesen, Willy M.; van Haeringen, Arie; van der Burgt, Ineke; Burgering, Boudewijn; den Hertog, Jeroen
2011-01-01
SUMMARY Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras–mitogen-activated-protein-kinase (MAPK) signaling pathway. Recently, two mutations in NRAS were reported to be associated with Noonan syndrome, T50I and G60E. Here, we report a mutation in NRAS, resulting in an I24N amino acid substitution, that we identified in an individual bearing typical Noonan syndrome features. The I24N mutation activates N-Ras, resulting in enhanced downstream signaling. Expression of N-Ras-I24N, N-Ras-G60E or the strongly activating mutant N-Ras-G12V, which we included as a positive control, results in developmental defects in zebrafish embryos, demonstrating that these activating N-Ras mutants are sufficient to induce developmental disorders. The defects in zebrafish embryos are reminiscent of symptoms in individuals with Noonan syndrome and phenocopy the defects that other Noonan-syndrome-associated genes induce in zebrafish embryos. MEK inhibition completely rescued the activated N-Ras-induced phenotypes, demonstrating that these defects are mediated exclusively by Ras-MAPK signaling. In conclusion, mutations in NRAS from individuals with Noonan syndrome activated N-Ras signaling and induced developmental defects in zebrafish embryos, indicating that activating mutations in NRAS cause Noonan syndrome. PMID:21263000
Phosphoregulation of the C. elegans cadherin–catenin complex
Callaci, Sandhya; Morrison, Kylee; Shao, Xiangqiang; Schuh, Amber L.; Wang, Yueju; Yates, John R.; Hardin, Jeff; Audhya, Anjon
2015-01-01
Adherens junctions play key roles in mediating cell–cell contacts during tissue development. In Caenorhabditis elegans embryos, the cadherin–catenin complex (CCC), composed of the classical cadherin HMR-1 and members of three catenin families, HMP-1, HMP-2 and JAC-1, is necessary for normal blastomere adhesion, gastrulation, ventral enclosure of the epidermis and embryo elongation. Disruption of CCC assembly or function results in embryonic lethality. Previous work suggests that components of the CCC are subject to phosphorylation. However, the identity of phosphorylated residues in CCC components and their contributions to CCC stability and function in a living organism remain speculative. Using mass spectrometry, we systematically identify phosphorylated residues in the essential CCC subunits HMR-1, HMP-1 and HMP-2 in vivo. We demonstrate that HMR-1/cadherin phosphorylation occurs on three sites within its β-catenin binding domain that each contributes to CCC assembly on lipid bilayers. In contrast, phosphorylation of HMP-2/β-catenin inhibits its association with HMR-1/cadherin in vitro, suggesting a role in CCC disassembly. Although HMP-1/α-catenin is also phosphorylated in vivo, phosphomimetic mutations do not affect its ability to associate with other CCC components or interact with actin in vitro. Collectively, our findings support a model in which distinct phosphorylation events contribute to rapid CCC assembly and disassembly, both of which are essential for morphogenetic rearrangements during development. PMID:26443865
Huang, Lijia; Szymanska, Katarzyna; Jensen, Victor L.; Janecke, Andreas R.; Innes, A. Micheil; Davis, Erica E.; Frosk, Patrick; Li, Chunmei; Willer, Jason R.; Chodirker, Bernard N.; Greenberg, Cheryl R.; McLeod, D. Ross; Bernier, Francois P.; Chudley, Albert E.; Müller, Thomas; Shboul, Mohammad; Logan, Clare V.; Loucks, Catrina M.; Beaulieu, Chandree L.; Bowie, Rachel V.; Bell, Sandra M.; Adkins, Jonathan; Zuniga, Freddi I.; Ross, Kevin D.; Wang, Jian; Ban, Matthew R.; Becker, Christian; Nürnberg, Peter; Douglas, Stuart; Craft, Cheryl M.; Akimenko, Marie-Andree; Hegele, Robert A.; Ober, Carole; Utermann, Gerd; Bolz, Hanno J.; Bulman, Dennis E.; Katsanis, Nicholas; Blacque, Oliver E.; Doherty, Dan; Parboosingh, Jillian S.; Leroux, Michel R.; Johnson, Colin A.; Boycott, Kym M.
2011-01-01
Joubert syndrome related disorders (JSRDs) have broad but variable phenotypic overlap with other ciliopathies. The molecular etiology of this overlap is unclear but probably arises from disrupting common functional module components within primary cilia. To identify additional module elements associated with JSRDs, we performed homozygosity mapping followed by next-generation sequencing (NGS) and uncovered mutations in TMEM237 (previously known as ALS2CR4). We show that loss of the mammalian TMEM237, which localizes to the ciliary transition zone (TZ), results in defective ciliogenesis and deregulation of Wnt signaling. Furthermore, disruption of Danio rerio (zebrafish) tmem237 expression produces gastrulation defects consistent with ciliary dysfunction, and Caenorhabditis elegans jbts-14 genetically interacts with nphp-4, encoding another TZ protein, to control basal body-TZ anchoring to the membrane and ciliogenesis. Both mammalian and C. elegans TMEM237/JBTS-14 require RPGRIP1L/MKS5 for proper TZ localization, and we demonstrate additional functional interactions between C. elegans JBTS-14 and MKS-2/TMEM216, MKSR-1/B9D1, and MKSR-2/B9D2. Collectively, our findings integrate TMEM237/JBTS-14 in a complex interaction network of TZ-associated proteins and reveal a growing contribution of a TZ functional module to the spectrum of ciliopathy phenotypes. PMID:22152675
Role of the gut endoderm in relaying left-right patterning in mice.
Viotti, Manuel; Niu, Lei; Shi, Song-Hai; Hadjantonakis, Anna-Katerina
2012-01-01
Establishment of left-right (LR) asymmetry occurs after gastrulation commences and utilizes a conserved cascade of events. In the mouse, LR symmetry is broken at a midline structure, the node, and involves signal relay to the lateral plate, where it results in asymmetric organ morphogenesis. How information transmits from the node to the distantly situated lateral plate remains unclear. Noting that embryos lacking Sox17 exhibit defects in both gut endoderm formation and LR patterning, we investigated a potential connection between these two processes. We observed an endoderm-specific absence of the critical gap junction component, Connexin43 (Cx43), in Sox17 mutants. Iontophoretic dye injection experiments revealed planar gap junction coupling across the gut endoderm in wild-type but not Sox17 mutant embryos. They also revealed uncoupling of left and right sides of the gut endoderm in an isolated domain of gap junction intercellular communication at the midline, which in principle could function as a barrier to communication between the left and right sides of the embryo. The role for gap junction communication in LR patterning was confirmed by pharmacological inhibition, which molecularly recapitulated the mutant phenotype. Collectively, our data demonstrate that Cx43-mediated communication across gap junctions within the gut endoderm serves as a mechanism for information relay between node and lateral plate in a process that is critical for the establishment of LR asymmetry in mice.
NASA Astrophysics Data System (ADS)
Sknepnek, Rastko
Coupling between active motion and curvature is an integral part of many fundamental biological processes such as gastrulation and intestinal crypt fission. However, to date very little is known about how curvature affects active motion. Here we use a particle-based model to study the interplay between activity and curvature in dense systems. Using detailed numerical simulations and simple physical arguments, we show that the presence of curvature results in a number of steady-state configurations that have no analogues in flat geometries. These states are particularly interesting if topological constraints require the presence of defects in the ground states in the passive limit. We focus on polar and nematic active systems confined to move on the surface of a sphere and show that activity can lead to the formation of moving band and multidefect states. We extend our model to self-propelled filaments confined to a plane or the surface of a sphere. We show that the activity leads to an effective softening of the polymer chain. As a result of this softening, with the increase in activity, the system transitions between a jammed polymer-melt state, an active turbulent state characterised by a proliferation of hair-pin defects, to a region dominated by phase segregation (MIPS), finally followed by the onset of a homogenous state characterised by spiral motion of individual polymers. UK EPSRC EP/M009599/1.
Predictive computation of genomic logic processing functions in embryonic development
Peter, Isabelle S.; Faure, Emmanuel; Davidson, Eric H.
2012-01-01
Gene regulatory networks (GRNs) control the dynamic spatial patterns of regulatory gene expression in development. Thus, in principle, GRN models may provide system-level, causal explanations of developmental process. To test this assertion, we have transformed a relatively well-established GRN model into a predictive, dynamic Boolean computational model. This Boolean model computes spatial and temporal gene expression according to the regulatory logic and gene interactions specified in a GRN model for embryonic development in the sea urchin. Additional information input into the model included the progressive embryonic geometry and gene expression kinetics. The resulting model predicted gene expression patterns for a large number of individual regulatory genes each hour up to gastrulation (30 h) in four different spatial domains of the embryo. Direct comparison with experimental observations showed that the model predictively computed these patterns with remarkable spatial and temporal accuracy. In addition, we used this model to carry out in silico perturbations of regulatory functions and of embryonic spatial organization. The model computationally reproduced the altered developmental functions observed experimentally. Two major conclusions are that the starting GRN model contains sufficiently complete regulatory information to permit explanation of a complex developmental process of gene expression solely in terms of genomic regulatory code, and that the Boolean model provides a tool with which to test in silico regulatory circuitry and developmental perturbations. PMID:22927416
NASA Technical Reports Server (NTRS)
Reinsch, S. S.; Conway, G. C.
2003-01-01
After fertilization Zebrafish embryos undergo synchronous cleavage to form a blastula of cells sitting upon a single multinucleate yolk cell. At the beginning of gastrulation these cells undergo extensive cell migrations to form the major body axes. We have discovered a gene, G12, which is required for cell migrations and positioning of nuclei in the large syncytial yolk cell. Overexpression of a G12-GFP fusion protein is not toxic and shows that the protein localizes inside the yolk cell to the yolk nuclei, microtubules, and to the margin between the blastomeres and the large yolk cell. Morpholino (MO) injection into the 1-cell embryo or into just the yolk syncytium conipletely inhibits cell migrations, doming of the yolk cell, and positioning of nuclei around the margin. This effect can be partially rescued by injection of G12-GFP encoding RNA. Given the known role of microtubules in nuclear positioning of yolk nuclei in Zebrafish, we investigated the microtubules in morpholiiio injected and rescued embryos. We find that microtubules are sparse and disorganized in MO-injected embryos and are restored to normal organization upon G12-GFP rescue. G12 plays a pivotal role in organization of inicrotubules during early development. G12 is highly conserved in vertebrates and two homologues exist in the human genome. One of the human hoinologues is amplified in aggressive breast tumors.
Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm
Gaur, Shailly; Mandelbaum, Max; Herold, Mona; Majumdar, Himani Datta; Neilson, Karen M.; Maynard, Thomas M.; Mood, Kathy; Daar, Ira O.; Moody, Sally A.
2016-01-01
The decision by embryonic ectoderm to give rise to epidermal versus neural derivatives is the result of signaling events during blastula and gastrula stages. However, there also is evidence in Xenopus that cleavage stage blastomeres contain maternally derived molecules that bias them toward a neural fate. We used a blastomere explant culture assay to test whether maternally deposited transcription factors bias 16-cell blastomere precursors of epidermal or neural ectoderm to express early zygotic neural genes in the absence of gastrulation interactions or exogenously supplied signaling factors. We found that Foxd4l1, Zic2, Gmnn and Sox11 each induced explants made from ventral, epidermis-producing blastomeres to express early neural genes, and that at least some of the Foxd4l1 and Zic2 activity is required at cleavage stages. Similarly, providing extra Foxd4l1 or Zic2 to explants made from dorsal, neural plate-producing blastomeres significantly increased expression of early neural genes, whereas knocking down either significantly reduced them. These results show that maternally delivered transcription factors bias cleavage stage blastomeres to a neural fate. We demonstrate that mouse and human homologues of Foxd4l1 have similar functional domains compared to the frog protein, as well as conserved transcriptional activities when expressed in Xenopus embryos and blastomere explants. PMID:27092474
Yip, Morris C. M.; Dain, Joel A.
1970-01-01
1. The enzyme that catalyses the transfer of galactose from UDP-galactose to N-acetylgalactosaminyl-(1→4)-N-acetylneuraminyl-(2→3)-galactosyl-(1→4)-glucosylceramide (GM2) was found mainly in the heavy- and light-microsomal fractions of the adult frog brain. 2. The subcellular distribution of the enzyme, UDP-galactose–GM2 galactosyltransferase, parallels that of gangliosides in adult frog brain. 3. The enzymic activity was first detected at late gastrulation (Shumway stage 11½) and increased until the completion of the operculum (Shumway stage 25) and then decreased in the tadpoles. 4. In adult frog brain, the enzyme exhibited a pH optimum of 7.2–7.3 in both cacodylate and tris buffers. The enzyme required 10mm-Mn2+ for maximal activity and the Km for Mn2+ was determined as 2.2mm. The half-maximal velocity was obtained at a GM2 concentration of 0.18mm. Inhibition of the enzymic reaction was found when the GM2 concentration was greater than 1.38mm. 5. The enzymic activity was also inhibited by the products in the pathway of ganglioside synthesis, i.e. either by a mixture of gangliosides or by individual ganglioside components. The most active inhibitor was disialoganglioside. The degree of inhibition is a function of the individual ganglioside concentration. 6. A product-inhibition mechanism for the regulation of ganglioside biosynthesis is discussed. PMID:5484669
Miyagi, Asuka; Negishi, Takefumi; Yamamoto, Takamasa S; Ueno, Naoto
2015-11-01
Patterning of the vertebrate anterior-posterior axis is regulated by the coordinated action of growth factors whose effects can be further modulated by upstream and downstream mediators and the cross-talk of different intracellular pathways. In particular, the inhibition of the Wnt/β-catenin signaling pathway by various factors is critically required for anterior specification. Here, we report that Flop1 and Flop2 (Flop1/2), G protein-coupled receptors related to Gpr4, contribute to the regulation of head formation by inhibiting Wnt/β-catenin signaling in Xenopus embryos. Using whole-mount in situ hybridization, we showed that flop1 and flop2 mRNAs were expressed in the neural ectoderm during early gastrulation. Both the overexpression and knockdown of Flop1/2 resulted in altered embryonic head phenotypes, while the overexpression of either Flop1/2 or the small GTPase RhoA in the absence of bone morphogenetic protein (BMP) signaling resulted in ectopic head induction. Examination of the Flops' function in Xenopus embryo animal cap cells showed that they inhibited Wnt/β-catenin signaling by promoting β-catenin degradation through both RhoA-dependent and -independent pathways in a cell-autonomous manner. These results suggest that Flop1 and Flop2 are essential regulators of Xenopus head formation that act as novel inhibitory components of the Wnt/β-catenin signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.
Byrne, Maria; Ho, Melanie; Selvakumaraswamy, Paulina; Nguyen, Hong D; Dworjanyn, Symon A; Davis, Andy R
2009-05-22
Global warming is causing ocean warming and acidification. The distribution of Heliocidaris erythrogramma coincides with the eastern Australia climate change hot spot, where disproportionate warming makes marine biota particularly vulnerable to climate change. In keeping with near-future climate change scenarios, we determined the interactive effects of warming and acidification on fertilization and development of this echinoid. Experimental treatments (20-26 degrees C, pH 7.6-8.2) were tested in all combinations for the 'business-as-usual' scenario, with 20 degrees C/pH 8.2 being ambient. Percentage of fertilization was high (>89%) across all treatments. There was no difference in percentage of normal development in any pH treatment. In elevated temperature conditions, +4 degrees C reduced cleavage by 40 per cent and +6 degrees C by a further 20 per cent. Normal gastrulation fell below 4 per cent at +6 degrees C. At 26 degrees C, development was impaired. As the first study of interactive effects of temperature and pH on sea urchin development, we confirm the thermotolerance and pH resilience of fertilization and embryogenesis within predicted climate change scenarios, with negative effects at upper limits of ocean warming. Our findings place single stressor studies in context and emphasize the need for experiments that address ocean warming and acidification concurrently. Although ocean acidification research has focused on impaired calcification, embryos may not reach the skeletogenic stage in a warm ocean.
Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits.
Bertrand, Stephanie; Camasses, Alain; Somorjai, Ildiko; Belgacem, Mohamed R; Chabrol, Olivier; Escande, Marie-Line; Pontarotti, Pierre; Escriva, Hector
2011-05-31
FGF signaling is one of the few cell-cell signaling pathways conserved among all metazoans. The diversity of FGF gene content among different phyla suggests that evolution of FGF signaling may have participated in generating the current variety of animal forms. Vertebrates possess the greatest number of FGF genes, the functional evolution of which may have been implicated in the acquisition of vertebrate-specific morphological traits. In this study, we have investigated the roles of the FGF signal during embryogenesis of the cephalochordate amphioxus, the best proxy for the chordate ancestor. We first isolate the full FGF gene complement and determine the evolutionary relationships between amphioxus and vertebrate FGFs via phylogenetic and synteny conservation analysis. Using pharmacological treatments, we inhibit the FGF signaling pathway in amphioxus embryos in different time windows. Our results show that the requirement for FGF signaling during gastrulation is a conserved character among chordates, whereas this signal is not necessary for neural induction in amphioxus, in contrast to what is known in vertebrates. We also show that FGF signal, acting through the MAPK pathway, is necessary for the formation of the most anterior somites in amphioxus, whereas more posterior somite formation is not FGF-dependent. This result leads us to propose that modification of the FGF signal function in the anterior paraxial mesoderm in an amphioxus-like vertebrate ancestor might have contributed to the loss of segmentation in the preotic paraxial mesoderm of the vertebrate head.
Experimental parameterisation of principal physics in buoyancy variations of marine teleost eggs.
Jung, Kyung-Mi; Folkvord, Arild; Kjesbu, Olav Sigurd; Sundby, Svein
2014-01-01
It is generally accepted that the high buoyancy of pelagic marine eggs is due to substantial influx of water across the cell membrane just before ovulation. Here we further develop the theoretical basis by applying laboratory observations of the various components of the fertilized egg in first-principle equations for egg specific gravity (ρ(egg)) followed by statistical validation. We selected Atlantic cod as a model animal due to the affluent amount of literature on this species, but also undertook additional dedicated experimental works. We found that specific gravity of yolk plus embryo is central in influencing ρ(egg) and thereby the buoyancy. However, our established framework documents the effect on ρ(egg) of the initial deposition of the heavy chorion material in the gonad prior to spawning. Thereafter, we describe the temporal changes in ρ(egg) during incubation: Generally, the eggs showed a slight rise in ρ(egg) from fertilization to mid-gastrulation followed by a gradual decrease until full development of main embryonic organs just before hatching. Ontogenetic changes in ρ(egg) were significantly associated with volume and mass changes of yolk plus embryo. The initial ρ(egg) at fertilization appeared significantly influenced by the chorion volume fraction which is determined by the combination of the final chorion volume of the oocyte and of the degree of swelling (hydrolyzation) prior to spawning. The outlined principles and algorithms are universal in nature and should therefore be applicable to fish eggs in general.
Transcriptional regulation of cranial sensory placode development
Moody, Sally A.; LaMantia, Anthony-Samuel
2015-01-01
Cranial sensory placodes derive from discrete patches of the head ectoderm, and give rise to numerous sensory structures. During gastrulation, a specialized “neural border zone” forms around the neural plate in response to interactions between the neural and non-neural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the pre-placodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with co-factor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest and epidermis by repressing genes that specify the fates of those adjacent ectodermally-derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently subdivides into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, somatic sensory receptor cells, chemosensory neurons, peripheral glia and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes. PMID:25662264
The role of microtubule actin cross-linking factor 1 (MACF1) in the Wnt signaling pathway.
Chen, Hui-Jye; Lin, Chung-Ming; Lin, Chyuan-Sheng; Perez-Olle, Raul; Leung, Conrad L; Liem, Ronald K H
2006-07-15
MACF1 (microtubule actin cross-linking factor 1) is a multidomain protein that can associate with microfilaments and microtubules. We found that MACF1 was highly expressed in neuronal tissues and the foregut of embryonic day 8.5 (E8.5) embryos and the head fold and primitive streak of E7.5 embryos. MACF1(-/-) mice died at the gastrulation stage and displayed developmental retardation at E7.5 with defects in the formation of the primitive streak, node, and mesoderm. This phenotype was similar to Wnt-3(-/-) and LRP5/6 double-knockout embryos. In the absence of Wnt, MACF1 associated with a complex that contained Axin, beta-catenin, GSK3beta, and APC. Upon Wnt stimulation, MACF1 appeared to be involved in the translocation and subsequent binding of the Axin complex to LRP6 at the cell membrane. Reduction of MACF1 with small interfering RNA decreased the amount of beta-catenin in the nucleus, and led to an inhibition of Wnt-induced TCF/beta-catenin-dependent transcriptional activation. Similar results were obtained with a dominant-negative MACF1 construct that contained the Axin-binding region. Reduction of MACF1 in Wnt-1-expressing P19 cells resulted in decreased T (Brachyury) gene expression, a DNA-binding transcription factor that is a direct target of Wnt/beta-catenin signaling and required for mesoderm formation. These results suggest a new role of MACF1 in the Wnt signaling pathway.
Zhang, Chengjin; Frazier, Jared M.; Chen, Hao; Liu, Yao; Lee, Ju-Ahng; Cole, Gregory J.
2014-01-01
Alcohol is a teratogen that has diverse effects on brain and craniofacial development, leading to a constellation of developmental disorders referred to as fetal alcohol spectrum disorder (FASD). The molecular basis of ethanol insult remains poorly understood, as does the relationship between molecular and behavioral changes as a consequence of prenatal ethanol exposure. Zebrafish embryos were exposed to a range of ethanol concentrations (0.5–5.0%) during defined developmental stages, and examined for morphological phenotypes characteristic of FASD. Embryos were also analyzed by in situ hybridization for changes in expression of defined cell markers for neural cell types that are sonic hedgehog-dependent. We show that transient binge-like ethanol exposures during defined developmental stages, such as early gastrulation and early neurulation, result in a range of phenotypes and changes in expression of Shh-dependent genes. The severity of fetal alcohol syndrome (FAS) morphological phenotypes, such as microphthalmia, depends on the embryonic stage and concentration of alcohol exposure, as does diminution of retinal Pax6a or forebrain and hindbrain GAD1 gene expression. We also show that changes in eye and brain morphology correlate with changes in Pax6a and GAD1 gene expression. Our results therefore show that transient binge-like ethanol exposures in zebrafish embryos produce the stereotypical morphological phenotypes of FAS, with the severity of phenotypes depending on the developmental stage and alcohol concentration of exposure. PMID:24929233
Expression and evolution of Tiki1 and Tiki2 genes in vertebrates
FEISTEL, KERSTIN; BRITO, JOSE M.; AMADO, NATHALIA G.; XU, CHIWEI; ABREU, JOSE G.; HE, XI
2015-01-01
Tiki1 is a Wnt protease and antagonist specifically expressed in the Spemann-Mangold Organizer and is required for head formation in Xenopus embryos. Here we report neighbor-joining phylogenetic analysis of vertebrate Tiki genes and their mRNA expression patterns in chick, mouse, and rabbit embryos. Tiki1 and Tiki2 orthologues are highly conserved, and exhibit similar but also different developmental expression patterns among the vertebrate/mammalian species analyzed. The Tiki1 gene is noticeably absent in the rodent lineage, but is present in lagomorphs and all other vertebrate/mammalian species examined. Expression in Hensen’s node, the equivalent of the Xenopus Organizer, was observed for Chick Tiki2 and Rabbit Tiki1 and Tiki2. Mouse Tiki2 was detected at low levels at gastrulation and head fold stages, but not in the node. Mouse Tiki2 and chick Tiki1 display similar expression in the dorsal spinal cord. Chick Tiki1 expression was also detected in the surface ectoderm and maxillary bud, while chick Tiki2 was found in the anterior intestinal portal, head mensenchyme and primitive atrium. Our expression analyses provide evidence that Tiki1 and Tiki2 are evolutionary conserved among vertebrate species and their expression in the Organizer and other regions suggests contributions of these Wnt inhibitors to embryonic patterning as well as organogenesis. Our analyses further reveal mis-regulation of TIKI1 and TIKI2 in human cancer and diseases. PMID:25354456
Experimental Parameterisation of Principal Physics in Buoyancy Variations of Marine Teleost Eggs
Jung, Kyung-Mi; Folkvord, Arild; Kjesbu, Olav Sigurd; Sundby, Svein
2014-01-01
It is generally accepted that the high buoyancy of pelagic marine eggs is due to substantial influx of water across the cell membrane just before ovulation. Here we further develop the theoretical basis by applying laboratory observations of the various components of the fertilized egg in first-principle equations for egg specific gravity (ρegg) followed by statistical validation. We selected Atlantic cod as a model animal due to the affluent amount of literature on this species, but also undertook additional dedicated experimental works. We found that specific gravity of yolk plus embryo is central in influencing ρegg and thereby the buoyancy. However, our established framework documents the effect on ρegg of the initial deposition of the heavy chorion material in the gonad prior to spawning. Thereafter, we describe the temporal changes in ρegg during incubation: Generally, the eggs showed a slight rise in ρegg from fertilization to mid-gastrulation followed by a gradual decrease until full development of main embryonic organs just before hatching. Ontogenetic changes in ρegg were significantly associated with volume and mass changes of yolk plus embryo. The initial ρegg at fertilization appeared significantly influenced by the chorion volume fraction which is determined by the combination of the final chorion volume of the oocyte and of the degree of swelling (hydrolyzation) prior to spawning. The outlined principles and algorithms are universal in nature and should therefore be applicable to fish eggs in general. PMID:25122447
Znrg, a novel gene expressed mainly in the developing notochord of zebrafish.
Zhou, Yaping; Xu, Yan; Li, Jianzhen; Liu, Yao; Zhang, Zhe; Deng, Fengjiao
2010-06-01
The notochord, a defining characteristic of the chordate embryo is a critical midline structure required for axial skeletal formation in vertebrates, and acts as a signaling center throughout embryonic development. We utilized the digital differential display program of the National Center for Biotechnology Information, and identified a contig of expressed sequence tags (no. Dr. 83747) from the zebrafish ovary library in Genbank. Full-length cDNA of the identified gene was cloned by 5'- and 3'- RACE, and the resulting sequence was confirmed by polymerase chain reaction and sequencing. The cDNA clone contains 2,505 base pairs and encodes a novel protein of 707 amino acids that shares no significant homology with any known proteins. This gene was expressed in mature oocytes and at the one-cell stage, and persisted until the 5th day of development, as determined by RT-PCR. Transcripts were detected by whole-mount RNA in situ hybridization from the two-cell stage to 72 h of embryonic development. This gene was uniformly distributed from the cleavage stage up to the blastula stage. During early gastrulation, it was present in the dorsal region, and became restricted to the notochord and pectoral fin at 48 and 72 h of embryonic development. Based on its abundance in the notochord, we hypothesized that the novel gene may play an important role in notochord development in zebrafish; we named this gene, zebrafish notochord-related gene, or znrg.
Periods of vertebral column sensitivity to boric acid treatment in CD-1 mice in utero.
Cherrington, Jana W; Chernoff, Neil
2002-01-01
Boric acid (BA) has many uses as an industrial compound and is widely distributed in the environment. BA has been shown to produce rib agenesis, a rare effect in laboratory animals. This study was conducted to determine if there is a period of sensitivity to this unusual effect. BA (500 or 750 mg/kg) was administered p.o. to pregnant CD-1 mice once daily on gestational days (GDs) 6-10. A reduction of 13th rib length occurred at both dose levels. BA 400mg/kg was also administered twice daily on GD 6, 7, 8, 9, or 10 or on GDs 6-8. A significant decrease in average fetal weight was observed in all treatment groups. Significant increases in the incidence of cervical ribs/ossifications resulted from treatments on GD 7 and GDs 6-8. Rib agenesis occurred with treatment on GD 8 and GDs 6-8. Reduced rib length, a decreased incidence of supernumerary ribs (SNR), and an increased incidence of fused and/or branched ribs occurred when dams were treated GDs 6-8. Doses of 750 mg/kg given twice on day 8 produced significant increases in several thoracic skeletal anomalies. Further studies of pathogenesis are necessary to determine the earliest perturbations and the processes that are affected. The sensitivity of embryos to treatment on GD 8 to rib agenesis suggests that BA is affecting early processes such as gastrulation and presomitic mesoderm formation and patterning in this area.
Miyata, Haruhiko; Noda, Naoki; Fairbairn, Daphne J.; Oldenbourg, Rudolf; Cardullo, Richard A.
2011-01-01
Animal sperm show remarkable diversity in both morphology and molecular composition. Here we provide the first report of intense intrinsic fluorescence in an animal sperm. The sperm from a semi-aquatic insect, the water strider, Aquarius remigis, contains an intrinsically fluorescent molecule with properties consistent with those of Flavin Adenine Dinucleotid (FAD) which appears first in the acrosomal vesicle of round spermatids and persists in the acrosome throughout spermiogenesis. Fluorescence recovery after photobleaching reveals that the fluorescent molecule exhibits unrestricted mobility in the acrosomal vesicle of round spermatids, but is completely immobile in the acrosome of mature sperm. Fluorescence polarization microscopy shows a net alignment of the fluorescent molecules in the acrosome of the mature sperm but not in the acrosomal vesicle of round spermatids. These results suggest that acrosomal molecules are rearranged in the elongating acrosome and FAD is incorporated into the acrosomal matrix during its formation. Further, we followed the fate of the acrosomal matrix in fertilization utilizing the intrinsic fluorescence. The fluorescent acrosomal matrix was observed inside the fertilized egg and remained structurally intact even after gastrulation started. This observation suggests that FAD is not released from the acrosomal matrix during the fertilization process or early development and supports an idea that FAD is involved in the formation of the acrosomal matrix. The intrinsic fluorescence of the A. remigis acrosome will be a useful marker for following spermatogenesis and fertilization. PMID:20857404
The ECM moves during primitive streak formation--computation of ECM versus cellular motion.
Zamir, Evan A; Rongish, Brenda J; Little, Charles D
2008-10-14
Galileo described the concept of motion relativity--motion with respect to a reference frame--in 1632. He noted that a person below deck would be unable to discern whether the boat was moving. Embryologists, while recognizing that embryonic tissues undergo large-scale deformations, have failed to account for relative motion when analyzing cell motility data. A century of scientific articles has advanced the concept that embryonic cells move ("migrate") in an autonomous fashion such that, as time progresses, the cells and their progeny assemble an embryo. In sharp contrast, the motion of the surrounding extracellular matrix scaffold has been largely ignored/overlooked. We developed computational/optical methods that measure the extent embryonic cells move relative to the extracellular matrix. Our time-lapse data show that epiblastic cells largely move in concert with a sub-epiblastic extracellular matrix during stages 2 and 3 in primitive streak quail embryos. In other words, there is little cellular motion relative to the extracellular matrix scaffold--both components move together as a tissue. The extracellular matrix displacements exhibit bilateral vortical motion, convergence to the midline, and extension along the presumptive vertebral axis--all patterns previously attributed solely to cellular "migration." Our time-resolved data pose new challenges for understanding how extracellular chemical (morphogen) gradients, widely hypothesized to guide cellular trajectories at early gastrulation stages, are maintained in this dynamic extracellular environment. We conclude that models describing primitive streak cellular guidance mechanisms must be able to account for sub-epiblastic extracellular matrix displacements.
Avsian-Kretchmer, Orna; Hsueh, Aaron J W
2004-01-01
TGF-beta family proteins with a cystine knot motif serve as ligands for diverse families of plasma membrane receptors. Bone morphogenetic protein (BMP) antagonists represent a subgroup of these proteins, some of which bind BMPs and antagonize their actions during development and morphogenesis. Availability of completed genome sequences from diverse organisms allows bioinformatic analysis of the evolution of BMP antagonists and facilitates their classification. Using a regular expression algorithm (http://BioRegEx.stanford.edu), an exhaustive search of the human genome identified all cystine knot-containing BMP antagonists. Based on the size of the cystine ring, these proteins were divided into three subfamilies: CAN (eight-membered ring), twisted gastrulation (nine-membered ring), as well as chordin and noggin (10-membered ring). The CAN family can be divided further into four subgroups based on a conserved arrangement of additional cysteine residues-gremlin and PRDC, cerberus and coco, and DAN, together with USAG-1 and sclerostin. We searched for orthologs of human BMP antagonists in the genomes of model organisms and analyzed their phylogenetic relationship. New human paralogs were identified together with the verification of orthologous relationships of known genes. We also discuss the physiological roles of the CAN subfamily of BMP antagonists and the associated genetic defects. Based on the known three-dimensional structure of key cystine knot proteins, we postulated disulfide bondings for eight-membered ring BMP antagonists to predict their potential folding and dimerization.
Whole-animal imaging with high spatio-temporal resolution
NASA Astrophysics Data System (ADS)
Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.
2016-03-01
We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.
Winata, Cecilia L; Kondrychyn, Igor; Kumar, Vibhor; Srinivasan, Kandhadayar G; Orlov, Yuriy; Ravishankar, Ashwini; Prabhakar, Shyam; Stanton, Lawrence W; Korzh, Vladimir; Mathavan, Sinnakaruppan
2013-10-01
Zic3 regulates early embryonic patterning in vertebrates. Loss of Zic3 function is known to disrupt gastrulation, left-right patterning, and neurogenesis. However, molecular events downstream of this transcription factor are poorly characterized. Here we use the zebrafish as a model to study the developmental role of Zic3 in vivo, by applying a combination of two powerful genomics approaches--ChIP-seq and microarray. Besides confirming direct regulation of previously implicated Zic3 targets of the Nodal and canonical Wnt pathways, analysis of gastrula stage embryos uncovered a number of novel candidate target genes, among which were members of the non-canonical Wnt pathway and the neural pre-pattern genes. A similar analysis in zic3-expressing cells obtained by FACS at segmentation stage revealed a dramatic shift in Zic3 binding site locations and identified an entirely distinct set of target genes associated with later developmental functions such as neural development. We demonstrate cis-regulation of several of these target genes by Zic3 using in vivo enhancer assay. Analysis of Zic3 binding sites revealed a distribution biased towards distal intergenic regions, indicative of a long distance regulatory mechanism; some of these binding sites are highly conserved during evolution and act as functional enhancers. This demonstrated that Zic3 regulation of developmental genes is achieved predominantly through long distance regulatory mechanism and revealed that developmental transitions could be accompanied by dramatic changes in regulatory landscape.
A genome-wide survey of maternal and embryonic transcripts during Xenopus tropicalis development.
Paranjpe, Sarita S; Jacobi, Ulrike G; van Heeringen, Simon J; Veenstra, Gert Jan C
2013-11-06
Dynamics of polyadenylation vs. deadenylation determine the fate of several developmentally regulated genes. Decay of a subset of maternal mRNAs and new transcription define the maternal-to-zygotic transition, but the full complement of polyadenylated and deadenylated coding and non-coding transcripts has not yet been assessed in Xenopus embryos. To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted total RNA were harvested across six developmental stages and subjected to high throughput sequencing. The maternally loaded transcriptome is highly diverse and consists of both polyadenylated and deadenylated transcripts. Many maternal genes show peak expression in the oocyte and include genes which are known to be the key regulators of events like oocyte maturation and fertilization. Of all the transcripts that increase in abundance between early blastula and larval stages, about 30% of the embryonic genes are induced by fourfold or more by the late blastula stage and another 35% by late gastrulation. Using a gene model validation and discovery pipeline, we identified novel transcripts and putative long non-coding RNAs (lncRNA). These lncRNA transcripts were stringently selected as spliced transcripts generated from independent promoters, with limited coding potential and a codon bias characteristic of noncoding sequences. Many lncRNAs are conserved and expressed in a developmental stage-specific fashion. These data reveal dynamics of transcriptome polyadenylation and abundance and provides a high-confidence catalogue of novel and long non-coding RNAs.
Juliano, Celina E; Voronina, Ekaterina; Stack, Christie; Aldrich, Maryanna; Cameron, Andrew R; Wessel, Gary M
2006-12-01
Two distinct modes of germ line determination are used throughout the animal kingdom: conditional-an inductive mechanism, and autonomous-an inheritance of maternal factors in early development. This study identifies homologs of germ line determinants in the sea urchin Strongylocentrotus purpuratus to examine its mechanism of germ line determination. A list of conserved germ-line associated genes from diverse organisms was assembled to search the S. purpuratus genome for homologs, and the expression patterns of these genes were examined during embryogenesis by whole mount in situ RNA hybridization and QPCR. Of the 14 genes tested, all transcripts accumulate uniformly during oogenesis and Sp-pumilio, Sp-tudor, Sp-MSY, and Sp-CPEB1 transcripts are also uniformly distributed during embryonic development. Sp-nanos2, Sp-seawi, and Sp-ovo transcripts, however, are enriched in the vegetal plate of the mesenchyme blastula stage and Sp-vasa, Sp-nanos2, Sp-seawi, and Sp-SoxE transcripts are localized in small micromere descendents at the tip of the archenteron during gastrulation and are then enriched in the left coelomic pouch of larvae. The results of this screen suggest that sea urchins conditionally specify their germ line, and support the hypothesis that this mechanism is the basal mode of germ line determination amongst deuterostomes. Furthermore, accumulation of germ line determinants selectively in small micromere descendents supports the hypothesis that these cells contribute to the germ line.
Identification of a putative germ plasm in the amphipod Parhyale hawaiensis
2013-01-01
Background Specification of the germ line is an essential event during the embryonic development of sexually reproducing animals, as germ line cells are uniquely capable of giving rise to the next generation. Animal germ cells arise through either inheritance of a specialized, maternally supplied cytoplasm called 'germ plasm’ or though inductive signaling by somatic cells. Our understanding of germ cell determination is based largely on a small number of model organisms. To better understand the evolution of germ cell specification, we are investigating this process in the amphipod crustacean Parhyale hawaiensis. Experimental evidence from previous studies demonstrated that Parhyale germ cells are specified through inheritance of a maternally supplied cytoplasmic determinant; however, this determinant has not been identified. Results Here we show that the one-cell stage Parhyale embryo has a distinct cytoplasmic region that can be identified by morphology as well as the localization of germ line-associated RNAs. Removal of this cytoplasmic region results in a loss of embryonic germ cells, supporting the hypothesis that it is required for specification of the germ line. Surprisingly, we found that removal of this distinct cytoplasm also results in aberrant somatic cell behaviors, as embryos fail to gastrulate. Conclusions Parhyale hawaiensis embryos have a specialized cytoplasm that is required for specification of the germ line. Our data provide the first functional evidence of a putative germ plasm in a crustacean and provide the basis for comparative functional analysis of germ plasm formation within non-insect arthropods. PMID:24314239
Jessen, Tammy N; Jessen, Jason R
2017-12-15
Planar cell polarity (PCP) proteins are implicated in a variety of morphogenetic processes including embryonic cell migration and potentially cancer progression. During zebrafish gastrulation, the transmembrane protein Vang-like 2 (VANGL2) is required for PCP and directed cell migration. These cell behaviors occur in the context of a fibrillar extracellular matrix (ECM). While it is thought that interactions with the ECM regulate cell migration, it is unclear how PCP proteins such as VANGL2 influence these events. Using an in vitro cell culture model system, we previously showed that human VANGL2 negatively regulates membrane type-1 matrix metalloproteinase (MMP14) and activation of secreted matrix metalloproteinase 2 (MMP2). Here, we investigated the functional relationship between VANGL2, integrin αvβ3, and MMP2 activation. We provide evidence that VANGL2 regulates cell surface integrin αvβ3 expression and adhesion to fibronectin, laminin, and vitronectin. Inhibition of MMP14/MMP2 activity suppressed the cell adhesion defect in VANGL2 knockdown cells. Furthermore, our data show that MMP14 and integrin αv are required for increased proteolysis by VANGL2 knockdown cells. Lastly, we have identified integrin αvβ3 as a novel VANGL2 binding partner. Together, these findings begin to dissect the molecular underpinnings of how VANGL2 regulates MMP activity and cell adhesion to the ECM. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
VEGF/Flk1 Signaling Cascade Transactivates Etv2 Gene Expression
Rasmussen, Tara L.; Shi, Xiaozhong; Wallis, Alicia; Kweon, Junghun; Zirbes, Katie M.; Koyano-Nakagawa, Naoko; Garry, Daniel J.
2012-01-01
Previous reports regarding the genetic hierarchy between Ets related protein 71 (Er71/Etv2) and Flk1 is unclear. In the present study, we pursued a genetic approach to define the molecular cascade between Etv2 and Flk1. Using a transgenic Etv2-EYFP reporter mouse, we examined the expression pattern of Etv2 relative to Flk1 in the early conceptus. Etv2-EYFP was expressed in subset of Flk1 positive cells during primitive streak stages, suggesting that Flk1 is upstream of Etv2 during gastrulation. Analysis of reporter gene expression in Flk1 and Etv2 mutant mice further supports the hypothesis that Flk1 is necessary for Etv2 expression. The frequency of cells expressing Flk1 in Etv2 mutants is only modestly altered (21% decrease), whereas expression of the Etv2-EYFP transgenic reporter was severely reduced in the Flk1 null background. We further demonstrate using transcriptional assays that, in the presence of Flk1, the Etv2 promoter is activated by VEGF, the Flk1 ligand. Pharmacological inhibition studies demonstrate that VEGF mediated activation is dependent on p38 MAPK, which activates Creb. We identify the VEGF response element in the Etv2 promoter and demonstrate that Creb binds to this motif by EMSA and ChIP assays. In summary, we provide new evidence that VEGF activates Etv2 by signaling through Flk1, which activates Creb through the p38 MAPK signaling cascade. PMID:23185546
Fresques, Tara; Swartz, S. Zachary; Juliano, Celina; Morino, Yoshiaki; Kikuchi, Mani; Akasaka, Koji; Wada, Hiroshi; Yajima, Mamiko; Wessel, Gary M.
2016-01-01
Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32–128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution. PMID:27402572
Zic3 is required in the migrating primitive streak for node morphogenesis and left–right patterning
Sutherland, Mardi J.; Wang, Shuyun; Quinn, Malgorzata E.; Haaning, Allison; Ware, Stephanie M.
2013-01-01
In humans, loss-of-function mutations in ZIC3 cause isolated cardiovascular malformations and X-linked heterotaxy, a disorder with abnormal left–right asymmetry of organs. Zic3 null mice recapitulate the human heterotaxy phenotype but also have early gastrulation defects, axial patterning defects and neural tube defects complicating an assessment of the role of Zic3 in cardiac development. Zic3 is expressed ubiquitously during critical stages of left–right patterning but its later expression in the developing heart remains controversial and the molecular mechanism(s) by which it causes heterotaxy are unknown. To define the temporal and spatial requirements, for Zic3 in left–right patterning, we generated conditional Zic3 mice and Zic3-LacZ-BAC reporter mice. The latter provide compelling evidence that Zic3 is expressed in the mouse node and absent in the heart. Conditional deletion using T-Cre identifies a requirement for Zic3 in the primitive streak and migrating mesoderm for proper left–right patterning and cardiac development. In contrast, Zic3 is not required in heart progenitors or the cardiac compartment. In addition, the data demonstrate abnormal node morphogenesis in Zic3 null mice and identify similar node dysplasia when Zic3 was specifically deleted from the migrating mesoderm and primitive streak. These results define the temporal and spatial requirements for Zic3 in node morphogenesis, left–right patterning and cardiac development and suggest the possibility that a requirement for Zic3 in node ultrastructure underlies its role in heterotaxy and laterality disorders. PMID:23303524
Lun, K; Brand, M
1998-08-01
Generation of cell diversity in the vertebrate central nervous system starts during gastrulation stages in the ectodermal germ layer and involves specialized cell groups, such as the organizer located at the midbrain-hindbrain boundary (MHB). Mutations in the zebrafish no isthmus (noi) gene alter development of the MHB, and affect the pax2.1 gene (formerly pax(zf-b)). Analysis of the structure of pax2.1 reveals at least 12 normal splice variants. The noi alleles can be arranged, by molecular and phenotypic criteria, into a series of five alleles of differing strength, ranging from a null allele to weak alleles. In keeping with a role in development of the MHB organizer, gene expression is already affected in the MHB primordium of the gastrula neural ectoderm in noi mutants. eng3 activation is completely and eng2 activation is strongly dependent on noi function. In contrast, onset of wnt1, fgf8 and her5 expression occurs normally in the null mutants, but is eliminated later on. Our observations suggest that three signaling pathways, involving pax2.1, wnt1 and fgf8, are activated independently in early anterior-posterior patterning of this area. In addition, analysis of the allelic series unexpectedly suggests that noi activity is also required during dorsal-ventral patterning of the MHB in somitogenesis stages, and possibly in a later eng expression phase. We propose that noi/pax2.1 participates in sequential signaling processes as a key integrator of midbrain-hindbrain boundary development.
The role of microtubule actin cross-linking factor 1 (MACF1) in the Wnt signaling pathway
Chen, Hui-Jye; Lin, Chung-Ming; Lin, Chyuan-Sheng; Perez-Olle, Raul; Leung, Conrad L.; Liem, Ronald K.H.
2006-01-01
MACF1 (microtubule actin cross-linking factor 1) is a multidomain protein that can associate with microfilaments and microtubules. We found that MACF1 was highly expressed in neuronal tissues and the foregut of embryonic day 8.5 (E8.5) embryos and the head fold and primitive streak of E7.5 embryos. MACF1−/− mice died at the gastrulation stage and displayed developmental retardation at E7.5 with defects in the formation of the primitive streak, node, and mesoderm. This phenotype was similar to Wnt-3−/− and LRP5/6 double-knockout embryos. In the absence of Wnt, MACF1 associated with a complex that contained Axin, β-catenin, GSK3β, and APC. Upon Wnt stimulation, MACF1 appeared to be involved in the translocation and subsequent binding of the Axin complex to LRP6 at the cell membrane. Reduction of MACF1 with small interfering RNA decreased the amount of β-catenin in the nucleus, and led to an inhibition of Wnt-induced TCF/β-catenin-dependent transcriptional activation. Similar results were obtained with a dominant-negative MACF1 construct that contained the Axin-binding region. Reduction of MACF1 in Wnt-1-expressing P19 cells resulted in decreased T (Brachyury) gene expression, a DNA-binding transcription factor that is a direct target of Wnt/β-catenin signaling and required for mesoderm formation. These results suggest a new role of MACF1 in the Wnt signaling pathway. PMID:16815997
Kcnip1 a Ca²⁺-dependent transcriptional repressor regulates the size of the neural plate in Xenopus.
Néant, Isabelle; Mellström, Britt; Gonzalez, Paz; Naranjo, Jose R; Moreau, Marc; Leclerc, Catherine
2015-09-01
In amphibian embryos, our previous work has demonstrated that calcium transients occurring in the dorsal ectoderm at the onset of gastrulation are necessary and sufficient to engage the ectodermal cells into a neural fate by inducing neural specific genes. Some of these genes are direct targets of calcium. Here we search for a direct transcriptional mechanism by which calcium signals are acting. The only known mechanism responsible for a direct action of calcium on gene transcription involves an EF-hand Ca²⁺ binding protein which belongs to a group of four proteins (Kcnip1 to 4). Kcnip protein can act in a Ca²⁺-dependent manner as a transcriptional repressor by binding to a specific DNA sequence, the Downstream Regulatory Element (DRE) site. In Xenopus, among the four kcnips, we show that only kcnip1 is timely and spatially present in the presumptive neural territories and is able to bind DRE sites in a Ca²⁺-dependent manner. The loss of function of kcnip1 results in the expansion of the neural plate through an increased proliferation of neural progenitors. Later on, this leads to an impairment in the development of anterior neural structures. We propose that, in the embryo, at the onset of neurogenesis Kcnip1 is the Ca²⁺-dependent transcriptional repressor that controls the size of the neural plate. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. Copyright © 2014. Published by Elsevier B.V.
Molecular control of gut formation in the spider Parasteatoda tepidariorum.
Feitosa, Natália Martins; Pechmann, Matthias; Schwager, Evelyn E; Tobias-Santos, Vitória; McGregor, Alistair P; Damen, Wim G M; Nunes da Fonseca, Rodrigo
2017-05-01
The development of a digestive system is an essential feature of bilaterians. Studies of the molecular control of gut formation in arthropods have been studied in detail in the fruit fly Drosophila melanogaster. However, little is known in other arthropods, especially in noninsect arthropods. To better understand the evolution of arthropod alimentary system, we investigate the molecular control of gut development in the spider Parasteatoda tepidariorum (Pt), the primary chelicerate model species for developmental studies. Orthologs of the ectodermal genes Pt-wingless (Pt-wg) and Pt-hedgehog (Pt-hh), of the endodermal genes, Pt-serpent (Pt-srp) and Pt-hepatocyte-nuclear factor-4 (Pt-hnf4) and of the mesodermal gene Pt-twist (Pt-twi) are expressed in the same germ layers during spider gut development as in D. melanogaster. Thus, our expression data suggest that the downstream molecular components involved in gut development in arthropods are conserved. However, Pt-forkhead (Pt-fkh) expression and function in spiders is considerably different from its D. melanogaster ortholog. Pt-fkh is expressed before gastrulation in a cell population that gives rise to endodermal and mesodermal precursors, suggesting a possible role for this factor in specification of both germ layers. To test this hypothesis, we knocked down Pt-fkh via RNA interference. Pt-fkh RNAi embryos not only fail to develop a proper gut, but also lack the mesodermal Pt-twi expressing cells. Thus, in spiders Pt-fkh specifies endodermal and mesodermal germ layers. We discuss the implications of these findings for the evolution and development of gut formation in Ecdysozoans. © 2017 Wiley Periodicals, Inc.
Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells.
Fink, R D; McClay, D R
1985-01-01
At gastrulation the primary mesenchyme cells of sea urchin embryos lose contact with the extracellular hyaline layer and with neighboring blastomeres as they pass through the basal lamina and enter the blastocoel. This delamination process was examined using a cell-binding assay to follow changes in affinities between mesenchyme cells and their three substrates: hyalin, early gastrula cells, and basal lamina. Sixteen-cell-stage micromeres (the precursors of primary mesenchyme cells), and mesenchyme cells obtained from mesenchyme-blastula-stage embryos were used in conjunction with micromeres raised in culture to intermediate ages. The micromeres exhibited an affinity for hyalin, but the affinity was lost at the time of mesenchyme ingression in vivo. Similarly, micromeres had an affinity for monolayers of gastrula cells but the older mesenchyme cells lost much of their cell-to-cell affinity. Presumptive ectoderm and endoderm cells tested against the gastrula monolayers showed no decrease in binding over the same time interval. When micromeres and primary mesenchyme cells were tested against basal lamina preparations, there was an increase in affinity that was associated with developmental time. Presumptive ectoderm and endoderm cells showed no change in affinity over the same interval. Binding measurements using isolated basal laminar components identified fibronectin as one molecule for which the wandering primary mesenchyme cells acquired a specific affinity. The data indicate that as the presumptive mesenchyme cells leave the vegetal plate of the embryo they lose affinities for hyalin and for neighboring cells, and gain an affinity for fibronectin associated with the basal lamina and extracellular matrix that lines the blastocoel.
Early Activation of MAPK and Apoptosis in Nutritive Embryos of Calyptraeid Gastropods.
Lesoway, Maryna P; Collin, Rachel; Abouheif, Ehab
2017-07-01
Investigation of alternative phenotypes, different morphologies produced by a single genome, has contributed novel insights into development and evolution. Yet, the mechanisms underlying developmental switch points between alternative phenotypes remain poorly understood. The calyptraeid snails Crepidula navicella and Calyptraea lichen produce two phenotypes: viable and nutritive embryos, where nutritive embryos arrest their development after gastrulation and are ingested by their viable siblings as a form of intracapsular nutrition. Here, we investigate the activity of mitogen-activated protein kinase (MAPK, ERK1/2) and apoptosis during early cleavage. MAPK and apoptosis, found in a previous transcriptomic study, are known to be involved in organization of other spiralian embryos and nutritive embryo development, respectively. In the model Crepidula fornicata, MAPK activation begins at the 16-cell stage. In contrast, we discovered in C. navicella and C. lichen that many embryos begin MAPK activation at the one-cell stage. A subset of embryos shows a similar pattern of MAPK activation to C. fornicata at later stages. In all stages where MAPK is detected, the activation pattern is highly variable, frequently occurring in all quadrants or in multiple tiers of cells. We also detected apoptosis in cleaving embryos, while C. fornicata and Crepidula lessoni, which do not produce nutritive embryos, show no signs of apoptosis during cleavage. Our results show that MAPK and apoptosis are expressed during early development in species with nutritive embryos, and raises the possibility that these processes may play a role and even interact with one another in producing the nutritive embryo phenotype. © 2017 Wiley Periodicals, Inc.
Fresques, Tara; Swartz, Steven Zachary; Juliano, Celina; Morino, Yoshiaki; Kikuchi, Mani; Akasaka, Koji; Wada, Hiroshi; Yajima, Mamiko; Wessel, Gary M
2016-07-01
Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32-128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution. © 2016 Wiley Periodicals, Inc.
Katow, H; Sofuku, S
2001-10-01
Immunoblotting using polyclonal antibodies (pAb) raised against an FR-1 receptor (FR-1R), a 57 kDa Arg-Gly-Asp-Ser (RGDS)-binding protein, of the sand dollar Clypeaster japonicus showed that the pAb monospecifically bound to the protein. FR-1R was present in purified plasma membrane, suggesting that the protein is a membrane-bound protein. The molecular structure of FR-1R did not change throughout the early embryogenesis, whereas its expression changed significantly during this period. FR-1R was present in the cortex of unfertilized eggs and was then transferred to the hyaline layer soon after the fertilization. The hyaline layer retained FR-1R immunoreactivity during early embryogenesis. FR-1R appeared on the basal side of the ectoderm at the morula stage and was retained basolaterally, at least, to the early gastrula stage. In mesenchyme blastulae, FR-1R was also present on the surface of primary mesenchyme cells (PMC). FR-1R was localized on the basal side of the ectoderm in early gastrulae, exclusively at the place where PMC formed ventrolateral aggregates, and at the apical tuft ectoderm. In vitro, PMC bound to FR-1R and its binding was inhibited in the presence of a synthetic RGDS peptide or the pAb. The pAb introduced into the blastocoele perturbed PMC migration and gastrulation. FR-1R was weakly recognized by antihuman integrin beta5 subunit pAb.
Reyes-Bermudez, Alejandro; Villar-Briones, Alejandro; Ramirez-Portilla, Catalina; Hidaka, Michio; Mikheyev, Alexander S.
2016-01-01
Corals belong to the most basal class of the Phylum Cnidaria, which is considered the sister group of bilaterian animals, and thus have become an emerging model to study the evolution of developmental mechanisms. Although cell renewal, differentiation, and maintenance of pluripotency are cellular events shared by multicellular animals, the cellular basis of these fundamental biological processes are still poorly understood. To understand how changes in gene expression regulate morphogenetic transitions at the base of the eumetazoa, we performed quantitative RNA-seq analysis during Acropora digitifera’s development. We collected embryonic, larval, and adult samples to characterize stage-specific transcription profiles, as well as broad expression patterns. Transcription profiles reconstructed development revealing two main expression clusters. The first cluster grouped blastula and gastrula and the second grouped subsequent developmental time points. Consistently, we observed clear differences in gene expression between early and late developmental transitions, with higher numbers of differentially expressed genes and fold changes around gastrulation. Furthermore, we identified three coexpression clusters that represented discrete gene expression patterns. During early transitions, transcriptional networks seemed to regulate cellular fate and morphogenesis of the larval body. In late transitions, these networks seemed to play important roles preparing planulae for switch in lifestyle and regulation of adult processes. Although developmental progression in A. digitifera is regulated to some extent by differential coexpression of well-defined gene networks, stage-specific transcription profiles appear to be independent entities. While negative regulation of transcription is predominant in early development, cell differentiation was upregulated in larval and adult stages. PMID:26941230
Eichmann, Anne; Corbel, Catherine; Nataf, Valérie; Vaigot, Pierre; Bréant, Christiane; Le Douarin, Nicole M.
1997-01-01
The existence of a common precursor for endothelial and hemopoietic cells, termed the hemangioblast, has been postulated since the beginning of the century. Recently, deletion of the endothelial-specific vascular endothelial growth factor receptor 2 (VEGFR2) by gene targeting has shown that both endothelial and hemopoietic cells are absent in homozygous null mice. This observation suggested that VEGFR2 could be expressed by the hemangioblast and essential for its further differentiation along both lineages. However, it was not possible to exclude the hypothesis that hemopoietic failure was a secondary effect resulting from the absence of an endothelial cell microenvironment. To distinguish between these two hypotheses, we have produced a mAb directed against the extracellular domain of avian VEGFR2 and isolated VEGFR2+ cells from the mesoderm of chicken embryos at the gastrulation stage. We have found that in clonal cultures, a VEGFR2+ cell gives rise to either a hemopoietic or an endothelial cell colony. The developmental decision appears to be regulated by the binding of two different VEGFR2 ligands. Thus, endothelial differentiation requires VEGF, whereas hemopoietic differentiation occurs in the absence of VEGF and is significantly reduced by soluble VEGFR2, showing that this process could be mediated by a second, yet unidentified, VEGFR2 ligand. These observations thus suggest strongly that in the absence of the VEGFR2 gene product, the precursors of both hemopoietic and vascular endothelial lineages cannot survive. These cells therefore might be the initial targets of the VEGFR2 null mutation. PMID:9144204
Expression of the prospective mesoderm genes twist, snail, and mef2 in penaeid shrimp.
Wei, Jiankai; Glaves, Richard Samuel Elliot; Sellars, Melony J; Xiang, Jianhai; Hertzler, Philip L
2016-07-01
In penaeid shrimp, mesoderm forms from two sources: naupliar mesoderm founder cells, which invaginate during gastrulation, and posterior mesodermal stem cells called mesoteloblasts, which undergo characteristic teloblastic divisions. The primordial mesoteloblast descends from the ventral mesendoblast, which arrests in cell division at the 32-cell stage and ingresses with its sister dorsal mesendoblast prior to naupliar mesoderm invagination. The naupliar mesoderm forms the muscles of the naupliar appendages (first and second antennae and mandibles), while the mesoteloblasts form the mesoderm, including the muscles, of subsequently formed posterior segments. To better understand the mechanism of mesoderm and muscle formation in penaeid shrimp, twist, snail, and mef2 cDNAs were identified from transcriptomes of Penaeus vannamei, P. japonicus, P. chinensis, and P. monodon. A single Twist ortholog was found, with strong inferred amino acid conservation across all three species. Multiple Snail protein variants were detected, which clustered in a phylogenetic tree with other decapod crustacean Snail sequences. Two closely-related mef2 variants were found in P. vannamei. The developmental mRNA expression of these genes was studied by qPCR in P. vannamei embryos, larvae, and postlarvae. Expression of Pv-twist and Pv-snail began during the limb bud stage and continued through larval stages to the postlarva. Surprisingly, Pv-mef2 expression was found in all stages from the zygote to the postlarva, with the highest expression in the limb bud and protozoeal stages. The results add comparative data on the development of anterior and posterior mesoderm in malacostracan crustaceans, and should stimulate further studies on mesoderm and muscle development in penaeid shrimp.
Hannibal, Roberta L; Price, Alivia L; Patel, Nipam H
2012-01-15
In arthropods, annelids and chordates, segmentation of the body axis encompasses both ectodermal and mesodermal derivatives. In vertebrates, trunk mesoderm segments autonomously and induces segmental arrangement of the ectoderm-derived nervous system. In contrast, in the arthropod Drosophila melanogaster, the ectoderm segments autonomously and mesoderm segmentation is at least partially dependent on the ectoderm. While segmentation has been proposed to be a feature of the common ancestor of vertebrates and arthropods, considering vertebrates and Drosophila alone, it is impossible to conclude whether the ancestral primary segmented tissue was the ectoderm or the mesoderm. Furthermore, much of Drosophila segmentation occurs before gastrulation and thus may not accurately represent the mechanisms of segmentation in all arthropods. To better understand the relationship between segmented germ layers in arthropods, we asked whether segmentation is an intrinsic property of the ectoderm and/or the mesoderm in the crustacean Parhyale hawaiensis by ablating either the ectoderm or the mesoderm and then assaying for segmentation in the remaining tissue layer. We found that the ectoderm segments autonomously. However, mesoderm segmentation requires at least a permissive signal from the ectoderm. Although mesodermal stem cells undergo normal rounds of division in the absence of ectoderm, they do not migrate properly in respect to migration direction and distance. In addition, their progeny neither divide nor express the mesoderm segmentation markers Ph-twist and Ph-Even-skipped. As segmentation is ectoderm-dependent in both Parhyale and holometabola insects, we hypothesize that segmentation is primarily a property of the ectoderm in pancrustacea. Copyright © 2011 Elsevier Inc. All rights reserved.
Reynaud, Enrique; Lomelí, Hilda; Vázquez, Martha; Zurita, Mario
1999-01-01
The XPD/ERCC2/Rad3 gene is required for excision repair of UV-damaged DNA and is an important component of nucleotide excision repair. Mutations in the XPD gene generate the cancer-prone syndrome, xeroderma pigmentosum, Cockayne’s syndrome, and trichothiodystrophy. XPD has a 5′- to 3′-helicase activity and is a component of the TFIIH transcription factor, which is essential for RNA polymerase II elongation. We present here the characterization of the Drosophila melanogaster XPD gene (DmXPD). DmXPD encodes a product that is highly related to its human homologue. The DmXPD protein is ubiquitous during development. In embryos at the syncytial blastoderm stage, DmXPD is cytoplasmic. At the onset of transcription in somatic cells and during gastrulation in germ cells, DmXPD moves to the nuclei. Distribution analysis in polytene chromosomes shows that DmXPD is highly concentrated in the interbands, especially in the highly transcribed regions known as puffs. UV-light irradiation of third-instar larvae induces an increase in the signal intensity and in the number of sites where the DmXPD protein is located in polytene chromosomes, indicating that the DmXPD protein is recruited intensively in the chromosomes as a response to DNA damage. This is the first time that the response to DNA damage by UV-light irradiation can be visualized directly on the chromosomes using one of the TFIIH components. PMID:10198066
Turner, David A.; Hayward, Penelope C.; Baillie-Johnson, Peter; Rué, Pau; Broome, Rebecca; Faunes, Fernando; Martinez Arias, Alfonso
2014-01-01
The development of the central nervous system is known to result from two sequential events. First, an inductive event of the mesoderm on the overlying ectoderm that generates a neural plate that, after rolling into a neural tube, acts as the main source of neural progenitors. Second, the axial regionalization of the neural plate that will result in the specification of neurons with different anteroposterior identities. Although this description of the process applies with ease to amphibians and fish, it is more difficult to confirm in amniote embryos. Here, a specialized population of cells emerges at the end of gastrulation that, under the influence of Wnt and FGF signalling, expands and generates the spinal cord and the paraxial mesoderm. This population is known as the long-term neuromesodermal precursor (NMp). Here, we show that controlled increases of Wnt/β-catenin and FGF signalling during adherent culture differentiation of mouse embryonic stem cells (mESCs) generates a population with many of the properties of the NMp. A single-cell analysis of gene expression within this population reveals signatures that are characteristic of stem cell populations. Furthermore, when this activation is triggered in three-dimensional aggregates of mESCs, the population self-organizes macroscopically and undergoes growth and axial elongation that mimics some of the features of the embryonic spinal cord and paraxial mesoderm. We use both adherent and three-dimensional cultures of mESCs to probe the establishment and maintenance of NMps and their differentiation. PMID:25371361
Developmental diversity in free-living flatworms
2012-01-01
Flatworm embryology has attracted attention since the early beginnings of comparative evolutionary biology. Considered for a long time the most basal bilaterians, the Platyhelminthes (excluding Acoelomorpha) are now robustly placed within the Spiralia. Despite having lost their relevance to explain the transition from radially to bilaterally symmetrical animals, the study of flatworm embryology is still of great importance to understand the diversification of bilaterians and of developmental mechanisms. Flatworms are acoelomate organisms generally with a simple centralized nervous system, a blind gut, and lacking a circulatory organ, a skeleton and a respiratory system other than the epidermis. Regeneration and asexual reproduction, based on a totipotent neoblast stem cell system, are broadly present among different groups of flatworms. While some more basally branching groups - such as polyclad flatworms - retain the ancestral quartet spiral cleavage pattern, most flatworms have significantly diverged from this pattern and exhibit unique strategies to specify the common adult body plan. Most free-living flatworms (i.e. Platyhelminthes excluding the parasitic Neodermata) are directly developing, whereas in polyclads, also indirect developers with an intermediate free-living larval stage and subsequent metamorphosis are found. A comparative study of developmental diversity may help understanding major questions in evolutionary biology, such as the evolution of cleavage patterns, gastrulation and axial specification, the evolution of larval types, and the diversification and specialization of organ systems. In this review, we present a thorough overview of the embryonic development of the different groups of free-living (turbellarian) platyhelminths, including the Catenulida, Macrostomorpha, Polycladida, Lecithoepitheliata, Proseriata, Bothrioplanida, Rhabdocoela, Fecampiida, Prolecithophora and Tricladida, and discuss their main features under a consensus phylogeny of the phylum. PMID:22429930
Ricci, Lorenzo; Cabrera, Fabien; Lotito, Sonia; Tiozzo, Stefano
2016-08-01
In all non-vertebrate metazoan phyla, species that evolved non-embryonic developmental pathways as means of propagation or regeneration can be found. In this context, new bodies arise through asexual reproduction processes (such as budding) or whole body regeneration, that lack the familiar temporal and spatial cues classically associated with embryogenesis, like maternal determinants, or gastrulation. The molecular mechanisms underlying those non-embryonic developments (i.e., regeneration and asexual reproduction), and their relationship to those deployed during embryogenesis are poorly understood. We have addressed this question in the colonial ascidian Botryllus schlosseri, which undergoes an asexual reproductive process via palleal budding (PB), as well as a whole body regeneration by vascular budding (VB). We identified early regenerative structures during VB and then followed the fate of differentiating tissues during both non-embryonic developments (PB and VB) by monitoring the expression of genes known to play key functions in germ layer specification with well conserved expression patterns in solitary ascidian embryogenesis. The expression patterns of FoxA1, GATAa, GATAb, Otx, Bra, Gsc and Tbx2/3 were analysed during both PB and VB. We found that the majority of these transcription factors were expressed during both non-embryonic developmental processes, revealing a regionalization of the palleal and vascular buds. Knockdown of GATAa by siRNA in palleal buds confirmed that preventing the correct development of one of these regions blocks further tissue specification. Our results indicate that during both normal and injury-induced budding, a similar alternative developmental program operates via early commitment of epithelial regions. Copyright © 2016. Published by Elsevier Inc.
Gertow, Karin; Cedervall, Jessica; Jamil, Seema; Ali, Rouknuddin; Imreh, Marta P; Gulyas, Miklos; Sandstedt, Bengt; Ahrlund-Richter, Lars
2011-01-01
Xenografting is widely used for assessing in vivo pluripotency of human stem cell populations. Here, we report on early to late events in the development of mature experimental teratoma from a well-characterized human embryonic stem cell (HESC) line, HS181. The results show an embryonic process, increasingly chaotic. Active proliferation of the stem cell derived cellular progeny was detected already at day 5, and characterized by the appearance of multiple sites of engraftment, with structures of single or pseudostratified columnar epithelium surrounding small cavities. The striking histological resemblance to developing embryonic ectoderm, and the formation of epiblast-like structures was supported by the expression of the markers OCT4, NANOG, SSEA-4 and KLF4, but a lack of REX1. The early neural marker NESTIN was uniformly expressed, while markers linked to gastrulation, such as BMP-4, NODAL or BRACHYURY were not detected. Thus, observations on day 5 indicated differentiation comparable to the most early transient cell populations in human post implantation development. Confirming and expanding on previous findings from HS181 xenografts, these early events were followed by an increasingly chaotic development, incorporated in the formation of a benign teratoma with complex embryonic components. In the mature HS181 teratomas not all types of organs/tissues were detected, indicating a restricted differentiation, and a lack of adequate spatial developmental cues during the further teratoma formation. Uniquely, a kinetic alignment of rare complex structures was made to human embryos at diagnosed gestation stages, showing minor kinetic deviations between HS181 teratoma and the human counterpart.
Sreetharan, S; Thome, C; Mitz, C; Eme, J; Mueller, C A; Hulley, E N; Manzon, R G; Somers, C M; Boreham, D R; Wilson, J Y
2015-09-01
A reference staging series of 18 morphological stages of laboratory reared lake whitefish Coregonus clupeaformis is provided. The developmental processes of blastulation, gastrulation, neurulation as well as development of the eye, circulatory system, chromatophores and mouth are included and accompanied by detailed descriptions and live imaging. Quantitative measurements of embryo size and mass were taken at each developmental stage. Eggs were 3·19 ± 0·16 mm (mean ± s.d.) in diameter at fertilization and embryos reached a total length (LT ) of 14·25 ± 0·41 mm at hatch. Separated yolk and embryo dry mass were 0·25 ± 0·08 mg and 1·39 ± 0·17 mg, respectively, at hatch. The effects of two common preservatives (formalin and ethanol) were examined throughout development and post hatch. Embryo LT significantly decreased following fixation at all points in development. A correction factor to estimate live LT from corresponding fixed LT was determined as live LT = (fixed LT )(1·025) . Eye diameter and yolk area measurements significantly increased in fixed compared with live embryos up to 85-90% development for both measurements. The described developmental stages can be generalized to teleost species, and is particularly relevant for the study of coregonid development due to additionally shared developmental characteristics. The results of this study and staging series are therefore applicable across various research streams encompassing numerous species that require accurate staging of embryos and descriptions of morphological development. © 2015 The Fisheries Society of the British Isles.
Ermakova, Olga; Orsini, Tiziana; Gambadoro, Alessia; Chiani, Francesco; Tocchini-Valentini, Glauco P
2018-04-01
In this work, we applied three-dimensional microCT imaging to study murine embryogenesis in the range from immediate post-implantation period (embryonic day 5.5) to mid-gestation (embryonic day 12.5) with the resolution up to 1.4 µm/voxel. Also, we introduce an imaging procedure for non-invasive volumetric estimation of an entire litter of embryos within the maternal uterine structures. This method allows for an accurate, detailed and systematic morphometric analysis of both embryonic and extra-embryonic components during embryogenesis. Three-dimensional imaging of unperturbed embryos was performed to visualize the egg cylinder, primitive streak, gastrulation and early organogenesis stages of murine development in the C57Bl6/N mouse reference strain. Further, we applied our microCT imaging protocol to determine the earliest point when embryonic development is arrested in a mouse line with knockout for tRNA splicing endonuclease subunit Tsen54 gene. Our analysis determined that the embryonic development in Tsen54 null embryos does not proceed beyond implantation. We demonstrated that application of microCT imaging to entire litter of non-perturbed embryos greatly facilitate studies to unravel gene function during early embryogenesis and to determine the precise point at which embryonic development is arrested in mutant animals. The described method is inexpensive, does not require lengthy embryos dissection and can be applicable for detailed analysis of mutant mice at laboratory scale as well as for high-throughput projects.
Embryology of Maldives clownfish, Amphiprion nigripes (Amphiprioninae)
NASA Astrophysics Data System (ADS)
Ghosh, Swagat; Kumar, Thipramalai Thankappanpillai Ajith; Balasubramanian, Thangavel
2012-06-01
This study investigated the embryonic development of Maldives clownfish Amphiprion nigripes under natural conditions (28-30°C) at a lagoon of Agatti Island, Lakshadweep, India. The newly deposited fish egg was capsule-shaped and orange-red, with a (0.73 ± 0.04) mm3 yolk containing 5-10 fat globules. The embryonic development of fertilized eggs was divided into 26 stages and the time elapsing for each stage was recorded. Results showed that the cleavage was rapid, with the first division observed 1 h 20 min after fertilization. Blastulation occurred 4 h later, followed by gastrulation 12 h after fertilization, with a yolk volume of (0.61 ± 0.06) mm3. The organogenesis process started 22 h after fertilization when the blastopores closed and notochord formation began. The embryonic stage was recorded 24 h later, with the appearance of forebrain, midbrain, hindbrain, melanophores on yolk-sac and 22 somites, and a decreased yolk volume of (0.54 ± 0.08) mm3. Other organs developed well 31 h after fertilization, whereas the heart started beating and blood circulation began 78 h later. Red pigmentation (erytrophores) appeared 96 h after fertilization, with a small yolk volume of (0.22 ± 0.02) mm3. Mouth developed well and eyes were noticeable 120 h later, with head, pectoral fin and tail frequently moving 144 h after fertilization. The embryo reached the pre-hatching stage 168 h later and started to hatch after 170-180 h incubation. This study first detailed the embryonic development and yolk absorption of A. nigripes under natural conditions.
Li, Cuiling; Li, Yi-Ping; Fu, Xin-Yuan; Deng, Chu-Xia
2010-09-27
SMAD4 serves as a common mediator for signaling of TGF-β superfamily. Previous studies illustrated that SMAD4-null mice die at embryonic day 6.5 (E6.5) due to failure of mesoderm induction and extraembryonic defects; however, functions of SMAD4 in each germ layer remain elusive. To investigate this, we disrupted SMAD4 in the visceral endoderm and epiblast, respectively, using a Cre-loxP mediated approach. We showed that mutant embryos lack of SMAD4 in the visceral endoderm (Smad4(Co/Co);TTR-Cre) died at E7.5-E9.5 without head-fold and anterior embryonic structures. We demonstrated that TGF-β regulates expression of several genes, such as Hex1, Cer1, and Lim1, in the anterior visceral endoderm (AVE), and the failure of anterior embryonic development in Smad4(Co/Co);TTR-Cre embryos is accompanied by diminished expression of these genes. Consistent with this finding, SMAD4-deficient embryoid bodies showed impaired responsiveness to TGF-β-induced gene expression and morphological changes. On the other hand, embryos carrying Cre-loxP mediated disruption of SMAD4 in the epiblasts exhibited relatively normal mesoderm and head-fold induction although they all displayed profound patterning defects in the later stages of gastrulation. Cumulatively, our data indicate that SMAD4 signaling in the epiblasts is dispensable for mesoderm induction although it remains critical for head patterning, which is significantly different from SMAD4 signaling in the AVE, where it specifies anterior embryonic patterning and head induction.
Li, Cuiling; Li, Yi-Ping; Fu, Xin-Yuan; Deng, Chu-Xia
2010-01-01
SMAD4 serves as a common mediator for signaling of TGF-β superfamily. Previous studies illustrated that SMAD4-null mice die at embryonic day 6.5 (E6.5) due to failure of mesoderm induction and extraembryonic defects; however, functions of SMAD4 in each germ layer remain elusive. To investigate this, we disrupted SMAD4 in the visceral endoderm and epiblast, respectively, using a Cre-loxP mediated approach. We showed that mutant embryos lack of SMAD4 in the visceral endoderm (Smad4Co/Co;TTR-Cre) died at E7.5-E9.5 without head-fold and anterior embryonic structures. We demonstrated that TGF-β regulates expression of several genes, such as Hex1, Cer1, and Lim1, in the anterior visceral endoderm (AVE), and the failure of anterior embryonic development in Smad4Co/Co;TTR-Cre embryos is accompanied by diminished expression of these genes. Consistent with this finding, SMAD4-deficient embryoid bodies showed impaired responsiveness to TGF-β-induced gene expression and morphological changes. On the other hand, embryos carrying Cre-loxP mediated disruption of SMAD4 in the epiblasts exhibited relatively normal mesoderm and head-fold induction although they all displayed profound patterning defects in the later stages of gastrulation. Cumulatively, our data indicate that SMAD4 signaling in the epiblasts is dispensable for mesoderm induction although it remains critical for head patterning, which is significantly different from SMAD4 signaling in the AVE, where it specifies anterior embryonic patterning and head induction. PMID:20941375
Fan, J J; Bai, J J; Ma, D M; Yu, L Y; Jiang, P
2017-09-27
Aldolase is a key enzyme involved in glycolysis, gluconeogenesis, and the pentose phosphate pathway. To establish the expression patterns of all three aldolase isozyme genes in different tissues and during early embryogenesis in lower vertebrates, as well as to explore the functional differences between these three isozymes, the grass carp was selected as a model owing to its relatively high glucose-metabolizing capability. Based on the cDNA sequences of the aldolase A, B, and C genes, the expression patterns of these three isozymes were analyzed in different tissues and during early embryogenesis using quantitative real-time polymerase chain reaction (qRT-PCR). Sequence analysis of cDNAs indicated that aldolase A, B, and C (GenBank accession numbers: KM192250, KM192251, and KM192252) consist of 364, 364, and 363 amino acids, respectively. The qRT-PCR results showed that the expression levels of aldolase A, B, and C were highest in the muscle, liver, and brain, respectively. Aldolase A and C exhibited similar expression patterns during embryogenesis, with high levels observed in unfertilized and fertilized eggs and at the blastocyst stage, followed by a decline and then increase after organogenesis. In contrast, aldolase B transcript was not detected during the unfertilized egg stage, and appeared only from gastrulation; the expression increased markedly during the feeding period (72 h after hatching), at which point the level was higher than those of aldolase A and C. These data suggest that the glucose content of grass carp starter feed should be adjusted according to the metabolic activity of aldolase B.
Effects of Gravity, Microgravity or Microgravity Simulation on Early Mammalian Development.
Ruden, Douglas M; Bolnick, Alan; Awonuga, Awoniyi; Abdulhasan, Mohammed; Perez, Gloria; Puscheck, Elizabeth E; Rappolee, Daniel A
2018-06-11
Plant and animal life forms evolved mechanisms for sensing and responding to gravity on Earth where homeostatic needs require responses. The lack of gravity, such as in the International Space Station (ISS), causes acute, intra-generational changes in the quality of life. These include maintaining calcium levels in bone, maintaining muscle tone, and disturbances in the vestibular apparatus in the ears. These problems decrease work efficiency and quality of life of humans not only during microgravity exposures but also after return to higher gravity on Earth or destinations such as Mars or the Moon. It has been hypothesized that lack of gravity during mammalian development may cause prenatal, postnatal and transgenerational effects that conflict with the environment, especially if the developing organism and its progeny are returned, or introduced de novo, into the varied gravity environments mentioned above. Although chicken and frog pregastrulation development, and plant root development, have profound effects due to orientation of cues by gravity-sensing mechanisms and responses, mammalian development is not typically characterized as gravity-sensing. Although no effects of microgravity simulation (MGS) on mouse fertilization were observed in two reports, negative effects of MGS on early mammalian development after fertilization and before gastrulation are presented in four reports that vary with the modality of MGS. This review will analyze the positive and negative mammalian early developmental outcomes, and enzymatic and epigenetic mechanisms known to mediate developmental responses to simulated microgravity on Earth and microgravity during spaceflight experiments. We will update experimental techniques that have already been developed or need to be developed for zero gravity molecular, cellular, and developmental biology experiments.
Yasui, Kinya; Reimer, James D; Liu, Yunhuan; Yao, Xiaoyong; Kubo, Daisuke; Shu, Degan; Li, Yong
2013-01-01
Microfossils of the genus Punctatus include developmental stages such as blastula, gastrula, and hatchlings, and represent the most complete developmental sequence of animals available from the earliest Cambrian. Despite the extremely well-preserved specimens, the evolutionary position of Punctatus has relied only on their conical remains and they have been tentatively assigned to cnidarians. We present a new interpretation of the Punctatus body plan based on the developmental reconstruction aided by recent advances in developmental biology. Punctatus developed from a rather large egg, gastrulated in a mode of invagination from a coeloblastura, and then formed a mouth directly from the blastopore. Spiny benthic hatchlings were distinguishable from swimming or crawling ciliate larvae found in cnidarians and sponges. A mouth appeared at the perihatching embryonic stage and was renewed periodically during growth, and old mouths transformed into the body wall, thus elongating the body. Growing animals retained a small blind gut in a large body cavity without partitioning by septa and did not form tentacles, pedal discs or holdfasts externally. A growth center at the oral pole was sufficient for body patterning throughout life, and the body patterning did not show any bias from radial symmetry. Contrary to proposed cnidarian affinity, the Punctatus body plan has basic differences from that of cnidarians, especially concerning a spacious body cavity separating ectoderm from endoderm. The lack of many basic cnidarian characters in the body patterning of Punctatus leads us to consider its own taxonomic group, potentially outside of Cnidaria.
Yasui, Kinya; Reimer, James D.; Liu, Yunhuan; Yao, Xiaoyong; Kubo, Daisuke; Shu, Degan; Li, Yong
2013-01-01
Background Microfossils of the genus Punctatus include developmental stages such as blastula, gastrula, and hatchlings, and represent the most complete developmental sequence of animals available from the earliest Cambrian. Despite the extremely well-preserved specimens, the evolutionary position of Punctatus has relied only on their conical remains and they have been tentatively assigned to cnidarians. We present a new interpretation of the Punctatus body plan based on the developmental reconstruction aided by recent advances in developmental biology. Results Punctatus developed from a rather large egg, gastrulated in a mode of invagination from a coeloblastura, and then formed a mouth directly from the blastopore. Spiny benthic hatchlings were distinguishable from swimming or crawling ciliate larvae found in cnidarians and sponges. A mouth appeared at the perihatching embryonic stage and was renewed periodically during growth, and old mouths transformed into the body wall, thus elongating the body. Growing animals retained a small blind gut in a large body cavity without partitioning by septa and did not form tentacles, pedal discs or holdfasts externally. A growth center at the oral pole was sufficient for body patterning throughout life, and the body patterning did not show any bias from radial symmetry. Conclusions Contrary to proposed cnidarian affinity, the Punctatus body plan has basic differences from that of cnidarians, especially concerning a spacious body cavity separating ectoderm from endoderm. The lack of many basic cnidarian characters in the body patterning of Punctatus leads us to consider its own taxonomic group, potentially outside of Cnidaria. PMID:23840375
Fertilization capacity with rainbow trout DNA-damaged sperm and embryo developmental success.
Pérez-Cerezales, S; Martínez-Páramo, S; Beirão, J; Herráez, M P
2010-06-01
Mammalian spermatozoa undergo a strong selection process along the female tract to guarantee fertilization by good quality cells, but risks of fertilization with DNA-damaged spermatozoa have been reported. In contrast, most external fertilizers such as fish seem to have weaker selection procedures. This fact, together with their high prolificacy and external embryo development, indicates that fish could be useful for the study of the effects of sperm DNA damage on embryo development. We cryopreserved sperm from rainbow trout using egg yolk and low-density lipoprotein as additives to promote different rates of DNA damage. DNA fragmentation and oxidization were analyzed using comet assay with and without digestion with restriction enzymes, and fertilization trials were performed. Some embryo batches were treated with 3-aminobenzamide (3AB) to inhibit DNA repair by the poly (ADP-ribose) polymerase, which is an enzyme of the base excision repair pathway. Results showed that all the spermatozoa cryopreserved with egg yolk carried more than 10% fragmented DNA, maintaining fertilization rates of 61.1+/-2.3 but a high rate of abortions, especially during gastrulation, and only 14.5+/-4.4 hatching success. Furthermore, after 3AB treatment, hatching dropped to 3.2+/-2.2, showing that at least 10% DNA fragmentation was repaired. We conclude that trout sperm maintains its ability to fertilize in spite of having DNA damage, but that embryo survival is affected. Damage is partially repaired by the oocyte during the first cleavage. Important advantages of using rainbow trout for the study of processes related to DNA damage and repair during development have been reported.
2008-01-01
Background Sox genes encode transcription factors that function in a wide range of developmental processes across the animal kingdom. To better understand both the evolution of the Sox family and the roles of these genes in cnidarians, we are studying the Sox gene complement of the coral, Acropora millepora (Class Anthozoa). Results Based on overall domain structures and HMG box sequences, the Acropora Sox genes considered here clearly fall into four of the five major Sox classes. AmSoxC is expressed in the ectoderm during development, in cells whose morphology is consistent with their assignment as sensory neurons. The expression pattern of the Nematostella ortholog of this gene is broadly similar to that of AmSoxC, but there are subtle differences – for example, expression begins significantly earlier in Acropora than in Nematostella. During gastrulation, AmSoxBb and AmSoxB1 transcripts are detected only in the presumptive ectoderm while AmSoxE1 transcription is restricted to the presumptive endoderm, suggesting that these Sox genes might play roles in germ layer specification. A third type B Sox gene, AmSoxBa, and a Sox F gene AmSoxF also have complex and specific expression patterns during early development. Each of these genes has a clear Nematostella ortholog, but in several cases the expression pattern observed in Acropora differs significantly from that reported in Nematostella. Conclusion These differences in expression patterns between Acropora and Nematostella largely reflect fundamental differences in developmental processes, underscoring the diversity of mechanisms within the anthozoan Sub-Class Hexacorallia (Zoantharia). PMID:19014479
Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification.
Williams, B A; Ordahl, C P
1994-04-01
Specification of the myogenic lineage begins prior to gastrulation and culminates in the emergence of determined myogenic precursor cells from the somites. The myoD family (MDF) of transcriptional activators controls late step(s) in myogenic specification that are closely followed by terminal muscle differentiation. Genes expressed in myogenic specification at stages earlier than MDFs are unknown. The Pax-3 gene is expressed in all the cells of the caudal segmental plate, the early mesoderm compartment that contains the precursors of skeletal muscle. As somites form from the segmental plate and mature, Pax-3 expression is progressively modulated. Beginning at the time of segmentation, Pax-3 becomes repressed in the ventral half of the somite, leaving Pax-3 expression only in the dermomyotome. Subsequently, differential modulation of Pax-3 expression levels delineates the medial and lateral halves of the dermomyotome, which contain precursors of axial (back) muscle and limb muscle, respectively. Pax-3 expression is then repressed as dermomyotome-derived cells activate MDFs. Quail-chick chimera and ablation experiments confirmed that the migratory precursors of limb muscle continue to express Pax-3 during migration. Since limb muscle precursors do not activate MDFs until 2 days after they leave the somite, Pax-3 represents the first molecular marker for this migratory cell population. A null mutation of the mouse Pax-3 gene, Splotch, produces major disruptions in early limb muscle development (Franz, T., Kothary, R., Surani, M. A. H., Halata, Z. and Grim, M. (1993) Anat. Embryol. 187, 153-160; Goulding, M., Lumsden, A. and Paquette, A. (1994) Development 120, 957-971). We conclude, therefore, that Pax-3 gene expression in the paraxial mesoderm marks earlier stages in myogenic specification than MDFs and plays a crucial role in the specification and/or migration of limb myogenic precursors.
Vitamin K2 biosynthetic enzyme, UBIAD1 is essential for embryonic development of mice.
Nakagawa, Kimie; Sawada, Natsumi; Hirota, Yoshihisa; Uchino, Yuri; Suhara, Yoshitomo; Hasegawa, Tomoka; Amizuka, Norio; Okamoto, Tadashi; Tsugawa, Naoko; Kamao, Maya; Funahashi, Nobuaki; Okano, Toshio
2014-01-01
UbiA prenyltransferase domain containing 1 (UBIAD1) is a novel vitamin K2 biosynthetic enzyme screened and identified from the human genome database. UBIAD1 has recently been shown to catalyse the biosynthesis of Coenzyme Q10 (CoQ10) in zebrafish and human cells. To investigate the function of UBIAD1 in vivo, we attempted to generate mice lacking Ubiad1, a homolog of human UBIAD1, by gene targeting. Ubiad1-deficient (Ubiad1(-/-)) mouse embryos failed to survive beyond embryonic day 7.5, exhibiting small-sized body and gastrulation arrest. Ubiad1(-/-) embryonic stem (ES) cells failed to synthesize vitamin K2 but were able to synthesize CoQ9, similar to wild-type ES cells. Ubiad1(+/-) mice developed normally, exhibiting normal growth and fertility. Vitamin K2 tissue levels and synthesis activity were approximately half of those in the wild-type, whereas CoQ9 tissue levels and synthesis activity were similar to those in the wild-type. Similarly, UBIAD1 expression and vitamin K2 synthesis activity of mouse embryonic fibroblasts prepared from Ubiad1(+/-) E15.5 embryos were approximately half of those in the wild-type, whereas CoQ9 levels and synthesis activity were similar to those in the wild-type. Ubiad1(-/-) mouse embryos failed to be rescued, but their embryonic lifespans were extended to term by oral administration of MK-4 or CoQ10 to pregnant Ubiad1(+/-) mice. These results suggest that UBIAD1 is responsible for vitamin K2 synthesis but may not be responsible for CoQ9 synthesis in mice. We propose that UBIAD1 plays a pivotal role in embryonic development by synthesizing vitamin K2, but may have additional functions beyond the biosynthesis of vitamin K2.
Vandenberg, Laura N.; Levin, Michael
2013-01-01
Understanding how and when the left-right (LR) axis is first established is a fundamental question in developmental biology. A popular model is that the LR axis is established relatively late in embryogenesis, due to the movement of motile cilia and the resultant directed fluid flow during late gastrulation/early neurulation. Yet, a large body of evidence suggests that biophysical, molecular, and bioelectrical asymmetries exist much earlier in development, some as early as the first cell cleavage after fertilization. Alternative models of LR asymmetry have been proposed that accommodate these data, postulating that asymmetry is established due to a chiral cytoskeleton and/or the asymmetric segregation of chromatids. There are some similarities, and many differences, in how these various models postulate the origin and timing of symmetry breaking and amplification, and these events’ linkage to the well-conserved subsequent asymmetric transcriptional cascades. This review examines experimental data that lend strong support to an early origin of LR asymmetry, yet are also consistent with later roles for cilia in the amplification of LR pathways. In this way, we propose that the various models of asymmetry can be unified: early events are needed to initiate LR asymmetry, and later events could be utilized by some species to maintain LR-biases. We also present an alternative hypothesis, which proposes that individual embryos stochastically choose one of several possible pathways with which to establish their LR axis. These two hypotheses are both tractable in appropriate model species; testing them to resolve open questions in the field of LR patterning will reveal interesting new biology of wide relevance to developmental, cell, and evolutionary biology. PMID:23583583
Vandenberg, Laura N; Levin, Michael
2013-07-01
Understanding how and when the left-right (LR) axis is first established is a fundamental question in developmental biology. A popular model is that the LR axis is established relatively late in embryogenesis, due to the movement of motile cilia and the resultant directed fluid flow during late gastrulation/early neurulation. Yet, a large body of evidence suggests that biophysical, molecular, and bioelectrical asymmetries exist much earlier in development, some as early as the first cell cleavage after fertilization. Alternative models of LR asymmetry have been proposed that accommodate these data, postulating that asymmetry is established due to a chiral cytoskeleton and/or the asymmetric segregation of chromatids. There are some similarities, and many differences, in how these various models postulate the origin and timing of symmetry breaking and amplification, and these events' linkage to the well-conserved subsequent asymmetric transcriptional cascades. This review examines experimental data that lend strong support to an early origin of LR asymmetry, yet are also consistent with later roles for cilia in the amplification of LR pathways. In this way, we propose that the various models of asymmetry can be unified: early events are needed to initiate LR asymmetry, and later events could be utilized by some species to maintain LR-biases. We also present an alternative hypothesis, which proposes that individual embryos stochastically choose one of several possible pathways with which to establish their LR axis. These two hypotheses are both tractable in appropriate model species; testing them to resolve open questions in the field of LR patterning will reveal interesting new biology of wide relevance to developmental, cell, and evolutionary biology. Copyright © 2013 Elsevier Inc. All rights reserved.
Adhesion mechanisms in embryogenesis and in cancer invasion and metastasis.
Thiery, J P; Boyer, B; Tucker, G; Gavrilovic, J; Valles, A M
1988-01-01
Cell-substratum and cell-cell adhesion mechanisms contribute to the development of animal form. The adhesive status of embryonic cells has been analysed during epithelial-mesenchymal cell interconversion and in cell migrations. Clear-cut examples of the modulation of cell adhesion molecules (CAMs) have been described at critical periods of morphogenesis. In chick embryos the three primary CAMs (N-CAM. L-CAM and N-cadherin) present early in embryogenesis are expressed later in a defined pattern during morphogenesis and histogenesis. The axial mesoderm derived from gastrulating cells expresses increasing amounts of N-cadherin and N-CAM. During metamerization these two adhesion molecules become abundant at somitic cell surfaces. Both CAMs are functional in an in vitro aggregation assay; however, the calcium-dependent adhesion molecule N-cadherin is more sensitive to perturbation by specific antibodies. Neural crest cells which separate from the neural epithelium lose their primary CAMs in a defined time-sequence. Adhesion to fibronectins via specific surface receptors becomes a predominant interaction during the migratory process, while some primary and secondary CAMs are expressed de novo during the ontogeny of the peripheral nervous system. In vitro, different fibronectin functional domains have been identified in the attachment, spreading and migration of neural crest cells. The fibronectin receptors which transduce the adhesive signals play a key role in the control of cell movement. All these results have prompted us to examine whether similar mechanisms operate in carcinoma cell invasion and metastasis. In vitro, rat bladder transitional carcinoma cells convert reversibly into invasive mesenchymal cells. A rapid modulation of adhesive properties is found during the epithelial-mesenchymal carcinoma cell interconversion. The different model systems analysed demonstrate that a limited repertoire of adhesion molecules, expressed in a well-defined spatiotemporal pattern, is involved in tissue formation and in key processes of tumour spread.
Tallafuss, A; Wilm, T P; Crozatier, M; Pfeffer, P; Wassef, M; Bally-Cuif, L
2001-10-01
Little is known about the factors that control the specification of the mid-hindbrain domain (MHD) within the vertebrate embryonic neural plate. Because the head-trunk junction of the Drosophila embryo and the MHD have patterning similarities, we have searched for vertebrate genes related to the Drosophila head gap gene buttonhead (btd), which in the fly specifies the head-trunk junction. We report here the identification of a zebrafish gene which, like btd, encodes a zinc-finger transcriptional activator of the Sp-1 family (hence its name, bts1 for btd/Sp-related-1) and shows a restricted expression in the head. During zebrafish gastrulation, bts1 is transcribed in the posterior epiblast including the presumptive MHD, and precedes in this area the expression of other MHD markers such as her5, pax2.1 and wnt1. Ectopic expression of bts1 combined to knock-down experiments demonstrate that Bts1 is both necessary and sufficient for the induction of pax2.1 within the anterior neural plate, but is not involved in regulating her5, wnt1 or fgf8 expression. Our results confirm that early MHD development involves several genetic cascades that independently lead to the induction of MHD markers, and identify Bts1 as a crucial upstream component of the pathway selectively leading to pax2.1 induction. In addition, they imply that flies and vertebrates, to control the development of a boundary embryonic region, have probably co-opted a similar strategy: the restriction to this territory of the expression of a Btd/Sp-like factor.
Developmental duration and morphology of the sea star asterias amurensis, in tongyeong, Korea
NASA Astrophysics Data System (ADS)
Paik, Sang-Gyu; Park, Heung-Sik; Yi, Soon Kil; Yun, Sung Gyu
2005-09-01
The process of embryogenesis and larval development of the asteroid sea star Asterias amurensis (Lütken) was observed, with special attention paid to morphological change and larval duration. In reproductive season, mature sea stars were collected under floating net cages, located in Tongyeong, southern Korea. The mature eggs are 138 μm in average diameter, semi-translucent and orange in color, sperms in good condition appear light cream to white-gray in color. Embryos develop through the holoblastic equal cleavage stage and a wrinkled blastula stage that lasts about 9 hours after fertilization. Gastrulae bearing an expanded archenteron hatch from the fertilization envelope 22 hours after fertilization. At the end of gastrulation, rudiments of the left and right coelom are formed. By day 2, larvae possess complete alimentary canal and begin to feed. At this stage, the larva is called early bipinnaria. In 6day-old larvae, the pre- and post- oral ciliated bands form complete circuits and the bipinnarial processes start to develop. By day 12, the lateral and anterior projection of the larval wall processes along the ciliated bands begins to thicken and curl, and the ciliated bands become more prominent. By day 32, early brachiolaria are presented with three pairs of brachiolar arms. Advanced brachiolaria with a well-developed brachiolar complex (three pairs of brachia and central adhesive disc) occur 6 weeks after fertilization. In the field, spawning of the sea star was observed in April to May, settlement form larvae and just settlements seem to occur from June to July, and early juveniles occur from August to September. Although we had not described the end of brachiolaria stage, it can be tentatively estimated that the duration of the pelagic stage of A. amurensis is 40 to 50 days.
Reim, Ingolf; Hollfelder, Dominik; Ismat, Afshan; Frasch, Manfred
2013-01-01
Fibroblast growth factors (FGFs) frequently fulfill prominent roles in the regulation of cell migration in various contexts. In Drosophila, the FGF8-like ligands Pyramus (Pyr) and Thisbe (Ths), which signal through their receptor Heartless (Htl), are known to regulate early mesodermal cell migration after gastrulation as well as glial cell migration during eye development. Herein, we show that Pyr and Ths also exert key roles during the long-distance migration of a specific sub-population of mesodermal cells that migrate from the caudal visceral mesoderm within stereotypic bilateral paths along the trunk visceral mesoderm toward the anterior. These cells constitute the founder myoblasts of the longitudinal midgut muscles. In a forward genetic screen for regulators of this morphogenetic process we identified loss of function alleles for pyr. We show that pyr and ths are expressed along the paths of migration in the trunk visceral mesoderm and endoderm and act largely redundantly to help guide the founder myoblasts reliably onto and along their substrate of migration. Ectopically-provided Pyr and Ths signals can efficiently re-rout the migrating cells, both in the presence and absence of endogenous signals. Our data indicate that the guidance functions of these FGFs must act in concert with other important attractive or adhesive activities of the trunk visceral mesoderm. Apart from their guidance functions, the Pyr and Ths signals play an obligatory role for the survival of the migrating cells. Without these signals, essentially all of these cells enter cell death and detach from the migration substrate during early migration. We present experiments that allowed us to dissect the roles of these FGFs as guidance cues versus trophic activities during the migration of the longitudinal visceral muscle founders. PMID:22609944
Savriama, Yoland; Jernvall, Jukka
2018-01-01
From gastrulation to late organogenesis animal development involves many genetic and bio-mechanical interactions between epithelial and mesenchymal tissues. Ectodermal organs, such as hairs, feathers and teeth are well studied examples of organs whose development is based on epithelial-mesenchymal interactions. These develop from a similar primordium through an epithelial folding and its interaction with the mesenchyme. Despite extensive knowledge on the molecular pathways involved, little is known about the role of bio-mechanical processes in the morphogenesis of these organs. We propose a simple computational model for the biomechanics of one such organ, the tooth, and contrast its predictions against cell-tracking experiments, mechanical relaxation experiments and the observed tooth shape changes over developmental time. We found that two biomechanical processes, differential tissue growth and differential cell adhesion, were enough, in the model, for the development of the 3D morphology of the early tooth germ. This was largely determined by the length and direction of growth of the cervical loops, lateral folds of the enamel epithelium. The formation of these cervical loops was found to require accelerated epithelial growth relative to other tissues and their direction of growth depended on specific differential adhesion between the three tooth tissues. These two processes and geometrical constraints in early tooth bud also explained the shape asymmetry between the lateral cervical loops and those forming in the anterior and posterior of the tooth. By performing mechanical perturbations ex vivo and in silico we inferred the distribution and direction of tensile stresses in the mesenchyme that restricted cervical loop lateral growth and forced them to grow downwards. Overall our study suggests detailed quantitative explanations for how bio-mechanical processes lead to specific morphological 3D changes over developmental time. PMID:29481561
Establishment of Hox vertebral identities in the embryonic spine precursors
Iimura, Tadahiro; Denans, Nicolas; Pourquié, Olivier
2012-01-01
Summary The vertebrate spine exhibits two striking characteristics. The first one is the periodic arrangement of its elements – the vertebrae – along the antero-posterior axis. This segmented organization is the result of somitogenesis, which takes place during organogenesis. The segmentation machinery involves a molecular oscillator – the segmentation clock – which delivers a periodic signal controlling somite production. During embryonic axis elongation, this signal is displaced posteriorly by a system of traveling signaling gradients – the wavefront – which depends on the Wnt, FGF and retinoic acid pathways. The other characteristic feature of the spine is the subdivision of groups of vertebrae into anatomical domains, such as the cervical, thoracic, lumbar, sacral and caudal regions. This axial regionalization is controlled by a set of transcription factors called Hox genes. Hox genes exhibit nested expression domains in the somites which reflect their linear arrangement along the chromosomes– a property termed colinearity. The colinear disposition of Hox genes expression domains provides a blueprint for the regionalization of the future vertebral territories of the spine. In amniotes, Hox genes are activated in the somite precursors of the epiblast in a temporal colinear sequence and they were proposed to control their progressive ingression into the nascent paraxial mesoderm. Consequently, the positioning of the expression domains of Hox genes along the antero-posterior axis is largely controlled by the timing of Hox activation during gastrulation. Positioning of the somitic Hox domains is subsequently refined through a cross talk with the segmentation machinery in the presomitic mesoderm. In this review, we focus on our current understanding of the embryonic mechanisms that establish vertebral identities during vertebrate development. PMID:19651306
Katow, H; Yamamoto, Y; Sofuku, S
1997-04-01
A fibronectin-related synthetic cyclic H-Cys-Arg-Gly-Asp-Ser-Pro-Ala-Ser-Ser-Cys-OH (RGDSPASS) peptide (FR-1) binding site in the embryo of the sand dollar Clypeaster japonicus was specified using dansyl-labeled FR-1 (Dns-FR-1) and horseradish peroxidase-labeled FR-1, and an FR-1 receptor was isolated using FR-1-affinity column chromatography. The FR-1 introduced to the blastocoel of blastulae inhibited primary mesenchyme cell (PMC) migration in mesenchyme blastulae, and complete gastrulation and spicule differentiation in gastrulae. The Dns-FR-1 bound to the entire basal side of the ectoderm in mesenchyme blastulae, and then restricted to the basal side of the ectoderm at the apical tuft region and the vegetal hemisphere in early gastrulae. The cytoplasm of the archenteron also bound to Dns-FR-1. In PMC, Dns-FR-1 bound to the nucleus and cytoplasmic reticular features. In unfertilized eggs, Dns-FR-1 bound to the entire cytoplasm, particularly to the oval-shaped granules and the nuclear envelope, but only to the cytoplasm after fertilization. Relative molecular mass (Mr) of the FR-1-binding protein was 240 kDa under non-reducing conditions and 57 kDa under reducing conditions. The FR-1 receptor protein bound anti-sea urchin integrin (Spl) betaL subunit antibodies raised against the embryos of Strongylocentrotus purpuratus. Immunohistochemistry showed that the antibody binding site was similar to the histochemical distribution of Dns-FR-1. However, Mr of the FR-1 receptor is distinctively larger than that of the Spl betaL subunit.
Rätsep, Matthew T; Hickman, Andrew F; Croy, B Anne
2016-12-01
Preeclampsia (PE) is a significant gestational disorder affecting 3-5% of all human pregnancies. In many PE pregnancies, maternal plasma is deficient in placental growth factor (PGF), a placentally-produced angiokine. Beyond immediate fetal risks associated with acute termination of the pregnancy, offspring of PE pregnancies (PE-F1) have higher long-term risks for hypertension, stroke, and cognitive impairment compared to F1s from uncomplicated pregnancies. At present, mechanisms that explain PE-F1 gains in postpartum risks are poorly understood. Our laboratory found that mice genetically-deleted for Pgf have altered fetal and adult brain vascular development. This is accompanied by sexually dimorphic alterations in anatomic structure in the adult Pgf -/- brain and impaired cognitive functions. We hypothesize that cerebrovascular and neurological aberrations occur in fetuses exposed to the progressive development of PE and that these brain changes impair cognitive functioning, enhance risk for stroke, elevate severity of stroke, and lead to worse stroke outcomes. These brain and placental outcomes may be linked to down-regulated PGF gene expression in early pre-implantation embryos, prior to gastrulation. This review explores our hypothesis that there are mechanistic links between low PGF detection in maternal plasma prodromal to PE, PE, and altered brain vascular, structural, and functional development amongst PE-F1s. We also include a summary of preliminary outcomes from a pilot study of 7-10 year old children that is the first to report magnetic resonance imaging, magnetic resonance angiography, and functional brain region assessment by eye movement control studies in PE-F1s. Copyright © 2016 Elsevier Ltd. All rights reserved.
McCann, Matthew R; Tamplin, Owen J; Rossant, Janet; Séguin, Cheryle A
2012-01-01
Back pain related to intervertebral disc degeneration is the most common musculoskeletal problem, with a lifetime prevalence of 82%. The lack of effective treatment for this widespread problem is directly related to our limited understanding of disc development, maintenance and degeneration. The aim of this study was to determine the developmental origins of nucleus pulposus cells within the intervertebral disc using a novel notochord-specific Cre mouse. To trace the fate of notochordal cells within the intervertebral disc, we derived a notochord-specific Cre mouse line by targeting the homeobox gene Noto. Expression of this gene is restricted to the node and the posterior notochord during gastrulation [embryonic day 7.5 (E7.5)-E12.5]. The Noto-cre mice were crossed with a conditional lacZ reporter for visualization of notochord fate in whole-mount embryos. We performed lineage-tracing experiments to examine the contribution of the notochord to spinal development from E12.5 through to skeletally mature mice (9 months). Fate mapping studies demonstrated that, following elongation and formation of the primitive axial skeleton, the notochord gives rise to the nucleus pulposus in fully formed intervertebral discs. Cellular localization of β-galactosidase (encoded by lacZ) and cytokeratin-8 demonstrated that both notochordal cells and chondrocyte-like nucleus pulposus cells are derived from the embryonic notochord. These studies establish conclusively that notochordal cells act as embryonic precursors to all cells found within the nucleus pulposus of the mature intervertebral disc. This suggests that notochordal cells might serve as tissue-specific progenitor cells within the disc and establishes the Noto-cre mouse as a unique tool to interrogate the contribution of notochordal cells to both intervertebral disc development and disc degeneration.
Sliwa, Leopold
2008-01-01
Emil Godlewski, Jr. (1875-1944) lived and worked in Krakow. He graduated from the Faculty of Medicine of the Jagiellonian University with the title of Doctor of Medical Science. He worked at the Faculty of Medicine, first in the Institute of Descriptive Anatomy and later as Professor of Biology and Embryology in the Department of Biology and Embryology, which he founded and led for many years. After early research on the development and histogenesis of muscles, professor Godlewski's scientific interests focused on regeneration and mechanisms regulating the process of fertilization, as well as early embryo development, blastulation and gastrulation. He was also interested in the origin of the primary differentiating cells in regenerates. He postulated the importance of epithelial tissue in this process and was the first to point out the change in the function, organization and role of the cells under the influence of external stimuli. Investigating fertilization and early development, he focused on the cooperation between the nucleus and the cytoplasm in the regulation of the early stages of development. Godlewski was also the author of the theory of migration of the inherited substances from the nucleus to the cytoplasm and, after their processing, from the cytoplasm to the nucleus. His works were never fragmentary, but always synthetical attempts at explaining important issues relating to the mechanisms of development. In 1936 Professor Godlewski was awarded the title of Member of the Pontifica Accademia delle Scienze. Apart from doing research and teaching, Emil Godlewski devoted a lot of time to social issues, especially those connected to medicine. When Poland regained independence after World War I, he actively participated in the reopening of the Jagiellonian University.
The avian prechordal head region: a morphological study.
Seifert, R; Jacob, M; Jacob, H J
1993-01-01
The axial mesoderm of the anterior head region was investigated in young chick and quail embryos by light and electron microscopy. Semithin sections showed that the axial head mesoderm consists of the head process and prechordal mesoderm. At the anterior end of the prechordal mesoderm, a group of columnar epithelial cells formed a pit-like structure. The bases of these columnar cells extended to the neural plate, thus limiting the prechordal mesoderm anteriorly. The cells lining the pit-like structure at its anterior end joined a cell accumulation made up of cells of mesenchymal character. Electron microscopy revealed that the columnar cells forming the pit-like structure were covered by a basal lamina which was discontinuous on its anterior aspect. No basal lamina was recognisable between the columnar epithelial cells and mesenchymal cells joining them anteriorly. The columnar epithelial cells bordering the prechordal mesoderm anteriorly were therefore assumed to be part of the endodermal germ layer. In agreement with the findings of other authors, it is proposed to term these axially located columnar cells of the endoderm the prechordal plate and to distinguish them from the prechordal mesoderm arising during gastrulation. For the mesenchymal cell accumulation anterior to the prechordal plate, participation in the formation of the prosencephalic mesenchyme is assumed. This implies that the definitive endodermal germ layer, like the ectodermal one represented by the neural crest, may also be able to contribute to mesenchyme formation in the head. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 PMID:8270478
NASA Astrophysics Data System (ADS)
Dubrulle, Julien; Pourquié, Olivier
The electroporation technique has revolutionized vertebrate embryology. It has greatly contributed to our understanding of how genes and proteins can interact and regulate various aspects of vertebrate development in the last decade. This technique provides an efficient way to transfect embryonic cells in vivo with exogenous DNA by cre ating transient holes in the plasma membrane with short, squared electric pulses of low voltage (Itasaki et al., 1999; Momose et al., 1999; Muramatsu et al., 1997; Nakamura et al., 2004; Ogura, 2002). It has been particularly well-developed in the chick model since the large size of the embryo and its easy accessibility enables to target specific tissues with great precision. With the electroporation, it is possible to precisely choose which type of cells to transfect by performing a local injection of DNA close to the cells of interest, followed by the application of a small current through the targeted area. To date, all three germ layers — endoderm, mesoderm and ectoderm — as well as an increasing number of differentiated structures have been efficiently transfected (Dubrulle et al., 2001; Grapin-Botton et al., 2001; Itasaki et al., 1999; Luo and Redies, 2005; Scaal et al., 2004) and the continuous improvement in electrode design makes it even possible to aim at sub-populations of cells within a given tissue. In addition to this spatial precision, the technique also allows great temporal precision; any stage of development, ranging from pre-gastrulation stage to adulthood can be reached as long as the cells or structures are accessible for local DNA injection and electrode placement (Bigey et al., 2002; Iimura and Pourquie, 2006).
Woda, Juliana M; Calzonetti, Teresa; Hilditch-Maguire, Paige; Duyao, Mabel P; Conlon, Ronald A; MacDonald, Marcy E
2005-08-18
Huntingtin, the HD gene encoded protein mutated by polyglutamine expansion in Huntington's disease, is required in extraembryonic tissues for proper gastrulation, implicating its activities in nutrition or patterning of the developing embryo. To test these possibilities, we have used whole mount in situ hybridization to examine embryonic patterning and morphogenesis in homozygous Hdh(ex4/5) huntingtin deficient embryos. In the absence of huntingtin, expression of nutritive genes appears normal but E7.0-7.5 embryos exhibit a unique combination of patterning defects. Notable are a shortened primitive streak, absence of a proper node and diminished production of anterior streak derivatives. Reduced Wnt3a, Tbx6 and Dll1 expression signify decreased paraxial mesoderm and reduced Otx2 expression and lack of headfolds denote a failure of head development. In addition, genes initially broadly expressed are not properly restricted to the posterior, as evidenced by the ectopic expression of Nodal, Fgf8 and Gsc in the epiblast and T (Brachyury) and Evx1 in proximal mesoderm derivatives. Despite impaired posterior restriction and anterior streak deficits, overall anterior/posterior polarity is established. A single primitive streak forms and marker expression shows that the anterior epiblast and anterior visceral endoderm (AVE) are specified. Huntingtin is essential in the early patterning of the embryo for formation of the anterior region of the primitive streak, and for down-regulation of a subset of dynamic growth and transcription factor genes. These findings provide fundamental starting points for identifying the novel cellular and molecular activities of huntingtin in the extraembryonic tissues that govern normal anterior streak development. This knowledge may prove to be important for understanding the mechanism by which the dominant polyglutamine expansion in huntingtin determines the loss of neurons in Huntington's disease.
Liu, Li-ping; Xiang, Jian-hai; Dong, Bo; Natarajan, Pavanasam; Yu, Kui-jie; Cai, Nan-er
2006-06-01
The ascidian Ciona intestinalis is a model organism of developmental and evolutionary biology and may provide crucial clues concerning two fundamental matters, namely, how chordates originated from the putative deuterostome ancestor and how advanced chordates originated from the simplest chordates. In this paper, a whole-life-span culture of C. intestinalis was conducted. Fed with the diet combination of dry Spirulina, egg yolk, Dicrateria sp., edible yeast and weaning diet for shrimp, C. intestinalis grew up to average 59 mm and matured after 60 d cultivation. This culture process could be repeated using the artificially cultured mature ascidians as material. When the fertilized eggs were maintained under 10, 15, 20, 25 degrees C, they hatched within 30 h, 22 h, 16 h and 12 h 50 min respectively experiencing cleavage, blastulation, gastrulation, neurulation, tailbud stage and tadpole stage. The tadpole larvae were characterized as typical but simplified chordates because of their dorsal nerve cord, notochord and primordial brain. After 8 - 24 h freely swimming, the tadpole larvae settled on the substrates and metamorphosized within 1- 2 d into filter feeding sessile juvenile ascidians. In addition, unfertilized eggs were successfully dechorionated in filtered seawater containing 1% Tripsin, 0.25% EDTA at pH of 10.5 within 40 min. After fertilization, the dechorionated eggs developed well and hatched at normal hatching rate. In conclusion, this paper presented feasible methodology for rearing the tadpole larvae of C. intestinalis into sexual maturity under controlled conditions and detailed observations on the embryogenesis of the laboratory cultured ascidians, which will facilitate developmental and genetic research using this model system.
Lukyanova, Olga N; Zhuravel, Elena V; Chulchekov, Denis N; Mazur, Andrey A
2017-08-01
The embryogenesis of the sea urchin sand dollar Scaphechinus mirabilis was used as bioindicators of seawater quality from the impact areas of the Sea of Japan/East Sea (Peter the Great Bay) and the Sea of Okhotsk (northwestern shelf of Sakhalin Island and western shelf of Kamchatka Peninsula). Fertilization membrane formation, first cleavage, blastula formation, gastrulation, and 2-armed and 4-armed pluteus formation have been analyzed and a number of abnormalities were calculated. Number of embryogenesis anomalies in sand dollar larvae exposed to sea water from different stations in Peter the Great Bay corresponds to pollution level at each area. The Sea of Okhotsk is the main fishing area for Russia. Anthropogenic impact on the marine ecosystem is caused by fishing and transport vessels mainly. But two shelf areas are considered as "hot spots" due to oil and gas drilling. Offshore oil exploitation on the northeastern Sakhalin Island has been started and at present time oil is being drill on oil-extracting platforms continuously. Significant reserves of hydrocarbons are prospected on western Kamchatka shelf, and exploitation drilling in this area was intensified in 2014. A higher number of abnormalities at gastrula and pluteus stages (19-36%) were detected for the stations around oil platforms near Sakhalin Island. On the western Kamchatka shelf number of abnormalities was 7-21%. Such anomalies as exogastrula, incomplete development of pairs of arms were not observed at all; only the delay of development was registered. Eggs, embryos, and larvae of sea urchins are the suitable bioindicators of early disturbances caused by marine pollution in impact ecosystems.
Comparative embryology of eleven species of stony corals (Scleractinia).
Okubo, Nami; Mezaki, Takuma; Nozawa, Yoko; Nakano, Yoshikatsu; Lien, Yi-Ting; Fukami, Hironobu; Hayward, David C; Ball, Eldon E
2013-01-01
A comprehensive understanding of coral reproduction and development is needed because corals are threatened in many ways by human activity. Major threats include the loss of their photosynthetic symbionts (Symbiodinium) caused by rising temperatures (bleaching), reduced ability to calcify caused by ocean acidification, increased storm severity associated with global climate change and an increase in predators caused by runoff from human agricultural activity. In spite of these threats, detailed descriptions of embryonic development are not available for many coral species. The current consensus is that there are two major groups of stony corals, the "complex" and the "robust". In this paper we describe the embryonic development of four "complex" species, Pseudosiderastrea tayamai, Galaxea fascicularis, Montipora hispida, and Pavona Decussata, and seven "robust" species, Oulastrea crispata, Platygyra contorta, Favites abdita, Echinophyllia aspera, Goniastrea favulus, Dipsastraea speciosa (previously Favia speciosa), and Phymastrea valenciennesi (previously Montastrea valenciennesi). Data from both histologically sectioned embryos and whole mounts are presented. One apparent difference between these two major groups is that before gastrulation the cells of the complex corals thus far described (mainly Acropora species) spread and flatten to produce the so-called prawn chip, which lacks a blastocoel. Our present broad survey of robust and complex corals reveals that prawn chip formation is not a synapomorphy of complex corals, as Pavona Decussata does not form a prawn chip and has a well-developed blastocoel. Although prawn chip formation cannot be used to separate the two clades, none of the robust corals which we surveyed has such a stage. Many robust coral embryos pass through two periods of invagination, separated by a return to a spherical shape. However, only the second of these periods is associated with endoderm formation. We have therefore termed the first invagination a pseudo-blastopore.
Smith, Susan M; Flentke, George R; Kragtorp, Katherine A; Tessmer, Laura
2011-02-01
Prenatal alcohol exposure is a leading cause of childhood neurodevelopmental disability. The adverse behavioral effects of alcohol exposure during the second and third trimester are well documented; less clear is whether early first trimester-equivalent exposures also alter behavior. We investigated this question using an established chick model of alcohol exposure. In ovo embryos experienced a single, acute ethanol exposure that spanned gastrulation through neuroectoderm induction and early brain patterning (19-22h incubation). At 7 days posthatch, the chicks were evaluated for reflexive motor function (wingflap extension, righting reflex), fearfulness (tonic immobility [TI]), and fear/social reinstatement (open-field behavior). Chicks exposed to a peak ethanol level of 0.23-0.28% were compared against untreated and saline-treated controls. Birds receiving early ethanol exposure had a normal righting reflex and a significantly reduced wingflap extension in response to a sudden descent. The ethanol-treated chicks also displayed heightened fearfulness, reflected in increased frequency of TI, and they required significantly fewer trials for its induction. In an open-field test, ethanol treatment did not affect latency to move, steps taken, vocalizations, defecations, or escape attempts. The current findings demonstrate that early ethanol exposure can increase fearfulness and impair aspects of motor function. Importantly, the observed dysfunctions resulted from an acute ethanol exposure during the period when the major brain components are induced and patterned. The equivalent period in human development is 3-4 weeks postconception. The current findings emphasize that ethanol exposure during the early first trimester equivalent can produce neurodevelopmental disability in the offspring. Copyright © 2011 Elsevier Inc. All rights reserved.
Mos, Benjamin; Kaposi, Katrina L; Rose, Andrew L; Kelaher, Brendan; Dworjanyn, Symon A
2017-09-01
There is growing concern about the combined effects of multiple human-induced stressors on biodiversity. In particular, there are substantial knowledge gaps about the combined effects of existing stressors (e.g. pollution) and predicted environmental stress from climate change (e.g. ocean warming). We investigated the impacts of ocean warming and engineered nanoparticles (nano-zinc oxide, nZnO) on larvae of a cosmopolitan tropical sea urchin, Tripneustes gratilla. Larval T. gratilla were exposed to all combinations of three temperatures, 25, 27 and 29 °C (current SST and near-future predicted warming of +2 and + 4 °C) and six concentrations of nZnO (0, 0.001, 0.01, 0.1, 1 and 10 mg nZnO·L -1 ). These stressors had strong interactive effects on fertilization, gastrulation and normal development of 5 day old larvae. High concentrations of nZnO had a negative effect, but this impact was less pronounced for sea urchins reared at their preferred temperature of 27 °C compared to 25 or 29 °C. Larval growth was also impacted by combined stress of elevated temperature and nZnO. Subsequent measurement of the dissolution and aggregation of nZnO particles and the direct effect of Zn 2+ ions on larvae, suggest the negative effects of nZnO on larval development and growth were most likely due to Zn 2+ ions. Our results demonstrate that marine larvae may be more resilient to stressors at optimal temperatures and highlight the potential for ocean warming to exacerbate the effects of pollution on marine larvae. Copyright © 2017 Elsevier Ltd. All rights reserved.
Satoh, Nori; Tagawa, Kuni; Takahashi, Hiroki
2012-01-01
More than 550 million years ago, chordates originated from a common ancestor shared with nonchordate deuterostomes by developing a novel type of larva, the "tadpole larva." The notochord is the supporting organ of the larval tail and the most prominent feature of chordates; indeed, phylum Chordata is named after this organ. In this review, we discuss the molecular mechanisms involved in the formation of the notochord over the course of chordate evolution with a special emphasis on a member of T-box gene family, Brachyury. Comparison of the decoded genome of a unicellular choanoflagellate with the genomes of sponge and cnidarians suggests that T-box gene family arose at the time of the evolution of multicellular animals. Gastrulation is a morphogenetic movement that is essential for the formation of two- or three-germ-layered embryos. Brachyury is transiently expressed in the blastopore (bp) region, where it confers on cells the ability to undergo invagination. This process is involved in the formation of the archenteron in all metazoans. This is a "primary" function of Brachyury. During the evolution of chordates, Brachyury gained an additional expression domain at the dorsal midline region of the bp. In this new expression domain, Brachyury served its "secondary" function, recruiting another set of target genes to form a dorsal axial organ, notochord. The Wnt/β-catenin, BMP/Nodal, and FGF-signaling pathways are involved in the transcriptional activation of Brachyury. We discuss the molecular mechanisms of Brachyury secondary function in the context of the dorsal-ventral (D-V) inversion theory and the aboral-dorsalization hypothesis. Although the scope of this review requires some degree of oversimplification of Brachyury function, it is beneficial to facilitate studies on the notochord formation, a central evolutionary developmental biology problem in the history of metazoan evolution, pointed out first by Alexander Kowalevsky. © 2012 Wiley Periodicals, Inc.
McCann, Matthew R.; Tamplin, Owen J.; Rossant, Janet; Séguin, Cheryle A.
2012-01-01
SUMMARY Back pain related to intervertebral disc degeneration is the most common musculoskeletal problem, with a lifetime prevalence of 82%. The lack of effective treatment for this widespread problem is directly related to our limited understanding of disc development, maintenance and degeneration. The aim of this study was to determine the developmental origins of nucleus pulposus cells within the intervertebral disc using a novel notochord-specific Cre mouse. To trace the fate of notochordal cells within the intervertebral disc, we derived a notochord-specific Cre mouse line by targeting the homeobox gene Noto. Expression of this gene is restricted to the node and the posterior notochord during gastrulation [embryonic day 7.5 (E7.5)-E12.5]. The Noto-cre mice were crossed with a conditional lacZ reporter for visualization of notochord fate in whole-mount embryos. We performed lineage-tracing experiments to examine the contribution of the notochord to spinal development from E12.5 through to skeletally mature mice (9 months). Fate mapping studies demonstrated that, following elongation and formation of the primitive axial skeleton, the notochord gives rise to the nucleus pulposus in fully formed intervertebral discs. Cellular localization of β-galactosidase (encoded by lacZ) and cytokeratin-8 demonstrated that both notochordal cells and chondrocyte-like nucleus pulposus cells are derived from the embryonic notochord. These studies establish conclusively that notochordal cells act as embryonic precursors to all cells found within the nucleus pulposus of the mature intervertebral disc. This suggests that notochordal cells might serve as tissue-specific progenitor cells within the disc and establishes the Noto-cre mouse as a unique tool to interrogate the contribution of notochordal cells to both intervertebral disc development and disc degeneration. PMID:22028328
Shindo, Asako; Hara, Yusuke; Yamamoto, Takamasa S; Ohkura, Masamichi; Nakai, Junichi; Ueno, Naoto
2010-02-02
The establishment of cell polarity is crucial for embryonic cells to acquire their proper morphologies and functions, because cell alignment and intracellular events are coordinated in tissues during embryogenesis according to the cell polarity. Although much is known about the molecules involved in cell polarization, the direct trigger of the process remains largely obscure. We previously demonstrated that the tissue boundary between the chordamesoderm and lateral mesoderm of Xenopus laevis is important for chordamesodermal cell polarity. Here, we examined the intracellular calcium dynamics during boundary formation between two different tissues. In a combination culture of nodal-induced chordamesodermal explants and a heterogeneous tissue, such as ectoderm or lateral mesoderm, the chordamesodermal cells near the boundary frequently displayed intracellular calcium elevation; this frequency was significantly less when homogeneous explants were used. Inhibition of the intracellular calcium elevation blocked cell polarization in the chordamesodermal explants. We also observed frequent calcium waves near the boundary of the dorsal marginal zone (DMZ) dissected from an early gastrula-stage embryo. Optical sectioning revealed that where heterogeneous explants touched, the chordamesodermal surface formed a wedge with the narrow end tucked under the heterogeneous explant. No such configuration was seen between homogeneous explants. When physical force was exerted against a chordamesodermal explant with a glass needle at an angle similar to that created in the explant, or migrating chordamesodermal cells crawled beneath a silicone block, intracellular calcium elevation was frequent and cell polarization was induced. Finally, we demonstrated that a purinergic receptor, which is implicated in mechano-sensing, is required for such frequent calcium elevation in chordamesoderm and for cell polarization. This study raises the possibility that tissue-tissue interaction generates mechanical forces through cell-cell contact that initiates coordinated cell polarization through a transient increase in intracellular calcium.
Cheng, Christina N; Li, Yue; Marra, Amanda N; Verdun, Valerie; Wingert, Rebecca A
2014-07-17
The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.
Cheng, Christina N.; Li, Yue; Marra, Amanda N.; Verdun, Valerie; Wingert, Rebecca A.
2014-01-01
The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples. PMID:25078510
Godard, B G; Mazan, S
2013-01-01
In the past few years, the small spotted dogfish has become the primary model for analyses of early development in chondrichthyans. Its phylogenetic position makes it an ideal outgroup to reconstruct the ancestral gnathostome state by comparisons with established vertebrate model organisms. It is also a suitable model to address the molecular bases of lineage-specific diversifications such as the rise of extraembryonic tissues, as it is endowed with a distinct extraembryonic yolk sac and yolk duct ensuring exchanges between the embryo and a large undivided vitelline mass. Experimental or functional approaches such as cell marking or in ovo pharmacological treatments are emerging in this species, but recent analyses of early development in this species have primarily concentrated on molecular descriptions. These data show the dogfish embryo exhibits early polarities reflecting the dorso-ventral axis of amphibians and teleosts at early blastula stages and an atypical anamniote molecular pattern during gastrulation, independently of the presence of extraembryonic tissues. They also highlight unexpected relationships with amniotes, with a strikingly similar Nodal-dependent regional pattern in the extraembryonic endoderm. In this species, extraembryonic cell fates seem to be determined by differential cell behaviors, which lead to cell allocation in extraembryonic and embryonic tissues, rather than by cell regional identity. We suggest that this may exemplify an early evolutionary step in the rise of extraembryonic tissues, possibly related to quantitative differences in the signaling activities, which shape the early embryo. These results highlight the conservation across gnathostomes of a highly constrained core genetic program controlling early patterning. This conservation may be obscured in some lineages by taxa-specific diversifications such as specializations of extraembryonic nutritive tissues. PMID:22905913
Bai, Yan; Tan, Xungang; Zhang, Haifeng; Liu, Chengdong; Zhao, Beibei; Li, Yun; Lu, Ling; Liu, Yunzhang; Zhou, Jianfeng
2014-01-01
The receptor-tyrosine kinase Ror2 acts as an alternative receptor or co-receptor for Wnt5a and mediates Wnt5a-induced convergent extension movements during embryogenesis in mice and Xenopus as well as the polarity and migration of several cell types during development. However, little is known about whether Ror2 function is conserved in other vertebrates or is involved in other non-canonical Wnt ligands in vivo. In this study we demonstrated that overexpression of dominant-negative ror2 (ror2-TM) mRNA in zebrafish embryos resulted in convergence and extension defects and incompletely separated eyes, which is consistent with observations from slb/wnt11 mutants or wnt11 knockdown morphants. Moreover, the co-injection of ror2-TM mRNA and a wnt11 morpholino or the coexpression of ror2 and wnt11 in zebrafish embryos synergetically induced more severe convergence and extension defects. Transplantation studies further demonstrated that the Ror2 receptor responded to the Wnt11 ligand and regulated cell migration and cell morphology during gastrulation. DnRor2 inhibited the action of Wnt11, which was revealed by a decreased percentage of Wnt11-induced convergence and extension defects. Ror2 physically interacts with Wnt11. The intracellular Tyr-647 and Ser-863 sites of Ror2 are essential for mediating the action of Wnt11. Dishevelled and RhoA act downstream of Wnt11-Ror2 to regulate convergence and extension movements. Overall, our data suggest an important role of Ror2 in mediating Wnt11 signaling and in regulating convergence and extension movements in zebrafish. PMID:24928507
Püschel, Bernd; Männer, Jörg
2016-01-01
Due to its morphological similarity with the early human embryo, the pregastrulation-stage rabbit may represent an appropriate mammalian model for studying processes involved in early human development. The usability of mammalian embryos for experimental studies depends on the availability of whole embryo culture methods facilitating prolonged ex utero development. While currently used culture methods yield high success rates for embryos from primitive streak stages onward, the success rate of extended cultivation of preprimitive streak-stage mammalian embryos is low for all previously established methods and for all studied species. This limits the usability of preprimitive streak-stage rabbit embryos in experimental embryology. We have tested whether the extraembryonic coelom of 4-day-old chick embryos may be used for prolonged ex utero culture of preprimitive streak-stage rabbit embryos (stage 2, 6.2 days post coitum). We found that, within this environment, stage 2 rabbit blastocysts can be cultured at decreasing success rates (55% after 1 day, 35% after 2 days, 15% after 3 days) up to a maximum of 72 h. Grafted blastocysts can continue development from the onset of gastrulation to early organogenesis and thereby form all structures characterizing age-matched controls (e.g. neural tube, somites, beating heart). Compared to normal controls, successfully cultured embryos developed at a slower rate and finally showed some structural and gross morphological anomalies. The method presented here was originally developed for whole embryo culture of mouse embryos by Gluecksohn-Schoenheimer in 1941. It is a simple and inexpensive method that may represent a useful extension to presently available ex utero culture systems for rabbit embryos. © 2016 S. Karger AG, Basel.
Garnett, Aaron T.; Square, Tyler A.; Medeiros, Daniel M.
2012-01-01
Neural crest cells generate a range of cells and tissues in the vertebrate head and trunk, including peripheral neurons, pigment cells, and cartilage. Neural crest cells arise from the edges of the nascent central nervous system, a domain called the neural plate border (NPB). NPB induction is known to involve the BMP, Wnt and FGF signaling pathways. However, little is known about how these signals are integrated to achieve temporally and spatially specific expression of genes in NPB cells. Furthermore, the timing and relative importance of these signals in NPB formation appears to differ between vertebrate species. Here, we use heat-shock overexpression and chemical inhibitors to determine whether, and when, BMP, Wnt and FGF signaling are needed for expression of the NPB specifiers pax3a and zic3 in zebrafish. We then identify four evolutionarily conserved enhancers from the pax3a and zic3 loci and test their response to BMP, Wnt and FGF perturbations. We find that all three signaling pathways are required during gastrulation for the proper expression of pax3a and zic3 in the zebrafish NPB. We also find that, although the expression patterns driven by the pax3a and zic3 enhancers largely overlap, they respond to different combinations of BMP, Wnt and FGF signals. Finally, we show that the combination of the two pax3a enhancers is less susceptible to signaling perturbations than either enhancer alone. Taken together, our results reveal how BMPs, FGFs and Wnts act cooperatively and redundantly through partially redundant enhancers to achieve robust, specific gene expression in the zebrafish NPB. PMID:23034628
Tellis, Margaret S; Lauer, Mariana M; Nadella, Sunita; Bianchini, Adalto; Wood, Chris M
2014-01-01
In order to understand sublethal mechanisms of lead (Pb) and zinc (Zn) toxicity, developing sea urchins were exposed continuously from 3h post-fertilization (eggs) to 96 h (pluteus larvae) to 55 (±2.4) μgPb/L or 117 (±11)μgZn/L, representing ~ 70% of the EC50 for normal 72 h development. Growth, unidirectional Ca uptake rates, whole body ion concentrations (Na, K, Ca, Mg), Ca(2+) ATPase activity, and metal bioaccumulation were monitored every 12h over this period. Pb exhibited marked bioaccumulation whereas Zn was well-regulated, and both metals had little effect on growth, measured as larval dry weight, or on Na, K, or Mg concentrations. Unidirectional Ca uptake rates (measured by (45)Ca incorporation) were severely inhibited by both metals, resulting in lower levels of whole body Ca accumulation. The greatest disruption occurred at gastrulation. Ca(2+) ATPase activity was also significantly inhibited by Zn but not by Pb. Interestingly, embryos exposed to Pb showed some capacity for recovery, as Ca(2+)ATPase activities increased, Ca uptake rates returned to normal intermittently, and whole body Ca levels were restored to control values by 72-96 h of development. This did not occur with Zn exposure. Both Pb and Zn rendered their toxic effects through disruption of Ca homeostasis, though likely through different proximate mechanisms. We recommend studying the toxicity of these contaminants periodically throughout development as an effective way to detect sublethal effects, which may not be displayed at the traditional toxicity test endpoint of 72 h. Copyright © 2013 Elsevier B.V. All rights reserved.
Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang
2016-01-01
Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development. PMID:27056332
Regulation of bone morphogenetic proteins in early embryonic development
NASA Astrophysics Data System (ADS)
Yamamoto, Yukiyo; Oelgeschläger, Michael
2004-11-01
Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.
Comparative Embryology of Eleven Species of Stony Corals (Scleractinia)
Okubo, Nami; Mezaki, Takuma; Nozawa, Yoko; Nakano, Yoshikatsu; Lien, Yi-Ting; Fukami, Hironobu; Hayward, David C.; Ball, Eldon E.
2013-01-01
A comprehensive understanding of coral reproduction and development is needed because corals are threatened in many ways by human activity. Major threats include the loss of their photosynthetic symbionts (Symbiodinium) caused by rising temperatures (bleaching), reduced ability to calcify caused by ocean acidification, increased storm severity associated with global climate change and an increase in predators caused by runoff from human agricultural activity. In spite of these threats, detailed descriptions of embryonic development are not available for many coral species. The current consensus is that there are two major groups of stony corals, the "complex" and the "robust". In this paper we describe the embryonic development of four "complex" species, Pseudosiderastrea tayamai, Galaxea fascicularis, Montipora hispida, and Pavona Decussata, and seven "robust" species, Oulastrea crispata, Platygyra contorta, Favites abdita, Echinophyllia aspera, Goniastrea favulus, Dipsastraea speciosa (previously Favia speciosa), and Phymastrea valenciennesi (previously Montastrea valenciennesi). Data from both histologically sectioned embryos and whole mounts are presented. One apparent difference between these two major groups is that before gastrulation the cells of the complex corals thus far described (mainly Acropora species) spread and flatten to produce the so-called prawn chip, which lacks a blastocoel. Our present broad survey of robust and complex corals reveals that prawn chip formation is not a synapomorphy of complex corals, as Pavona Decussata does not form a prawn chip and has a well-developed blastocoel. Although prawn chip formation cannot be used to separate the two clades, none of the robust corals which we surveyed has such a stage. Many robust coral embryos pass through two periods of invagination, separated by a return to a spherical shape. However, only the second of these periods is associated with endoderm formation. We have therefore termed the first invagination a pseudo-blastopore. PMID:24367633
Tanaka, Shingo; Hosokawa, Hiroshi; Weinberg, Eric S; Maegawa, Shingo
2017-04-15
The ability of the Spemann organizer to induce dorsal axis formation is dependent on downstream factors of the maternal Wnt/β-catenin signaling pathway. The fibroblast growth factor (FGF) signaling pathway has been identified as one of the downstream components of the maternal Wnt/β-catenin signaling pathway. The ability of the FGF signaling pathway to induce the formation of a dorsal axis with a complete head structure requires chordin (chd) expression; however, the molecular mechanisms involved in this developmental process, due to activation of FGF signaling, remain unclear. In this study, we showed that activation of the FGF signaling pathway induced the formation of complete head structures through the expression of chd and dickkopf-1b (dkk1b). Using the organizer-deficient maternal mutant, ichabod, we identified dkk1b as a novel downstream factor in the FGF signaling pathway. We also demonstrate that dkk1b expression is necessary, after activation of the FGF signaling pathway, to induce neuroectoderm patterning along the anteroposterior (AP) axis and for formation of complete head structures. Co-injection of chd and dkk1b mRNA resulted in the formation of a dorsal axis with a complete head structure in ichabod embryos, confirming the role of these factors in this developmental process. Unexpectedly, we found that chd induced dkk1b expression in ichabod embryos at the shield stage. However, chd failed to maintain dkk1b expression levels in cells of the shield and, subsequently, in the cells of the prechordal plate after mid-gastrula stage. In contrast, activation of the FGF signaling pathway maintained the dkk1b expression from the beginning of gastrulation to early somitogenesis. In conclusion, activation of the FGF signaling pathway induces the formation of a dorsal axis with a complete head structure through the expression of chd and subsequent maintenance of dkk1b expression levels. Copyright © 2017 Elsevier Inc. All rights reserved.
Evidence for Functional Differentiation among Drosophila Septins in Cytokinesis and Cellularization
Adam, Jennifer C.; Pringle, John R.; Peifer, Mark
2000-01-01
The septins are a conserved family of proteins that are involved in cytokinesis and other aspects of cell-surface organization. In Drosophila melanogaster, null mutations in the pnut septin gene are recessive lethal, but homozygous pnut mutants complete embryogenesis and survive until the pupal stage. Because the completion of cellularization and other aspects of early development seemed likely to be due to maternally contributed Pnut product, we attempted to generate embryos lacking the maternal contribution in order to explore the roles of Pnut in these processes. We used two methods, the production of germline clones homozygous for a pnut mutation and the rescue of pnut homozygous mutant flies by a pnut+ transgene under control of the hsp70 promoter. Remarkably, the pnut germline-clone females produced eggs, indicating that stem-cell and cystoblast divisions in the female germline do not require Pnut. Moreover, the Pnut-deficient embryos obtained by either method completed early syncytial development and began cellularization of the embryo normally. However, during the later stages of cellularization, the organization of the actin cytoskeleton at the leading edge of the invaginating furrows became progressively more abnormal, and the embryos displayed widespread defects in cell and embryo morphology beginning at gastrulation. Examination of two other septins showed that Sep1 was not detectable at the cellularization front in the Pnut-deficient embryos, whereas Sep2 was still present in normal levels. Thus, it is possible that Sep2 (perhaps in conjunction with other septins such as Sep4 and Sep5) fulfills an essential septin role during the organization and initial ingression of the cellularization furrow even in the absence of Pnut and Sep1. Together, the results suggest that some cell-division events in Drosophila do not require septin function, that there is functional differentiation among the Drosophila septins, or both. PMID:10982405
Changes in Acetyl CoA Levels during the Early Embryonic Development of Xenopus laevis
Tsuchiya, Yugo; Pham, Uyen; Hu, Wanzhou; Ohnuma, Shin-ichi; Gout, Ivan
2014-01-01
Coenzyme A (CoA) is a ubiquitous and fundamental intracellular cofactor. CoA acts as a carrier of metabolically important carboxylic acids in the form of CoA thioesters and is an obligatory component of a multitude of catabolic and anabolic reactions. Acetyl CoA is a CoA thioester derived from catabolism of all major carbon fuels. This metabolite is at a metabolic crossroads, either being further metabolised as an energy source or used as a building block for biosynthesis of lipids and cholesterol. In addition, acetyl CoA serves as the acetyl donor in protein acetylation reactions, linking metabolism to protein post-translational modifications. Recent studies in yeast and cultured mammalian cells have suggested that the intracellular level of acetyl CoA may play a role in the regulation of cell growth, proliferation and apoptosis, by affecting protein acetylation reactions. Yet, how the levels of this metabolite change in vivo during the development of a vertebrate is not known. We measured levels of acetyl CoA, free CoA and total short chain CoA esters during the early embryonic development of Xenopus laevis using HPLC. Acetyl CoA and total short chain CoA esters start to increase around midblastula transition (MBT) and continue to increase through stages of gastrulation, neurulation and early organogenesis. Pre-MBT embryos contain more free CoA relative to acetyl CoA but there is a shift in the ratio of acetyl CoA to CoA after MBT, suggesting a metabolic transition that results in net accumulation of acetyl CoA. At the whole-embryo level, there is an apparent correlation between the levels of acetyl CoA and levels of acetylation of a number of proteins including histones H3 and H2B. This suggests the level of acetyl CoA may be a factor, which determines the degree of acetylation of these proteins, hence may play a role in the regulation of embryogenesis. PMID:24831956
Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo
Timme-Laragy, Alicia R.; Goldstone, Jared V.; Imhoff, Barry R.; Stegeman, John J.; Hahn, Mark E.; Hansen, Jason M.
2013-01-01
Embryonic development involves dramatic changes in cell proliferation and differentiation that must be highly coordinated and tightly regulated. Cellular redox balance is critical for cell fate decisions, but it is susceptible to disruption by endogenous and exogenous sources of oxidative stress. The most abundant endogenous non-protein antioxidant defense molecule is the tri-peptide glutathione (γ-glutamyl-cysteinylglycine, GSH), but the ontogeny of GSH concentration and redox state during early life stages is poorly understood. Here, we describe the GSH redox dynamics during embryonic and early larval development (0–5 days post-fertilization) in the zebrafish (Danio rerio), a model vertebrate embryo. We measured reduced and oxidized glutathione (GSH, GSSG) using HPLC, and calculated the whole embryo total glutathione (GSHT) concentrations and redox potentials (Eh) over 0–120 hours of zebrafish development (including mature oocytes, fertilization, mid-blastula transition, gastrulation, somitogenesis, pharyngula, pre-hatch embryos, and hatched eleutheroembryos). GSHT concentration doubled between 12 hours post fertilization (hpf) and hatching. The GSH Eh increased, becoming more oxidizing during the first 12 h, and then oscillated around −190 mV through organogenesis, followed by a rapid change, associated with hatching, to a more negative (more reducing) Eh (−220 mV). After hatching, Eh stabilized and remained steady through 120 hpf. The dynamic changes in GSH redox status and concentration defined discrete windows of development: primary organogenesis, organ differentiation, and larval growth. We identified the set of zebrafish genes involved in the synthesis, utilization, and recycling of GSH, including several novel paralogs, and measured how expression of these genes changes during development. Ontogenic changes in the expression of GSH-related genes support the hypothesis that GSH redox state is tightly regulated early in development. This study provides a foundation for understanding the redox regulation of developmental signaling and investigating the effects of oxidative stress during embryogenesis. PMID:23770340
Belting, H G; Hauptmann, G; Meyer, D; Abdelilah-Seyfried, S; Chitnis, A; Eschbach, C; Söll, I; Thisse, C; Thisse, B; Artinger, K B; Lunde, K; Driever, W
2001-11-01
The vertebrate midbrain-hindbrain boundary (MHB) organizes patterning and neuronal differentiation in the midbrain and anterior hindbrain. Formation of this organizing center involves multiple steps, including positioning of the MHB within the neural plate, establishment of the organizer and maintenance of its regional identity and signaling activities. Juxtaposition of the Otx2 and Gbx2 expression domains positions the MHB. How the positional information is translated into activation of Pax2, Wnt1 and Fgf8 expression during MHB establishment remains unclear. In zebrafish spiel ohne grenzen (spg) mutants, the MHB is not established, neither isthmus nor cerebellum form, the midbrain is reduced in size and patterning abnormalities develop within the hindbrain. In spg mutants, despite apparently normal expression of otx2, gbx1 and fgf8 during late gastrula stages, the initial expression of pax2.1, wnt1 and eng2, as well as later expression of fgf8 in the MHB primordium are reduced. We show that spg mutants have lesions in pou2, which encodes a POU-domain transcription factor. Maternal pou2 transcripts are distributed evenly in the blastula, and zygotic expression domains include the midbrain and hindbrain primordia during late gastrulation. Microinjection of pou2 mRNA can rescue pax2.1 and wnt1 expression in the MHB of spg/pou2 mutants without inducing ectopic expression. This indicates an essential but permissive role for pou2 during MHB establishment. pou2 is expressed normally in noi/pax2.1 and ace/fgf8 zebrafish mutants, which also form no MHB. Thus, expression of pou2 does not depend on fgf8 and pax2.1. Our data suggest that pou2 is required for the establishment of the normal expression domains of wnt1 and pax2.1 in the MHB primordium.
Weidinger, G; Wolke, U; Köprunner, M; Klinger, M; Raz, E
1999-12-01
In many organisms, the primordial germ cells have to migrate from the position where they are specified towards the developing gonad where they generate gametes. Extensive studies of the migration of primordial germ cells in Drosophila, mouse, chick and Xenopus have identified somatic tissues important for this process and demonstrated a role for specific molecules in directing the cells towards their target. In zebrafish, a unique situation is found in that the primordial germ cells, as marked by expression of vasa mRNA, are specified in random positions relative to the future embryonic axis. Hence, the migrating cells have to navigate towards their destination from various starting positions that differ among individual embryos. Here, we present a detailed description of the migration of the primordial germ cells during the first 24 hours of wild-type zebrafish embryonic development. We define six distinct steps of migration bringing the primordial germ cells from their random positions before gastrulation to form two cell clusters on either side of the midline by the end of the first day of development. To obtain information on the origin of the positional cues provided to the germ cells by somatic tissues during their migration, we analyzed the migration pattern in mutants, including spadetail, swirl, chordino, floating head, cloche, knypek and no isthmus. In mutants with defects in axial structures, paraxial mesoderm or dorsoventral patterning, we find that certain steps of the migration process are specifically affected. We show that the paraxial mesoderm is important for providing proper anteroposterior information to the migrating primordial germ cells and that these cells can respond to changes in the global dorsoventral coordinates. In certain mutants, we observe accumulation of ectopic cells in different regions of the embryo. These ectopic cells can retain both morphological and molecular characteristics of primordial germ cells, suggesting that, in zebrafish at the early stages tested, the vasa-expressing cells are committed to the germ cell lineage.
Cytoskeletal actin genes function downstream of HNF-3beta in ascidian notochord development.
Jeffery, W R; Ewing, N; Machula, J; Olsen, C L; Swalla, B J
1998-11-01
We have examined the expression and regulation of cytoskeletal actin genes in ascidians with tailed (Molgula oculata) and tailless larvae (Molgula occulta). Four cDNA clones were isolated representing two pairs of orthologous cytoskeletal actin genes (CA1 and CA2), which encode proteins differing by five amino acids in the tailed and tailless species. The CA1 and CA2 genes are present in one or two copies, although several related genes may also be present in both species. Maternal CA1 and CA2 mRNA is present in small oocytes but transcript levels later decline, suggesting a role in early oogenesis. In the tailed species, embryonic CA1 and CA2 mRNAs first appear in the presumptive mesenchyme and muscle cells during gastrulation, subsequently accumulate in the presumptive notochord cells, and can be detected in these tissues through the tadpole stage. CA1 mRNAs accumulate initially in the same tissues in the tailless species but subsequently disappear, in concert with the arrest of notochord and tail development. In contrast, CA2 mRNAs were not detected in embryos of the tailless species. Fertilization of eggs of the tailless species with sperm of the tailed species, which restores the notochord and the tail, also results in the upregulation of CA1 and CA2 gene expression in hybrid embryos. Antisense oligodeoxynucleotide experiments suggest that CA1 and CA2 expression in the notochord, but not in the muscle cells, is dependent on prior expression of Mocc FHI, an ascidian HNF-3beta-like gene. The expression of the CA1 and CA2 genes in the notochord in the tailed species, downregulation in the tailless species, upregulation in interspecific hybrids, and dependence on HNF-3beta activity is consistent with a role of these genes in development of the ascidian notochord.
Gong, Baolan; Yue, Yan; Wang, Renxiao; Zhang, Yi; Jin, Quanfang; Zhou, Xi
2017-06-01
The epithelial-mesenchymal transition is the key process driving cancer metastasis. MicroRNA-194 inhibits epithelial-mesenchymal transition in several cancers and its downregulation indicates a poor prognosis in human endometrial carcinoma. Self-renewal factor Sox3 induces epithelial-mesenchymal transition at gastrulation and is also involved epithelial-mesenchymal transition in several cancers. We intended to determine the roles of Sox3 in inducing epithelial-mesenchymal transition in endometrial cancer stem cells and the possible role of microRNA-194 in controlling Sox3 expression. Firstly, we found that Sox3 and microRNA-194 expressions were associated with the status of endometrial cancer stem cells in a panel of endometrial carcinoma tissue, the CD133+ cell was higher in tumorsphere than in differentiated cells, and overexpression of microRNA-194 would decrease CD133+ cell expression. Silencing of Sox3 in endometrial cancer stem cell upregulated the epithelial marker E-cadherin, downregulated the mesenchymal marker vimentin, and significantly reduced cell invasion in vitro; overexpression of Sox3 reversed these phenotypes. Furthermore, we discovered that the expression of Sox3 was suppressed by microRNA-194 through direct binding to the Sox3 3'-untranslated region. Ectopic expression of microRNA-194 in endometrial cancer stem cells induced a mesenchymal-epithelial transition by restoring E-cadherin expression, decreasing vimentin expression, and inhibiting cell invasion in vitro. Moreover, overexpression of microRNA-194 inhibited endometrial cancer stem cell invasion or metastasis in vivo by injection of adenovirus microRNA-194. These findings demonstrate the novel mechanism by which Sox3 contributes to endometrial cancer stem cell invasion and suggest that repression of Sox3 by microRNA-194 may have therapeutic potential to suppress endometrial carcinoma metastasis. The cancer stem cell marker, CD133, might be the surface marker of endometrial cancer stem cell.
Vellutini, Bruno C.; Migotto, Alvaro E.
2010-01-01
Sea biscuits and sand dollars diverged from other irregular echinoids approximately 55 million years ago and rapidly dispersed to oceans worldwide. A series of morphological changes were associated with the occupation of sand beds such as flattening of the body, shortening of primary spines, multiplication of podia, and retention of the lantern of Aristotle into adulthood. To investigate the developmental basis of such morphological changes we documented the ontogeny of Clypeaster subdepressus. We obtained gametes from adult specimens by KCl injection and raised the embryos at 26C. Ciliated blastulae hatched 7.5 h after sperm entry. During gastrulation the archenteron elongated continuously while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larvae began to feed in 3 d and were 20 d old at metamorphosis; starved larvae died 17 d after fertilization. Postlarval juveniles had neither mouth nor anus nor plates on the aboral side, except for the remnants of larval spicules, but their bilateral symmetry became evident after the resorption of larval tissues. Ossicles of the lantern were present and organized in 5 groups. Each group had 1 tooth, 2 demipyramids, and 2 epiphyses with a rotula in between. Early appendages consisted of 15 spines, 15 podia (2 types), and 5 sphaeridia. Podial types were distributed in accordance to Lovén's rule and the first podium of each ambulacrum was not encircled by the skeleton. Seven days after metamorphosis juveniles began to feed by rasping sand grains with the lantern. Juveniles survived in laboratory cultures for 9 months and died with wide, a single open sphaeridium per ambulacrum, aboral anus, and no differentiated food grooves or petaloids. Tracking the morphogenesis of early juveniles is a necessary step to elucidate the developmental mechanisms of echinoid growth and important groundwork to clarify homologies between irregular urchins. PMID:20339592
Biedler, James K; Hu, Wanqi; Tae, Hongseok; Tu, Zhijian
2012-01-01
During early embryogenesis the zygotic genome is transcriptionally silent and all mRNAs present are of maternal origin. The maternal-zygotic transition marks the time over which embryogenesis changes its dependence from maternal RNAs to zygotically transcribed RNAs. Here we present the first systematic investigation of early zygotic genes (EZGs) in a mosquito species and focus on genes involved in the onset of transcription during 2-4 hr. We used transcriptome sequencing to identify the "pure" (without maternal expression) EZGs by analyzing transcripts from four embryonic time ranges of 0-2, 2-4, 4-8, and 8-12 hr, which includes the time of cellular blastoderm formation and up to the start of gastrulation. Blast of 16,789 annotated transcripts vs. the transcriptome reads revealed evidence for 63 (P<0.001) and 143 (P<0.05) nonmaternally derived transcripts having a significant increase in expression at 2-4 hr. One third of the 63 EZG transcripts do not have predicted introns compared to 10% of all Ae. aegypti genes. We have confirmed by RT-PCR that zygotic transcription starts as early as 2-3 hours. A degenerate motif VBRGGTA was found to be overrepresented in the upstream sequences of the identified EZGs using a motif identification software called SCOPE. We find evidence for homology between this motif and the TAGteam motif found in Drosophila that has been implicated in EZG activation. A 38 bp sequence in the proximal upstream sequence of a kinesin light chain EZG (KLC2.1) contains two copies of the mosquito motif. This sequence was shown to support EZG transcription by luciferase reporter assays performed on injected early embryos, and confers early zygotic activity to a heterologous promoter from a divergent mosquito species. The results of these studies are consistent with the model of early zygotic genome activation via transcriptional activators, similar to what has been found recently in Drosophila.
Piacentino, Michael L; Chung, Oliver; Ramachandran, Janani; Zuch, Daniel T; Yu, Jia; Conaway, Evan A; Reyna, Arlene E; Bradham, Cynthia A
2016-04-01
Skeletal patterning in the sea urchin embryo requires coordinated signaling between the pattern-dictating ectoderm and the skeletogenic primary mesenchyme cells (PMCs); recent studies have begun to uncover the molecular basis for this process. Using an unbiased RNA-Seq-based screen, we have previously identified the TGF-ß superfamily ligand, LvBMP5-8, as a skeletal patterning gene in Lytechinus variegatus embryos. This result is surprising, since both BMP5-8 and BMP2/4 ligands have been implicated in sea urchin dorsal-ventral (DV) and left-right (LR) axis specification. Here, we demonstrate that zygotic LvBMP5-8 is required for normal skeletal patterning on the left side, as well as for normal PMC positioning during gastrulation. Zygotic LvBMP5-8 is required for expression of the left-side marker soxE, suggesting that LvBMP5-8 is required for left-side specification. Interestingly, we also find that LvBMP5-8 knockdown suppresses serotonergic neurogenesis on the left side. While LvBMP5-8 overexpression is sufficient to dorsalize embryos, we find that zygotic LvBMP5-8 is not required for normal DV specification or development. In addition, ectopic LvBMP5-8 does not dorsalize LvBMP2/4 morphant embryos, indicating that, in the absence of BMP2/4, BMP5-8 is insufficient to specify dorsal. Taken together, our data demonstrate that zygotic LvBMP5-8 signaling is essential for left-side specification, and for normal left-side skeletal and neural patterning, but not for DV specification. Thus, while both BMP2/4 and BMP5-8 regulate LR axis specification, BMP2/4 but not zygotic BMP5-8 regulates DV axis specification in sea urchin embryos. Copyright © 2016 Elsevier Inc. All rights reserved.
Secisbp2 Is Essential for Embryonic Development and Enhances Selenoprotein Expression
Seeher, Sandra; Atassi, Tarik; Mahdi, Yassin; Carlson, Bradley A.; Braun, Doreen; Wirth, Eva K.; Klein, Marc O.; Reix, Nathalie; Miniard, Angela C.; Schomburg, Lutz; Hatfield, Dolph L.; Driscoll, Donna M.
2014-01-01
Abstract Aims: The selenocysteine insertion sequence (SECIS)-binding protein 2 (Secisbp2) binds to SECIS elements located in the 3′-untranslated region of eukaryotic selenoprotein mRNAs. Selenoproteins contain the rare amino acid selenocysteine (Sec). Mutations in SECISBP2 in humans lead to reduced selenoprotein expression thereby affecting thyroid hormone-dependent growth and differentiation processes. The most severe cases also display myopathy, hearing impairment, male infertility, increased photosensitivity, mental retardation, and ataxia. Mouse models are needed to understand selenoprotein-dependent processes underlying the patients' pleiotropic phenotypes. Results: Unlike tRNA[Ser]Sec-deficient embryos, homozygous Secisbp2-deleted embryos implant, but fail before gastrulation. Heterozygous inactivation of Secisbp2 reduced the amount of selenoprotein expressed, but did not affect the thyroid hormone axis or growth. Conditional deletion of Secisbp2 in hepatocytes significantly decreased selenoprotein expression. Unexpectedly, the loss of Secisbp2 reduced the abundance of many, but not all, selenoprotein mRNAs. Transcript-specific and gender-selective effects on selenoprotein mRNA abundance were greater in Secisbp2-deficient hepatocytes than in tRNA[Ser]Sec-deficient cells. Despite the massive reduction of Dio1 and Sepp1 mRNAs, significantly more corresponding protein was detected in primary hepatocytes lacking Secisbp2 than in cells lacking tRNA[Ser]Sec. Regarding selenoprotein expression, compensatory nuclear factor, erythroid-derived, like 2 (Nrf2)-dependent gene expression, or embryonic development, phenotypes were always milder in Secisbp2-deficient than in tRNA[Ser]Sec-deficient mice. Innovation: We report the first Secisbp2 mutant mouse models. The conditional mutants provide a model for analyzing Secisbp2 function in organs not accessible in patients. Conclusion: In hepatocyte-specific conditional mouse models, Secisbp2 gene inactivation is less detrimental than tRNA[Ser]Sec inactivation. A role of Secisbp2 in stabilizing selenoprotein mRNAs in vivo was uncovered. Antioxid. Redox Signal. 21, 835–849. PMID:24274065
Woda, Juliana M; Calzonetti, Teresa; Hilditch-Maguire, Paige; Duyao, Mabel P; Conlon, Ronald A; MacDonald, Marcy E
2005-01-01
Background Huntingtin, the HD gene encoded protein mutated by polyglutamine expansion in Huntington's disease, is required in extraembryonic tissues for proper gastrulation, implicating its activities in nutrition or patterning of the developing embryo. To test these possibilities, we have used whole mount in situ hybridization to examine embryonic patterning and morphogenesis in homozygous Hdhex4/5 huntingtin deficient embryos. Results In the absence of huntingtin, expression of nutritive genes appears normal but E7.0–7.5 embryos exhibit a unique combination of patterning defects. Notable are a shortened primitive streak, absence of a proper node and diminished production of anterior streak derivatives. Reduced Wnt3a, Tbx6 and Dll1 expression signify decreased paraxial mesoderm and reduced Otx2 expression and lack of headfolds denote a failure of head development. In addition, genes initially broadly expressed are not properly restricted to the posterior, as evidenced by the ectopic expression of Nodal, Fgf8 and Gsc in the epiblast and T (Brachyury) and Evx1 in proximal mesoderm derivatives. Despite impaired posterior restriction and anterior streak deficits, overall anterior/posterior polarity is established. A single primitive streak forms and marker expression shows that the anterior epiblast and anterior visceral endoderm (AVE) are specified. Conclusion Huntingtin is essential in the early patterning of the embryo for formation of the anterior region of the primitive streak, and for down-regulation of a subset of dynamic growth and transcription factor genes. These findings provide fundamental starting points for identifying the novel cellular and molecular activities of huntingtin in the extraembryonic tissues that govern normal anterior streak development. This knowledge may prove to be important for understanding the mechanism by which the dominant polyglutamine expansion in huntingtin determines the loss of neurons in Huntington's disease. PMID:16109169
Billington, Charles J.; Schmidt, Brian; Marcucio, Ralph S.; Hallgrimsson, Benedikt; Gopalakrishnan, Rajaram; Petryk, Anna
2015-01-01
Holoprosencephaly (HPE) is a developmental anomaly characterized by inadequate or absent midline division of the embryonic forebrain and midline facial defects. It is believed that interactions between genes and the environment play a role in the widely variable penetrance and expressivity of HPE, although direct investigation of such effects has been limited. The goal of this study was to examine whether mice carrying a mutation in a gene encoding the bone morphogenetic protein (BMP) antagonist twisted gastrulation (Twsg1), which is associated with a low penetrance of HPE, are sensitized to retinoic acid (RA) teratogenesis. Pregnant Twsg1+/− dams were treated by gavage with a low dose of all-trans RA (3.75 mg/kg of body weight). Embryos were analyzed between embryonic day (E)9.5 and E11.5 by microscopy and geometric morphometric analysis by micro-computed tomography. P19 embryonal carcinoma cells were used to examine potential mechanisms mediating the combined effects of increased BMP and retinoid signaling. Although only 7% of wild-type embryos exposed to RA showed overt HPE or neural tube defects (NTDs), 100% of Twsg1−/− mutants exposed to RA manifested severe HPE compared to 17% without RA. Remarkably, up to 30% of Twsg1+/− mutants also showed HPE (23%) or NTDs (7%). The majority of shape variation among Twsg1+/− mutants was associated with narrowing of the midface. In P19 cells, RA induced the expression of Bmp2, acted in concert with BMP2 to increase p53 expression, caspase activation and oxidative stress. This study provides direct evidence for modifying effects of the environment in a genetic mouse model carrying a predisposing mutation for HPE in the Twsg1 gene. Further study of the mechanisms underlying these gene-environment interactions in vivo will contribute to better understanding of the pathogenesis of birth defects and present an opportunity to explore potential preventive interventions. PMID:25468951
Hale, Michael A; Swift, Galvin H; Hoang, Chinh Q; Deering, Tye G; Masui, Toshi; Lee, Youn-Kyoung; Xue, Jumin; MacDonald, Raymond J
2014-08-01
The orphan nuclear receptor NR5A2 is necessary for the stem-like properties of the epiblast of the pre-gastrulation embryo and for cellular and physiological homeostasis of endoderm-derived organs postnatally. Using conditional gene inactivation, we show that Nr5a2 also plays crucial regulatory roles during organogenesis. During the formation of the pancreas, Nr5a2 is necessary for the expansion of the nascent pancreatic epithelium, for the subsequent formation of the multipotent progenitor cell (MPC) population that gives rise to pre-acinar cells and bipotent cells with ductal and islet endocrine potential, and for the formation and differentiation of acinar cells. At birth, the NR5A2-deficient pancreas has defects in all three epithelial tissues: a partial loss of endocrine cells, a disrupted ductal tree and a >90% deficit of acini. The acinar defects are due to a combination of fewer MPCs, deficient allocation of those MPCs to pre-acinar fate, disruption of acinar morphogenesis and incomplete acinar cell differentiation. NR5A2 controls these developmental processes directly as well as through regulatory interactions with other pancreatic transcriptional regulators, including PTF1A, MYC, GATA4, FOXA2, RBPJL and MIST1 (BHLHA15). In particular, Nr5a2 and Ptf1a establish mutually reinforcing regulatory interactions and collaborate to control developmentally regulated pancreatic genes by binding to shared transcriptional regulatory regions. At the final stage of acinar cell development, the absence of NR5A2 affects the expression of Ptf1a and its acinar specific partner Rbpjl, so that the few acinar cells that form do not complete differentiation. Nr5a2 controls several temporally distinct stages of pancreatic development that involve regulatory mechanisms relevant to pancreatic oncogenesis and the maintenance of the exocrine phenotype. © 2014. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Yamada, Atsuko; Martindale, Mark Q.
2002-01-01
Ctenophores are thoroughly modern animals whose ancestors are derived from a separate evolutionary branch than that of other eumetazoans. Their major longitudinal body axis is the oral-aboral axis. An apical sense organ, called the apical organ, is located at the aboral pole and contains a highly innervated statocyst and photodetecting cells. The apical organ integrates sensory information and controls the locomotory apparatus of ctenophores, the eight longitudinal rows of ctene/comb plates. In an effort to understand the developmental and evolutionary organization of axial properties of ctenophores we have isolated a forkhead gene from the Brain Factor 1 (BF-1) family. This gene, ctenoBF-1, is the first full-length nuclear gene reported from ctenophores. This makes ctenophores the most basal metazoan (to date) known to express definitive forkhead class transcription factors. Orthologs of BF-1 in vertebrates, Drosophila, and Caenorhabditis elegans are expressed in anterior neural structures. Surprisingly, in situ hybridizations with ctenoBF-1 antisense riboprobes show that this gene is not expressed in the apical organ of ctenophores. CtenoBF-1 is expressed prior to first cleavage. Transcripts become localized to the aboral pole by the 8-cell stage and are inherited by ectodermal micromeres generated from this region at the 16- and 32-cell stages. Expression in subsets of these cells persists and is seen around the edge of the blastopore (presumptive mouth) and in distinct ectodermal regions along the tentacular poles. Following gastrulation, stomodeal expression begins to fade and intense staining becomes restricted to two distinct domains in each tentacular feeding apparatus. We suggest that the apical organ is not homologous to the brain of bilaterians but that the oral pole of ctenophores corresponds to the anterior pole of bilaterian animals.
NASA Technical Reports Server (NTRS)
Reinsch, Sigrid; Conway, Gregory; Dalton, Bonnie P. (Technical Monitor)
2002-01-01
In a differential RNA display screen we have isolated a zebrafish gene, G12, for which homologs can only be found in DNA databases for vertebrates, but not invertebrates. This suggests that this is a gene required specifically in vertebrates. G12 expression is upregulated at mid-blastula transition (MBT). Morpholino inactivation of this gene by injection into 1-cell embryos results in mitotic defects and apoptosis shortly after MBT. Nuclei in morpholino treated embryos also display segregation defects. We have characterized the localization of this gene as a GFP fusion in live and fixed embryos. Overexpression of G12-GFP is non-toxic. Animals retain GFP expression for at least 7 days with no developmental defects, Interestingly in these animals G12-GFP is never detectable in blood cells though blood is present. In the deep cells of early embryos, G 12GFP is localized to nuclei and cytoskeletal elements in interphase and to the centrosome and spindle apparatus during mitosis. In the EVL, G12-GFP shows additional localization to the cell periphery, especially in mitosis. In the yolk syncytium, G12-GFP again localizes to nuclei and strongly to cytoplasmic microtubules of migrating nuclei at the YSL margin. Morpholinc, injection specifically into the YSL after cellularization blocks epiboly and nuclei of the YSL show mitotic defects while deep cells show no mitotic defects and continue to divide. Rescue experiments in which morpholino and G12-GFP RNA are co-injected indicate partial rescue by the G12-GFP. The rescue is cell autonomous; that is, regions of the embryo with higher G12-GFP expression show fewer mitotic defects. Spot 14, the human bomolog of G12, has been shown to be amplified in aggressive breast tumors. This finding, along with our functional and morphological data suggest that G12 and spot 14 are vertebrate-specific and may function either as mitotic checkpoints or as structural components of the spindle apparatus.
Baillie-Johnson, Peter; van den Brink, Susanne Carina; Balayo, Tina; Turner, David Andrew; Martinez Arias, Alfonso
2015-11-24
We have developed a protocol improving current Embryoid Body (EB) culture which allows the study of self-organization, symmetry breaking, axial elongation and cell fate specification using aggregates of mouse embryonic stem cells (mESCs) in suspension culture. Small numbers of mESCs are aggregated in basal medium for 48 hr in non-tissue-culture-treated, U-bottomed 96-well plates, after which they are competent to respond to experimental signals. Following treatment, these aggregates begin to show signs of polarized gene expression and gradually alter their morphology from a spherical mass of cells to an elongated, well organized structure in the absence of external asymmetry cues. These structures are not only able to display markers of the three germ layers, but actively display gastrulation-like movements, evidenced by a directional dislodgement of individual cells from the aggregate, which crucially occurs at one region of the elongated structure. This protocol provides a detailed method for the reproducible formation of these aggregates, their stimulation with signals such as Wnt/β-Catenin activation and BMP inhibition and their analysis by single time-point or time-lapse fluorescent microscopy. In addition, we describe modifications to current whole-mount mouse embryo staining procedures for immunocytochemical analysis of specific markers within fixed aggregates. The changes in morphology, gene expression and length of the aggregates can be quantitatively measured, providing information on how signals can alter axial fates. It is envisaged that this system can be applied both to the study of early developmental events such as axial development and organization, and more broadly, the processes of self-organization and cellular decision-making. It may also provide a suitable niche for the generation of cell types present in the embryo that are unobtainable from conventional adherent culture such as spinal cord and motor neurones.
A Genomic View of the Sea Urchin Nervous System
Burke, RD; Angerer, LM; Elphick, MR; Humphrey, GW; Yaguchi, S; Kiyama, T; Liang, S; Mu, X; Agca, C; Klein, WH; Brandhorst, BP; Rowe, M; Wilson, K; Churcher, AM; Taylor, JS; Chen, N; Murray, G; Wang, D; Mellott, D; Olinski, R; Hallböök, F; Thorndyke, MC
2007-01-01
The sequencing of the Strongylocentrotus purpuratus genome provides a unique opportunity to investigate the function and evolution of neural genes. The neurobiology of sea urchins is of particular interest because they have a close phylogenetic relationship with chordates, yet a distinctive pentaradiate body plan and unusual neural organization. Orthologues of transcription factors that regulate neurogenesis in other animals have been identified and several are expressed in neurogenic domains before gastrulation indicating that they may operate near the top of a conserved neural gene regulatory network. A family of genes encoding voltage-gated ion channels is present but, surprisingly, genes encoding gap junction proteins (connexins and pannexins) appear to be absent. Genes required for synapse formation and function have been identified and genes for synthesis and transport of neurotransmitters are present. There is a large family of G-protein-coupled receptors, including 874 rhodopsin-type receptors, 28 metabotropic glutamate-like receptors and a remarkably expanded group of 161 secretin receptor-like proteins. Absence of cannabinoid, lysophospholipid and melanocortin receptors indicates that this group may be unique to chordates. There are at least 37 putative G-protein coupled peptide receptors and precursors for several neuropeptides and peptide hormones have been identified, including SALMFamides, NGFFFamide, a vasotocin-like peptide, glycoprotein hormones, and insulin/insulin-like growth factors. Identification of a neurotrophin-like gene and Trk receptor in sea urchin indicates that this neural signaling system is not unique to chordates. Several hundred chemoreceptor genes have been predicted using several approaches, a number similar to that for other animals. Intriguingly, genes encoding homologues of rhodopsin, Pax6 and several other key mammalian retinal transcription factors are expressed in tube feet, suggesting tube feet function as photosensory organs. Analysis of the sea urchin genome presents a unique perspective on the evolutionary history of deuterostome nervous systems and reveals new approaches to investigate the development and neurobiology of sea urchins. PMID:16965768
Mueller, Casey A; Doyle, Liam; Eme, John; Manzon, Richard G; Somers, Christopher M; Boreham, Douglas R; Wilson, Joanna Y
2017-01-01
Lipids serve as energy sources, structural components, and signaling molecules during fish embryonic development, and utilization of lipids may vary with temperature. Embryonic energy utilization under different temperatures is an important area of research in light of the changing global climate. Therefore, we examined percent lipid content and fatty acid profiles of lake whitefish (Coregonus clupeaformis) throughout embryonic development at three incubation temperatures. We sampled fertilized eggs and embryos at gastrulation, eyed and fin flutter stages following chronic incubation at temperatures of 1.8, 4.9 and 8.0°C. Hatchlings were also sampled following incubation at temperatures of 3.3, 4.9 and 8.0°C. Fertilized eggs had an initial high percentage of dry mass composed of lipid (percent lipid content; ~29%) consisting of ~20% saturated fatty acids (SFA), ~32% monounsaturated fatty acids (MUFA), ~44% polyunsaturated fatty acids (PUFA), and 4% unidentified. The most abundant fatty acids were 16:0, 16:1, 18:1(n-9c), 20:4(n-6), 20:5(n-3) and 22:6(n-3). This lipid profile matches that of other cold-water fish species. Percent lipid content increased during embryonic development, suggesting protein or other yolk components were preferentially used for energy. Total percentage of MUFA decreased during development, which indicated MUFA were the primary lipid catabolized for energy during embryonic development. Total percentage of PUFA increased during development, driven largely by an increase in 22:6(n-3). Temperature did not influence percent lipid content or percent MUFA at any development stage, and had inconsistent effects on percent SFA and percent PUFA during development. Thus, lake whitefish embryos appear to be highly adapted to low temperatures, and do not alter lipids in response to temperature within their natural incubation conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Wnt5 is required for notochord cell intercalation in the ascidian Halocynthia roretzi.
Niwano, Tomoko; Takatori, Naohito; Kumano, Gaku; Nishida, Hiroki
2009-08-25
In the embryos of various animals, the body elongates after gastrulation by morphogenetic movements involving convergent extension. The Wnt/PCP (planar cell polarity) pathway plays roles in this process, particularly mediolateral polarization and intercalation of the embryonic cells. In ascidians, several factors in this pathway, including Wnt5, have been identified and found to be involved in the intercalation process of notochord cells. In the present study, the role of the Wnt5 genes, Hr-Wnt5alpha (Halocynthia roretzi Wnt5alpha) and Hr-Wnt5beta, in convergent extension was investigated in the ascidian H. roretzi by injecting antisense oligonucleotides and mRNAs into single precursor blastomeres of various tissues, including notochord, at the 64-cell stage. Hr-Wnt5alpha is expressed in developing notochord and was essential for notochord morphogenesis. Precise quantitative control of its expression level was crucial for proper cell intercalation. Overexpression of Wnt5 proteins in notochord and other tissues that surround the notochord indicated that Wnt5alpha plays a role within the notochord, and is unlikely to be the source of polarizing cues arising outside the notochord. Detailed mosaic analysis of the behaviour of individual notochord cells overexpressing Wnt5alpha indicated that a Wnt5alpha-manipulated cell does not affect the behaviour of neighbouring notochord cells, suggesting that Wnt5alpha works in a cell-autonomous manner. This is further supported by comparison of the results of Wnt5alpha and Dsh (Dishevelled) knockdown experiments. In addition, our results suggest that the Wnt/PCP pathway is also involved in mediolateral intercalation of cells of the ventral row of the nerve cord (floor plate) and the endodermal strand. The present study highlights the role of the Wnt5alpha signal in notochord convergent extension movements in ascidian embryos. Our results raise the novel possibility that Wnt5alpha functions in a cell-autonomous manner in activation of the Wnt/PCP pathway to polarize the protrusive activity that drives convergent extension.
Takeda, M; Saito, Y; Sekine, R; Onitsuka, I; Maeda, R; Maéno, M
2000-06-01
We demonstrated previously that Xmsx-1 is involved in mesoderm patterning along the dorso-ventral axis, under the regulation of BMP-4 signaling. When Xmsx-1 RNA was injected into the dorsal blastomeres, a mass of muscle tissue formed instead of notochord. This activity was similar to that of Xwnt-8 reported previously. In this study, we investigated whether the activity of Xmsx-1 is related to the ventralizing signal and myogenesis promoting factor, Xwnt-8. Whole-mount in situ hybridization showed that Xmsx-1, Xwnt-8, and XmyoD were expressed in overlapping areas, including the ventro-lateral marginal zone at mid-gastrula stage. The expression of XmyoD was induced by the ectopic expression of either Xmsx-1 or Xwnt-8 in dorsal blastomeres, and Xwnt-8 was induced by the ectopic expression of Xmsx-1. On the other hand, the expression of Xmsx-1 was not affected by the loading of pCSKA-Xwnt-8 or dominant-negative Xwnt-8 (DN-Xwnt-8) RNA. In addition, Xmsx-1 RNA did not abrogate the formation of notochord if coinjected with DN-Xwnt-8 RNA. These results suggest that Xmsx-1 functions upstream of the Xwnt-8 signal. Furthermore, the antagonistic function of Xmsx-1 to the expression of organizer genes, such as Xlim-1 and goosecoid, was shown by in situ hybridization analysis and luciferase reporter assay using the goosecoid promoter construct. Finally if Xmsx-1/VP-16 fusion RNA, which was expected to function as a dominant-negative Xmsx-1, was injected into ventral blastomeres, a partial secondary axis formed in a significant number of embryos. In such embryos, the activity of luciferase, under the control of goosecoid promoter sequence, was significantly elevated at gastrula stage. These results led us to conclude that Xmsx-1 plays a central role in establishing dorso-ventral axis in gastrulating embryo, by suppressing the expression of organizer genes.
2014-01-01
Background LIM domain binding protein 1 (LDB1) is a transcriptional co-factor, which interacts with multiple transcription factors and other proteins containing LIM domains. Complete inactivation of Ldb1 in mice resulted in early embryonic lethality with severe patterning defects during gastrulation. Tissue-specific deletions using a conditional knockout allele revealed additional roles of Ldb1 in the development of the central nervous system, hematopoietic system, and limbs. The goal of the current study was to determine the importance of Ldb1 function during craniofacial development in mouse embryos. Results We generated tissue-specific Ldb1 mutants using Wnt1-Cre, which causes deletion of a floxed allele in the neural crest; neural crest-derived cells contribute to most of the mesenchyme of the developing face. All examined Wnt1-Cre;Ldb1 fl/- mutants suffered from cleft secondary palate. Therefore, we performed a series of experiments to investigate how Ldb1 regulated palate development. First, we examined the expression of Ldb1 during normal development, and found that Ldb1 was expressed broadly in the palatal mesenchyme during early stages of palate development. Second, we compared the morphology of the developing palate in control and Ldb1 mutant embryos using sections. We found that the mutant palatal shelves had abnormally blunt appearance, and failed to elevate above the tongue at the posterior domain. An in vitro head culture experiment indicated that the elevation defect was not due to interference by the tongue. Finally, in the Ldb1 mutant palatal shelves, cell proliferation was abnormal in the anterior, and the expression of Wnt5a, Pax9 and Osr2, which regulate palatal shelf elevation, was also altered. Conclusions The function of Ldb1 in the neural crest-derived palatal mesenchyme is essential for normal morphogenesis of the secondary palate. PMID:24433583
Wu, Mary Y.; Ramel, Marie-Christine; Howell, Michael; Hill, Caroline S.
2011-01-01
Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and thus neural crest specification. PMID:21358802
Function of the two Xenopus smad4s in early frog development.
Chang, Chenbei; Brivanlou, Ali H; Harland, Richard M
2006-10-13
Signals from the transforming growth factor beta family members are transmitted in the cell through specific receptor-activated Smads and a common partner Smad4. Two Smad4 genes (alpha and beta/10, or smad4 and smad4.2) have been isolated from Xenopus, and conflicting data are reported for Smad4beta/10 actions in mesodermal and neural induction. To further understand the functions of the Smad4s in early frog development, we analyzed their activities in detail. We report that Smad10 is a mutant form of Smad4beta that harbors a missense mutation of a conserved arginine to histidine in the MH1 domain. The mutation results in enhanced association of Smad10 with the nuclear transcription corepressor Ski and leads to its neural inducing activity through inhibition of bone morphogenetic protein (BMP) signaling. In contrast to Smad10, both Smad4alpha and Smad4beta enhanced BMP signals in ectodermal explants. Using antisense morpholino oligonucleotides (MOs) to knockdown endogenous Smad4 protein levels, we discovered that Smad4beta was required for both activin- and BMP-mediated mesodermal induction in animal caps, whereas Smad4alpha affected only the BMP signals. Neither Smad4 was involved directly in neural induction. Expression of Smad4beta-MO in early frog embryos resulted in reduction of mesodermal markers and defects in axial structures, which were rescued by either Smad4alpha or Smad4beta. Smad4alpha-MO induced only minor deficiency at late stages. As Smad4beta, but not Smad4alpha, is expressed at high levels maternally and during early gastrulation, our data suggest that although Smad4alpha and Smad4beta may have similar activities, they are differentially utilized during frog embryogenesis, with only Smad4beta being essential for mesoderm induction.
Liu, Lin; Ge, Wei
2007-02-01
Growth differentiation factor 9 (GDF9) is a member of the transforming growth factor beta (TGFB) superfamily. As an oocyte-specific growth factor, GDF9 plays critical roles in controlling folliculogenesis in mammals. In the present study, we cloned a 2.1-kb cDNA of the zebrafish GDF9 homolog (Gdf9, gdf9), which shares approximately 60% homology with that of mammals in the mature region. RT-PCR analysis showed that zebrafish gdf9 expression was present only in the gonads and Northern blot analysis revealed a single transcript of about 2.0 kb in the ovary. Real-time RT-PCR analysis revealed that gdf9 expression was highest in primary growth (PG, stage I) follicles and gradually decreased during follicular development, with the lowest level being found in fully grown (FG) follicles. The expression of gdf9 was maintained through fertilization and early embryonic development until gastrulation, at which point the expression level dramatically decreased. Expression was barely detectable after the late gastrula stage. Within the follicle, gdf9 mRNA was localized exclusively in the oocytes, as demonstrated by RT-PCR of denuded oocytes and freshly isolated follicle layers as well as by in situ hybridization. Interestingly, when amplified for high numbers of cycles, the expression of gdf9 was detected in cultured zebrafish follicular cells that were free of oocytes. The expression of gdf9 was downregulated by hCG in both ovarian fragments and isolated follicles in dose- and time-dependent manners, and this inhibition appeared to be stage-dependent, with the strongest inhibition observed for the FG follicles and no effect seen for the PG follicles. This correlates well with the expression profile of the LH receptor (lhcgr) in zebrafish follicles. In conclusion, as an oocyte-derived growth factor, GDF9 is highly conserved across vertebrates. With its biological advantages, zebrafish provides an alternative model for studying gene function and regulation.
Ben, Jin; Jabs, Ethylin Wang; Chong, Samuel S
2005-06-01
Van der Woude syndrome (VWS) and popliteal pterygium syndrome (PPS) are autosomal dominant clefting disorders recently discovered to be caused by mutations in the IRF6 (Interferon Regulatory Factor 6) gene. The IRF gene family consists of nine members encoding transcription factors that share a highly conserved helix-turn-helix DNA-binding domain and a less conserved protein-binding domain. Most IRFs regulate the expression of interferon-alpha and -beta after viral infection, but the function of IRF6 remains unknown. We have isolated a full-length zebrafish irf6 cDNA, which encodes a 492 amino acid protein that contains a Smad-IRF interaction motif and a DNA-binding domain. The zebrafish irf6 gene consists of eight exons and maps to linkage group 22 closest to marker unp1375. By in situ hybridization analysis of embryo whole-mounts and cryosections, we demonstrate that irf6 is first expressed as a maternal transcript. During gastrulation, irf6 expression was concentrated in the forerunner cells. From the bud stage to the 3-somite stage, irf6 expression was observed in the Kupffer's vesicle. No expression could be detected at the 6-somite and 10-somite stages. At the 14-somite stage, expression was detected in the otic placode. At the 17-somite stage, strong expression was also observed in the cloaca. During the pharyngula, hatch and larva periods up to 5 days post-fertilization, irf6 was expressed in the pharyngeal arches, olfactory and otic placodes, and in the epithelial cells of endoderm derived tissues. The latter tissues include the mouth, pharynx, esophagus, endodermal lining of swim bladder, liver, exocrine pancreas, and associated ducts. Overall, the zebrafish expression data are consistent with the observations of lip pits in VWS patients, as well as more recent reports of alae nasi, otitis media and sensorineural hearing loss documented in some patients.
Rho, Ho Kyung; McClay, David R
2011-03-01
Early development requires well-organized temporal and spatial regulation of transcription factors that are assembled into gene regulatory networks (GRNs). In the sea urchin, an endomesoderm GRN model explains much of the specification in the endoderm and mesoderm prior to gastrulation, yet some GRN connections remain incomplete. Here, we characterize FoxN2/3 in the primary mesenchyme cell (PMC) GRN state. Expression of foxN2/3 mRNA begins in micromeres at the hatched blastula stage and then is lost from micromeres at the mesenchyme blastula stage. foxN2/3 expression then shifts to the non-skeletogenic mesoderm and, later, to the endoderm. Here, we show that Pmar1, Ets1 and Tbr are necessary for activation of foxN2/3 in micromeres. The later endomesoderm expression of foxN2/3 is independent of the earlier expression of foxN2/3 in micromeres and is independent of signals from PMCs. FoxN2/3 is necessary for several steps in the formation of the larval skeleton. Early expression of genes for the skeletal matrix is dependent on FoxN2/3, but only until the mesenchyme blastula stage as foxN2/3 mRNA disappears from PMCs at that time and we assume that the protein is not abnormally long-lived. Knockdown of FoxN2/3 inhibits normal PMC ingression and foxN2/3 morphant PMCs do not organize in the blastocoel and fail to join the PMC syncytium. In addition, without FoxN2/3, the PMCs fail to repress the transfating of other mesodermal cells into the skeletogenic lineage. Thus, FoxN2/3 is necessary for normal ingression, for expression of several skeletal matrix genes, for preventing transfating and for fusion of the PMC syncytium.
Ingersoll, E P; Wilt, F H
1998-04-01
The primary mesenchyme cells of the sea urchin embryo construct an elaborate calcareous endoskeletal spicule beginning at gastrulation. This process begins by ingression of prospective primary mesenchyme cells into the blastocoel, after which they migrate and then fuse to form a syncytium. Skeleton deposition occurs in spaces enclosed by the cytoplasmic cables between the cell bodies. Experiments are described which probe the role of proteases in these early events of spicule formation and their role in the continued elaboration of the spicule during later stages of embryogenesis. We find that several inhibitors of metalloproteinases inhibit the continuation of spiculogenesis, an effect first reported by Roe et al. (Exp. Cell Res. 181, 542-550, 1989). A detailed study of one of these inhibitors, BB-94, shows that fusion of primary mesenchyme cells still occurs in the presence of the inhibitor and the formation of the first calcite granule is not impeded. Continued elaboration of the spicule, however, is completely stopped; addition of the inhibitor during the active elongation of the spicule stops further elongation immediately. Removal of the inhibitor allows resumption of spicule growth. The inhibition is accompanied by almost complete cessation of massive Ca ion transport via the primary mesenchyme cells to the spicule. The inhibitor does not prevent the continued synthesis of several spicule matrix proteins. Electron microscopic examination of inhibited primary mesenchyme cells shows an accumulation of characteristic vesicles in the cytoplasm. Gel zymography demonstrates that although most proteases in homogenates of primary mesenchyme cells are not sensitive to the inhibitor in vitro, a protease of low abundance detectable in the medium of cultured primary mesenchyme cells is inhibited by BB-94. We propose that the inhibitor is interfering with the delivery of precipitated calcium carbonate and matrix proteins to the site(s) of spicule growth. Copyright 1998 Academic Press.
Lapébie, Pascal; Ruggiero, Antonella; Barreau, Carine; Chevalier, Sandra; Chang, Patrick; Dru, Philippe; Houliston, Evelyn; Momose, Tsuyoshi
2014-01-01
We have used Digital Gene Expression analysis to identify, without bilaterian bias, regulators of cnidarian embryonic patterning. Transcriptome comparison between un-manipulated Clytia early gastrula embryos and ones in which the key polarity regulator Wnt3 was inhibited using morpholino antisense oligonucleotides (Wnt3-MO) identified a set of significantly over and under-expressed transcripts. These code for candidate Wnt signaling modulators, orthologs of other transcription factors, secreted and transmembrane proteins known as developmental regulators in bilaterian models or previously uncharacterized, and also many cnidarian-restricted proteins. Comparisons between embryos injected with morpholinos targeting Wnt3 and its receptor Fz1 defined four transcript classes showing remarkable correlation with spatiotemporal expression profiles. Class 1 and 3 transcripts tended to show sustained expression at “oral” and “aboral” poles respectively of the developing planula larva, class 2 transcripts in cells ingressing into the endodermal region during gastrulation, while class 4 gene expression was repressed at the early gastrula stage. The preferential effect of Fz1-MO on expression of class 2 and 4 transcripts can be attributed to Planar Cell Polarity (PCP) disruption, since it was closely matched by morpholino knockdown of the specific PCP protein Strabismus. We conclude that endoderm and post gastrula-specific gene expression is particularly sensitive to PCP disruption while Wnt-/β-catenin signaling dominates gene regulation along the oral-aboral axis. Phenotype analysis using morpholinos targeting a subset of transcripts indicated developmental roles consistent with expression profiles for both conserved and cnidarian-restricted genes. Overall our unbiased screen allowed systematic identification of regionally expressed genes and provided functional support for a shared eumetazoan developmental regulatory gene set with both predicted and previously unexplored members, but also demonstrated that fundamental developmental processes including axial patterning and endoderm formation in cnidarians can involve newly evolved (or highly diverged) genes. PMID:25233086
Röttinger, Eric; Dahlin, Paul; Martindale, Mark Q
2012-01-01
Understanding the functional relationship between intracellular factors and extracellular signals is required for reconstructing gene regulatory networks (GRN) involved in complex biological processes. One of the best-studied bilaterian GRNs describes endomesoderm specification and predicts that both mesoderm and endoderm arose from a common GRN early in animal evolution. Compelling molecular, genomic, developmental, and evolutionary evidence supports the hypothesis that the bifunctional gastrodermis of the cnidarian-bilaterian ancestor is derived from the same evolutionary precursor of both endodermal and mesodermal germ layers in all other triploblastic bilaterian animals. We have begun to establish the framework of a provisional cnidarian "endomesodermal" gene regulatory network in the sea anemone, Nematostella vectensis, by using a genome-wide microarray analysis on embryos in which the canonical Wnt/ß-catenin pathway was ectopically targeted for activation by two distinct pharmaceutical agents (lithium chloride and 1-azakenpaullone) to identify potential targets of endomesoderm specification. We characterized 51 endomesodermally expressed transcription factors and signaling molecule genes (including 18 newly identified) with fine-scale temporal (qPCR) and spatial (in situ) analysis to define distinct co-expression domains within the animal plate of the embryo and clustered genes based on their earliest zygotic expression. Finally, we determined the input of the canonical Wnt/ß-catenin pathway into the cnidarian endomesodermal GRN using morpholino and mRNA overexpression experiments to show that NvTcf/canonical Wnt signaling is required to pattern both the future endomesodermal and ectodermal domains prior to gastrulation, and that both BMP and FGF (but not Notch) pathways play important roles in germ layer specification in this animal. We show both evolutionary conserved as well as profound differences in endomesodermal GRN structure compared to bilaterians that may provide fundamental insight into how GRN subcircuits have been adopted, rewired, or co-opted in various animal lineages that give rise to specialized endomesodermal cell types.
Lapébie, Pascal; Ruggiero, Antonella; Barreau, Carine; Chevalier, Sandra; Chang, Patrick; Dru, Philippe; Houliston, Evelyn; Momose, Tsuyoshi
2014-09-01
We have used Digital Gene Expression analysis to identify, without bilaterian bias, regulators of cnidarian embryonic patterning. Transcriptome comparison between un-manipulated Clytia early gastrula embryos and ones in which the key polarity regulator Wnt3 was inhibited using morpholino antisense oligonucleotides (Wnt3-MO) identified a set of significantly over and under-expressed transcripts. These code for candidate Wnt signaling modulators, orthologs of other transcription factors, secreted and transmembrane proteins known as developmental regulators in bilaterian models or previously uncharacterized, and also many cnidarian-restricted proteins. Comparisons between embryos injected with morpholinos targeting Wnt3 and its receptor Fz1 defined four transcript classes showing remarkable correlation with spatiotemporal expression profiles. Class 1 and 3 transcripts tended to show sustained expression at "oral" and "aboral" poles respectively of the developing planula larva, class 2 transcripts in cells ingressing into the endodermal region during gastrulation, while class 4 gene expression was repressed at the early gastrula stage. The preferential effect of Fz1-MO on expression of class 2 and 4 transcripts can be attributed to Planar Cell Polarity (PCP) disruption, since it was closely matched by morpholino knockdown of the specific PCP protein Strabismus. We conclude that endoderm and post gastrula-specific gene expression is particularly sensitive to PCP disruption while Wnt-/β-catenin signaling dominates gene regulation along the oral-aboral axis. Phenotype analysis using morpholinos targeting a subset of transcripts indicated developmental roles consistent with expression profiles for both conserved and cnidarian-restricted genes. Overall our unbiased screen allowed systematic identification of regionally expressed genes and provided functional support for a shared eumetazoan developmental regulatory gene set with both predicted and previously unexplored members, but also demonstrated that fundamental developmental processes including axial patterning and endoderm formation in cnidarians can involve newly evolved (or highly diverged) genes.
BicaudalD actively regulates microtubule motor activity in lipid droplet transport.
Larsen, Kristoffer S; Xu, Jing; Cermelli, Silvia; Shu, Zhanyong; Gross, Steven P
2008-01-01
A great deal of sub-cellular organelle positioning, and essentially all minus-ended organelle transport, depends on cytoplasmic dynein, but how dynein's function is regulated is not well understood. BicD is established to play a critical role in mediating dynein function-loss of BicD results in improperly localized nuclei, mRNA particles, and a dispersed Golgi apparatus-however exactly what BicD's role is remains unknown. Nonetheless, it is widely believed that BicD may act to tether dynein to cargos. Here we use a combination of biophysical and biochemical studies to investigate BicD's role in lipid droplet transport during Drosophila embryogenesis. Functional loss of BicD impairs the embryo's ability to control the net direction of droplet transport; the developmentally controlled reversal in transport is eliminated. We find that minimal BicD expression (near-BicD(null)) decreases the average run length of both plus and minus end directed microtubule (MT) based transport. A point mutation affecting the BicD N-terminus has very similar effects on transport during cellularization (phase II), but in phase III (gastrulation) motion actually appears better than in the wild-type. In contrast to a simple static tethering model of BicD function, or a role only in initial dynein recruitment to the cargo, our data uncovers a new dynamic role for BicD in actively regulating transport. Lipid droplets move bi-directionally, and our investigations demonstrate that BicD plays a critical-and temporally changing-role in balancing the relative contributions of plus-end and minus-end motors to control the net direction of transport. Our results suggest that while BicD might contribute to recruitment of dynein to the cargo it is not absolutely required for such dynein localization, and it clearly contributes to regulation, helping activation/inactivation of the motors.
Loganathan, Rajprasad; Potetz, Brian R.; Rongish, Brenda J.; Little, Charles D.
2012-01-01
Early stages of vertebrate embryogenesis are characterized by a remarkable series of shape changes. The resulting morphological complexity is driven by molecular, cellular, and tissue-scale biophysical alterations. Operating at the cellular level, extracellular matrix (ECM) networks facilitate cell motility. At the tissue level, ECM networks provide material properties required to accommodate the large-scale deformations and forces that shape amniote embryos. In other words, the primordial biomaterial from which reptilian, avian, and mammalian embryos are molded is a dynamic composite comprised of cells and ECM. Despite its central importance during early morphogenesis we know little about the intrinsic micrometer-scale surface properties of primordial ECM networks. Here we computed, using avian embryos, five textural properties of fluorescently tagged ECM networks — (a) inertia, (b) correlation, (c) uniformity, (d) homogeneity, and (e) entropy. We analyzed fibronectin and fibrillin-2 as examples of fibrous ECM constituents. Our quantitative data demonstrated differences in the surface texture between the fibronectin and fibrillin-2 network in Day 1 (gastrulating) embryos, with the fibronectin network being relatively coarse compared to the fibrillin-2 network. Stage-specific regional anisotropy in fibronectin texture was also discovered. Relatively smooth fibronectin texture was exhibited in medial regions adjoining the primitive streak (PS) compared with the fibronectin network investing the lateral plate mesoderm (LPM), at embryonic stage 5. However, the texture differences had changed by embryonic stage 6, with the LPM fibronectin network exhibiting a relatively smooth texture compared with the medial PS-oriented network. Our data identify, and partially characterize, stage-specific regional anisotropy of fibronectin texture within tissues of a warm-blooded embryo. The data suggest that changes in ECM textural properties reflect orderly time-dependent rearrangements of a primordial biomaterial. We conclude that the ECM microenvironment changes markedly in time and space during the most important period of amniote morphogenesis—as determined by fluctuating textural properties. PMID:22693609
Ginger Stimulates Hematopoiesis via Bmp Pathway in Zebrafish
Ferri-Lagneau, Karine F.; Moshal, Karni S.; Grimes, Matthew; Zahora, Braden; Lv, Lishuang; Sang, Shengmin; Leung, TinChung
2012-01-01
Background Anemia is a hematologic disorder with decreased number of erythrocytes. Erythropoiesis, the process by which red blood cells differentiate, are conserved in humans, mice and zebrafish. The only known agents available to treat pathological anemia are erythropoietin and its biologic derivatives. However, erythropoietin therapy elicits unwanted side-effects, high cost and intravenous or subcutaneous injection, warranting the development of a more cost effective and non-peptide alternative. Ginger (Zingiber officinale) has been widely used in traditional medicine; however, to date there is no scientific research documenting the potential of ginger to stimulate hematopoiesis. Methodology/Principal Findings Here, we utilized gata1:dsRed transgenic zebrafish embryos to investigate the effect of ginger extract on hematopoiesis in vivo and we identified its bioactive component, 10-gingerol. We confirmed that ginger and 10-gingerol promote the expression of gata1 in erythroid cells and increase the expression of hematopoietic progenitor markers cmyb and scl. We also demonstrated that ginger and 10-gingerol can promote the hematopoietic recovery from acute hemolytic anemia in zebrafish, by quantifying the number of circulating erythroid cells in the dorsal aorta using video microscopy. We found that ginger and 10-gingerol treatment during gastrulation results in an increase of bmp2b and bmp7a expression, and their downstream effectors, gata2 and eve1. At later stages ginger and 10-gingerol can induce bmp2b/7a, cmyb, scl and lmo2 expression in the caudal hematopoietic tissue area. We further confirmed that Bmp/Smad pathway mediates this hematopoiesis promoting effect of ginger by using the Bmp-activated Bmp type I receptor kinase inhibitors dorsomorphin, LND193189 and DMH1. Conclusions/Significance Our study provides a strong foundation to further evaluate the molecular mechanism of ginger and its bioactive components during hematopoiesis and to investigate their effects in adults. Our results will provide the basis for future research into the effect of ginger during mammalian hematopoiesis to develop novel erythropoiesis promoting agents. PMID:22761764
Jiang, Peng; Nelson, Jeffrey D.; Leng, Ning; Collins, Michael; Swanson, Scott; Dewey, Colin N.; Thomson, James A.; Stewart, Ron
2016-01-01
The axolotl (Ambystoma mexicanum) has long been the subject of biological research, primarily owing to its outstanding regenerative capabilities. However, the gene expression programs governing its embryonic development are particularly underexplored, especially when compared to other amphibian model species. Therefore, we performed whole transcriptome polyA+ RNA sequencing experiments on 17 stages of embryonic development. As the axolotl genome is unsequenced and its gene annotation is incomplete, we built de novo transcriptome assemblies for each stage and garnered functional annotation by comparing expressed contigs with known genes in other organisms. In evaluating the number of differentially expressed genes over time, we identify three waves of substantial transcriptome upheaval each followed by a period of relative transcriptome stability. The first wave of upheaval is between the one and two cell stage. We show that the number of differentially expressed genes per unit time is higher between the one and two cell stage than it is across the mid-blastula transition (MBT), the period of zygotic genome activation. We use total RNA sequencing to demonstrate that the vast majority of genes with increasing polyA+ signal between the one and two cell stage result from polyadenylation rather than de novo transcription. The first stable phase begins after the two cell stage and continues until the mid-blastula transition, corresponding with the pre-MBT phase of transcriptional quiescence in amphibian development. Following this is a peak of differential gene expression corresponding with the activation of the zygotic genome and a phase of transcriptomic stability from stages 9 to 11. We observe a third wave of transcriptomic change between stages 11 and 14, followed by a final stable period. The last two stable phases have not been documented in amphibians previously and correspond to times of major morphogenic change in the axolotl embryo: gastrulation and neurulation. These results yield new insights into global gene expression during early stages of amphibian embryogenesis and will help to further develop the axolotl as a model species for developmental and regenerative biology. PMID:27475628
Picker, Alexander; Scholpp, Steffen; Böhli, Heike; Takeda, Hiroyuki; Brand, Michael
2002-07-01
The pax2.1 gene encodes a paired-box transcription factor that is one of the earliest genes to be specifically activated in development of the midbrain and midbrain-hindbrain boundary (MHB), and is required for the development and organizer activity of this territory. To understand how this spatially restricted transcriptional activity of pax2.1 is achieved, we have isolated and characterized the pax2.1-promoter using a lacZ and a GFP reporter gene in transient injection assays and transgenic lines. Stable transgenic expression of this reporter gene shows that a 5.3-kb fragment of the 5' region contains most, but not all, elements required for driving pax2.1 expression. The expressing tissues include the MHB, hindbrain, spinal cord, ear and pronephros. Transgene activation in the pronephros and developing ear suggests that these pax2.1-expressing tissues are composed of independently regulated subdomains. In addition, ectopic but spatially restricted activation of the reporter genes in rhombomeres 3 and 5 and in the forebrain, which do not normally express endogenous pax2.1, demonstrates the importance of negative regulation of pax2.1. Comparison of transgene expression in wild-type and homozygous pax2.1 mutant no isthmus (noi) embryos reveals that the transgene contains control element(s) for a novel, positive transcriptional feedback loop in MHB development. Transcription of endogenous pax2.1 at the MHB is known to be initially Pax2.1 independent, during activation in late gastrulation. In contrast, transgene expression requires the endogenous Pax2.1 function. Transplantations, mRNA injections and morpholino knock-down experiments show that this feedback regulation of pax2.1 transcription occurs cell-autonomously, and that it requires eng2 and eng3 as known targets for Pax2.1 regulation. We suggest that this novel feedback loop may allow continuation of pax2.1 expression, and hence development of the MHB organizer, to become independent of the patterning machinery of the gastrula embryo.
2010-01-01
Background Conservation Breeding Programs (CBP's) are playing an important role in the protection of critically endangered anuran amphibians, but for many species recruitment is not successful enough to maintain captive populations, or provide individuals for release. In response, there has been an increasing focus on the use of Assisted Reproductive Technologies (ART), including the administration of reproductive hormones to induce gamete release followed by in vitro fertilisation. The objective of this study was to test the efficacy of two exogenous hormones to induce gamete release, for the purpose of conducting in vitro fertilisation (IVF), in one of Australia's most critically endangered frog species, Pseudophryne corroboree. Methods Male frogs were administered a single dose of either human chorionic gonadotropin (hCG) or luteinizing hormone-releasing hormone (LHRHa), while female frogs received both a priming and ovulatory dose of LHRHa. Spermiation responses were evaluated at 3, 7, 12, 24, 36, 48, 60 and 72 h post hormone administration (PA), and sperm number and viability were quantified using fluorescent microscopy. Ovulation responses were evaluated by stripping females every 12 h PA for 5 days. Once gametes were obtained, IVF was attempted by combining spermic urine with oocytes in a dilute solution of simplified amphibian ringer (SAR). Results Administration of both hCG and LHRHa induced approximately 80% of males to release sperm over 72 h. Peak sperm release occurred at 12 h PA for hCG treated males and 36 h PA for LHRHa treated males. On average, LHRHa treated males released a significantly higher total number of live sperm, and a higher concentration of sperm, over a longer period. In female frogs, administration of LHRHa induced approximately 30% of individuals to release eggs. On average, eggs were released between 24 and 48 h PA, with a peak in egg release at 36 h PA. IVF resulted in a moderate percentage (54.72%) of eggs being fertilised, however all resultant embryos failed prior to gastrulation. Conclusions Hormone treatment successfully induced spermiation and ovulation in P. corroboree, but refinement of gamete induction and IVF techniques will be required before ART protocols can be used to routinely propagate this species. PMID:21114857
Context-specific requirements of functional domains of the Spectraplakin Short stop in vivo.
Bottenberg, Wolfgang; Sanchez-Soriano, Natalia; Alves-Silva, Juliana; Hahn, Ines; Mende, Michael; Prokop, Andreas
2009-07-01
Spectraplakins are large multifunctional cytoskeletal interacting molecules implicated in various processes, including gastrulation, wound healing, skin blistering and neuronal degeneration. It has been speculated that the various functional domains and regions found in Spectraplakins are used in context-specific manners, a model which would provide a crucial explanation for the multifunctional nature of Spectraplakins. Here we tested this possibility by studying domain requirements of the Drosophila Spectraplakin Short stop (Shot) in three different cellular contexts in vivo: (1) neuronal growth, which requires dynamic actin-microtubule interaction; (2) formation and maintenance of tendon cells, which depends on highly stabilised arrays of actin filaments and microtubules, and (3) compartmentalisation in neurons, which is likely to involve cortical F-actin networks. Using these cellular contexts for rescue experiments with Shot deletion constructs in shot mutant background, a number of differential domain requirements were uncovered. First, binding of Shot to F-actin through the first Calponin domain is essential in neuronal contexts but dispensable in tendon cells. This finding is supported by our analyses of shot(kakP2) mutant embryos, which produce only endogenous isoforms lacking the first Calponin domain. Thus, our data demonstrate a functional relevance for these isoforms in vivo. Second, we provide the first functional role for the Plakin domain of Shot, which has a strong requirement for compartmentalisation in neurons and axonal growth, demonstrating that Plakin domains of long Spectraplakin isoforms are of functional relevance. Like the Calponin domain, also the Plakin domain is dispensable in tendon cells, and the currently assumed role of Shot as a linker of microtubules to the tendon cell surface may have to be reconsidered. Third, we demonstrate a function of Shot as an actin-microtubule linker in dendritic growth, thus shedding new light into principal growth mechanisms of this neurite type. Taken together, our data clearly support the view that Spectraplakins function in tissue-specific modes in vivo, and even domains believed to be crucial for Spectraplakin function can be dispensable in specific contexts.
Okubo, Nami; Hayward, David C; Forêt, Sylvain; Ball, Eldon E
2016-02-29
Research into various aspects of coral biology has greatly increased in recent years due to anthropogenic threats to coral health including pollution, ocean warming and acidification. However, knowledge of coral early development has lagged. The present paper describes the embryonic development of two previously uncharacterized robust corals, Favia lizardensis (a massive brain coral) and Ctenactis echinata (a solitary coral) and compares it to that of the previously characterized complex coral, Acropora millepora, both morphologically and in terms of the expression of a set of key developmental genes. Illumina sequencing of mixed age embryos was carried out, resulting in embryonic transcriptomes consisting of 40605 contigs for C.echinata (N50 = 1080 bp) and 48536 contigs for F.lizardensis (N50 = 1496 bp). The transcriptomes have been annotated against Swiss-Prot and were sufficiently complete to enable the identification of orthologs of many key genes controlling development in bilaterians. Developmental series of images of whole mounts and sections reveal that the early stages of both species contain a blastocoel, consistent with their membership of the robust clade. In situ hybridization was used to examine the expression of the developmentally important genes brachyury, chordin and forkhead. The expression of brachyury and forkhead was consistent with that previously reported for Acropora and allowed us to confirm that the pseudo-blastopore sometimes seen in robust corals such as Favia spp. is not directly associated with gastrulation. C.echinata chordin expression, however, differed from that seen in the other two corals. Embryonic transcriptomes were assembled for the brain coral Favia lizardensis and the solitary coral Ctenactis echinata. Both species have a blastocoel in their early developmental stages, consistent with their phylogenetic position as members of the robust clade. Expression of the key developmental genes brachyury, chordin and forkhead was investigated, allowing comparison to that of their orthologs in Acropora, Nematostella and bilaterians and demonstrating that even within the Anthozoa there are significant differences in expression patterns.
Embryonic lethality is not sufficient to explain hourglass-like conservation of vertebrate embryos.
Uchida, Yui; Uesaka, Masahiro; Yamamoto, Takayoshi; Takeda, Hiroyuki; Irie, Naoki
2018-01-01
Understanding the general trends in developmental changes during animal evolution, which are often associated with morphological diversification, has long been a central issue in evolutionary developmental biology. Recent comparative transcriptomic studies revealed that gene expression profiles of mid-embryonic period tend to be more evolutionarily conserved than those in earlier or later periods. While the hourglass-like divergence of developmental processes has been demonstrated in a variety of animal groups such as vertebrates, arthropods, and nematodes, the exact mechanism leading to this mid-embryonic conservation remains to be clarified. One possibility is that the mid-embryonic period (pharyngula period in vertebrates) is highly prone to embryonic lethality, and the resulting negative selections lead to evolutionary conservation of this phase. Here, we tested this "mid-embryonic lethality hypothesis" by measuring the rate of lethal phenotypes of three different species of vertebrate embryos subjected to two kinds of perturbations: transient perturbations and genetic mutations. By subjecting zebrafish ( Danio rerio ), African clawed frog ( Xenopus laevis ), and chicken ( Gallus gallus ) embryos to transient perturbations, namely heat shock and inhibitor treatments during three developmental periods [early (represented by blastula and gastrula), pharyngula, and late], we found that the early stages showed the highest rate of lethal phenotypes in all three species. This result was corroborated by perturbation with genetic mutations. By tracking the survival rate of wild-type embryos and embryos with genetic mutations induced by UV irradiation in zebrafish and African clawed frogs, we found that the highest decrease in survival rate was at the early stages particularly around gastrulation in both these species. In opposition to the "mid-embryonic lethality hypothesis," our results consistently showed that the stage with the highest lethality was not around the conserved pharyngula period, but rather around the early period in all the vertebrate species tested. These results suggest that negative selection by embryonic lethality could not explain hourglass-like conservation of animal embryos. This highlights the potential contribution of alternative mechanisms such as the diversifying effect of positive selections against earlier and later stages, and developmental constraints which lead to conservation of mid-embryonic stages.
Irie, Naoki; Sehara-Fujisawa, Atsuko
2007-01-12
Embryos of taxonomically different vertebrates are thought to pass through a stage in which they resemble one another morphologically. This "vertebrate phylotypic stage" may represent the basic vertebrate body plan that was established in the common ancestor of vertebrates. However, much controversy remains about when the phylotypic stage appears, and whether it even exists. To overcome the limitations of studies based on morphological comparison, we explored a comprehensive quantitative method for defining the constrained stage using expressed sequence tag (EST) data, gene ontologies (GO), and available genomes of various animals. If strong developmental constraints occur during the phylotypic stage of vertebrate embryos, then genes conserved among vertebrates would be highly expressed at this stage. We established a novel method for evaluating the ancestral nature of mouse embryonic stages that does not depend on comparative morphology. The numerical "ancestor index" revealed that the mouse indeed has a highly conserved embryonic period at embryonic day 8.0-8.5, the time of appearance of the pharyngeal arch and somites. During this period, the mouse prominently expresses GO-determined developmental genes shared among vertebrates. Similar analyses revealed the existence of a bilaterian-related period, during which GO-determined developmental genes shared among bilaterians are markedly expressed at the cleavage-to-gastrulation period. The genes associated with the phylotypic stage identified by our method are essential in embryogenesis. Our results demonstrate that the mid-embryonic stage of the mouse is indeed highly constrained, supporting the existence of the phylotypic stage. Furthermore, this candidate stage is preceded by a putative bilaterian ancestor-related period. These results not only support the developmental hourglass model, but also highlight the hierarchical aspect of embryogenesis proposed by von Baer. Identification of conserved stages and tissues by this method in various animals would be a powerful tool to examine the phylotypic stage hypothesis, and to understand which kinds of developmental events and gene sets are evolutionarily constrained and how they limit the possible variations of animal basic body plans.
NASA Astrophysics Data System (ADS)
Pourquié, Olivier
2008-03-01
The vertebrate body can be subdivided along the antero-posterior (AP) axis into repeated structures called segments. This periodic pattern is established during embryogenesis by the somitogenesis process. Somites are generated in a rhythmic fashion from the paraxial mesoderm and subsequently differentiate to give rise to the vertebrae and skeletal muscles of the body. Somite formation involves an oscillator-the segmentation clock-whose periodic signal is converted into the periodic array of somite boundaries. This clock drives the dynamic expression of cyclic genes in the presomitic mesoderm and requires Notch and Wnt signaling. Microarray studies of the mouse presomitic mesoderm transcriptome reveal that the segmentation clock drives the periodic expression of a large network of cyclic genes involved in cell signaling. Mutually exclusive activation of the Notch/FGF and Wnt pathways during each cycle suggests that coordinated regulation of these three pathways underlies the clock oscillator. In humans, mutations in the genes associated to the function of this oscillator such as Dll3 or Lunatic Fringe result in abnormal segmentation of the vertebral column such as those seen in congenital scoliosis. Whereas the segmentation clock is thought to set the pace of vertebrate segmentation, the translation of this pulsation into the reiterated arrangement of segment boundaries along the AP axis involves dynamic gradients of FGF and Wnt signaling. The FGF signaling gradient is established based on an unusual mechanism involving mRNA decay which provides an efficient means to couple the spatio-temporal activation of segmentation to the posterior elongation of the embryo. Another striking aspect of somite production is the strict bilateral symmetry of the process. Retinoic acid was shown to control aspects of this coordination by buffering destabilizing effects from the embryonic left-right machinery. Defects in this embryonic program controlling vertebral symmetry might lead to scoliosis in humans. Finally, the subsequent regional differentiation of the precursors of the vertebrae is controlled by Hox genes, whose collinear expression controls both gastrulation of somite precursors and their subsequent patterning into region-specific types of structures. Therefore somite development provides an outstanding paradigm to study patterning and differentiation in vertebrate embryos.
Guo, Long; Yamashita, Hiroshi; Kou, Ikuyo; Takimoto, Aki; Meguro-Horike, Makiko; Horike, Shin-ichi; Sakuma, Tetsushi; Miura, Shigenori; Adachi, Taiji; Yamamoto, Takashi; Ikegawa, Shiro; Hiraki, Yuji; Shukunami, Chisa
2016-01-01
Previously, we identified an adolescent idiopathic scoliosis susceptibility locus near human ladybird homeobox 1 (LBX1) and FLJ41350 by a genome-wide association study. Here, we characterized the associated non-coding variant and investigated the function of these genes. A chromosome conformation capture assay revealed that the genome region with the most significantly associated single nucleotide polymorphism (rs11190870) physically interacted with the promoter region of LBX1-FLJ41350. The promoter in the direction of LBX1, combined with a 590-bp region including rs11190870, had higher transcriptional activity with the risk allele than that with the non-risk allele in HEK 293T cells. The ubiquitous overexpression of human LBX1 or either of the zebrafish lbx genes (lbx1a, lbx1b, and lbx2), but not FLJ41350, in zebrafish embryos caused body curvature followed by death prior to vertebral column formation. Such body axis deformation was not observed in transcription activator-like effector nucleases mediated knockout zebrafish of lbx1b or lbx2. Mosaic expression of lbx1b driven by the GATA2 minimal promoter and the lbx1b enhancer in zebrafish significantly alleviated the embryonic lethal phenotype to allow observation of the later onset of the spinal curvature with or without vertebral malformation. Deformation of the embryonic body axis by lbx1b overexpression was associated with defects in convergent extension, which is a component of the main axis-elongation machinery in gastrulating embryos. In embryos overexpressing lbx1b, wnt5b, a ligand of the non-canonical Wnt/planar cell polarity (PCP) pathway, was significantly downregulated. Injection of mRNA for wnt5b or RhoA, a key downstream effector of Wnt/PCP signaling, rescued the defective convergent extension phenotype and attenuated the lbx1b-induced curvature of the body axis. Thus, our study presents a novel pathological feature of LBX1 and its zebrafish homologs in body axis deformation at various stages of embryonic and subsequent growth in zebrafish. PMID:26820155
Development and evolution of the vertebrate primary mouth
Soukup, Vladimír; Horácek, Ivan; Cerny, Robert
2013-01-01
The vertebrate oral region represents a key interface between outer and inner environments, and its structural and functional design is among the limiting factors for survival of its owners. Both formation of the respective oral opening (primary mouth) and establishment of the food-processing apparatus (secondary mouth) require interplay between several embryonic tissues and complex embryonic rearrangements. Although many aspects of the secondary mouth formation, including development of the jaws, teeth or taste buds, are known in considerable detail, general knowledge about primary mouth formation is regrettably low. In this paper, primary mouth formation is reviewed from a comparative point of view in order to reveal its underestimated morphogenetic diversity among, and also within, particular vertebrate clades. In general, three main developmental modes were identified. The most common is characterized by primary mouth formation via a deeply invaginated ectodermal stomodeum and subsequent rupture of the bilaminar oral membrane. However, in salamander, lungfish and also in some frog species, the mouth develops alternatively via stomodeal collar formation contributed both by the ecto- and endoderm. In ray-finned fishes, on the other hand, the mouth forms via an ectoderm wedge and later horizontal detachment of the initially compressed oral epithelia with probably a mixed germ-layer derivation. A very intriguing situation can be seen in agnathan fishes: whereas lampreys develop their primary mouth in a manner similar to the most common gnathostome pattern, hagfishes seem to undergo a unique oropharyngeal morphogenesis when compared with other vertebrates. In discussing the early formative embryonic correlates of primary mouth formation likely to be responsible for evolutionary–developmental modifications of this area, we stress an essential role of four factors: first, positioning and amount of yolk tissue; closely related to, second, endoderm formation during gastrulation, which initiates the process and constrains possible evolutionary changes within this area; third, incipient structure of the stomodeal primordium at the anterior neural plate border, where the ectoderm component of the prospective primary mouth is formed; and fourth, the prime role of Pitx genes for establishment and later morphogenesis of oral region both in vertebrates and non-vertebrate chordates. PMID:22804777
Developmental roles of the BMP1/TLD metalloproteinases.
Ge, Gaoxiang; Greenspan, Daniel S
2006-03-01
The astacin family (M12A) of the metzincin subclan MA(M) of metalloproteinases has been detected in developing and mature individuals of species that range from hydra to humans. Functions of this family of metalloproteinase vary from digestive degradation of polypeptides, to biosynthetic processing of extracellular proteins, to activation of growth factors. This review will focus on a small subgroup of the astacin family; the bone morphogenetic protein 1 (BMP1)/Tolloid (TLD)-like metalloproteinases. In vertebrates, the BMP1/TLD-like metalloproteinases play key roles in regulating formation of the extracellular matrix (ECM) via biosynthetic processing of various precursor proteins into mature functional enzymes, structural proteins, and proteins involved in initiating mineralization of the ECM of hard tissues. Roles in ECM formation include: processing of the C-propeptides of procollagens types I-III, to yield the major fibrous components of vertebrate ECM; proteolytic activation of the enzyme lysyl oxidase, necessary to formation of covalent cross-links in collagen and elastic fibers; processing of NH2-terminal globular domains and C-propeptides of types V and XI procollagen chains to yield monomers that are incorporated into and control the diameters of collagen type I and II fibrils, respectively; processing of precursors for laminin 5 and collagen type VII, both of which are involved in securing epidermis to underlying dermis; and maturation of small leucine-rich proteoglycans. The BMP1/TLD-related metalloproteinases are also capable of activating the vertebrate transforming growth factor-beta (TGF-beta)-like "chalones" growth differentiation factor 8 (GDF8, also known as myostatin), and GDF11 (also known as BMP11), involved in negative feedback inhibition of muscle and neural tissue growth, respectively; by freeing them from noncovalent latent complexes with their cleaved prodomains. BMP1/TLD-like proteinases also liberate the vertebrate TGF-beta-like morphogens BMP2 and 4 and their invertebrate ortholog decapentaplegic, from latent complexes with the vertebrate extracellular antagonist chordin and its invertebrate ortholog short gastrulation (SOG), respectively. The result is formation of the BMP signaling gradients that form the dorsal-ventral axis in embryogenesis. Thus, BMP1/TLD-like proteinases appear to be key to regulating and orchestrating formation of the ECM and signaling by various TGF-beta-like proteins in morphogenetic and homeostatic events. Copyright 2006 Wiley-Liss, Inc.
Pfeffer, P L; Gerster, T; Lun, K; Brand, M; Busslinger, M
1998-08-01
The mammalian Pax2, Pax5 and Pax8 genes code for highly related transcription factors, which play important roles in embryonic development and organogenesis. Here we report the characterization of all members of the zebrafish Pax2/5/8 family. These genes have arisen by duplications before or at the onset of vertebrate evolution. Due to an additional genome amplification in the fish lineage, the zebrafish contains two Pax2 genes, the previously known Pax[b] gene (here renamed as Pax2.1) and a novel Pax2.2 gene. The zebrafish Pax2.1 gene most closely resembles the mammalian Pax2 gene in its expression pattern, as it is transcribed first in the midbrain-hindbrain boundary region, then in the optic stalk, otic system, pronephros and nephric ducts, and lastly in specific interneurons of the hindbrain and spinal cord. Pax2.2 differs from Pax2.1 by the absence of expression in the nephric system and by a delayed onset of transcription in other Pax2.1 expession domains. Pax8 is also expressed in the same domains as Pax2.1, but its transcription is already initiated during gastrulation in the primordia of the otic placode and pronephric anlage, thus identifying Pax8 as the earliest developmental marker of these structures. The zebrafish Pax5 gene, in contrast to its mouse orthologue, is transcribed in the otic system in addition to its prominent expression at the midbrain-hindbrain boundary. The no isthmus (noi) mutation is known to inactivate the Pax2.1 gene, thereby affecting the development of the midbrain-hindbrain boundary region, pronephric system, optic stalk and otic region. Although the different members of the Pax2/5/8 family may potentially compensate for the loss of Pax2.1 function, we demonstrate here that only the expression of the Pax2.2 gene remains unaffected in noi mutant embryos. The expression of Pax5 and Pax8 is either not initiated at the midbrain-hindbrain boundary or is later not maintained in other expression domains. Consequently, the noi mutation of zebrafish is equivalent to combined inactivation of the mouse Pax2 and Pax5 genes with regard to the loss of midbrain-hindbrain boundary development.
Schnitzler, Christine E; Pang, Kevin; Powers, Meghan L; Reitzel, Adam M; Ryan, Joseph F; Simmons, David; Tada, Takashi; Park, Morgan; Gupta, Jyoti; Brooks, Shelise Y; Blakesley, Robert W; Yokoyama, Shozo; Haddock, Steven Hd; Martindale, Mark Q; Baxevanis, Andreas D
2012-12-21
Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria) and comb jellies (Phylum Ctenophora). The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light emission, raising the hypothesis that light production and light reception may be functionally connected in ctenophore photocytes. We also present genomic evidence of a complete ciliary phototransduction cascade in Mnemiopsis. This study elucidates the genomic organization, evolutionary history, and developmental expression of photoprotein and opsin genes in the ctenophore Mnemiopsis leidyi, introduces a novel dual role for ctenophore photocytes in both bioluminescence and phototransduction, and raises the possibility that light production and light reception are linked in this early-branching non-bilaterian animal.
2012-01-01
Background Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria) and comb jellies (Phylum Ctenophora). The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. Results The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light emission, raising the hypothesis that light production and light reception may be functionally connected in ctenophore photocytes. We also present genomic evidence of a complete ciliary phototransduction cascade in Mnemiopsis. Conclusions This study elucidates the genomic organization, evolutionary history, and developmental expression of photoprotein and opsin genes in the ctenophore Mnemiopsis leidyi, introduces a novel dual role for ctenophore photocytes in both bioluminescence and phototransduction, and raises the possibility that light production and light reception are linked in this early-branching non-bilaterian animal. PMID:23259493
Webb, Sarah E; Miller, Andrew L
2006-11-01
It has been proposed that Ca(2+) signaling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern forming events during early vertebrate development [L.F. Jaffe, Organization of early development by calcium patterns, BioEssays 21 (1999) 657-667; M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signaling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11-21; S.E. Webb, A.L. Miller, Calcium signalling during embryonic development, Nat. Rev. Mol. Cell Biol. 4 (2003) 539-551]. With reference to the embryos of zebrafish (Danio rerio) and the frog, Xenopus laevis, we review the Ca(2+) signals reported during the Blastula and Gastrula Periods. This developmental window encompasses the major pattern forming events of epiboly, involution, and convergent extension, which result in the establishment of the basic germ layers and body axes [C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203 (1995) 253-310]. Data will be presented to support the suggestion that propagating waves (both long and short range) of Ca(2+) release, followed by sequestration, may play a crucial role in: (1) Coordinating cell movements during these pattern forming events and (2) Contributing to the establishment of the basic embryonic axes, as well as (3) Helping to define the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen [E. Gilland, A.L. Miller, E. Karplus, R. Baker, S.E. Webb, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96 (1999) 157-161; J.B. Wallingford, A.J. Ewald, R.M. Harland, S.E. Fraser, Calcium signaling during convergent extension in Xenopus, Curr. Biol. 11 (2001) 652-661]. The various potential targets of these Ca(2+) transients will also be discussed, as well as how they might integrate with other known pattern forming pathways known to modulate early developmental events (such as the Wnt/Ca(2+)pathway; [T.A. Westfall, B. Hjertos, D.C. Slusarski, Requirement for intracellular calcium modulation in zebrafish dorsal-ventral patterning, Dev. Biol. 259 (2003) 380-391]).
NASA Astrophysics Data System (ADS)
Pampaloni, Francesco; Ansari, Nari; Girard, Philippe; Stelzer, Ernst H. K.
2011-07-01
Most optical technologies are applied to flat, basically two-dimensional cellular systems. However, physiological meaningful information relies on the morphology, the mechanical properties and the biochemistry of a cell's context. A cell requires the complex three-dimensional relationship to other cells. However, the observation of multi-cellular biological specimens remains a challenge. Specimens scatter and absorb light, thus, the delivery of the probing light and the collection of the signal light become inefficient; many endogenous biochemical compounds also absorb light and suffer degradation of some sort (photo-toxicity), which induces malfunction of a specimen. In conventional and confocal fluorescence microscopy, whenever a single plane, the entire specimen is illuminated. Recording stacks of images along the optical Z-axis thus illuminates the entire specimen once for each plane. Hence, cells are illuminated 10-20 and fish 100-300 times more often than they are observed. This can be avoided by changing the optical arrangement. The basic idea is to use light sheets, which are fed into the specimen from the side and overlap with the focal plane of a wide-field fluorescence microscope. In contrast to an epi-fluorescence arrangement, such an azimuthal fluorescence arrangement uses two independently operated lenses for illumination and detection. Optical sectioning and no photo-toxic damage or photo-bleaching outside a small volume close to the focal plane are intrinsic properties. Light sheet-based fluorescence microscopy (LSFM) takes advantage of modern camera technologies. LSFM can be operated with laser cutters and for fluorescence correlation spectroscopy. During the last few years, LSFM was used to record zebrafish development from the early 32-cell stage until late neurulation with sub-cellular resolution and short sampling periods (60-90 sec/stack). The recording speed was five 4-Megapixel large frames/sec with a dynamic range of 12-14 bit. We followed cell movements during gastrulation, revealed the development during cell migration processes and showed that an LSFM exposes an embryo to 200 times less energy than a conventional and 5,000 times less energy than a confocal fluorescence microscope. Most recently, we implemented incoherent structured illumination in our DSLM. The intensity modulated light sheets can be generated with dynamic frequencies and allow us to estimate the effect of the specimen on the image formation process at various depths in objects of different age.
Sussarellu, Rossana; Lebreton, Morgane; Rouxel, Julien; Akcha, Farida; Rivière, Guillaume
2018-03-01
Copper contamination is widespread along coastal areas and exerts adverse effects on marine organisms such as mollusks. In the Pacific oyster, copper induces severe developmental abnormalities during early life stages; however, the underlying molecular mechanisms are largely unknown. This study aims to better understand whether the embryotoxic effects of copper in Crassostrea gigas could be mediated by alterations in gene expression, and the putative role of DNA methylation, which is known to contribute to gene regulation in early embryo development. For that purpose, oyster embryos were exposed to 4 nominal copper concentrations (0.1, 1, 10 and 20 μg L -1 Cu 2+ ) during early development assays. Embryotoxicity was monitored through the oyster embryo-larval bioassay at the D-larva stage 24 h post fertilization (hpf) and genotoxicity at gastrulation 7 hpf. In parallel, the relative expression of 15 genes encoding putative homeotic, biomineralization and DNA methylation proteins was measured at three developmental stages (3 hpf morula stage, 7 hpf gastrula stage, 24 hpf D-larvae stage) using RT-qPCR. Global DNA content in methylcytosine and hydroxymethylcytosine were measured by HPLC and gene-specific DNA methylation levels were monitored using MeDIP-qPCR. A significant increase in larval abnormalities was observed from copper concentrations of 10 μg L -1 , while significant genotoxic effects were detected at 1 μg L -1 and above. All the selected genes presented a stage-dependent expression pattern, which was impaired for some homeobox and DNA methylation genes (Notochord, HOXA1, HOX2, Lox5, DNMT3b and CXXC-1) after copper exposure. While global DNA methylation (5-methylcytosine) at gastrula stage didn't show significant changes between experimental conditions, 5-hydroxymethylcytosine, its degradation product, decreased upon copper treatment. The DNA methylation of exons and the transcript levels were correlated in control samples for HOXA1 but such a correlation was diminished following copper exposure. The methylation level of some specific gene regions (HoxA1, Hox2, Engrailed2 and Notochord) displayed changes upon copper exposure. Such changes were gene and exon-specific and no obvious global trends could be identified. Our study suggests that the embryotoxic effects of copper in oysters could involve homeotic gene expression impairment possibly by changing DNA methylation levels. Copyright © 2018 Elsevier B.V. All rights reserved.
Chemotherapy curable malignancies and cancer stem cells: a biological review and hypothesis.
Savage, Philip
2016-11-21
Cytotoxic chemotherapy brings routine cures to only a small select group of metastatic malignancies comprising gestational trophoblast tumours, germ cell tumours, acute leukemia, Hodgkin's disease, high grade lymphomas and some of the rare childhood malignancies. We have previously postulated that the extreme sensitivity to chemotherapy for these malignancies is linked to the on-going high levels of apoptotic sensitivity that is naturally linked with the unique genetic events of nuclear fusion, meiosis, VDJ recombination, somatic hypermutation, and gastrulation that have occurred within the cells of origin of these malignancies. In this review we will examine the cancer stem cell/cancer cell relationship of each of the chemotherapy curable malignancies and how this relationship impacts on the resultant biology and pro-apoptotic sensitivity of the varying cancer cell types. In contrast to the common epithelial cancers, in each of the chemotherapy curable malignancies there are no conventional hierarchical cancer stem cells. However cells with cancer stem like qualities can arise stochastically from within the general tumour cell population. These stochastic stem cells acquire a degree of resistance to DNA damaging agents but also retain much of the key characteristics of the cancer cells from which they develop. We would argue that the balance between the acquired resistance of the stochastic cancer stem cell and the inherent chemotherapy sensitivity of parent tumour cell determines the overall chemotherapy curability of each diagnosis. The cancer stem cells in the chemotherapy curable malignancies appear to have two key biological differences from those of the more common chemotherapy incurable malignancies. The first difference is that the conventional hierarchical pattern of cancer stem cells is absent in each of the chemotherapy curable malignancies. The other key difference, we suggest, is that the stochastic stem cells in the chemotherapy curable malignancies take on a significant aspect of the biological characteristics of their parent cancer cells. This action includes for the chemotherapy curable malignancies the heightened pro-apoptotic sensitivity linked to their respective associated unique genetic events. For the chemotherapy curable malignancies the combination of the relationship of their cancer stem cells combined with the extreme inherent sensitivity to induction of apoptosis from DNA damaging agents plays a key role in determining their overall curability with chemotherapy.
Pre-gastrula expression of zebrafish extraembryonic genes
2010-01-01
Background Many species form extraembryonic tissues during embryogenesis, such as the placenta of humans and other viviparous mammals. Extraembryonic tissues have various roles in protecting, nourishing and patterning embryos. Prior to gastrulation in zebrafish, the yolk syncytial layer - an extraembryonic nuclear syncytium - produces signals that induce mesoderm and endoderm formation. Mesoderm and endoderm precursor cells are situated in the embryonic margin, an external ring of cells along the embryo-yolk interface. The yolk syncytial layer initially forms below the margin, in a domain called the external yolk syncytial layer (E-YSL). Results We hypothesize that key components of the yolk syncytial layer's mesoderm and endoderm inducing activity are expressed as mRNAs in the E-YSL. To identify genes expressed in the E-YSL, we used microarrays to compare the transcription profiles of intact pre-gastrula embryos with pre-gastrula embryonic cells that we had separated from the yolk and yolk syncytial layer. This identified a cohort of genes with enriched expression in intact embryos. Here we describe our whole mount in situ hybridization analysis of sixty-eight of them. This includes ten genes with E-YSL expression (camsap1l1, gata3, znf503, hnf1ba, slc26a1, slc40a1, gata6, gpr137bb, otop1 and cebpa), four genes with expression in the enveloping layer (EVL), a superficial epithelium that protects the embryo (zgc:136817, zgc:152778, slc14a2 and elovl6l), three EVL genes whose expression is transiently confined to the animal pole (elovl6l, zgc:136359 and clica), and six genes with transient maternal expression (mtf1, wu:fj59f04, mospd2, rftn2, arrdc1a and pho). We also assessed the requirement of Nodal signaling for the expression of selected genes in the E-YSL, EVL and margin. Margin expression was Nodal dependent for all genes we tested, including the concentrated margin expression of an EVL gene: zgc:110712. All other instances of EVL and E-YSL expression that we tested were Nodal independent. Conclusion We have devised an effective strategy for enriching and identifying genes expressed in the E-YSL of pre-gastrula embryos. To our surprise, maternal genes and genes expressed in the EVL were also enriched by this strategy. A number of these genes are promising candidates for future functional studies on early embryonic patterning. PMID:20423468
Dynamic Analysis of Vascular Morphogenesis Using Transgenic Quail Embryos
Huss, David; Filla, Michael B.; Czirok, Andras; Rongish, Brenda J.; Little, Charles D.; Fraser, Scott E.; Lansford, Rusty
2010-01-01
Background One of the least understood and most central questions confronting biologists is how initially simple clusters or sheet-like cell collectives can assemble into highly complex three-dimensional functional tissues and organs. Due to the limits of oxygen diffusion, blood vessels are an essential and ubiquitous presence in all amniote tissues and organs. Vasculogenesis, the de novo self-assembly of endothelial cell (EC) precursors into endothelial tubes, is the first step in blood vessel formation [1]. Static imaging and in vitro models are wholly inadequate to capture many aspects of vascular pattern formation in vivo, because vasculogenesis involves dynamic changes of the endothelial cells and of the forming blood vessels, in an embryo that is changing size and shape. Methodology/Principal Findings We have generated Tie1 transgenic quail lines Tg(tie1:H2B-eYFP) that express H2B-eYFP in all of their endothelial cells which permit investigations into early embryonic vascular morphogenesis with unprecedented clarity and insight. By combining the power of molecular genetics with the elegance of dynamic imaging, we follow the precise patterning of endothelial cells in space and time. We show that during vasculogenesis within the vascular plexus, ECs move independently to form the rudiments of blood vessels, all while collectively moving with gastrulating tissues that flow toward the embryo midline. The aortae are a composite of somatic derived ECs forming its dorsal regions and the splanchnic derived ECs forming its ventral region. The ECs in the dorsal regions of the forming aortae exhibit variable mediolateral motions as they move rostrally; those in more ventral regions show significant lateral-to-medial movement as they course rostrally. Conclusions/Significance The present results offer a powerful approach to the major challenge of studying the relative role(s) of the mechanical, molecular, and cellular mechanisms of vascular development. In past studies, the advantages of the molecular genetic tools available in mouse were counterbalanced by the limited experimental accessibility needed for imaging and perturbation studies. Avian embryos provide the needed accessibility, but few genetic resources. The creation of transgenic quail with labeled endothelia builds upon the important roles that avian embryos have played in previous studies of vascular development. PMID:20856866
Boza-Abarca, Jorge; Ramírez-Alvarado, Marvin; Barquero-Chanto, Juan; Calvo-Vargas, Emilia; Berrocal-Artavia, Karen
2016-09-01
The croakers or drums are commercial species, which have been overfished in the Nicoya Gulf, Costa Rica. This study aimed to describe, for the first time, the reproduction and the ontogeny of weakfish, Cynoscion squamipinnis in captivity, in order to perform restocking and mariculture proyects. Wild fish (n= 6, 1-2 Kg) were captured and maintained in the Estación de Biología Marina Juan Bertoglia Richards (Puntarenas, Costa Rica) for a two years period (October 2006- December 2008). During this period, maturation stage was monitored periodically by cannula samples in the females (n= 3) and gentle massage in males (n= 3). All fish were stocked in an 18 t tank, with aeration, 33-35 ups of salinity, and a constant temperature (29 ± 1 °C). The spawning period occurred from January to March 2009, producing 162 000 eggs in three spontaneous spawns. The fertilization percentage was 50-60%, and survival after hatching was 60-85%. The egg diameter was 0.852 mm (Standard deviation (SD)= 0.039), and oil drop of 0.269 mm (SD= 0.016). In the embryonary development, the first mitotic division (MD) was observed one hour after spawning (has), the second MD was 1:30 has, the third MD was 2:00 has, the fourth MD was 2:30 has, and fifth MD at 3:00 has. Morule was observed 3:30 has, the blastule 4:30 has, the gastrule 8:30 has, C shape at 10:00 has, and C shape at 12:00 has. After 19 has hatching larvae occurred. The total length (TL) of the larvae was 2.234 mm (SD= 0.122), and the nothochordial length (NL) was 2.179 mm (SD= 0.119). Preflexion stage was observed 49 has, flexion stage was 11 days after spawn (das) (3.767 mm LT (SD= 0.209)), and postflexion stage was 14 das (4.015 mm LT (SD= 0.302)). After 45 das, the juvenile weights 3.68 g (SD= 1.09). Hatch time of the weakfish larvae was minor than of others croaker species. The stages times of embrionary development were a little different from others croaker species, and probably respond to genetic characteristics of each species and the eggs incubation temperature. The spontaneously spawning without broodstock hormonal applications, and the juveniles production in captivity showed that weakfish is a potential species for restocking programs and mariculture projects.
The cellular basis of the convergence and extension of the Xenopus neural plate.
Keller, R; Shih, J; Sater, A
1992-03-01
There is great interest in the patterning and morphogenesis of the vertebrate nervous system, but the morphogenetic movements involved in early neural development and their underlying cellular mechanisms are poorly understood. This paper describes the cellular basis of the early neural morphogenesis of Xenopus laevis. The results have important implications for neural induction. Mapping the fate map of the midneurula (Eagleson and Harris: J. Neurobiol. 21:427-440, 1990) back to the early gastrula with time-lapse video recording demonstrates that the prospective hindbrain and spinal cord are initially very wide and very short, and thus at the beginning of gastrulation all their precursor cells lie within a few cell diameters of the inducing mesoderm. In the midgastrula, the prospective hindbrain and spinal cord undergo very strong convergence and extension movements in two phases: In the first phase they primarily undergo thinning in the radial direction and lengthening (extension) in the animal-vegetal direction, and the second phase is characterized primarily by mediolateral narrowing (convergence) and anterior-posterior lengthening (extension). These movements also occur in sandwich explants of the gastrula, thus demonstrating the local autonomy of the forces producing them. Tracing cell movements with fluorescein dextran-labeled cells in embryos or explants shows that the initial thinning and extension occurs by radial intercalation of deep cells to form fewer layers of greater area, all of which is expressed as increased length. The subsequent convergence and extension occurs by mediolateral intercalation of deep cells to form a longer, narrower array. These results establish that a similar if not identical sequence of radial and mediolateral cell intercalations underlie convergence and extension of the neural and the mesoderm tissues (Wilson and Keller: Development, 112:289-300, 1991). Moreover, these results establish that radial and mediolateral intercalation are the principal neural cell behaviors induced by the planar signals emanating from the dorsal involuting marginal zone (the Spemann organizer) in the early gastrula (Keller et al: Develop. Dynamics, 193: 218-234, 1992). Radial and mediolateral intercalation are induced among the 5 to 7 rows of cells comprising the prospective hindbrain and spinal cord, thus producing the massive convergence and extension movements that narrow and elongate these regions of the nervous system in the late gastrula. A more general significance of these results is that neural induction is best analyzed and understood in terms of the dynamics of the morphogenetic processes involved.
Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors
2013-01-01
Background In sea urchin larvae the circumesophageal fibers form a prominent muscle system of mesodermal origin. Although the morphology and later development of this muscle system has been well-described, little is known about the molecular signature of these cells or their precise origin in the early embryo. As an invertebrate deuterostome that is more closely related to the vertebrates than other commonly used model systems in myogenesis, the sea urchin fills an important phylogenetic gap and provides a unique perspective on the evolution of muscle cell development. Results Here, we present a comprehensive description of the development of the sea urchin larval circumesophageal muscle lineage beginning with its mesodermal origin using high-resolution localization of the expression of several myogenic transcriptional regulators and differentiation genes. A few myoblasts are bilaterally distributed at the oral vegetal side of the tip of the archenteron and first appear at the late gastrula stage. The expression of the differentiation genes Myosin Heavy Chain, Tropomyosin I and II, as well as the regulatory genes MyoD2, FoxF, FoxC, FoxL1, Myocardin, Twist, and Tbx6 uniquely identify these cells. Interestingly, evolutionarily conserved myogenic factors such as Mef2, MyoR and Six1/2 are not expressed in sea urchin myoblasts but are found in other mesodermal domains of the tip of the archenteron. The regulatory states of these domains were characterized in detail. Moreover, using a combinatorial analysis of gene expression we followed the development of the FoxF/FoxC positive cells from the onset of expression to the end of gastrulation. Our data allowed us to build a complete map of the Non-Skeletogenic Mesoderm at the very early gastrula stage, in which specific molecular signatures identify the precursors of different cell types. Among them, a small group of cells within the FoxY domain, which also express FoxC and SoxE, have been identified as plausible myoblast precursors. Together, these data support a very early gastrula stage segregation of the myogenic lineage. Conclusions From this analysis, we are able to precisely define the regulatory and differentiation signatures of the circumesophageal muscle in the sea urchin embryo. Our findings have important implications in understanding the evolution of development of the muscle cell lineage at the molecular level. The data presented here suggest a high level of conservation of the myogenic specification mechanisms across wide phylogenetic distances, but also reveal clear cases of gene cooption. PMID:24295205
Yahav, S; Brake, J
2014-01-01
Bird embryogenesis takes place in a relatively protected environment that can be manipulated especially well in domestic fowl (chickens) where incubation has long been a commercial process. The embryonic developmental process has been shown to begin in the oviduct such that the embryo has attained either the blastodermal and/or gastrulation stage of development at oviposition. Bird embryos can be affected by "maternal effects," and by environmental conditions during the pre-incubation and incubation periods. "Maternal effects" has been described as an evolutionary mechanism that has provided the mother, by hormonal deposition into the yolk, with the potential to proactively influence the development of her progeny by exposing them to her particular hormonal pattern in such a manner as to influence their ability to cope with the expected wide range of environmental conditions that may occur post-hatching. Another important aspect of "maternal effects" is the effect of the maternal nutrient intake on progeny traits. From a commercial broiler chicken production perspective, it has been established that greater cumulative nutrient intake by the hen during her pullet rearing phase prior to photostimulation resulted in faster growing broiler progeny. Generally, maternal effects on progeny, which have both a genetic and an environmental component represented by yolk hormones deposition and embryo nutrient utilization, have an important effect on the development of a wide range of progeny traits. Furthermore, commercial embryo development during pre-incubation storage and incubation, as well as during incubation per se has been shown to largely depend upon temperature, while other environmental factors that include egg position during storage, and the amount of H2O and CO2 lost by the egg and the subsequent effect on albumen pH and height during storage have become important environmental factors to be considered for successful embryogenesis under commercial conditions. Manipulating environmental temperature during the period of egg storage, during the intermediate pre-incubation period, and incubation period per se has been found to significantly affect embryo development, hatching progress, chick quality at hatching, and chick development post-hatching. These temperature manipulations have also been shown to affect the acquisition of thermotolerance to subsequent post-hatching thermal challenge. This chapter will focus on: a. "maternal effects" on embryo and post-hatching development; b. environmental effects during the post-ovipositional period of egg storage, the intermediate pre-incubation period, and incubation period per se on chick embryogenesis and subsequent post-hatching growth and development; and c. effects of temperature manipulations during the pre-incubation and incubation periods on acquisition of thermotolerance and development of secondary sexual characteristics in broiler chickens.
Slevin, John C; Byers, Lois; Gertsenstein, Marina; Qu, Dawei; Mu, Junwu; Sunn, Nana; Kingdom, John CP; Rossant, Janet; Adamson, S Lee
2006-01-01
Background In utero microinjection has proven valuable for exploring the developmental consequences of altering gene expression, and for studying cell lineage or migration during the latter half of embryonic mouse development (from embryonic day 9.5 of gestation (E9.5)). In the current study, we use ultrasound guidance to accurately target microinjections in the conceptus at E6.5–E7.5, which is prior to cardiovascular or placental dependence. This method may be useful for determining the developmental effects of targeted genetic or cellular interventions at critical stages of placentation, gastrulation, axis formation, and neural tube closure. Results In 40 MHz ultrasound images at E6.5, the ectoplacental cone region and proamniotic cavity could be visualized. The ectoplacental cone region was successfully targeted with 13.8 nL of a fluorescent bead suspension with few or no beads off-target in 51% of concepti microinjected at E6.5 (28/55 injected). Seventy eight percent of the embryos survived 2 to 12 days post injection (93/119), 73% (41/56) survived to term of which 68% (38/56) survived and appeared normal one week after birth. At E7.5, the amniotic and exocoelomic cavities, and ectoplacental cone region were discernable. Our success at targeting with few or no beads off-target was 90% (36/40) for the ectoplacental cone region and 81% (35/43) for the exocoelomic cavity but tended to be less, 68% (34/50), for the smaller amniotic cavity. At E11.5, beads microinjected at E7.5 into the ectoplacental cone region were found in the placental spongiotrophoblast layer, those injected into the exocoelomic cavity were found on the surface or within the placental labyrinth, and those injected into the amniotic cavity were found on the surface or within the embryo. Following microinjection at E7.5, survival one week after birth was 60% (26/43) when the amniotic cavity was the target and 66% (19/29) when the target was the ectoplacental cone region. The survival rate was similar in sham experiments, 54% (33/61), for which procedures were identical but no microinjection was performed, suggesting that surgery and manipulation of the uterus were the main causes of embryonic death. Conclusion Ultrasound-guided microinjection into the ectoplacental cone region at E6.5 or E7.5 and the amniotic cavity at E7.5 was achieved with a 7 day postnatal survival of ≥60%. Target accuracy of these sites and of the exocoelomic cavity at E7.5 was ≥51%. We suggest that this approach may be useful for exploring gene function during early placental and embryonic development. PMID:16504164
Wolf, Rainer; Krause, Gerhard
1971-09-01
In the eggs ofPimpla turionellae, which are characterized by a long germ anlage ("long-germ egg" type), the cleavage nuclei primarily populate the anterior part and only later appear in the posterior of the egg lumen during the intravitelline cleavage. Gastrulation and segmentation also start within this anterior region. Time-lapse motion pictures served to observe and to check quantitatively even slow movements during cleavage and blastogenesis. In motion diagrams made by means of microkymographic technics the flow within the ooplasm along the longer axis of the egg has been timed.Shortly before the first cleavage in thestrictly unfertilized male eggs a short-time"unipolar flow" sets in from a primary initial region at 90% of their length. Thus a pillar of "central plasm" between both of the poles becomes shifted towards the posterior, while its outer coating layer of "marginal-plasm" is displaced forwards by the same distance. In eggs from fertilized females two successive flows of the same "unipolar" type have been observed.At the end of the third cleavage the energids, heretofore loosely grouped together, become distributed within the central plasm to form a "nuclear column". At the same time a fluently pulsatory "bipolar flow" sets in, within asecondary initial region at 80% of the egg length. Comparable to two mirror-image fountains, parts of the central plasm are carried towards the front pole and to the rear pole of the egg, respectively, while the marginal plasm, together with the oolemma, flows in opposite directions at times. With each pulsation the moving areas of the bipolar flow are shifted more and more towards the egg poles. The occurrence of bipolar flow pulsations, amounting to five, is correlated with the nuclear divisions in a still unknown way. In the rhythm of the bipolar flow, the energids become dispersed within the central plasm with a certain spatial lagging.After the bipolar flow has come to a halt, four further cleavages are indicated by faint local pulsations of the ooplasm. The cleavage nuclei move to the egg surface and pole cells become separatedtied off During blastoderm formation another four faint pulsations are observed, especially within the central ooplasm, all of them clearly synchronized with superficial cleavages. Occurring in mitotic waves, these cleavages indicate a third initial region, with the individual position varying between 10 and 28% of the egg length.Furthermore the technics of time-lapse motion pictures permit a local and temporal determination of extravitelline pole space formation, of a ring-shaped contracted region of slightly thickening periplasm within the secondary initial region, and the dislocation of the oosome towards the egg surface, which results from the activity of the posterior fountain during the phase of bipolar flow. Invagination and segmentation of the embryo become distinct within the secondary initial region, thus identifying this region as a differentiation centre.The correlation of plasm flow and nuclear divisions is discussed as well as the correlation of the initial regions to the different patterns of egg architecture in the longgerm egg type. The correlation between bipolar pulsations and the development of the metameric pattern including the function of the oosomal region is also discussed. The ooplasmic movements as known from egg types other thanPimpla are compared to the above observations.