Hassinen, Minna; Haverinen, Jaakko; Vornanen, Matti
2017-12-01
Funny current ( I f ), formed by hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels), is supposed to be crucial for the membrane clock regulating the cardiac pacemaker mechanism. We examined the presence and activity of HCN channels in the brown trout ( Salmo trutta fario ) sinoatrial (SA) pacemaker cells and their putative role in heart rate ( f H ) regulation. Six HCN transcripts (HCN1, HCN2a, HCN2ba, HCN2bb, HCN3, and HCN4) were expressed in the brown trout heart. The total HCN transcript abundance was 4.0 and 4.9 times higher in SA pacemaker tissue than in atrium and ventricle, respectively. In the SA pacemaker, HCN3 and HCN4 were the main isoforms representing 35.8 ± 2.7 and 25.0 ± 1.5%, respectively, of the total HCN transcripts. Only a small I f with a mean current density of -1.2 ± 0.37 pA/pF at -140 mV was found in 4 pacemaker cells out of 16 spontaneously beating cells examined, despite the optimization of recording conditions for I f activity. I f was not found in any of the 24 atrial myocytes and 21 ventricular myocytes examined. HCN4 coexpressed with the MinK-related peptide 1 (MiRP1) β-subunit in CHO cells generated large I f currents. In contrast, HCN3 (+MiRP1) failed to produce I f in the same expression system. Cs + (2 mM), which blocked 84 ± 12% of the native I f , reversibly reduced f H 19.2 ± 3.6% of the excised multicellular pacemaker tissue from 53 ± 5 to 44 ± 5 beats/min ( P < 0.05). However, this effect was probably due to the reduction of I Kr , which was also inhibited (63.5 ± 4.6%) by Cs + These results strongly suggest that f H regulation in the brown trout heart is largely independent on I f . Copyright © 2017 the American Physiological Society.
Cheng, Lan; Sanguinetti, Michael C
2009-05-01
Niflumic acid, 2-[[3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid (NFA), is a nonsteroidal anti-inflammatory drug that also blocks or modifies the gating of many ion channels. Here, we investigated the effects of NFA on hyperpolarization-activated cyclic nucleotide-gated cation (HCN) pacemaker channels expressed in X. laevis oocytes using site-directed mutagenesis and the two-electrode voltage-clamp technique. Extracellular NFA acted rapidly and caused a slowing of activation and deactivation and a hyperpolarizing shift in the voltage dependence of HCN2 channel activation (-24.5 +/- 1.2 mV at 1 mM). Slowed channel gating and reduction of current magnitude was marked in oocytes treated with NFA, while clamped at 0 mV but minimal in oocytes clamped at -100 mV, indicating the drug preferentially interacts with channels in the closed state. NFA at 0.1 to 3 mM shifted the half-point for channel activation in a concentration-dependent manner, with an EC(50) of 0.54 +/- 0.068 mM and a predicted maximum shift of -38 mV. NFA at 1 mM also reduced maximum HCN2 conductance by approximately 20%, presumably by direct block of the pore. The rapid onset and state-dependence of NFA-induced changes in channel gating suggests an interaction with the extracellular region of the S4 transmembrane helix, the primary voltage-sensing domain of HCN2. Neutralization (by mutation to Gln) of any three of the outer four basic charged residues in S4, but not single mutations, abrogated the NFA-induced shift in channel activation. We conclude that NFA alters HCN2 gating by interacting with the extracellular end of the S4 voltage sensor domains.
Pacemaker channels produce an instantaneous current.
Proenza, Catherine; Angoli, Damiano; Agranovich, Eugene; Macri, Vincenzo; Accili, Eric A
2002-02-15
Spontaneous rhythmic activity in mammalian heart and brain depends on pacemaker currents (I(h)), which are produced by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Here, we report that the mouse HCN2 pacemaker channel isoform also produced a large instantaneous current (I(inst(HCN2))) in addition to the well characterized, slowly activating I(h). I(inst(HCN2)) was specific to expression of HCN2 on the plasma membrane and its amplitude was correlated with that of I(h). The two currents had similar reversal potentials, and both were modulated by changes in intracellular Cl(-) and cAMP. A mutation in the S4 domain of HCN2 (S306Q) decreased I(h) but did not alter I(inst(HCN2)), and instantaneous currents in cells expressing either wild type HCN2 or mutant S306Q channels were insensitive to block by Cs(+). Co-expression of HCN2 with the accessory subunit, MiRP1, decreased I(h) and increased I(inst(HCN2)), suggesting a mechanism for modulation of both currents in vivo. These data suggest that expression of HCN channels may be accompanied by a background conductance in native tissues and are consistent with at least two open states of HCN channels: I(inst(HCN2)) is produced by a Cs(+)-open state; hyperpolarization produces an additional Cs(+)-sensitive open state, which results in I(h).
Tran, Neil; Proenza, Catherine; Macri, Vincenzo; Petigara, Fiona; Sloan, Erin; Samler, Shannon; Accili, Eric A
2002-11-15
Pacemaker channels are formed by co-assembly of hyperpolarization-activated cyclic nucleotide-gated (HCN) subunits. Previously, we suggested that the NH(2) termini of the mouse HCN2 isoform were important for subunit co-assembly and functional channel expression. Using an alignment strategy together with yeast two-hybrid assays, patch clamp electrophysiology, and confocal imaging, we have now identified a domain within the NH(2) terminus of the HCN2 subunit that is responsible for interactions between NH(2) termini and promoting the trafficking of functional channels to the plasma membrane. This domain is composed of 52 amino acids, is located adjacent to the putative first transmembrane segment, and is highly conserved among the mammalian HCN isoforms. This conserved domain, but not the remaining unconserved NH(2)-terminal regions of HCN2, specifically interacted with itself in yeast two-hybrid assays. Moreover, the conserved domain was important for expression of currents. Whereas relatively normal whole cell HCN2 currents were produced by channels containing only the conserved domain, further deletion of this region, leaving only a more polar and putative coiled-coil segment, eliminated HCN2 currents and resulted in proteins that localized predominantly in perinuclear compartments. Thus, we suggest that this conserved domain is the critical NH(2)-terminal determinant of subunit co-assembly and trafficking of pacemaker channels.
Boulton, Stephen; Akimoto, Madoka; Akbarizadeh, Sam; Melacini, Giuseppe
2017-01-01
The hyperpolarization-activated and cyclic nucleotide-modulated ion channel (HCN) drives the pacemaker activity in the heart, and its malfunction can result in heart disorders. One such disorder, familial sinus bradycardia, is caused by the S672R mutation in HCN, whose electrophysiological phenotypes include a negative shift in the channel activation voltage and an accelerated HCN deactivation. The outcomes of these changes are abnormally low resting heart rates. However, the molecular mechanism underlying these electrophysiological changes is currently not fully understood. Crystallographic investigations indicate that the S672R mutation causes limited changes in the structure of the HCN intracellular gating tetramer, but its effects on protein dynamics are unknown. Here, we utilize comparative S672R versus WT NMR analyses to show that the S672R mutation results in extensive perturbations of the dynamics in both apo- and holo-forms of the HCN4 isoform, reflecting how S672R remodels the free energy landscape for the modulation of HCN4 by cAMP, i.e. the primary cyclic nucleotide modulator of HCN channels. We show that the S672R mutation results in a constitutive shift of the dynamic auto-inhibitory equilibrium toward inactive states of HCN4 and broadens the free-energy well of the apo-form, enhancing the millisecond to microsecond dynamics of the holo-form at sites critical for gating cAMP binding. These S672R-induced variations in dynamics provide a molecular basis for the electrophysiological phenotypes of this mutation and demonstrate that the pathogenic effects of the S672R mutation can be rationalized primarily in terms of modulations of protein dynamics. PMID:28174302
Flavonoid Regulation of HCN2 Channels*
Carlson, Anne E.; Rosenbaum, Joel C.; Brelidze, Tinatin I.; Klevit, Rachel E.; Zagotta, William N.
2013-01-01
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μm. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels. PMID:24085296
Proenza, Catherine; Tran, Neil; Angoli, Damiano; Zahynacz, Kristin; Balcar, Petr; Accili, Eric A
2002-08-16
In mammalian heart and brain, pacemaker currents are produced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, which probably exist as heteromeric assemblies of different subunit isoforms. To investigate the molecular domains that participate in assembly and membrane trafficking of HCN channels, we have used the yeast two-hybrid system, patch clamp electrophysiology, and confocal microscopy. We show here that the N termini of the HCN1 and HCN2 isoforms interacted and were essential for expression of functional homo- or heteromeric channels on the plasma membrane of Chinese hamster ovary cells. We also show that the cyclic nucleotide binding domain (CNBD) of HCN2 was required for the expression of functional homomeric channels. This expression was dependent on a 12-amino acid domain corresponding to the B-helix in the CNBD of the catabolite activator protein. However, co-expression with HCN1 of an HCN2 deletion mutant lacking the CNBD rescued surface immunofluorescence and currents, indicating that a CNBD need not be present in each subunit of a heteromeric HCN channel. Furthermore, neither CNBDs nor other COOH-terminal domains of HCN1 and HCN2 interacted in yeast two-hybrid assays. Thus, interaction between NH(2)-terminal domains is important for HCN subunit assembly, whereas the CNBD is important for functional expression, but its absence from some subunits will still allow for the assembly of functional channels.
Structural basis for modulation and agonist specificity of HCN pacemaker channels.
Zagotta, William N; Olivier, Nelson B; Black, Kevin D; Young, Edgar C; Olson, Rich; Gouaux, Eric
2003-09-11
The family of hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels are crucial for a range of electrical signalling, including cardiac and neuronal pacemaker activity, setting resting membrane electrical properties and dendritic integration. These nonselective cation channels, underlying the I(f), I(h) and I(q) currents of heart and nerve cells, are activated by membrane hyperpolarization and modulated by the binding of cyclic nucleotides such as cAMP and cGMP. The cAMP-mediated enhancement of channel activity is largely responsible for the increase in heart rate caused by beta-adrenergic agonists. Here we have investigated the mechanism underlying this modulation by studying a carboxy-terminal fragment of HCN2 containing the cyclic nucleotide-binding domain (CNBD) and the C-linker region that connects the CNBD to the pore. X-ray crystallographic structures of this C-terminal fragment bound to cAMP or cGMP, together with equilibrium sedimentation analysis, identify a tetramerization domain and the mechanism for cyclic nucleotide specificity, and suggest a model for ligand-dependent channel modulation. On the basis of amino acid sequence similarity to HCN channels, the cyclic nucleotide-gated, and eag- and KAT1-related families of channels are probably related to HCN channels in structure and mechanism.
Bruzauskaite, Ieva; Bironaite, Daiva; Bagdonas, Edvardas; Skeberdis, Vytenis Arvydas; Denkovskij, Jaroslav; Tamulevicius, Tomas; Uvarovas, Valentinas; Bernotiene, Eiva
2016-04-30
The transfection of human mesenchymal stem cells (hMSCs) with the hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (HCN2) gene has been demonstrated to provide biological pacing in dogs with complete heart block. The mechanism appears to be the generation of the ion current (If) by the HCN2-expressing hMSCs. However, it is not clear how the transfection process and/or the HCN2 gene affect the growth functions of the hMSCs. Therefore, we investigated survival, proliferation, cell cycle, and growth on a Kapton® scaffold of HCN2-expressing hMSCs. hMSCs were isolated from the bone marrow of healthy volunteers applying a selective cell adhesion procedure and were identified by their expression of specific surface markers. Cells from passages 2-3 were transfected by electroporation using commercial transfection kits and a pIRES2-EGFP vector carrying the pacemaker gene, mouse HCN2 (mHCN2). Transfection efficiency was confirmed by enhanced green fluorescent protein (EGFP) fluorescence, quantitative real-time polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). After hMSCs were transfected, their viability, proliferation, If generation, apoptosis, cell cycle, and expression of transcription factors were measured and compared with non-transfected cells and cells transfected with pIRES2-EGFP vector alone. Intracellular mHCN2 expression after transfection increased from 22.14 to 62.66 ng/mg protein (p < 0.05). Transfection efficiency was 45 ± 5 %. The viability of mHCN2-transfected cells was 82 ± 5 %; they grew stably for more than 3 weeks and induced If current. mHCN2-transfected cells had low mitotic activity (10.4 ± 1.24 % in G2/M and 83.6 ± 2.5 % in G1 phases) as compared with non-transfected cells (52-53 % in G2/M and 31-35 % in G1 phases). Transfected cells showed increased activation of nine cell cycle-regulating transcription factors: the most prominent upregulation was of AMP-dependent transcription factor ATF3 (7.11-fold, p = 0.00056) which regulates the G1 phase. mHCN2-expressing hMSCs were attached and made anchorage-dependent connection with other cells without transmigration through a 12.7-μm thick Kapton® HN film with micromachined 1-3 μm diameter pores. mHCN2-expressing hMSCs preserved the major cell functions required for the generation of biological pacemakers: high viability, functional activity, but low proliferation rate through the arrest of cell cycle in the G1 phase. mHCN2-expressing hMSCs attached and grew on a Kapton® scaffold without transmigration, confirming the relevance of these cells for the generation of biological pacemakers.
Charge movement in gating-locked HCN channels reveals weak coupling of voltage sensors and gate.
Ryu, Sujung; Yellen, Gary
2012-11-01
HCN (hyperpolarization-activated cyclic nucleotide gated) pacemaker channels have an architecture similar to that of voltage-gated K(+) channels, but they open with the opposite voltage dependence. HCN channels use essentially the same positively charged voltage sensors and intracellular activation gates as K(+) channels, but apparently these two components are coupled differently. In this study, we examine the energetics of coupling between the voltage sensor and the pore by using cysteine mutant channels for which low concentrations of Cd(2+) ions freeze the open-closed gating machinery but still allow the sensors to move. We were able to lock mutant channels either into open or into closed states by the application of Cd(2+) and measure the effect on voltage sensor movement. Cd(2+) did not immobilize the gating charge, as expected for strict coupling, but rather it produced shifts in the voltage dependence of voltage sensor charge movement, consistent with its effect of confining transitions to either closed or open states. From the magnitude of the Cd(2+)-induced shifts, we estimate that each voltage sensor produces a roughly three- to sevenfold effect on the open-closed equilibrium, corresponding to a coupling energy of ∼1.3-2 kT per sensor. Such coupling is not only opposite in sign to the coupling in K(+) channels, but also much weaker.
Morris, Gwilym M; D'Souza, Alicia; Dobrzynski, Halina; Lei, Ming; Choudhury, Moinuddin; Billeter, Rudi; Kryukova, Yelena; Robinson, Richard B; Kingston, Paul A; Boyett, Mark R
2013-10-01
Although the right atrium (RA contains subsidiary atrial pacemaker (SAP) tissue that can take over from the sinoatrial node (SAN) in sick sinus syndrome (SSS), SAP tissue is bradycardic. Little is known about SAP tissue and one aim of the study was to characterize ion channel expression to obtain insight into SAP pacemaker mechanisms. A second aim was to determine whether HCN over-expression (a 'biopacemaker'-like strategy) can accelerate the pacemaker rate producing a pacemaker that is similar in nature to the SAN. SAP tissue was isolated from the rat and the leading pacemaker site was characterized. Cell size at the leading pacemaker site in the SAP was smaller than in the RA and comparable to that in the SAN. mRNA levels showed the SAP to be similar to, but distinct from, the SAN. For example, in the SAN and SAP, expression of Tbx3 and HCN1 was higher and Nav1.5 and Cx43 lower than in the RA. Organ-cultured SAP tissue beat spontaneously, but at a slower rate than the SAN. Adenovirus-mediated gene transfer of HCN2 and the chimeric protein HCN212 significantly increased the pacemaker rate of the SAP close to that of the native SAN, but HCN4 was ineffective. SAP tissue near the inferior vena cava is bradycardic, but shares characteristics with the SAN. Pacing can be accelerated by the over-expression of HCN2 or HCN212. This provides proof of concept for the use of SAP tissue as a substrate for biopacemaking in the treatment of SSS.
XUE, CHENG; ZHANG, JUN; LV, ZHAN; LIU, HUI; HUANG, CONGXIN; YANG, JING; WANG, TEN
2015-01-01
Cardiac stem cells (CSCs) can differentiate into cardiac muscle-like cells; however, it remains unknown whether CSCs may possess the ability to differentiate into pacemaker cells. The aim of the present study was to determine whether angiotensin II (Ang II) could promote the specialization of CSCs into pacemaker-like cells. Mouse CSCs were treated with Ang II from day 3–5, after cell sorting. The differentiation potential of the cells was then analyzed by morphological analysis, flow cytometry, reverse transcription-polymerase chain reaction, immunohistochemistry and patch clamp analysis. Treatment with Ang II resulted in an increased number of cardiac muscle-like cells (32.7±4.8% vs. 21.5±4.8%; P<0.05), and inhibition of smooth muscle-like cells (6.2±7.3% vs. 20.5±5.1%; P<0.05). Following treatment with Ang II, increased levels of the cardiac progenitor-specific markers GATA4 and Nkx2.5 were observed in the cells. Furthermore, the transcript levels of pacemaker function-related genes, including hyperpolarization-activated cyclic nucleotide-gated (HCN)2, HCN4, T-box (Tbx)2 and Tbx3, were significantly upregulated. Immunofluorescence analysis confirmed the increased number of pacemaker-like cells. The pacemaker current (If) was recorded in the cells derived from CSCs, treated with Ang II. In conclusion, treatment of CSCs with Ang II during the differentiation process modified cardiac-specific gene expression and resulted in the enhanced formation of pacemaker-like cells. PMID:25572000
Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes—A model
NASA Astrophysics Data System (ADS)
Kanani, S.; Pumir, A.; Krinsky, V.
2008-01-01
One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler Reuter model, as well as with the elaborate dynamic Luo Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I channels is low enough. At too high an expression level of I channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I channels observed in ventricular myocytes, both in the Beeler Reuter and in the dynamic Luo Rudy models are too high to allow to observe oscillations. With expression levels below ˜1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.
Sartiani, Laura; Mannaioni, Guido; Masi, Alessio; Novella Romanelli, Maria; Cerbai, Elisabetta
2017-10-01
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Sick sinus syndrome in HCN1-deficient mice.
Fenske, Stefanie; Krause, Stefanie C; Hassan, Sami I H; Becirovic, Elvir; Auer, Franziska; Bernard, Rebekka; Kupatt, Christian; Lange, Philipp; Ziegler, Tilman; Wotjak, Carsten T; Zhang, Henggui; Hammelmann, Verena; Paparizos, Christos; Biel, Martin; Wahl-Schott, Christian A
2013-12-17
Sinus node dysfunction (SND) is a major clinically relevant disease that is associated with sudden cardiac death and requires surgical implantation of electric pacemaker devices. Frequently, SND occurs in heart failure and hypertension, conditions that lead to electric instability of the heart. Although the pathologies of acquired SND have been studied extensively, little is known about the molecular and cellular mechanisms that cause congenital SND. Here, we show that the HCN1 protein is highly expressed in the sinoatrial node and is colocalized with HCN4, the main sinoatrial pacemaker channel isoform. To characterize the cardiac phenotype of HCN1-deficient mice, a detailed functional characterization of pacemaker mechanisms in single isolated sinoatrial node cells, explanted beating sinoatrial node preparation, telemetric in vivo electrocardiography, echocardiography, and in vivo electrophysiology was performed. On the basis of these experiments we demonstrate that mice lacking the pacemaker channel HCN1 display congenital SND characterized by bradycardia, sinus dysrhythmia, prolonged sinoatrial node recovery time, increased sinoatrial conduction time, and recurrent sinus pauses. As a consequence of SND, HCN1-deficient mice display a severely reduced cardiac output. We propose that HCN1 stabilizes the leading pacemaker region within the sinoatrial node and hence is crucial for stable heart rate and regular beat-to-beat variation. Furthermore, we suggest that HCN1-deficient mice may be a valuable genetic disease model for human SND.
Herrmann, Stefan; Layh, Beate; Ludwig, Andreas
2011-12-01
HCN pacemaker channels (I(f) channels) are believed to contribute to important functions in the heart; thus these channels became an attractive target for generating transgenic mouse mutants to elucidate their role in physiological and pathophysiological cardiac conditions. A full understanding of cardiac I(f) and the interpretation of studies using HCN mouse mutants require detailed information about the expression profile of the individual HCN subunits. Here we investigate the cardiac expression pattern of the HCN isoforms at the mRNA as well as at the protein level. The specificity of antibodies used was strictly confirmed by the use of HCN1, HCN2 and HCN4 knockout animals. We find a low, but highly differential HCN expression profile outside the cardiac conduction pathway including left and right atria and ventricles. Additionally HCN distribution was investigated in tissue slices of the sinoatrial node, the atrioventricular node, the bundle of His and the bundle branches. The conduction system was marked by acetylcholine esterase staining. HCN4 was confirmed as the predominant isoform of the primary pacemaker followed by a distinct expression of HCN1. In contrast HCN2 shows only a confined expression to individual pacemaker cells. Immunolabeling of the AV-node reveals also a pronounced specificity for HCN1 and HCN4. Compared to the SN and AVN we found a low but selective expression of HCN4 as the only isoform in the atrioventricular bundle. However in the bundle branches HCN1, HCN4 and also HCN2 show a prominent and selective expression pattern. Our results display a characteristic distribution of individual HCN isoforms in several cardiac compartments and reveal that beside HCN4, HCN1 represents the isoform which is selectively expressed in most parts of the conduction system suggesting a substantial contribution of HCN1 to pacemaking. 2011 Elsevier Ltd. All rights reserved.
Saito, Yukihiro; Nakamura, Kazufumi; Yoshida, Masashi; Sugiyama, Hiroki; Takano, Makoto; Nagase, Satoshi; Morita, Hiroshi; Kusano, Kengo F; Ito, Hiroshi
2018-05-30
A biological pacemaker is expected to solve the persisting problems of an artificial cardiac pacemaker including short battery life, lead breaks, infection, and electromagnetic interference. We previously reported HCN4 overexpression enhances pacemaking ability of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) in vitro. However, the effect of these cells on bradycardia in vivo has remained unclear. Therefore, we transplanted HCN4-overexpressing mESC-CMs into bradycardia model animals and investigated whether they could function as a biological pacemaker. The rabbit Hcn4 gene was transfected into mouse embryonic stem cells and induced HCN4-overexpressing mESC-CMs. Non-cardiomyocytes were removed under serum/glucose-free and lactate-supplemented conditions. Cardiac balls containing 5 × 10 3 mESC-CMs were made by using the hanging drop method. One hundred cardiac balls were injected into the left ventricular free wall of complete atrioventricular block (CAVB) model rats. Heart beats were evaluated using an implantable telemetry system 7 to 30 days after cell transplantation. The result showed that ectopic ventricular beats that were faster than the intrinsic escape rhythm were often observed in CAVB model rats transplanted with HCN4-overexpressing mESC-CMs. On the other hand, the rats transplanted with non-overexpressing mESC-CMs showed sporadic single premature ventricular contraction but not sustained ectopic ventricular rhythms. These results indicated that HCN4-overexpressing mESC-CMs produce rapid ectopic ventricular rhythms as a biological pacemaker.
D’Souza, Alicia; Pearman, Charles M.; Wang, Yanwen; Nakao, Shu; Logantha, Sunil Jit R.J.; Cox, Charlotte; Bennett, Hayley; Zhang, Yu; Johnsen, Anne Berit; Linscheid, Nora; Poulsen, Pi Camilla; Elliott, Jonathan; Coulson, Jessica; McPhee, Jamie; Robertson, Abigail; da Costa Martins, Paula A.; Kitmitto, Ashraf; Wisløff, Ulrik; Cartwright, Elizabeth J.; Monfredi, Oliver; Lundby, Alicia; Dobrzynski, Halina; Oceandy, Delvac; Morris, Gwilym M.
2017-01-01
Rationale: Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training–induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes. Objective: To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4. Methods and Results: As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3′-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5. Conclusions: HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes. PMID:28821541
D'Souza, Alicia; Pearman, Charles M; Wang, Yanwen; Nakao, Shu; Logantha, Sunil Jit R J; Cox, Charlotte; Bennett, Hayley; Zhang, Yu; Johnsen, Anne Berit; Linscheid, Nora; Poulsen, Pi Camilla; Elliott, Jonathan; Coulson, Jessica; McPhee, Jamie; Robertson, Abigail; da Costa Martins, Paula A; Kitmitto, Ashraf; Wisløff, Ulrik; Cartwright, Elizabeth J; Monfredi, Oliver; Lundby, Alicia; Dobrzynski, Halina; Oceandy, Delvac; Morris, Gwilym M; Boyett, Mark R
2017-10-13
Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, I f , underlies exercise training-induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes. To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4. As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3'-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and I f . Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5. HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes. © 2017 The Authors.
Tibbs, Gareth R.; Rowley, Thomas J.; Sanford, R. Lea; Herold, Karl F.; Proekt, Alex; Hemmings, Hugh C.; Andersen, Olaf S.; Flood, Pamela D.
2013-01-01
Chronic pain after peripheral nerve injury is associated with afferent hyperexcitability and upregulation of hyperpolarization-activated, cyclic nucleotide-regulated (HCN)–mediated IH pacemaker currents in sensory neurons. HCN channels thus constitute an attractive target for treating chronic pain. HCN channels are ubiquitously expressed; analgesics targeting HCN1-rich cells in the peripheral nervous system must spare the cardiac pacemaker current (carried mostly by HCN2 and HCN4) and the central nervous system (where all four isoforms are expressed). The alkylphenol general anesthetic propofol (2,6-di-iso-propylphenol) selectively inhibits HCN1 channels versus HCN2–HCN4 and exhibits a modest pharmacokinetic preference for the periphery. Consequently, we hypothesized that propofol, and congeners, should be antihyperalgesic. Alkyl-substituted propofol analogs have different rank-order potencies with respect to HCN1 inhibition, GABAA receptor (GABAA-R) potentiation, and general anesthesia. Thus, 2,6- and 2,4-di-tertbutylphenol (2,6- and 2,4-DTBP, respectively) are more potent HCN1 antagonists than propofol, whereas 2,6- and 2,4-di-sec-butylphenol (2,6- and 2,4-DSBP, respectively) are less potent. In contrast, DSBPs, but not DTBPs, enhance GABAA-R function and are general anesthetics. 2,6-DTBP retained propofol’s selectivity for HCN1 over HCN2–HCN4. In a peripheral nerve ligation model of neuropathic pain, 2,6-DTBP and subhypnotic propofol are antihyperalgesic. The findings are consistent with these alkylphenols exerting analgesia via non-GABAA-R targets and suggest that antagonism of central HCN1 channels may be of limited importance to general anesthesia. Alkylphenols are hydrophobic, and thus potential modifiers of lipid bilayers, but their effects on HCN channels are due to direct drug-channel interactions because they have little bilayer-modifying effect at therapeutic concentrations. The alkylphenol antihyperalgesic target may be HCN1 channels in the damaged peripheral nervous system. PMID:23549867
Zhou, Lei; Olivier, Nelson B; Yao, Huan; Young, Edgar C; Siegelbaum, Steven A
2004-12-02
Cyclic nucleotides directly enhance the opening of the tetrameric CNG and HCN channels, although the mechanism remains unclear. We examined why HCN and certain CNG subunits form functional homomeric channels, whereas other CNG subunits only function in heteromeric channels. The "defect" in the CNGA4 subunit that prevents its homomeric expression was localized to its C-linker, which connects the transmembrane domain to the binding domain and contains a tripeptide that decreases the efficacy of ligand gating. Remarkably, replacement of the homologous HCN tripeptide with the CNGA4 sequence transformed cAMP into an inverse agonist that inhibits HCN channel opening. Using analytical ultracentrifugation, we identified the structural basis for this gating switch: whereas cAMP normally enhances the assembly of HCN C-terminal domains into a tetrameric gating ring, inclusion of the CNGA4 tripeptide reversed this action so that cAMP now causes gating ring disassembly. Thus, ligand gating depends on the dynamic oligomerization of C-terminal binding domains.
Functional Characterization of Cnidarian HCN Channels Points to an Early Evolution of Ih.
Baker, Emma C; Layden, Michael J; van Rossum, Damian B; Kamel, Bishoy; Medina, Monica; Simpson, Eboni; Jegla, Timothy
2015-01-01
HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2). Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node. Additionally, HCN channels regulate dendritic excitability in a wide variety of neurons. Little is known about the early functional evolution of HCN channels, but the presence of HCN sequences in basal metazoan phyla and choanoflagellates, a protozoan sister group to the metazoans, indicate that the gene family predates metazoan emergence. We functionally characterized two HCN channel orthologs from Nematostella vectensis (Cnidaria, Anthozoa) to determine which properties of HCN channels were established prior to the emergence of bilaterians. We find Nematostella HCN channels share all the major functional features of bilaterian HCNs, including reversed voltage-dependence, activation by cAMP and PIP2, and block by extracellular Cs+. Thus bilaterian-like HCN channels were already present in the common parahoxozoan ancestor of bilaterians and cnidarians, at a time when the functional diversity of voltage-gated K+ channels was rapidly expanding. NvHCN1 and NvHCN2 are expressed broadly in planulae and in both the endoderm and ectoderm of juvenile polyps.
Ishikawa, Taisuke; Ohno, Seiko; Murakami, Takashi; Yoshida, Kentaro; Mishima, Hiroyuki; Fukuoka, Tetsuya; Kimoto, Hiroki; Sakamoto, Risa; Ohkusa, Takafumi; Aiba, Takeshi; Nogami, Akihiko; Sumitomo, Naokata; Shimizu, Wataru; Yoshiura, Koh-Ichiro; Horigome, Hitoshi; Horie, Minoru; Makita, Naomasa
2017-05-01
Familial sick sinus syndrome (SSS) is often attributable to mutations in genes encoding the cardiac Na channel SCN5A and pacemaker channel HCN4. We previously found that SSS with SCN5A mutations shows early onset of manifestations and male predominance. Despite recent reports on the complications of atrial fibrillation (AF) and left ventricular noncompaction (LVNC) in patients with SSS caused by HCN4 mutations, their overall clinical spectrum remains unknown. The purpose of this study was to investigate the clinical and demographic features of SSS patients carrying HCN4 mutations. We genetically screened 38 unrelated SSS families and functionally analyzed the mutant SCN5A and HCN4 channels by patch clamping. We also evaluated the clinical features of familial SSS by a meta-analysis of 48 SSS probands with mutations in HCN4 (n = 16) and SCN5A (n = 32), including previously reported cases, and 538 sporadic SSS cases. We identified two HCN4 and three SCN5A loss-of-function mutations in our familial SSS cohort. Meta-analysis of HCN4 mutation carriers showed a significantly younger age at diagnosis (39.1 ± 21.7 years) than in sporadic SSS (74.3 ± 0.4 years; P <.001), but a significantly older age than in SCN5A mutation carriers (20.0 ± 17.6 years; P = .003). Moreover, HCN4 mutation carriers were more frequently associated with AF (43.8%) and LVNC (50%) and with older age at pacemaker implantation (43.5 ± 22.1 years) than were SCN5A mutation carriers (17.8 ± 16.5 years; P <.001). SSS with HCN4 mutations may form a distinct SSS subgroup characterized by early clinical manifestation after adolescence and frequent association with AF and LVNC. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Hategan, Lidia; Csányi, Beáta; Ördög, Balázs; Kákonyi, Kornél; Tringer, Annamária; Kiss, Orsolya; Orosz, Andrea; Sághy, László; Nagy, István; Hegedűs, Zoltán; Rudas, László; Széll, Márta; Varró, András; Forster, Tamás; Sepp, Róbert
2017-08-15
The most important molecular determinant of heart rate regulation in sino-atrial pacemaker cells includes hyperpolarization-activated, cyclic nucleotide-gated ion channels, the major isoform of which is encoded by the HCN4 gene. Mutations affecting the HCN4 gene are associated primarily with sick sinus syndrome. A novel c.1737+1 G>T 'splice-site' HCN4 mutation was identified in a large family with familial bradycardia which co-segregated with the disease providing a two-point LOD score of 4.87. Twelve out of the 22 investigated family members [4 males, 8 females average age 36 (SD 6) years] were considered as clinically affected (heart rate<60/min on resting ECG). Minimum [36 (SD 7) vs. 47 (SD 5) bpm, p=0.0087) and average heart rates [62 (SD 8) vs. 73 (SD 8) bpm, p=0.0168) were significantly lower in carriers on 24-hour Holter recordings. Under maximum exercise test carriers achieved significantly lower heart rates than non-carrier family members, and percent heart rate reserve and percent corrected heart rate reserve were significantly lower in carriers. Applying rigorous criteria for chronotropic incompetence a higher number of carriers exhibited chronotropic incompetence. Parameters, characterizing short-term variability of heart rate (i.e. rMSSD and pNN50%) were increased in carrier family members, even after normalization for heart rate, in the 24-hour ECG recordings with the same relative increase in 5-minute recordings. The identified novel 'splice site' HCN4 gene mutation, c.1737+1 G>T, causes familial bradycardia and leads to reduced heart rate response, impaired chronotropic competence and increased short-term heart rate variability in the mutation carriers. Copyright © 2017 Elsevier B.V. All rights reserved.
Fan, Jing; Gandini, Maria A.; Zhang, Fang-Xiong; Chen, Lina; Souza, Ivana A.; Zamponi, Gerald W.
2017-01-01
ABSTRACT Formation of complexes between ion channels is important for signal processing in the brain. Here we investigate the biochemical and biophysical interactions between HCN1 channels and Cav3.2 T-type channels. We found that HCN1 co-immunoprecipitated with Cav3.2 from lysates of either mouse brain or tsA-201 cells, with the HCN1 N-terminus associating with the Cav3.2 N-terminus. Cav3.2 channel activity appeared to be functionally regulated by HCN1. The expression of HCN1 induced a decrease in Cav3.2 Ba2+ influx (IBa2+) along with altered channel kinetics and a depolarizing shift in activation gating. However, a reciprocal regulation of HCN1 by Cav3.2 was not observed. This study highlights a regulatory role of HCN1 on Cav3.2 voltage-dependent properties, which are expected to affect physiologic functions such as synaptic transmission and cellular excitability. PMID:28467171
2012-01-01
Background During neocortical development, multiple voltage- and ligand-gated ion channels are differentially expressed in neurons thereby shaping their intrinsic electrical properties. One of these voltage-gated ion channels, the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel and its current Ih, is an important regulator of neuronal excitability. Thus far, studies on an early Ih appearance in rodent neocortex are missing or conflicting. Therefore, we focused our study on perinatal neocortical Ih and its properties. Results In the perinatal rat neocortex we observed a rapid increase in the number of neurons exhibiting Ih. Perinatal Ih had unique properties: first, a pronounced cAMP sensitivity resulting in a marked shift of the voltage sufficient for half-maximum activation of the current towards depolarized voltages and second, an up to 10 times slower deactivation at physiological membrane potentials when compared to the one at postnatal day 30. The combination of these features was sufficient to suppress membrane resonance in our in silico and in vitro experiments. Although all four HCN subunits were present on the mRNA level we only detected HCN4, HCN3 and HCN1 on the protein level at P0. HCN1 protein at P0, however, appeared incompletely processed. At P30 glycosilated HCN1 and HCN2 dominated. By in silico simulations and heterologous co-expression experiments of a ‘slow’ and a ‘fast’ Ih conducting HCN channel subunit in HEK293 cells, we mimicked most characteristics of the native current, pointing to a functional combination of subunit homo- or heteromeres. Conclusion Taken together, these data indicate a HCN subunit shift initiated in the first 24 hours after birth and implicate a prominent perinatal role of the phylogenetically older HCN3 and/or HCN4 subunits in the developing neocortex. PMID:22694806
Cho, Y S; Kim, Y S; Moozhayil, S J; Yang, E S; Bae, Y C
2015-04-16
Hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) and 2 (HCN2) are abundantly expressed in primary sensory neurons and contribute to neuronal excitability and pathological pain. We studied the expression of HCN1 and HCN2 in the rat trigeminal ganglion (TG) neurons and axons in the dental pulp, and the changes in their expression following inflammation, using light- and electron-microscopic immunocytochemistry and quantitative analysis. HCN1 and HCN2 were expressed predominantly in large-sized, neurofilament 200-immunopositive (+) or parvalbumin+ soma in the TG whereas they were expressed mostly in unmyelinated and small myelinated axons in the sensory root. The expression was particularly strong along the plasma membrane in the soma. In the dental pulp, majority of HCN1+ and HCN2+ axons coexpressed calcitonin gene-related peptide. They were expressed mainly in the peripheral pulp and pulp horn where the axons branch extensively in the dental pulp. The expression of HCN1 and HCN2 in TG neurons increased significantly in rats with experimentally induced inflammation of the dental pulp. Our findings support the notion that HCN1 and HCN2 are expressed mainly by both the soma of mechanosensitive neurons in the TG and peripheral axons of nociceptive neurons in the sensory root, and may play a role in the mechanisms of inflammatory pain from the dental pulp. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
VanSchouwen, Bryan; Akimoto, Madoka; Sayadi, Maryam; Fogolari, Federico; Melacini, Giuseppe
2015-01-01
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels control rhythmicity in neurons and cardiomyocytes. Cyclic AMP allosterically modulates HCN through the cAMP-dependent formation of a tetrameric gating ring spanning the intracellular region (IR) of HCN, to which cAMP binds. Although the apo versus holo conformational changes of the cAMP-binding domain (CBD) have been previously mapped, only limited information is currently available on the HCN IR dynamics, which have been hypothesized to play a critical role in the cAMP-dependent gating of HCN. Here, using molecular dynamics simulations validated and complemented by experimental NMR and CD data, we comparatively analyze HCN IR dynamics in the four states of the thermodynamic cycle arising from the coupling between cAMP binding and tetramerization equilibria. This extensive set of molecular dynamics trajectories captures the active-to-inactive transition that had remained elusive for other CBDs, and it provides unprecedented insight on the role of IR dynamics in HCN autoinhibition and its release by cAMP. Specifically, the IR tetramerization domain becomes more flexible in the monomeric states, removing steric clashes that the apo-CDB structure would otherwise impose. Furthermore, the simulations reveal that the active/inactive structural transition for the apo-monomeric CBD occurs through a manifold of pathways that are more divergent than previously anticipated. Upon cAMP binding, these pathways become disallowed, pre-confining the CBD conformational ensemble to a tetramer-compatible state. This conformational confinement primes the IR for tetramerization and thus provides a model of how cAMP controls HCN channel gating. PMID:25944904
Hou, Baohua; Chen, Hengling; Qu, Xiangwei; Lin, Xianguang; Luo, Fang; Li, Chenhong
2015-11-11
In rat's sensory neurons, hyperpolarization-activated inward currents (Ih) play an essential role in mediating action potentials and contributing to neuronal excitability. Classified by the size of neurons and ages, we studied the Ih and transcription levels of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels using electrophysiology and the single-cell RT-PCR. In voltage-clamp studies, Ih and half-maximal activation voltage (V1/2) changed with age and size. An analysis of all HCN subtypes in dorsal root ganglion (DRG) neurons by single-cell RT-PCR was carried out. HCN1 and HCN3 in medium-small elderly neurons had a weak expression. HCN2 in newborns and HCN4 in elderly rats also had a weak expression. The aim of this study is to examine the age-related Ih and HCN channels subunits in different ages and sizes of DRG neurons. The results would be significant in understanding the physiological and pathophysiological function of different sizes of DRG neurons in different age periods.
HCN2 channels in the ventral tegmental area regulate behavioral responses to chronic stress
Zhong, Peng; Vickstrom, Casey R; Liu, Xiaojie; Hu, Ying; Yu, Laikang; Yu, Han-Gang
2018-01-01
Dopamine neurons in the ventral tegmental area (VTA) are powerful regulators of depression-related behavior. Dopamine neuron activity is altered in chronic stress-based models of depression, but the underlying mechanisms remain incompletely understood. Here, we show that mice subject to chronic mild unpredictable stress (CMS) exhibit anxiety- and depressive-like behavior, which was associated with decreased VTA dopamine neuron firing in vivo and ex vivo. Dopamine neuron firing is governed by voltage-gated ion channels, in particular hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Following CMS, HCN-mediated currents were decreased in nucleus accumbens-projecting VTA dopamine neurons. Furthermore, shRNA-mediated HCN2 knockdown in the VTA was sufficient to recapitulate CMS-induced depressive- and anxiety-like behavior in stress-naïve mice, whereas VTA HCN2 overexpression largely prevented CMS-induced behavioral deficits. Together, these results reveal a critical role for HCN2 in regulating VTA dopamine neuronal activity and depressive-related behaviors. PMID:29256865
CNG and HCN channels: two peas, one pod.
Craven, Kimberley B; Zagotta, William N
2006-01-01
Cyclic nucleotide-activated ion channels play a fundamental role in a variety of physiological processes. By opening in response to intracellular cyclic nucleotides, they translate changes in concentrations of signaling molecules to changes in membrane potential. These channels belong to two families: the cyclic nucleotide-gated (CNG) channels and the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. The two families exhibit high sequence similarity and belong to the superfamily of voltage-gated potassium channels. Whereas HCN channels are activated by voltage and CNG channels are virtually voltage independent, both channels are activated by cyclic nucleotide binding. Furthermore, the channels are thought to have similar channel structures, leading to similar mechanisms of activation by cyclic nucleotides. However, although these channels are structurally and behaviorally similar, they have evolved to perform distinct physiological functions. This review describes the physiological roles and biophysical behavior of CNG and HCN channels. We focus on how similarities in structure and activation mechanisms result in common biophysical models, allowing CNG and HCN channels to be viewed as a single genre.
Masoli, Stefano; Solinas, Sergio; D'Angelo, Egidio
2015-01-01
The Purkinje cell (PC) is among the most complex neurons in the brain and plays a critical role for cerebellar functioning. PCs operate as fast pacemakers modulated by synaptic inputs but can switch from simple spikes to complex bursts and, in some conditions, show bistability. In contrast to original works emphasizing dendritic Ca-dependent mechanisms, recent experiments have supported a primary role for axonal Na-dependent processing, which could effectively regulate spike generation and transmission to deep cerebellar nuclei (DCN). In order to account for the numerous ionic mechanisms involved (at present including Nav1.6, Cav2.1, Cav3.1, Cav3.2, Cav3.3, Kv1.1, Kv1.5, Kv3.3, Kv3.4, Kv4.3, KCa1.1, KCa2.2, KCa3.1, Kir2.x, HCN1), we have elaborated a multicompartmental model incorporating available knowledge on localization and gating of PC ionic channels. The axon, including initial segment (AIS) and Ranvier nodes (RNs), proved critical to obtain appropriate pacemaking and firing frequency modulation. Simple spikes initiated in the AIS and protracted discharges were stabilized in the soma through Na-dependent mechanisms, while somato-dendritic Ca channels contributed to sustain pacemaking and to generate complex bursting at high discharge regimes. Bistability occurred only following Na and Ca channel down-regulation. In addition, specific properties in RNs K currents were required to limit spike transmission frequency along the axon. The model showed how organized electroresponsive functions could emerge from the molecular complexity of PCs and showed that the axon is fundamental to complement ionic channel compartmentalization enabling action potential processing and transmission of specific spike patterns to DCN. PMID:25759640
Cao-Ehlker, Xiaochun; Zong, Xiangang; Hammelmann, Verena; Gruner, Christian; Fenske, Stefanie; Michalakis, Stylianos; Wahl-Schott, Christian; Biel, Martin
2013-01-01
Most ion channels consist of the principal ion-permeating core subunit(s) and accessory proteins that are assembled with the channel core. The biological functions of the latter proteins are diverse and include the regulation of the biophysical properties of the ion channel, its connection to signaling pathways and the control of its cell surface expression. There is recent evidence that native hyperpolarization-activated cyclic nucleotide-gated channel complexes (HCN1–4) also contain accessory subunits, among which TRIP8b (tetratricopeptide repeat-containing Rab8b-interacting protein) has been most extensively studied. Here, we identify KCTD3, a so far uncharacterized member of the potassium channel tetramerization-domain containing (KCTD) protein family as an HCN3-interacting protein. KCTD3 is widely expressed in brain and some non-neuronal tissues and colocalizes with HCN3 in specific regions of the brain including hypothalamus. Within the HCN channel family, KCTD3 specifically binds to HCN3 and leads to a profound up-regulation of cell surface expression and current density of this channel. HCN3 can also functionally interact with TRIP8b; however, we found no evidence for channel complexes containing both TRIP8b and KCTD3. The C terminus of HCN3 is crucially required for functional interaction with KCTD3. Replacement of the cytosolic C terminus of HCN2 by the corresponding domain of HCN3 renders HCN2 sensitive to regulation by KCTD3. The C-terminal-half of KCTD3 is sufficient for binding to HCN3. However, the complete protein including the N-terminal tetramerization domain is needed for HCN3 current up-regulation. Together, our experiments indicate that KCTD3 is an accessory subunit of native HCN3 complexes. PMID:23382386
Hatch, R J; Jennings, E A; Ivanusic, J J
2013-08-01
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels conduct an inward cation current (Ih ) that contributes to the maintenance of neuronal membrane potential and have been implicated in a number of animal models of neuropathic and inflammatory pain. In the current study, we investigated HCN channel involvement in inflammatory pain of the temporomandibular joint (TMJ). The contribution of HCN channels to inflammation (complete Freund's adjuvant; CFA)-induced mechanical hypersensitivity of the rat TMJ was tested with injections of the HCN channel blocker ZD7288. Retrograde labelling and immunohistochemistry was used to explore HCN channel expression in sensory neurons that innervate the TMJ. Injection of CFA into the TMJ (n = 7) resulted in a significantly increased mechanical sensitivity relative to vehicle injection (n = 7) (p < 0.05). The mechanical hypersensitivity generated by CFA injection was blocked by co-injection of ZD7288 with the CFA (n = 7). Retrograde labelling and immunohistochemistry experiments revealed expression predominantly of HCN1 and HCN2 channel subunits in trigeminal ganglion neurons that innervate the TMJ (n = 3). No change in the proportion or intensity of HCN channel expression was found in inflamed (n = 6) versus control (n = 5) animals at the time point tested. Our findings suggest a role for peripheral HCN channels in inflammation-induced pain of the TMJ. Peripheral application of a HCN channel blocker could provide therapeutic benefit for inflammatory TMJ pain and avoid side effects associated with activation of HCN channels in the central nervous system. © 2012 European Federation of International Association for the Study of Pain Chapters.
Endogenous channels in HEK cells and potential roles in HCN ionic current measurements.
Varghese, Anthony; Tenbroek, Erica M; Coles, James; Sigg, Daniel C
2006-01-01
A transformed line of human embryonic kidney epithelial cells (HEK 293) is commonly used as an expression system for exogenous ion channel genes. Previously, it has been shown that these cells contain mRNAs for a variety of ion channels. Expression of some of these genes has been confirmed at the protein level. Patch-clamp electrophysiology experiments confirm the presence of multiple ion channels and molecular data agree with pharmacological profiles of identified channels. In this work, we show that endogenous voltage-gated potassium channels in HEK cells are a significant source of outward current at positive potentials. We show that both non-transfected HEK cells and HEK cells transfected with hyperpolarization-activated cyclic-nucleotide gated (HCN) channels have a significant amount of voltage-gated potassium (K(V)) current when certain tail current voltage-clamp protocols are used to assay HCN current activation. Specifically, tail current protocols that use a depolarized holding potential of -40 mV followed by hyperpolarizing pulses (-80 to -140 mV) and then a tail pulse potential of +20 mV indicate K(V) channels undergo closed-state inactivation at the more depolarized holding potential of -40 mV, followed by recovery from inactivation (but no activation) at hyperpolarizing potentials and high amount of activation at the positive tail potential. Our results indicate that pulse protocols with positive tail pulses are inaccurate assays for HCN current in certain HEK cells. Surprisingly, HEK-293 cells were found to contain mRNA for HCN2 and HCN3 although we have not detected a significant and consistent endogenous I(f)-like current in these cells.
CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel
James, Zachary M.; Borst, Andrew J.; Haitin, Yoni; Frenz, Brandon; DiMaio, Frank; Zagotta, William N.; Veesler, David
2017-01-01
Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-regulated (HCN) ion channels play crucial physiological roles in phototransduction, olfaction, and cardiac pace making. These channels are characterized by the presence of a carboxyl-terminal cyclic nucleotide-binding domain (CNBD) that connects to the channel pore via a C-linker domain. Although cyclic nucleotide binding has been shown to promote CNG and HCN channel opening, the precise mechanism underlying gating remains poorly understood. Here we used cryoEM to determine the structure of the intact LliK CNG channel isolated from Leptospira licerasiae—which shares sequence similarity to eukaryotic CNG and HCN channels—in the presence of a saturating concentration of cAMP. A short S4–S5 linker connects nearby voltage-sensing and pore domains to produce a non–domain-swapped transmembrane architecture, which appears to be a hallmark of this channel family. We also observe major conformational changes of the LliK C-linkers and CNBDs relative to the crystal structures of isolated C-linker/CNBD fragments and the cryoEM structures of related CNG, HCN, and KCNH channels. The conformation of our LliK structure may represent a functional state of this channel family not captured in previous studies. PMID:28396445
Peng, S-C; Wu, J; Zhang, D-Y; Jiang, C-Y; Xie, C-N; Liu, T
2017-09-01
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pathological pain-associated voltage-gated ion channels. They are widely expressed in central nervous system including spinal lamina II (also named the substantia gelatinosa, SG). Here, we examined the distribution of HCN channels in glutamatergic synaptic terminals as well as their role in the modulation of synaptic transmission in SG neurons from SD rats and glutamic acid decarboxylase-67 (GAD67)-GFP mice. We found that the expression of the HCN channel isoforms was varied in SG. The HCN4 isoform showed the highest level of co-localization with VGLUT2 (23±3%). In 53% (n=21/40 neurons) of the SG neurons examined in SD rats, application of HCN channel blocker, ZD7288 (10μM), decreased the frequency of spontaneous (s) and miniature (m) excitatory postsynaptic currents (EPSCs) by 37±4% and 33±4%, respectively. Consistently, forskolin (FSK) (an activator of adenylate cyclase) significantly increased the frequency of mEPSCs by 225±34%, which could be partially inhibited by ZD7288. Interestingly, the effects of ZD7288 and FSK on sEPSC frequency were replicated in non-GFP-expressing neurons, but not in GFP-expressing GABAergic SG neurons, in GAD67-GFP transgenic C57/BL6 mice. In summary, our results represent a previously unknown cellular mechanism by which presynaptic HCN channels, especially HCN4, regulate the glutamate release from presynaptic terminals that target excitatory, but not inhibitory SG interneurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Improvement of the positive bias stability of a-IGZO TFTs by the HCN treatment
NASA Astrophysics Data System (ADS)
Kim, Myeong-Ho; Choi, Myung-Jea; Kimura, Katsuya; Kobayashi, Hikaru; Choi, Duck-Kyun
2016-12-01
In recent years, many researchers have attempted to improve the bias stability of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). In this study, the hydrogen cyanide (HCN) treatment was carried out to improve the positive bias stability of bottom-gate a-IGZO TFTs. The HCN treatment was performed using a 0.1 M HCN solution with a pH of 10 at room temperature. Before applying the positive bias stress, there were no differences in the major electrical properties, including the saturation mobility (μsat), threshold voltage (Vth), and subthreshold swing (S/S), between HCN-treated and non-HCN-treated devices. However, after applying the positive bias stress, the HCN-treated device showed superior bias stability compared to the non-HCN-treated device. This difference is associated with the passivation of the defect states and the surface of the back-channel layer of the HCN-treated device by cyanide ions.
Cao, Dan-Ni; Song, Rui; Zhang, Shu-Zhuo; Wu, Ning; Li, Jin
2016-08-01
Methamphetamine addiction is believed to primarily result from increased dopamine release and the inhibition of dopamine uptake. Some evidence suggests that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play important roles in the functional modulation of dopaminergic neurons and the pathophysiology of related diseases. However, little is known about the effects of HCN channels on methamphetamine addiction. The present study investigated the role of brain HCN channels in methamphetamine addiction. Acute intracerebroventricular (i.c.v.) injection or bilateral intra-accumbens microinjections of non-selective HCN channel blocker ZD7288 (0.3125 and 0.625 μg) significantly reduced both methamphetamine (0.0125 or 0.05 mg/kg/infusion)-induced self-administration under fixed ratio 2 reinforcement and the breakpoint of methamphetamine (0.05 mg/kg/infusion) under progressive ratio reinforcement in rats. Moreover, compared with i.c.v. injection, bilateral intra-accumbens microinjections of ZD7288 exerted stronger inhibitory effects, suggesting that blockade of HCN channels in the nucleus accumbens reduced the reinforcing effects of and motivation for methamphetamine. We also found that ZD7288 (0.625 and 1.25 μg, i.c.v.) significantly decreased methamphetamine (1 mg/kg, intraperitoneal (i.p.))-induced hyperactivity with no effect on the spontaneous activity in rats. Finally, in vivo microdialysis experiments showed that the HCN channel blockade using ZD7288 (0.625 and 1.25 μg, i.c.v.) decreased methamphetamine (1 mg/kg, i.p.)-induced elevation of extracellular dopamine levels in the nucleus accumbens. These results indicate that HCN channels in the nucleus accumbens are involved in the reinforcing properties of methamphetamine and highlight the importance of HCN channels in the regulation of dopamine neurotransmission underlying methamphetamine addiction.
Orio, Patricio; Madrid, Rodolfo; de la Peña, Elvira; Parra, Andrés; Meseguer, Víctor; Bayliss, Douglas A; Belmonte, Carlos; Viana, Félix
2009-01-01
Hyperpolarization-activated currents (Ih) are mediated by the expression of combinations of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel subunits (HCN1–4). These cation currents are key regulators of cellular excitability in the heart and many neurons in the nervous system. Subunit composition determines the gating properties and cAMP sensitivity of native Ih currents. We investigated the functional properties of Ih in adult mouse cold thermoreceptor neurons from the trigeminal ganglion, identified by their high sensitivity to moderate cooling and responsiveness to menthol. All cultured cold-sensitive (CS) neurons expressed a fast activating Ih, which was fully blocked by extracellular Cs+ or ZD7288 and had biophysical properties consistent with those of heteromeric HCN1–HCN2 channels. In CS neurons from HCN1(−/−) animals, Ih was greatly reduced but not abolished. We find that Ih activity is not essential for the transduction of cold stimuli in CS neurons. Nevertheless, Ih has the potential to shape the excitability of CS neurons. First, Ih blockade caused a membrane hyperpolarization in CS neurons of about 5 mV. Furthermore, impedance power analysis showed that all CS neurons had a prominent subthreshold membrane resonance in the 5–7 Hz range, completely abolished upon blockade of Ih and absent in HCN1 null mice. This frequency range matches the spontaneous firing frequency of cold thermoreceptor terminals in vivo. Behavioural responses to cooling were reduced in HCN1 null mice and after peripheral pharmacological blockade of Ih with ZD7288, suggesting that Ih plays an important role in peripheral sensitivity to cold. PMID:19273581
Pai, Vaibhav P.; Willocq, Valerie; Pitcairn, Emily J.; Lemire, Joan M.; Paré, Jean-François; Shi, Nian-Qing; McLaughlin, Kelly A.
2017-01-01
ABSTRACT Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4) is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels (Ih currents) with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10) and not by a later block (post-stage 10). Injections of HCN4-DN (dominant-negative) mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal, Lefty, and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning. PMID:28818840
Pai, Vaibhav P; Willocq, Valerie; Pitcairn, Emily J; Lemire, Joan M; Paré, Jean-François; Shi, Nian-Qing; McLaughlin, Kelly A; Levin, Michael
2017-10-15
Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4) is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels ( I h currents) with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10) and not by a later block (post-stage 10). Injections of HCN4-DN (dominant-negative) mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal , Lefty , and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning. © 2017. Published by The Company of Biologists Ltd.
Mattusch, Corinna; Kratzer, Stephan; Buerge, Martina; Kreuzer, Matthias; Engel, Tatiana; Kopp, Claudia; Biel, Martin; Hammelmann, Verena; Ying, Shui-Wang; Goldstein, Peter A; Kochs, Eberhard; Haseneder, Rainer; Rammes, Gerhard
2015-05-01
The thalamus is thought to be crucially involved in the anesthetic state. Here, we investigated the effect of the inhaled anesthetic xenon on stimulus-evoked thalamocortical network activity and on excitability of thalamocortical neurons. Because hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are key regulators of neuronal excitability in the thalamus, the effect of xenon on HCN channels was examined. The effects of xenon on thalamocortical network activity were investigated in acutely prepared brain slices from adult wild-type and HCN2 knockout mice by means of voltage-sensitive dye imaging. The influence of xenon on single-cell excitability in brain slices was investigated using the whole-cell patch-clamp technique. Effects of xenon on HCN channels were verified in human embryonic kidney cells expressing HCN2 channels. Xenon concentration-dependently diminished thalamocortical signal propagation. In neurons, xenon reduced HCN channel-mediated Ih current amplitude by 33.4 ± 12.2% (at -133 mV; n = 7; P = 0.041) and caused a left-shift in the voltage of half-maximum activation (V1/2) from -98.8 ± 1.6 to -108.0 ± 4.2 mV (n = 8; P = 0.035). Similar effects were seen in human embryonic kidney cells. The impairment of HCN channel function was negligible when intracellular cyclic adenosine monophosphate level was increased. Using HCN2 mice, we could demonstrate that xenon did neither attenuate in vitro thalamocortical signal propagation nor did it show sedating effects in vivo. Here, we clearly showed that xenon impairs HCN2 channel function, and this impairment is dependent on intracellular cyclic adenosine monophosphate levels. We provide evidence that this effect reduces thalamocortical signal propagation and probably contributes to the hypnotic properties of xenon.
Tiikkaja, Maria; Aro, Aapo L; Alanko, Tommi; Lindholm, Harri; Sistonen, Heli; Hartikainen, Juha E K; Toivonen, Lauri; Juutilainen, Jukka; Hietanen, Maila
2013-03-01
Electromagnetic interference (EMI) can pose a danger to workers with pacemakers and implantable cardioverter-defibrillators (ICDs). At some workplaces electromagnetic fields are high enough to potentially inflict EMI. The purpose of this in vivo study was to evaluate the susceptibility of pacemakers and ICDs to external electromagnetic fields. Eleven volunteers with a pacemaker and 13 with an ICD were exposed to sine, pulse, ramp, and square waveform magnetic fields with frequencies of 2-200 Hz using Helmholtz coil. The magnetic field flux densities varied to 300 µT. We also tested the occurrence of EMI from an electronic article surveillance (EAS) gate, an induction cooktop, and a metal inert gas (MIG) welding machine. All pacemakers were tested with bipolar settings and three of them also with unipolar sensing configurations. None of the bipolar pacemakers or ICDs tested experienced interference in any of the exposure situations. The three pacemakers with unipolar settings were affected by the highest fields of the Helmholtz coil, and one of them also by the EAS gate and the welding cable. The induction cooktop did not interfere with any of the unipolarly programmed pacemakers. Magnetic fields with intensities as high as those used in this study are rare even in industrial working environments. In most cases, employees can return to work after implantation of a bipolar pacemaker or an ICD, after an appropriate risk assessment. Pacemakers programmed to unipolar configurations can cause danger to their users in environments with high electromagnetic fields, and should be avoided, if possible.
De novo mutations in HCN1 cause early infantile epileptic encephalopathy.
Nava, Caroline; Dalle, Carine; Rastetter, Agnès; Striano, Pasquale; de Kovel, Carolien G F; Nabbout, Rima; Cancès, Claude; Ville, Dorothée; Brilstra, Eva H; Gobbi, Giuseppe; Raffo, Emmanuel; Bouteiller, Delphine; Marie, Yannick; Trouillard, Oriane; Robbiano, Angela; Keren, Boris; Agher, Dahbia; Roze, Emmanuel; Lesage, Suzanne; Nicolas, Aude; Brice, Alexis; Baulac, Michel; Vogt, Cornelia; El Hajj, Nady; Schneider, Eberhard; Suls, Arvid; Weckhuysen, Sarah; Gormley, Padhraig; Lehesjoki, Anna-Elina; De Jonghe, Peter; Helbig, Ingo; Baulac, Stéphanie; Zara, Federico; Koeleman, Bobby P C; Haaf, Thomas; LeGuern, Eric; Depienne, Christel
2014-06-01
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to cationic Ih current in neurons and regulate the excitability of neuronal networks. Studies in rat models have shown that the Hcn1 gene has a key role in epilepsy, but clinical evidence implicating HCN1 mutations in human epilepsy is lacking. We carried out exome sequencing for parent-offspring trios with fever-sensitive, intractable epileptic encephalopathy, leading to the discovery of two de novo missense HCN1 mutations. Screening of follow-up cohorts comprising 157 cases in total identified 4 additional amino acid substitutions. Patch-clamp recordings of Ih currents in cells expressing wild-type or mutant human HCN1 channels showed that the mutations had striking but divergent effects on homomeric channels. Individuals with mutations had clinical features resembling those of Dravet syndrome with progression toward atypical absences, intellectual disability and autistic traits. These findings provide clear evidence that de novo HCN1 point mutations cause a recognizable early-onset epileptic encephalopathy in humans.
Myristoylated peptides potentiate the funny current (If) in sinoatrial myocytes
Liao, Zhandi; St Clair, Joshua R; Larson, Eric D
2011-01-01
The funny current, If, in sinoatrial myocytes is thought to contribute to the sympathetic fight-or-flight increase in heart rate. If is produced by hyperpolarization-activated cyclic nucleotide sensitive-4 (HCN4) channels, and it is widely believed that sympathetic regulation of If occurs via direct binding of cAMP to HCN4, independent of phosphorylation. However, we have recently shown that Protein Kinase A (PKA) activity is required for sympathetic regulation of If, and that PKA can directly phosphorylate HCN4.1 In the present study, we examined the effects of a myristoylated PKA inhibitory peptide (myr-PKI) on If in mouse sinoatrial myocytes. We found that myr-PKI and another myristoylated peptide potently and specifically potentiated If via a mechanism that did not involve PKA inhibition and that was independent of the peptide sequence, Protein Kinase C or phosphatidylinositol-4,5-bisphosphate. The off-target activation of If by myristoylated peptides limits their usefulness for studies of pacemaker mechanisms in sinoatrial myocytes. PMID:21150293
Disturbed Processing of Contextual Information in HCN3 Channel Deficient Mice
Stieglitz, Marc S.; Fenske, Stefanie; Hammelmann, Verena; Becirovic, Elvir; Schöttle, Verena; Delorme, James E.; Schöll-Weidinger, Martha; Mader, Robert; Deussing, Jan; Wolfer, David P.; Seeliger, Mathias W.; Albrecht, Urs; Wotjak, Carsten T.; Biel, Martin; Michalakis, Stylianos; Wahl-Schott, Christian
2018-01-01
Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) in the nervous system are implicated in a variety of neuronal functions including learning and memory, regulation of vigilance states and pain. Dysfunctions or genetic loss of these channels have been shown to cause human diseases such as epilepsy, depression, schizophrenia, and Parkinson's disease. The physiological functions of HCN1 and HCN2 channels in the nervous system have been analyzed using genetic knockout mouse models. By contrast, there are no such genetic studies for HCN3 channels so far. Here, we use a HCN3-deficient (HCN3−/−) mouse line, which has been previously generated in our group to examine the expression and function of this channel in the CNS. Specifically, we investigate the role of HCN3 channels for the regulation of circadian rhythm and for the determination of behavior. Contrary to previous suggestions we find that HCN3−/− mice show normal visual, photic, and non-photic circadian function. In addition, HCN3−/− mice are impaired in processing contextual information, which is characterized by attenuated long-term extinction of contextual fear and increased fear to a neutral context upon repeated exposure. PMID:29375299
Tucker, Kristal R.; Huertas, Marco A.; Horn, John P.; Canavier, Carmen C.; Levitan, Edwin S.
2012-01-01
Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (NaV) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density and gating of NaV currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment (AIS) and NaV channels are distributed in multiple dendrites, selective reduction of NaV channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic NaV current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when NaV currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold NaV current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic NaV channels. More generally, we conclude that the somatodendritic distribution of NaV channels is a major determinant of repetitive spiking frequency. PMID:23077037
Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function
Saponaro, Andrea; Pauleta, Sofia R.; Cantini, Francesca; Matzapetakis, Manolis; Hammann, Christian; Donadoni, Chiara; Hu, Lei; Thiel, Gerhard; Banci, Lucia; Santoro, Bina; Moroni, Anna
2014-01-01
cAMP signaling in the brain mediates several higher order neural processes. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels directly bind cAMP through their cytoplasmic cyclic nucleotide binding domain (CNBD), thus playing a unique role in brain function. Neuronal HCN channels are also regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit that antagonizes the effects of cAMP by interacting with the channel CNBD. To unravel the molecular mechanisms underlying the dual regulation of HCN channel activity by cAMP/TRIP8b, we determined the NMR solution structure of the HCN2 channel CNBD in the cAMP-free form and mapped on it the TRIP8b interaction site. We reconstruct here the full conformational changes induced by cAMP binding to the HCN channel CNBD. Our results show that TRIP8b does not compete with cAMP for the same binding region; rather, it exerts its inhibitory action through an allosteric mechanism, preventing the cAMP-induced conformational changes in the HCN channel CNBD. PMID:25197093
I(f) inhibition in cardiovascular diseases.
Thollon, Catherine; Vilaine, Jean-Paul
2010-01-01
Heart rate (HR) is determined by the pacemaker activity of cells from the sinoatrial node (SAN), located in the right atria. Spontaneous electrical activity of SAN cells results from a diastolic depolarization (DD). Despite controversy in the exact contribution of funny current (I(f)) in pacemaking, it is a major contributor of DD. I(f) is an inward Na(+)/K(+) current, activated upon hyperpolarization and directly modulated by cyclic adenosine monophosphate. The f-proteins are hyperpolarization-activated cyclic nucleotide-gated channels, HCN4 being the main isoform of SAN. Ivabradine (IVA) decreases DD and inhibits I(f) in a use-dependent manner. Under normal conditions IVA selectively reduces HR and limits exercise-induced tachycardia, in animals and young volunteers. Reduction in HR with IVA both decreases myocardial oxygen consumption and increases its supply due to prolongation of diastolic perfusion time. In animal models and in human with coronary artery disease (CAD), IVA has anti-anginal and anti-ischemic efficacy, equipotent to classical treatments, β-blockers, or calcium channel blockers. As expected from its selectivity for I(f), the drug is safe and well tolerated with minor visual side effects. As a consequence, IVA is the first inhibitor of I(f) approved for the treatment of stable angina. Available clinical data indicate that IVA could improve the management of stable angina in all patients including those treated with β-blockers. As chronic elevation of resting HR is an independent predictor of mortality, pure HR reduction by inhibition of I(f) could, beyond the control of anti-anginal symptoms, improve the prognosis of CAD and heart failure; this therapeutic potential is currently under evaluation with IVA. Copyright © 2010 Elsevier Inc. All rights reserved.
HCN Channels Modulators: The Need for Selectivity
Romanelli, Maria Novella; Sartiani, Laura; Masi, Alessio; Mannaioni, Guido; Manetti, Dina; Mugelli, Alessandro; Cerbai, Elisabetta
2016-01-01
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular correlate of the hyperpolarization-activated current (If/Ih), are membrane proteins which play an important role in several physiological processes and various pathological conditions. In the Sino Atrial Node (SAN) HCN4 is the target of ivabradine, a bradycardic agent that is, at the moment, the only drug which specifically blocks If. Nevertheless, several other pharmacological agents have been shown to modulate HCN channels, a property that may contribute to their therapeutic activity and/or to their side effects. HCN channels are considered potential targets for developing drugs to treat several important pathologies, but a major issue in this field is the discovery of isoform-selective compounds, owing to the wide distribution of these proteins into the central and peripheral nervous systems, heart and other peripheral tissues. This survey is focused on the compounds that have been shown, or have been designed, to interact with HCN channels and on their binding sites, with the aim to summarize current knowledge and possibly to unveil useful information to design new potent and selective modulators. PMID:26975509
Fehsenfeld, Sandra; Weihrauch, Dirk
2016-03-01
Numerous electrophysiological studies on branchial K(+) transport in brachyuran crabs have established an important role for potassium channels in osmoregulatory ion uptake and ammonia excretion in the gill epithelium of decapod crustaceans. However, hardly anything is known of the actual nature of these channels in crustaceans. In the present study, the identification of a hyperpolarization-activated cyclic nucleotide-gated potassium channel (HCN) in the transcriptome of the green crab Carcinus maenas and subsequent performance of quantitative real-time PCR revealed the ubiquitous expression of this channel in this species. Even though mRNA expression levels in the cerebral ganglion were found to be approximately 10 times higher compared with all other tissues, posterior gills still expressed significant levels of HCN, indicating an important role for this transporter in branchial ion regulation. The relatively unspecific K(+)-channel inhibitor Ba(2+), as well as the HCN-specific blocker ZD7288, as applied in gill perfusion experiments and electrophysiological studies employing the split gill lamellae revealed the presence of at least two different K(+)/NH4(+)-transporting structures in the branchial epithelium of C. maenas. Furthermore, HCN mRNA levels in posterior gill 7 decreased significantly in response to the respiratory or metabolic acidosis that was induced by acclimation of green crabs to high environmental PCO2 and ammonia, respectively. Consequently, the present study provides first evidence that HCN-promoted NH4(+) epithelial transport is involved in both branchial acid-base and ammonia regulation in an invertebrate. © 2016. Published by The Company of Biologists Ltd.
Pan, Yuan; Laird, Joseph G; Yamaguchi, David M; Baker, Sheila A
2015-06-01
Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels are widely expressed in the retina. In photoreceptors, the hyperpolarization-activated current (Ih) carried by HCN1 is important for shaping the light response. It has been shown in multiple systems that trafficking HCN1 channels to specific compartments is key to their function. The localization of HCN1 in photoreceptors is concentrated in the plasma membrane of the inner segment (IS). The mechanisms controlling this localization are not understood. We previously identified a di-arginine endoplasmic reticulum (ER) retention motif that negatively regulates the surface targeting of HCN1. In this study, we sought to identify a forward trafficking signal that could counter the function of the ER retention signal. We studied trafficking of HCN1 and several mutants by imaging their subcellular localization in transgenic X. laevis photoreceptors. Velocity sedimentation was used to assay the assembly state of HCN1 channels. We found the HCN1 N-terminus can redirect a membrane reporter from outer segments (OS) to the plasma membrane of the IS. The sequence necessary for this behavior was mapped to a 20 amino acid region containing a leucine-based ER export motif. The ER export signal is necessary for forward trafficking but not channel oligomerization. Moreover, this ER export signal alone counteracted the di-arginine ER retention signal. We identified an ER export signal in HCN1 that functions with the ER retention signal to maintain equilibrium of HCN1 between the endomembrane system and the plasma membrane.
Pan, Yuan; Laird, Joseph G.; Yamaguchi, David M.; Baker, Sheila A.
2015-01-01
Purpose. Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels are widely expressed in the retina. In photoreceptors, the hyperpolarization-activated current (Ih) carried by HCN1 is important for shaping the light response. It has been shown in multiple systems that trafficking HCN1 channels to specific compartments is key to their function. The localization of HCN1 in photoreceptors is concentrated in the plasma membrane of the inner segment (IS). The mechanisms controlling this localization are not understood. We previously identified a di-arginine endoplasmic reticulum (ER) retention motif that negatively regulates the surface targeting of HCN1. In this study, we sought to identify a forward trafficking signal that could counter the function of the ER retention signal. Methods. We studied trafficking of HCN1 and several mutants by imaging their subcellular localization in transgenic X. laevis photoreceptors. Velocity sedimentation was used to assay the assembly state of HCN1 channels. Results. We found the HCN1 N-terminus can redirect a membrane reporter from outer segments (OS) to the plasma membrane of the IS. The sequence necessary for this behavior was mapped to a 20 amino acid region containing a leucine-based ER export motif. The ER export signal is necessary for forward trafficking but not channel oligomerization. Moreover, this ER export signal alone counteracted the di-arginine ER retention signal. Conclusions. We identified an ER export signal in HCN1 that functions with the ER retention signal to maintain equilibrium of HCN1 between the endomembrane system and the plasma membrane. PMID:26030105
Schön, Christian; Asteriti, Sabrina; Koch, Susanne; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Herms, Jochen; Seeliger, Mathias W; Cangiano, Lorenzo; Biel, Martin; Michalakis, Stylianos
2016-03-15
Most inherited blinding diseases are characterized by compromised retinal function and progressive degeneration of photoreceptors. However, the factors that affect the life span of photoreceptors in such degenerative retinal diseases are rather poorly understood. Here, we explore the role of hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) in this context. HCN1 is known to adjust retinal function under mesopic conditions, and although it is expressed at high levels in rod and cone photoreceptor inner segments, no association with any retinal disorder has yet been found. We investigated the effects of an additional genetic deletion of HCN1 on the function and survival of photoreceptors in a mouse model of CNGB1-linked retinitis pigmentosa (RP). We found that the absence of HCN1 in Cngb1 knockout (KO) mice exacerbated photoreceptor degeneration. The deleterious effect was reduced by expression of HCN1 using a viral vector. Moreover, pharmacological inhibition of HCN1 also enhanced rod degeneration in Cngb1 KO mice. Patch-clamp recordings revealed that the membrane potentials of Cngb1 KO and Cngb1/Hcn1 double-KO rods were both significantly depolarized. We also found evidence for altered calcium homeostasis and increased activation of the protease calpain in Cngb1/Hcn1 double-KO mice. Finally, the deletion of HCN1 also exacerbated degeneration of cone photoreceptors in a mouse model of CNGA3-linked achromatopsia. Our results identify HCN1 as a major modifier of photoreceptor degeneration and suggest that pharmacological inhibition of HCN channels may enhance disease progression in RP and achromatopsia patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gene- and cell-based bio-artificial pacemaker: what basic and translational lessons have we learned?
Li, RA
2012-01-01
Normal rhythms originate in the sino-atrial node, a specialized cardiac tissue consisting of only a few thousands of pacemaker cells. Malfunction of pacemaker cells due to diseases or aging leads to rhythm generation disorders (for example, bradycardias and sick-sinus syndrome (SSS)), which often necessitate the implantation of electronic pacemakers. Although effective, electronic devices are associated with such shortcomings as limited battery life, permanent implantation of leads, lead dislodging, the lack of autonomic responses and so on. Here, various gene- and cell-based approaches, with a particular emphasis placed on the use of pluripotent stem cells and the hyperpolarization-activated cyclic nucleotide-gated-encoded pacemaker gene family, that have been pursued in the past decade to reconstruct bio-artificial pacemakers as alternatives will be discussed in relation to the basic biological insights and translational regenerative potential. PMID:22673497
Gene- and cell-based bio-artificial pacemaker: what basic and translational lessons have we learned?
Li, R A
2012-06-01
Normal rhythms originate in the sino-atrial node, a specialized cardiac tissue consisting of only a few thousands of nodal pacemaker cells. Malfunction of pacemaker cells due to diseases or aging leads to rhythm generation disorders (for example, bradycardias and sick-sinus syndrome (SSS)), which often necessitate the implantation of electronic pacemakers. Although effective, electronic devices are associated with such shortcomings as limited battery life, permanent implantation of leads, lead dislodging, the lack of autonomic responses and so on. Here, various gene- and cell-based approaches, with a particular emphasis placed on the use of pluripotent stem cells and the hyperpolarization-activated cyclic nucleotide-gated-encoded pacemaker gene family, that have been pursued in the past decade to reconstruct bio-artificial pacemakers as alternatives will be discussed in relation to the basic biological insights and translational regenerative potential.
LOW CONDUCTANCE HCN1 ION CHANNELS AUGMENT THE FREQUENCY RESPONSE OF ROD AND CONE PHOTORECEPTORS
Barrow, Andrew J.; Wu, Samuel M.
2009-01-01
Hyperpolarization-activated cyclic nucleotide gated (HCN) ion channels are expressed in several tissues throughout the body, including the heart, the CNS, and the retina. HCN channels are found in many neurons in the retina, but their most established role is in generating the hyperpolarization-activated current, Ih, in photoreceptors. This current makes the light response of rod and cone photoreceptors more transient, an effect similar to that of a high-pass filter. A unique property of HCN channels is their small single channel current, which is below the thermal noise threshold of measuring electronics. We use nonstationary fluctuation analysis (NSFA) in the intact retina to estimate the conductance of single HCN channels, revealing a conductance of approximately 650 fS in both rod and cone photoreceptors. We also analyze the properties of HCN channels in salamander rods and cones, from the biophysical to the functional level, showing that HCN1 is the predominant isoform in both cells, and demonstrate how HCN1 channels speed up the light response of both rods and cones under distinct adaptational conditions. We show that in rods and cones, HCN channels increase the natural frequency response of single cells by modifying the photocurrent input, which is limited in its frequency response by the speed of a molecular signaling cascade. In doing so, HCN channels form the first of several systems in the retina that augment the speed of the visual response, allowing an animal to perceive visual stimuli that change more quickly than the underlying photocurrent. PMID:19420251
Quantifying the emissions of HCN from on-road vehicles in urban areas
NASA Astrophysics Data System (ADS)
Moussa, S. G.; Leithead, A.; Wentzell, J. J.; Lu, G.; Li, S.; Brook, J.; Liggio, J.
2013-12-01
Hydrogen Cyanide (HCN), has been considered a marker for biomass burning emissions. Despite its adverse health impacts, estimate of its global sources and sinks are highly uncertain due to a limited number of field and laboratory studies. In particular, HCN emissions from automobile exhaust are not well constrained for modern vehicles, and thought to be relatively small compared to emissions from biomass burning. In the current study, HCN emissions from individual diesel and gasoline vehicles were quantified as a function of engine driving mode, and fuel type. Proton transfer Reaction-Time of Flight-Mass spectrometry (PTR-ToF-MS) was used to measure HCN emissions from diesel engines operating on ultra-low sulfur diesel (ULSD) and various bio-diesel blends including Soy, Tallow, and Canola. Significant emissions of HCN were observed from all vehicles, and enhanced with the use of biodiesel. In addition, ambient measurements of HCN in a traffic dominated urban area in Toronto, Canada demonstrated that a correlation between HCN, and traditional vehicle emissions markers such as benzene and xylenes exists and indicating that HCN has the potential to be a marker of fuel combustion. The ambient data and the calculated emission factors further suggest that vehicular emissions are a major source of HCN even in the presence of biomass burning, and that near roadway conditions may represent the dominant exposure pathway to HCN in urban areas. Results of this study have important implications on HCN global budget, health impacts in urban areas and the effect of alternate fuels on the emissions of this toxic species.
Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons.
Han, Jin-Eon; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung
2017-03-01
The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K + and Ca 2+ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K + currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K + currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs + (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca 2+ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.
Klose, Markus; Duvall, Laura; Li, Weihua; Liang, Xitong; Ren, Chi; Steinbach, Joe Henry; Taghert, Paul H
2016-05-18
The neuropeptide PDF promotes the normal sequencing of circadian behavioral rhythms in Drosophila, but its signaling mechanisms are not well understood. We report daily rhythmicity in responsiveness to PDF in critical pacemakers called small LNvs. There is a daily change in potency, as great as 10-fold higher, around dawn. The rhythm persists in constant darkness and does not require endogenous ligand (PDF) signaling or rhythmic receptor gene transcription. Furthermore, rhythmic responsiveness reflects the properties of the pacemaker cell type, not the receptor. Dopamine responsiveness also cycles, in phase with that of PDF, in the same pacemakers, but does not cycle in large LNv. The activity of RalA GTPase in s-LNv regulates PDF responsiveness and behavioral locomotor rhythms. Additionally, cell-autonomous PDF signaling reversed the circadian behavioral effects of lowered RalA activity. Thus, RalA activity confers high PDF responsiveness, providing a daily gate around the dawn hours to promote functional PDF signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
Liang, Xitong; Ren, Chi; Steinbach, Joe Henry; Taghert, Paul H.
2016-01-01
The neuropeptide PDF promotes the normal sequencing of circadian behavioral rhythms in Drosophila, but its signaling mechanisms are not well understood. We report daily rhythmicity in responsiveness to PDF in critical pacemakers called small LNvs. There is a daily change in potency, as great as 10-fold higher, around dawn. The rhythm persists in constant darkness, does not require endogenous ligand (PDF) signaling, or rhythmic receptor gene transcription. Furthermore, rhythmic responsiveness reflects the properties of the pacemaker cell type, not the receptor. Dopamine responsiveness also cycles, in phase with that of PDF, in the same pacemakers, but does not cycle in large LNv. The activity of RalA GTPase in s-LNv regulates PDF responsiveness and behavioral locomotor rhythms. Additional, cell autonomous PDF signaling reversed the circadian behavioral effects of lowered RalA activity. Thus RalA activity confers high PDF responsiveness, providing a daily gate around the dawn hours to promote functional PDF signaling. PMID:27161526
Harnett, Mark T.; Magee, Jeffrey C.
2015-01-01
The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. PMID:25609619
[Inhibition of HCN1 channels by ketamine accounts for its antidepressant actions].
Li, Jing; Chen, Feng-feng; Chen, Xiang-dong; Zhou, Cheng
2014-11-01
To investigate the roles of hyperolarization-actived cyclic nucleotide-gated channels 1 (HCN1) in antidepressant actions of ketamine (KET). Male HCN1 knock out (HCN1-/- ) and wildtype (HCN1+/+ ) C57BL6 mice (8-12 weeks, 20-25 g) were chosen. The depression model of mice was developed by continuously oral administration of low dosage of corticosterone (CORT). The immobility time in forced swimming tests (FST) was used to assess the depressive state of mice. Then the two genotype depressive mice were treated with single intraperitoneal injection of 5 mg/kg ketamine (KET group, n=7) or same volume of normal saline (NS group, n=7) respectively. After treatment, the immobility time at 30 min, 24 h and 7 d after the intraperitoneal injection of ketamine or normal saline in CORT-treated mice were compared. In addition, normal HCN1-/- and HCN1+/+ mice were intraperitoneally injected of BrdU and then treated with 5 mg/kg ketamine (KET group, n=5) or same volume of normal saline (NS group, n= 5) by single intraperitoneal injection. Each group was euthanized for immunohistochemical processing of 5-Bromo-2-deoxyuridine (BrdU)-labeled cells in hippocampus at 24 h after the intraperitoneal injection of saline or ketamine. The immobility time in FST of HCN1-/- mice was less than the HCN1+/+ mice before administration of CORT. It shows that the depressive state of HCN1-/- mice is less intensive than that of HCN1+/+ mice. And the immoblility time in both HCN1-/- and HCN1+/+ mice was increased after oral administration of low dose corticosterone, with an increase in depression. In addition, the comparisons were also made to the reduction of immobility time within 30 min, 24 h and 7 d. At any time point, the reduction of immobility time in HCN1+/+ KET group was higher than those in the other three groups (P<0. 05). Furthermore, there were no statistical significances among the three groups including HCN1-/- KET group, HCN1+/+ NS group, HCN1-/- NS group at any point. The number of newborn neurons were more in HCN1 mice than HCN1+/+ mice after the treatment of normal saline. Compared with the NS group, the number of neonatal neurons labeled by BrdU were increased after the intraperitoneal injection of ketamine in HCN1+/+ mice but not in HCN1-/- mice. Inhibition of HCN1 channels by ketamine accounts for its antidepressant actions.
The effect of single engine fixed wing air transport on rate-responsive pacemakers.
De Rotte, A A; Van Der Kemp, P
1999-09-01
Insufficient information exists about the safety of patients with accelerometer-based rate-responsive pacemakers in air transport by general aviation aircraft. The response in pacing rate of two types of accelerometer-based rate-responsive pacemakers with data logging capabilities was studied during test flights with single engine fixed wing aircraft. Results were compared with the rate-response of these pacemakers during transportation by car and were also interpreted in respect to physiological heart rate response of aircrew during flights in single engine fixed wing aircraft. In addition, a continuous accelerometer readout was recorded during a turbulent phase of flight. This recording was used for a pacemaker-simulator experiment with maximal sensitive motion-sensor settings. Only a minor increase in pacing rate due to aircraft motion could be demonstrated during all phases of flight at all altitudes with the pacemakers programmed in the normal mode. This increase was of the same magnitude as induced during transport by car and would be of negligible influence on the performance of the individual pacemaker patient equipped with such a pacemaker. Moreover, simultaneous Holter monitoring of the pilots during these flights showed a similar rate-response in natural heart rate compared with the increase in pacing rate induced by aircraft motion in accelerometer-based rate-responsive pacemakers. No sensor-mediated pacemaker tachycardia was seen during any of these recordings. However, a 15% increase in pacing rate was induced by severe air turbulence. Programming the maximal sensitivity of the motion sensor into the pacemaker could, on the other hand, induce a significant increase in pacing rate as was demonstrated by the simulation experiments. These results seem to rule out potentially dangerous or adverse effects from motional or vibrational influences during transport in single engine fixed wing aircraft on accelerometer-based rate-responsive pacemakers with normal activity sensor settings.
Effects of ZD7288 on firing pattern of thermosensitive neurons isolated from hypothalamus.
Cai, Chunqing; Meng, Xiaojing; He, Junchu; Wu, Hangyu; Zou, Fei
2012-01-11
The role of the hyperpolarization-activated current (Ih) mediated by HCN channels in temperature sensing by the hypothalamus was addressed. In warm-sensitive neurons (WSNs), exposure to ZD7288, an inhibitor of Ih mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, decreased their action potential amplitudes and frequencies significantly. By contrast, ZD7288 had little or no effect on temperature-insensitive neurons (TINs). Exposure of WSNs to ZD7288 led to a significant increase in the duration of the inter-spike interval and a reduction of Ih irreversibly. These results suggest that ZD7288 have the contrasting effects on the firing patterns of WSNs versus TINs, which implies HCN channels play a central role in temperature sensing by hypothalamic neurons. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Harnett, Mark T; Magee, Jeffrey C; Williams, Stephen R
2015-01-21
The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. Copyright © 2015 the authors 0270-6474/15/351024-14$15.00/0.
Boulet, Jason; Bruce, Ian C
2017-04-01
Spiral ganglion neurons (SGNs) exhibit a wide range in their strength of intrinsic adaptation on a timescale of 10s to 100s of milliseconds in response to electrical stimulation from a cochlear implant (CI). The purpose of this study was to determine how much of that variability could be caused by the heterogeneity in half-maximal activation potentials of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, which are known to produce intrinsic adaptation. In this study, a computational membrane model of cat type I SGN was developed based on the Hodgkin-Huxley model plus HCN and low-threshold potassium (KLT) conductances in which the half-maximal activation potential of the HCN channel was varied and the response of the SGN to pulse train and paired-pulse stimulation was simulated. Physiologically plausible variation of HCN half-maximal activation potentials could indeed determine the range of adaptation on the timescale of 10s to 100s of milliseconds and recovery from adaptation seen in the physiological data while maintaining refractoriness within physiological bounds. This computational model demonstrates that HCN channels may play an important role in regulating the degree of adaptation in response to pulse train stimulation and therefore contribute to variable constraints on acoustic information coding by CIs. This finding has broad implications for CI stimulation paradigms in that cell-to-cell variation of HCN channel properties are likely to significantly alter SGN excitability and therefore auditory perception.
Morphological and physiological analysis of type-5 and other bipolar cells in the Mouse Retina.
Hellmer, C B; Zhou, Y; Fyk-Kolodziej, B; Hu, Z; Ichinose, T
2016-02-19
Retinal bipolar cells are second-order neurons in the visual system, which initiate multiple image feature-based neural streams. Among more than ten types of bipolar cells, type-5 cells are thought to play a role in motion detection pathways. Multiple subsets of type-5 cells have been reported; however, detailed characteristics of each subset have not yet been elucidated. Here, we found that they exhibit distinct morphological features as well as unique voltage-gated channel expression. We have conducted electrophysiological and immunohistochemical analysis of retinal bipolar cells. We defined type-5 cells by their axon terminal ramification in the inner plexiform layer between the border of ON/OFF sublaminae and the ON choline acetyltransferase (ChAT) band. We found three subsets of type-5 cells: XBCs had the widest axon terminals that stratified at a close approximation of the ON ChAT band as well as exhibiting large voltage-gated Na(+) channel activity, type-5-1 cells had compact terminals and no Na(+) channel activity, and type-5-2 cells contained umbrella-shaped terminals as well as large voltage-gated Na(+) channel activity. Hyperpolarization-activated cyclic nucleotide-gated (HCN) currents were also evoked in all type-5 bipolar cells. We found that XBCs and type-5-2 cells exhibited larger HCN currents than type-5-1 cells. Furthermore, the former two types showed stronger HCN1 expression than the latter. Our previous observations (Ichinose et al., 2014) match the current study: low temporal tuning cells that we named 5S corresponded to 5-1 in this study, while high temporal tuning 5f cells from the previous study corresponded to 5-2 cells. Taken together, we found three subsets of type-5 bipolar cells based on their morphologies and physiological features. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Luo, Pan; Lu, Yun; Li, Changjun; Zhou, Mei; Chen, Cheng; Lu, Qing; Xu, Xulin; He, Zhi; Guo, Lianjun
2015-09-01
Chronic cerebral hypoperfusion (CCH) causes learning and memory impairments and increases the risk of Alzheimer disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the mechanisms underlying the disease process remained unclear particularly in a temporal manner. We performed permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are altered at different stages of cognitive impairment caused by CCH, adult male SD rats were randomly distributed into sham-operated 4, 8 and 12weeks group, 2VO 4, 8 and 12weeks group. Learning and memory performance were evaluated with Morris water maze (MWM) and long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Expression of NeuN, HCN1 and HCN2 in hippocampal CA1, DG and CA3 areas was quantified by immunohistochemistry and western blotting. Our data showed that CCH induced a remarkable spatial learning and memory deficits in rats of 2VO 4, 8, and 12weeks group although neuronal loss only occurred after 4weeks of 2VO surgery in CA1. In addition, a significant reduction of HCN1 surface expression in CA1 was observed in the group that suffered 4weeks ischemia but neither 8 nor 12weeks. However, HCN2 surface expression in CA1 increased throughout the ischemia time-scales (4, 8 and 12w). Our findings indicate spatial learning and memory deficits in the CCH model are associated with disturbed HCN1 and HCN2 surface expression in hippocampal CA1. The altered patterns of both HCN1 and HCN2 surface expression may be implicated in the early stage (4w) of spatial learning and memory impairments; and the stable and long-lasting impairments of spatial learning and memory may partially attribute to the up-regulated HCN2 surface expression. Copyright © 2015 Elsevier Inc. All rights reserved.
Nakamura, Yuki; Shi, Xiuyu; Numata, Tomohiro; Mori, Yasuo; Inoue, Ryuji; Lossin, Christoph; Baram, Tallie Z; Hirose, Shinichi
2013-01-01
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel-mediated currents, known as I h, are involved in the control of rhythmic activity in neuronal circuits and in determining neuronal properties including the resting membrane potential. Recent studies have shown that HCN channels play a role in seizure susceptibility and in absence and limbic epilepsy including temporal lobe epilepsy following long febrile seizures (FS). This study focused on the potential contributions of abnormalities in the HCN2 isoform and their role in FS. A novel heterozygous missense mutation in HCN2 exon 1 leading to p.S126L was identified in two unrelated patients with FS. The mutation was inherited from the mother who had suffered from FS in a pedigree. To determine the effect of this substitution we conducted whole-cell patch clamp electrophysiology. We found that mutant channels had elevated sensitivity to temperature. More specifically, they displayed faster kinetics at higher temperature. Kinetic shift by change of temperature sensitivity rather than the shift of voltage dependence led to increased availability of I h in conditions promoting FS. Responses to cyclic AMP did not differ between wildtype and mutant channels. Thus, mutant HCN2 channels cause significant cAMP-independent enhanced availability of I h during high temperatures, which may contribute to hyperthermia-induced neuronal hyperexcitability in some individuals with FS.
Fabbri, Alan; Fantini, Matteo; Wilders, Ronald
2017-01-01
Key points We constructed a comprehensive mathematical model of the spontaneous electrical activity of a human sinoatrial node (SAN) pacemaker cell, starting from the recent Severi–DiFrancesco model of rabbit SAN cells.Our model is based on electrophysiological data from isolated human SAN pacemaker cells and closely matches the action potentials and calcium transient that were recorded experimentally.Simulated ion channelopathies explain the clinically observed changes in heart rate in corresponding mutation carriers, providing an independent qualitative validation of the model.The model shows that the modulatory role of the ‘funny current’ (I f) in the pacing rate of human SAN pacemaker cells is highly similar to that of rabbit SAN cells, despite its considerably lower amplitude.The model may prove useful in the design of experiments and the development of heart‐rate modulating drugs. Abstract The sinoatrial node (SAN) is the normal pacemaker of the mammalian heart. Over several decades, a large amount of data on the ionic mechanisms underlying the spontaneous electrical activity of SAN pacemaker cells has been obtained, mostly in experiments on single cells isolated from rabbit SAN. This wealth of data has allowed the development of mathematical models of the electrical activity of rabbit SAN pacemaker cells. The present study aimed to construct a comprehensive model of the electrical activity of a human SAN pacemaker cell using recently obtained electrophysiological data from human SAN pacemaker cells. We based our model on the recent Severi–DiFrancesco model of a rabbit SAN pacemaker cell. The action potential and calcium transient of the resulting model are close to the experimentally recorded values. The model has a much smaller ‘funny current’ (I f) than do rabbit cells, although its modulatory role is highly similar. Changes in pacing rate upon the implementation of mutations associated with sinus node dysfunction agree with the clinical observations. This agreement holds for both loss‐of‐function and gain‐of‐function mutations in the HCN4, SCN5A and KCNQ1 genes, underlying ion channelopathies in I f, fast sodium current and slow delayed rectifier potassium current, respectively. We conclude that our human SAN cell model can be a useful tool in the design of experiments and the development of drugs that aim to modulate heart rate. PMID:28185290
Stem cells as biological heart pacemakers.
Gepstein, Lior
2005-12-01
Abnormalities in the pacemaker function of the heart or in cardiac impulse conduction may result in the appearance of a slow heart rate, traditionally requiring the implantation of a permanent electronic pacemaker. In recent years, a number of experimental approaches have been developed in an attempt to generate biological alternatives to implantable electronic devices. These strategies include, initially, a number of gene therapy approaches (aiming to manipulate the expression of ionic currents or their modulators and thereby convert quiescent cardiomyocytes into pacemaking cells) and, more recently, the use of cell therapy and tissue engineering. The latter approach explored the possibility of grafting pacemaking cells, either derived directly during the differentiation of human embryonic stem cells or engineered from mesenchymal stem cells, into the myocardium. This review will describe each of these approaches, focusing mainly on the stem cell strategies, their possible advantages and shortcomings, as well as the avenues required to make biological pacemaking a clinical reality.
VanSchouwen, Bryan; Melacini, Giuseppe
2016-10-03
The hyperpolarization-activated cyclic-nucleotide-modulated (HCN) ion channels control rhythmicity in neurons and cardiomyocytes. Cyclic AMP (cAMP) modulates HCN activity through cAMP-dependent formation of a tetrameric gating ring spanning the intracellular region (IR) of HCN. In the absence of cAMP, the IR cAMP-binding domain (CBD) mainly samples its inactive conformation, resulting in steric clashes that destabilize the IR tetramer. Although these clashes with the inactive CBD are released through tetramer dissociation into monomers, functional mutagenesis suggests that the apo IR is not fully monomeric. To investigate the inhibitory non-monomeric IR species, we performed molecular dynamics simulations starting from "hybrid" structures that are tetrameric, but contain inactive apo-state CBD conformations. The ensemble of simulated trajectories reveals that full dissociation of the tetramer into monomers is not necessary to release the steric hindrance with the inactive CBD. Specifically, we found that partial dissociation of the tetramer into dimers is sufficient to accommodate four inactive CBDs, while reduction of the quaternary symmetry of the non-dissociated tetramer from four- to two-fold permits accommodation of two inactive CBDs. Our findings not only rationalize available electrophysiological, fluorometry and sedimentation equilibrium data, but they also provide unprecedented structural insight into previously elusive non-monomeric auto-inhibitory HCN species.
Coupling mechanism in the gate and oscillator model of the SCN
NASA Astrophysics Data System (ADS)
Li, Ying; Liu, Zengrong
2016-09-01
In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is considered as the master circadian pacemaker. The SCN is divided into two subgroups of gate and oscillator cells: the ventrolateral (VL) neurons, which receive the periodic light-dark (LD) signal, and the dorsomedial (DM) neurons, which are coupled to the VL cells. The fundamental question is how the individual cellular oscillators, expressing a wide range of periods, interact and assemble to create an integrated pacemaker that can govern behavioral and physiological rhythmicity and be reset by environmental light. The key is that the heterogeneous network formed by the cellular clocks within the SCN must synchronize to maintain timekeeping activity. Based on the structural and functional heterogeneity of the SCN, the authors bring forward a mathematical model including gate cells and oscillator cells with a wide range of periods. The gate neurons offer daily injection to oscillator neurons and the activation of gate is determined by the output of the oscillator neurons. In this model, the authors consider two kinds of coupling: interior coupling among the oscillator cells and exterior coupling from the gate cells to the oscillator cells. The authors mainly analyze the combined effects of these two kinds of coupling on the entrainment of the oscillator cells in the DM part. It is found that the interior coupling is conducive to entrainment, but a stronger coupling is not beneficial to entrainment. The gate mechanism in exterior coupling is more propitious to entrainment than continuous coupling. This study helps to understand collective circadian rhythm in the mammals.
Sanna, M Germana; Vincent, Kevin P; Repetto, Emanuela; Nguyen, Nhan; Brown, Steven J; Abgaryan, Lusine; Riley, Sean W; Leaf, Nora B; Cahalan, Stuart M; Kiosses, William B; Kohno, Yasushi; Brown, Joan Heller; McCulloch, Andrew D; Rosen, Hugh; Gonzalez-Cabrera, Pedro J
2016-01-01
The molecular pharmacology of the G protein-coupled receptors for sphingosine 1-phosphate (S1P) provides important insight into established and new therapeutic targets. A new, potent bitopic S1P3 antagonist, SPM-354, with in vivo activity, has been used, together with S1P3-knockin and S1P3-knockout mice to define the spatial and functional properties of S1P3 in regulating cardiac conduction. We show that S1P3 is a key direct regulator of cardiac rhythm both in vivo and in isolated perfused hearts. 2-Amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol in vivo and S1P in isolated hearts induced a spectrum of cardiac effects, ranging from sinus bradycardia to complete heart block, as measured by a surface electrocardiogram in anesthetized mice and in volume-conducted Langendorff preparations. The agonist effects on complete heart block are absent in S1P3-knockout mice and are reversed in wild-type mice with SPM-354, as characterized and described here. Homologous knockin of S1P3-mCherry is fully functional pharmacologically and is strongly expressed by immunohistochemistry confocal microscopy in Hyperpolarization Activated Cyclic Nucleotide Gated Potassium Channel 4 (HCN4)-positive atrioventricular node and His-Purkinje fibers, with relative less expression in the HCN4-positive sinoatrial node. In Langendorff studies, at constant pressure, SPM-354 restored sinus rhythm in S1P-induced complete heart block and fully reversed S1P-mediated bradycardia. S1P3 distribution and function in the mouse ventricular cardiac conduction system suggest a direct mechanism for heart block risk that should be further studied in humans. A richer understanding of receptor and ligand usage in the pacemaker cells of the cardiac system is likely to be useful in understanding ventricular conduction in health, disease, and pharmacology. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Du, Yuan; Zhang, Junbo; Xi, Yutao; Wu, Geru; Han, Ke; Huang, Xin; Ma, Aiqun; Wang, Tingzhong
2016-06-01
Bisoprolol, an antagonist of β1-adrenergic receptors, is effective in reducing the morbidity and mortality in patients with heart failure (HF). It has been found that HF is accompanied with dysfunction of the sinoatrial node (SAN). However, whether bisoprolol reverses the decreased SAN function in HF and how the relevant ion channels in SAN change were relatively less studied. SAN function and messenger RNA (mRNA) expression of sodium channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channel subunits were assessed in sham-operated rats, abdominal arterio-venous shunt (volume overload)-induced HF rats, and bisoprolol- treated HF rats. SAN cells of rats were isolated by laser capture microdissection. Quantitative real-time PCR analysis was used to quantify mRNA expression of sodium channels and HCN channel subunits in SAN. Intrinsic heart rate declined and sinus node recovery time prolonged in HF rats, indicating the suppressed SAN function, which could be improved by bisoprolol treatment. Nav1.1, Nav1.6, and HCN4 mRNA expressions were reduced in SAN in HF rats compared with that in control rats. Treatment with bisoprolol could reverse both the SAN function and the Nav1.1, Nav1.6, and HCN4 mRNA expression partially. These data indicated that bisoprolol is effective in HF treatment partially due to improved SAN function by reversing the down-regulation of sodium channels (Nav1.1 and Nav1.6) and HCN channel (HCN4) subunits in SAN in failing hearts.
Spatially Resolved HCN Absorption Features in the Circumnuclear Region of NGC 1052
NASA Astrophysics Data System (ADS)
Sawada-Satoh, Satoko; Roh, Duk-Gyoo; Oh, Se-Jin; Lee, Sang-Sung; Byun, Do-Young; Kameno, Seiji; Yeom, Jae-Hwan; Jung, Dong-Kyu; Kim, Hyo-Ryoung; Hwang, Ju-Yeon
2016-10-01
We present the first VLBI detection of HCN molecular absorption in the nearby active galactic nucleus NGC 1052. Utilizing the 1 mas resolution achieved by the Korean VLBI Network, we have spatially resolved the HCN absorption against a double-sided nuclear jet structure. Two velocity features of HCN absorption are detected significantly at the radial velocity of 1656 and 1719 km s-1, redshifted by 149 and 212 km s-1 with respect to the systemic velocity of the galaxy. The column density of the HCN molecule is estimated to be 1015-1016 cm-2, assuming an excitation temperature of 100-230 K. The absorption features show high optical depth localized on the receding jet side, where the free-free absorption occurred due to the circumnuclear torus. The size of the foreground absorbing molecular gas is estimated to be on approximately one-parsec scales, which agrees well with the approximate size of the circumnuclear torus. HCN absorbing gas is likely to be several clumps smaller than 0.1 pc inside the circumnuclear torus. The redshifted velocities of the HCN absorption features imply that HCN absorbing gas traces ongoing infall motion inside the circumnuclear torus onto the central engine.
Schweizer, Patrick A; Darche, Fabrice F; Ullrich, Nina D; Geschwill, Pascal; Greber, Boris; Rivinius, Rasmus; Seyler, Claudia; Müller-Decker, Karin; Draguhn, Andreas; Utikal, Jochen; Koenen, Michael; Katus, Hugo A; Thomas, Dierk
2017-10-16
Human induced pluripotent stem cells (hiPSC) harbor the potential to differentiate into diverse cardiac cell types. Previous experimental efforts were primarily directed at the generation of hiPSC-derived cells with ventricular cardiomyocyte characteristics. Aiming at a straightforward approach for pacemaker cell modeling and replacement, we sought to selectively differentiate cells with nodal-type properties. hiPSC were differentiated into spontaneously beating clusters by co-culturing with visceral endoderm-like cells in a serum-free medium. Subsequent culturing in a specified fetal bovine serum (FBS)-enriched cell medium produced a pacemaker-type phenotype that was studied in detail using quantitative real-time polymerase chain reaction (qRT-PCR), immunocytochemistry, and patch-clamp electrophysiology. Further investigations comprised pharmacological stimulations and co-culturing with neonatal cardiomyocytes. hiPSC co-cultured in a serum-free medium with the visceral endoderm-like cell line END-2 produced spontaneously beating clusters after 10-12 days of culture. The pacemaker-specific genes HCN4, TBX3, and TBX18 were abundantly expressed at this early developmental stage, while levels of sarcomeric gene products remained low. We observed that working-type cardiomyogenic differentiation can be suppressed by transfer of early clusters into a FBS-enriched cell medium immediately after beating onset. After 6 weeks under these conditions, sinoatrial node (SAN) hallmark genes remained at high levels, while working-type myocardial transcripts (NKX2.5, TBX5) were low. Clusters were characterized by regular activity and robust beating rates (70-90 beats/min) and were triggered by spontaneous Ca 2+ transients recapitulating calcium clock properties of genuine pacemaker cells. They were responsive to adrenergic/cholinergic stimulation and able to pace neonatal rat ventricular myocytes in co-culture experiments. Action potential (AP) measurements of cells individualized from clusters exhibited nodal-type (63.4%) and atrial-type (36.6%) AP morphologies, while ventricular AP configurations were not observed. We provide a novel culture media-based, transgene-free approach for targeted generation of hiPSC-derived pacemaker-type cells that grow in clusters and offer the potential for disease modeling, drug testing, and individualized cell-based replacement therapy of the SAN.
Expression and distribution of voltage-gated ion channels in ferret sinoatrial node.
Brahmajothi, Mulugu V; Morales, Michael J; Campbell, Donald L; Steenbergen, Charles; Strauss, Harold C
2010-10-01
Spontaneous diastolic depolarization in the sinoatrial (SA) node enables it to serve as pacemaker of the heart. The variable cell morphology within the SA node predicts that ion channel expression would be heterogeneous and different from that in the atrium. To evaluate ion channel heterogeneity within the SA node, we used fluorescent in situ hybridization to examine ion channel expression in the ferret SA node region and atrial appendage. SA nodal cells were distinguished from surrounding cardiac myocytes by expression of the slow (SA node) and cardiac (surrounding tissue) forms of troponin I. Nerve cells in the sections were identified by detection of GAP-43 and cytoskeletal middle neurofilament. Transcript expression was characterized for the 4 hyperpolarization-activated cation channels, 6 voltage-gated Na(+) channels, 3 voltage-gated Ca(2+) channels, 24 voltage-gated K(+) channel α-subunits, and 3 ancillary subunits. To ensure that transcript expression was representative of protein expression, immunofluorescence was used to verify localization patterns of voltage-dependent K(+) channels. Colocalizations were performed to observe any preferential patterns. Some overlapping and nonoverlapping binding patterns were observed. Measurement of different cation channel transcripts showed heterogeneous expression with many different patterns of expression, attesting to the complexity of electrical activity in the SA node. This study provides insight into the possible role ion channel heterogeneity plays in SA node pacemaker activity.
Engineered Biological Pacemakers | NCI Technology Transfer Center | TTC
The National Institute on Aging's Cellular Biophysics Section is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize biological pacemakers.
SPATIALLY RESOLVED HCN ABSORPTION FEATURES IN THE CIRCUMNUCLEAR REGION OF NGC 1052
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada-Satoh, Satoko; Roh, Duk-Gyoo; Oh, Se-Jin
We present the first VLBI detection of HCN molecular absorption in the nearby active galactic nucleus NGC 1052. Utilizing the 1 mas resolution achieved by the Korean VLBI Network, we have spatially resolved the HCN absorption against a double-sided nuclear jet structure. Two velocity features of HCN absorption are detected significantly at the radial velocity of 1656 and 1719 km s{sup −1}, redshifted by 149 and 212 km s{sup −1} with respect to the systemic velocity of the galaxy. The column density of the HCN molecule is estimated to be 10{sup 15}–10{sup 16} cm{sup −2}, assuming an excitation temperature ofmore » 100–230 K. The absorption features show high optical depth localized on the receding jet side, where the free–free absorption occurred due to the circumnuclear torus. The size of the foreground absorbing molecular gas is estimated to be on approximately one-parsec scales, which agrees well with the approximate size of the circumnuclear torus. HCN absorbing gas is likely to be several clumps smaller than 0.1 pc inside the circumnuclear torus. The redshifted velocities of the HCN absorption features imply that HCN absorbing gas traces ongoing infall motion inside the circumnuclear torus onto the central engine.« less
A NOVEL MUTATION IN THE HCN4 GENE CAUSES SYMPTOMATIC SINUS BRADYCARDIA IN MOROCCAN JEWS
Laish-Farkash, Avishag; Brass, Dovrat; Marek-Yagel, Dina; Pras, Elon; Dascal, Nathan; Antzelevitch, Charles; Nof, Eyal; Reznik, Haya; Eldar, Michael; Glikson, Michael; Luria, David
2010-01-01
Objectives To conduct a clinical, genetic and functional analysis of three unrelated families with familial sinus bradycardia (FSB). Background Mutations in the hyperpolarization-activated nucleotide-gated channel (HCN4) are known to be associated with FSB. Methods and Results Three males of Moroccan Jewish descent were hospitalized: one survived an out-of-hospital cardiac arrest and 2 presented with weakness and presyncopal events. All 3 had significant sinus bradycardia, also found in other first-degree relatives, with a segregation suggesting autosomal-dominant inheritance. All had normal response to exercise and normal heart structure. Sequencing of the HCN4 gene in all patients revealed a C to T transition at nucleotide position 1454, which resulted in an alanine to valine change (A485V) in the ion channel pore found in most of their bradycardiac relatives, but not in 150 controls. Functional expression of the mutated ion channel in Xenopus oocytes and in human embryonic kidney 293 cells revealed profoundly reduced function and synthesis of the mutant channel compared to wild-type. Conclusions We describe a new mutation in the HCN4 gene causing symptomatic FSB in 3 unrelated individuals of similar ethnic background that may indicate unexplained FSB in this ethnic group. This profound functional defect is consistent with the symptomatic phenotype. PMID:20662977
A fully implantable pacemaker for the mouse: from battery to wireless power.
Laughner, Jacob I; Marrus, Scott B; Zellmer, Erik R; Weinheimer, Carla J; MacEwan, Matthew R; Cui, Sophia X; Nerbonne, Jeanne M; Efimov, Igor R
2013-01-01
Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice.
Gene therapy to develop a genetically engineered cardiac pacemaker.
Glenn, Christopher M; Pogwizd, Steven M
2003-01-01
While cardiac pacemakers are frequently used for the treatment of bradydysrhythmias (from diseases of the cardiac conduction system), their use is still limited by complications that can be life-threatening and expensive. Genetic engineering approaches offer an opportunity to modulate cellular automaticity in a manner that could have significant therapeutic potential. It is well known that ventricular myocytes exhibit a more negative diastolic potential than do pacemaker cells, in large part because of the inward rectifying potassium current/K1 (which pacemaker cells lack). Taking advantage of these intrinsic electrophysiological differences, a biological pacemaker has recently been developed by Miake et al (Nature 2002; 419:132-133) using adenoviral gene transfer approaches. By isolating the gene responsible for/K1 (the Kir2.1 gene), mutating it to make it a dysfunctional channel (a dominant-negative), inserting the mutated gene into an adenoviral vector, and delivering the virus to the hearts of guinea pigs, the investigators were able to successfully convert some ventricular myocytes to pacemaker cells. While issues of safety and long-term efficacy need to be further established, the results of these experiments provide proof of principle that gene transfer offers great promise for treatment of electrophysiological disorders including conduction system disease.
Alviña, K; Tara, E; Khodakhah, K
2016-05-13
The activity of the deep cerebellar nuclei (DCN) neurons conveys the bulk of the output of the cerebellum. To generate these motor signals, DCN neurons integrate synaptic inputs with their own spontaneous activity. We have previously reported that N-type voltage-gated Ca(2+) channels modulate the spontaneous activity of the majority of juvenile DCN neurons in vitro. Specifically, pharmacologically blocking N-type Ca(2+) channels increases their firing rate causing DCN cells to burst. Adult DCN neurons however, behaved differently. To further investigate this change, we have studied here the effect of cadmium on the firing rate of DCN neurons in acute cerebellar slices obtained from adult (>2 months old) or juvenile (12-21 days old) rats and mice. Strikingly, and in contrast to juvenile DCN cells, cadmium did not affect the pacemaking of adult DCN cells. The activity of Purkinje cells (PCs) however was transformed into high-frequency bursting, regardless the age. Further, we questioned whether these findings could be due to an artifact associated with the added difficulty of preparing adult DCN slices. Hence we proceeded to examine the spontaneous activity of DCN neurons in anesthetized juvenile and adult rats and mice in vivo. When cadmium was injected into the DCN in vivo no significant change in firing rate was observed, conversely to most juvenile DCN neurons which showed high-frequency bursts after cadmium injection. In these same animals, PCs pacemaking showed no developmental difference. Thus our results demonstrate a remarkable age-dependent functional modification in the regulation of DCN neurons pacemaking. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Poetschke, Christina; Dragicevic, Elena; Duda, Johanna; Benkert, Julia; Dougalis, Antonios; DeZio, Roberta; Snutch, Terrance P; Striessnig, Joerg; Liss, Birgit
2015-09-18
The preferential degeneration of Substantia nigra dopamine midbrain neurons (SN DA) causes the motor-symptoms of Parkinson's disease (PD). Voltage-gated L-type calcium channels (LTCCs), especially the Cav1.3-subtype, generate an activity-related oscillatory Ca(2+) burden in SN DA neurons, contributing to their degeneration and PD. While LTCC-blockers are already in clinical trials as PD-therapy, age-dependent functional roles of Cav1.3 LTCCs in SN DA neurons remain unclear. Thus, we analysed juvenile and adult Cav1.3-deficient mice with electrophysiological and molecular techniques. To unmask compensatory effects, we compared Cav1.3 KO mice with pharmacological LTCC-inhibition. LTCC-function was not necessary for SN DA pacemaker-activity at either age, but rather contributed to their pacemaker-precision. Moreover, juvenile Cav1.3 KO but not WT mice displayed adult wildtype-like, sensitised inhibitory dopamine-D2-autoreceptor (D2-AR) responses that depended upon both, interaction of the neuronal calcium sensor NCS-1 with D2-ARs, and on voltage-gated T-type calcium channel (TTCC) activity. This functional KO-phenotype was accompanied by cell-specific up-regulation of NCS-1 and Cav3.1-TTCC mRNA. Furthermore, in wildtype we identified an age-dependent switch of TTCC-function from contributing to SN DA pacemaker-precision in juveniles to pacemaker-frequency in adults. This novel interplay of Cav1.3 L-type and Cav3.1 T-type channels, and their modulation of SN DA activity-pattern and D2-AR-sensitisation, provide new insights into flexible age- and calcium-dependent activity-control of SN DA neurons and its pharmacological modulation.
Cardi, P; Nagy, F
1994-06-01
1. Two modulatory neurons, P and commissural pyloric (CP), known to be involved in the long-term maintenance of pyloric central pattern generator operation in the rock lobster Homarus gammarus, are members of the commissural pyloric oscillator (CPO), a higher-order oscillator influencing the pyloric network. 2. The CP neuron was endogenously oscillating in approximately 30% of the preparations in which its cell body was impaled. Rhythmic inhibitory feedback from the pyloric pacemaker anterior burster (AB) neuron stabilized the CP neuron's endogenous rhythm. 3. The organization of the CPO is described. Follower commissural neurons, the F cells, and the CP neuron receive a common excitatory postsynaptic potential from another commissural neuron, the large exciter (LE). When in oscillatory state, CP in turn excites the LE neuron. This positive feedback may maintain long episodes of CP oscillations. 4. The pyloric pacemaker neurons follow the CPO rhythm with variable coordination modes (i.e., 1:1, 1:2) and switch among these modes when their membrane potential is modified. The CPO inputs strongly constrain the pyloric period, which as a result may adopt only a few discrete values. This effect is based on mechanisms of entrainment between the CPO and the pyloric oscillator. 5. Pyloric constrictor neurons show differential sensitivity from the pyloric pacemaker neurons with respect to the CPO inputs. Consequently, their bursting period can be a shorter harmonic of the bursting period of the pyloric pacemakers neurons. 6. The CPO neurons seem to be the first example of modulatory gating neurons that also give timing cues to a rhythmic pattern generating network.
Lu, T Z; Kostelecki, W; Sun, C L F; Dong, N; Pérez Velázquez, J L; Feng, Z-P
2016-12-01
The spontaneous rhythmic firing of action potentials in pacemaker neurons depends on the biophysical properties of voltage-gated ion channels and background leak currents. The background leak current includes a large K + and a small Na + component. We previously reported that a Na + -leak current via U-type channels is required to generate spontaneous action potential firing in the identified respiratory pacemaker neuron, RPeD1, in the freshwater pond snail Lymnaea stagnalis. We further investigated the functional significance of the background Na + current in rhythmic spiking of RPeD1 neurons. Whole-cell patch-clamp recording and computational modeling approaches were carried out in isolated RPeD1 neurons. The whole-cell current of the major ion channel components in RPeD1 neurons were characterized, and a conductance-based computational model of the rhythmic pacemaker activity was simulated with the experimental measurements. We found that the spiking rate is more sensitive to changes in the Na + leak current as compared to the K + leak current, suggesting a robust function of Na + leak current in regulating spontaneous neuronal firing activity. Our study provides new insight into our current understanding of the role of Na + leak current in intrinsic properties of pacemaker neurons. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
A Fully Implantable Pacemaker for the Mouse: From Battery to Wireless Power
Zellmer, Erik R.; Weinheimer, Carla J.; MacEwan, Matthew R.; Cui, Sophia X.; Nerbonne, Jeanne M.; Efimov, Igor R.
2013-01-01
Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice. PMID:24194832
Resch, Jon M; Fenselau, Henning; Madara, Joseph C; Wu, Chen; Campbell, John N; Lyubetskaya, Anna; Dawes, Brian A; Tsai, Linus T; Li, Monica M; Livneh, Yoav; Ke, Qingen; Kang, Peter M; Fejes-Tóth, Géza; Náray-Fejes-Tóth, Anikó; Geerling, Joel C; Lowell, Bradford B
2017-09-27
Sodium deficiency increases angiotensin II (ATII) and aldosterone, which synergistically stimulate sodium retention and consumption. Recently, ATII-responsive neurons in the subfornical organ (SFO) and aldosterone-sensitive neurons in the nucleus of the solitary tract (NTS HSD2 neurons) were shown to drive sodium appetite. Here we investigate the basis for NTS HSD2 neuron activation, identify the circuit by which NTS HSD2 neurons drive appetite, and uncover an interaction between the NTS HSD2 circuit and ATII signaling. NTS HSD2 neurons respond to sodium deficiency with spontaneous pacemaker-like activity-the consequence of "cardiac" HCN and Na v 1.5 channels. Remarkably, NTS HSD2 neurons are necessary for sodium appetite, and with concurrent ATII signaling their activity is sufficient to produce rapid consumption. Importantly, NTS HSD2 neurons stimulate appetite via projections to the vlBNST, which is also the effector site for ATII-responsive SFO neurons. The interaction between angiotensin signaling and NTS HSD2 neurons provides a neuronal context for the long-standing "synergy hypothesis" of sodium appetite regulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Regulation of human cardiac potassium channels by full-length KCNE3 and KCNE4.
Abbott, Geoffrey W
2016-12-06
Voltage-gated potassium (Kv) channels comprise pore-forming α subunits and a multiplicity of regulatory proteins, including the cardiac-expressed and cardiac arrhythmia-linked transmembrane KCNE subunits. After recently uncovering novel, N-terminally extended (L) KCNE3 and KCNE4 isoforms and detecting their transcripts in human atrium, reported here are their functional effects on human cardiac Kv channel α subunits expressed in Xenopus laevis oocytes. As previously reported for short isoforms KCNE3S and KCNE4S, KCNE3L inhibited hERG; KCNE4L inhibited Kv1.1; neither form regulated the HCN1 pacemaker channel. Unlike KCNE4S, KCNE4L was a potent inhibitor of Kv4.2 and Kv4.3; co-expression of cytosolic β subunit KChIP2, which regulates Kv4 channels in cardiac myocytes, partially relieved Kv4.3 but not Kv4.2 inhibition. Inhibition of Kv4.2 and Kv4.3 by KCNE3L was weaker, and its inhibition of Kv4.2 abolished by KChIP2. KCNE3L and KCNE4L also exhibited subunit-specific effects on Kv4 channel complex inactivation kinetics, voltage dependence and recovery. Further supporting the potential physiological significance of the robust functional effects of KCNE4L on Kv4 channels, KCNE4L protein was detected in human atrium, where it co-localized with Kv4.3. The findings establish functional effects of novel human cardiac-expressed KCNE isoforms and further contribute to our understanding of the potential mechanisms influencing cardiomyocyte repolarization.
Mironov, Sergej L.
2018-01-01
Hyperventilation is a known feature of Rett syndrome (RTT). However, how hyperventilation is related to other RTT symptoms such as hyperexcitability is unknown. Intense breathing during hyperventilation induces hypocapnia and culminates in respiratory alkalosis. Alkalinization of extracellular milieu can trigger epilepsy in patients who already have neuronal hyperexcitability. By combining patch-clamp electrophysiology and quantitative glutamate imaging, we compared excitability of CA1 neurons of WT and Mecp2 (-/y) mice, and analyzed the biophysical properties of subthreshold membrane channels. The results show that Mecp2 (-/y) CA1 neurons are hyperexcitable in normal pH (7.4) and are increasingly vulnerable to alkaline extracellular pH (8.4), during which their excitability increased further. Under normal pH conditions, an abnormal negative shift in the voltage-dependencies of HCN (hyperpolarization-activated cyclic nucleotide-gated) and calcium channels in the CA1 neurons of Mecp2 (-/y) mice was observed. Alkaline pH also enhanced excitability in wild-type (WT) CA1 neurons through modulation of the voltage dependencies of HCN- and calcium channels. Additionally alkaline pH augmented spontaneous glutamate release and burst firing in WT CA1 neurons. Conversely, acidic pH (6.4) and 8 mM Mg2+ exerted the opposite effect, and diminished hyperexcitability in Mecp2 (-/y) CA1 neurons. We propose that the observed effects of pH and Mg2+ are mediated by changes in the neuronal membrane surface potential, which consecutively modulates the gating of HCN and calcium channels. The results provide insight to pivotal cellular mechanisms that can regulate neuronal excitability and help to devise treatment strategies for hyperexcitability induced symptoms of Rett syndrome. PMID:29621262
Hcn1 Is a Tremorgenic Genetic Component in a Rat Model of Essential Tremor
Ohno, Yukihiro; Shimizu, Saki; Tatara, Ayaka; Imaoku, Takuji; Ishii, Takahiro; Sasa, Masashi; Serikawa, Tadao; Kuramoto, Takashi
2015-01-01
Genetic factors are thought to play a major role in the etiology of essential tremor (ET); however, few genetic changes that induce ET have been identified to date. In the present study, to find genes responsible for the development of ET, we employed a rat model system consisting of a tremulous mutant strain, TRM/Kyo (TRM), and its substrain TRMR/Kyo (TRMR). The TRM rat is homozygous for the tremor (tm) mutation and shows spontaneous tremors resembling human ET. The TRMR rat also carries a homozygous tm mutation but shows no tremor, leading us to hypothesize that TRM rats carry one or more genes implicated in the development of ET in addition to the tm mutation. We used a positional cloning approach and found a missense mutation (c. 1061 C>T, p. A354V) in the hyperpolarization-activated cyclic nucleotide-gated 1 channel (Hcn1) gene. The A354V HCN1 failed to conduct hyperpolarization-activated currents in vitro, implicating it as a loss-of-function mutation. Blocking HCN1 channels with ZD7288 in vivo evoked kinetic tremors in nontremulous TRMR rats. We also found neuronal activation of the inferior olive (IO) in both ZD7288-treated TRMR and non-treated TRM rats and a reduced incidence of tremor in the IO-lesioned TRM rats, suggesting a critical role of the IO in tremorgenesis. A rat strain carrying the A354V mutation alone on a genetic background identical to that of the TRM rats showed no tremor. Together, these data indicate that body tremors emerge when the two mutant loci, tm and Hcn1A354V, are combined in a rat model of ET. In this model, HCN1 channels play an important role in the tremorgenesis of ET. We propose that oligogenic, most probably digenic, inheritance is responsible for the genetic heterogeneity of ET. PMID:25970616
Bioinstrumentation: A Project-Based Engineering Course
ERIC Educational Resources Information Center
Kyle, Aaron M.; Jangraw, David C.; Bouchard, Matthew B.; Downs, Matthew E.
2016-01-01
This paper presents the development, implementation, and assessment of a project-based Bioinstrumentation course. All course lectures and hands-on laboratory activities are related to a central project theme: a cardiac pacemaker. The students create a benchtop cardiac pacemaker by applying instrumentation knowledge acquired in the course to each…
Lukyanenko, Yevgeniya O; Younes, Antoine; Lyashkov, Alexey E; Tarasov, Kirill V; Riordon, Daniel R; Lee, Joonho; Sirenko, Syevda G; Kobrinsky, Evgeny; Ziman, Bruce; Tarasova, Yelena S; Juhaszova, Magdalena; Sollott, Steven J; Graham, David R; Lakatta, Edward G
2016-09-01
Constitutive Ca(2+)/calmodulin (CaM)-activation of adenylyl cyclases (ACs) types 1 and 8 in sinoatrial nodal cells (SANC) generates cAMP within lipid-raft-rich microdomains to initiate cAMP-protein kinase A (PKA) signaling, that regulates basal state rhythmic action potential firing of these cells. Mounting evidence in other cell types points to a balance between Ca(2+)-activated counteracting enzymes, ACs and phosphodiesterases (PDEs) within these cells. We hypothesized that the expression and activity of Ca(2+)/CaM-activated PDE Type 1A is higher in SANC than in other cardiac cell types. We found that PDE1A protein expression was 5-fold higher in sinoatrial nodal tissue than in left ventricle, and its mRNA expression was 12-fold greater in the corresponding isolated cells. PDE1 activity (nimodipine-sensitive) accounted for 39% of the total PDE activity in SANC lysates, compared to only 4% in left ventricular cardiomyocytes (LVC). Additionally, total PDE activity in SANC lysates was lowest (10%) in lipid-raft-rich and highest (76%) in lipid-raft-poor fractions (equilibrium sedimentation on a sucrose density gradient). In intact cells PDE1A immunolabeling was not localized to the cell surface membrane (structured illumination microscopy imaging), but located approximately within about 150nm inside of immunolabeling of hyperpolarization-activated cyclic nucleotide-gated potassium channels (HCN4), which reside within lipid-raft-rich microenvironments. In permeabilized SANC, in which surface membrane ion channels are not functional, nimodipine increased spontaneous SR Ca(2+) cycling. PDE1A mRNA silencing in HL-1 cells increased the spontaneous beating rate, reduced the cAMP, and increased cGMP levels in response to IBMX, a broad spectrum PDE inhibitor (detected via fluorescence resonance energy transfer microscopy). We conclude that signaling via cAMP generated by Ca(2+)/CaM-activated AC in SANC lipid raft domains is limited by cAMP degradation by Ca(2+)/CaM-activated PDE1A in non-lipid raft domains. This suggests that local gradients of [Ca(2+)]-CaM or different AC and PDE1A affinity regulate both cAMP production and its degradation, and this balance determines the intensity of Ca(2+)-AC-cAMP-PKA signaling that drives SANC pacemaker function. Copyright © 2016. Published by Elsevier Ltd.
Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy.
Michalakis, Stylianos; Becirovic, Elvir; Biel, Martin
2018-03-07
The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca 2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.
Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy
Biel, Martin
2018-01-01
The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application. PMID:29518895
Morpho-functional characterization of the systemic venous pole of the reptile heart.
Jensen, Bjarke; Vesterskov, Signe; Boukens, Bastiaan J; Nielsen, Jan M; Moorman, Antoon F M; Christoffels, Vincent M; Wang, Tobias
2017-07-27
Mammals evolved from reptile-like ancestors, and while the mammalian heart is driven by a distinct sinus node, a sinus node is not apparent in reptiles. We characterized the myocardial systemic venous pole, the sinus venosus, in reptiles to identify the dominant pacemaker and to assess whether the sinus venosus remodels and adopts an atrium-like phenotype as observed in mammals. Anolis lizards had an extensive sinus venosus of myocardium expressing Tbx18. A small sub-population of cells encircling the sinuatrial junction expressed Isl1, Bmp2, Tbx3, and Hcn4, homologues of genes marking the mammalian sinus node. Electrical mapping showed that hearts of Anolis lizards and Python snakes were driven from the sinuatrial junction. The electrical impulse was delayed between the sinus venosus and the right atrium, allowing the sinus venosus to contract and aid right atrial filling. In proximity of the systemic veins, the Anolis sinus venosus expressed markers of the atrial phenotype Nkx2-5 and Gja5. In conclusion, the reptile heart is driven by a pacemaker region with an expression signature similar to that of the immature sinus node of mammals. Unlike mammals, reptiles maintain a sinuatrial delay of the impulse, allowing the partly atrialized sinus venosus to function as a chamber.
No Evidence for Ionotropic Pheromone Transduction in the Hawkmoth Manduca sexta.
Nolte, Andreas; Gawalek, Petra; Koerte, Sarah; Wei, HongYing; Schumann, Robin; Werckenthin, Achim; Krieger, Jürgen; Stengl, Monika
2016-01-01
Insect odorant receptors (ORs) are 7-transmembrane receptors with inverse membrane topology. They associate with the conserved ion channel Orco. As chaperon, Orco maintains ORs in cilia and, as pacemaker channel, Orco controls spontaneous activity in olfactory receptor neurons. Odorant binding to ORs opens OR-Orco receptor ion channel complexes in heterologous expression systems. It is unknown, whether this also occurs in vivo. As an alternative to this ionotropic transduction, experimental evidence is accumulating for metabotropic odor transduction, implicating that insect ORs couple to G-proteins. Resulting second messengers gate various ion channels. They generate the sensillum potential that elicits phasic-tonic action potentials (APs) followed by late, long-lasting pheromone responses. Because it is still unclear how and when Orco opens after odor-OR-binding, we used tip recordings to examine in vivo the effects of the Orco antagonist OLC15 and the amilorides MIA and HMA on bombykal transduction in the hawkmoth Manduca sexta. In contrast to OLC15 both amilorides decreased the pheromone-dependent sensillum potential amplitude and the frequency of the phasic AP response. Instead, OLC15 decreased spontaneous activity, increased latencies of phasic-, and decreased frequencies of late, long-lasting pheromone responses Zeitgebertime-dependently. Our results suggest no involvement for Orco in the primary transduction events, in contrast to amiloride-sensitive channels. Instead of an odor-gated ionotropic receptor, Orco rather acts as a voltage- and apparently second messenger-gated pacemaker channel controlling the membrane potential and hence threshold and kinetics of the pheromone response.
Gonzalo-Gomez, Alicia; Turiegano, Enrique; León, Yolanda; Molina, Isabel; Torroja, Laura; Canal, Inmaculada
2012-01-01
HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep:activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest:activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels.
Singh, Anamika; Gebhart, Mathias; Fritsch, Reinhard; Sinnegger-Brauns, Martina J; Poggiani, Chiara; Hoda, Jean-Charles; Engel, Jutta; Romanin, Christoph; Striessnig, Jörg; Koschak, Alexandra
2008-07-25
Low voltage activation of Ca(V)1.3 L-type Ca(2+) channels controls excitability in sensory cells and central neurons as well as sinoatrial node pacemaking. Ca(V)1.3-mediated pacemaking determines neuronal vulnerability of dopaminergic striatal neurons affected in Parkinson disease. We have previously found that in Ca(V)1.4 L-type Ca(2+) channels, activation, voltage, and calcium-dependent inactivation are controlled by an intrinsic distal C-terminal modulator. Because alternative splicing in the Ca(V)1.3 alpha1 subunit C terminus gives rise to a long (Ca(V)1.3(42)) and a short form (Ca(V)1.3(42A)), we investigated if a C-terminal modulatory mechanism also controls Ca(V)1.3 gating. The biophysical properties of both splice variants were compared after heterologous expression together with beta3 and alpha2delta1 subunits in HEK-293 cells. Activation of calcium current through Ca(V)1.3(42A) channels was more pronounced at negative voltages, and inactivation was faster because of enhanced calcium-dependent inactivation. By investigating several Ca(V)1.3 channel truncations, we restricted the modulator activity to the last 116 amino acids of the C terminus. The resulting Ca(V)1.3(DeltaC116) channels showed gating properties similar to Ca(V)1.3(42A) that were reverted by co-expression of the corresponding C-terminal peptide C(116). Fluorescence resonance energy transfer experiments confirmed an intramolecular protein interaction in the C terminus of Ca(V)1.3 channels that also modulates calmodulin binding. These experiments revealed a novel mechanism of channel modulation enabling cells to tightly control Ca(V)1.3 channel activity by alternative splicing. The absence of the C-terminal modulator in short splice forms facilitates Ca(V)1.3 channel activation at lower voltages expected to favor Ca(V)1.3 activity at threshold voltages as required for modulation of neuronal firing behavior and sinoatrial node pacemaking.
Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo
2015-12-01
In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.
Runtime Verification of Pacemaker Functionality Using Hierarchical Fuzzy Colored Petri-nets.
Majma, Negar; Babamir, Seyed Morteza; Monadjemi, Amirhassan
2017-02-01
Today, implanted medical devices are increasingly used for many patients and in case of diverse health problems. However, several runtime problems and errors are reported by the relevant organizations, even resulting in patient death. One of those devices is the pacemaker. The pacemaker is a device helping the patient to regulate the heartbeat by connecting to the cardiac vessels. This device is directed by its software, so any failure in this software causes a serious malfunction. Therefore, this study aims to a better way to monitor the device's software behavior to decrease the failure risk. Accordingly, we supervise the runtime function and status of the software. The software verification means examining limitations and needs of the system users by the system running software. In this paper, a method to verify the pacemaker software, based on the fuzzy function of the device, is presented. So, the function limitations of the device are identified and presented as fuzzy rules and then the device is verified based on the hierarchical Fuzzy Colored Petri-net (FCPN), which is formed considering the software limits. Regarding the experiences of using: 1) Fuzzy Petri-nets (FPN) to verify insulin pumps, 2) Colored Petri-nets (CPN) to verify the pacemaker and 3) To verify the pacemaker by a software agent with Petri-network based knowledge, which we gained during the previous studies, the runtime behavior of the pacemaker software is examined by HFCPN, in this paper. This is considered a developing step compared to the earlier work. HFCPN in this paper, compared to the FPN and CPN used in our previous studies reduces the complexity. By presenting the Petri-net (PN) in a hierarchical form, the verification runtime, decreased as 90.61% compared to the verification runtime in the earlier work. Since we need an inference engine in the runtime verification, we used the HFCPN to enhance the performance of the inference engine.
Nitabach, Michael N.; Wu, Ying; Sheeba, Vasu; Lemon, William C.; Strumbos, John; Zelensky, Paul K.; White, Benjamin H.; Holmes, Todd C.
2008-01-01
Coupling of autonomous cellular oscillators is an essential aspect of circadian clock function but little is known about its circuit requirements. Functional ablation of the pigment-dispersing factor-expressing lateral ventral subset (LNV ) of Drosophila clock neurons abolishes circadian rhythms of locomotor activity. The hypothesis that LNVs synchronize oscillations in downstream clock neurons was tested by rendering the LNVs hyperexcitable via transgenic expression of a low activation threshold voltage-gated sodium channel. When the LNVs are made hyperexcitable, free-running behavioral rhythms decompose into multiple independent superimposed oscillations and the clock protein oscillations in the dorsal neuron 1 and 2 subgroups of clock neurons are phase-shifted. Thus, regulated electrical activity of the LNVs synchronize multiple oscillators in the fly circadian pacemaker circuit. PMID:16407545
Modulation of thalamocortical oscillations by TRIP8b, an auxiliary subunit for HCN channels.
Zobeiri, Mehrnoush; Chaudhary, Rahul; Datunashvili, Maia; Heuermann, Robert J; Lüttjohann, Annika; Narayanan, Venu; Balfanz, Sabine; Meuth, Patrick; Chetkovich, Dane M; Pape, Hans-Christian; Baumann, Arnd; van Luijtelaar, Gilles; Budde, Thomas
2018-04-01
Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels have important functions in controlling neuronal excitability and generating rhythmic oscillatory activity. The role of tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) in regulation of hyperpolarization-activated inward current, I h , in the thalamocortical system and its functional relevance for the physiological thalamocortical oscillations were investigated. A significant decrease in I h current density, in both thalamocortical relay (TC) and cortical pyramidal neurons was found in TRIP8b-deficient mice (TRIP8b -/- ). In addition basal cAMP levels in the brain were found to be decreased while the availability of the fast transient A-type K + current, I A , in TC neurons was increased. These changes were associated with alterations in intrinsic properties and firing patterns of TC neurons, as well as intrathalamic and thalamocortical network oscillations, revealing a significant increase in slow oscillations in the delta frequency range (0.5-4 Hz) during episodes of active-wakefulness. In addition, absence of TRIP8b suppresses the normal desynchronization response of the EEG during the switch from slow-wave sleep to wakefulness. It is concluded that TRIP8b is necessary for the modulation of physiological thalamocortical oscillations due to its direct effect on HCN channel expression in thalamus and cortex and that mechanisms related to reduced cAMP signaling may contribute to the present findings.
Luo, Pan; Zhang, Xiaoxue; Lu, Yun; Chen, Cheng; Li, Changjun; Zhou, Mei; Lu, Qing; Xu, Xulin; Shen, Guanxin; Guo, Lianjun
2016-01-01
Chronic cerebral hypoperfusion (CCH) causes cognitive impairments and increases the risk of Alzheimer's disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the underlying neurobiological mechanisms are still poorly understood. In this study, we investigated whether fluoxetine, a selective serotonin reuptake inhibitor (SSRI), could play a neuroprotective role against chronic cerebral hypoperfusion injury and to clarify underlying mechanisms of its efficacy. Rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO). Two weeks later, rats were treated with 30 mg/kg fluoxetine (intragastric injection, i.g.) for 6 weeks. Cognitive function was evaluated by Morris water maze (MWM) and novel objects recognition (NOR) test. Long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Western blotting was used to quantify the protein levels. Our results showed that fluoxetine treatment significantly improved the cognitive impairments caused by 2VO, accompanied with a reversion of 2VO-induced inhibitory of LTP. Furthermore, 2VO caused an up-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) surface expressions in the hippocampal CA1 area and fluoxetine also effectively recovered the disorder of HCN2 surface expressions, which may be a possible mechanism that fluoxetine treatment ameliorates cognitive impairments in rats with CCH. Copyright © 2015 Elsevier Inc. All rights reserved.
Gonzalo-Gomez, Alicia; Turiegano, Enrique; León, Yolanda; Molina, Isabel; Torroja, Laura; Canal, Inmaculada
2012-01-01
HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep∶activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest∶activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels. PMID:22574167
Effect of chronic right ventricular apical pacing on left ventricular function.
O'Keefe, James H; Abuissa, Hussam; Jones, Philip G; Thompson, Randall C; Bateman, Timothy M; McGhie, A Iain; Ramza, Brian M; Steinhaus, David M
2005-03-15
The determinants of change in left ventricular (LV) ejection fraction (EF) over time in patients with impaired LV function at baseline have not been clearly established. Using a nuclear database to assess changes in LV function over time, we included patients with a baseline LVEF of 25% to 40% on a gated single-photon emission computed tomographic study at rest and only if second-gated photon emission computed tomography performed approximately 18 months after the initial study showed an improvement in LVEF at rest of > or =10 points or a decrease in LVEF at rest of > or =7 points. In all, 148 patients qualified for the EF increase group and 59 patients for the EF decrease group. LVEF on average increased from 33 +/- 4% to 51 +/- 8% in the EF increase group and decreased from 35 +/- 4% to 25 +/- 5% in the EF decrease group. The strongest multivariable predictor of improvement of LVEF was beta-blocker therapy (odds ratio 3.9, p = 0.002). The strongest independent predictor of LVEF decrease was the presence of a permanent right ventricular apical pacemaker (odds ratio 6.6, p = 0.002). Thus, this study identified beta-blocker therapy as the major independent predictor for improvement in LVEF of > or =10 points, whereas a permanent pacemaker (right ventricular apical pacing) was the strongest predictor of a LVEF decrease of > or =7 points.
NASA Astrophysics Data System (ADS)
Raad, Bhagwan Ram; Nigam, Kaushal; Sharma, Dheeraj; Kondekar, P. N.
2016-06-01
This script features a study of bandgap, gate material work function and gate dielectric engineering for enhancement of DC and Analog/RF performance, reduction in the hot carriers effect (HCEs) and drain induced barrier lowering (DIBL) for better device reliability. In this concern, the use of band gap and gate material work function engineering improves the device performance in terms of the ON-state current and suppressed ambipolar behaviour with maintaining the low OFF-state current. With these advantages, the use of gate material work function engineering imposes restriction on the high frequency performance due to increment in the parasitic capacitances and also introduces the hot carrier effects. Hence, the gate dielectric engineering with bandgap and gate material work function engineering are used in this paper to overcome the cons of the gate material work function engineering by obtaining a superior performance in terms of the current driving capability, ambipolar conduction, HCEs, DIBL and high frequency parameters of the device for ultra-low power applications. Finally, the optimization of length for different work function is performed to get the best out of this.
Djouhri, L; Smith, T; Alotaibi, M; Weng, X
2018-06-03
What is the central question of this study? Is spontaneous activity (SA) in L4-DRG neurons induced by L5 spinal nerve axotomy is associated with membrane potentials oscillations in theses neurons, and are these membrane oscillations mediated by HCN channels? What is the main finding and its importance? Unlike injured L5 DRG neurons which have been shown to be incapable of firing spontaneously without membrane potentials oscillations, such membrane oscillations are not essential for SA generation in conducting "uninjured'' L4 neurons, and they are not mediated by HCN channels. These findings suggest that the underlying cellular mechanisms of SA in injured and "uninjured'' DRG neurons induced by spinal nerve injury are distinct. The underlying cellular and molecular mechanisms of peripheral neuropathic pain are not fully understood. However, preclinical studies using animal models of this debilitating condition suggest that it is driven partly by aberrant spontaneous activity (SA) in injured and uninjured dorsal root ganglion (DRG) neurons, and that SA in injured DRG neurons is triggered by subthreshold membrane potential oscillations (SMPOs). Here, using in vivo intracellular recording from control L4-DRG neurons, and ipsilateral L4-DRG neurons in female Wistar rats that had previously undergone L5-spinal nerve axotomy (SNA), we examined whether conducting 'uninjured' L4-DRG neurons in SNA rats exhibit SMPOs, and if so, whether such SMPOs are associated with SA in those L4-neurons, and whether they are mediated by hyperpolarization-activated cyclic nucleotide gated (HCN) channels. We found that 7-days after SNA: (a) none of control A- or C-fibre DRG neurons showed SMPOs or SA, but 50%, 43% and 0% of spontaneously active cutaneous L4 Aβ-low threshold mechanoreceptors, Aβ-nociceptors and C-nociceptors exhibited SMPOs respectively in SNA rats with established neuropathic pain behaviors, (b) neither SMPOs nor SA in L4 Aβ-neurons were suppressed by blocking HCN channels with ZD7288 (10 mg/kg, i.v.) and (c) there is a tendency for female rats to show greater pain hypersensitivity than male rats. These results suggest that SMPOs are linked to SA only in some of the conducting L4 Aβ-neurons, that such oscillations are not a prerequisite for SA generation in those L4 A- or C-fibre neurons, and that HCN channels are not involved in their electrogenesis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Liu, Jin; Ke, Bowen; Wang, Xiaojia; Li, Fengshan; Li, Tao; Bayliss, Douglas A.; Chen, Xiangdong
2015-01-01
Background HCN1 channels have been identified as targets of ketamine to produce hypnosis. Volatile anesthetics also inhibit HCN1 channels. However, the effects of HCN1 channels on volatile anesthetics in vivo is still elusive. This study uses global and conditional HCN1 knockout mice to evaluate how HCN1 channels affect the actions of volatile anesthetics. Methods Minimum alveolar concentrations (MAC) of isoflurane and sevoflurane that induced immobility (MAC of immobility) and/or hypnosis (MAC of hypnosis) were determined in wild-type (WT) mice, global HCN1 channel knockout mice (HCN1−/−), floxed HCN1 channel gene (HCN1f/f) mice and forebrain-selective HCN1 channel knockout (HCN1f/f: cre) mice. Immobility of mice was defined as no purposeful reactions to tail-clamping stimulus and hypnosis was defined as loss of righting reflex (LORR). The amnestic effects of isoflurane and sevoflurane were evaluated by fear-potentiated startle in these four strains of mice. Results All MAC values were expressed as mean ± SEM. For MAC of immobility of isoflurane, no significant difference was found among wild-type, HCN1−/−, HCN1f/f and HCN1f/f: cre mice (all ~1.24-1.29% isoflurane). For both HCN1−/− and HCN1f/f: cre mice, the MAC of hypnosis for isoflurane (each ~1.05% isoflurane) were significantly increased over their nonknockout controls: HCN1−/− vs. wild-type (0.86±0.03%, P<0.001) and HCN1f/f: cre vs. HCN1f/f mice (0.84±0.03%, P<0.001); no significant difference was found between HCN1−/− and HCN1f/f: cre mice. For MAC of immobility of sevoflurane, no significant difference was found among wild-type, HCN1−/−, HCN1f/f and HCN1f/f: cre mice (all ~2.6-2.7% sevoflurane). For both HCN1−/− and HCN1f/f: cre mice, the MAC of hypnosis for sevoflurane (each ~1.90% sevoflurane) was significantly increased over their nonknockout controls: HCN1−/− vs. wild-type (1.58±0.05%, P<0.001) and HCN1f/f: cre vs. HCN1f/f mice (1.56±0.05%, P<0.001). No significant difference was found between HCN1−/− and HCN1f/f: cre mice. By fear-potentiated startle experiments, amnestic effects of isoflurane and sevoflurane were significantly attenuated in HCN1−/− and HCN1f/f: cre mice (both P<0.002 vs. wild-type or HCN1f/f mice). No significant difference was found between HCN1−/− and HCN1f/f: cre mice. Conclusions Forebrain HCN1 channels contribute to hypnotic and amnestic effects of volatile anesthetics, but HCN1 channels are not involved in the immobilizing actions of volatile anesthetics. PMID:26287296
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J; Chung, J
2015-06-15
Purpose: To verify delivered doses on the implanted cardiac pacemaker, predicted doses with and without dose reduction method were verified using the MOSFET detectors in terms of beam delivery and dose calculation techniques in intensity-modulated radiation therapy (IMRT). Methods: The pacemaker doses for a patient with a tongue cancer were predicted according to the beam delivery methods [step-and-shoot (SS) and sliding window (SW)], intensity levels for dose optimization, and dose calculation algorithms. Dosimetric effects on the pacemaker were calculated three dose engines: pencil-beam convolution (PBC), analytical anisotropic algorithm (AAA), and Acuros-XB. A lead shield of 2 mm thickness was designedmore » for minimizing irradiated doses to the pacemaker. Dose variations affected by the heterogeneous material properties of the pacemaker and effectiveness of the lead shield were predicted by the Acuros-XB. Dose prediction accuracy and the feasibility of the dose reduction strategy were verified based on the measured skin doses right above the pacemaker using mosfet detectors during the radiation treatment. Results: The Acuros-XB showed underestimated skin doses and overestimated doses by the lead-shield effect, even though the lower dose disagreement was observed. It led to improved dose prediction with higher intensity level of dose optimization in IMRT. The dedicated tertiary lead sheet effectively achieved reduction of pacemaker dose up to 60%. Conclusion: The current SS technique could deliver lower scattered doses than recommendation criteria, however, use of the lead sheet contributed to reduce scattered doses.Thin lead plate can be a useful tertiary shielder and it could not acuse malfunction or electrical damage of the implanted pacemaker in IMRT. It is required to estimate more accurate scattered doses of the patient with medical device to design proper dose reduction strategy.« less
Liu, Qing; Manis, Paul B; Davis, Robin L
2014-08-01
One of the major contributors to the response profile of neurons in the auditory pathways is the I h current. Its properties such as magnitude, activation, and kinetics not only vary among different types of neurons (Banks et al., J Neurophysiol 70:1420-1432, 1993; Fu et al., J Neurophysiol 78:2235-2245, 1997; Bal and Oertel, J Neurophysiol 84:806-817, 2000; Cao and Oertel, J Neurophysiol 94:821-832, 2005; Rodrigues and Oertel, J Neurophysiol 95:76-87, 2006; Yi et al., J Neurophysiol 103:2532-2543, 2010), but they also display notable diversity in a single population of spiral ganglion neurons (Mo and Davis, J Neurophysiol 78:3019-3027, 1997), the first neural element in the auditory periphery. In this study, we found from somatic recordings that part of the heterogeneity can be attributed to variation along the tonotopic axis because I h in the apical neurons have more positive half-activation voltage levels than basal neurons. Even within a single cochlear region, however, I h current properties are not uniform. To account for this heterogeneity, we provide immunocytochemical evidence for variance in the intracellular density of the hyperpolarization-activated cyclic nucleotide-gated channel α-subunit 1 (HCN1), which mediates I h current. We also observed different combinations of HCN1 and HCN4 α-subunits from cell to cell. Lastly, based on the physiological data, we performed kinetic analysis for the I h current and generated a mathematical model to better understand varied I h on spiral ganglion function. Regardless of whether I h currents are recorded at the nerve terminals (Yi et al., J Neurophysiol 103:2532-2543, 2010) or at the somata of spiral ganglion neurons, they have comparable mean half-activation voltage and induce similar resting membrane potential changes, and thus our model may also provide insights into the impact of I h on synaptic physiology.
Grzelka, Katarzyna; Kurowski, Przemysław; Gawlak, Maciej; Szulczyk, Paweł
2017-01-01
The medial prefrontal cortex (mPFC) receives dense noradrenergic projections from the locus coeruleus. Adrenergic innervation of mPFC pyramidal neurons plays an essential role in both physiology (control of memory formation, attention, working memory, and cognitive behavior) and pathophysiology (attention deficit hyperactivity disorder, posttraumatic stress disorder, cognitive deterioration after traumatic brain injury, behavioral changes related to addiction, Alzheimer's disease and depression). The aim of this study was to elucidate the mechanism responsible for adrenergic receptor-mediated control of the resting membrane potential in layer V mPFC pyramidal neurons. The membrane potential or holding current of synaptically isolated layer V mPFC pyramidal neurons was recorded in perforated-patch and classical whole-cell configurations in slices from young rats. Application of noradrenaline (NA), a neurotransmitter with affinity for all types of adrenergic receptors, evoked depolarization or inward current in the tested neurons irrespective of whether the recordings were performed in the perforated-patch or classical whole-cell configuration. The effect of noradrenaline depended on β 1 - and not α 1 - or α 2 -adrenergic receptor stimulation. Activation of β 1 -adrenergic receptors led to an increase in inward Na + current through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which carry a mixed Na + /K + current. The protein kinase A- and C-, glycogen synthase kinase-3β- and tyrosine kinase-linked signaling pathways were not involved in the signal transduction between β 1 -adrenergic receptors and HCN channels. The transduction system operated in a membrane-delimited fashion and involved the βγ subunit of G-protein. Thus, noradrenaline controls the resting membrane potential and holding current in mPFC pyramidal neurons through β 1 -adrenergic receptors, which in turn activate HCN channels via a signaling pathway involving the βγ subunit.
Grzelka, Katarzyna; Kurowski, Przemysław; Gawlak, Maciej; Szulczyk, Paweł
2017-01-01
The medial prefrontal cortex (mPFC) receives dense noradrenergic projections from the locus coeruleus. Adrenergic innervation of mPFC pyramidal neurons plays an essential role in both physiology (control of memory formation, attention, working memory, and cognitive behavior) and pathophysiology (attention deficit hyperactivity disorder, posttraumatic stress disorder, cognitive deterioration after traumatic brain injury, behavioral changes related to addiction, Alzheimer’s disease and depression). The aim of this study was to elucidate the mechanism responsible for adrenergic receptor-mediated control of the resting membrane potential in layer V mPFC pyramidal neurons. The membrane potential or holding current of synaptically isolated layer V mPFC pyramidal neurons was recorded in perforated-patch and classical whole-cell configurations in slices from young rats. Application of noradrenaline (NA), a neurotransmitter with affinity for all types of adrenergic receptors, evoked depolarization or inward current in the tested neurons irrespective of whether the recordings were performed in the perforated-patch or classical whole-cell configuration. The effect of noradrenaline depended on β1- and not α1- or α2-adrenergic receptor stimulation. Activation of β1-adrenergic receptors led to an increase in inward Na+ current through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which carry a mixed Na+/K+ current. The protein kinase A- and C-, glycogen synthase kinase-3β- and tyrosine kinase-linked signaling pathways were not involved in the signal transduction between β1-adrenergic receptors and HCN channels. The transduction system operated in a membrane-delimited fashion and involved the βγ subunit of G-protein. Thus, noradrenaline controls the resting membrane potential and holding current in mPFC pyramidal neurons through β1-adrenergic receptors, which in turn activate HCN channels via a signaling pathway involving the βγ subunit. PMID:29209170
Development of Implantable Medical Devices: From an Engineering Perspective
2013-01-01
From the first pacemaker implant in 1958, numerous engineering and medical activities for implantable medical device development have faced challenges in materials, battery power, functionality, electrical power consumption, size shrinkage, system delivery, and wireless communication. With explosive advances in scientific and engineering technology, many implantable medical devices such as the pacemaker, cochlear implant, and real-time blood pressure sensors have been developed and improved. This trend of progress in medical devices will continue because of the coming super-aged society, which will result in more consumers for the devices. The inner body is a special space filled with electrical, chemical, mechanical, and marine-salted reactions. Therefore, electrical connectivity and communication, corrosion, robustness, and hermeticity are key factors to be considered during the development stage. The main participants in the development stage are the user, the medical staff, and the engineer or technician. Thus, there are three different viewpoints in the development of implantable devices. In this review paper, considerations in the development of implantable medical devices will be presented from the viewpoint of an engineering mind. PMID:24143287
MRI-conditional pacemakers: current perspectives.
Ferreira, António M; Costa, Francisco; Tralhão, António; Marques, Hugo; Cardim, Nuno; Adragão, Pedro
2014-01-01
Use of both magnetic resonance imaging (MRI) and pacing devices has undergone remarkable growth in recent years, and it is estimated that the majority of patients with pacemakers will need an MRI during their lifetime. These investigations will generally be denied due to the potentially dangerous interactions between cardiac devices and the magnetic fields and radio frequency energy used in MRI. Despite the increasing reports of uneventful scanning in selected patients with conventional pacemakers under close surveillance, MRI is still contraindicated in those circumstances and cannot be considered a routine procedure. These limitations prompted a series of modifications in generator and lead engineering, designed to minimize interactions that could compromise device function and patient safety. The resulting MRI-conditional pacemakers were first introduced in 2008 and the clinical experience gathered so far supports their safety in the MRI environment if certain conditions are fulfilled. With this technology, new questions and controversies arise regarding patient selection, clinical impact, and cost-effectiveness. In this review, we discuss the potential risks of MRI in patients with electronic cardiac devices and present updated information regarding the features of MRI-conditional pacemakers and the clinical experience with currently available models. Finally, we provide some guidance on how to scan patients who have these devices and discuss future directions in the field.
Long-term outcomes of pediatric sinus bradycardia.
Chiu, Shuenn-Nan; Lin, Lian-Yu; Wang, Jou-Kou; Lu, Chun-Wei; Chang, Chi-Wei; Lin, Ming-Tai; Hua, Yu Chuan; Lue, Hung-Chi; Wu, Mei-Hwan
2013-09-01
To delineate the long-term outcomes and mechanisms of pediatric sinus bradycardia. Participants with sinus bradycardia who were identified from a survey of 432,166 elementary and high school students, were enrolled 10 years after the survey. The clinical course, heart rate variability, and hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4) gene were assessed. A total of 104 (male:female was 60:44; prevalence, 0.025%) participants were observed to have sinus bradycardia at age 15.5 ± 0.2 years with a mean heart rate of 48.4 ± 0.4 beats per minute; 86 study participants (83%) responded to clinical assessment and 37 (36%) underwent laboratory assessment. Athletes composed 37.8% of the study participants. During the extended 10-year follow-up, 15 (17%) of the participants had self-limited syncopal episodes, but none had experienced life-threatening events. According to Holter recordings, none of the participants had heart rate <30 beats per minute or a pause longer than 3 seconds. Compared with 67 age- and sex-matched controls, the variables of heart rate based on the spectral and time domain analysis of the participants with sinus bradycardia were all significantly higher, indicating higher parasympathetic activity. The results of mutation analysis were negative in the HCN4 gene in all of our participants. The long-term outcomes of the children and adolescents with sinus bradycardia identified using school electrocardiographic survey are favorable. Parasympathetic hyperactivity, instead of HCN4 gene mutation, is responsible for the occurrence of sinus bradycardia. Copyright © 2013 Mosby, Inc. All rights reserved.
Molecular Targets for Antiepileptic Drug Development
Meldrum, Brian S.; Rogawski, Michael A.
2007-01-01
Summary This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the α subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, α2–δ voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABAA receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABAB and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABAA receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the pathophysiology of epilepsy and the structural and functional characterization of the molecular targets provide many opportunities to create improved epilepsy therapies. PMID:17199015
Rescuing cardiac automaticity in L-type Cav1.3 channelopathies and beyond.
Mesirca, Pietro; Bidaud, Isabelle; Mangoni, Matteo E
2016-10-15
Pacemaker activity of the sino-atrial node generates the heart rate. Disease of the sinus node and impairment of atrioventricular conduction induce an excessively low ventricular rate (bradycardia), which cannot meet the needs of the organism. Bradycardia accounts for about half of the total workload of clinical cardiologists. The 'sick sinus' syndrome (SSS) is characterized by sinus bradycardia and periods of intermittent atrial fibrillation. Several genetic or acquired risk factors or pathologies can lead to SSS. Implantation of an electronic pacemaker constitutes the only available therapy for SSS. The incidence of SSS is forecast to double over the next 50 years, with ageing of the general population thus urging the development of complementary or alternative therapeutic strategies. In recent years an increasing number of mutations affecting ion channels involved in sino-atrial automaticity have been reported to underlie inheritable SSS. L-type Ca v 1.3 channels play a major role in the generation and regulation of sino-atrial pacemaker activity and atrioventricular conduction. Mutation in the CACNA1D gene encoding Ca v 1.3 channels induces loss-of-function in channel activity and underlies the sino-atrial node dysfunction and deafness syndrome (SANDD). Mice lacking Ca v 1.3 channels (Ca v 1.3 -/- ) fairly recapitulate SSS and constitute a precious model to test new therapeutic approaches to handle this disease. Work in our laboratory shows that targeting G protein-gated K + (I KACh ) channels effectively rescues SSS of Ca v 1.3 -/- mice. This new concept of 'compensatory' ion channel targeting shines new light on the principles underlying the pacemaker mechanism and may open the way to new therapies for SSS. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Calmodulin regulates Cav3 T-type channels at their gating brake
Taiakina, Valentina; Monteil, Arnaud; Piazza, Michael; Guan, Wendy; Stephens, Robert F.; Dieckmann, Thorsten; Guillemette, Joseph Guy; Spafford, J. David
2017-01-01
Calcium (Cav1 and Cav2) and sodium channels possess homologous CaM-binding motifs, known as IQ motifs in their C termini, which associate with calmodulin (CaM), a universal calcium sensor. Cav3 T-type channels, which serve as pacemakers of the mammalian brain and heart, lack a C-terminal IQ motif. We illustrate that T-type channels associate with CaM using co-immunoprecipitation experiments and single particle cryo-electron microscopy. We demonstrate that protostome invertebrate (LCav3) and human Cav3.1, Cav3.2, and Cav3.3 T-type channels specifically associate with CaM at helix 2 of the gating brake in the I–II linker of the channels. Isothermal titration calorimetry results revealed that the gating brake and CaM bind each other with high-nanomolar affinity. We show that the gating brake assumes a helical conformation upon binding CaM, with associated conformational changes to both CaM lobes as indicated by amide chemical shifts of the amino acids of CaM in 1H-15N HSQC NMR spectra. Intact Ca2+-binding sites on CaM and an intact gating brake sequence (first 39 amino acids of the I–II linker) were required in Cav3.2 channels to prevent the runaway gating phenotype, a hyperpolarizing shift in voltage sensitivities and faster gating kinetics. We conclude that the presence of high-nanomolar affinity binding sites for CaM at its universal gating brake and its unique form of regulation via the tuning of the voltage range of activity could influence the participation of Cav3 T-type channels in heart and brain rhythms. Our findings may have implications for arrhythmia disorders arising from mutations in the gating brake or CaM. PMID:28972185
An Analysis of Waves Underlying Grid Cell Firing in the Medial Enthorinal Cortex.
Bonilla-Quintana, Mayte; Wedgwood, Kyle C A; O'Dea, Reuben D; Coombes, Stephen
2017-08-25
Layer II stellate cells in the medial enthorinal cortex (MEC) express hyperpolarisation-activated cyclic-nucleotide-gated (HCN) channels that allow for rebound spiking via an [Formula: see text] current in response to hyperpolarising synaptic input. A computational modelling study by Hasselmo (Philos. Trans. R. Soc. Lond. B, Biol. Sci. 369:20120523, 2013) showed that an inhibitory network of such cells can support periodic travelling waves with a period that is controlled by the dynamics of the [Formula: see text] current. Hasselmo has suggested that these waves can underlie the generation of grid cells, and that the known difference in [Formula: see text] resonance frequency along the dorsal to ventral axis can explain the observed size and spacing between grid cell firing fields. Here we develop a biophysical spiking model within a framework that allows for analytical tractability. We combine the simplicity of integrate-and-fire neurons with a piecewise linear caricature of the gating dynamics for HCN channels to develop a spiking neural field model of MEC. Using techniques primarily drawn from the field of nonsmooth dynamical systems we show how to construct periodic travelling waves, and in particular the dispersion curve that determines how wave speed varies as a function of period. This exhibits a wide range of long wavelength solutions, reinforcing the idea that rebound spiking is a candidate mechanism for generating grid cell firing patterns. Importantly we develop a wave stability analysis to show how the maximum allowed period is controlled by the dynamical properties of the [Formula: see text] current. Our theoretical work is validated by numerical simulations of the spiking model in both one and two dimensions.
Rimmbach, Christian; Jung, Julia J.; David, Robert
2015-01-01
Treatment of the “sick sinus syndrome” is based on artificial pacemakers. These bear hazards such as battery failure and infections. Moreover, they lack hormone responsiveness and the overall procedure is cost-intensive. “Biological pacemakers” generated from PSCs may become an alternative, yet the typical content of pacemaker cells in Embryoid Bodies (EBs) is extremely low. The described protocol combines “forward programming” of murine PSCs via the sinus node inducer TBX3 with Myh6-promoter based antibiotic selection. This yields cardiomyocyte aggregates consistent of >80% physiologically functional pacemaker cells. These “induced-sinoatrial-bodies” (“iSABs”) are spontaneously contracting at yet unreached frequencies (400-500 bpm) corresponding to nodal cells isolated from mouse hearts and are able to pace murine myocardium ex vivo. Using the described protocol highly pure sinus nodal single cells can be generated which e.g. can be used for in vitro drug testing. Furthermore, the iSABs generated according to this protocol may become a crucial step towards heart tissue engineering. PMID:25742394
NASA Astrophysics Data System (ADS)
Comlekoglu, T.; Weinberg, S. H.
2017-09-01
Cardiac memory is the dependence of electrical activity on the prior history of one or more system state variables, including transmembrane potential (Vm), ionic current gating, and ion concentrations. While prior work has represented memory either phenomenologically or with biophysical detail, in this study, we consider an intermediate approach of a minimal three-variable cardiomyocyte model, modified with fractional-order dynamics, i.e., a differential equation of order between 0 and 1, to account for history-dependence. Memory is represented via both capacitive memory, due to fractional-order Vm dynamics, that arises due to non-ideal behavior of membrane capacitance; and ionic current gating memory, due to fractional-order gating variable dynamics, that arises due to gating history-dependence. We perform simulations for varying Vm and gating variable fractional-orders and pacing cycle length and measure action potential duration (APD) and incidence of alternans, loss of capture, and spontaneous activity. In the absence of ionic current gating memory, we find that capacitive memory, i.e., decreased Vm fractional-order, typically shortens APD, suppresses alternans, and decreases the minimum cycle length (MCL) for loss of capture. However, in the presence of ionic current gating memory, capacitive memory can prolong APD, promote alternans, and increase MCL. Further, we find that reduced Vm fractional order (typically less than 0.75) can drive phase 4 depolarizations that promote spontaneous activity. Collectively, our results demonstrate that memory reproduced by a fractional-order model can play a role in alternans formation and pacemaking, and in general, can greatly increase the range of electrophysiological characteristics exhibited by a minimal model.
Sah, Rajan; Mesirca, Pietro; Mason, Xenos; Gibson, William; Bates-Withers, Christopher; Van den Boogert, Marjolein; Chaudhuri, Dipayan; Pu, William T; Mangoni, Matteo E; Clapham, David E
2013-07-09
Transient receptor potential (TRP) channels are a superfamily of broadly expressed ion channels with diverse physiological roles. TRPC1, TRPC3, and TRPC6 are believed to contribute to cardiac hypertrophy in mouse models. Human mutations in TRPM4 have been linked to progressive familial heart block. TRPM7 is a divalent-permeant channel and kinase of unknown function, recently implicated in the pathogenesis of atrial fibrillation; however, its function in ventricular myocardium remains unexplored. We generated multiple cardiac-targeted knockout mice to test the hypothesis that TRPM7 is required for normal ventricular function. Early cardiac Trpm7 deletion (before embryonic day 9; TnT/Isl1-Cre) results in congestive heart failure and death by embryonic day 11.5 as a result of hypoproliferation of the compact myocardium. Remarkably, Trpm7 deletion late in cardiogenesis (about embryonic day 13; αMHC-Cre) produces viable mice with normal adult ventricular size, function, and myocardial transcriptional profile. Trpm7 deletion at an intermediate time point results in 50% of mice developing cardiomyopathy associated with heart block, impaired repolarization, and ventricular arrhythmias. Microarray analysis reveals elevations in transcripts of hypertrophy/remodeling genes and reductions in genes important for suppressing hypertrophy (Hdac9) and for ventricular repolarization (Kcnd2) and conduction (Hcn4). These transcriptional changes are accompanied by action potential prolongation and reductions in transient outward current (Ito; Kcnd2). Similarly, the pacemaker current (If; Hcn4) is suppressed in atrioventricular nodal cells, accounting for the observed heart block. Trpm7 is dispensable in adult ventricular myocardium under basal conditions but is critical for myocardial proliferation during early cardiogenesis. Loss of Trpm7 at an intermediate developmental time point alters the myocardial transcriptional profile in adulthood, impairing ventricular function, conduction, and repolarization.
NASA Astrophysics Data System (ADS)
Pyo, Ju-Young; Cho, Won-Ju
2017-03-01
In this paper, we propose a high-performance separative extended gate ion-sensitive field-effect transistor (SEGISFET) that consists of a tin dioxide (SnO2) SEG sensing part and a double-gate structure amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor (TFT) with tantalum pentoxide/silicon dioxide (Ta2O5/SiO2)-engineered top-gate oxide. To increase sensitivity, we maximized the capacitive coupling ratio by applying high-k dielectric at the top-gate oxide layer. As an engineered top-gate oxide, a stack of 25 nm-thick Ta2O5 and 10 nm-thick SiO2 layers was found to simultaneously satisfy a small equivalent oxide thickness (˜17.14 nm), a low leakage current, and a stable interfacial property. The threshold-voltage instability, which is a fundamental issue in a-IGZO TFTs, was improved by low-temperature post-deposition annealing (˜87 °C) using microwave irradiation. The double-gate structure a-IGZO TFTs with engineered top-gate oxide exhibited high mobility, small subthreshold swing, high drive current, and larger on/off current ratio. The a-IGZO SEGISFETs with a dual-gate sensing mode showed a pH sensitivity of 649.04 mV pH-1, which is far beyond the Nernst limit. The non-ideal behavior of ISFETs, hysteresis, and drift effect also improved. These results show that the double-gate structure a-IGZO TFTs with engineered top-gate oxide can be a good candidate for cheap and disposable SEGISFET sensors.
Puljung, Michael C.; Zagotta, William N.
2013-01-01
Cyclic nucleotide-regulated ion channels bind second messengers like cAMP to a C-terminal domain, consisting of a β-roll, followed by two α-helices (B- and C-helices). We monitored the cAMP-dependent changes in the structure of the C-helix of a C-terminal fragment of HCN2 channels using transition metal ion FRET between fluorophores on the C-helix and metal ions bound between histidine pairs on the same helix. cAMP induced a change in the dimensions of the C-helix and an increase in the metal binding affinity of the histidine pair. cAMP also caused an increase in the distance between a fluorophore on the C-helix and metal ions bound to the B-helix. Stabilizing the C-helix of intact CNGA1 channels by metal binding to a pair of histidines promoted channel opening. These data suggest that ordering of the C-helix is part of the gating conformational change in cyclic nucleotide-regulated channels. PMID:23525108
GATE HOUSE FOR UNITED ENGINEERING CO., Alameda, California. Four elevations ...
GATE HOUSE FOR UNITED ENGINEERING CO., Alameda, California. Four elevations and three sections. Alben Froberg, Architect, Oakland, California. Sheet no. 1. Scale 1/4 inch to the foot, elevations. Scale ~ inch to the foot, sections. July 31, 1941. pencil on tracing paper - United Engineering Company Shipyard, Gate House, 2900 Main Street, Alameda, Alameda County, CA
Electrical and Ca2+ signaling in dendritic spines of substantia nigra dopaminergic neurons
Hage, Travis A; Sun, Yujie; Khaliq, Zayd M
2016-01-01
Little is known about the density and function of dendritic spines on midbrain dopamine neurons, or the relative contribution of spine and shaft synapses to excitability. Using Ca2+ imaging, glutamate uncaging, fluorescence recovery after photobleaching and transgenic mice expressing labeled PSD-95, we comparatively analyzed electrical and Ca2+ signaling in spines and shaft synapses of dopamine neurons. Dendritic spines were present on dopaminergic neurons at low densities in live and fixed tissue. Uncaging-evoked potential amplitudes correlated inversely with spine length but positively with the presence of PSD-95. Spine Ca2+ signals were less sensitive to hyperpolarization than shaft synapses, suggesting amplification of spine head voltages. Lastly, activating spines during pacemaking, we observed an unexpected enhancement of spine Ca2+ midway throughout the spike cycle, likely involving recruitment of NMDA receptors and voltage-gated conductances. These results demonstrate functionality of spines in dopamine neurons and reveal a novel modulation of spine Ca2+ signaling during pacemaking. DOI: http://dx.doi.org/10.7554/eLife.13905.001 PMID:27163179
Genetic loci associated with heart rate variability and their effects on cardiac disease risk
Nolte, Ilja M.; Munoz, M. Loretto; Tragante, Vinicius; Amare, Azmeraw T.; Jansen, Rick; Vaez, Ahmad; von der Heyde, Benedikt; Avery, Christy L.; Bis, Joshua C.; Dierckx, Bram; van Dongen, Jenny; Gogarten, Stephanie M.; Goyette, Philippe; Hernesniemi, Jussi; Huikari, Ville; Hwang, Shih-Jen; Jaju, Deepali; Kerr, Kathleen F.; Kluttig, Alexander; Krijthe, Bouwe P.; Kumar, Jitender; van der Laan, Sander W.; Lyytikäinen, Leo-Pekka; Maihofer, Adam X.; Minassian, Arpi; van der Most, Peter J.; Müller-Nurasyid, Martina; Nivard, Michel; Salvi, Erika; Stewart, James D.; Thayer, Julian F.; Verweij, Niek; Wong, Andrew; Zabaneh, Delilah; Zafarmand, Mohammad H.; Abdellaoui, Abdel; Albarwani, Sulayma; Albert, Christine; Alonso, Alvaro; Ashar, Foram; Auvinen, Juha; Axelsson, Tomas; Baker, Dewleen G.; de Bakker, Paul I. W.; Barcella, Matteo; Bayoumi, Riad; Bieringa, Rob J.; Boomsma, Dorret; Boucher, Gabrielle; Britton, Annie R.; Christophersen, Ingrid; Dietrich, Andrea; Ehret, George B.; Ellinor, Patrick T.; Eskola, Markku; Felix, Janine F.; Floras, John S.; Franco, Oscar H.; Friberg, Peter; Gademan, Maaike G. J.; Geyer, Mark A.; Giedraitis, Vilmantas; Hartman, Catharina A.; Hemerich, Daiane; Hofman, Albert; Hottenga, Jouke-Jan; Huikuri, Heikki; Hutri-Kähönen, Nina; Jouven, Xavier; Junttila, Juhani; Juonala, Markus; Kiviniemi, Antti M.; Kors, Jan A.; Kumari, Meena; Kuznetsova, Tatiana; Laurie, Cathy C.; Lefrandt, Joop D.; Li, Yong; Li, Yun; Liao, Duanping; Limacher, Marian C.; Lin, Henry J.; Lindgren, Cecilia M.; Lubitz, Steven A.; Mahajan, Anubha; McKnight, Barbara; zu Schwabedissen, Henriette Meyer; Milaneschi, Yuri; Mononen, Nina; Morris, Andrew P.; Nalls, Mike A.; Navis, Gerjan; Neijts, Melanie; Nikus, Kjell; North, Kari E.; O'Connor, Daniel T.; Ormel, Johan; Perz, Siegfried; Peters, Annette; Psaty, Bruce M.; Raitakari, Olli T.; Risbrough, Victoria B.; Sinner, Moritz F.; Siscovick, David; Smit, Johannes H.; Smith, Nicholas L.; Soliman, Elsayed Z.; Sotoodehnia, Nona; Staessen, Jan A.; Stein, Phyllis K.; Stilp, Adrienne M.; Stolarz-Skrzypek, Katarzyna; Strauch, Konstantin; Sundström, Johan; Swenne, Cees A.; Syvänen, Ann-Christine; Tardif, Jean-Claude; Taylor, Kent D.; Teumer, Alexander; Thornton, Timothy A.; Tinker, Lesley E.; Uitterlinden, André G.; van Setten, Jessica; Voss, Andreas; Waldenberger, Melanie; Wilhelmsen, Kirk C.; Willemsen, Gonneke; Wong, Quenna; Zhang, Zhu-Ming; Zonderman, Alan B.; Cusi, Daniele; Evans, Michele K.; Greiser, Halina K.; van der Harst, Pim; Hassan, Mohammad; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kääb, Stefan; Kähönen, Mika; Kivimaki, Mika; Kooperberg, Charles; Kuh, Diana; Lehtimäki, Terho; Lind, Lars; Nievergelt, Caroline M.; O'Donnell, Chris J.; Oldehinkel, Albertine J.; Penninx, Brenda; Reiner, Alexander P.; Riese, Harriëtte; van Roon, Arie M.; Rioux, John D.; Rotter, Jerome I.; Sofer, Tamar; Stricker, Bruno H.; Tiemeier, Henning; Vrijkotte, Tanja G. M.; Asselbergs, Folkert W.; Brundel, Bianca J. J. M.; Heckbert, Susan R.; Whitsel, Eric A.; den Hoed, Marcel; Snieder, Harold; de Geus, Eco J. C.
2017-01-01
Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (−0.74
Detection of hydrogen cyanide from oral anaerobes by cavity ring down spectroscopy
Chen, Wen; Roslund, Kajsa; Fogarty, Christopher L.; Pussinen, Pirkko J.; Halonen, Lauri; Groop, Per-Henrik; Metsälä, Markus; Lehto, Markku
2016-01-01
Hydrogen cyanide (HCN) has been recognized as a potential biomarker for non-invasive diagnosis of Pseudomonas aeruginosa infection in the lung. However, the oral cavity is a dominant production site for exhaled HCN and this contribution can mask the HCN generated in the lung. It is thus important to understand the sources of HCN production in the oral cavity. By screening of oral anaerobes for HCN production, we observed that the genus of Porphyromonas, Prevotella and Fusobacterium generated low levels of HCN in vitro. This is the first study to show that oral anaerobes are capable of producing HCN in vitro. Further investigations were conducted on the species of P. gingivalis and we successfully detected HCN production (0.9–10.9 ppb) in the headspace of three P. gingivalis reference strains (ATCC 33277, W50 and OMG 434) and one clinical isolate. From P. gingivalis ATCC 33277 and W50, a strong correlation between HCN and CO2 concentrations (rs = 0.89, p < 0.001) was observed, indicating that the HCN production of P. gingivalis might be connected with the bacterial metabolic activity. These results indicate that our setup could be widely applied to the screening of in vitro HCN production by both aerobic and anaerobic bacteria. PMID:26940198
Detection of hydrogen cyanide from oral anaerobes by cavity ring down spectroscopy
NASA Astrophysics Data System (ADS)
Chen, Wen; Roslund, Kajsa; Fogarty, Christopher L.; Pussinen, Pirkko J.; Halonen, Lauri; Groop, Per-Henrik; Metsälä, Markus; Lehto, Markku
2016-03-01
Hydrogen cyanide (HCN) has been recognized as a potential biomarker for non-invasive diagnosis of Pseudomonas aeruginosa infection in the lung. However, the oral cavity is a dominant production site for exhaled HCN and this contribution can mask the HCN generated in the lung. It is thus important to understand the sources of HCN production in the oral cavity. By screening of oral anaerobes for HCN production, we observed that the genus of Porphyromonas, Prevotella and Fusobacterium generated low levels of HCN in vitro. This is the first study to show that oral anaerobes are capable of producing HCN in vitro. Further investigations were conducted on the species of P. gingivalis and we successfully detected HCN production (0.9-10.9 ppb) in the headspace of three P. gingivalis reference strains (ATCC 33277, W50 and OMG 434) and one clinical isolate. From P. gingivalis ATCC 33277 and W50, a strong correlation between HCN and CO2 concentrations (rs = 0.89, p < 0.001) was observed, indicating that the HCN production of P. gingivalis might be connected with the bacterial metabolic activity. These results indicate that our setup could be widely applied to the screening of in vitro HCN production by both aerobic and anaerobic bacteria.
Detection of hydrogen cyanide from oral anaerobes by cavity ring down spectroscopy.
Chen, Wen; Roslund, Kajsa; Fogarty, Christopher L; Pussinen, Pirkko J; Halonen, Lauri; Groop, Per-Henrik; Metsälä, Markus; Lehto, Markku
2016-03-04
Hydrogen cyanide (HCN) has been recognized as a potential biomarker for non-invasive diagnosis of Pseudomonas aeruginosa infection in the lung. However, the oral cavity is a dominant production site for exhaled HCN and this contribution can mask the HCN generated in the lung. It is thus important to understand the sources of HCN production in the oral cavity. By screening of oral anaerobes for HCN production, we observed that the genus of Porphyromonas, Prevotella and Fusobacterium generated low levels of HCN in vitro. This is the first study to show that oral anaerobes are capable of producing HCN in vitro. Further investigations were conducted on the species of P. gingivalis and we successfully detected HCN production (0.9-10.9 ppb) in the headspace of three P. gingivalis reference strains (ATCC 33277, W50 and OMG 434) and one clinical isolate. From P. gingivalis ATCC 33277 and W50, a strong correlation between HCN and CO2 concentrations (rs = 0.89, p < 0.001) was observed, indicating that the HCN production of P. gingivalis might be connected with the bacterial metabolic activity. These results indicate that our setup could be widely applied to the screening of in vitro HCN production by both aerobic and anaerobic bacteria.
Impact of gate engineering in enhancement mode n++GaN/InAlN/AlN/GaN HEMTs
NASA Astrophysics Data System (ADS)
Adak, Sarosij; Swain, Sanjit Kumar; Rahaman, Hafizur; Sarkar, Chandan Kumar
2016-12-01
This paper illustrate the effect of gate material engineering on the performance of enhancement mode n++GaN/InAlN/AlN/GaN high electron mobility transistors (HEMTs). A comparative analysis of key device parameters is discussed for the Triple Material Gate (TMG), Dual Material Gate (DMG) and the Single Material Gate (SMG) structure HEMTs by considering the same device dimensions. The simulation results shows that an significant improvement is noticed in the key analysis parameters such as drain current (Id), transconductance (gm), cut off frequency (fT), RF current gain, maximum cut off frequency (fmax) and RF power gain of the gate material engineered devices with respect to SMG normally off n++GaN/InAlN/AlN/GaN HEMTs. This improvement is due to the existence of the perceivable step in the surface potential along the channel which successfully screens the drain potential variation in the source side of the channel for the gate engineering devices. The analysis suggested that the proposed TMG and DMG engineered structure enhancement mode n++GaN/InAlN/AlN/GaN HEMTs can be considered as a potential device for future high speed, microwave and digital application.
ALTERATIONS AND ADDITIONS TO THE GATE HOUSE, United Engineering Company ...
ALTERATIONS AND ADDITIONS TO THE GATE HOUSE, United Engineering Company Ltd., Alameda Shipyard. Plan, elevations, and details of expanded structure. No architect noted. Drawn by "J.B.H." (John Hudspeth?). Sheet 2 of 2. Plan no. 10,504. Scale 1/4 inch to the foot. November 28, 1942, last revised 5/5/45. pencil on vellum - United Engineering Company Shipyard, Gate House, 2900 Main Street, Alameda, Alameda County, CA
Contini, Donatella; Price, Steven D.
2016-01-01
Key points In the synaptic cleft between type I hair cells and calyceal afferents, K+ ions accumulate as a function of activity, dynamically altering the driving force and permeation through ion channels facing the synaptic cleft.High‐fidelity synaptic transmission is possible due to large conductances that minimize hair cell and afferent time constants in the presence of significant membrane capacitance.Elevated potassium maintains hair cells near a potential where transduction currents are sufficient to depolarize them to voltages necessary for calcium influx and synaptic vesicle fusion.Elevated potassium depolarizes the postsynaptic afferent by altering ion permeation through hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels, and contributes to depolarizing the afferent to potentials where a single EPSP (quantum) can generate an action potential.With increased stimulation, hair cell depolarization increases the frequency of quanta released, elevates [K+]cleft and depolarizes the afferent to potentials at which smaller and smaller EPSPs would be sufficient to trigger APs. Abstract Fast neurotransmitters act in conjunction with slower modulatory effectors that accumulate in restricted synaptic spaces found at giant synapses such as the calyceal endings in the auditory and vestibular systems. Here, we used dual patch‐clamp recordings from turtle vestibular hair cells and their afferent neurons to show that potassium ions accumulating in the synaptic cleft modulated membrane potentials and extended the range of information transfer. High‐fidelity synaptic transmission was possible due to large conductances that minimized hair cell and afferent time constants in the presence of significant membrane capacitance. Increased potassium concentration in the cleft maintained the hair cell near potentials that promoted the influx of calcium necessary for synaptic vesicle fusion. The elevated potassium concentration also depolarized the postsynaptic neuron by altering ion permeation through hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels. This depolarization enabled the afferent to reliably generate action potentials evoked by single AMPA‐dependent EPSPs. Depolarization of the postsynaptic afferent could also elevate potassium in the synaptic cleft, and would depolarize other hair cells enveloped by the same neuritic process increasing the fidelity of neurotransmission at those synapses as well. Collectively, these data demonstrate that neuronal activity gives rise to potassium accumulation, and suggest that potassium ion action on HCN channels can modulate neurotransmission, preserving the fidelity of high‐speed synaptic transmission by dynamically shifting the resting potentials of both presynaptic and postsynaptic cells. PMID:27633787
NASA Astrophysics Data System (ADS)
Zhong, Donglai; Zhao, Chenyi; Liu, Lijun; Zhang, Zhiyong; Peng, Lian-Mao
2018-04-01
In this letter, we report a gate engineering method to adjust threshold voltage of carbon nanotube (CNT) based field-effect transistors (FETs) continuously in a wide range, which makes the application of CNT FETs especially in digital integrated circuits (ICs) easier. Top-gated FETs are fabricated using solution-processed CNT network films with stacking Pd and Sc films as gate electrodes. By decreasing the thickness of the lower layer metal (Pd) from 20 nm to zero, the effective work function of the gate decreases, thus tuning the threshold voltage (Vt) of CNT FETs from -1.0 V to 0.2 V. The continuous adjustment of threshold voltage through gate engineering lays a solid foundation for multi-threshold technology in CNT based ICs, which then can simultaneously provide high performance and low power circuit modules on one chip.
NASA Astrophysics Data System (ADS)
Hamid, Ahmed M.; El-Shall, M. Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G.
2014-08-01
Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N+.(HCN)n and C4H4N2+.(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH+(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CHδ+⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH+⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH+⋯NCH..NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CHδ+⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CHδ+⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CHδ+ centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.
Hamid, Ahmed M; El-Shall, M Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G
2014-08-07
Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N(+·)(HCN)n and C4H4N2 (+·)(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH(+)(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH(δ+)⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH(+)⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH(+)⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH(δ+)⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CH(δ+)⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH(δ+) centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.
NASA Technical Reports Server (NTRS)
Depois, D.; Ricaud, P.; Lautie, N.; Schneider, N.; Jacq, T.; Biver, N.; Lis, D.; Chamberlain, R.; Phillips, T.; Miller, M.;
2000-01-01
HCN is a minor constituent of the Earth atmosphere, with a typical volume mixing ratio around 10(exp -10) HCN per air molecule. At present, the main source of HCN in the lower atmosphere is expected to be biomass burning. The atmospheric HCN has been observed since 1981, first in the infrared, then at microwave radio frequencies. Globally, above 30 km, HCN measurements are in excess of model predictions based on standard photochemistry and biomass burning as the only HCN source. This excess has been explained by: 1) ion-catalyzed reactions in the entire stratosphere, involving CH.3CN as a precursor and/or 2) a high altitude source as a result of chemical production from the methyl radical CH3, or from injection or production by meteors. HCN is a minor constituent of cometary ices. HCN polymers or copolymers have been suggested as constituents of cometary refractory organic matter, and would thus be present in the incoming meteoroids, if these polymers survived their stay in interplanetary space after ejection. HCN may also be created from the CN radical decomposition product of organic carbon, after reaction with hydrogen-bearing molecules. To test the hypothesis of HCN input by meteoroids or the formation in the upper atmosphere from meteoric ablation products, we decided to monitor the HCN submillimeter lines around a major shower: the Leonids.
Hydrogen cyanide in the headspace of oral fluid and in mouth-exhaled breath.
Chen, W; Metsälä, M; Vaittinen, O; Halonen, L
2014-06-01
Mouth-exhaled hydrogen cyanide (HCN) concentrations have previously been reported to originate from the oral cavity. However, a direct correlation between the HCN concentration in oral fluid and in mouth-exhaled breath has not been explicitly shown. In this study, we set up a new methodology to simultaneously measure HCN in the headspace of oral fluid and in mouth-exhaled breath. Our results show that there is a statistically significant correlation between stimulated oral fluid HCN and mouth-exhaled HCN (rs = 0.76, p < 0.001). This confirms that oral fluid is the main contributor to mouth-exhaled HCN. Furthermore, we observe that after the application of an oral disinfectant, both the stimulated oral fluid and mouth-exhaled HCN concentrations decrease. This implies that HCN production in the oral cavity is related to the bacterial and/or enzymatic activity.
The Relationship of HCN, C2H6, & H2O in Comets: A Key Clue to Origins?
NASA Astrophysics Data System (ADS)
Mumma, Michael J.; Charnley, Steven B.; Cordiner, Martin; Paganini, Lucas; Villanueva, Geronimo Luis
2017-10-01
Background: HCN, C2H6, and H2O are three of the best characterized volatiles in comets. It is often assumed that all three are primary volatiles, native to the nucleus. Here, we compare their properties in 26 comets (9 JFC and 17 Oort-cloud), making 6 points:1. Both HCN and C2H6 are poor proxies for water production. The production rate ratio (Q-ratio) of each trace gas relative to water varies by a factor of six among these comets.2. All 26 comets have Q-ratios HCN/C2H6 > 0.1. In 18 comets the Q-ratios HCN/H2O and C2H6/H2O are correlated, with a mean ratio of 0.33. In 6 comets undergoing complete disruption, this Q-ratio exceeds 0.5.3. Q-ratios HCN/C2H6 are not correlated with Q(H2O), nor are they correlated with dynamical class (Oort cloud vs. JFC).4. The nucleus-centered rotational temperatures measured for H2O and other primary species (C2H6, CH3OH) usually agree within error, but those for HCN are often slightly cooler. Could this mean that HCN is not fully developed in the warm near-nucleus region, and instead is at least in part a product species?5. With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H2O, CH3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). Is HCN produced in part from an apolar precursor?6. ALMA maps of HCN and the dust continuum show a slight displacement in their centroids. Is this the signature of extended production of HCN?HCN as a product species: Points 4-6 suggest that HCN may have a significant distributed source. The astrochemical species ammonium cyanide is a strong candidate for this HCN precursor; at moderately low temperatures (< 200K) NH4CN is a stable solid, but it dissociates into HCN and NH3 when warmed. Disruption could eject macroscopic solid NH4CN into the coma where subsequent warming and release could augment the coma content of NH3 and HCN.Acknowledgments NASA’s Planetary Astronomy and Astrobiology Programs supported this work.
On the Stratospheric Chemistry of Hydrogen Cyanide
NASA Technical Reports Server (NTRS)
Kleinbohl, Armin; Toon, Geoffrey C.; Sen, Bhaswar; Blavier, Jean-Francois L.; Weisenstein, Debra K.; Strekowski, Rafal S.; Nicovich, J. Michael; Wine, Paul H.; Wennberg, Paul O.
2006-01-01
HCN profiles measured by solar occultation spectrometry during 10 balloon flights of the JPL MkIV instrument are presented. The HCN profiles reveal a compact correlation with stratospheric tracers. Calculations with a 2D-model using established rate coefficients for the reactions of HCN with OH and O(1D) severely underestimate the measured HCN in the middle and upper stratosphere. The use of newly available rate coefficients for these reactions gives reasonable agreement of measured and modeled HCN. An HCN yield of approx.30% from the reaction of CH3CN with OH is consistent with the measurements.
Structural studies on HCN oligomers. [catalysts for prebiotic processes
NASA Technical Reports Server (NTRS)
Ferris, J. P.; Edelson, E. H.; Auyeung, J. M.; Joshi, P. C.
1981-01-01
NMR spectral studies on the HCN oligomers suggest the presence of carboxamide and urea groupings. The release of CO2, H2O, HCN, CH3CN, HCONH2 and pyridine on pyrolysis is consistent with the presence of these groupings as well as carboxylic acid groups. No basic primary amine groupings could be detected with fluorescamine. Hydrazinolysis of the HCN oligomers releases 10% of the amino acids normally released by acid hydrolysis. The oligomers give a positive biuret test but this is not due to the presence of peptide bonds. There is no conclusive evidence for the presence of peptide bonds in the HCN oligomers. No diglycine was detected on partial hydrolysis of the HCN oligomers at pH 8.5 suggesting that HCN oligomers were not a source of prebiotic peptides.
ORIGINS OF SCATTER IN THE RELATIONSHIP BETWEEN HCN 1-0 AND DENSE GAS MASS IN THE GALACTIC CENTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Elisabeth A. C.; Battersby, Cara, E-mail: elisabeth.mills@sjsu.edu
We investigate the correlation of HCN 1-0 with gas mass in the central 300 pc of the Galaxy. We find that on the ∼10 pc size scale of individual cloud cores, HCN 1-0 is well correlated with dense gas mass when plotted as a log–log relationship. There is ∼0.75 dex of scatter in this relationship from clouds like Sgr B2, which has an integrated HCN 1-0 intensity of a cloud less than half its mass, and others that have HCN 1-0 enhanced by a factor of 2–3 relative to clouds of comparable mass. We identify the two primary sources ofmore » scatter to be self-absorption and variations in HCN abundance. We also find that the extended HCN 1-0 emission is more intense per unit mass than in individual cloud cores. In fact the majority (80%) of HCN 1-0 emission comes from extended gas with column densities below 7 × 10{sup 22} cm{sup −2}, accounting for 68% of the total mass. We find variations in the brightness of HCN 1-0 would only yield a ∼10% error in the dense gas mass inferred from this line in the Galactic center. However, the observed order of magnitude HCN abundance variations, and the systematic nature of these variations, warn of potential biases in the use of HCN as dense gas mass tracer in more extreme environments such as an active galactic nucleus and shock-dominated regions. We also investigate other 3 mm tracers, finding that HNCO is better correlated with mass than HCN, and might be a better tracer of cloud mass in this environment.« less
HCN Producing Bacteria Enable Sensing Of Non-Bioavailable Hg Species by the Whole Cell Biosensor
NASA Astrophysics Data System (ADS)
Horvat, M.; Rijavec, T.; Koron, N.; Lapanje, A.
2015-12-01
Bacteria play an important role in Hg transformation reactions. The production of cyanide (HCN) and other secondary metabolites seems to be key elements involved in these transformations. Current hypotheses link the role of HCN production to growth inhibition of nonHCN producing competitor organisms (role of an antimicrobial agent). Our past investigations showed that HCN production did not correlate with antimicrobial activity and since pK value of HCN is very high (pK = 9,21), it can be expected that most of the produced HCN is removed from the microenvironment. This way, the expected inhibitory concentrations can hardly be reached. Accordingly, we proposed a new concept, where the ability of complexation of transient metals by HCN served as a regulation process for the accessibility of micro-elements. In our study, we focused on the presence of HCN producing bacteria and carried it out in the Hg contaminated environment connected to the Idrija Mercury Mine, Slovenia. We characterised the isolates according to the presence of Hg resistance (HgR), level of HCN production and genetic similarities. In laboratory setups, using our merR whole cell based biosensor, we determined the transformation of low bioavailable Hg0 and HgS forms into bioavailable Hg by these HCN producing bacteria. We observed that HgR strains producing HCN had the highest impact on increased Hg bioavailability. In the proposed ecological strategy HgR HCN producing bacteria increase their competitive edge over non-HgR competitors through the increase of Hg toxicity. Due to their activity, Hg is made available to other organisms as well and thus enters into the ecosystem. Finally, using some of the characteristics of bacteria (e.g. Hg resistance genetic elements), we developed a fully automated sensing approach, combining biosensorics and mechatronics, to measure the bioavailability of Hg in situ.
Calcium and cAMP directly modulate the speed of the Drosophila circadian clock.
Palacios-Muñoz, Angelina; Ewer, John
2018-06-01
Circadian clocks impose daily periodicities to animal behavior and physiology. At their core, circadian rhythms are produced by intracellular transcriptional/translational feedback loops (TTFL). TTFLs may be altered by extracellular signals whose actions are mediated intracellularly by calcium and cAMP. In mammals these messengers act directly on TTFLs via the calcium/cAMP-dependent transcription factor, CREB. In the fruit fly, Drosophila melanogaster, calcium and cAMP also regulate the periodicity of circadian locomotor activity rhythmicity, but whether this is due to direct actions on the TTFLs themselves or are a consequence of changes induced to the complex interrelationship between different classes of central pacemaker neurons is unclear. Here we investigated this question focusing on the peripheral clock housed in the non-neuronal prothoracic gland (PG), which, together with the central pacemaker in the brain, controls the timing of adult emergence. We show that genetic manipulations that increased and decreased the levels of calcium and cAMP in the PG caused, respectively, a shortening and a lengthening of the periodicity of emergence. Importantly, knockdown of CREB in the PG caused an arrhythmic pattern of eclosion. Interestingly, the same manipulations directed at central pacemaker neurons caused arrhythmicity of eclosion and of adult locomotor activity, suggesting a common mechanism. Our results reveal that the calcium and cAMP pathways can alter the functioning of the clock itself. In the PG, these messengers, acting as outputs of the clock or as second messengers for stimuli external to the PG, could also contribute to the circadian gating of adult emergence.
Simple Organics and Biomonomers Identified in HCN Polymers: An Overview
Ruiz-Bermejo, Marta; Zorzano, María-Paz; Osuna-Esteban, Susana
2013-01-01
Hydrogen cyanide (HCN) is a ubiquitous molecule in the Universe. It is a compound that is easily produced in significant yields in prebiotic simulation experiments using a reducing atmosphere. HCN can spontaneously polymerise under a wide set of experimental conditions. It has even been proposed that HCN polymers could be present in objects such as asteroids, moons, planets and, in particular, comets. Moreover, it has been suggested that these polymers could play an important role in the origin of life. In this review, the simple organics and biomonomers that have been detected in HCN polymers, the analytical techniques and procedures that have been used to detect and characterise these molecules and an exhaustive classification of the experimental/environmental conditions that favour the formation of HCN polymers are summarised. Nucleobases, amino acids, carboxylic acids, cofactor derivatives and other compounds have been identified in HCN polymers. The great molecular diversity found in HCN polymers encourages their placement at the central core of a plausible protobiological system. PMID:25369814
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamid, Ahmed M.; El-Shall, M. Samy, E-mail: mselshal@vcu.edu; Hilal, Rifaat
2014-08-07
Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C{sub 5}H{sub 5}N{sup +·}(HCN){sub n} and C{sub 4}H{sub 4}N{sub 2}{sup +·}(HCN){sub n} clusters, respectively, with n = 1–4. For comparison, the binding of 1–4 HCN molecules to the protonated pyridine C{sub 5}H{sub 5}NH{sup +}(HCN){sub n} has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than themore » HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH{sup δ+}⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH{sup +}⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH{sup +}⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH{sup δ+}⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11–12 kcal/mol) are stronger than the similar (CH{sup δ+}⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH{sup δ+} centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.« less
Association reactions at low pressure. 5: The CH3(+)/HCN system. A final word?
NASA Technical Reports Server (NTRS)
Anicich, Vincent G.; Sen, Atish D.; Huntress, Wesley, Jr.; McEwan, Murray J.
1995-01-01
The reaction of the methyl cation with hydrogen cyanide is revisited. We have confidence that we have resolved a long standing apparent contradiction of experimental results. A literature history is presented along with one new experiment and a re-examination of an old experiment. In this present work it is shown that all of the previous studies had made consistent observations. Yet, each of the previous studies failed to observe all of the information present. The methyl cation does react with HCN by radiative association, a fact which had been in doubt. The product ions formed in the two-body and three-body processes react differently with HCN. The collisionally stabilized association product formed by a three-body mechanism, does not react with HCN and is readily detected in the experiments. The radiatively stabilized association product, formed by a slow two-body reaction, is not detected because it reacts with HCN by a fast proton transfer reaction forming the protonated HCN ion. Previous studies either 'lost' this product in the extremely large protonated HCN signal that is always present when HCN is used, or discounted it for various reasons. We have been able to show by ion cyclotron resonance (ICR) techniques (both FT-ICR and tandem ICR-dempster-ICR) that the radiative association product does react with the HCN to form the protonated HCN ion.
Characterization of solvated electrons in hydrogen cyanide clusters: (HCN)n- (n=3, 4)
NASA Astrophysics Data System (ADS)
Wu, Di; Li, Ying; Li, Zhuo; Chen, Wei; Li, Zhi-Ru; Sun, Chia-Chung
2006-02-01
Theoretical studies of the solvated electrons (HCN)n- (n =3, 4) reveal a variety of electron trapping possibilities in the (HCN)n (n =3, 4) clusters. Two isomers for (HCN)3- and four isomers for (HCN)4- are obtained at the MP2/aug -cc-pVDZ+dBF (diffusive bond functions) level of theory. In view of vertical electron detachment energies (VDEs) at the CCSD(T) level, the excess electron always "prefers" locating in the center of the system, i.e., the isomer with higher coordination number shows larger VDE value. However, the most stable isomers of the solvated electron state (HCN)3- and (HCN)4- are found to be the linear C∞ν and D∞h structures, respectively, but not the fullyl symmetric structures which have the largest VDE values.
NASA Astrophysics Data System (ADS)
Mahajan, Dinakar Rajaram
2017-09-01
The Bhatghar dam is having 81 vertical lift gates (fixed wheel type) on waste ways. The design of these gates is so beautiful and based on simple principles of science and engineering that these gates outlast for 100 years without failure, performing their intended purpose satisfactorily. It is achieved by meticulous design, manufacturing, erection, subsequent use and maintenance practices. It has become guiding and inspiration for further practices in design, manufacturing, erection, and maintenance for dam gates as well as all other disciplines of engineering today.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, J.; Cao, Y.-T.; Lavvas, P. P.
2016-07-20
HCN is an important constituent in Titan’s upper atmosphere, serving as the main coolant in the local energy budget. In this study, we derive the HCN abundance at the altitude range of 960–1400 km, combining the Ion-Neutral Mass Spectrometer data acquired during a large number of Cassini flybys with Titan. Typically, the HCN abundance declines modestly with increasing altitude and flattens to a near constant level above 1200 km. The data reveal a tendency for dayside depletion of HCN, which is clearly visible below 1000 km but weakens with increasing altitude. Despite the absence of convincing anti-correlation between HCN volumemore » mixing ratio and neutral temperature, we argue that the variability in HCN abundance makes an important contribution to the large temperature variability observed in Titan’s upper atmosphere.« less
HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies
NASA Astrophysics Data System (ADS)
Gao, Yu; Solomon, Philip M.
2004-05-01
We report systematic HCN J=1-0 (and CO) observations of a sample of 53 infrared (IR) and/or CO-bright and/or luminous galaxies, including seven ultraluminous infrared galaxies, nearly 20 luminous infrared galaxies, and more than a dozen of the nearest normal spiral galaxies. This is the largest and most sensitive HCN survey of galaxies to date. All galaxies observed so far follow the tight correlation between the IR luminosity LIR and the HCN luminosity LHCN initially proposed by Solomon, Downes, & Radford, which is detailed in a companion paper. We also address here the issue of HCN excitation. There is no particularly strong correlation between LHCN and the 12 μm luminosity; in fact, of all the four IRAS bands, the 12 μm luminosity has the weakest correlation with the HCN luminosity. There is also no evidence of stronger HCN emission or a higher ratio of HCN and CO luminosities LHCN/LCO for galaxies with excess 12 μm emission. This result implies that mid-IR radiative pumping, or populating, of the J=1 level of HCN by a mid-IR vibrational transition is not important compared with the collisional excitation by dense molecular hydrogen. Furthermore, large velocity gradient calculations justify the use of HCN J=1-0 emission as a tracer of high-density molecular gas (>~3×104/τcm-3) and give an estimate of the mass of dense molecular gas from HCN observations. Therefore, LHCN may be used as a measure of the total mass of dense molecular gas, and the luminosity ratio LHCN/LCO may indicate the fraction of molecular gas that is dense.
NASA Astrophysics Data System (ADS)
Yadav, Dharmendra Singh; Raad, Bhagwan Ram; Sharma, Dheeraj
2016-12-01
In this paper, we focus on the improvement of figures of merit for charge plasma based tunnel field-effect transistor (TFET) in terms of ON-state current, threshold voltage, sub-threshold swing, ambipolar nature, and gate to drain capacitance which provides better channel controlling of the device with improved high frequency response at ultra-low supply voltages. Regarding this, we simultaneously employ work function engineering on the drain and gate electrode of the charge plasma TFET. The use of gate work function engineering modulates the barrier on the source/channel interface leads to improvement in the ON-state current, threshold voltage, and sub-threshold swing. Apart from this, for the first time use of work function engineering on the drain electrode increases the tunneling barrier for the flow of holes on the drain/channel interface, it results into suppression of ambipolar behavior. The lowering of gate to drain capacitance therefore enhanced high frequency parameters. Whereas, the presence of dual work functionality at the gate electrode and over the drain region improves the overall performance of the charge plasma based TFET.
The puzzle of HCN in comets: Is it both a product and a primary species?
NASA Astrophysics Data System (ADS)
Mumma, M.; Bonev, B.; Charnley, S.; Cordiner, M.; DiSanti, M.; Gibb, E.; Magee-Sauer, K.; Paganini, L.; Villanueva, G.
2014-07-01
Hydrogen cyanide has long been regarded as a primary volatile in comets, stemming from its presence in dense molecular-cloud cores and its supposed storage in the cometary nucleus. Here, we examine the observational evidence for and against that hypothesis, and argue that HCN may also result from near-nucleus chemical reactions in the coma. The distinction (product vs. primary species) is important for multiple reasons: - HCN is often used as a proxy for water when the dominant species (H_2O) is not available for simultaneous measurement, as at radio wavelengths. If much HCN is sometimes produced in the coma, its adoption as a water proxy could introduce unwanted bias to taxonomies based on composition. - HCN is one of the few volatile carriers of nitrogen accessible to remote sensing, with NH_3 being the dominant nitrile. If HCN is mainly a product species, its precursor becomes the more important metric for compiling a taxonomic classification based on nitrogen chemistry. - The stereoisomer HNC is regarded as a product species, thought to result from coma chemistry involving HCN. But, could another reaction of a primary precursor (X-CN) with a hydrocarbon co-produce both HNC and HCN? - The production rate for CN greatly exceeds the possible production from HCN in some comets, demonstrating the presence of another (more important) precursor of CN radicals in them. - The production rates of HCN measured through rotational (radio) and vibrational (infrared) spectroscopy agree in some comets, but in others the infrared rate exceeds the radio rate substantially. Is prompt emission from vibrationally excited HCN responsible? - With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H_2O, CH_3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). We will present the evidence for and against these points, and suggest ways to test the primary and product origins of cometary HCN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp
2016-07-01
We present the results of ALMA Cycle 2 observations of the ultraluminous infrared galaxy IRAS 20551−4250 at HCN/HCO{sup +}/HNC J = 3–2 lines at both vibrational ground ( v = 0) and vibrationally excited ( v {sub 2} = 1) levels. This galaxy contains a luminous buried active galactic nucleus (AGN), in addition to starburst activity, and our ALMA Cycle 0 data revealed a tentatively detected vibrationally excited HCN v {sub 2} = 1f J = 4–3 emission line. In our ALMA Cycle 2 data, the HCN/HCO{sup +}/HNC J = 3–2 emission lines at v = 0 are clearly detected.more » The HCN and HNC v {sub 2} = 1f J = 3–2 emission lines are also detected, but the HCO{sup +} v {sub 2} = 1f J = 3–2 emission line is not. Given the high energy level of v {sub 2} = 1 and the resulting difficulty of collisional excitation, we compared these results with those of the calculation of infrared radiative pumping, using the available infrared 5–35 μ m spectrum. We found that all of the observational results were reproduced if the HCN abundance was significantly higher than that of HCO{sup +} and HNC. The flux ratio and excitation temperature between v {sub 2} = 1f and v = 0, after correction for possible line opacity, suggests that infrared radiative pumping affects rotational ( J -level) excitation at v = 0 at least for HCN and HNC. The HCN-to-HCO{sup +} v = 0 flux ratio is higher than those of starburst-dominated regions, and will increase even more when the derived high HCN opacity is corrected. The enhanced HCN-to-HCO{sup +} flux ratio in this AGN-hosting galaxy can be explained by the high HCN-to-HCO{sup +} abundance ratio and sufficient HCN excitation at up to J = 4, rather than the significantly higher efficiency of infrared radiative pumping for HCN than HCO{sup +}.« less
Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology.
Wang, Baojun; Kitney, Richard I; Joly, Nicolas; Buck, Martin
2011-10-18
Modular and orthogonal genetic logic gates are essential for building robust biologically based digital devices to customize cell signalling in synthetic biology. Here we constructed an orthogonal AND gate in Escherichia coli using a novel hetero-regulation module from Pseudomonas syringae. The device comprises two co-activating genes hrpR and hrpS controlled by separate promoter inputs, and a σ(54)-dependent hrpL promoter driving the output. The hrpL promoter is activated only when both genes are expressed, generating digital-like AND integration behaviour. The AND gate is demonstrated to be modular by applying new regulated promoters to the inputs, and connecting the output to a NOT gate module to produce a combinatorial NAND gate. The circuits were assembled using a parts-based engineering approach of quantitative characterization, modelling, followed by construction and testing. The results show that new genetic logic devices can be engineered predictably from novel native orthogonal biological control elements using quantitatively in-context characterized parts. © 2011 Macmillan Publishers Limited. All rights reserved.
NASA Technical Reports Server (NTRS)
Zahnle, K. J.
1986-01-01
A one-dimensional photochemical model is used to analyze the photochemistries of CH4 and HCN in the primitive terrestrial atmosphere. CH4, N2, and HCN photolysis are examined. The background atmosphere and boundary conditions applied in the analysis are described. The formation of HCN as a by-product of N2 and CH4 photolysis is investigated; the effects of photodissociation and rainfall on HCN is discussed. The low and high CH4 mixing ratios and radical densities are studied.
3D gate-all-around bandgap-engineered SONOS flash memory in vertical silicon pillar with metal gate
NASA Astrophysics Data System (ADS)
Oh, Jae-Sub; Yang, Seong-Dong; Lee, Sang-Youl; Kim, Young-Su; Kang, Min-Ho; Lim, Sung-Kyu; Lee, Hi-Deok; Lee, Ga-Won
2013-08-01
In this paper, a gate-all-around bandgap-engineered silicon-oxide-nitride-oxide-silicon device with a vertical silicon pillar structure and a Ti metal gate are demonstrated for a potential solution to overcome the scaling-down of flash memory device. The devices were fabricated using CMOS-compatible technology and exhibited well-behaved memory characteristics in terms of the program/erase window, retention, and endurance properties. Moreover, the integration of the Ti metal gate demonstrated a significant improvement in the erase characteristics due to the efficient suppression of the electron back tunneling through the blocking oxide.
Meta-path based heterogeneous combat network link prediction
NASA Astrophysics Data System (ADS)
Li, Jichao; Ge, Bingfeng; Yang, Kewei; Chen, Yingwu; Tan, Yuejin
2017-09-01
The combat system-of-systems in high-tech informative warfare, composed of many interconnected combat systems of different types, can be regarded as a type of complex heterogeneous network. Link prediction for heterogeneous combat networks (HCNs) is of significant military value, as it facilitates reconfiguring combat networks to represent the complex real-world network topology as appropriate with observed information. This paper proposes a novel integrated methodology framework called HCNMP (HCN link prediction based on meta-path) to predict multiple types of links simultaneously for an HCN. More specifically, the concept of HCN meta-paths is introduced, through which the HCNMP can accumulate information by extracting different features of HCN links for all the six defined types. Next, an HCN link prediction model, based on meta-path features, is built to predict all types of links of the HCN simultaneously. Then, the solution algorithm for the HCN link prediction model is proposed, in which the prediction results are obtained by iteratively updating with the newly predicted results until the results in the HCN converge or reach a certain maximum iteration number. Finally, numerical experiments on the dataset of a real HCN are conducted to demonstrate the feasibility and effectiveness of the proposed HCNMP, in comparison with 30 baseline methods. The results show that the performance of the HCNMP is superior to those of the baseline methods.
Wang, Yuehong; Li, Xiaoyan; Zeng, Yanli; Meng, Lingpeng; Zhang, Xueying
2017-04-01
The π-hole of triphosphorus hydride (P 3 H 3 ) and its derivatives Z 3 X 3 (Z = P, As; X = H, F, Cl, Br) was discovered and analyzed. MP2/aug-cc-pVDZ calculations were performed on the π-hole interactions in the HCN...Z 3 X 3 complexes and the mutual influence between π-hole interactions and the hydrogen bond in the HCN...HCN...Z 3 X 3 and HCN...Z 3 X 3 ...HCN complexes studied. The π-hole interaction belongs to the typical closed-shell noncovalent interaction. The linear relationship was found between the most positive electrostatic potential of the π-hole (V S,max ) and the interaction energy. Moreover, the V S,max of the π-hole was also found to be linearly correlated to the electrostatic energy term, indicating the important contribution of the electrostatic energy term to the π-hole interaction. There is positive cooperativity between the π-hole interaction and the hydrogen bond in the termolecular complexes. The π-hole interaction has a greater influence on the hydrogen bond than vice versa. The mutual enhancing effect between the π-hole interaction and the hydrogen bond in the HCN...HCN...Z 3 X 3 complexes is greater than that in the HCN...Z 3 X 3 ...HCN complexes.
Grabowska, Teresa; Skowronek, Rafał; Nowicka, Joanna; Sybirska, Halina
2012-09-01
Hydrogen cyanide (HCN) is one of the most toxic components of fire smoke, but insufficient attention is paid to its potential role as a cause of injury or death in victims (alive or dead) of enclosed-space fires. To analyse the prevalence of toxic HCN exposure in fire victims and factors that may influence its toxicity, particularly the co-presence of carbon monoxide (CO) and ethanol. Blood samples from fire victims and persons rescued from fires were analysed. A positive result for HCN (mean concentration 16.83 mg/l) was detected in blood samples from 169 of 285 fire-related deaths (59%). Ethanol was present in 91 (65%) of 139 samples with coincident presence of HCN and carboxyhaemoglobin (COHb). HCN (mean 4.0 mg/l) was also detected in 20 of 40 (50%) fire survivors. The high prevalence of coincident CO and HCN in enclosed-space, fire-related deaths should alert clinicians to suspect toxic HCN exposure in all persons rescued from fire with signs and symptoms of respiratory distress. Medical procedures in persons rescued from enclosed-space fires, especially in the pre-hospital setting, should be augmented to cover the possibility of toxic HCN exposure, particularly in individuals who do not respond to standard supportive therapy. Likewise, post-mortem investigations should routinely include assays for HCN when determining probable cause of death.
The HNC/HCN ratio in star-forming regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graninger, Dawn M.; Öberg, Karin I.; Herbst, Eric
2014-05-20
HNC and HCN, typically used as dense gas tracers in molecular clouds, are a pair of isomers that have great potential as a temperature probe because of temperature dependent, isomer-specific formation and destruction pathways. Previous observations of the HNC/HCN abundance ratio show that the ratio decreases with increasing temperature, something that standard astrochemical models cannot reproduce. We have undertaken a detailed parameter study on which environmental characteristics and chemical reactions affect the HNC/HCN ratio and can thus contribute to the observed dependence. Using existing gas and gas-grain models updated with new reactions and reaction barriers, we find that in staticmore » models the H + HNC gas-phase reaction regulates the HNC/HCN ratio under all conditions, except for very early times. We quantitatively constrain the combinations of H abundance and H + HNC reaction barrier that can explain the observed HNC/HCN temperature dependence and discuss the implications in light of new quantum chemical calculations. In warm-up models, gas-grain chemistry contributes significantly to the predicted HNC/HCN ratio and understanding the dynamics of star formation is therefore key to model the HNC/HCN system.« less
Cyanide Metabolism in Relation to Ethylene Production in Plant Tissues 1
Yip, Wing-Kin; Yang, Shang Fa
1988-01-01
HCN is the putative product of C-1 and amino moieties of 1-aminocyclopropane-1-carboxylic acid (ACC) during its conversion to ethylene. In apple (Malus sylvestrus Mill.) slices or auxin-treated mungbean (Vigna radiata L.) hypocotyls, which produced ethylene at high rates, the steady state concentration of HCN was found to be no higher than 0.2 micromolar, which was too low to inhibit respiration (reported Ki for HCN to inhibit respiration was 10-20 micromolar). However, these tissues became cyanogenic when treated with ACC, the precursor of ethylene, and with 2-aminoxyacetic acid, which inhibits β-cyanoalanine synthase, the main enzyme to detoxify HCN; the HCN levels in these tissues went up to 1.7 and 8.1 micromolar, respectively. Although ethylene production by avocado (Persea gratissima) and apple fruits increased several hundred-fold during ripening, β-cyanoalanine synthase activity increased only one- to two-fold. These findings support the notion that HCN is a co-product of ethylene biosynthesis and that the plant tissues possess ample capacity to detoxify HCN formed during ethylene biosynthesis so that the concentration of HCN in plant tissues is kept at a low level. PMID:16666329
Schild, John H; Kunze, Diana L
2012-12-24
Voltage gated ion channels (VGC) make possible the frequency coding of arterial pressure and the neurotransmission of this information along myelinated and unmyelinated fiber pathways. Although many of the same VGC isoforms are expressed in both fiber types, it is the relative expression of each that defines the unique discharge properties of myelinated A-type and unmyelinated C-type baroreceptors. For example, the fast inward Na⁺ current is a major determinant of the action potential threshold and the regenerative transmembrane current needed to sustain repetitive discharge. In A-type baroreceptors the TTX-sensitive Na(v)1.7 VGC contributes to the whole cell Na⁺ current. Na(v)1.7 is expressed at a lower density in C-type neurons and in conjunction with TTX-insensitive Na(v)1.8 and Na(v)1.9 VGC. As a result, action potentials of A-type neurons have firing thresholds that are 15-20 mV more negative and upstroke velocities that are 5-10 times faster than unmyelinated C-type neurons. A more depolarized threshold in conjunction with a broader complement of non-inactivating K(V) VGC subtypes produces C-type action potentials that are 3-4 times longer in duration than A-type neurons and at markedly lower levels of cell excitability. Unmyelinated baroreceptors also express KCa1.1 which provides approximately 25% of the total outward K⁺ current. KCa1.1 plays a critically important role in shaping the action potential profile of C-type neurons and strongly impacts neuronal excitability. A-type neurons do not functionally express the KCa1.1 channel despite having a whole cell Ca(V) current quite similar to that of C-type neurons. As a result, A-type neurons do not have the frequency-dependent braking forces of KCa1.1. Lack of a KCa current and only a limited complement of non-inactivating K(V) VGC in addition to a hyperpolarization activated HCN1 current that is nearly 10 times larger than in C-type neurons leads to elevated levels of discharge in A-type neurons, a hallmark of myelinated baroreceptors. Interestingly, HCN2 and HCN4 expression levels are comparable in both fiber types. Collectively, such apportion of VGC constrains the neural coding of myelinated A-type baroreceptors to low threshold, high frequency, high fidelity discharge but with a limited capacity for neuromodulation of afferent bandwidth. Unmyelinated C-type baroreceptors require greater depolarizing forces for spike initiation and have a low frequency discharge profile that is often poorly correlated with the physiological stimulus. But the complement of VGC in C-type neurons provides far greater capacity for neuromodulation of cell excitability than can be obtained from A-type baroreceptors. Copyright © 2012 Elsevier B.V. All rights reserved.
The Puzzle of HCN in Comets: Is it both a Product and a Primary Species?
NASA Astrophysics Data System (ADS)
Mumma, Michael J.; Bonev, Boncho P.; Charnley, Steven B.; Cordiner, Martin A.; DiSanti, Michael A.; Gibb, Erika L.; Magee-Sauer, Karen; Paganini, Lucas; Villanueva, Geronimo L.
2014-11-01
Hydrogen cyanide has long been regarded as a primary volatile in comets, stemming from its presence in dense molecular cloud cores and its supposed storage in the cometary nucleus. Here, we examine the observational evidence for and against that hypothesis, and argue that HCN may also result from near-nucleus chemical reactions in the coma. The distinction (product vs. primary species) is important for multiple reasons: 1. HCN is often used as a proxy for water when the dominant species (H2O) is not available for simultaneous measurement, as at radio wavelengths. 2. HCN is one of the few volatile carriers of nitrogen accessible to remote sensing. If HCN is mainly a product species, its precursor becomes the more important metric for compiling a taxonomic classification based on nitrogen chemistry. 3. The stereoisomer HNC is now confirmed as a product species. Could reaction of a primary precursor (X-CN) with a hydrocarbon co-produce both HNC and HCN? 4. The production rate for CN greatly exceeds that of HCN in some comets, demonstrating the presence of another (more important) precursor of CN. Several puzzling lines of evidence raise issues about the origin of HCN: a. The production rates of HCN measured through rotational (radio) and vibrational (infrared) spectroscopy agree in some comets - in others the infrared rate exceeds the radio rate substantially. b. With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H2O, CH3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). c. The nucleus-centered rotational temperatures measured for H2O and other species (C2H6, CH3OH) usually agree within error, but those for HCN are often slightly smaller. d. In comet ISON, ALMA maps of HCN and the dust continuum show a slight displacement 80 km) in the centroids. We will discuss these points, and suggest ways to test the primary and product origins of cometary HCN. NASA’s Planetary Astronomy, Planetary Atmospheres, and Astrobiology Programs supported this work.
Dense Gas, Dynamical Equilibrium Pressure, and Star Formation in Nearby Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Gallagher, Molly J.; Leroy, Adam K.; Bigiel, Frank; Cormier, Diane; Jiménez-Donaire, María J.; Ostriker, Eve; Usero, Antonio; Bolatto, Alberto D.; García-Burillo, Santiago; Hughes, Annie; Kepley, Amanda A.; Krumholz, Mark; Meidt, Sharon E.; Meier, David S.; Murphy, Eric J.; Pety, Jérôme; Rosolowsky, Erik; Schinnerer, Eva; Schruba, Andreas; Walter, Fabian
2018-05-01
We use new ALMA observations to investigate the connection between dense gas fraction, star formation rate (SFR), and local environment across the inner region of four local galaxies showing a wide range of molecular gas depletion times. We map HCN (1–0), HCO+ (1–0), CS (2–1), 13CO (1–0), and C18O (1–0) across the inner few kiloparsecs of each target. We combine these data with short-spacing information from the IRAM large program EMPIRE, archival CO maps, tracers of stellar structure and recent star formation, and recent HCN surveys by Bigiel et al. and Usero et al. We test the degree to which changes in the dense gas fraction drive changes in the SFR. {I}HCN}/{I}CO} (tracing the dense gas fraction) correlates strongly with I CO (tracing molecular gas surface density), stellar surface density, and dynamical equilibrium pressure, P DE. Therefore, {I}HCN}/{I}CO} becomes very low and HCN becomes very faint at large galactocentric radii, where ratios as low as {I}HCN}/{I}CO}∼ 0.01 become common. The apparent ability of dense gas to form stars, {{{Σ }}}SFR}/{{{Σ }}}dense} (where Σdense is traced by the HCN intensity and the star formation rate is traced by a combination of Hα and 24 μm emission), also depends on environment. {{{Σ }}}SFR}/{{{Σ }}}dense} decreases in regions of high gas surface density, high stellar surface density, and high P DE. Statistically, these correlations between environment and both {{{Σ }}}SFR}/{{{Σ }}}dense} and {I}HCN}/{I}CO} are stronger than that between apparent dense gas fraction ({I}HCN}/{I}CO}) and the apparent molecular gas star formation efficiency {{{Σ }}}SFR}/{{{Σ }}}mol}. We show that these results are not specific to HCN.
MLS measurements of stratospheric hydrogen cyanide during the 2015-2016 El Niño event
NASA Astrophysics Data System (ADS)
Pumphrey, Hugh C.; Glatthor, Norbert; Bernath, Peter F.; Boone, Christopher D.; Hannigan, James W.; Ortega, Ivan; Livesey, Nathaniel J.; Read, William G.
2018-01-01
It is known from ground-based measurements made during the 1982-1983 and 1997-1998 El Niño events that atmospheric hydrogen cyanide (HCN) tends to be higher during such years than at other times. The Microwave Limb Sounder (MLS) on the Aura satellite has been measuring HCN mixing ratios since launch in 2004; the measurements are ongoing at the time of writing. The winter of 2015-2016 saw the largest El Niño event since 1997-1998. We present MLS measurements of HCN in the lower stratosphere for the Aura mission to date, comparing the 2015-2016 El Niño period to the rest of the mission. HCN in 2015-2016 is higher than at any other time during the mission, but ground-based measurements suggest that it may have been even more elevated in 1997-1998. As the MLS HCN data are essentially unvalidated, we show them alongside data from the MIPAS and ACE-FTS instruments; the three instruments agree reasonably well in the tropical lower stratosphere. Global HCN emissions calculated from the Global Fire Emissions Database (GFED v4.1) database are much greater during large El Niño events and are greater in 1997-1998 than in 2015-2016, thereby showing good qualitative agreement with the measurements. Correlation between El Niño-Southern Oscillation (ENSO) indices, measured HCN, and GFED HCN emissions is less clear if the 2015-2016 event is excluded. In particular, the 2009-2010 winter had fairly strong El Niño conditions and fairly large GFED HCN emissions, but very little effect is observed in the MLS HCN.
Hyperswitch communication network
NASA Technical Reports Server (NTRS)
Peterson, J.; Pniel, M.; Upchurch, E.
1991-01-01
The Hyperswitch Communication Network (HCN) is a large scale parallel computer prototype being developed at JPL. Commercial versions of the HCN computer are planned. The HCN computer being designed is a message passing multiple instruction multiple data (MIMD) computer, and offers many advantages in price-performance ratio, reliability and availability, and manufacturing over traditional uniprocessors and bus based multiprocessors. The design of the HCN operating system is a uniquely flexible environment that combines both parallel processing and distributed processing. This programming paradigm can achieve a balance among the following competing factors: performance in processing and communications, user friendliness, and fault tolerance. The prototype is being designed to accommodate a maximum of 64 state of the art microprocessors. The HCN is classified as a distributed supercomputer. The HCN system is described, and the performance/cost analysis and other competing factors within the system design are reviewed.
A new ab initio potential energy surface for the collisional excitation of HCN by para- and ortho-H2
NASA Astrophysics Data System (ADS)
Denis-Alpizar, Otoniel; Kalugina, Yulia; Stoecklin, Thierry; Vera, Mario Hernández; Lique, François
2013-12-01
We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H2. Ab initio calculations of the HCN-H2 van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN-H2 with the nitrogen pointing towards H2 at an intermolecular separation of 7.20 a0. The corresponding well depth is -195.20 cm-1. A secondary minimum of -183.59 cm-1 was found for a T-shape configuration with the H of HCN pointing to the center of mass of H2. We also determine the rovibrational energy levels of the HCN-para-H2 and HCN-ortho-H2 complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm-1 and 60.26 cm-1, respectively. The calculated ro-vibrational transitions in the HCN-H2 complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.
Updated population metadata for United States historical climatology network stations
Owen, T.W.; Gallo, K.P.
2000-01-01
The United States Historical Climatology Network (HCN) serial temperature dataset is comprised of 1221 high-quality, long-term climate observing stations. The HCN dataset is available in several versions, one of which includes population-based temperature modifications to adjust urban temperatures for the "heat-island" effect. Unfortunately, the decennial population metadata file is not complete as missing values are present for 17.6% of the 12 210 population values associated with the 1221 individual stations during the 1900-90 interval. Retrospective grid-based populations. Within a fixed distance of an HCN station, were estimated through the use of a gridded population density dataset and historically available U.S. Census county data. The grid-based populations for the HCN stations provide values derived from a consistent methodology compared to the current HCN populations that can vary as definitions of the area associated with a city change over time. The use of grid-based populations may minimally be appropriate to augment populations for HCN climate stations that lack any population data, and are recommended when consistent and complete population data are required. The recommended urban temperature adjustments based on the HCN and grid-based methods of estimating station population can be significantly different for individual stations within the HCN dataset.
Defense of Defense Human Factors Engineering Technical Advisory Group Meeting Summary
2012-07-01
Survivability ( Plaga ) • Wright, N; OSD and DSOC Helicopter Seating Studies Zehner, G; An Overview of USAF Anthropometry Plaga , J & Hill; SAFE Association...predictions. – 1230 - 1430 Standardization - 1472H (Poston) – 1230 - 1430 Human Factors in Extreme Environments & SS ( Plaga ) • Ganey, HCN...Classification (Personnel) LT Chris Foster Dr. Hector Acosta System Safety/Health Hazards/ Survivability (SS/HH/Sv) Mr. John Plaga Technical Society
CN and HCN in the infrared spectrum of IRC + 10216
NASA Technical Reports Server (NTRS)
Wiedemann, G. R.; Deming, D.; Jennings, D. E.; Hinkle, Kenneth H.; Keady, John J.
1991-01-01
The abundance of HCN in the inner circumstellar shell of IRC + 10216 has been remeasured using the 12-micron nu2 band. The 12-micron lines are less saturated than HCN 3-micron lines previously detected in the spectrum of IRC + 10216. The observed 12-micron HCN line is formed in the circumstellar shell from about 4 to 12 R sub * in accord with a photospheric origin for HCN. The derived HCN abundance in the 4 to 12 R sub* region is 4 x 10 exp-5 and the column density is 7 x 10 exp 18/sq cm. The 5-micron CN vibration-rotation fundamental band was detected for the first time in an astronomical source. Using four CN lines, the CN column density was determined to be 2.6 x 10 exp 15/sq cm and the rotational temperature to be 8 +/-2 K. The peal radial abundance is 1 x 10 exp -5. The values for the temperature and abundance are in good agreement with microwave results and with the formation of CN from the photolysis of HCN.
Adsorption of HCN molecules on Ni, Pd and Pt-doped (7, 0) boron nitride nanotube: a DFT study
NASA Astrophysics Data System (ADS)
Habibi-Yangjeh, Aziz; Basharnavaz, Hadi
2018-05-01
We studied affinity of pure and Ni, Pd and Pt-doped (7, 0) boron nitride nanotubes (BNNTs) to toxic HCN molecules using density functional theory calculations. The results indicated that the pure (7, 0) BNNTs can weakly adsorb HCN molecules with adsorption energy of -0.2474 eV. Upon adsorption of HCN molecules on this nanotube, the band gap energy was decreased from 3.320 to 2.960 eV. The more negative adsorption energy between these transition metal-doped (7, 0) BNNTs and HCN molecules indicated that doping of (7, 0) BNNTs with Ni, Pd and Pt elements can significantly improve the affinity of BNNTs toward this gas. Additionally, it was found that the interaction energy between HCN molecules and Pt-doped BNNTs is more negative than those of the Ni and Pd-doped BNNTs. These observations suggested that the Pt-doped (7, 0) BNNTs are strongly sensitive to HCN molecules and therefore it may be used in gas sensor devices for detecting this toxic gas.
Detection of CO and HCN in Pluto's atmosphere with ALMA
NASA Astrophysics Data System (ADS)
Lellouch, E.; Gurwell, M.; Butler, B.; Fouchet, T.; Lavvas, P.; Strobel, D. F.; Sicardy, B.; Moullet, A.; Moreno, R.; Bockelée-Morvan, D.; Biver, N.; Young, L.; Lis, D.; Stansberry, J.; Stern, A.; Weaver, H.; Young, E.; Zhu, X.; Boissier, J.
2017-04-01
Observations of the Pluto-Charon system, acquired with the ALMA interferometer on June 12-13, 2015, have led to the detection of the CO(3-2) and HCN(4-3) rotational transitions from Pluto (including the hyperfine structure of HCN), providing a strong confirmation of the presence of CO, and the first observation of HCN in Pluto's atmosphere. The CO and HCN lines probe Pluto's atmosphere up to ∼450 km and ∼900 km altitude, respectively, with a large contribution due to limb emission. The CO detection yields (i) a much improved determination of the CO mole fraction, as 515 ± 40 ppm for a 12 μbar surface pressure (ii) strong constraints on Pluto's mean atmospheric dayside temperature profile over ∼50-400 km, with clear evidence for a well-marked temperature decrease (i.e., mesosphere) above the 30-50 km stratopause and a best-determined temperature of 70 ± 2 K at 300 km, somewhat lower than previously estimated from stellar occultations (81 ± 6 K), and in agreement with recent inferences from New Horizons / Alice solar occultation data. The HCN line shape implies a high abundance of this species in the upper atmosphere, with a mole fraction >1.5 × 10-5 above 450 km and a value of 4 × 10-5 near 800 km. Assuming HCN at saturation, this would require a warm (>92 K) upper atmosphere layer; while this is not ruled out by the CO emission, it is inconsistent with the Alice-measured CH4 and N2 line-of-sight column densities. Taken together, the large HCN abundance and the cold upper atmosphere imply supersaturation of HCN to a degree (7-8 orders of magnitude) hitherto unseen in planetary atmospheres, probably due to a lack of condensation nuclei above the haze region and the slow kinetics of condensation at the low pressure and temperature conditions of Pluto's upper atmosphere. HCN is also present in the bottom ∼100 km of the atmosphere, with a 10-8-10-7 mole fraction; this implies either HCN saturation or undersaturation there, depending on the precise stratopause temperature. The HCN column is (1.6 ± 0.4)× 1014 cm-2 , suggesting a surface-referred vertically-integrated net production rate of ∼2 × 107 cm-2 s-1. Although HCN rotational line cooling affects Pluto's atmosphere heat budget, the amounts determined in this study are insufficient to explain the well-marked mesosphere and upper atmosphere's ∼70 K temperature, which if controlled by HCN cooling would require HCN mole fractions of (3-7) ×10-4 over 400-800 km. We finally report an upper limit on the HC3N column density (<2 × 1013 cm-2) and on the HC15N / HC14N ratio (<1/125).
Photocopy of photograph (original print located at Engineering Management Building, ...
Photocopy of photograph (original print located at Engineering Management Building, Naval Shipyard, Long Beach). Navy Photograph, July 4, 1942, Photograph #2226. BUILDING 40, WITH MAIN GATE 1 - Roosevelt Base, Gatehouse, Corner of Ocean Boulevard & Gate 1, Long Beach, Los Angeles County, CA
Augmented Currents of an HCN2 Variant in Patients with Febrile Seizure Syndromes
Dibbens, Leanne M.; Reid, Christopher A.; Hodgson, Bree; Thomas, Evan A.; Phillips, Alison M.; Gazina, Elena; Cromer, Brett A.; Clarke, Alison L.; Baram, Tallie Z.; Scheffer, Ingrid E.; Berkovic, Samuel F.; Petrou, Steven
2012-01-01
The genetic architecture of common epilepsies is largely unknown. HCNs are excellent epilepsy candidate genes because of their fundamental neurophysiological roles. Screening in subjects with febrile seizures and genetic epilepsy with febrile seizures plus revealed that 2.4% carried a common triple proline deletion (delPPP) in HCN2 that was seen in only 0.2% of blood bank controls. Currents generated by mutant HCN2 channels were ~35% larger than those of controls; an effect revealed using automated electrophysiology and an appropriately powered sample size. This is the first association of HCN2 and familial epilepsy, demonstrating gain of function of HCN2 current as a potential contributor to polygenic epilepsy. PMID:20437590
Khurwolah, Mohammad Reeaze; Vezi, Brian Zwelethini
In the daily practice of pacemaker insertion, the occurrence of atrial and ventricular lead switch at the pacemaker box header is a rare and unintentional phenomenon, with less than five cases reported in the literature. The lead switch may have dire consequences, depending on the indication for the pacemaker. One of these consequences is pacemaker syndrome, in which the normal sequence of atrial and ventricular activation is impaired, leading to sub-optimal ventricular filling and cardiac output. It is important for the attending physician to recognise any worsening of symptoms in a patient who has recently had a permanent pacemaker inserted. In the case of a dual-chamber pacemaker, switching of the atrial and ventricular leads at the pacemaker box header should be strongly suspected. We present an unusual case of pacemaker syndrome and right ventricular-only pacinginduced left ventricular systolic dysfunction in a patient with a dual-chamber pacemaker.
Voltage-gated sodium channels in taste bud cells.
Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D
2009-03-12
Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.
Koehler, P J; Jennekens, F G I
2008-01-01
Vinken and Bruyn's Handbook of Clinical Neurology (HCN) is best characterized as an encyclopedia. In this paper we describe the origin, production, and reception of HCN. Data were gathered from a literature search, by screening of HCN-volumes, interviewing key-role persons and a study of an HCN-archive. The initiative for HCN was taken by two Excerpta Medica staff members, the one a strategist with expertise in information systems, the other a gifted neurologist with an expert knowledge of who is who in the world of neurological literature. Within a period of 38 years, 2799 authors, 28 volume editors, the two initiators, and a third chief editor for the American continent described the whole of neurology in 1909 chapters on all together 46,025 pages (excluding index volumes). HCN was sold mainly to medical institutes in affluent countries. A digital version of the revised edition was proposed by the editors but refused by the publisher for commercial reasons. HCN was in general well received by book reviewers. The main criticisms concerned the price of the volumes, lack of editorial control, inadequacy of indexes, and lack of cross references. HCN offers unrivalled information on the state of the art of the clinical neurosciences in the second half of the twentieth century. In addition, it contains extensive reviews of the history of neurological diseases in the volumes of the original edition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.; Sorescu, D.C.; Yates, J.T., Jr.
The adsorption and vibrational properties of chemisorbed HCN on Lewis acid sites, Lewis base sites, and Brønsted Al-OH acid sites on a partially hydroxylated [gamma]-Al2O3 surface have been obtained by a combination of FTIR and density functional theory studies. The vibrational modes from the molecular and dissociative adsorption of HCN were assigned by using deuterium and 13C-labeled D13CN molecules at 170 K. In addition, [eta]2(C, N)-HCN bonding is also found from the [nu](CdN) vibrational spectra. Good correlation of the calculated vibrational frequencies for the adsorbed species with experimental data is found. The effect of triethylenediamine (TEDA) (also called 1, 4-diazabicyclomore » [2.2.2]octane, DABCO) on the adsorption of hydrogen cyanide (HCN) on the high area [gamma]-Al2O3 surface has been investigated using transmission FTIR spectroscopy. During HCN adsorption on TEDA-functionalized surfaces, there is no spectral change or emerging feature in either the TEDA or HCN spectral regions, indicating that no direct interaction occurs between these two molecules. Instead, we found that TEDA competes with HCN for the active sites on [gamma]-Al2O3. The observed [nu](C [identical with] N) mode on a TEDA-precovered surface is due to the HCN adsorption on Lewis base sites (Al-O-Al) which are less affected by TEDA preadsorption.« less
The vertical distribution and origin of HCN in Neptune's atmosphere
NASA Technical Reports Server (NTRS)
Lellouch, Emmanuel; Romani, Paul N.; Rosenqvist, Jan
1994-01-01
Measurements and modeling of the (3-2) rotational line of hydrogen cyanide at 265.9 GHz in Neptune's atmosphere are presented. High signal-to-noise observations provide information on the HCN vertical distribution in Neptune's stratosphere. The HCN mixing ratio is found to be nearly uniform with height above the condensation level. Best fits occur for HCN distributions that have a slight increase with altitude. A least-squares analysis yields a mixing ratio of (3.2 +/- 0.8)10(exp -10) at 2 mbar and a mean mixing ratio scale height of 250(sup 750)(sub -110) km in the 0.1-3 mbar region. To interpret these results, we developed a photochemical model of HCN. HCN formation is initiated by the reaction between CH3 radicals, produced from methane photochemistry, and N atoms. The primary sink for HCN is condensation, with minor contributions from photolysis and chemical losses. Two possible sources of N atoms are investigated: (1) infall of N escaped from Triton's upper atmosphere, and (2) galactic cosmic ray (GCR) impact on internal N2. Given the uncertainties on (i) the transport and possible ionization of N in Neptune's magnetosphere, and the fate of N(+) reaching Neptune's upper atmosphere and (ii) the N2 mixing ratio in Neptune's deep atmosphere, we suggest that both sources of N atoms may significantly contibute to the formation of HCN.
[TRENDS OF PERMANENT PACEMAKER IMPLANTATION IN A SINGLE CENTER OVER A 20-YEAR PERIOD].
Antonelli, Dante; Ilan, Limor Bushar; Freedberg, Nahum A; Feldman, Alexander; Turgeman, Yoav
2015-05-01
To review the changes in permanent pacemaker implantation indications, pacing modes and patients' demographics over a 20-year period. We retrospectively retrieved data on patients who underwent first implantation of the pacemaker between 1-1-1991 and 31-12-2010. One thousand and nine (1,009) patients underwent a first pacemaker implantation during that period; 535 were men (53%), their mean age was 74.6±19.5 years; the highest rate of implanted pacemaker was in patients ranging in age from 70-79 years, however there was an increasing number of patients aged over 80 years. The median survival time after initial pacemaker implantation was 8 years. Syncope was the most common symptom (62.5%) and atrioventricular block was the most common electrocardiographic indication (56.4%) leading to pacemaker implantation. There was increased utilization of dual chamber and rate responsive pacemakers over the years. There was no difference regarding mode selection between genders. Pacemaker implantation rates have increased over a 20-year period. Dual chamber replaced most of the single ventricular chamber pacemaker and rate responsive pacemakers became the norm. The data of a small volume center are similar to those reported in pacemaker surveys of high volume pacemaker implantation centers. They confirm adherence to the published guidelines for pacing.
Clinical use of isotope cardiac pacemakers (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, J.; Kreutzberg, B.
1973-01-01
Plutoninm-235 having a half-life of 86.4 yrs has proved suitable as a long-life energy source for a cardiac pacemaker. The radiation dose of this pacemaker is below the I. C. R. P.-recommended values. As the isotope pacemaker costs three times as much as a conventional pacemaker, the merits of implanting an isotope pacemaker vs. the conventional kind are discussed. A survey is given of the cases in which an isotope pacemaker has been used. (GE)
Storage and release of hydrogen cyanide in a chelicerate (Oribatula tibialis)
Brückner, Adrian; Raspotnig, Günther; Wehner, Katja; Meusinger, Reinhard; Norton, Roy A.; Heethoff, Michael
2017-01-01
Cyanogenesis denotes a chemical defensive strategy where hydrogen cyanide (HCN, hydrocyanic or prussic acid) is produced, stored, and released toward an attacking enemy. The high toxicity and volatility of HCN requires both chemical stabilization for storage and prevention of accidental self-poisoning. The few known cyanogenic animals are exclusively mandibulate arthropods (certain myriapods and insects) that store HCN as cyanogenic glycosides, lipids, or cyanohydrins. Here, we show that cyanogenesis has also evolved in the speciose Chelicerata. The oribatid mite Oribatula tibialis uses the cyanogenic aromatic ester mandelonitrile hexanoate (MNH) for HCN storage, which degrades via two different pathways, both of which release HCN. MNH is emitted from exocrine opisthonotal oil glands, which are potent organs for chemical defense in most oribatid mites. PMID:28289203
Association Reactions at Low Pressure: 5. The CH(sub 3)+/HCN System. A Final Word?
NASA Technical Reports Server (NTRS)
Anicich, V.; Sen, A.; Huntress, W.; McEwan, M.
1994-01-01
The reaction of the methyl cation with hydrogen cyanide is revisited. We have confidence that we have resolved a long standing apparent contradiction of experimental results. A literature history is presented along with one new experiment and a reexamination of an old experiment. In this present work it is shown that all of the previous studies had made consistent observations. Yet, each of the previous studies failed to observe all of the information present. The methyl cation does react with HCN by radiative association, a fact which had been in doubt. The product ions formed in the two-body and three-body processes react differently with HCN. The collisionally stabilized association product formed by a three-body mechanism does not react with HCN and is readily detected in the experiments. The radiatively stabilized association product, formed by a slow two-body reaction, is not detected because it reacts with HCN by a fast proton transfer reaction forming the protonated HCN ion.
Pacemaker Dependency after Cardiac Surgery: A Systematic Review of Current Evidence.
Steyers, Curtis M; Khera, Rohan; Bhave, Prashant
2015-01-01
Severe postoperative conduction disturbances requiring permanent pacemaker implantation frequently occur following cardiac surgery. Little is known about the long-term pacing requirements and risk factors for pacemaker dependency in this population. We performed a systematic review of the literature addressing rates and predictors of pacemaker dependency in patients requiring permanent pacemaker implantation after cardiac surgery. Using a comprehensive search of the Medline, Web of Science and EMBASE databases, studies were selected for review based on predetermined inclusion and exclusion criteria. A total of 8 studies addressing the endpoint of pacemaker-dependency were identified, while 3 studies were found that addressed the recovery of atrioventricular (AV) conduction endpoint. There were 10 unique studies with a total of 780 patients. Mean follow-up ranged from 6-72 months. Pacemaker dependency rates ranged from 32%-91% and recovery of AV conduction ranged from 16%-42%. There was significant heterogeneity with respect to the definition of pacemaker dependency. Several patient and procedure-specific variables were found to be independently associated with pacemaker dependency, but these were not consistent between studies. Pacemaker dependency following cardiac surgery occurs with variable frequency. While individual studies have identified various perioperative risk factors for pacemaker dependency and non-resolution of AV conduction disease, results have been inconsistent. Well-conducted studies using a uniform definition of pacemaker dependency might identify patients who will benefit most from early permanent pacemaker implantation after cardiac surgery.
NASA Astrophysics Data System (ADS)
Men, Jing; Li, Airong; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao
2017-02-01
Cardiac pacing could be a powerful tool for investigating mammalian cardiac electrical conduction systems as well as for treatment of certain cardiac pathologies. However, traditional electrical pacing using pacemaker requires an invasive surgical procedure. Electrical currents from the implanted electrodes can also cause damage to heart tissue, further restricting its utility. Optogenetic pacing has been developed as a promising, non-invasive alternative to electrical stimulation for controlling animal heart rhythms. It induces heart contractions by shining pulsed light on transgene-generated microbial opsins, which in turn activate the light gated ion channels in animal hearts. However, commonly used opsins in optogenetic pacing, such as channelrhodopsin-2 (ChR2), require short light wavelength stimulation (475 nm), which is strongly absorbed and scattered by tissue. Here, we performed optogenetic pacing by expression of recently engineered red-shifted microbial opsins, ReaChR and CsChrimson, in a well-established animal model, Drosophila melanogaster, using the 617 nm stimulation light pulses. The OCM technique enables non-invasive optical imaging of animal hearts with high speed and ultrahigh axial and transverse resolutions. We integrated a customized OCM system with the optical stimulation system to monitor the optogenetic pacing noninvasively. The use of red-sifted opsins enabled deeper penetration of simulating light at lower power, which is promising for applications of optogenetic pacing in mammalian cardiac pathology studies or clinical treatments in the future.
NASA Technical Reports Server (NTRS)
Singh, Hanwant B.; Salas, L.; Herlth, D.; Czech, E.; Viezee, W.; Li, Q.; Jacob, D. J.; Blake, D.; Sachse, G.; Harward, C. N.;
2002-01-01
We report the first in-situ measurements of hydrogen cyanide (HCN) and acetonitrile (CH3CN) from the Pacific troposphere (0-12 km) obtained during the NASA/Trace-P mission (Feb.-April, 2001). Mean HCN and CH3CN mixing ratios of 243 (+/-118) ppt and 149 (+/-56) ppt respectively, were measured. The in-situ observations correspond to a total HCN column of 4.4-4.9 x 10(exp 15) molec. cm(exp -2) and a CH3CN column of 2.8-3.0 x 10(exp 15) molec. cm(exp -2). This HCN column is in good agreement with available spectroscopic observations. The atmospheric concentrations of HCN and CH3CN were greatly influenced by outflow of pollution from Asia. There is a linear relationship between the mixing ratios of HCN and CH3CN, and in turn these are well correlated with tracers of biomass combustion (e.g. CH3Cl, CO). Relative enhancements with respect to known tracers of biomass combustion within selected plumes in the free troposphere, and pollution episodes in the boundary layer allow an estimation of a global biomass burning source of 0.8+/-0.4 Tg (N)/y for HCN and 0.4+/-0.1 Tg (N)/y for CH3CN. In comparison, emissions from automobiles and industry are quite small (<0.05 Tg (N)/y). The vertical structure of HCN and CH3CN indicated reduced mixing ratios in the MBL (Marine Boundary Layer). Using, a simple box model, the observed gradients across the top of the MBL are used to derive an oceanic flux of 6.7 x 10(exp -15) g (N) cm(exp -2)/s for HCN and 4.8 x 10(exp -15) g (N) cm(exp -2)/s for CH3CN. An air-sea exchange model is used to conclude that this flux can be maintained if the oceans are under-saturated in HCN and CH3CN by 23% and 17%, respectively. It is inferred that oceanic loss is a dominant sink for these nitrites, and they deposit some 1.3 Tg (N) of nitrogen annually to the oceans. Assuming reaction with OH radicals and loss to the oceans as the major removal processes, a mean atmospheric residence time of 4.7 months for HCN and 5.1 months for CH3CN is calculated. A global budget analysis shows that the sources and sinks of HCN and CH3CN are roughly in balance. There are indications that biogenic sources may also be present. Mechanisms involved in nitrate formation during combustion and removal in the oceans are poorly understood.
Genovese, David W; Estrada, Amara H; Maisenbacher, Herbert W; Heatwole, Bonnie A; Powell, Melanie A
2013-01-15
To compare procedure times and major and minor complication rates associated with single-chamber versus dual-chamber pacemaker implantation and with 1-lead, 2-lead, and 3-lead pacemaker implantation in dogs with clinical signs of bradyarrhythmia. Retrospective case series. 54 dogs that underwent pacemaker implantation because of clinical signs of bradyarrhythmia. Medical records of dogs that received pacemakers between July 2004 and December 2009 were reviewed for information regarding signalment, diagnosis, pacemaker implantation, pacemaker type, complications, and survival time. Analyses were performed to determine significant differences in anesthesia time, procedure time, and outcome for dogs on the basis of pacing mode and number of pacing leads. 28 of 54 (51.9%) dogs received single-chamber pacemakers and 26 (48.1%) received dual-chamber pacemakers. Mean ± SD procedural time was significantly longer for patients with dual-chamber pacemakers (133.5 ± 51.3 minutes) than for patients with single-chamber pacemakers (94.9 ± 37.0 minutes), and procedure time increased significantly as the number of leads increased (1 lead, 102.3 ± 51.1 minutes; 2 leads, 114.9 ± 24.8 minutes; 3 leads, 158.2 ± 8.5 minutes). Rates of major and minor complications were not significantly different between dogs that received single-chamber pacemakers and those that received dual-chamber pacemakers or among dogs grouped on the basis of the number of pacing leads placed. Although dual-chamber pacemaker implantation did result in increased procedural and anesthesia times, compared with single-chamber pacemaker implantation, this did not result in a higher complication rate.
NASA Astrophysics Data System (ADS)
Aguado, Alfredo; Roncero, Octavio; Zanchet, Alexandre; Agúndez, Marcelino; Cernicharo, José
2017-03-01
The impact of the photodissociation of HCN and HNC isomers is analyzed in different astrophysical environments. For this purpose, the individual photodissociation cross sections of HCN and HNC isomers have been calculated in the 7-13.6 eV photon energy range for a temperature of 10 K. These calculations are based on the ab initio calculation of three-dimensional adiabatic potential energy surfaces of the 21 lower electronic states. The cross sections are then obtained using a quantum wave packet calculation of the rotational transitions needed to simulate a rotational temperature of 10 K. The cross section calculated for HCN shows significant differences with respect to the experimental one, and this is attributed to the need to consider non-adiabatic transitions. Ratios between the photodissociation rates of HCN and HNC under different ultraviolet radiation fields have been computed by renormalizing the rates to the experimental value. It is found that HNC is photodissociated faster than HCN by a factor of 2.2 for the local interstellar radiation field and 9.2 for the solar radiation field, at 1 au. We conclude that to properly describe the HNC/HCN abundance ratio in astronomical environments illuminated by an intense ultraviolet radiation field, it is necessary to use different photodissociation rates for each of the two isomers, which are obtained by integrating the product of the photodissociation cross sections and ultraviolet radiation field over the relevant wavelength range.
Thuault, Sébastien J.; Malleret, Gaël; Constantinople, Christine M.; Nicholls, Russell; Chen, Irene; Zhu, Judy; Panteleyev, Andrey; Vronskaya, Svetlana; Nolan, Matthew F.; Bruno, Randy
2013-01-01
In many cortical neurons, HCN1 channels are the major contributors to Ih, the hyperpolarization-activated current, which regulates the intrinsic properties of neurons and shapes their integration of synaptic inputs, paces rhythmic activity, and regulates synaptic plasticity. Here, we examine the physiological role of Ih in deep layer pyramidal neurons in mouse prefrontal cortex (PFC), focusing on persistent activity, a form of sustained firing thought to be important for the behavioral function of the PFC during working memory tasks. We find that HCN1 contributes to the intrinsic persistent firing that is induced by a brief depolarizing current stimulus in the presence of muscarinic agonists. Deletion of HCN1 or acute pharmacological blockade of Ih decreases the fraction of neurons capable of generating persistent firing. The reduction in persistent firing is caused by the membrane hyperpolarization that results from the deletion of HCN1 or Ih blockade, rather than a specific role of the hyperpolarization-activated current in generating persistent activity. In vivo recordings show that deletion of HCN1 has no effect on up states, periods of enhanced synaptic network activity. Parallel behavioral studies demonstrate that HCN1 contributes to the PFC-dependent resolution of proactive interference during working memory. These results thus provide genetic evidence demonstrating the importance of HCN1 to intrinsic persistent firing and the behavioral output of the PFC. The causal role of intrinsic persistent firing in PFC-mediated behavior remains an open question. PMID:23966682
NASA Astrophysics Data System (ADS)
Prozument, Kirill; Shaver, Rachel G.; Baraban, Joshua H.; Park, G. Barratt; Suits, Arthur G.; Muenter, John S.; Field, Robert W.
2013-06-01
Vinyl cyanide 193 nm photodissociation has been studied using Chirped-Pulse Millimeter-Wave (CPmmW) spectroscopy. J = 0 - 1 transitions of more than 30 vibrationally excited states of the HCN and HNC products have been recorded and assigned within the 7 GHz wide chirp range. Bending excitations of HCN up to v_2 = 14, leading toward the HCN leftrightarrow HNC isomerization transition state, are detected and interpreted in terms of their electric quadrupole, (eQq)_{N}, and rotational, B_v, constants. The photolysis reaction transition states were probed using both normal vinyl cyanide, CH_2=CHCN, and its singly-deuterated isotopologue, CH_2=CDCN. The observed difference in the vibrational population distribution (VPD) obtained from the integrated intensities of the HCN and DCN products from the CH_2=CHCN vs. CH_2=CDCN photolysis reactions, suggests the relative unimportance of the three-center elimination mechanism for HCN production. On the other hand, the similarity in the observed VPD and overall intensities of HCN from CH_2=CHCN and CH_2=CDCN photolysis suggests four-center elimination as the major mechanism leading to the HCN product. Additional J - (J + 1) transitions would be required to characterize both the vibrational and the rotational state distributions of the products, which would permit more complete characterization of the transition state(s). The authors thank the Department of Energy, and KP thanks the ACS Petroleum Research Fund for their support of this work.
Rotational excitation of HCN by para- and ortho-H₂.
Vera, Mario Hernández; Kalugina, Yulia; Denis-Alpizar, Otoniel; Stoecklin, Thierry; Lique, François
2014-06-14
Rotational excitation of the hydrogen cyanide (HCN) molecule by collisions with para-H2(j = 0, 2) and ortho-H2(j = 1) is investigated at low temperatures using a quantum time independent approach. Both molecules are treated as rigid rotors. The scattering calculations are based on a highly correlated ab initio 4-dimensional (4D) potential energy surface recently published. Rotationally inelastic cross sections among the 13 first rotational levels of HCN were obtained using a pure quantum close coupling approach for total energies up to 1200 cm(-1). The corresponding thermal rate coefficients were computed for temperatures ranging from 5 to 100 K. The HCN rate coefficients are strongly dependent on the rotational level of the H2 molecule. In particular, the rate coefficients for collisions with para-H2(j = 0) are significantly lower than those for collisions with ortho-H2(j = 1) and para-H2(j = 2). Propensity rules in favor of even Δj transitions were found for HCN in collisions with para-H2(j = 0) whereas propensity rules in favor of odd Δj transitions were found for HCN in collisions with H2(j ⩾ 1). The new rate coefficients were compared with previously published HCN-para-H2(j = 0) rate coefficients. Significant differences were found due the inclusion of the H2 rotational structure in the scattering calculations. These new rate coefficients will be crucial to improve the estimation of the HCN abundance in the interstellar medium.
21 CFR 870.3640 - Indirect pacemaker generator function analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indirect pacemaker generator function analyzer... Indirect pacemaker generator function analyzer. (a) Identification. An indirect pacemaker generator function analyzer is an electrically powered device that is used to determine pacemaker function or...
21 CFR 870.3640 - Indirect pacemaker generator function analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indirect pacemaker generator function analyzer... Indirect pacemaker generator function analyzer. (a) Identification. An indirect pacemaker generator function analyzer is an electrically powered device that is used to determine pacemaker function or...
21 CFR 870.3640 - Indirect pacemaker generator function analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indirect pacemaker generator function analyzer... Indirect pacemaker generator function analyzer. (a) Identification. An indirect pacemaker generator function analyzer is an electrically powered device that is used to determine pacemaker function or...
21 CFR 870.3640 - Indirect pacemaker generator function analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indirect pacemaker generator function analyzer... Indirect pacemaker generator function analyzer. (a) Identification. An indirect pacemaker generator function analyzer is an electrically powered device that is used to determine pacemaker function or...
Permanent Leadless Cardiac Pacemaker Therapy: A Comprehensive Review.
Tjong, Fleur V Y; Reddy, Vivek Y
2017-04-11
A new technology, leadless pacemaker therapy, was recently introduced clinically to address lead- and pocket-related complications in conventional transvenous pacemaker therapy. These leadless devices are self-contained right ventricular single-chamber pacemakers implanted by using a femoral percutaneous approach. In this review of available clinical data on leadless pacemakers, early results with leadless devices are compared with historical results with conventional single-chamber pacing. Both presently manufactured leadless pacemakers show similar complications, which are mostly related to the implant procedure: cardiac perforation, device dislocation, and femoral vascular access site complications. In comparison with conventional transvenous single-chamber pacemakers, slightly higher short-term complication rates have been observed: 4.8% for leadless pacemakers versus 4.1% for conventional pacemakers. The complication rate of the leadless pacemakers is influenced by the implanter learning curve for this new procedure. No long-term outcome data are yet available for the leadless pacemakers. Larger leadless pacing trials, with long-term follow-up and direct randomized comparison with conventional pacing systems, will be required to define the proper clinical role of these leadless systems. Although current leadless pacemakers are limited to right ventricular pacing, future advanced, communicating, multicomponent systems are expected to expand the potential benefits of leadless therapy to a larger patient population. © 2017 American Heart Association, Inc.
The gate studies: Assessing the potential of future small general aviation turbine engines
NASA Technical Reports Server (NTRS)
Strack, W. C.
1979-01-01
Four studies were completed that explore the opportunities for future General Aviation turbine engines (GATE) in the 150-1000 SHP class. These studies forecasted the potential impact of advanced technology turbine engines in the post-1988 market, identified important aircraft and missions, desirable engine sizes, engine performance, and cost goals. Parametric evaluations of various engine cycles, configurations, design features, and advanced technology elements defined baseline conceptual engines for each of the important missions identified by the market analysis. Both fixed-wing and helicopter aircraft, and turboshaft, turboprop, and turbofan engines were considered. Sizable performance gains (e.g., 20% SFC decrease), and large engine cost reductions of sufficient magnitude to challenge the reciprocating engine in the 300-500 SHP class were predicted.
Chemical evolution. XXII - The hydantoins released on hydrolysis of HCN oligomers
NASA Technical Reports Server (NTRS)
Ferris, J. P.; Wos, J. D.; Lobo, A. P.
1974-01-01
The isolation of three hydantoins from HCN oligomers is described. One of these hydantoins, 5-carboxymethylidine hydantoin (5-CMH), rearranges to pyrimidine orotic acid in basic solution. The isolation of 5-CMH suggests the possibility that pyrimidines were formed directly from HCN on the primitive earth.
21 CFR 870.3620 - Pacemaker lead adaptor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that it...
21 CFR 870.3620 - Pacemaker lead adaptor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that it...
21 CFR 870.3620 - Pacemaker lead adaptor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that it...
21 CFR 870.3610 - Implantable pacemaker pulse generator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implantable pacemaker pulse generator. 870.3610... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has... implantable pacemaker pulse generator device that was in commercial distribution before May 28, 1976, or that...
21 CFR 870.3620 - Pacemaker lead adaptor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that it...
21 CFR 870.3610 - Implantable pacemaker pulse generator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implantable pacemaker pulse generator. 870.3610... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has... implantable pacemaker pulse generator device that was in commercial distribution before May 28, 1976, or that...
Racing of the biological pacemaker.
Yu, Han-Gang
2009-01-01
Over the past decade, rapid progress in the molecular studies of cardiac ion channels and stem cells biology has led to efforts to create a biological pacemaker to supplement the widely-used electronic pacemaker. We will review the main concepts of cardiac pacemaker activities in different heart regions and the approaches to design a working biological pacemaker. We will focus on how to use the gene- and cell-based approaches to meet the requirements of a working biological pacemaker. Possible future development and precautions for creation of an effective biological pacemaker superior to the electronic counterpart are also discussed along with recent patents.
Millat, Gilles; Janin, Alexandre; de Tauriac, Olivier; Roux, Antoine; Dauphin, Claire
2015-09-01
A very recent study suggested that HCN4 mutations could be associated with sinusal bradycardia and myocardial non compaction. A French family with 3 affected sisters presenting the same clinical phenotype (sinus bradycardia in combination with non compaction cardiomyopathy (NCCM)) have benefited both from a systematic cardiovascular exploration and molecular investigations. The molecular analysis, performed by NGS sequencing, led to identify only one likely-disease causing variation: p.Gly482Arg on HCN4 gene. Our results confirm the genetic evidence for the involvement of the HCN4 mutations in the combined bradycardia-NCCM phenotype and illustrates that, in front of this combined clinical phenotype, HCN4 mutations has to be suspected. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Optical properties of poly-HCN and their astronomical applications
NASA Technical Reports Server (NTRS)
Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Meisse, C.; Tuminello, P. S.
1994-01-01
Matthews (1992) has proposed that HCN "polymer" is ubiquitous in the solar system. We apply vacuum deposition and spectroscopic techniques previously used on synthetic organic heteropolymers (tholins), kerogens, and meteoritic organic residues to the measurement of the optical constants of poly-HCN in the wavelength range 0.05-40 micrometers. These measurements allow quantitative comparison with spectrophotometry of organic-rich bodies in the outer solar system. In a specific test of Matthews' hypothesis, poly-HCN fails to match the optical constants of the haze of the Saturnian moon, Titan, in the visible and near-infrared derived from astronomical observations and standard models of the Titan atmosphere. In contrast, a tholin produced from a simulated Titan atmosphere matches within the probable errors. Poly-HCN is much more N-rich than Titan tholin.
Cyanogenic Pseudomonas spp. strains are concentrated in the rhizosphere of alpine pioneer plants.
Rijavec, Tomaž; Lapanje, Aleš
2017-01-01
HCN producing bacteria have previously been isolated from alpine mineral soil and their ecophysiology was presumed to be associated with mineral weathering. Nevertheless, the high ecological patchiness of the alpine environment calls for an extensive and detailed analysis of the spatial distribution of HCN producing bacterial populations and their associated weathering traits. Our results of such an analysis showed that primarily the rhizosphere of pioneer plants was rich in HPPs, harbouring the most potent HCN producers. HCN production incidence and intensity were dependent on the plant-associated microhabitat and type of bedrock/mineral soil, however the HCN+ phenotype was not associated with one of the particular genotypes which we determined by BOX-PCR. In HPP isolates, HCN production most commonly co-occurred with the production of hydroxamate-type siderophores, but was less often associated with inorganic phosphate solubilization activity and the production of catechol-type siderophores. These observations indicate that a plant's physiotype, not species, provide physicochemical conditions that determine selective pressure, which enables the growth of Pseudomonas spp. with a random genotype, but phenotypically predetermined to increase mineral weathering via a particular combination of phosphate solubilization and iron complexation with siderophores and HCN. Copyright © 2016 Elsevier GmbH. All rights reserved.
Marín-Yaseli, Margarita R; Cid, Cristina; Yagüe, Ana I; Ruiz-Bermejo, Marta
2017-02-01
Elucidating the origin of life involves synthetic as well as analytical challenges. Herein, for the first time, we describe the use of gel electrophoresis and ultrafiltration to fractionate HCN polymers. Since the first prebiotic synthesis of adenine by Oró, HCN polymers have gained much interest in studies on the origins of life due to the identification of biomonomers and related compounds within them. Here, we demonstrate that macromolecular fractions with electrophoretic mobility can also be detected within HCN polymers. The migration of polymers under the influence of an electric field depends not only on their sizes (one-dimensional electrophoresis) but also their different isoelectric points (two-dimensional electrophoresis, 2-DE). The same behaviour was observed for several macromolecular fractions detected in HCN polymers. Macromolecular fractions with apparent molecular weights as high as 250 kDa were detected by tricine-SDS gel electrophoresis. Cationic macromolecular fractions with apparent molecular weights as high as 140 kDa were also detected by 2-DE. The HCN polymers synthesized were fractionated by ultrafiltration. As a result, the molecular weight distributions of the macromolecular fractions detected in the HCN polymers directly depended on the synthetic conditions used to produce these polymers. The implications of these results for prebiotic chemistry will be discussed. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Pacemaker Dependency after Cardiac Surgery: A Systematic Review of Current Evidence
2015-01-01
Background Severe postoperative conduction disturbances requiring permanent pacemaker implantation frequently occur following cardiac surgery. Little is known about the long-term pacing requirements and risk factors for pacemaker dependency in this population. Methods We performed a systematic review of the literature addressing rates and predictors of pacemaker dependency in patients requiring permanent pacemaker implantation after cardiac surgery. Using a comprehensive search of the Medline, Web of Science and EMBASE databases, studies were selected for review based on predetermined inclusion and exclusion criteria. Results A total of 8 studies addressing the endpoint of pacemaker-dependency were identified, while 3 studies were found that addressed the recovery of atrioventricular (AV) conduction endpoint. There were 10 unique studies with a total of 780 patients. Mean follow-up ranged from 6–72 months. Pacemaker dependency rates ranged from 32%-91% and recovery of AV conduction ranged from 16%-42%. There was significant heterogeneity with respect to the definition of pacemaker dependency. Several patient and procedure-specific variables were found to be independently associated with pacemaker dependency, but these were not consistent between studies. Conclusions Pacemaker dependency following cardiac surgery occurs with variable frequency. While individual studies have identified various perioperative risk factors for pacemaker dependency and non-resolution of AV conduction disease, results have been inconsistent. Well-conducted studies using a uniform definition of pacemaker dependency might identify patients who will benefit most from early permanent pacemaker implantation after cardiac surgery. PMID:26470027
Falase, Bode; Sanusi, Michael; Johnson, Adeyemi; Akinrinlola, Fola; Ajayi, Reina; Oke, David
2013-01-01
Introduction Permanent pacemaker implantation is available in Nigeria. There is however no national registry or framework for pacemaker data collection. A pacemaker database has been developed in our institution and the results are analyzed in this study. Methods The study period was between January 2008 and December 2012. Patient data was extracted from a prospectively maintained database which was designed to include the fields of the European pacemaker patient identification code. Results Of the 51 pacemaker implants done, there were 29 males (56.9%) and 22 females (43.1%). Mean age was 68.2±12.7 years. Clinical indications were syncopal attacks in 25 patients (49%), dizzy spells in 15 patients (29.4%), bradycardia with no symptoms in 10 patients (17.7%) and dyspnoea in 2 patients (3.9%). The ECG diagnosis was complete heart block in 27 patients (53%), second degree heart block in 19 patients (37.2%) and sick sinus syndrome with bradycardia in 5 patients (9.8%). Pacemaker modes used were ventricular pacing in 29 patients (56.9%) and dual chamber pacing in 22 patients (43.1%). Files have been closed in 20 patients (39.2%) and 31 patients (60.8%) are still being followed up with median follow up of 26 months, median of 5 visits and 282 pacemaker checks done. Complications seen during follow up were 3 lead displacements (5.9%), 3 pacemaker infections (5.9%), 2 pacemaker pocket erosions (3.9%), and 1 pacemaker related death (2%). There were 5 non-pacemaker related deaths (9.8%). Conclusion Pacemaker data has been maintained for 5 years. We urge other implanting institutions in Nigeria to maintain similar databases and work towards establishment of a national pacemaker registry. PMID:24498465
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsushita, Satoki; Trung, Dinh-V-; Boone, Frédéric
2015-01-20
We present high angular resolution observations of the HCN(1-0) emission (at ∼1'' or ∼34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained bymore » the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ∼1'' (∼34 pc) resolution, and consistent with the Seyfert 2 classification picture.« less
The rotational excitation of the HCN and HNC molecules by H2 revisited
NASA Astrophysics Data System (ADS)
Hernández Vera, M.; Lique, F.; Dumouchel, F.; Hily-Blant, P.; Faure, A.
2017-06-01
HCN and HNC are two fundamental molecules in the dense interstellar medium. The HNC/HCN abundance ratio depends on the kinetic temperature and can be used to explore the physical and chemical conditions of star-forming regions. Modelling of HCN and HNC emissions from interstellar clouds requires to model their collisional and radiative excitations. We report the calculation of the HCN and HNC excitation rate coefficients among the first 26 rotational levels due to H2 collisions, for temperatures ranging from 5 to 500 K, using the exact close coupling and the approximate coupled states methods. We found a propensity for even Δj transitions in the case of HCN-para-H2 collisions, whereas a propensity for odd Δj transitions is observed in the case of HNC-para-H2 collisions. For collisions with ortho-H2, both molecules show a propensity rule favouring transitions with odd Δj. The rate coefficients for HCN and HNC differ significantly, showing clearly that the collisional excitation of the two isomers is different, especially for para-H2. We also evaluate the impact of these new data on the astrophysical modelling through radiative transfer calculations. It is shown that specific calculations have to be performed for the two isomers and that the HNC/HCN abundance ratio in cold molecular clouds cannot be estimated from line intensity ratio. Finally, observations of the two isotopologues H13CN and HN13C towards a sample of prestellar cores are presented, and the larger excitation temperature of HN13C is well reproduced by our excitation model.
HCN production from impact ejecta on the early Earth
NASA Astrophysics Data System (ADS)
Parkos, Devon; Pikus, Aaron; Alexeenko, Alina; Melosh, H. J.
2016-11-01
Major impact events have drastically altered the evolution of life on Earth. The reentry of ejecta formed from these events can trigger widespread chemical changes to the atmosphere on a global scale. This mechanism was proposed as a source of HCN during the Late Heavy Bombardment (LHB), 4.1 to 3.8 billion years ago. Significant concentrations of HCN in surface water could directly lead to adenine formation, a precursor for RNA. This work uses the Direct Simulation Monte Carlo (DSMC) method to examine the production of CN and HCN due to the reentry of impact ejecta. We use the Statistical Modeling in Low-Density Environment (SMILE) code, which utilizes the Total Collisional Energy (TCE) model for reactions. The collisions are described by the Variable Soft Sphere (VSS) and Larsen-Borgnakke (LB) models. We compare this nonequilibrium production to equilibrium concentrations from bulk atmospheric heating. The equilibrium HCN yield for a 1023 J impact is 7.0×104 moles, corresponding to a 2.5×1014 molecules per m2 surface deposition. We find that additional CN and HCN is produced under thermochemical nonequilibrium, particularly at higher altitudes. The total nonequilibrium yield for a 1023 J impact is 1.2×106 moles of HCN, a value 17 times the equilibrium result. This corresponds to a surface deposition of 1.4×1015 molecules per m2. This increase in production indicates that thermochemical nonequilibrium effects play a strong role in HCN from impact ejecta, and must be considered when investigating impacts as a plausible mechanism for significant adenine production during the LHB.
Dense gas and star formation in individual Giant Molecular Clouds in M31
NASA Astrophysics Data System (ADS)
Viaene, S.; Forbrich, J.; Fritz, J.
2018-04-01
Studies both of entire galaxies and of local Galactic star formation indicate a dependency of a molecular cloud's star formation rate (SFR) on its dense gas mass. In external galaxies, such measurements are derived from HCN(1-0) observations, usually encompassing many Giant Molecular Clouds (GMCs) at once. The Andromeda galaxy (M31) is a unique laboratory to study the relation of the SFR and HCN emission down to GMC scales at solar-like metallicities. In this work, we correlate our composite SFR determinations with archival HCN, HCO+, and CO observations, resulting in a sample of nine reasonably representative GMCs. We find that, at the scale of individual clouds, it is important to take into account both obscured and unobscured star formation to determine the SFR. When correlated against the dense-gas mass from HCN, we find that the SFR is low, in spite of these refinements. We nevertheless retrieve an SFR-dense-gas mass correlation, confirming that these SFR tracers are still meaningful on GMC scales. The correlation improves markedly when we consider the HCN/CO ratio instead of HCN by itself. This nominally indicates a dependency of the SFR on the dense-gas fraction, in contradiction to local studies. However, we hypothesize that this partly reflects the limited dynamic range in dense-gas mass, and partly that the ratio of single-pointing HCN and CO measurements may be less prone to systematics like sidelobes. In this case, the HCN/CO ratio would importantly be a better empirical measure of the dense-gas content itself.
Electrical interference in non-competitive pacemakers
Sowton, E.; Gray, K.; Preston, T.
1970-01-01
Patients with 41 implanted non-competitive pacemakers were investigated. A variety of domestic electrical equipment, a motor-car, and a physiotherapy diathermy apparatus were each operated in turn at various ranges from the patient. Interference effects on pacemaker function were assessed on the electrocardiograph. Medtronic demand 5841 pacemakers were stopped by diathermy while Cordis Ectocor pacemakers developed a fast discharge rate. Cordis triggered pacemakers (both Atricor and Ectocor) were sensitive to interference from many items of domestic equipment and the motor car. The Elema EM153 ran at an increased rate when an electric razor was running close to the pacemaker. The Devices demand 2980 and the Medtronic demand 5841 were not affected by the domestic equipment tested. The significance of interference effects is discussed in relation to pacemaker design. Images PMID:5470044
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, J.E.; Frazier, M.J.
1979-09-01
The effects of 60-Hz electric and magnetic fields of exta-high voltage (EHV) transmission lines on the performance of implanted cardiac pacemakers were studied by: (1) in vitro bench tests of a total of thirteen cardiac pacemakers; (2) in vivo tests of six implanted cardiac pacemakers in baboons; and (3) non-hazardous skin measurement tests on four humans. Analytical methods were developed to predict the thresholds of body current and electric fields capable of affecting normal pacemaker operation in humans. The field strengths calculated to alter implanted pacemaker performance were compared with the range of maximum electric and magnetic field strengths amore » human would normally encounter under transmission lines of various voltages. Results indicate that the electric field or body current necessary to alter the normal operation of pacemakers is highly dependent on the type of pacemaker and the location of the implanted electrodes. However, cardiologists have not so far detected harmful effects of pacemaker reversion to the asynchronous mode in current types of pacemakers and with present methods of implantation. Such interferences can be eliminated by using advanced pacemakers less sensitive to 60-Hz voltages or by using implantation lead arrangements less sensitive to body current.« less
Detection of HCN and C2H2 in ISO Spectra of Oxygen-Rich AGB Stars
NASA Technical Reports Server (NTRS)
Carbon, Duane F.; Chiar, Jean; Goorvitch, David; Kwak, Dochan (Technical Monitor)
2002-01-01
Cool oxygen-rich AGB stars were not expected to have organic molecules like HCN in either their photospheres or circumstellar envelopes (CSEs). The discovery of HCN and CS microwave emission from the shallowest CSE layers of these stars was a considerable surprise and much theoretical effort has been expended in explaining the presence of such organics. To further explore this problem, we have undertaken a systematic search of oxygen-rich AGB stellar spectra in the Infrared Space Observatory (ISO) data archive. Our purposes are to find evidence regarding critical molecular species that could be of value in choosing among the proposed theoretical models, to locate spectral features which might give clues to conditions deeper in the CSEs, and to lay the groundwork for future SIRTF (Space Infrared Telescope Facility) and SOFIA (Stratospheric Observatory for Infrared Astronomy) observations. Using carefully reduced observations, we have detected weak absorption features arising from HCN and possibly C2H2 in a small number of oxygen-rich AGB stars. The most compelling case is NML Cyg which shows both HCN (14 microns) and CO2 (15 microns). VY CMa, a similar star, shows evidence for HCN, but not CO2. Two S-type stars show evidence for the C-H bending transitions: W Aql at 14 microns (HCN) and both W Aql and S Cas at 13.7 microns (C2H2). Both W Aql and S Cas as well as S Lyr, a SC-type star, show 3 micron absorption which may arise from the C-H stretch of HCN and C2H2. In the case of NML Cyg, we show that the HCN and CO2 spectral features are formed in the CSE at temperatures well above those of the outermost CSE layers and derive approximate column densities. In the case of the S-stars, we discuss the evidence for the organic features and their photospheric origin.
HCN - A plausible source of purines, pyrimidines and amino acids on the primitive earth
NASA Technical Reports Server (NTRS)
Ferris, J.-P.; Joshi, P. C.; Edelson, E. H.; Lawless, J. G.
1978-01-01
Dilute (0.1 M) solutions of HCN condense to oligomers at pH 9.2, and hydrolysis of these oligomers yields 4,5-dihydroxypyrimidine, orotic acid, 5-hydroxyuracil, adenine, 4-aminoimidazole-5-carboxamide, and amino acids. It is suggested that the three main classes of nitrogen-containing biomolecules - purines, pyrimidines, and amino acids may have originated from HCN on the primitive earth. It is also suggested that the presence of orotic acid and 4-aminoimidazole-5-carboxamide might indicate that contemporary biosynthetic pathways for nucleotides evolved from the compounds released on hydrolysis of HCN oligomers.
Pacemaker Use Following Heart Transplantation
Mallidi, Hari R.; Bates, Michael
2017-01-01
Background: The incidence of permanent pacemaker implantation after orthotopic heart transplantation has been reported to be 2%-24%. Transplanted hearts usually exhibit sinus rhythm in the operating room following reperfusion, and most patients do not exhibit significant arrhythmias during the postoperative period. However, among the patients who do exhibit abnormalities, pacemakers may be implanted for early sinus node dysfunction but are rarely used after 6 months. Permanent pacing is often required for atrioventricular block. A different cohort of transplant patients presents later with bradycardia requiring pacemaker implantation, reported to occur in approximately 1.5% of patients. The objectives of this study were to investigate the indications for pacemaker implantation, compare the need for pacemakers following bicaval vs biatrial anastomosis, and examine the long-term outcomes of heart transplant patients who received pacemakers. Methods: For this retrospective, case-cohort, single-institution study, patients were identified from clinical research and administrative transplant databases. Information was supplemented with review of the medical records. Standard statistical techniques were used, with chi-square testing for categorical variables and the 2-tailed t test for continuous variables. Survival was compared with the use of log-rank methods. Results: Between January 1968 and February 2008, 1,450 heart transplants were performed at Stanford University. Eighty-four patients (5.8%) were identified as having had a pacemaker implanted. Of these patients, 65.5% (55) had the device implanted within 30 days of transplantation, and 34.5% (29) had late implantation. The mean survival of patients who had an early pacemaker implant was 6.4 years compared to 7.7 years for those with a late pacemaker implant (P<0.05). Sinus node dysfunction and heart block were the most common indications for pacemaker implantation. Starting in 1997, a bicaval technique was used for implantation. The incidence of pacemaker implantation by technique was 2.0% for bicaval and 9.1% for biatrial (P=0.001). Significantly more rejection episodes occurred in the pacemaker group (2.67 ± 2.18) compared with the no-pacemaker group (2.01 ± 2.05) (P<0.05). Conclusion: Our results show a decreased pacemaker need after bicaval anastomosis and that more patients who needed a pacemaker after transplantation had a pretransplant diagnosis of ischemic cardiomyopathy. In our cohort, the need for a permanent pacemaker was also associated with older donor grafts and an increase in the number of treated rejection episodes. PMID:28331443
[Wide QRS tachycardia preceded by pacemaker spikes].
Romero, M; Aranda, A; Gómez, F J; Jurado, A
2014-04-01
The differential diagnosis and therapeutic management of wide QRS tachycardia preceded by pacemaker spike is presented. The pacemaker-mediated tachycardia, tachycardia fibrillo-flutter in patients with pacemakers, and runaway pacemakers, have a similar surface electrocardiogram, but respond to different therapeutic measures. The tachycardia response to the application of a magnet over the pacemaker could help in the differential diagnosis, and in some cases will be therapeutic, as in the case of a tachycardia-mediated pacemaker. Although these conditions are diagnosed and treated in hospitals with catheterization laboratories using the application programmer over the pacemaker, patients presenting in primary care clinic and emergency forced us to make a diagnosis and treat the haemodynamically unstable patient prior to referral. Copyright © 2012 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.
Moreau, Christophe J.; Revilloud, Jean; Caro, Lydia N.; Dupuis, Julien P.; Trouchet, Amandine; Estrada-Mondragón, Argel; Nieścierowicz, Katarzyna; Sapay, Nicolas; Crouzy, Serge; Vivaudou, Michel
2017-01-01
Ligand-gated ion channels enable intercellular transmission of action potential through synapses by transducing biochemical messengers into electrical signal. We designed artificial ligand-gated ion channels by coupling G protein-coupled receptors to the Kir6.2 potassium channel. These artificial channels called ion channel-coupled receptors offer complementary properties to natural channels by extending the repertoire of ligands to those recognized by the fused receptors, by generating more sustained signals and by conferring potassium selectivity. The first artificial channels based on the muscarinic M2 and the dopaminergic D2L receptors were opened and closed by acetylcholine and dopamine, respectively. We find here that this opposite regulation of the gating is linked to the length of the receptor C-termini, and that C-terminus engineering can precisely control the extent and direction of ligand gating. These findings establish the design rules to produce customized ligand-gated channels for synthetic biology applications. PMID:28145461
Photocopy of photograph (original print located at Engineering Management Building, ...
Photocopy of photograph (original print located at Engineering Management Building, Naval Shipyard, Long Beach). Navy Photograph, July 4, 1942, Photograph #2229. MAIN GATE 1, FROM OUTSIDE (NORTH) OF ENTRANCE, FACING SOUTHWEST (WITH BUILDING 40 IN BACKGROUND) - Roosevelt Base, Main Gate No. 1, Ocean Boulevard where Nevada & Maryland Street meet, Long Beach, Los Angeles County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gersen, S.; Mokhov, A.V.; Levinsky, H.B.
Measurements of HCN in flat, fuel-rich premixed methane/air flames at atmospheric pressure are reported. Quartz-microprobe sampling followed by wavelength modulation absorption spectroscopy with second harmonic detection was used to obtain an overall measurement uncertainty of better than 20% for mole fractions HCN on the order of 10 ppm. The equivalence ratio, {phi}, was varied between 1.3 and 1.5, while the flame temperature was varied independently by changing the mass flux through the burner surface at constant equivalence ratio. Under the conditions of the experiments, the peak mole fractions vary little, in the range of 10-15 ppm. Increasing the flame temperaturemore » by increasing the mass flux had little influence on the peak mole fraction, but accelerated HCN burnout substantially. At high equivalence ratio and low flame temperature, HCN burnout is very slow: at {phi}=1.5, {proportional_to}10ppm HCN is still present 7 mm above the burner surface. Substantial quantitative disagreement is observed between the experimental profiles and those obtained from calculations using GRI-Mech 3.0, with the calculations generally overpredicting the results significantly. Changing the rates of key formation and consumption reactions for HCN can improve the agreement, but only by making unreasonable changes in these rates. Inclusion of reactions describing NCN formation and consumption in the calculations improves the agreement with the measurements considerably. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewin, A.A.; Serago, C.F.; Schwade, J.G.
1984-10-01
New multi-programmable pacemakers frequently employ complementary metal oxide semiconductors (CMOS). This circuitry appears more sensitive to the effects of ionizing radiation when compared to the semiconductor circuits used in older pacemakers. A case of radiation induced runaway pacemaker in a CMOS device is described. Because of this and other recent reports of radiation therapy-induced CMOS type pacemaker failure, these pacemakers should not be irradiated. If necessary, the pacemaker can be shielded or moved to a site which can be shielded before institution of radiation therapy. This is done to prevent damage to the CMOS circuit and the life threatening arrythmiasmore » which may result from such damage.« less
Sacral neuromodulation and cardiac pacemakers.
Roth, Ted M
2010-08-01
Potential for cross-talk between cardiac pacemakers and sacral neuromodulation remains speculative. We present a case series of patients with cardiac pacemakers who underwent staged Interstim (Medtronic, Minneapolis, MN) implantation and patients who had pulse generator implantation who later required cardiac pacemakers. No cross-talk was demonstrated in either group. Sacral neuromodulation appears to be safe in the setting of cardiac pacemakers without cardioversion/defibrillation technology.
On the Evolution of the Cardiac Pacemaker
Burkhard, Silja; van Eif, Vincent; Garric, Laurence; Christoffels, Vincent M.; Bakkers, Jeroen
2017-01-01
The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx), and bone morphogenic protein (Bmp) families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function. PMID:29367536
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, Wonmo; Kim, Siyong; Kim, Jung-in
2012-10-15
Purpose: To investigate dose perturbations for pacemaker-implanted patients in partial breast irradiation using high dose rate (HDR) balloon brachytherapy. Methods: Monte Carlo (MC) simulations were performed to calculate dose distributions involving a pacemaker in Ir-192 HDR balloon brachytherapy. Dose perturbations by varying balloon-to-pacemaker distances (BPD = 50 or 100 mm) and concentrations of iodine contrast medium (2.5%, 5.0%, 7.5%, and 10.0% by volume) in the balloon were investigated for separate parts of the pacemaker (i.e., battery and substrate). Relative measurements using an ion-chamber were also performed to confirm MC results. Results: The MC and measured results in homogeneous media withoutmore » a pacemaker agreed with published data within 2% from the balloon surface to 100 mm BPD. Further their dose distributions with a pacemaker were in a comparable agreement. The MC results showed that doses over the battery were increased by a factor of 3, compared to doses without a pacemaker. However, there was no significant dose perturbation in the middle of substrate but up to 70% dose increase in the substrate interface with the titanium capsule. The attenuation by iodine contrast medium lessened doses delivered to the pacemaker by up to 9%. Conclusions: Due to inhomogeneity of pacemaker and contrast medium as well as low-energy photons in Ir-192 HDR balloon brachytherapy, the actual dose received in a pacemaker is different from the homogeneous medium-based dose and the external beam-based dose. Therefore, the dose perturbations should be considered for pacemaker-implanted patients when evaluating a safe clinical distance between the balloon and pacemaker.« less
Takahashi, Masao; Badenco, Nicolas; Monteau, Jacques; Gandjbakhch, Estelle; Extramiana, Fabrice; Urena, Marina; Karam, Nicole; Marijon, Eloi; Algalarrondo, Vincent; Teiger, Emmanuel; Lellouche, Nicolas
2018-03-14
This study aimed to assess the impact of pacemaker mode programming on clinical outcomes in patients with high-degree atrioventricular conduction disturbance (AVCD) after transcatheter aortic valve implantation (TAVI). Although high-degree AVCD after TAVI can receive pacemaker, recovery of the AVCD is often observed. Specific pacemaker algorithms (AAI-DDD mode switch) are available which favor spontaneous atrioventricular conduction. Of 1,621 consecutive multi-center TAVI patients, 269 (16.4%) received pacemaker. We retrospectively included 91 patients with persistent high-degree AVCD at hospital discharge. Pacemaker dependency was defined as absence, inadequate intrinsic ventricular rhythm, or ventricular pacing time > 95% on pacemaker interrogation during follow-up. Comparison of heart failure hospitalization and death between conventional DDD (cDDD) and other modes was examined (AAI-DDD and VVI). During a mean follow-up duration of 13 months, the pacemaker dependency rate was 52.8%. Patients with cDDD mode (N = 36: 40.0%) had significantly more pacemaker dependency. Multivariate analysis showed that cDDD mode was independently associated with pacemaker dependency (odds ratio = 3.63, P = 0.03). Moreover, cDDD patients had a significant higher incidence of heart failure hospitalization (Hospitalization: cDDD vs. others = 45.4% vs. 18.2%, P = 0.03) and had a higher incidence of mortality (Death: cDDD vs. the others = 27.0% vs. 4.4%, P = 0.06). Up to half of patients implanted for high-degree AVCD after TAVI had conduction recovery. Patients with cDDD programming at hospital discharge had more pacemaker dependency and a worse cardiac prognosis. Thus, pacemaker mode should be systematically set to promote spontaneous atrioventricular conduction in patients with pacemaker implantation after TAVI. © 2018 Wiley Periodicals, Inc.
Gushchin, Ivan Y; Gordeliy, Valentin I; Grudinin, Sergei
2012-09-01
Cyclic nucleotide binding domain (CNBD) is a ubiquitous domain of effector proteins involved in signalling cascades of prokaryota and eukaryota. CNBD activation by cyclic nucleotide monophosphate (cNMP) is studied well in the case of several proteins. However, this knowledge is hardly applicable to cNMP-modulated cation channels. Despite the availability of CNBD crystal structures of bacterial cyclic nucleotide-gated (CNG) and mammalian hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels in presence and absence of the cNMP, the full understanding of CNBD conformational changes during activation is lacking. Here, we describe a novel CNBD dimerization interface found in crystal structures of bacterial CNG channel MlotiK1 and mammalian cAMP-activated guanine nucleotide-exchange factor Epac2. Molecular dynamics simulations show that the found interface is stable on the studied timescale of 100 ns, in contrast to the dimerization interface, reported previously. Comparisons with cN-bound structures of CNBD show that the dimerization is incompatible with cAMP binding. Thus, the cAMP-dependent monomerization of CNBD may be an alternative mechanism of the cAMP sensing. Based on these findings, we propose a model of the bacterial CNG channel modulation by cAMP.
Amplifying genetic logic gates.
Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew
2013-05-03
Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.
Enderby, Beth; Smith, David; Carroll, W; Lenney, W
2009-02-01
Hydrogen cyanide (HCN) is emitted by Pseudomonas aeruginosa (PA) in vitro. We hypothesized that exhaled HCN could be measured using Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) and that concentrations would be higher in children with cystic fibrosis (CF) and PA infection than in children with asthma. Children aged 7-17 years with CF (n = 16) or asthma (n = 21) attending outpatient clinics provided breath samples between July and December 2007. HCN was measured using the SIFT-MS Profile 3 instrument. FeNO was measured with a Sievers NOA 280i analyzer. Baseline inter-group differences between HCN and FeNO concentrations were compared using the Mann-Whitney U test. Children were invited to re-attend fortnightly. Breath samples, spirometry, growth and clinical status were measured at each visit. There were significant baseline differences in exhaled HCN and FeNO concentrations between the two groups. Children with CF had higher median HCN concentrations than those with asthma: 13.5 parts per billion (ppb) (IQR 8.1-16.5) versus 2.0 ppb (IQR 0.0-4.8) (P < 0.001). Children with CF had lower median FeNO levels compared to children with asthma: 13.4 ppb (IQR 8.9-17.6) versus 57.9 ppb (IQR 34.0-85.7) (P < 0.001). Intra-subject variability was high and significant changes in HCN concentrations were not observed related to changes in lung function or clinical status. This study provides proof of principle that HCN is detectable in the breath of children with CF and is elevated compared to children with asthma. Further studies are required to capture data from acutely unwell children and more accurately delineate responses to treatment. (c) 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma
2017-11-01
We present our ALMA multi-transition molecular line observational results for the ultraluminous infrared galaxy IRAS 20551-4250, which is known to contain a luminous buried active galactic nucleus and shows detectable vibrationally excited (v 2 = 1f) HCN and HNC emission lines. The rotational J = 1-0, 4-3, and 8-7 of HCN, {{HCO}}+, and HNC emission lines were clearly detected at a vibrational ground level (v = 0). Vibrationally excited (v 2 = 1f) J = 4-3 emission lines were detected for HCN and HNC, but not for {{HCO}}+. Their observed flux ratios further support our previously obtained suggestion, based on J = 3-2 data, that (1) infrared radiative pumping plays a role in rotational excitation at v = 0, at least for HCN and HNC, and (2) HCN abundance is higher than {{HCO}}+ and HNC. The flux measurements of the isotopologue H13CN, {{{H}}}13{{CO}}+, and HN13C J = 3-2 emission lines support the higher HCN abundance scenario. Based on modeling with collisional excitation, we constrain the physical properties of these line-emitting molecular gases, but find that higher HNC rotational excitation than HCN and {{HCO}}+ is difficult to explain, due to the higher effective critical density of HNC. We consider the effects of infrared radiative pumping using the available 5-30 μm infrared spectrum and find that our observational results are well-explained if the radiation source is located at 30-100 pc from the molecular gas. The simultaneously covered very bright CO J = 3-2 emission line displays a broad emission wing, which we interpret as being due to molecular outflow activity with the estimated rate of ˜ 150 {M}⊙ {{yr}}-1.
Rotational excitation of HCN by para- and ortho-H{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vera, Mario Hernández, E-mail: marhvera@gmail.com; InSTEC, Quinta de Los Molinos, Plaza, La Habana 10600; Kalugina, Yulia
Rotational excitation of the hydrogen cyanide (HCN) molecule by collisions with para-H{sub 2}( j = 0, 2) and ortho-H{sub 2}( j = 1) is investigated at low temperatures using a quantum time independent approach. Both molecules are treated as rigid rotors. The scattering calculations are based on a highly correlated ab initio 4-dimensional (4D) potential energy surface recently published. Rotationally inelastic cross sections among the 13 first rotational levels of HCN were obtained using a pure quantum close coupling approach for total energies up to 1200 cm{sup −1}. The corresponding thermal rate coefficients were computed for temperatures ranging from 5 to 100 K.more » The HCN rate coefficients are strongly dependent on the rotational level of the H{sub 2} molecule. In particular, the rate coefficients for collisions with para-H{sub 2}( j = 0) are significantly lower than those for collisions with ortho-H{sub 2}( j = 1) and para-H{sub 2}( j = 2). Propensity rules in favor of even Δj transitions were found for HCN in collisions with para-H{sub 2}( j = 0) whereas propensity rules in favor of odd Δj transitions were found for HCN in collisions with H{sub 2}( j ⩾ 1). The new rate coefficients were compared with previously published HCN-para-H{sub 2}( j = 0) rate coefficients. Significant differences were found due the inclusion of the H{sub 2} rotational structure in the scattering calculations. These new rate coefficients will be crucial to improve the estimation of the HCN abundance in the interstellar medium.« less
Linking Dense Gas from the Milky Way to External Galaxies
NASA Astrophysics Data System (ADS)
Stephens, Ian W.; Jackson, James M.; Whitaker, J. Scott; Contreras, Yanett; Guzmán, Andrés E.; Sanhueza, Patricio; Foster, Jonathan B.; Rathborne, Jill M.
2016-06-01
In a survey of 65 galaxies, Gao & Solomon found a tight linear relation between the infrared luminosity (L IR, a proxy for the star formation rate) and the HCN(1-0) luminosity ({L}{{HCN}}). Wu et al. found that this relation extends from these galaxies to the much less luminous Galactic molecular high-mass star-forming clumps (˜1 pc scales), and posited that there exists a characteristic ratio L IR/{L}{{HCN}} for high-mass star-forming clumps. The Gao-Solomon relation for galaxies could then be explained as a summation of large numbers of high-mass star-forming clumps, resulting in the same L IR/{L}{{HCN}} ratio for galaxies. We test this explanation and other possible origins of the Gao-Solomon relation using high-density tracers (including HCN(1-0), N2H+(1-0), HCO+(1-0), HNC(1-0), HC3N(10-9), and C2H(1-0)) for ˜300 Galactic clumps from the Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey. The MALT90 data show that the Gao-Solomon relation in galaxies cannot be satisfactorily explained by the blending of large numbers of high-mass clumps in the telescope beam. Not only do the clumps have a large scatter in the L IR/{L}{{HCN}} ratio, but also far too many high-mass clumps are required to account for the Galactic IR and HCN luminosities. We suggest that the scatter in the L IR/{L}{{HCN}} ratio converges to the scatter of the Gao-Solomon relation at some size-scale ≳1 kpc. We suggest that the Gao-Solomon relation could instead result from of a universal large-scale star formation efficiency, initial mass function, core mass function, and clump mass function.
Pacemakers and implantable cardioverter defibrillators--general and anesthetic considerations.
Rapsang, Amy G; Bhattacharyya, Prithwis
2014-01-01
A pacemaking system consists of an impulse generator and lead or leads to carry the electrical impulse to the patient's heart. Pacemaker and implantable cardioverter defibrillator codes were made to describe the type of pacemaker or implantable cardioverter defibrillator implanted. Indications for pacing and implantable cardioverter defibrillator implantation were given by the American College of Cardiologists. Certain pacemakers have magnet-operated reed switches incorporated; however, magnet application can have serious adverse effects; hence, devices should be considered programmable unless known otherwise. When a device patient undergoes any procedure (with or without anesthesia), special precautions have to be observed including a focused history/physical examination, interrogation of pacemaker before and after the procedure, emergency drugs/temporary pacing and defibrillation, reprogramming of pacemaker and disabling certain pacemaker functions if required, monitoring of electrolyte and metabolic disturbance and avoiding certain drugs and equipments that can interfere with pacemaker function. If unanticipated device interactions are found, consider discontinuation of the procedure until the source of interference can be eliminated or managed and all corrective measures should be taken to ensure proper pacemaker function should be done. Post procedure, the cardiac rate and rhythm should be monitored continuously and emergency drugs and equipments should be kept ready and consultation with a cardiologist or a pacemaker-implantable cardioverter defibrillator service may be necessary. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Pacemaker recycling: A notion whose time has come.
Runge, Mason W; Baman, Timir S; Davis, Sheldon; Weatherwax, Kevin; Goldman, Ed; Eagle, Kim A; Crawford, Thomas C
2017-04-26
The purpose of this paper is to summarize the need, feasibility, safety, legality, and ethical perspectives of pacemaker reutilization in low- and middle-income countries (LMICs). It will also describe, in-depth, Project My Heart Your Heart (PMHYH) as a model for pacemaker reuse in LMICs. The primary source of the discussion points in this paper is a collection of 14 publications produced by the research team at the University of Michigan and its collaborative partners. The need for pacemaker reutilization in LMICs is evident. Numerous studies show that the concept of pacemaker reutilization in LMICs is feasible. Infection and device malfunction are the main concerns in regard to pacemaker reutilization, yet many studies have shown that pacemaker reuse is not associated with increased infection risk or higher mortality compared with new device implantation. Under the right circumstances, the ethical and legal bases for pacemaker reutilization are supported. PMHYH is a proof of concept pacemaker donation initiative that has allowed funeral home and crematory directors to send explanted devices to an academic center for evaluation and re-sterilization before donation to underserved patients in LMICs. The time is now to pursue large-scale studies and trials of pacemaker reuse for the betterment of society. PMHYH is leading the way in the effort and is poised to conduct a prospective randomized, non-inferiority, multicenter study to confirm the clinical efficacy and safety of pacemaker reuse, for clinical and legal support.
Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, D.-B.; Goan, H.-S.
2008-11-07
In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10{sup -6} that ismore » below the error threshold of 10{sup -4} required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.« less
A search for the millimetre lines of HCN in Comets Wilson 1987 VII and Machholz 1988 XV
NASA Astrophysics Data System (ADS)
Crouvisier, J.; Despois, D.; Bockelee-Morvan, D.; Gerard, E.; Paubert, G.; Johansson, L. E. B.; Ekelund, L.; Winnberg, A.; Ge, W.; Irvine, W. M.; Kinzel, W. M.; Schloerb, F. P.
1990-08-01
The J(1-0) lines of HCN at 89 GHz were searched for in Comet Wilson 1987 VII, with the FCRAO, the SEST and the IRAM radio telescopes between February and June 1987. There was no firm detection, but significant upper limits were obtained, which put severe constraints on the HCN production rate in that comet. A direct comparison with the observations of P/Halley suggests that the HCN abundance relative to water might be smaller in Comet Wilson by at least a factor of two. The J(1-0) and J(3-2) lines of HCN at 89 and 266 GHz were searched for in Comet Machholz 1988 XV when it was close to perihelion at 0.17 AU from the sun. There was no detection. At that moment, the comet was probably no longer active.
HCN and HCO(+) images of the photodissociation region in the Orion Bar
NASA Technical Reports Server (NTRS)
Youngowl, Rolaine C.; Meixner, Margaret; Tielens, Alexander G. G. M.; Tauber, Jan A.
1995-01-01
We present preliminary millimeter-wavelength images of the photodissociation region (PDR) in the Orion Bar, observed with the Berkeley- Illinois-Maryland array (BIMA). These new BIMA observations have attained 5 arc sec resolution in the J=l-O emission lines of HCO+ (formyl ion) and HCN (hydrogen cyanide). The results are compared with previous observations of the J=1-0 transition lines of (13)CO. We find that the HCO+ and HCN have different spatial distributions. HCN appears to lie primarily inside dense clumps of gas, which are defined by areas of intense (13)CO emission. However, the HCO+ emission appears to be only loosely associated with the surfaces of the gas clumps. We suggest that HCO+ abundance is enhanced by the presence of vibrationally excited H2 on the surfaces of dense clumps, and that the HCN abundance is attenuated by photo destruction outside the cores of dense clumps of gas.
NASA Technical Reports Server (NTRS)
Bowman, Joel M.; Gazdy, Bela; Bentley, Joseph A.; Lee, Timothy J.; Dateo, Christopher E.
1993-01-01
A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.
Pacemaker lead fracture associated with weightlifting: a report of two cases.
Deering, J A; Pederson, D N
1993-12-01
Two cases of pacemaker lead fracture associated with weight-lifting are presented. This is a rare association which has only recently been described in the literature. In both cases, the pacemaker lead was fractured between the clavicle and the first rib, suggesting crush injury. The chest X-ray, pacemaker telemetry with measurement of lead impedance, and pacemaker reprogramming were all helpful in management.
Wireless power transfer for a pacemaker application.
Vulfin, Vladimir; Sayfan-Altman, Shai; Ianconescu, Reuven
2017-05-01
An artificial pacemaker is a small medical device that uses electrical impulses, delivered by electrodes contracting the heart muscles, to regulate the beating of the heart. The pacemaker is implanted under the skin, and uses for many years regular non-rechargeable batteries. However, the demand for rechargeable batteries in pacemakers increased, and the aim of this work is to design an efficient charging system for pacemakers.
Connectivity of Pacemaker Neurons in the Neonatal Rat Superficial Dorsal Horn
Ford, Neil C.; Arbabi, Shahriar; Baccei, Mark L.
2014-01-01
Pacemaker neurons with an intrinsic ability to generate rhythmic burst-firing have been characterized in lamina I of the neonatal spinal cord, where they are innervated by high-threshold sensory afferents. However, little is known about the output of these pacemakers, as the neuronal populations which are targeted by pacemaker axons have yet to be identified. The present study combines patch clamp recordings in the intact neonatal rat spinal cord with tract-tracing to demonstrate that lamina I pacemaker neurons contact multiple spinal motor pathways during early life. Retrograde labeling of premotor interneurons with the trans-synaptic virus PRV-152 revealed the presence of burst-firing in PRV-infected lamina I neurons, thereby confirming that pacemakers are synaptically coupled to motor networks in the spinal ventral horn. Notably, two classes of pacemakers could be distinguished in lamina I based on cell size and the pattern of their axonal projections. While small pacemaker neurons possessed ramified axons which contacted ipsilateral motor circuits, large pacemaker neurons had unbranched axons which crossed the midline and ascended rostrally in the contralateral white matter. Recordings from identified spino-parabrachial and spino-PAG neurons indicated the presence of pacemaker activity within neonatal lamina I projection neurons. Overall, these results show that lamina I pacemakers are positioned to regulate both the level of activity in developing motor circuits as well as the ascending flow of nociceptive information to the brain, thus highlighting a potential role for pacemaker activity in the maturation of pain and sensorimotor networks in the CNS. PMID:25380417
Harandi, Azade; Mohammadpour Maleki, Fatemeh; Moudi, Ehsan; Ehsani, Maryam; Khafri, Soraya
2017-01-01
The aim of this study was to compare the dentine removing efficacy of Gates-Glidden drills with hand files, ProTaper and OneShape single-instrument system using cone-beam computed tomography (CBCT). A total of 39 extracted bifurcated maxillary first premolars were divided into 3 groups ( n =13) and were prepared using either Gates-Glidden drills and hand instruments, ProTaper and OneShape systems. Pre- and post-instrumentation CBCT images were obtained. The dentin thickness of canals was measured at furcation, and 1 and 2 mm from the furcation area in buccal, palatal, mesial and distal walls. Data were analyzed using one-way ANOVA test. Tukey's post hoc tests were used for two-by-two comparisons. Gates-Glidden drills with hand files removed significantly more ( P <0.001) dentine than the engine-driven systems in all canal walls (buccal, palatal, mesial and distal). There were no significant differences between OneShape and ProTaper rotary systems ( P >0.05). The total cervical dentine removal during canal instrumentation was significantly less with engine-driven file systems compared to Gates-Glidden drills. There were no significant differences between residual dentine thicknesses left between the various canal walls.
SPERTI Gate House at control area (PER603). Floor plan, elevations, ...
SPERT-I Gate House at control area (PER-603). Floor plan, elevations, sections. This Gate House replaced the original gate house, for which drawings are no longer extant. F.C. Torkelson 842-SPERT-603-A-1. Date: February 1962. INEEL index no. 760-0603-00-851-151336 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Clay-mediated reactions of HCN oligomers - The effect of the oxidation state of the clay
NASA Technical Reports Server (NTRS)
Ferris, J. P.; Alwis, K. W.; Edelson, E. H.; Mount, N.; Hagan, W. J., Jr.
1981-01-01
Montmorillonite clays which contain Fe(III) inhibit the oligomerization of aqueous solutions of HCN. The inhibitory effect is due to the rapid oxidation of diaminomaleonitrile, a key intermediate in HCN oligomerization, by the Fe(III) incorporated into the aluminosilicate lattice of the clay. The Fe(III) oxidizes diaminomaleonitrile to diiminosuccinonitrile, a compound which is rapidly hydrolyzed to HCN and oxalic acid derivatives. Diaminomaleonitrile is not oxidized when Fe(III) in the montmorillonite is reduced with hydrazine. The oxidation state of the clay is an important variable in experiments designed to simulate clay catalysis on the primitive earth.
Electric discharge synthesis of HCN in simulated Jovian atmospheres
NASA Technical Reports Server (NTRS)
Stribling, Roscoe; Miller, Stanley L.
1987-01-01
Corona discharge is presently considered as a possible source of the HCN detected in the Jovian atmosphere at 2.2 x 10 to the -7th moles/sq cm column density, for the cases of gas mixtures containing H2, CH4, and NH3, with H2/CH4 ratios from 4.4 to 1585. A 3:1 ratio of corona discharge to lightning energy similar to that of the earth is applied to Jupiter. Depending on the lightning energy available on Jupiter and the eddy diffusion coefficients in the synthesis region, HCN column densities generated by corona discharge could account for about 10 percent of the HCN observed.
Sensing behavior of a graphene quantum dot phenalenyl towards toxic gases
NASA Astrophysics Data System (ADS)
Sharma, Vaishali; Narayan, Som; Dabhi, Shweta D.; Shinde, Satyam; Jha, Prafulla K.
2018-04-01
In the present work, by studying the interaction of graphene quantum dot (GQD) Phenalenylwith toxic gases hydrogen cyanide (HCN) and phosgene (COCl2) using density functional theory, we are aiming to evaluate the possibility of using GQD phenalenyl in the detection of HCN and COCl2. Owing to strong interactions between HCN/COCl2 and the GQD Phenalenyl, dramatic changes in the electronic properties of the graphene quantum dots together with highest occupied molecular orbitals and lowest unoccupied molecularorbitals (HOMO-LUMO) gap variationsare observed. The findings show that the GQD phenalenyl can be used as chemical nanosensor to detect HCN and COCl2 toxic gases.
White, Melanie D.; Milne, Ruth V. J.; Nolan, Matthew F.
2011-01-01
We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins, and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV) or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1, and Kir3.2) and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miRNA). We show that AAV assembled to express HCN1 miRNA produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miRNA with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience. PMID:21772812
Rowland, Benjamin; Jones, Jonathan A
2012-10-13
We briefly describe the use of gradient ascent pulse engineering (GRAPE) pulses to implement quantum logic gates in nuclear magnetic resonance quantum computers, and discuss a range of simple extensions to the core technique. We then consider a range of difficulties that can arise in practical implementations of GRAPE sequences, reflecting non-idealities in the experimental systems used.
The GIRK1 subunit potentiates G protein activation of cardiac GIRK1/4 hetero-tetramers
Touhara, Kouki K; Wang, Weiwei; MacKinnon, Roderick
2016-01-01
G protein gated inward rectifier potassium (GIRK) channels are gated by direct binding of G protein beta-gamma subunits (Gβγ), signaling lipids, and intracellular Na+. In cardiac pacemaker cells, hetero-tetramer GIRK1/4 channels and homo-tetramer GIRK4 channels play a central role in parasympathetic slowing of heart rate. It is known that the Na+ binding site of the GIRK1 subunit is defective, but the functional difference between GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers remains unclear. Here, using purified proteins and the lipid bilayer system, we characterize Gβγ and Na+ regulation of GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers. We find in GIRK4 homo-tetramers that Na+ binding increases Gβγ affinity and thereby increases the GIRK4 responsiveness to G protein stimulation. GIRK1/4 hetero-tetramers are not activated by Na+, but rather are in a permanent state of high responsiveness to Gβγ, suggesting that the GIRK1 subunit functions like a GIRK4 subunit with Na+ permanently bound. DOI: http://dx.doi.org/10.7554/eLife.15750.001 PMID:27074664
Tang, Gilbert H L; Kaple, Ryan; Cohen, Martin; Dutta, Tanya; Undemir, Cenap; Ahmad, Hasan; Poniros, Angelica; Bennett, Joanne; Feng, Cheng; Lansman, Steven
2017-02-03
Pacemaker lead-associated severe tricuspid regurgitation (TR) can lead to right heart failure and poor prognosis. Surgery in these patients carries significant morbidities. We describe a successful treatment of symptomatic severe TR by leadless pacemaker implantation followed by tricuspid valve (TV) repair with the MitraClip NT. A 71-year-old frail female with poor functional status, chronic atrial fibrillation and permanent pacemaker implantation in 2012 presented with symptomatic moderate-severe mitral regurgitation (MR) and severe TR with the pacemaker lead as the culprit. She was deemed extreme risk for double valve surgery and, because of her pacemaker dependency, the decision was to stage her interventions first with transcatheter mitral repair, then laser lead extraction and leadless pacemaker implantation to free the TV from tethering, then TV repair. An obstructive LAD lesion was identified and treated during mitral repair with the MitraClip NT. The Micra leadless pacemaker implantation and subsequent TV repair with the MitraClip NT were successful and the patient's MR improved to mild and TR to moderate, respectively. We report here a first successful transcatheter strategy to treat lead-associated severe TR by leadless pacemaker and MitraClip. Removing the pacemaker lead relieved leaflet tethering and improved the reparability of the TV.
Ciavarella, A; Nimmo, J; Hambrook, L
2016-04-01
A 13-year-old neutered male Border Collie was presented with acute onset syncope, weakness and anorexia 10 months after transvenous pacemaker implantation. The patient was laterally recumbent, bradycardic (36 beats/min) and febrile (40.7°C) on presentation. An electrocardiogram (ECG) revealed recurrence of third-degree atrioventricular block with a ventricular escape rhythm. Fluoroscopy identified migration of the pacemaker tip through the apex of the right ventricle. Echocardiography failed to reveal any evidence of pericardial effusion or cardiac tamponade. Full postmortem was performed after euthanasia. The pacemaker lead had perforated the apex of the right ventricle and lodged in the right pleural space. Culture of blood (taken antemortem), pericardial sac, right ventricular wall (surrounding pacemaker lead), pacemaker lead tip and pericardial fluid revealed a pure growth of Moraxella phenylpyruvica. Bacteraemia associated with M. phenylpyruvica has never been reported in the dog, but sporadic cases are reported in humans. Infection could have resulted from either pre-existing myocarditis or opportunistic infection and bacteraemia post pacemaker implantation. Evaluation of the pacemaker function at regular intervals would allow early detection of poor pacemaker-to-myocardium contact, which would prompt further investigation of pacemaker lead abnormalities such as perforation. © 2016 Australian Veterinary Association.
Measurements of Gas and Particle Phase Emissions From Munitions Detonation in a Field Environment
NASA Astrophysics Data System (ADS)
Fortner, E. C.; Knighton, W. B.; Timko, M.; Wood, E.; Onasch, T. B.; Kolb, C. E.; Beardsley, H. M.
2007-12-01
During the Point of Fire (POF) field campaign conducted at Fort Sill Oklahoma U.S.A. in March 2007 a suite of real- time trace gas and fine (submicron) particulate matter (PM) instrumentation characterized the point of fire emission plumes from large, medium and small caliber weapons systems. Muzzle emission plumes were measured and where appropriate, breach plumes and gun crew breathing zone measurements were also conducted. Aerosol measurements were conducted with an aerosol mass spectrometer (Aerodyne CTOF-AMS) for particle composition, condensation particle counter (CPC) for particle number density and DUSTRAK aerosol monitor for particle mass. Gas phase measurements included CO, CO2, NOx and a variety of trace gas species measured by proton transfer reaction mass spectrometry (PTR-MS) including hydrogen cyanide (HCN), acetonitrile, acrylonitrile, benzene, toluene, benzonitrile and styrene. In the majority of the plume measurements, HCN was the most prominent compound measured by PTR-MS. Quantification of HCN by PTR-MS is difficult due to its proton affinity being close enough to that of water to allow a significant backward reaction of protonated HCN with water, reducing the detection sensitivity and making the response dependent on humidity. We have developed a quantification procedure for HCN based on laboratory measurements of a calibration gas standard of HCN, which allows the humidity dependence to be extracted directly from the proton hydrate ion intensities. The correction factors for HCN are quite significant varying between 10 and 30 depending on sample humidity.
Wang, Jiafu; Meng, Jianghui; Nugent, Marc; Tang, Minhong; Dolly, J. Oliver
2017-01-01
Botulinum neurotoxins (BoNTs) are the most toxic proteins known, due to inhibiting the neuronal release of acetylcholine and causing flaccid paralysis. Most BoNT serotypes target neurons by binding to synaptic vesicle proteins and gangliosides via a C-terminal binding sub-domain (HCC). However, the role of their conserved N-terminal sub-domain (HCN) has not been established. Herein, we created a mutant form of recombinant BoNT/A lacking HCN (rAΔHCN) and showed that the lethality of this mutant is reduced 3.3 × 104-fold compared to wild-type BoNT/A. Accordingly, low concentrations of rAΔHCN failed to bind either synaptic vesicle protein 2C or neurons, unlike the high-affinity neuronal binding obtained with 125I-BoNT/A (Kd = 0.46 nM). At a higher concentration, rAΔHCN did bind to cultured sensory neurons and cluster on the surface, even after 24 h exposure. In contrast, BoNT/A became internalised and its light chain appeared associated with the plasmalemma, and partially co-localised with vesicle-associated membrane protein 2 in some vesicular compartments. We further found that a point mutation (W985L) within HCN reduced the toxicity over 10-fold, while this mutant maintained the same level of binding to neurons as wild type BoNT/A, suggesting that HCN makes additional contributions to productive internalization/translocation steps beyond binding to neurons. PMID:28295026
Pacemaker recycling: A notion whose time has come
Runge, Mason W; Baman, Timir S; Davis, Sheldon; Weatherwax, Kevin; Goldman, Ed; Eagle, Kim A; Crawford, Thomas C
2017-01-01
The purpose of this paper is to summarize the need, feasibility, safety, legality, and ethical perspectives of pacemaker reutilization in low- and middle-income countries (LMICs). It will also describe, in-depth, Project My Heart Your Heart (PMHYH) as a model for pacemaker reuse in LMICs. The primary source of the discussion points in this paper is a collection of 14 publications produced by the research team at the University of Michigan and its collaborative partners. The need for pacemaker reutilization in LMICs is evident. Numerous studies show that the concept of pacemaker reutilization in LMICs is feasible. Infection and device malfunction are the main concerns in regard to pacemaker reutilization, yet many studies have shown that pacemaker reuse is not associated with increased infection risk or higher mortality compared with new device implantation. Under the right circumstances, the ethical and legal bases for pacemaker reutilization are supported. PMHYH is a proof of concept pacemaker donation initiative that has allowed funeral home and crematory directors to send explanted devices to an academic center for evaluation and re-sterilization before donation to underserved patients in LMICs. The time is now to pursue large-scale studies and trials of pacemaker reuse for the betterment of society. PMHYH is leading the way in the effort and is poised to conduct a prospective randomized, non-inferiority, multicenter study to confirm the clinical efficacy and safety of pacemaker reuse, for clinical and legal support. PMID:28515847
A unified model of the excitability of mouse sensory and motor axons.
Makker, Preet G S; Matamala, José Manuel; Park, Susanna B; Lees, Justin G; Kiernan, Matthew C; Burke, David; Moalem-Taylor, Gila; Howells, James
2018-06-19
Non-invasive nerve excitability techniques have provided valuable insight into the understanding of neurological disorders. The widespread use of mice in translational research on peripheral nerve disorders and by pharmaceutical companies during drug development requires valid and reliable models that can be compared to humans. This study established a novel experimental protocol that enables comparative assessment of the excitability properties of motor and sensory axons at the same site in mouse caudal nerve, compared the mouse data to data for motor and sensory axons in human median nerve at the wrist, and constructed a mathematical model of the excitability of mouse axons. In a separate study, ischaemia was employed as an experimental manoeuvre to test the translational utility of this preparation. The patterns of mouse sensory and motor excitability were qualitatively similar to human studies under normal and ischaemic conditions. The most conspicuous differences between mouse and human studies were observed in the recovery cycle and the response to hyperpolarization. Modelling showed that an increase in temperature in mouse axons could account for most of the differences in the recovery cycle. The modelling also suggested a larger hyperpolarization-activated conductance in mouse axons. The kinetics of this conductance appeared to be much slower raising the possibility that an additional or different hyperpolarization-activated cyclic-nucleotide gated (HCN) channel isoform underlies the accommodation to hyperpolarization in mouse axons. Given a possible difference in HCN isoforms, caution should be exercised in extrapolating from studies of mouse motor and sensory axons to human nerve disorders. This article is protected by copyright. All rights reserved.
Gessele, Nikodemus; Garcia-Pino, Elisabet; Omerbašić, Damir; Park, Thomas J; Koch, Ursula
2016-01-01
Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.
Arnsten, Amy F T
2007-09-01
Both dopamine (DA) and norepinephrine (NE) have powerful, inverted U influences on prefrontal cortical (PFC) cognitive function. Optimal NE levels engage alpha2A-adrenoceptors and increase "signals" via inhibition of cAMP-HCN (cAMP-hyperpolarization-activated cyclic nucleotide-gated cation channel) signaling near preferred inputs, whereas optimal levels of DA D1 receptor stimulation decrease "noise" by increasing cAMP signaling near nonpreferred inputs. Excessive levels of catecholamine release during stress impair working memory 1) by very high levels of cAMP-HCN signaling diminishing preferred as well as nonpreferred inputs and 2) by high levels of NE engaging alpha1 stimulation of phosphotidyl inositol (PI) signaling that suppresses cell firing. Common mental illnesses are associated with extracellular changes in these pathways: Attention Deficit Hyperactivity Disorder is linked to genetic changes that reduce catecholamine transmission to suboptimal levels and is treated with agents that increase catecholamine transmission, whereas Post-Traumatic Stress Disorder (PTSD) is associated with amplified noradrenergic transmission that impairs PFC but strengthens amygdala function. PTSD is now treated with agents that block alpha1 or beta adrenoceptors. In contrast, the more severe mental illnesses, schizophrenia and bipolar disorder, are associated with genetic changes in molecules regulating intracellular signaling pathways activated by stress. Specifically, DISC1 inhibits cAMP signaling whereas regulator of G-protein signaling 4 inhibits PI signaling. Loss of function in these genes may render patients vulnerable to profound stress-induced PFC dysfunction including symptoms of thought disorder.
The versatile GBT astronomical spectrometer (VEGAS): Current status and future plans
NASA Astrophysics Data System (ADS)
Prestage, Richard M.; Bloss, Marty; Brandt, Joe; Chen, Hong; Creager, Ray; Demorest, Paul; Ford, John; Jones, Glenn; Kepley, Amanda; Kobelski, Adam; Marganian, Paul; Mello, Melinda; McMahon, David; McCullough, Randy; Ray, Jason; Roshi, D. Anish; Werthimer, Dan; Whitehead, Mark
2015-07-01
The VEGAS multi-beam spectrometer (VEGAS) was built for the Green Bank Telescope (GBT) through a partnership between the National Radio Astronomy Observatory (NRAO) and the University of California at Berkeley. VEGAS is based on a Field Programmable Gate Array (FPGA) frontend and a heterogeneous computing backend comprised of Graphical Processing Units (GPUs) and CPUs. This system provides processing power to analyze up to 8 dual-polarization or 16 single-polarization inputs at bandwidths of up to 1.25 GHz per input. VEGAS was released for "shared-risk" observing in March 2014 and it became the default GBT spectral line backend in August 2014. Some of the early VEGAS observations include the Radio Ammonia Mid-Plane Survey, mapping of HCN/HCO+ in nearby galaxies, and a variety of radio-recombination line and pulsar projects. We will present some of the latest VEGAS science highlights.
Pacemaker explosions in crematoria: problems and possible solutions
Gale, Christopher P; Mulley, Graham P
2002-01-01
The number of artificial cardiac pacemakers is increasing, as is the number of bodies being cremated. Because of the explosive potential of pacemakers when heated, a statutory question on the cremation form asks whether the deceased has a pacemaker and if so whether it has been removed. We sent a questionnaire to all the crematoria in the UK enquiring about the frequency, consequences and prevention of pacemaker explosions. We found that about half of all crematoria in the UK experience pacemaker explosions, that pacemaker explosions may cause structural damage and injury and that most crematoria staff are unaware of the explosive potential of implantable cardiac defibrillators. Crematoria staff rely on the accurate completion of cremation forms, and doctors who sign cremation forms have a legal obligation to provide such information. PMID:12091510
Complications of pacemaker therapy in adults with congenital heart disease: a multicenter study.
Opić, Petra; van Kranenburg, Matthijs; Yap, Sing-Chien; van Dijk, Arie P; Budts, Werner; Vliegen, Hubert W; van Erven, Lieselot; Can, Anil; Sahin, Gulhan; Theuns, Dominic A M J; Witsenburg, Maarten; Roos-Hesselink, Jolien W
2013-10-09
This study aims to investigate indications and complications of permanent cardiac pacing in adults with congenital heart disease (CHD). Two-hundred and seventy-four CHD patients were identified who underwent permanent pacemaker implantation between 1972 and 2009. The indication for pacing was acquired sinus node or AV node conduction disease (63%), sinus node or AV node conduction disease after cardiac surgery (28%), and drug/arrhythmia-related indications (9%). Patients with complex CHD received a pacemaker at younger age (23 versus 31 years, p<0.0001) and more often received an epicardial pacing system (51% versus 23%, p<0.0001) compared to those with simple or moderate CHD. Twenty-nine patients (10.6%) had a periprocedural complication during the primary pacemaker implantation (general population: 5.2%). The most common acute complications were lead dysfunction (4.0%), bleeding (2.6%), pocket infection (1.5%) and pneumothorax (1.5%). During a median follow-up of 12 years, pacemaker-related complications requiring intervention occurred in 95 patients (34.6%). The most common late pacemaker-related complications included lead failure (24.8%), pacemaker dysfunction/early battery depletion (5.1%), pacemaker migration (4.7%) and erosion (4.7%). Pacemaker implantation at younger age (<18 years) was an independent predictor of late pacemaker-related complication (adjusted hazard ratio 1.68, 95% confidence interval 1.07 to 2.63, p=0.023). The risk of periprocedural complications seems higher in the CHD population compared to the general population and more than one-third of CHD patients encountered a pacemaker-related complication during long-term follow-up. This risk increases for those who receive a pacemaker at younger age. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
21 CFR 870.3700 - Pacemaker programmers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker programmers. 870.3700 Section 870.3700...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3700 Pacemaker programmers. (a) Identification. A pacemaker programmer is a device used to change noninvasively one or more of...
21 CFR 870.3720 - Pacemaker electrode function tester.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker electrode function tester. 870.3720... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3720 Pacemaker electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which is...
21 CFR 870.3730 - Pacemaker service tools.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker service tools. 870.3730 Section 870.3730...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3730 Pacemaker service tools. (a) Identification. Pacemaker service tools are devices such as screwdrivers and Allen wrenches...
21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended to...
21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended to...
21 CFR 870.3720 - Pacemaker electrode function tester.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker electrode function tester. 870.3720... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3720 Pacemaker electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which is...
21 CFR 870.3630 - Pacemaker generator function analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker generator function analyzer. 870.3630... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3630 Pacemaker generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is...
21 CFR 870.3730 - Pacemaker service tools.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker service tools. 870.3730 Section 870.3730...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3730 Pacemaker service tools. (a) Identification. Pacemaker service tools are devices such as screwdrivers and Allen wrenches...
21 CFR 870.3730 - Pacemaker service tools.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker service tools. 870.3730 Section 870.3730...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3730 Pacemaker service tools. (a) Identification. Pacemaker service tools are devices such as screwdrivers and Allen wrenches...
21 CFR 870.3720 - Pacemaker electrode function tester.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker electrode function tester. 870.3720... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3720 Pacemaker electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which is...
21 CFR 870.3700 - Pacemaker programmers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker programmers. 870.3700 Section 870.3700...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3700 Pacemaker programmers. (a) Identification. A pacemaker programmer is a device used to change noninvasively one or more of...
21 CFR 870.3730 - Pacemaker service tools.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker service tools. 870.3730 Section 870.3730...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3730 Pacemaker service tools. (a) Identification. Pacemaker service tools are devices such as screwdrivers and Allen wrenches...
21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended to...
21 CFR 870.3720 - Pacemaker electrode function tester.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker electrode function tester. 870.3720... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3720 Pacemaker electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which is...
21 CFR 870.3700 - Pacemaker programmers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker programmers. 870.3700 Section 870.3700...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3700 Pacemaker programmers. (a) Identification. A pacemaker programmer is a device used to noninvasively change one or more of...
21 CFR 870.3630 - Pacemaker generator function analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker generator function analyzer. 870.3630... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3630 Pacemaker generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is...
21 CFR 870.3630 - Pacemaker generator function analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker generator function analyzer. 870.3630... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3630 Pacemaker generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is...
21 CFR 870.3730 - Pacemaker service tools.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker service tools. 870.3730 Section 870.3730...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3730 Pacemaker service tools. (a) Identification. Pacemaker service tools are devices such as screwdrivers and Allen wrenches...
21 CFR 870.3630 - Pacemaker generator function analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker generator function analyzer. 870.3630... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3630 Pacemaker generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is...
21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended to...
21 CFR 870.3700 - Pacemaker programmers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker programmers. 870.3700 Section 870.3700...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3700 Pacemaker programmers. (a) Identification. A pacemaker programmer is a device used to noninvasively change one or more of...
21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended to...
Evaluation of the effects of electric fields on implanted cardiac pacemakers. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, A.J.; Carstensen, E.
1985-02-01
The effects of extra high voltage (EHV) transmission line electric fields on pacemaker function were evaluated in 11 patients with seven different implanted pacemaker models from four manufacturers. Alteration in pacemaker function was demonstrated in five unipolar units (three different models) from two manufacturers during exposure to electric fields ranging from 2 to 9 kV/m, with total body currents from 47 to 175 ..mu..A. These electric fields and body currents are representative of values that can be encountered by individuals standing beneath EHV transmission lines. Transient alterations in pacemaker function observed in this study included inappropriate triggered activity, inhibition ofmore » impulse generation, reduction in rate, and reversion from demand to asynchronous mode. Electromagnetic interference from high voltage transmission lines can induce alterations in pacemaker function in certain designs of these devices. However, pacemaker manufacturers can incorporate appropriate circuits in the pacemaker design to eliminate this problem. 8 references.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp
We present the results of our ALMA observations of three active galactic nucleus (AGN)-dominated nuclei in optical Seyfert 1 galaxies (NGC 7469, I Zw 1, and IC 4329 A) and eleven luminous infrared galaxies (LIRGs) with various levels of infrared estimated energetic contributions by AGNs at the HCN and HCO{sup +} J = 3 − 2 emission lines. The HCN and HCO{sup +} J = 3 − 2 emission lines are clearly detected at the main nuclei of all sources, except for IC 4329 A. The vibrationally excited ( v {sub 2} = 1f) HCN J = 3 − 2 and HCO{sup +} J = 3 − 2 emission lines are simultaneouslymore » covered, and HCN v {sub 2} = 1f J = 3 − 2 emission line signatures are seen in the main nuclei of two LIRGs, IRAS 12112+0305 and IRAS 22491–1808, neither of which shows clear buried AGN signatures in the infrared. If the vibrational excitation is dominated by infrared radiative pumping, through the absorption of infrared 14 μ m photons, primarily originating from AGN-heated hot dust emission, then these two LIRGs may contain infrared-elusive, but (sub)millimeter-detectable, extremely deeply buried AGNs. These vibrationally excited emission lines are not detected in the three AGN-dominated optical Seyfert 1 nuclei. However, the observed HCN v {sub 2} = 1f to v = 0 flux ratios in these optical Seyferts are still consistent with the intrinsic flux ratios in LIRGs with detectable HCN v {sub 2} = 1f emission lines. The observed HCN-to-HCO{sup +} J = 3 − 2 flux ratios tend to be higher in galactic nuclei with luminous AGN signatures compared with starburst-dominated regions, as previously seen at J = 1 − 0 and J = 4 − 3.« less
Chemical Recycling of HCN in Cometary Comae
NASA Astrophysics Data System (ADS)
Boice, Daniel C.; Kawakita, Hideyo; Shinnaka, Yoshiharu; Mumma, Michael J.; Kobayashi, Hitomi; Ogawa, Sayuri
2014-11-01
Modeling is essential to understand the important physical and chemical processes that occur in cometary comae, especially the relationship between putative parent and daughter molecules, such as, HCN and CN. Photochemistry is a major source of ions and electrons that further initiate key gas-phase reactions, contributing to the plethora of molecules and atoms observed in comets. The effects of photoelectrons that interact via impacts are important to the overall excitation and dissociation processes in the inner coma. We consider the relevant processes in the collision-dominated, inner coma of a comet within a global modeling framework to understand observations of HCN and CN. The CN source(s) must be able to produce highly collimated jets, be consistent with the observed CN parent scale length, and have a production rate consistent with the observed CN production. HCN fulfills these conditions in some comets (e.g., 1P/Halley, Hale-Bopp) while it does not in others (e.g., 8P/Tuttle, 6P/d’Arrest, 73P/S-W3, 2P/Encke, 9P/Temple 1 and C/2007 W1).We investigate the chemistry of HCN with our chemical kinetics coma model including a network with other possible CN parents, as well as a dust component that may be a potential source of CN. It is seen that the major destruction pathways of HCN are via photo dissociation (into H and CN) and protonation with water group ions - primarily H3O+. We point out the intriguing “recycling” of HCN via protonation reactions with H3O+, H2O+, OH+, and subsequent dissociative recombination. It seems that HCN molecules observed in the coma can consist of those initially released from the nucleus and those that are freshly formed at different locations in the coma via these protonation/dissociation reactions. We will investigate implications for reconciling discrepancies between observations of HCN and CN in cometary comae.Acknowledgements: We appreciate support from the NSF Planetary Astronomy Program. This program is partially supported by the MEXT Supported Program for the Strategic Research Foundation at Private Universities, 2014-2018.
GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-07-31
This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills inmore » advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.« less
Electromagnetic interference with pacemakers caused by portable media players.
Thaker, Jay P; Patel, Mehul B; Jongnarangsin, Krit; Liepa, Valdis V; Thakur, Ranjan K
2008-04-01
Electromagnetic fields generated by electrical devices may cause interference with permanent pacemakers. Media players are becoming a common mode of portable entertainment. The most common media players used worldwide are iPods. These devices are often carried in a shirt chest pocket, which may place the devices close to an implanted pacemaker. The purpose of this study was to determine if iPods cause interference with pacemakers. In this prospective, single-blinded study, 100 patients who had cardiac pacemakers were tested with four types of iPods to assess for interference. Patients were monitored by a single-channel ECG monitor as well as the respective pacemaker programmer via the telemetry wand. iPods were tested by placing them 2 inches anterior to the pacemaker and wand for up to 10 seconds. To simulate actual use, standard-issue headphones were plugged into the iPods. To maintain consistency, the volume was turned up maximally, and the equalizer was turned off. A subset of 25 patients underwent testing on 2 separate days to assess for reproducibility of interference. Pacemaker interference was categorized as type I or type II telemetry interference. Type I interference was associated with atrial and/or ventricular high rates on rate histograms. Type II interference did not affect pacemaker rate counters. Electromagnetic emissions from the four iPods also were evaluated in a Faraday cage to determine the mechanism of the observed interference. One hundred patients (63 men and 37 women; mean age 77.1 +/- 7.6 years) with 11 single-chamber pacemakers and 89 dual-chamber pacemakers underwent 800 tests. The incidence of any type of interference was 51% of patients and 20% of tests. Type I interference was seen in 19% of patients and type II in 32% of patients. Reproducibility testing confirmed that interference occurred regardless of pacing configuration (unipolar or bipolar), pacing mode (AAI, VVI, or DDD), and from one day to the next. Electromagnetic emissions testing from the iPods demonstrated maximum emissions in the pacemaker carrier frequency range when the iPod was turned "on" with the headphones attached. iPods placed within 2 inches of implanted pacemakers monitored via the telemetry wand can cause interference with pacemakers.
van Netten, C; Leung, V
2000-03-01
Leaking oil seals in jet engines, at locations prior to the compressor stage, can be a cause of smoke in the cabins of BAe-146 aircraft. Compressed combustion air is bled off to pressurize the cabin and to provide a source of fresh air. Bleed air is diverted from a location just prior to the combustion chamber at a temperature around 500 degrees C. To prevent oil breakdown products from entering the cabin air, catalytic converters have been used to clean the air. During an oil seal failure this device becomes overloaded and smoke is observed in the cabin. Some aircraft companies have removed the catalytic converters and claim an improvement in air quality. During an oil seal failure, however, the flight crew is potentially exposed to the thermal breakdown products of the engine oils. Because very little is known regarding the thermal breakdown products of jet engine lubrication oils, two commercially available oils were investigated under laboratory conditions at 525 degrees C to measure the release of CO, CO2,NO2, and HCN as well as volatiles which were analyzed using GC-Mass spectrometry in an attempt to see if the neurotoxic agents tricresyl phosphates (TCPs) and trimethyl propane phosphate (TMPP) would be present or formed. TMPP was not found in these experiments. Some CO2 was generated along with CO which reached levels in excess of 100 ppm. HCN and NO2 were not detected. GC compositions of the two bulk oils and their breakdown products were almost identical. The presence of TCPs was confirmed in the bulk oils and in the volatiles. Localized condensation in the ventilation ducts and filters in the air conditioning packs are likely the reason why the presence of TCPs has not been demonstrated in cabin air. It was recommended that this needed to be verified in aircraft.
NASA Astrophysics Data System (ADS)
Aghighi, Alireza; Comtois, Philippe
2017-09-01
Self-organization of spontaneous activity of a network of active elements is important to the general theory of reaction-diffusion systems as well as for pacemaking activity to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes, consisting of resting and pacemaker cells, exhibit spontaneous activation of their electrical activity. Similarly, one proposed approach to the development of biopacemakers as an alternative to electronic pacemakers for cardiac therapy is based on heterogeneous cardiac cells with resting and spontaneously beating phenotypes. However, the combined effect of pacemaker characteristics, density, and spatial distribution of the pacemaker cells on spontaneous activity is unknown. Using a simple stochastic pattern formation algorithm, we previously showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of pacemaker cells. In this study, we show that this behavior is dependent on the pacemaker cell characteristics, with weaker pacemaker cells requiring higher density and larger clusters to sustain multicellular activity. These multicellular structures also demonstrated an increased sensitivity to voltage noise that favored spontaneous activity at lower density while increasing temporal variation in the period of activity. This information will help researchers overcome the current limitations of biopacemakers.
21 CFR 870.1750 - External programmable pacemaker pulse generator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false External programmable pacemaker pulse generator. 870.1750 Section 870.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker...
21 CFR 870.1750 - External programmable pacemaker pulse generator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false External programmable pacemaker pulse generator. 870.1750 Section 870.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker...
21 CFR 870.1750 - External programmable pacemaker pulse generator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External programmable pacemaker pulse generator. 870.1750 Section 870.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker...
21 CFR 870.1750 - External programmable pacemaker pulse generator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false External programmable pacemaker pulse generator. 870.1750 Section 870.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker...
21 CFR 870.1750 - External programmable pacemaker pulse generator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false External programmable pacemaker pulse generator. 870.1750 Section 870.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker...
21 CFR 870.3710 - Pacemaker repair or replacement material.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker repair or replacement material. 870.3710... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3710 Pacemaker repair or replacement material. (a) Identification. A pacemaker repair or replacement material is an...
21 CFR 870.3670 - Pacemaker charger.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker charger. 870.3670 Section 870.3670 Food... DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3670 Pacemaker charger. (a) Identification. A pacemaker charger is a device used transcutaneously to recharge the batteries of a rechargeable...
21 CFR 870.3670 - Pacemaker charger.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker charger. 870.3670 Section 870.3670 Food... DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3670 Pacemaker charger. (a) Identification. A pacemaker charger is a device used transcutaneously to recharge the batteries of a rechargeable...
21 CFR 870.3710 - Pacemaker repair or replacement material.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker repair or replacement material. 870.3710... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3710 Pacemaker repair or replacement material. (a) Identification. A pacemaker repair or replacement material is an...
21 CFR 870.3670 - Pacemaker charger.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker charger. 870.3670 Section 870.3670 Food... DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3670 Pacemaker charger. (a) Identification. A pacemaker charger is a device used transcutaneously to recharge the batteries of a rechargeable...
21 CFR 870.3710 - Pacemaker repair or replacement material.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker repair or replacement material. 870.3710... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3710 Pacemaker repair or replacement material. (a) Identification. A pacemaker repair or replacement material is an...
21 CFR 870.3670 - Pacemaker charger.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker charger. 870.3670 Section 870.3670 Food... DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3670 Pacemaker charger. (a) Identification. A pacemaker charger is a device used transcutaneously to recharge the batteries of a rechargeable...
21 CFR 870.3710 - Pacemaker repair or replacement material.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker repair or replacement material. 870.3710... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3710 Pacemaker repair or replacement material. (a) Identification. A pacemaker repair or replacement material is an...
12. Detail of clutch and backup gasoline engine for powering ...
12. Detail of clutch and backup gasoline engine for powering Stoney gates. Clutch mechanism manufactured by Baldridge Machine Company, Detroit, Michigan, ca. 1910. Instrument to the left records volume of flow through headworks. View looking south towards Stoney gates. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frazier, M.J.
1980-08-01
The electromagnetic fields associated with HVDC converters and transmission lines constitute a unique environment for persons with implanted cardiac pacemakers. A measurement program has been conducted to assess the potential interfering effects of these harmonically rich fields on implanted pacemakers. The experimental procedures that were employed take into account the combined effects of the electric and magnetic fields. The effect of the resulting body current on the response of six pacemakers was assessed in the laboratory, using a previously developed model to relate body current to pacemaker pickup voltage. The results show that R-wave pacemaker reversion can be expected atmore » some locations within the converter facility, but that a large safety margin for unperturbed pacemaker operation exists beneath the transmission lines.« less
21 CFR 870.3650 - Pacemaker polymeric mesh bag.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...
21 CFR 870.3650 - Pacemaker polymeric mesh bag.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...
21 CFR 870.3690 - Pacemaker test magnet.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered type...
21 CFR 870.3690 - Pacemaker test magnet.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered type...
21 CFR 870.3690 - Pacemaker test magnet.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered type...
21 CFR 870.3610 - Implantable pacemaker pulse generator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implantable pacemaker pulse generator. 870.3610 Section 870.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has...
21 CFR 870.3650 - Pacemaker polymeric mesh bag.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...
21 CFR 870.3690 - Pacemaker test magnet.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered type...
21 CFR 870.3650 - Pacemaker polymeric mesh bag.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...
Radiation effect on implanted pacemakers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourhamidi, A.H.
1983-10-01
It was previously thought that diagnostic or therapeutic ionizing radiation did not have an adverse effect on the function of cardiac pacemakers. Recently, however, some authors have reported damaging effect of therapeutic radiation on cardiac pulse generators. An analysis of a recently-extracted pacemaker documented the effect of radiation on the pacemaker pulse generator.
Rinaldi, Arianna; Defterali, Cagla; Mialot, Antoine; Garden, Derek L F; Beraneck, Mathieu; Nolan, Matthew F
2013-01-01
Neural computations rely on ion channels that modify neuronal responses to synaptic inputs. While single cell recordings suggest diverse and neurone type-specific computational functions for HCN1 channels, their behavioural roles in any single neurone type are not clear. Using a battery of behavioural assays, including analysis of motor learning in vestibulo-ocular reflex and rotarod tests, we find that deletion of HCN1 channels from cerebellar Purkinje cells selectively impairs late stages of motor learning. Because deletion of HCN1 modifies only a subset of behaviours involving Purkinje cells, we asked whether the channel also has functional specificity at a cellular level. We find that HCN1 channels in cerebellar Purkinje cells reduce the duration of inhibitory synaptic responses but, in the absence of membrane hyperpolarization, do not affect responses to excitatory inputs. Our results indicate that manipulation of subthreshold computation in a single neurone type causes specific modifications to behaviour. PMID:24000178
NASA Technical Reports Server (NTRS)
Stribling, Roscoe; Miller, Stanley L.
1987-01-01
Simulated prebiotic atmospheres containing either CH4, CO, or CO2, in addition to N2, H2O, and variable amounts of H2, were subjected to the spark from a high-frequency Tesla coil, and the energy yields for the syntheses of HCN and H2CO were estimated from periodic (every two days) measurements of the compound concentrations. The mixtures with CH4 were found to yield the highest amounts of HCN, whereas the CO mixtures produced the highest yields of H2CO. These results model atmospheric corona discharges. From the yearly energy yields calculated and the corona discharge available on the earth, the yearly production rate of HCN was estimated; using data on the HCN production rates and the experimental rates of decomposition of amino acids through the submarine vents, the steady state amino acid production rate in the primitive ocean was calculated to be about 10 nmoles/sq cm per year.
NASA Technical Reports Server (NTRS)
Bockelee-Morvan, D.; Crovisier, J.; Baudry, A.; Despois, D.; Perault, M.; Irvine, W. M.; Schloerb, F. P.; Swade, D.
1984-01-01
The HCN emission of the pure rotation and rotation/vibration lines in comet IRAS-Araki-Alcock 1983d is examined. The prevailing excitation mechanism for the emissions was the excitation of the nu-2, 2 nu-2, and nu-3 vibrational bands by the solar infrared field. For the description of inner coma, a dynamical excitation model is presented which includes collisions. It is predicted on the basis of the model that HCN molecules in rotation and rotation vibration lines of IRAS-Araki-Alcock 1983d would be detectable with a large-millimeter wave telescope, and that the strongest infrared lines would be observable from space observatories. Subsequent searches for the J = 1-0 HCN radio lines in comet 1983d with the Five College Radio Astronomy Observatory (FCRAO) proved unsuccessful. An extremely low upper limit was found for HCN production which suggests that HCN might not be the only parent of planetary cometary CN.
Spectrophotometry and organic matter on Iapetus. 1: Composition models
NASA Technical Reports Server (NTRS)
Wilson, Peter D.; Sagan, Carl
1995-01-01
Iapetus shows a greater hemispheric albedo asymmetry than any other body in the solar system. Hapke scattering theory and optical constants measured in the laboratory are used to identify possible compositions for the dark material on the leading hemisphere of Iapetus. The materials considered are poly-HCN, kerogen, Murchison organic residue, Titan tholin, ice tholin, and water ice. Three-component mixtures of these materials are modeled in intraparticle mixture of 25% poly-HCN, 10% Murchison residue, and 65% water ice is found to best fit the spectrum, albedo, and phase behavior of the dark material. The Murchison residue and/or water ice can be replaced by kerogen and ice tholin, respectively, and still produce very good fits. Areal and particle mixtures of poly-HCN, Titan tholin, and either ice tholin or Murchison residue are also possible models. Poly-HCN is a necessary component in almost all good models. The presence of poly-HCN can be further tested by high-resolution observations near 4.5 micrometers.
Vibrationally Excited HCN in the Luminous Infrared Galaxy NGC 4418
NASA Astrophysics Data System (ADS)
Sakamoto, Kazushi; Aalto, Susanne; Evans, Aaron S.; Wiedner, Martina C.; Wilner, David J.
2010-12-01
Infrared pumping and its effect on the excitation of HCN molecules can be important when using rotational lines of HCN to probe dense molecular gas in galaxy nuclei. We report the first extragalactic detection of (sub)millimeter rotational lines of vibrationally excited HCN, in the dust-enshrouded nucleus of the luminous infrared galaxy NGC 4418. We estimate the excitation temperature of Tvib ≈ 230 K between the vibrational ground and excited (v 2 = 1) states. This excitation is most likely due to infrared radiation. At this high vibrational temperature the path through the v 2 = 1 state must have a strong impact on the rotational excitation in the vibrational ground level, although it may not be dominant for all rotational levels. Our observations also revealed nearly confusion-limited lines of CO, HCN, HCO+, H13CN, HC15N, CS, N2H+, and HC3N at λ ~ 1 mm. Their relative intensities may also be affected by the infrared pumping.
NASA Astrophysics Data System (ADS)
Kim, Young-Hee
Chip density and performance improvements have been driven by aggressive scaling of semiconductor devices. In both logic and memory applications, SiO 2 gate dielectrics has reached its physical limit, direct tunneling resulting from scaling down of dielectrics thickness. Therefore high-k dielectrics have attracted a great deal of attention from industries as the replacement of conventional SiO2 gate dielectrics. So far, lots of candidate materials have been evaluated and Hf-based high-k dielectrics were chosen to the promising materials for gate dielectrics. However, lots of issues were identified and more thorough researches were carried out on Hf-based high-k dielectrics. For instances, mobility degradation, charge trapping, crystallization, Fermi level pinning, interface engineering, and reliability studies. In this research, reliability study of HfO2 were explored with poly gate and dual metal (Ru-Ta alloy, Ru) gate electrode as well as interface engineering. Hard breakdown and soft breakdown were compared and Weibull slope of soft breakdown was smaller than that of hard breakdown, which led to a potential high-k scaling issue. Dynamic reliability has been studied and the combination of trapping and detrapping contributed the enhancement of lifetime projection. Polarity dependence was shown that substrate injection might reduce lifetime projection as well as it increased soft breakdown behavior. Interface tunneling mechanism was suggested with dual metal gate technology. Soft breakdown (l st breakdown) was mainly due to one layer breakdown of bi-layer structure. Low weibull slope was in part attributed to low barrier height of HfO 2 compared to interface layer. Interface layer engineering was thoroughly studied in terms of mobility, swing, and short channel effect using deep sub-micron MOSFET devices. In fact, Hf-based high-k dielectrics could be scaled down to below EOT of ˜10A and it successfully achieved the competitive performance goals. However, it is still necessary to understand what is intrinsic we can not change, or what is extrinsic one we can improve.
Retrieval of haze properties and HCN concentrations from the three-micron spectrum of Titan
NASA Astrophysics Data System (ADS)
Kim, Sang J.; Lee, D. W.; Sim, C. K.; Seon, K. I.; Courtin, R.; Geballe, T. R.
2018-05-01
The 3 μm spectrum of Titan contains line emission and absorption as well as a significant haze continuum. The line emission has been previously analyzed in the literature, but that analysis has not properly included the influence of haze on the line emission. We report a new analysis of the 3 μm HCN emission spectrum using radiative transfer equations that include scattering and absorption by molecules and haze particles at altitudes lower than 500 km, where the influence of haze on the emergent spectrum becomes significant. Taking advantage of the dominance of resonant single scattering in the HCN ν3 fundamental and of the moderate haze optical thickness of the atmosphere around 3 μm, we adopt single dust and molecular scattering and present a formulation for the radiative transfer process. We evaluate the quantitative influence of haze scattering on the emission line intensities, and derive vertically-resolved single scattering albedos of the haze from model fits. We also present the resulting concentrations of HCN for altitudes below 500 km, where we find that the haze scattering significantly influences the retrieval of the concentrations of HCN. We conclude that the formulation we present is useful for the analysis of the HCN line emission from Titan and other similar hazy planetary or celestial objects.
Alma Observations of HCN and its Isotopologues on Titan
NASA Technical Reports Server (NTRS)
Molter, Edward M.; Nixon, C. A.; Cordiner, M. A.; Serigano, J.; Irwin, P. G. J.; Teanby, N. A.; Charnley, S. B.; Lindberg, J. E.
2016-01-01
We present sub-millimeter spectra of HCN isotopologues on Titan, derived from publicly available ALMA flux calibration observations of Titan taken in early 2014. We report the detection of a new HCN isotopologue on Titan, H13C15N, and confirm an earlier report of detection of DCN. We model high signal-to-noise observations of HCN, H13CN, HC15N, DCN, and H13C15N to derive abundances and infer the following isotopic ratios: 12C/13C = 89.8 +/- 2.8, 14N/15N = 72.3 +/- 2.2, D/H = (2.5 +/- 0.2) × 10-4, and HCN/H13C15N = 5800 +/- 270 (1sigma errors). The carbon and nitrogen ratios are consistent with and improve on the precision of previous results, confirming a factor of approximately 2.3 elevation in 14N/15N in HCN compared to N2 and a lack of fractionation in 12C/13C from the protosolar value. This is the first published measurement of D/H in a nitrile species on Titan, and we find evidence for a factor of approximately 2 deuterium enrichment in hydrogen cyanide compared to methane. The isotopic ratios we derive may be used as constraints for future models to better understand the fractionation processes occurring in Titan's atmosphere.
Giotto IMS measurements of the production rate of hydrogen cyanide in the coma of Comet Halley
NASA Technical Reports Server (NTRS)
Ip, W.-H.; Balsiger, H.; Geiss, J.; Goldstein, B. E.; Kettmann, G.
1990-01-01
The ion composition measurements in the ionosphere of Comet Halley by the ion mass spectrometer (IMS) experiment on the Giotto spacecraft are used to estimate the relative abundance of HCN. From a comparison of the normalized number density of ions with mass-to-charge (M/q) ratio of 28 AMU/e with steady-state photochemical models, it can be determined that the production rate of HCN directly from the central nucleus is Q(HCN) is less than about 0.0002 Q(H2O) at the time of Giotto encounter. The related photochemical- model calculations also indicate that Q(NH3)/Q(H2O) at the time of Giotto encounter. The related photo-chemical model calculations also indicate that Q(HN3)/Q(H2O) equals about 0.005, in agreement with recent determination from ground-based observations. The estimated value of Q(HCN) is lower than the relative abundance of Q(HCN)/Q(H2O) of about 0.001, as derived from radio observations of the 88.6 GHz emission of the J = 1 - 0 transition of HCN. The difference may be the result of time variations of the coma composition and dynamics, as well as other model-dependent effects.
Noh, Wonjung; Seomun, Gyeongae
2015-06-01
This study was conducted to develop key performance indicators (KPIs) for home care nursing (HCN) based on a balanced scorecard, and to construct a performance prediction model of strategic objectives using the Bayesian Belief Network (BBN). This methodological study included four steps: establishment of KPIs, performance prediction modeling, development of a performance prediction model using BBN, and simulation of a suggested nursing management strategy. An HCN expert group and a staff group participated. The content validity index was analyzed using STATA 13.0, and BBN was analyzed using HUGIN 8.0. We generated a list of KPIs composed of 4 perspectives, 10 strategic objectives, and 31 KPIs. In the validity test of the performance prediction model, the factor with the greatest variance for increasing profit was maximum cost reduction of HCN services. The factor with the smallest variance for increasing profit was a minimum image improvement for HCN. During sensitivity analysis, the probability of the expert group did not affect the sensitivity. Furthermore, simulation of a 10% image improvement predicted the most effective way to increase profit. KPIs of HCN can estimate financial and non-financial performance. The performance prediction model for HCN will be useful to improve performance.
NASA Technical Reports Server (NTRS)
1980-01-01
St. Jude Medical's Cardiac Rhythm Management Division, formerly known as Pacesetter Systems, Inc., incorporated Apollo technology into the development of the programmable pacemaker system. This consists of the implantable pacemaker together with a physician's console containing the programmer and a data printer. Physician can communicate with patient's pacemaker by means of wireless telemetry signals transmitted through the communicating head held over the patient's chest. Where earlier pacemakers deliver a fixed type of stimulus once implanted, Programalith enables surgery free "fine tuning" of device to best suit the patient's changing needs.
Marín-Yaseli, Margarita R; Moreno, Miguel; de la Fuente, José L; Briones, Carlos; Ruiz-Bermejo, Marta
2018-02-15
HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH 4 CN and NaCN, at middle temperatures between 4 and 38°C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH 4 CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study. Copyright © 2017 Elsevier B.V. All rights reserved.
HCN Production via Impact Ejecta Reentry During the Late Heavy Bombardment
NASA Astrophysics Data System (ADS)
Parkos, Devon; Pikus, Aaron; Alexeenko, Alina; Melosh, H. Jay
2018-04-01
Major impact events have shaped the Earth as we know it. The Late Heavy Bombardment is of particular interest because it immediately precedes the first evidence of life. The reentry of impact ejecta creates numerous chemical by-products, including biotic precursors such as HCN. This work examines the production of HCN during the Late Heavy Bombardment in more detail. We stochastically simulate the range of impacts on the early Earth and use models developed from existing studies to predict the corresponding ejecta properties. Using multiphase flow methods and finite-rate equilibrium chemistry, we then find the HCN production due to the resulting atmospheric heating. We use Direct Simulation Monte Carlo to develop a correction factor to account for increased yields due to thermochemical nonequilibrium. We then model 1-D atmospheric turbulent diffusion to find the time accurate transport of HCN to lower altitudes and ultimately surface water. Existing works estimate the necessary HCN molarity threshold to promote polymerization that is 0.01 M. For a mixing depth of 100 m, we find that the Late Heavy Bombardment will produce at least one impact event above this threshold with probability 24.1% for an oxidized atmosphere and 56.3% for a partially reduced atmosphere. For a mixing depth of 10 m, the probability is 79.5% for an oxidized atmosphere and 96.9% for a partially reduced atmosphere. Therefore, Late Heavy Bombardment impact ejecta is likely an HCN source sufficient for polymerization in shallow bodies of water, particularly if the atmosphere were in a partially reduced state.
NASA Astrophysics Data System (ADS)
Marín-Yaseli, Margarita R.; Moreno, Miguel; de la Fuente, José L.; Briones, Carlos; Ruiz-Bermejo, Marta
2018-02-01
HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH4CN and NaCN, at middle temperatures between 4 and 38 °C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH4CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study.
Farrell, Jordan S.; Palmer, Laura A.; Singleton, Anna C.; Pittman, Quentin J.; Teskey, G. Campbell
2016-01-01
Key points The present study tested whether HCN channels contribute to the organization of motor cortex and to skilled motor behaviour during a forelimb reaching task.Experimental reductions in HCN channel signalling increase the representation of complex multiple forelimb movements in motor cortex as assessed by intracortical microstimulation.Global HCN1KO mice exhibit reduced reaching accuracy and atypical movements during a single‐pellet reaching task relative to wild‐type controls.Acute pharmacological inhibition of HCN channels in forelimb motor cortex decreases reaching accuracy and increases atypical movements during forelimb reaching. Abstract The mechanisms by which distinct movements of a forelimb are generated from the same area of motor cortex have remained elusive. Here we examined a role for HCN channels, given their ability to alter synaptic integration, in the expression of forelimb movement responses during intracortical microstimulation (ICMS) and movements of the forelimb on a skilled reaching task. We used short‐duration high‐resolution ICMS to evoke forelimb movements following pharmacological (ZD7288), experimental (electrically induced cortical seizures) or genetic approaches that we confirmed with whole‐cell patch clamp to substantially reduce I h current. We observed significant increases in the number of multiple movement responses evoked at single sites in motor maps to all three experimental manipulations in rats or mice. Global HCN1 knockout mice were less successful and exhibited atypical movements on a skilled‐motor learning task relative to wild‐type controls. Furthermore, in reaching‐proficient rats, reaching accuracy was reduced and forelimb movements were altered during infusion of ZD7288 within motor cortex. Thus, HCN channels play a critical role in the separation of overlapping movement responses and allow for successful reaching behaviours. These data provide a novel mechanism for the encoding of multiple movement responses within shared networks of motor cortex. This mechanism supports a viewpoint of primary motor cortex as a site of dynamic integration for behavioural output. PMID:27568501
NASA Astrophysics Data System (ADS)
Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma
2018-04-01
We present the results of our ALMA observations of 11 (ultra)luminous infrared galaxies ((U)LIRGs) at J = 4–3 of HCN, HCO+, and HNC and J = 3–2 of HNC. This is an extension of our previously published HCN and HCO+ J = 3–2 observations to multiple rotational J-transitions of multiple molecules, to investigate how molecular emission line flux ratios vary at different J-transitions. We confirm that ultraluminous infrared galaxies (ULIRGs) that contain or may contain luminous obscured active galactic nuclei (AGNs) tend to show higher HCN-to-HCO+ flux ratios than starburst galaxies, both at J = 4–3 and J = 3–2. For selected HCN-flux-enhanced AGN-important ULIRGs, our isotopologue H13CN, H13CO+, and HN13C J = 3–2 line observations suggest a higher abundance of HCN than HCO+ and HNC, which is interpreted to be primarily responsible for the elevated HCN flux in AGN-important galaxies. For such sources, the intrinsic HCN-to-HCO+ flux ratios after line opacity correction will be higher than the observed ratios, making the separation between AGNs and starbursts even larger. The signature of the vibrationally excited (v 2 = 1f) HCN J = 4–3 emission line is seen in one ULIRG, IRAS 12112‑0305 NE. P Cygni profiles are detected in the HCO+ J = 4–3 and J = 3–2 lines toward IRAS 15250+3609, with an estimated molecular outflow rate of ∼250–750 M ⊙ yr‑1. The SiO J = 6–5 line also exhibits a P Cygni profile in IRAS 12112+0305 NE, suggesting the presence of shocked outflow activity. Shock tracers are detected in many sources, suggesting ubiquitous shock activity in the nearby ULIRG population.
Harandi, Azade; Mohammadpour Maleki, Fatemeh; Moudi, Ehsan; Ehsani, Maryam; Khafri, Soraya
2017-01-01
Introduction: The aim of this study was to compare the dentine removing efficacy of Gates-Glidden drills with hand files, ProTaper and OneShape single-instrument system using cone-beam computed tomography (CBCT). Methods and Materials: A total of 39 extracted bifurcated maxillary first premolars were divided into 3 groups (n=13) and were prepared using either Gates-Glidden drills and hand instruments, ProTaper and OneShape systems. Pre- and post-instrumentation CBCT images were obtained. The dentin thickness of canals was measured at furcation, and 1 and 2 mm from the furcation area in buccal, palatal, mesial and distal walls. Data were analyzed using one-way ANOVA test. Tukey’s post hoc tests were used for two-by-two comparisons. Results: Gates-Glidden drills with hand files removed significantly more (P<0.001) dentine than the engine-driven systems in all canal walls (buccal, palatal, mesial and distal). There were no significant differences between OneShape and ProTaper rotary systems (P>0.05). Conclusion: The total cervical dentine removal during canal instrumentation was significantly less with engine-driven file systems compared to Gates-Glidden drills. There were no significant differences between residual dentine thicknesses left between the various canal walls. PMID:28179920
Bharat, Vijaya
2004-01-01
The incidence of permanent pacemaker-related complications is reducing due to advancement of technology and increasing operator experience. There are only few series from India reporting the annual complication rates from a single center over the years. This is a series of 782 pacemakers implanted over 20 years in a secondary healthcare set-up. Eighty-two patients underwent redo surgery, either for a procedure-related complication (n=34) or for replacement of a malfunctioning/end-of-life pacemaker (n=48). Through critical analysis and corrective measures, all the procedural complications were reduced to less than 4% of the annual implantations. The introduction of a pacemaker follow-up clinic contributed to reducing the rate of elective replacement for battery depletion from 19.17% of the implanted VVI pacemakers to 0.63%. Despite being a low-volume center, with less than 100 pacemakers implanted annually, the performance of our pacing practice has shown continuous improvement.
Wenckebach upper rate response in single chamber pacemaker.
Barold, S S
2000-07-01
The Medtronic Minix pacemaker during normal function in the VVT mode was found to exhibit a Wenckenbach upper rate response similar to that of dual chamber devices. This behavior occurred only when the upper rate interval was longer than the pacemaker refractory period. In a single chamber device this response may simulate pacemaker malfunction.
Proton Beam Therapy Interference With Implanted Cardiac Pacemakers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshiro, Yoshiko; Sugahara, Shinji; Noma, Mio
2008-11-01
Purpose: To investigate the effect of proton beam therapy (PBT) on implanted cardiac pacemaker function. Methods and Materials: After a phantom study confirmed the safety of PBT in patients with cardiac pacemakers, we treated 8 patients with implanted pacemakers using PBT to a total tumor dose of 33-77 gray equivalents (GyE) in dose fractions of 2.2-6.6 GyE. The combined total number of PBT sessions was 127. Although all pulse generators remained outside the treatment field, 4 patients had pacing leads in the radiation field. All patients were monitored by means of electrocardiogram during treatment, and pacemakers were routinely examined beforemore » and after PBT. Results: The phantom study showed no effect of neutron scatter on pacemaker generators. In the study, changes in heart rate occurred three times (2.4%) in 2 patients. However, these patients remained completely asymptomatic throughout the PBT course. Conclusions: PBT can result in pacemaker malfunctions that manifest as changes in pulse rate and pulse patterns. Therefore, patients with cardiac pacemakers should be monitored by means of electrocardiogram during PBT.« less
Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell
Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.
2015-01-01
Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434
Trends in Cardiac Pacemaker Batteries
Mallela, Venkateswara Sarma; Ilankumaran, V; Rao, N.Srinivasa
2004-01-01
Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future. PMID:16943934
Next-generation pacemakers: from small devices to biological pacemakers.
Cingolani, Eugenio; Goldhaber, Joshua I; Marbán, Eduardo
2018-03-01
Electrogenesis in the heart begins in the sinoatrial node and proceeds down the conduction system to originate the heartbeat. Conduction system disorders lead to slow heart rates that are insufficient to support the circulation, necessitating implantation of electronic pacemakers. The typical electronic pacemaker consists of a subcutaneous generator and battery module attached to one or more endocardial leads. New leadless pacemakers can be implanted directly into the right ventricular apex, providing single-chamber pacing without a subcutaneous generator. Modern pacemakers are generally reliable, and their programmability provides options for different pacing modes tailored to specific clinical needs. Advances in device technology will probably include alternative energy sources and dual-chamber leadless pacing in the not-too-distant future. Although effective, current electronic devices have limitations related to lead or generator malfunction, lack of autonomic responsiveness, undesirable interactions with strong magnetic fields, and device-related infections. Biological pacemakers, generated by somatic gene transfer, cell fusion, or cell transplantation, provide an alternative to electronic devices. Somatic reprogramming strategies, which involve transfer of genes encoding transcription factors to transform working myocardium into a surrogate sinoatrial node, are furthest along in the translational pipeline. Even as electronic pacemakers become smaller and less invasive, biological pacemakers might expand the therapeutic armamentarium for conduction system disorders.
Moreno, Raúl; Calvo, Luis; Sánchez-Recalde, Angel; Galeote, Guillermo; Jiménez-Valero, Santiago; López, Teresa; Plaza, Ignacio; González-Davia, Rosa; Ramírez, Ulises; Mesa, Jose Maria; Moreno-Gomez, Isidro; López-Sendón, José-Luis
2015-11-01
A permanent pacemaker is frequently needed after transcatheter aortic valve implantation, but the available data are mainly on the CoreValve system. To evaluate the need for new permanent pacemaker after implantation of the Edwards Sapien device, as well as related factors. We included the first 100 patients treated with the Edwards Sapien device at our institution. Of these, 12 had a permanent pacemaker before the procedure, and thus our study population was the remaining 88 patients. A permanent pacemaker was indicated in eight patients (9.1%) during hospitalization or at 30 days. After discharge, another four patients needed a pacemaker (at 42 days and three, 18, and 30 months). Two variables were associated with the need for pacemaker during hospitalization: previous dialysis (13% vs. 1%, p=0.042) and complete right bundle branch block before the procedure (25% vs. 5%, p=0.032). More than one month after the procedure, the characteristics associated with the need for pacemaker were plasma creatinine level (2.5±1.7 vs. 1.3±0.6 mg/dl, p=0.001) and previous myocardial infarction (50% vs. 10%, p=0.013). The rate of pacemaker implantation with the Edwards Sapien device was 9.1%. Right bundle branch block and dialysis were associated with this complication.
Liu, Tianxin; Mahesh, Guruswamy; Houl, Jerry H; Hardin, Paul E
2015-06-03
Circadian pacemaker neurons in the Drosophila brain control daily rhythms in locomotor activity. These pacemaker neurons can be subdivided into early or late groups depending on whether rhythms in period (per) and timeless (tim) expression are initiated at the first instar (L1) larval stage or during metamorphosis, respectively. Because CLOCK-CYCLE (CLK-CYC) heterodimers initiate circadian oscillator function by activating per and tim transcription, a Clk-GFP transgene was used to mark when late pacemaker neurons begin to develop. We were surprised to see that CLK-GFP was already expressed in four of five clusters of late pacemaker neurons during the third instar (L3) larval stage. CLK-GFP is only detected in postmitotic neurons from L3 larvae, suggesting that these four late pacemaker neuron clusters are formed before the L3 larval stage. A GFP-cyc transgene was used to show that CYC, like CLK, is also expressed exclusively in pacemaker neurons from L3 larval brains, demonstrating that CLK-CYC is not sufficient to activate per and tim in late pacemaker neurons at the L3 larval stage. These results suggest that most late pacemaker neurons develop days before novel factors activate circadian oscillator function during metamorphosis. Copyright © 2015 the authors 0270-6474/15/358662-10$15.00/0.
Third-generation mobile phones (UMTS) do not interfere with permanent implanted pacemakers.
Ismail, Mohamed M; Badreldin, Akmal M A; Heldwein, Matthias; Hekmat, Khosro
2010-07-01
Third-generation mobile phones, UMTS (Universal Mobile Telecommunication System), were recently introduced in Europe. The safety of these devices with regard to their interference with implanted pacemakers is as yet unknown and is the point of interest in this study. The study comprised 100 patients with permanent pacemaker implantation between November 2004 and June 2005. Two UMTS cellular phones (T-Mobile, Vodafone) were tested in the standby, dialing, and operating mode with 23 single-chamber and 77 dual-chamber pacemakers. Continuous surface electrocardiograms (ECGs), intracardiac electrograms, and marker channels were recorded when calls were made by a stationary phone to cellular phone. All pacemakers were tested under a "worst-case scenario," which includes a programming of the pacemaker to unipolar sensing and pacing modes and inducing of a maximum sensitivity setting during continuous pacing of the patient. Patients had pacemaker implantation between June 1990 and April 2005. The mean age was 68.4 +/- 15.1 years. Regardless of atrial and ventricular sensitivity settings, both UMTS mobile phones (Nokia 6650 and Motorola A835) did not show any interference with all tested pacemakers. In addition, both cellular phones did not interfere with the marker channels and the intracardiac ECGs of the pacemakers. Third-generation mobile phones are safe for patients with permanent pacemakers. This is due to the high-frequency band for this system (1,800-2,200 MHz) and the low power output between 0.01 W and 0.25 W.
The nuclear pacemaker: Is renewed interest warranted
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsonnet, V.; Berstein, A.D.; Perry, G.Y.
1990-10-01
From 1973 through 1987, 155 radioisotope-powered nuclear pacemakers were implanted in 132 patients at the Newark Beth Israel Medical Center. The longevity of the first 15 devices, all of which were fixed-rate (VOO) pacemakers, was significantly better than that of 15 lithium-chemistry demand (VVI) pacemakers used as control devices (p = 0.0002). Of the entire cohort of 155 nuclear pacemakers, 136 were VVI devices and 19 were VOO units. The patients with VOO pacemakers needed reoperations more often than did those with VVI pacemakers, chiefly for mode change (p less than 0.001). Power-source failure was observed in only 1 case,more » but 47 nuclear pacemakers were removed for other reasons, including component malfunction (15 units), mode change (12 units), high pacing thresholds (8 units) and lead or connector problems (5 units). The actuarial survival at 15 years was 99% for power sources and 82% for the entire pacing systems (pulse generators plus leads). The frequency of malignancy was similar to that of the population at large and primary tumor sites were randomly distributed. Deaths most commonly were due to cardiac causes (68%). Thus, nuclear pacemakers are safe and reliable and their greater initial cost appears to be offset by their longevity and the resulting decrease in the frequency of reoperations. It is reasonable to suggest that further use be made of long-lasting nuclear power sources for modern pacemakers and other implantable rhythm-management devices.« less
E AND M CIRCADIAN PACEMAKER NEURONS USE DIFFERENT PDF RECEPTOR SIGNALOSOME COMPONENTS IN DROSOPHILA
Duvall, Laura B.
2014-01-01
We used real-time imaging to detect cAMP levels in neurons of intact fly brains to study mechanisms of circadian pacemaker synchronization by the neuropeptide PDF in Drosophila. PDF receptor (PDF-R) is expressed by both M (sLNv) and E (LNd) pacemaker sub-classes and is coupled to Gsα in both cases. We previously reported that PDF-R in M pacemakers elevates cAMP levels by activating the ortholog of mammalian Adenylate Cyclase 3 (AC3), but that AC3 disruptions had no effect on E pacemaker sensitivity to PDF. Here we show that PDF-R in E pacemakers activates a different AC isoform, AC78C, an ortholog of mammalian AC8. Knockdown of AC78C by transgenic RNAi substantially reduces, but does not completely abrogate, PDF responses in these E pacemakers. The knockdown effect is intact when restricted to mature stages, suggesting a physiological and not a development role for AC78C in E pacemakers. The AC78C phenotype is rescued by over-expression of AC78C, but not by over-expression of the rutabaga AC. AC78C over-expression does not disrupt PDF responses in these E pacemakers, and neither AC78C knockdown nor its over-expression disrupted locomotor rhythms. Finally, knockdown of two AKAPs, nervy and AKAP 200 partially reduces LNd PDF responses. These findings begin to identify the components of E pacemaker PDF-R signalosomes and indicate they are distinct from PDF-R signalosomes in M pacemakers: we propose they contain AC78C and at least one other AC. PMID:23929551
E and M circadian pacemaker neurons use different PDF receptor signalosome components in drosophila.
Duvall, Laura B; Taghert, Paul H
2013-08-01
We used real-time imaging to detect cAMP levels in neurons of intact fly brains to study the mechanisms of circadian pacemaker synchronization by the neuropeptide pigment dispersing factor (PDF) in Drosophila. PDF receptor (PDF-R) is expressed by both M (sLNv) and E (LNd) pacemaker subclasses and is coupled to G(sα) in both cases. We previously reported that PDF-R in M pacemakers elevates cAMP levels by activating the ortholog of mammalian adenylate cyclase 3 (AC3) but that AC3 disruptions had no effect on E pacemaker sensitivity to PDF. Here, we show that PDF-R in E pacemakers activates a different AC isoform, AC78C, an ortholog of mammalian AC8. Knockdown of AC78C by transgenic RNAi substantially reduces, but does not completely abrogate, PDF responses in these E pacemakers. The knockdown effect is intact when restricted to mature stages, suggesting a physiological and not a development role for AC78C in E pacemakers. The AC78C phenotype is rescued by the overexpression of AC78C but not by overexpression of the rutabaga AC. AC78C overexpression does not disrupt PDF responses in these E pacemakers, and neither AC78C knockdown nor its overexpression disrupted locomotor rhythms. Finally, knockdown of 2 AKAPs, nervy and AKAP200, partially reduces LNd PDF responses. These findings begin to identify the components of E pacemaker PDF-R signalosomes and indicate that they are distinct from PDF-R signalosomes in M pacemakers: we propose they contain AC78C and at least 1 other AC.
The pacemaker-twiddler's syndrome: an infrequent cause of pacemaker failure.
Salahuddin, Mohammad; Cader, Fathima Aaysha; Nasrin, Sahela; Chowdhury, Mashhud Zia
2016-01-20
The pacemaker-twiddler's syndrome is an uncommon cause of pacemaker malfunction. It occurs due to unintentional or deliberate manipulation of the pacemaker pulse generator within its skin pocket by the patient. This causes coiling of the lead and its dislodgement, resulting in failure of ventricular pacing. More commonly reported among elderly females with impaired cognition, the phenomenon usually occurs in the first year following pacemaker implantation. Treatment involves repositioning of the dislodged leads and suture fixation of the lead and pulse generator within its pocket. An 87 year old Bangladeshi lady who underwent a single chamber ventricular pacemaker (VVI mode: i.e. ventricle paced, ventricle sensed, inhibitory mode) implantation with the indication of complete heart block, and presented to us again 7 weeks later, with syncopal attacks. She admitted to repeatedly manipulating the pacemaker generator in her left pectoral region. Physical examination revealed a heart rate of 42 beats/minute, blood pressure 140/80 mmHg and bilateral crackles on lung auscultation. She had no cognitive deficit. An immediate electrocardiogram showed complete heart block with pacemaker spikes and failure to capture. Chest X-ray showed coiled and retracted right ventricular lead and rotated pulse generator. An emergent temporary pace maker was set at a rate of 60 beats per minute. Subsequently, she underwent successful lead repositioning with strong counselling to avoid further twiddling. Twiddler's syndrome should be considered as a cause of pacemaker failure in elderly patients presenting with bradyarrythmias following pacemaker implantation. Chest X-ray and electrocardiograms are simple and easily-available first line investigations for its diagnosis. Lead repositioning is required, however proper patient education and counselling against further manipulation is paramount to long-term management.
Matusik, Paweł; Woznica, Natalia; Lelakowsk, Jacek
2010-05-01
Atrial fibrillation (AF) is a frequent problem of patients with pacemakers, and depends not only on disease but also on stimulation method. The aim of the study was to estimate the prevalence of AF before and after pacemaker implantation as well as to assess the influence of VVI and DDD cardiac pacing on onset of AF in patients with complete atrioventricularblock (AVB). We included 155 patients controlled between 2000 and 2008 in Pacemaker Clinic because of AVB III degree, treated with VVI or DDD pacemaker implantation. Information about the health status of the patients was gathered from medical documentation and analysis of clinical ambulatory electrocardiograms. The study group comprised of 68 women and 87 men, mean age 68.7 +/- 13.9 years during implantation. 69% of patients had VVI pacemaker. There were 72.3% of patients with sinus rhythm before pacemaker implantation. During follow-up 4 +/- 2.8 years in 19.6% cases onset of atrial fibrillation de novo was diagnosed (in 31.3% in VVI mode vs. 2.2% in DDD mode; p = 0.00014). Mean time to AF since implantation was approximately 2.5 years. In VVI group (21 persons) amounted 32.1 months, while in 1 patient with DDD pacemaker 18 months. Between group with AF after implantation and with sinus rhythm preserved there was no statistically significant difference in age or gender (p = 0.89512 and p = 0.1253, respectively). Prevalence of atrial fibrillation after pacemaker implantation increased to 40%. Atrial fibrillation is frequent in patients before and after pacemaker implantation, especially in patients stimulated in VVI mode. Major possibility of atrial fibrillation onset after pacemaker implantation should result in more attention during routine ECG examination.
Intermittent pacemaker dysfunction caused by digital mobile telephones.
Naegeli, B; Osswald, S; Deola, M; Burkart, F
1996-05-01
This study was designed to evaluate possible interactions between digital mobile telephones and implanted pacemakers. Electromagnetic fields may interfere with normal pacemaker function. Development of bipolar sensing leads and modern noise filtering techniques have lessened this problem. However, it remains unclear whether these features also protect from high frequency noise arising from digital cellular phones. In 39 patients with an implanted pacemaker (14 dual-chamber [DDD], 8 atrial-synchronized ventricular-inhibited [VDD(R)] and 17 ventricular-inhibited [VVI(R)] pacemakers), four mobile phones with different levels of power output (2 and 8 W) were tested in the standby, dialing and operating mode. During continuous electrocardiographic monitoring, 672 tests were performed in each mode with the phones positioned over the pulse generator, the atrial and the ventricular electrode tip. The tests were carried out at different sensitivity settings and, where possible, in the unipolar and bipolar pacing modes as well. In 7 (18%) of 39 patients, a reproducible interference was induced during 26 (3.9%) of 672 tests with the operating phones in close proximity (<10 cm) to the pacemaker. In 22 dual-chamber (14 DDD, 8 VDD) pacemakers, atrial triggering occurred in 7 (2.8%) of 248 and ventricular inhibition in 5 (2.8%) of 176 tests. In 17 VVI(R) systems, pacemaker inhibition was induced in 14 (5.6%) of 248 tests. Interference was more likely to occur at higher power output of the phone and at maximal sensitivity of the pacemakers (maximal vs. nominal sensitivity, 6% vs. 1.8% positive test results, p = 0.009). When the bipolar and unipolar pacing modes were compared in the same patients, ventricular inhibition was induced only in the unipolar mode (12.5% positive test results, p = 0.0003). Digital mobile phones in close proximity to implanted pacemakers may cause intermittent pacemaker dysfunction with inappropriate ventricular tracking and potentially dangerous pacemaker inhibition.
UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Paul
This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programsmore » from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davis's existing GATE centers have become the campus's research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.« less
NASA Technical Reports Server (NTRS)
Ferris, J. P.; Wos, J. D.; Ryan, T. J.; Lobo, A. P.; Donner, D. B.
1974-01-01
It has been suggested by Sanchez et al. (1967) that HCN might have been one of the more important precursors of biological molecules on the primitive earth. Studies were conducted to determine the mechanisms involved in HCN oligomerizations in dilute aqueous solutions and to identify the compounds which are produced in these oligomerization mixtures. Indirect evidence for the formation of cyanate was obtained along with direct evidence for the formation of citrulline, aspartic acid, and orotic acid.
NASA Technical Reports Server (NTRS)
Irvine, W. M.; Dickens, J. E.; Lovell, A. J.; Schloerb, F. P.; Senay, M.; Bergin, E. A.; Jewitt, D.; Matthews, H. E.; Ferris, J. P. (Principal Investigator)
1997-01-01
The abundance ratio of the isomers HCN and HNC has been investigated in comet Hale-Bopp (C/1995 O1) through observations of the J = 4-3 rotational transitions of both species for heliocentric distances 0.93 < r < 3 AU, both pre- and post-perihelion. After correcting for the optical depth of the stronger HCN line, we find that the column density ratio of HNC/HCN in our telescope beam increases significantly as the comet approaches the Sun. We compare this behavior to that predicted from an ion-molecule chemical model and conclude that the HNC is produced in significant measure by chemical processes in the coma; i.e., for comet Hale-Bopp, HNC is not a parent molecule sublimating from the nucleus.
Atmospheric Pseudohalogen Chemistry
NASA Technical Reports Server (NTRS)
Lary, David John
2004-01-01
Hydrogen cyanide is not usually considered in atmospheric chemical models. The paper presents three reasons why hydrogen cyanide is likely to be significant for atmospheric chemistry. Firstly, HCN is a product and marker of biomass burning. Secondly, it is also likely that lightning is producing HCN, and as HCN is sparingly soluble it could be a useful long-lived "smoking gun" marker of lightning activity. Thirdly, the chemical decomposition of HCN leads to the production of small amounts of the cyanide (CN) and NCO radicals. The NCO radical can be photolyzed in the visible portion of the spectrum yielding nitrogen atoms (N). The production of nitrogen atoms is significant as it leads to the titration of total nitrogen from the atmosphere via N+N->N2, where N2 is molecular nitrogen.
The interference of electronic implants in low frequency electromagnetic fields.
Silny, J
2003-04-01
Electronic implants such as cardiac pacemakers or nerve stimulators can be impaired in different ways by amplitude-modulated and even continuous electric or magnetic fields of strong field intensities. For the implant bearer, possible consequences of a temporary electromagnetic interference may range from a harmless impairment of his well-being to a perilous predicament. Electromagnetic interferences in all types of implants cannot be covered here due to their various locations in the body and their different sensing systems. Therefore, this presentation focuses exemplarily on the most frequently used implant, the cardiac pacemaker. In case of an electromagnetic interference the cardiac pacemaker reacts by switching to inhibition mode or to fast asynchronous pacing. At a higher disturbance voltage on the input of the pacemaker, a regular asynchronous pacing is likely to arise. In particular, the first-named interference could be highly dangerous for the pacemaker patient. The interference threshold of cardiac pacemakers depends in a complex way on a number of different factors such as: electromagnetic immunity and adjustment of the pacemaker, the composition of the applied low-frequency fields (only electric or magnetic fields or combinations of both), their frequencies and modulations, the type of pacemaker system (bipolar, unipolar) and its location in the body, as well as the body size and orientation in the field, and last but not least, certain physiological conditions of the patient (e.g. inhalation, exhalation). In extensive laboratory studies we have investigated the interference mechanisms in more than 100 cardiac pacemakers (older types as well as current models) and the resulting worst-case conditions for pacemaker patients in low-frequency electric and magnetic fields. The verification of these results in different practical everyday-life situations, e.g. in the fields of high-voltage overhead lines or those of electronic article surveillance systems is currently in progress. In case of the vertically-oriented electric 50 Hz fields preliminary results show that per 1 kV/m unimpaired electrical field strength (rms) an interference voltage of about 400 microVpp as worst-case could occur at the input of a unipolar ventricularly controlled, left-pectorally implanted cardiac pacemaker. Thus, already a field strength above ca. 5 kV/m could cause an interference with an implanted pacemaker. The magnetic fields induces an electric disturbance voltage at the input of the pacemaker. The body and the pacemaker system compose several induction loops, whose induced voltages rates add or subtract. The effective area of one representing inductive loop ranges from 100 to 221 cm2. For the unfavourable left-pectorally implantated and atrially-controlled pacemaker with a low interference threshold, the interference threshold ranges between 552 and 16 microT (rms) for magnetic fields at frequencies between 10 and 250 Hz. On this basis the occurrence of interferences with implanted pacemakers is possible in everyday-life situations. But experiments demonstrate a low probability of interference of cardiac pacemakers in practical situations. This apparent contradiction can be explained by a very small band of inhibition in most pacemakers and, in comparison with the worst-case, deviating conditions.
The abundance of HCN in circumstellar envelopes of AGB stars of different chemical type
NASA Astrophysics Data System (ADS)
Schöier, F. L.; Ramstedt, S.; Olofsson, H.; Lindqvist, M.; Bieging, J. H.; Marvel, K. B.
2013-02-01
Aims: A multi-transition survey of HCN (sub-) millimeter line emission from a large sample of asymptotic giant branch (AGB) stars of different chemical type is presented. The data are analysed and circumstellar HCN abundances are estimated. The sample stars span a large range of properties such as mass-loss rate and photospheric C/O-ratio. The analysis of the new data allows for more accurate estimates of the circumstellar HCN abundances and puts new constraints on chemical models. Methods: In order to constrain the circumstellar HCN abundance distribution a detailed non-local thermodynamic equilibrium (LTE) excitation analysis, based on the Monte Carlo method, is performed. Effects of line overlaps and radiative excitation from dust grains are included. Results: The median values for the derived abundances of HCN (with respect to H2) are 3 × 10-5, 7 × 10-7 and 10-7 for carbon stars (25 stars), S-type AGB stars (19 stars) and M-type AGB stars (25 stars), respectively. The estimated sizes of the HCN envelopes are similar to those obtained in the case of SiO for the same sample of sources and agree well with previous results from interferometric observations, when these are available. Conclusions: We find that there is a clear dependence of the derived circumstellar HCN abundance on the C/O-ratio of the star, in that carbon stars have about two orders of magnitude higher abundances than M-type AGB stars, on average. The derived HCN abundances of the S-type AGB stars have a larger spread and typically fall in between those of the two other types, however, slightly closer to the values for the M-type AGB stars. For the M-type stars, the estimated abundances are much higher than what would be expected if HCN is formed in thermal equilibrium. However, the results are also in contrast to predictions from recent non-LTE chemical models, where very little difference is expected in the HCN abundances between the various types of AGB stars. This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX) telescope, the IRAM 30 m telescope, the James Clerk Maxwell Telescope (JCMT), the Swedish-ESO Submillimeter Telescope (SEST), and the Onsala 20 m telescope. APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory (ESO), and the Swedish National Facility for Radio Astronomy, Onsala Space Observatory (OSO). IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). The JCMT is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the Netherlands Organisation for Scientific Research, and the National Research Council of Canada. The Onsala 20 m telescope is operated by OSO. The SEST was operated jointly by ESO and OSO.Tables 3, 4, and Appendix A are available in electronic form at http://www.aanda.org
The Physics and Chemistry of Small Translucent Molecular Clouds. VIII. HCN and HNC
NASA Astrophysics Data System (ADS)
Turner, B. E.; Pirogov, L.; Minh, Y. C.
1997-07-01
We have conducted a survey of HCN and HNC (two rotational transitions each) in our standard sample of 11 cirrus cores and 27 Clemens-Barvainis translucent cores whose structures and chemistry have been studied earlier in this series. Both species are seen in all 38 objects. HCNH+ has been searched in three objects. These results are modeled in terms of our previous hydrostatic equilibrium and n ~ r-α structures together with other chemical and physical properties derived earlier. A detailed program has been written to handle the complex radiative transfer of the hyperfine splitting (hfs) of HCN. It is shown that serious errors are made in deriving HCN abundances by methods that ignore the hfs. Both HCN and HNC abundances are high, typically 1(-8) in most sources. The chemically important ratio HCN/HNC is found to be ~2.5 if these species are spatially centrally peaked and ~6 if not. Both species abundances increase monotonically with increasing extinction in the 1.2-2.7 mag range (edge to center), thus displaying the same characteristic transition between diffuse and dense cloud chemistry as do most other species we have studied. HCN/HNC decreases with increasing extinction to a value of 1.3 at Av0 ~ 10, approaching the expected value of 1.0 for dense clouds. Two types of ion-molecule chemistry models have been carried out: a full model using the Standard Model rate file and comprising 409 species (by Lee and Herbst), and a simplified model comprising 21 nitrogen-bearing species for conditions relevant to translucent clouds. Good agreement between observations and chemistry models is achieved throughout the translucent extinction range. Important conclusions are that (1) neutral-neutral reactions such as N + CH2 dominate the chemistry of HCN; (2) low ion-polar reaction rates are strongly favored over high ones; (3) the reaction C+ + NH3 --> H2NC+ --> HNC is unimportant, thus largely uncoupling the CN and NH chemistries; (4) the ratio HCN/HNC is not a particularly important diagnostic of the CN chemistry; (5) model NH3 abundances are at least a factor 100 lower than observed in translucent clouds, even if the reaction N+H+3-->NH+2 is permitted at Langevin rate.
HCN and chromophore formation on Jupiter
NASA Technical Reports Server (NTRS)
Ferris, James P.; Ishikawa, Yoji
1987-01-01
Reaction paths for the formation of HCN and chromophores on Jupiter are suggested. The reactions involve photolysis of ammonia/acetylene mixtures. Experimental data supporting these pathways are reported.
The Dense Molecular Gas and Nuclear Activity in the ULIRG IRAS 13120-5453
NASA Astrophysics Data System (ADS)
Privon, G. C.; Aalto, S.; Falstad, N.; Muller, S.; González-Alfonso, E.; Sliwa, K.; Treister, E.; Costagliola, F.; Armus, L.; Evans, A. S.; Garcia-Burillo, S.; Izumi, T.; Sakamoto, K.; van der Werf, P.; Chu, J. K.
2017-02-01
We present new Atacama Large Millimeter/submillimeter Array Band 7 (˜340 GHz) observations of the dense gas tracers HCN, HCO+, and CS in the local, single-nucleus, ultraluminous infrared galaxy IRAS 13120-5453. We find centrally enhanced HCN (4-3) emission, relative to HCO+ (4-3), but do not find evidence for radiative pumping of HCN. Considering the size of the starburst (0.5 kpc) and the estimated supernovae rate of ˜1.2 yr-1, the high HCN/HCO+ ratio can be explained by an enhanced HCN abundance as a result of mechanical heating by the supernovae, though the active galactic nucleus and winds may also contribute additional mechanical heating. The starburst size implies a high ΣIR of 4.7 × 1012 L ⊙ kpc-2, slightly below predictions of radiation-pressure limited starbursts. The HCN line profile has low-level wings, which we tentatively interpret as evidence for outflowing dense molecular gas. However, the dense molecular outflow seen in the HCN line wings is unlikely to escape the Galaxy and is destined to return to the nucleus and fuel future star formation. We also present modeling of Herschel observations of the H2O lines and find a nuclear dust temperature of ˜40 K. IRAS 13120-5453 has a lower dust temperature and ΣIR than is inferred for the systems termed “compact obscured nuclei (CONs)” (such as Arp 220 and Mrk 231). If IRAS 13120-5453 has undergone a CON phase, we are likely witnessing it at a time when the feedback has already inflated the nuclear ISM and diluted star formation in the starburst/active galactic nucleus core.
Submillimeter-HCN Diagram for Energy Diagnostics in the Centers of Galaxies
NASA Astrophysics Data System (ADS)
Izumi, Takuma; Kohno, Kotaro; Aalto, Susanne; Espada, Daniel; Fathi, Kambiz; Harada, Nanase; Hatsukade, Bunyo; Hsieh, Pei-Ying; Imanishi, Masatoshi; Krips, Melanie; Martín, Sergio; Matsushita, Satoki; Meier, David S.; Nakai, Naomasa; Nakanishi, Kouichiro; Schinnerer, Eva; Sheth, Kartik; Terashima, Yuichi; Turner, Jean L.
2016-02-01
Compiling data from literature and the Atacama Large Millimeter/submillimeter Array archive, we show enhanced HCN(4-3)/HCO+(4-3) and/or HCN(4-3)/CS(7-6) integrated intensity ratios in circumnuclear molecular gas around active galactic nuclei (AGNs) compared to those in starburst (SB) galaxies (submillimeter HCN enhancement). The number of sample galaxies is significantly increased from our previous work. We expect that this feature could potentially be an extinction-free energy diagnostic tool of nuclear regions of galaxies. Non-LTE radiative transfer modelings of the above molecular emission lines involving both collisional and radiative excitation, as well as a photon trapping effect, were conducted to investigate the cause of the high line ratios in AGNs. As a result, we found that enhanced abundance ratios of HCN to HCO+ and HCN to CS in AGNs as compared to SB galaxies by a factor of a few to even ≳10 are a plausible explanation for the submillimeter HCN enhancement. However, a counterargument of a systematically higher gas density in AGNs than in SB galaxies can also be a plausible scenario. Although we cannot fully distinguish these two scenarios at this moment owing to an insufficient amount of multi-transition, multi-species data, the former scenario is indicative of abnormal chemical composition in AGNs. Regarding the actual mechanism to realize the composition, we suggest that it is difficult with conventional gas-phase X-ray-dominated region ionization models to reproduce the observed high line ratios. We might have to take into account other mechanisms such as neutral-neutral reactions that are efficiently activated in high-temperature environments and/or mechanically heated regions to further understand the high line ratios in AGNs.
Luo, Pan; Chen, Cheng; Lu, Yun; Fu, TianLi; Lu, Qing; Xu, Xulin; Li, Changjun; He, Zhi; Guo, Lianjun
2016-07-15
Chronic cerebral hypoperfusion (CCH) causes memory deficits and increases the risk of vascular dementia (VD) through several biologically plausible pathways. However, whether CCH causes prefrontal cortex (PFC)-dependent spatial working memory impairments and Baclofen, a GABAB receptor agonist, could ameliorate the impairments is still not clear especially the mechanisms underlying the process. In this study, rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. Two weeks later, rats were treated with 25mg/kg Baclofen (intraperitioneal injection, i.p.) for 3 weeks. Spatial working memory was evaluated in a Morris water maze using a modified delayed matching-to-place (DMP) procedure. Western blotting and immunohistochemistry were used to quantify the protein levels and protein localization. Our results showed that 2VO caused striking spatial working memory impairments, accompanied with a decreased HCN2 expression in PFC, but the protein levels of protein gene product 9.5 (PGP9.5, a neuron specific protein), glial fibrillary acidic protein (GFAP), synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), parvalbumin (PV) and HCN1 were not distinguishably changed as compared with sham-operated rats. Baclofen treatment significantly improved the spatial working memory impairments caused by 2VO, accompanied with a reversion of 2VO-induced down-regulation of HCN2. Furthermore, there was a co-localization of HCN2 subunits and parvalbumin-positive neurons in PFC. Therefore, HCN2 may target inhibitory interneurons that is implicated in working memory processes, which may be a possible mechanism of the up-regulation of HCN2 by Baclofen treatment that reliefs spatial working memory deficits in rats with CCH. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wilhelm, Michael J.; Martínez-Núñez, Emilio; González-Vázquez, Jesús; Vázquez, Saulo A.; Smith, Jonathan M.; Dai, Hai-Lung
2017-11-01
Motivated by the possibility that cyano-containing hydrocarbons may act as photolytic sources for HCN and HNC in astrophysical environments, we conducted a combined experimental and theoretical investigation of the 193 nm photolysis of the cyano-ester, methyl cyanoformate (MCF). Experimentally, nanosecond time-resolved infrared emission spectroscopy was used to detect the emission from nascent products generated in the photolysis reaction. The time-resolved spectra were analyzed using a recently developed spectral reconstruction analysis, which revealed spectral bands assignable to HCN and HNC. Fitting of the emission band shape and intensity allowed determination of the photolysis quantum yields of HCN, HNC, and {CN}({A}2{{{\\Pi }}}1) and an HNC/HCN ratio of ˜0.076 ± 0.059. Additionally, multiconfiguration self-consistent field calculations were used to characterize photoexcitation-induced reactions in the ground and four lowest singlet excited states of MCF. At 193 nm excitation, dissociation is predicted to occur predominantly on the repulsive S 2 state, with minor pathways via internal conversion from S 2 to highly excited ground state. An automated transition-state search algorithm was employed to identify the corresponding ground-state dissociation channels, and Rice-Ramsperger-Kassel-Marcus and Kinetic Monte Carlo simulations were used to calculate the associated branching ratios. The proposed mechanisms were validated using the experimentally measured and quasi-classical trajectory-deduced nascent internal energy distributions of HCN and HNC. This work, along with previous studies, illustrates the propensity for cyano-containing hydrocarbons to act as photolytic sources for astrophysical HCN and HNC and may help explain the observed overabundance of HNC in astrophysical environments.
Synthesis of HCN and HNC in Ion-Irradiated N2-Rich Ices
NASA Technical Reports Server (NTRS)
Moore, M. H.; Hudson, R. L.; Ferrante, R. F.
2002-01-01
Near-IR observations reveal that N2-rich ice containing small amounts of CH4, and CO, is abundant on the surfaces of Triton, a moon of Neptune, and Pluto. N2-rich ices may also exist, in interstellar environments. To investigate the radiation chemistry of such ices we performed a systematic IR study of ion-irradiated Nz-rich mixtures containing CH4 and CO. Irradiation of N2 + CH4 mixtures at 12 K, showed that HCN, HNC, diazomethane, and NH3 were produced. We also found that UV photolysis of these ices produced detectable HCN and HNC. Intrinsic band strengths, A(HCN) and A(HNC), were measured and used to calculate yields of HCN and HNC. Similar results were obtained on irradiation of N2 + CH4 + CO ices at 12 K, with the main difference being the formation of HNCO. In all cases we observed changes on warming. For example, when the temperature of irradiated Nz + CH4 + CO was raised from 12 to 30 K, HCN, HNC, and HNCO reacted with NH3, and OCN-, CN-, N3-, and NH4+ were produced. These ions, appearing at 30 K, are expected to form and survive on the surfaces of Triton, Pluto, and interstellar grains. Our results have astrobiological implications since some of these radiation products are involved in the syntheses of biomolecules such as amino acids and peptides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguado, Alfredo; Roncero, Octavio; Zanchet, Alexandre
The impact of the photodissociation of HCN and HNC isomers is analyzed in different astrophysical environments. For this purpose, the individual photodissociation cross sections of HCN and HNC isomers have been calculated in the 7–13.6 eV photon energy range for a temperature of 10 K. These calculations are based on the ab initio calculation of three-dimensional adiabatic potential energy surfaces of the 21 lower electronic states. The cross sections are then obtained using a quantum wave packet calculation of the rotational transitions needed to simulate a rotational temperature of 10 K. The cross section calculated for HCN shows significant differencesmore » with respect to the experimental one, and this is attributed to the need to consider non-adiabatic transitions. Ratios between the photodissociation rates of HCN and HNC under different ultraviolet radiation fields have been computed by renormalizing the rates to the experimental value. It is found that HNC is photodissociated faster than HCN by a factor of 2.2 for the local interstellar radiation field and 9.2 for the solar radiation field, at 1 au. We conclude that to properly describe the HNC/HCN abundance ratio in astronomical environments illuminated by an intense ultraviolet radiation field, it is necessary to use different photodissociation rates for each of the two isomers, which are obtained by integrating the product of the photodissociation cross sections and ultraviolet radiation field over the relevant wavelength range.« less
Hydrogen Cyanide In Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Walker, Ashley L.; Oberg, Karin; Cleeves, L. Ilsedore
2018-01-01
The chemistry behind star and planet formation is extremely complex and important in the formation of habitable planets. Life requires molecules containing carbon, oxygen, and importantly, nitrogen. Hydrogen cyanide, or HCN, one of the main interstellar nitrogen carriers, is extremely dangerous here on Earth. However, it could be used as a vital tool for tracking the chemistry of potentially habitable planets. As we get closer to identifying other habitable planets, we must understand the beginnings of how those planets are formed in the early protoplanetary disk. This project investigates HCN chemistry in different locations in the disk, and what this might mean for forming planets at different distances from the star. HCN is a chemically diverse molecule. It is connected to the formation for other more complex molecules and is commonly used as a nitrogen tracer. Using computational chemical models we look at how the HCN abundance changes at different locations. We use realistic and physically motivated conditions for the gas in the protoplanetary disk: temperature, density, and radiation (UV flux). We analyze the reaction network, formation, and destruction of HCN molecules in the disk environment. The disk environment informs us about stability of habitable planets that are created based on HCN molecules. We reviewed and compared the difference in the molecules with a variety of locations in the disk and ultimately giving us a better understanding on how we view protoplanetary disks.
The correlation between HCN/H2O flux ratios and disk mass: evidence for protoplanet formation
NASA Astrophysics Data System (ADS)
Rose, Caitlin; Salyk, Colette
2017-01-01
We analyze hydrogen cyanide (HCN) and water vapor flux ratios in protoplanetary disks as a way to trace planet formation. Analyzing only disks in the Taurus molecular cloud, Najita et al. (2013) found a tentative correlation between protoplanetary disk mass and the HCN/H2O line flux ratio in Spitzer-IRS emission spectra. They interpret this correlation to be a consequence of more massive disks forming planetesimals more efficiently than smaller disks, as the formation of large planetesimals may lock up water ice in the cool outer disk region and prevent it from migrating, drying out the inner disk. The sequestering of water (and therefore oxygen) in the outer disk may also increase the carbon-to- oxygen ratio in the inner disk, leading to enhanced organic molecule (e.g. HCN) emission. To confirm this trend, we expand the Najita et al. sample by calculating HCN/H2O line flux ratios for 8 more sources with known disk masses from clusters besides Taurus. We find agreement with the Najita et al. trend, suggesting that this is a widespread phenomenon. In addition, we find HCN/H2O line flux ratios for 17 more sources that await disk mass measurements, which should become commonplace in the ALMA era. Finally, we investigate linear fits and outliers to this trend, and discuss possible causes.
Yedlapati, Neeraja; Fisher, John D
2014-09-01
We aimed to determine the practical value of pacemaker diagnostics for atrial fibrillation (AF) in an unselected general pacemaker practice, specifically workflow and initiation of anticoagulation or antiarrhythmic drug (AAD) therapy. We prospectively followed consecutive pacemaker interrogations over a period of 1 year to identify patients with AF (burden from 1% to 99%). We contacted referring physicians with AF details, and then determined whether the information resulted in therapeutic changes. Of the 1,100 pacemakers interrogated, 728 were dual chamber (DDDs) with AF diagnostic capability. AF was recorded in 73 (10%) but seven had limited information, leaving 66 patients; of these, 42 (63%) patients were already anticoagulated and in five (7%) patients, anticoagulation had been stopped because of complications. Initial diagnosis of AF was made by the pacemaker in 17 patients (26% of 66; 2% of 728); four (6% of 66) patients were newly initiated on anticoagulation. Of the 66 patients, 17 patients were already on AADs; 49 (74%) had satisfactory rate control or had other issues; only two (3% of 66; 0.3% of 728) received new AADs. Of 728 patients with DDD pacemakers, only 17 were newly discovered to have AF, and six (0.8%) had changes in medications based on the pacemaker data. Adding pacemaker-derived data to existing clinical information had little therapeutic impact, due to a combination of cumbersome workflow, and because AF was usually known to practitioners. Developments in automated monitoring systems may provide more accessible and therapeutically useful information. ©2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigle N. Clark
2006-12-31
This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developedmore » in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.« less
Al-Wakeel, Nadya; O h-Ici, Darach; Schmitt, Katharina R; Messroghli, Daniel R; Riesenkampff, Eugénie; Berger, Felix; Kuehne, Titus; Peters, Bjoern
2016-02-01
In patients with CHD, cardiac MRI is often indicated for functional and anatomical assessment. With the recent introduction of MRI-conditional pacemaker systems, cardiac MRI has become accessible for patients with pacemakers. The present clinical study aims to evaluate safety, susceptibility artefacts, and image reading of cardiac MRI in patients with CHD and MRI-conditional pacemaker systems. Material and methods CHD patients with MRI-conditional pacemaker systems and a clinical need for cardiac MRI were examined with a 1.5-T MRI system. Lead function was tested before and after MRI. Artefacts and image readings were evaluated using a four-point grading scale. A total of nine patients with CHD (mean age 34.0 years, range 19.5-53.6 years) received a total of 11 cardiac MRI examinations. Owing to clinical indications, seven patients had previously been converted from conventional to MRI-conditional pacemaker systems. All MRI examinations were completed without adverse effects. Device testing immediately after MRI and at follow-up showed no alteration of pacemaker device and lead function. Clinical questions could be addressed and answered in all patients. Cardiac MRI can be performed safely with high certainty of diagnosis in CHD patients with MRI-conditional pacemaker systems. In case of clinically indicated lead and box changing, CHD patients with non-MRI-conditional pacemaker systems should be considered for complete conversion to MRI-conditional systems.
Liu, Zhengang; Balasubramanian, Rajasekhar
2014-01-01
In the present study, the conversion of fuel-N to HCN and NH3 was investigated during rapid pyrolysis of raw biomass (coconut fiber), its corresponding biochar and their blends with lignite within a temperature range of 600-900°C. The results showed that the raw biomass and the biochar showed totally different nitrogen partitioning between NH3 and HCN. HCN was the dominant nitrogen pollutant from pyrolysis of raw biomass, while for the biochar pyrolysis the yield of NH3 was slightly higher than that of HCN. Synergistic interactions occurred within both raw biomass/lignite and biochar/lignite blends, especially for the biochar/lignite blend, and resulted in reduced yields of HCN and NH3, decreased the total nitrogen percentage retained in the char and promoted harmless N2 formation. These findings suggest that biochar/lignite co-firing for energy production may have the enhanced benefit of reduced emissions of nitrogen pollutants than raw biomass/lignite. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Jun; Tian, Yu; Cui, Yanni; Zuo, Wei; Tan, Tao
2013-03-01
The nitrogen transformations with attention to NH3 and HCN were investigated at temperatures of 300-800°C during microwave pyrolysis of a protein model compound. The evolution of nitrogenated compounds in the char, tar and gas products were conducted. The amine-N, heterocyclic-N and nitrile-N compounds were identified as three important intermediates during the pyrolysis. NH3 and HCN were formed with comparable activation energies competed to consume the same reactive substances at temperatures of 300-800°C. The deamination and dehydrogenation of amine-N compounds from protein cracking contributed to the formation of NH3 (about 8.9% of Soy-N) and HCN (6.6%) from 300 to 500°C. The cracking of nitrile-N and heterocyclic-N compounds from the dehydrogenation and polymerization of amine-N generated HCN (13.4%) and NH3 (31.3%) between 500 and 800°C. It might be able to reduce the HCN and NH3 emissions through controlling the intermediates production at temperatures of 500-800°C. Copyright © 2013 Elsevier Ltd. All rights reserved.
The retrospectroscope-the invention of the rechargeable cardiac pacemaker: vignette #9.
Fischell, R E
1990-01-01
The idea for a rechargeable cardiac pacemaker came to the author in the late 1960s after reading an advertisement stating that a company's batteries were so good they would last two years in a heart pacemaker. This meant that pacemaker patients would have to undergo surgery for their replacement frequently. Having worked on the development of hermetically sealed, nickel-cadmium batteries that could function for a decade or longer in an orbiting spacecraft, the author constructed the first prototype of a rechargeable cardiac pacemaker around 1968 to show cardiologists at Johns Hopkins Hospital that a pacemaker of indefinitely long life and much smaller size and weight could be built readily. The subsequent development and marketing of the device, which came on the market in 1973, is recounted.
New CO and HCN sources associated with IRAS carbon stars
NASA Technical Reports Server (NTRS)
NGUYEN-Q-RIEU; Epchtein, N.; TRUONG-BACH; Cohen, M.
1987-01-01
Emission of CO and HCN was detected in 22 out of a sample of 53 IRAS sources classified as unidentified carbon-rich objects. The sample was selected according to the presence of the silicon carbide feature as revealed by low-resolution spectra. The molecular line widths indicate that the CO and HCN emission arises from the circumstellar envelopes of very highly evolved stars undergoing mass loss. The visible stars tend to be deficient in CO as compared with unidentified sources. Most the detected CO and HCN IRAS stars are distinct and thick-shelled objects, but their infrared and CO luminosities are similar to those of IRC + 102156 AFGL and IRC-CO evolved stars. The 12 micron flux seems to be a good indicator of the distance, hence a guide for molecular searches.
NASA Astrophysics Data System (ADS)
Azhar, M.; Mandon, J.; Neerincx, A. H.; Liu, Z.; Mink, J.; Merkus, P. J. F. M.; Cristescu, S. M.; Harren, F. J. M.
2017-11-01
A compact, cost-effective sensor is developed for detection of hydrogen cyanide (HCN) in exhaled breath within seconds. For this, an off-axis integrated cavity output spectroscopy setup is combined with a widely tunable compact near-infrared laser (tunability 1527-1564 nm). For HCN a detection sensitivity has been obtained of 8 ppbv in nitrogen (within 1 s), equal to a noise equivalent absorption sensitivity of 1.9 × 10-9 cm-1 Hz-1/2. With this sensor we demonstrated the presence of HCN in exhaled breath; its detection could be a good indicator for bacterial lung infection. Due to its compact, cost-effective and user-friendly design, this laser-based sensor has the potential to be implemented in future clinical applications.
Novel technique of source and drain engineering for dual-material double-gate (DMDG) SOI MOSFETS
NASA Astrophysics Data System (ADS)
Yadav, Himanshu; Malviya, Abhishek Kumar; Chauhan, R. K.
2018-04-01
The dual-metal dual-gate (DMDG) SOI has been used with Dual Sided Source and Drain Engineered 50nm SOI MOSFET with various high-k gate oxide. It has been scrutinized in this work to enhance its electrical performance. The proposed structure is designed by creating Dual Sided Source and Drain Modification and its characteristics are evaluated on ATLAS device simulator. The consequence of this dual sided assorted doping on source and drain side of the DMDG transistor has better leakage current immunity and heightened ION current with higher ION to IOFF Ratio. Which thereby vesting the proposed device appropriate for low power digital applications.
The development of an interim generalized gate logic software simulator
NASA Technical Reports Server (NTRS)
Mcgough, J. G.; Nemeroff, S.
1985-01-01
A proof-of-concept computer program called IGGLOSS (Interim Generalized Gate Logic Software Simulator) was developed and is discussed. The simulator engine was designed to perform stochastic estimation of self test coverage (fault-detection latency times) of digital computers or systems. A major attribute of the IGGLOSS is its high-speed simulation: 9.5 x 1,000,000 gates/cpu sec for nonfaulted circuits and 4.4 x 1,000,000 gates/cpu sec for faulted circuits on a VAX 11/780 host computer.
Lee, Jung Hee; Kim, Tae Ho; Kim, Wook Sung
2015-04-01
Severe and permanent tricuspid regurgitation induced by pacemaker leads is rarely reported in the literature. The mechanism of pacemaker-induced tricuspid regurgitation has been identified, but its management has not been well established. Furthermore, debate still exists regarding the proper surgical approach. We present the case of a patient with severe tricuspid regurgitation induced by a pacemaker lead, accompanied by triple valve disease. The patient underwent double valve replacement and tricuspid valve repair without removal of the pre-existing pacemaker lead. The operation was successful and the surgical procedure is discussed in detail.
The effects of nuclear magnetic resonance on patients with cardiac pacemakers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlicek, W.; Geisinger, M.; Castle, L.
1983-04-01
The effect of nuclear magnetic resonance (NMR) imaging on six representative cardiac pacemakers was studied. The results indicate that the threshold for initiating the asynchronous mode of a pacemaker is 17 gauss. Radiofrequency levels are present in an NMR unit and may confuse or possibly inhibit demand pacemakers, although sensing circuitry is normally provided with electromagnetic interference discrimination. Time-varying magnetic fields can generate pulse amplitudes and frequencies to mimic cardiac activity. A serious limitation in the possibility of imaging a patient with a pacemaker would be the alteration of normal pulsing parameters due to time-varying magnetic fields.
Molecular nanomagnets with switchable coupling for quantum simulation
Chiesa, Alessandro; Whitehead, George F. S.; Carretta, Stefano; ...
2014-12-11
Molecular nanomagnets are attractive candidate qubits because of their wide inter- and intra-molecular tunability. Uniform magnetic pulses could be exploited to implement one- and two-qubit gates in presence of a properly engineered pattern of interactions, but the synthesis of suitable and potentially scalable supramolecular complexes has proven a very hard task. Indeed, no quantum algorithms have ever been implemented, not even a proof-of-principle two-qubit gate. In this paper we show that the magnetic couplings in two supramolecular {Cr7Ni}-Ni-{Cr7Ni} assemblies can be chemically engineered to fit the above requisites for conditional gates with no need of local control. Microscopic parameters aremore » determined by a recently developed many-body ab-initio approach and used to simulate quantum gates. We find that these systems are optimal for proof-of-principle two-qubit experiments and can be exploited as building blocks of scalable architectures for quantum simulation.« less
Modularity Induced Gating and Delays in Neuronal Networks
Shein-Idelson, Mark; Cohen, Gilad; Hanein, Yael
2016-01-01
Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition. PMID:27104350
21 CFR Appendix B to Subpart B of... - Scope of Product Coverage
Code of Federal Regulations, 2013 CFR
2013-04-01
... Portable air compressor 2 Cardiovascular Panel Cardiovascular Diagnostic 870.1425 Programmable diagnostic... Pacemaker & Accessories 870.1750 External programmable pacemaker pulse generator 2 870.3630 Pacemaker...
21 CFR Appendix B to Subpart B of... - Scope of Product Coverage
Code of Federal Regulations, 2014 CFR
2014-04-01
... Portable air compressor 2 Cardiovascular Panel Cardiovascular Diagnostic 870.1425 Programmable diagnostic... Pacemaker & Accessories 870.1750 External programmable pacemaker pulse generator 2 870.3630 Pacemaker...
21 CFR Appendix B to Subpart B of... - Scope of Product Coverage
Code of Federal Regulations, 2012 CFR
2012-04-01
... Portable air compressor 2 Cardiovascular Panel Cardiovascular Diagnostic 870.1425 Programmable diagnostic... Pacemaker & Accessories 870.1750 External programmable pacemaker pulse generator 2 870.3630 Pacemaker...
... with recurrent arrhythmias, medical devices such as a pacemaker and implantable cardioverter defibrillator (ICD) can help by ... with an ICD Questions to ask your doctor Pacemakers Learn what an artificial pacemaker is, how it ...
... please enable JavaScript. A pacemaker is a small, battery-operated device. This device senses when your heart ... pacemakers have 2 parts: The generator contains the battery and the information to control the heartbeat. The ...
On the HCN and CO 2 abundance and distribution in Jupiter's stratosphere
NASA Astrophysics Data System (ADS)
Lellouch, E.; Bézard, B.; Strobel, D. F.; Bjoraker, G. L.; Flasar, F. M.; Romani, P. N.
2006-10-01
Observations of Jupiter by Cassini/CIRS, acquired during the December 2000 flyby, provide the latitudinal distribution of HCN and CO 2 in Jupiter's stratosphere with unprecedented spatial resolution and coverage. Following up on a preliminary study by Kunde et al. [Kunde, V.G., and 41 colleagues, 2004. Science 305, 1582-1587], the analysis of these observations leads to two unexpected results (i) the total HCN mass in Jupiter's stratosphere in 2000 was (6.0±1.5)×10 g, i.e., at least three times larger than measured immediately after the Shoemaker-Levy 9 (SL9) impacts in July 1994 and (ii) the latitudinal distributions of HCN and CO 2 are strikingly different: while HCN exhibits a maximum at 45° S and a sharp decrease towards high Southern latitudes, the CO 2 column densities peak over the South Pole. The total CO 2 mass is (2.9±1.2)×10 g. A possible cause for the HCN mass increase is its production from the photolysis of NH 3, although a problem remains because, while millimeter-wave observations clearly indicate that HCN is currently restricted to submillibar ( ˜0.3 mbar) levels, immediate post-impact infrared observations have suggested that most of the ammonia was present in the lower stratosphere near 20 mbar. HCN appears to be a good atmospheric tracer, with negligible chemical losses. Based on 1-dimensional (latitude) transport models, the HCN distribution is best interpreted as resulting from the combination of a sharp decrease (over an order of magnitude in K) of wave-induced eddy mixing poleward of 40° and an equatorward transport with ˜7 cms velocity. The CO 2 distribution was investigated by coupling the transport model with an elementary chemical model, in which CO 2 is produced from the conversion of water originating either from SL9 or from auroral input. The auroral source does not appear adequate to reproduce the CO 2 peak over the South Pole, as required fluxes are unrealistically high and the shape of the CO 2 bulge is not properly matched. In contrast, the CO 2 distribution can be fit by invoking poleward transport with a ˜30 cms velocity and vigorous eddy mixing ( K=2×10 cms). While the vertical distribution of CO 2 is not measured, the combined HCN and CO 2 results imply that the two species reside at different stratospheric levels. Comparing with the circulation regimes predicted by earlier radiative-dynamical models of Jupiter's stratosphere, and with inferences from the ethane and acetylene stratospheric latitudinal distribution, we suggest that CO 2 lies in the middle stratosphere near or below the 5-mbar level.
NASA Astrophysics Data System (ADS)
Keane, Thomas Christopher
1995-01-01
The existence of hydrogen cyanide (HCN) in the highly reducing atmosphere of Jupiter was a surprising discovery (Tokunaga et al., 1981). Previous studies that tested the theoretical proposal of Kaye and Strobel (1983a) that the HCN observed on Jupiter is the result of NH _3 photolysis in the presence of C _2H_2 established that acetonitrile (CH_3CN) and acetaldazine (CH _3CH=NN=CHCH_3) are important intermediates in HCN formation (Ferris and Ishikawa, 1988). In this study the rates of formation of these compounds, and of other recently detected intermediates, have been determined in static photolysis experiments at 296 K and at temperatures which are closer to those found in the Jovian atmosphere. Experiments were also performed, using a photochemical flow reactor, that allowed for a better approximation of the mixing ratios of reactant gases (8 times 10^{ -4} for NH_3 and 1 times 10^{-5} for C_2H_2) and the process of advection in the Jovian atmosphere. An overall reaction pathway for HCN formation is proposed. Major intermediates and products found in these laboratory simulations that have not yet been observed on Jupiter are acetonitrile (CH_3CN), acetaldazine (CH_3CH=NN=CHCH _3), acetaldehyde hydrazone (CH_3 CH=NNH_2), N-ethylethylideneimine (CH_3CH=NC_2H _5), ethylamine (C_2H _5NH_2) and methylamine (CH _3NH_2). HCN is formed by the photolysis of NH_3/C _2H_2 mixtures (40:5 torr) at 296 K and at low temperature (208 K, 195 K and 180 K) with the highest quantum efficiency for HCN formation observed at 180 K. In static experiments using a high partial pressure of H_2 the quantum yield for HCN formation decreased three-fold relative to the 296 K photolyses when no H_2 was used. An additional ten-fold decrease in the quantum yield for HCN formation occurred when using the flow system. The quantum yields for acetaldazine and acetaldehyde hydrazone formation were found to vary inversely to that for HCN formation. For those static experiments which best simulate Jovian reaction conditions (H_2: NH_3 : C_2H_2 = 600: 7.5: 5 torr, 180 K) the following products and their quantum yields for formation were obtained: C_2H_4 (0.129), CH_3 CH=NN=CHCH_3 (0.079), CH _3CH=NNH_2 (0.049), C_2H_5NH_2 (0.038), CH_3NH_2 (0.003), CH_3CN (0.002), HCN (0.001) and CH_3CH=NC _2H_5 (0.001).
A pacemaker is a small, battery-operated electronic device which is inserted under the skin to help the heart beat regularly and at an appropriate rate. The pacemaker has leads that travel through a large vein ...
Near Infrared Spectra of H2O/HCN Mixtures
NASA Technical Reports Server (NTRS)
Mastrapa, R. M.; Bernstein, M. P.; Sanford, S. A.
2006-01-01
Cassini's VIMS has already returned exciting results interpreting spectra of Saturn's icy satellites. The discovery of unidentified features possibly due to CN compounds inspired the work reported here. We wanted to test HCN as a possibility for explaining these features, and also explore how the features of HCN change when mixed with H2O. We have previously noted that mixing H20 and CO2 produces new spectral features and that those features change with temperature and mixing ratio.
The usefulness of a stretch-polyester pouch to encase implanted pacemakers and defibrillators.
Parsonnet, V; Bernstein, A D; Neglia, D; Omar, A
1994-12-01
This study was undertaken to assess the effects of enclosing permanent pacemaker and ICD pulse generators in a stretch-polyester pouch prior to implantation. Follow-up of 223 patients with oversized pacemakers and with ICDs and 344 with standard-sized pacemaker pulse generators showed that the pouch was effective in decreasing the frequency of pulse generator migration and extrusion.
Yaniv, Yael; Ahmet, Ismayil; Tsutsui, Kenta; Behar, Joachim; Moen, Jack M; Okamoto, Yosuke; Guiriba, Toni-Rose; Liu, Jie; Bychkov, Rostislav; Lakatta, Edward G
2016-08-01
We aimed to determine how age-associated changes in mechanisms extrinsic and intrinsic to pacemaker cells relate to basal beating interval variability (BIV) reduction in vivo. Beating intervals (BIs) were measured in aged (23-25 months) and adult (3-4 months) C57BL/6 male mice (i) via ECG in vivo during light anesthesia in the basal state, or in the presence of 0.5 mg mL(-1) atropine + 1 mg mL(-1) propranolol (in vivo intrinsic conditions), and (ii) via a surface electrogram, in intact isolated pacemaker tissue. BIV was quantified in both time and frequency domains using linear and nonlinear indices. Although the average basal BI did not significantly change with age under intrinsic conditions in vivo and in the intact isolated pacemaker tissue, the average BI was prolonged in advanced age. In vivo basal BIV indices were found to be reduced with age, but this reduction diminished in the intrinsic state. However, in pacemaker tissue BIV indices increased in advanced age vs. adults. In the isolated pacemaker tissue, the sensitivity of the average BI and BIV in response to autonomic receptor stimulation or activation of mechanisms intrinsic to pacemaker cells by broad-spectrum phosphodiesterase inhibition declined in advanced age. Thus, changes in mechanisms intrinsic to pacemaker cells increase the average BIs and BIV in the mice of advanced age. Autonomic neural input to pacemaker tissue compensates for failure of molecular intrinsic mechanisms to preserve average BI. But this compensation reduces the BIV due to both the imbalance of autonomic neural input to the pacemaker cells and altered pacemaker cell responses to neural input. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Homma, Kohei; Okamoto, Satoshi; Mandai, Michiko; Gotoh, Norimoto; Rajasimha, Harsha K.; Chang, Yi-Sheng; Chen, Shan; Li, Wei; Cogliati, Tiziana; Swaroop, Anand; Takahashi, Masayo
2013-01-01
Replacement of dysfunctional or dying photoreceptors offers a promising approach for retinal neurodegenerative diseases, including age-related macular degeneration and retinitis pigmentosa. Several studies have demonstrated the integration and differentiation of developing rod photoreceptors when transplanted in wild type or degenerating retina; however, the physiology and function of the donor cells are not adequately defined. Here, we describe the physiological properties of developing rod photoreceptors that are tagged with GFP driven by the promoter of rod differentiation factor, Nrl. GFP-tagged developing rods show Ca2+ responses and rectifier outward currents that are smaller than those observed in fully developed photoreceptors, suggesting their immature developmental state. These immature rods also exhibit hyperpolarization-activated current (Ih) induced by the activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. When transplanted into the subretinal space of wild type or retinal degeneration mice, GFP-tagged developing rods can integrate into the photoreceptor outer nuclear layer in wild-type mouse retina, and exhibit Ca2+ responses and membrane current comparable to native rod photoreceptors. A proportion of grafted rods develop rhodopsin-positive outer segment-like structures within two weeks after transplantation into the retina of Crx-knockout mice, and produce rectifier outward current and Ih upon membrane depolarization and hyperpolarization. GFP-positive rods derived from induced pluripotent stem (iPS) cells also display similar membrane current Ih as native developing rod photoreceptors, express rod-specific phototransduction genes, and HCN-1 channels. We conclude that Nrl-promoter driven GFP-tagged donor photoreceptors exhibit physiological characteristics of rods and that iPS cell-derived rods in vitro may provide a renewable source for cell replacement therapy. PMID:23495178
Rateau, Y; Ropert, N
2006-05-01
The GABAergic neurons of the nucleus reticularis thalami (nRT) express the type 2 hyperpolarization-activated cAMP-sensitive (HCN2) subunit mRNA, but surprisingly, they were reported to lack the hyperpolarization-activated (Ih) current carried by this subunit. Using the voltage-clamp recordings in the thalamocortical slice preparation of the newborn and juvenile mice (P6-P23), we demonstrate that, in the presence of 1 mM barium (Ba2+), the nRT neurons express a slow hyperpolarization-activated inward current, suggesting that the Ih is present but masked in control conditions by K+ leak currents. We investigate the identity of the hyperpolarization-activated current in the nRT by studying its physiological and pharmacological profile in presence of Ba2+. We show that it has voltage- and time-dependent properties typical of the Ih, that it is blocked by cesium and ZD7288, two blockers of the Ih, and that it is carried both by the K+ and Na+ ions. We could also alter the gating characteristics of the hyperpolarization-activated current in the nRT by adding a nonhydrolysable analogue of cAMP to the pipette solution. Finally, using the current-clamp recording, we showed that blocking the hyperpolarization-activated current induced an hyperpolarization correlated with an increase of the R(in) of the nRT neurons. In conclusion, our results demonstrate that the nRT neurons express the Ih with slow kinetics similar to those described for the homomeric HCN2 channels, and we show that the Ih of the nRT contributes to the excitability of the nRT neurons in normal conditions.
LING, SHIZHANG; RETTIG, ELENI M.; TAN, MARIETTA; CHANG, XIAOFEI; WANG, ZHIMING; BRAIT, MARIANA; BISHOP, JUSTIN A.; FERTIG, ELANA J.; CONSIDINE, MICHAEL; WICK, MICHAEL J.; HA, PATRICK K.
2016-01-01
Salivary gland adenoid cystic carcinoma (ACC) is a rare head and neck malignancy without molecular biomarkers that can be used to predict the chemotherapeutic response or prognosis of ACC. The regulation of gene expression of oncogenes and tumor suppressor genes (TSGs) through DNA promoter methylation may play a role in the carcinogenesis of ACC. To identify differentially methylated genes in ACC, a global demethylating agent, 5-aza-2′-deoxycytidine (5-AZA) was utilized to unmask putative TSG silencing in ACC xenograft models in mice. Fresh xenografts were passaged, implanted in triplicate in mice that were treated with 5-AZA daily for 28 days. These xenografts were then evaluated for genome-wide DNA methylation patterns using the Illumina Infinium HumanMethylation27 BeadChip array. Validation of the 32 candidate genes was performed by bisulfite sequencing (BS-seq) in a separate cohort of 6 ACC primary tumors and 6 normal control salivary gland tissues. Hypermethylation was identified in the HCN2 gene promoter in all 6 control tissues, but hypomethylation was found in all 6 ACC tumor tissues. Quantitative validation of HCN2 promoter methylation level in the region detected by BS-seq was performed in a larger cohort of primary tumors (n=32) confirming significant HCN2 hypomethylation in ACCs compared with normal samples (n=10; P=0.04). HCN2 immunohistochemical staining was performed on an ACC tissue microarray. HCN2 staining intensity and H-score, but not percentage of the positively stained cells, were significantly stronger in normal tissues than those of ACC tissues. With our novel screening and sequencing methods, we identified several gene candidates that were methylated. The most significant of these genes, HCN2, was actually hypomethylated in tumors. However, promoter methylation status does not appear to be a major determinant of HCN2 expression in normal and ACC tissues. HCN2 hypomethylation is a biomarker of ACC and may play an important role in the carcinogenesis of ACC. PMID:27212063
Risk Factors For Bradycardia Requiring Pacemaker Implantation In Patients With Atrial Fibrillation
Barrett, Tyler W.; Abraham, Robert L.; Jenkins, Cathy A.; Russ, Stephan; Storrow, Alan B.; Darbar, Dawood
2012-01-01
Symptomatic bradycardia may complicate atrial fibrillation (AF) and necessitate a permanent pacemaker. Identifying patients at increased risk for symptomatic bradycardia may reduce associated morbidities and healthcare costs. We investigated predictors for developing bradycardia requiring a permanent pacemaker among AF patients. We reviewed records of all patients treated for AF/flutter in an academic hospital’s emergency department from 8/1/2005 to 8/30/2008. We determined survival and presence of a pacemaker as of 11/1/2011. Cases were defined as patients with pacemakers placed for bradycardia after their AF diagnoses. Patients without a pacemaker who were followed at our hospital comprised the controls. We identified a priori variables for the logistic regression analysis. We fit a post-hoc model adjusting for AF type and atrioventricular nodal blocker (AVN) use. Of the 362 patients in our cohort, 119 cases had permanent pacemakers implanted for bradycardia subsequent to AF diagnosis and 243 controls were alive without a pacemaker. Median and interquartile range follow-up time was 4.5 (3.8 – 5.4) years. Odds ratios and 95% confidence intervals were determined for age at time of AF diagnosis (1.02 [1, 1.04]), female (1.58 [0.95, 2.63]), prior heart failure (2.72 [1.47, 5.01]), and African-American (0.33 [0.12, 0.94]). Post-hoc model identified permanent AF (2.99 [1.61, 5.57]) and AVN use (1.43 [0.85, 2.4]). In conclusion, among AF patients, heart failure and permanent AF each nearly triple the odds of developing bradycardia requiring a permanent pacemaker; while not statistically significant, our results suggest that women are more likely and African-Americans less likely to develop bradycardia requiring pacemaker implantation. PMID:22840846
Cheong, Hyeonsook; Paudyal, Dilli Parasad; Jun, Jae Yeoul; Yeum, Cheol Ho; Yoon, Pyung Jin; Park, Chan Guk; Kim, Man Yoo; So, Insuk; Kim, Ki Whan; Choi, Seok
2005-10-31
Extracts of pine needles (Pinus densiflora Sieb. et Zucc.) have diverse physiological and pharmacological actions. In this study we show that pine needle extract alters pacemaker currents in interstitial cells of Cajal (ICC) by modulating ATP-sensitive K+ channels and that this effect is mediated by prostaglandins. In whole cell patches at 30 degrees , ICC generated spontaneous pacemaker potentials in the current clamp mode (I = 0), and inward currents (pacemaker currents) in the voltage clamp mode at a holding potential of -70 mV. Pine needle extract hyperpolarized the membrane potential, and in voltage clamp mode decreased both the frequency and amplitude of the pacemaker currents, and increased the resting currents in the outward direction. It also inhibited the pacemaker currents in a dose-dependent manner. Because the effects of pine needle extract on pacemaker currents were the same as those of pinacidil (an ATP-sensitive K+ channel opener) we tested the effect of glibenclamide (an ATP-sensitive K+ channels blocker) on ICC exposed to pine needle extract. The effects of pine needle extract on pacemaker currents were blocked by glibenclamide. To see whether production of prostaglandins (PGs) is involved in the inhibitory effect of pine needle extract on pacemaker currents, we tested the effects of naproxen, a non-selective cyclooxygenase (COX-1 and COX-2) inhibitor, and AH6809, a prostaglandin EP1 and EP2 receptor antagonist. Naproxen and AH6809 blocked the inhibitory effects of pine needle extract on ICC. These results indicate that pine needle extract inhibits the pacemaker currents of ICC by activating ATP-sensitive K+ channels via the production of PGs.
Larsen, P D; Kerr, A J; Hood, M; Harding, S A; Hooks, D; Heaven, D; Lever, N A; Sinclair, S; Boddington, D; Tang, E W; Swampillai, J; Stiles, M K
2017-03-01
The New Zealand Cardiac Implanted Device Registry (Device) has recently been developed under the auspices of the New Zealand Branch of the Cardiac Society of Australia and New Zealand. This study describes the initial Device registry cohort of patients receiving a new pacemaker, their indications for pacing and their perioperative complications. The Device Registry was used to audit patients receiving a first pacemaker between 1 st January 2014 and 1 st June 2015. We examined 1611 patients undergoing first pacemaker implantation. Patients were predominantly male (59%), and had a median age of 70 years. The most common symptom for pacemaker implantation was syncope (39%), followed by dizziness (30%) and dyspnoea (12%). The most common aetiology for a pacemaker was a conduction tissue disorder (35%), followed by sinus node dysfunction (22%). Atrioventricular (AV) block was the most common ECG abnormality, present in 44%. Dual chamber pacemakers were most common (62%), followed by single chamber ventricular pacemakers (34%), and cardiac resynchronisation therapy - pacemakers (CRT-P) (2%). Complications within 24hours of the implant procedure were reported in 64 patients (3.9%), none of which were fatal. The most common complication was the need for reoperation to manipulate a lead, occurring in 23 patients (1.4%). This is the first description of data entered into the Device registry. Patients receiving a pacemaker were younger than in European registries, and there was a low use of CRT-P devices compared to international rates. Complications rates were low and compare favourably to available international data. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Holonomic Quantum Control with Continuous Variable Systems.
Albert, Victor V; Shu, Chi; Krastanov, Stefan; Shen, Chao; Liu, Ren-Bao; Yang, Zhen-Biao; Schoelkopf, Robert J; Mirrahimi, Mazyar; Devoret, Michel H; Jiang, Liang
2016-04-08
Universal computation of a quantum system consisting of superpositions of well-separated coherent states of multiple harmonic oscillators can be achieved by three families of adiabatic holonomic gates. The first gate consists of moving a coherent state around a closed path in phase space, resulting in a relative Berry phase between that state and the other states. The second gate consists of "colliding" two coherent states of the same oscillator, resulting in coherent population transfer between them. The third gate is an effective controlled-phase gate on coherent states of two different oscillators. Such gates should be realizable via reservoir engineering of systems that support tunable nonlinearities, such as trapped ions and circuit QED.
Zebrafish heart as a model to study the integrative autonomic control of pacemaker function
Stoyek, Matthew R.; Quinn, T. Alexander; Croll, Roger P.
2016-01-01
The cardiac pacemaker sets the heart's primary rate, with pacemaker discharge controlled by the autonomic nervous system through intracardiac ganglia. A fundamental issue in understanding the relationship between neural activity and cardiac chronotropy is the identification of neuronal populations that control pacemaker cells. To date, most studies of neurocardiac control have been done in mammalian species, where neurons are embedded in and distributed throughout the heart, so they are largely inaccessible for whole-organ, integrative studies. Here, we establish the isolated, innervated zebrafish heart as a novel alternative model for studies of autonomic control of heart rate. Stimulation of individual cardiac vagosympathetic nerve trunks evoked bradycardia (parasympathetic activation) and tachycardia (sympathetic activation). Simultaneous stimulation of both vagosympathetic nerve trunks evoked a summative effect. Effects of nerve stimulation were mimicked by direct application of cholinergic and adrenergic agents. Optical mapping of electrical activity confirmed the sinoatrial region as the site of origin of normal pacemaker activity and identified a secondary pacemaker in the atrioventricular region. Strong vagosympathetic nerve stimulation resulted in a shift in the origin of initial excitation from the sinoatrial pacemaker to the atrioventricular pacemaker. Putative pacemaker cells in the sinoatrial and atrioventricular regions expressed adrenergic β2 and cholinergic muscarinic type 2 receptors. Collectively, we have demonstrated that the zebrafish heart contains the accepted hallmarks of vertebrate cardiac control, establishing this preparation as a viable model for studies of integrative physiological control of cardiac function by intracardiac neurons. PMID:27342878
Fahie, Monifa; Chisholm, Christina; Chen, Min
2015-02-24
Oligomeric protein nanopores with rigid structures have been engineered for the purpose of sensing a wide range of analytes including small molecules and biological species such as proteins and DNA. We chose a monomeric β-barrel porin, OmpG, as the platform from which to derive the nanopore sensor. OmpG is decorated with seven flexible loops that move dynamically to create a distinct gating pattern when ionic current passes through the pore. Biotin was chemically tethered to the most flexible one of these loops. The gating characteristic of the loop's movement in and out of the porin was substantially altered by analyte protein binding. The gating characteristics of the pore with bound targets were remarkably sensitive to molecular identity, even providing the ability to distinguish between homologues within an antibody mixture. A total of five gating parameters were analyzed for each analyte to create a unique fingerprint for each biotin-binding protein. Our exploitation of gating noise as a molecular identifier may allow more sophisticated sensor design, while OmpG's monomeric structure greatly simplifies nanopore production.
Reticulated telangiectatic erythema of the pacemaker.
Martin, Lucy K; Wendschuh, Philip; Wendschuh, Peter
2008-05-01
Reticulated telangiectatic erythema is a rare entity; it has been reported to occur following the placement of implanted cardiac devices and drug delivery systems. Histologically, reticulated telangiectatic erythema of the pacemaker is characterized by slight spongiosis and increased dermal telangiectasias. We describe a patient that developed reticulated telangiectatic nonpruritic patches on the left chest after the placement of a pacemaker. The patient responded favorably to the removal of the pacemaker.
Retrieval of the Leadless Cardiac Pacemaker: A Multicenter Experience.
Reddy, Vivek Y; Miller, Marc A; Knops, Reinoud E; Neuzil, Petr; Defaye, Pascal; Jung, Werner; Doshi, Rahul; Castellani, Mark; Strickberger, Adam; Mead, R Hardwin; Doppalapudi, Harish; Lakkireddy, Dhanunjaya; Bennett, Matthew; Sperzel, Johannes
2016-12-01
Leadless cardiac pacemakers have emerged as a safe and effective alternative to conventional transvenous single-chamber ventricular pacemakers. Herein, we report a multicenter experience on the feasibility and safety of acute retrieval (<6 weeks) and chronic retrieval (>6 weeks) of the leadless cardiac pacemaker in humans. This study included patients enrolled in 3 multicenter trials, who received a leadless cardiac pacemaker implant and who subsequently underwent a device removal attempt. The overall leadless pacemaker retrieval success rate was 94%: for patients whose leadless cardiac pacemaker had been implanted for <6 weeks (acute retrieval cohort), complete retrieval was achieved in 100% (n=5/5); for those implanted for ≥ 6 weeks (chronic retrieval cohort), retrieval was achieved in 91% (n=10/11) of patients. The mean duration of time from implant to retrieval attempt was 346 days (range, 88-1188 days) in the chronic retrieval cohort, and nearly two thirds (n=7; 63%) had been implanted for >6 months before the retrieval attempt. There were no procedure-related adverse events at 30 days post retrieval procedure. This multicenter experience demonstrated the feasibility and safety of retrieving a chronically implanted single-chamber (right ventricle) active fixation leadless pacemaker. URL: https://www.clinicaltrials.gov. Unique identifiers: NCT02051972, NCT02030418, and NCT01700244. © 2016 American Heart Association, Inc.
Rhabdomyosarcoma associated with the lead wire of a pacemaker generator implant.
Thieman Mankin, Kelley M; Dunbar, Mark D; Toplon, David; Ginn, Pamela; Maisenbacher, Herbert W; Risselada, Marije
2014-06-01
An 11-year-old female spayed Labrador Retriever was presented for a draining, painful subcutaneous mass palpated over a previously implanted pacemaker generator. Infection was suspected and the mass was removed surgically. On cut surface, the mass was friable and mottled tan to brown with firm pale tan nodules, surrounding the pacemaker lead wire adjacent to the pacemaker generator. Cytologic interpretation of impression smears was consistent with a sarcoma, and suggestive of a rhabdomyosarcoma due to the presence of strap-like cells. On histopathologic examination, a highly invasive nodular mass surrounded the pacemaker lead, composed of pleomorphic round, spindle and strap cells, and multinucleated giant cells. The population exhibited microscopic invasion into the deep portion of the fibrous capsule surrounding the pacemaker generator. There were tumor emboli within small to medium subcutaneous veins adjacent to the mass. Immunohistochemically, the neoplastic cells stained positive for α-sarcomeric actin and vimentin, and negative for α-smooth muscle actin, consistent with a rhabdomyosarcoma arising at the site of the pacemaker generator. To our knowledge, this is the first report of a rhabdomyosarcoma associated with the lead wire of a pacemaker generator in a dog. © 2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.
Influence of digital and analogue cellular telephones on implanted pacemakers.
Altamura, G; Toscano, S; Gentilucci, G; Ammirati, F; Castro, A; Pandozi, C; Santini, M
1997-10-01
The aim of this study was to find out whether digital and analogue cellular 'phones affect patients with pacemakers. The study comprised continuous ECG monitoring of 200 pacemaker patients. During the monitoring certain conditions caused by interference created by the telephone were looked for: temporary or prolonged pacemaker inhibition; a shift to asynchronous mode caused by electromagnetic interference; an increase in ventricular pacing in dual chamber pacemakers, up to the programmed upper rate. The Global System for Mobile Communications system interfered with pacing 97 times in 43 patients (21.5%). During tests on Total Access of Communication System telephones, there were 60 cases of pacing interference in 35 patients (17.5%). There were 131 interference episodes during ringing vs 26 during the on/off phase; (P < 0.0001); 106 at maximum sensitivity level vs 51 at the 'base' value; P < 0.0001). Prolonged pacing inhibition (> 4 s) was seen at the pacemaker 'base' sensing value in six patients using the Global system but in only one patient using Total Access. Cellular 'phones may be dangerous for pacemaker patients. However, they can be used safely if patients do not carry the 'phone close to the pacemaker, which is the only place where high risk interference has been observed.
Pacemaker therapy in low-birth-weight infants.
Fuchigami, Tai; Nishioka, Masahiko; Akashige, Toru; Shimabukuro, Atsuya; Nagata, Nobuhiro
2018-02-01
Infants born with complete atrioventricular block (CAVB) and fetal bradycardia are frequently born with low birth weight. Three low-birth-weight CAVB infants underwent temporary pacemaker implantation, followed by permanent single-chamber pacemaker implantation at median body weights of 1.7 and 3.2 kg, respectively. All infants caught up with their growth curves and had >3 years of estimated residual battery life. This two-stage strategy was successful in facilitating permanent pacemaker implantation in low-birth-weight babies. Placement of single-chamber pacemaker on the apex of the left ventricle appears to be associated with longer battery lifespan. © 2018 Wiley Periodicals, Inc.
Effect on pacemakers of airport weapons detectors
Johnson, David L.
1974-01-01
An investigation was carried out using a variety of pacemakers and all the types of weapons detectors in common use in Canada, to determine whether or not such detectors present a hazard to pacemaker bearers. The results indicate that only left-side implants of unipolar sensing pacemakers are likely to be affected, that ventricular fibrillation initiated by interference-induced competitive pacing is the only conceivable hazard, but that the probability of 10−9 for the occurrence of this event is so low that it may be completely disregarded. Physicians may therefore reassure pacemaker bearers of their safety in and around airport weapons detectors. ImagesFIG. 1 PMID:4825148
NASA Technical Reports Server (NTRS)
1990-01-01
Synchrony, developed by St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.) is an advanced state-of-the-art implantable pacemaker that closely matches the natural rhythm of the heart. The companion element of the Synchrony Pacemaker System is the Programmer Analyzer APS-II which allows a doctor to reprogram and fine tune the pacemaker to each user's special requirements without surgery. The two-way communications capability that allows the physician to instruct and query the pacemaker is accomplished by bidirectional telemetry. APS-II features 28 pacing functions and thousands of programming combinations to accommodate diverse lifestyles. Microprocessor unit also records and stores pertinent patient data up to a year.
Space Derived Health Aids (Cardiac Pacemaker)
NASA Technical Reports Server (NTRS)
1981-01-01
St. Jude Medical's Cardiac Rhythm Management Division's (formerly known as Pacesetter Systems, Inc.) pacer is a rechargeable cardiac pacemaker that eliminates the recurring need for surgery to implant a new battery. The Programalith is an advanced cardiac pacing system which permits a physician to reprogram a patient's implanted pacemaker without surgery. System consists of a pacemaker, together with a physician's console containing the programmer and a data printer. Signals are transmitted by wireless telemetry. Two-way communications, originating from spacecraft electrical power systems technology, allows physician to interrogate the pacemaker as to the status of the heart, then to fine tune the device to best suit the patient's needs.
Output power stability of a HCN laser using a stepping motor for the EAST interferometer system
NASA Astrophysics Data System (ADS)
Zhang, J. B.; Wei, X. C.; Liu, H. Q.; Shen, J. J.; Zeng, L.; Jie, Y. X.
2015-11-01
The HCN laser on EAST is a continuous wave glow discharge laser with 3.4 m cavity length and 120 mW power output at 337 μ m wavelength. Without a temperature-controlled system, the cavity length of the laser is very sensitive to the environmental temperature. An external power feedback control system is applied on the HCN laser to stabilize the laser output power. The feedback system is composed of a stepping motor, a PLC, a supervisory computer, and the corresponding control program. One step distance of the stepping motor is 1 μ m and the time response is 0.5 s. Based on the power feedback control system, a stable discharge for the HCN laser is obtained more than eight hours, which satisfies the EAST experiment.
Ground-based infrared spectroscopic measurements of atmospheric hydrogen cyanide
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Smith, M. A. H.; Rinsland, P. L.; Goldman, A.; Brault, J. W.; Stokes, G. M.
1982-01-01
A number of lines of the nu-3 band of hydrogen cyanide have been detected in solar absorption spectra recorded near sunrise and sunset at Kitt Peak National Observatory (elevation 2095 m) with a 0.01/cm resolution Fourier transform spectrometer. Analysis of two of the strongest and best isolated lines has led to a value of 2.73 x 10 to the 15th molecules/sq cm for the vertical column abundance of HCN above Kitt Peak. The accuracy of this value is estimated as + or - 25%. This result, combined with the stratospheric concentration of HCN derived by Coffey, Mankin, and Cicerone (1981), yields 166 parts per trillion by volume for the average mixing ratio of HCN between 2 and 12 km. This is the first determination of the HCN concentration in the nonurban troposphere.
Radiative transfer of HCN: interpreting observations of hyperfine anomalies
NASA Astrophysics Data System (ADS)
Mullins, A. M.; Loughnane, R. M.; Redman, M. P.; Wiles, B.; Guegan, N.; Barrett, J.; Keto, E. R.
2016-07-01
Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components. The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium (LTE). This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper, we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anomalous hyperfine emission emerges naturally. To do this requires not only accurate radiative rates between hyperfine states, but also accurate collisional rates. We investigate the effects of different sets of hyperfine collisional rates, derived via the proportional method and through direct recoupling calculations. Through an extensive parameter sweep over typical low-mass star-forming conditions, we show the HCN line ratios to be highly variable to optical depth. We also reproduce an observed effect whereby the red-blue asymmetry of the hyperfine lines (an infall signature) switches sense within a single rotational transition.
Pacemakers and Implantable Defibrillators - Multiple Languages
... Multiple Languages → All Health Topics → Pacemakers and Implantable Defibrillators URL of this page: https://medlineplus.gov/languages/ ... List of All Topics All Pacemakers and Implantable Defibrillators - Multiple Languages To use the sharing features on ...
Selective interference with pacemaker activity by electrical dental devices.
Miller, C S; Leonelli, F M; Latham, E
1998-01-01
We sought to determine whether electromagnetic interference with cardiac pacemakers occurs during the operation of contemporary electrical dental equipment. Fourteen electrical dental devices were tested in vitro for their ability to interfere with the function of two Medtronics cardiac pacemakers (one a dual-chamber, bipolar Thera 7942 pacemaker, the other a single-chamber, unipolar Minix 8340 pacemaker). Atrial and ventricular pacemaker output and electrocardiographic activity were monitored by means of telemetry with the use of a Medtronics 9760/90 programmer. Atrial and ventricular pacing were inhibited by electromagnetic interference produced by the electrosurgical unit up to a distance of 10 cm, by the ultrasonic bath cleaner up to 30 cm, and by the magnetorestrictive ultrasonic scalers up to 37.5 cm. In contrast, operation of the amalgamator, electric pulp tester, composite curing light, dental handpieces, electric toothbrush, microwave oven, dental chair and light, ENAC ultrasonic instrument, radiography unit, and sonic scaler did not alter pacing rate or rhythm. These results suggest that certain electrosurgical and ultrasonic instruments may produce deleterious effects in medically fragile patients with cardiac pacemakers.
Mainigi, Sumeet K; Chebrolu, Lakshmi Hima Bindu; Romero-Corral, Abel; Mehta, Vinay; Machado, Rodolfo Rozindo; Konecny, Tomas; Pressman, Gregg S
2012-10-01
Cardiac calcification is associated with coronary artery disease, arrhythmias, conduction disease, and adverse cardiac events. Recently, we have described an echocardiographic-based global cardiac calcification scoring system. The objective of this study was to evaluate the severity of cardiac calcification in patients with permanent pacemakers as based on this scoring system. Patients with a pacemaker implanted within the 2-year study period with a previous echocardiogram were identified and underwent blinded global cardiac calcium scoring. These patients were compared to matched control patients without a pacemaker who also underwent calcium scoring. The study group consisted of 49 patients with pacemaker implantation who were compared to 100 matched control patients. The mean calcium score in the pacemaker group was 3.3 ± 2.9 versus 1.8 ± 2.0 (P = 0.006) in the control group. Univariate and multivariate analysis revealed glomerular filtration rate and calcium scoring to be significant predictors of the presence of a pacemaker. Echocardiographic-based calcium scoring correlates with the presence of severe conduction disease requiring a pacemaker. © 2012, Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yu, Haitao; Wang, Jiang; Liu, Chen; Deng, Bin; Wei, Xile
2011-12-01
We study the phenomenon of stochastic resonance on a modular neuronal network consisting of several small-world subnetworks with a subthreshold periodic pacemaker. Numerical results show that the correlation between the pacemaker frequency and the dynamical response of the network is resonantly dependent on the intensity of additive spatiotemporal noise. This effect of pacemaker-driven stochastic resonance of the system depends extensively on the local and the global network structure, such as the intra- and inter-coupling strengths, rewiring probability of individual small-world subnetwork, the number of links between different subnetworks, and the number of subnetworks. All these parameters play a key role in determining the ability of the network to enhance the noise-induced outreach of the localized subthreshold pacemaker, and only they bounded to a rather sharp interval of values warrant the emergence of the pronounced stochastic resonance phenomenon. Considering the rather important role of pacemakers in real-life, the presented results could have important implications for many biological processes that rely on an effective pacemaker for their proper functioning.
Chevalier, Marc; Toporikova, Natalia; Simmers, John; Thoby-Brisson, Muriel
2016-01-01
Breathing is a vital rhythmic behavior generated by hindbrain neuronal circuitry, including the preBötzinger complex network (preBötC) that controls inspiration. The emergence of preBötC network activity during prenatal development has been described, but little is known regarding inspiratory neurons expressing pacemaker properties at embryonic stages. Here, we combined calcium imaging and electrophysiological recordings in mouse embryo brainstem slices together with computational modeling to reveal the existence of heterogeneous pacemaker oscillatory properties relying on distinct combinations of burst-generating INaP and ICAN conductances. The respective proportion of the different inspiratory pacemaker subtypes changes during prenatal development. Concomitantly, network rhythmogenesis switches from a purely INaP/ICAN-dependent mechanism at E16.5 to a combined pacemaker/network-driven process at E18.5. Our results provide the first description of pacemaker bursting properties in embryonic preBötC neurons and indicate that network rhythmogenesis undergoes important changes during prenatal development through alterations in both circuit properties and the biophysical characteristics of pacemaker neurons. DOI: http://dx.doi.org/10.7554/eLife.16125.001 PMID:27434668
Hu, Yu-Feng; Dawkins, James Frederick; Cho, Hee Cheol; Marbán, Eduardo; Cingolani, Eugenio
2016-01-01
Somatic reprogramming by reexpression of the embryonic transcription factor T-box 18 (TBX18) converts cardiomyocytes into pacemaker cells. We hypothesized that this could be a viable therapeutic avenue for pacemaker-dependent patients afflicted with device-related complications, and therefore tested whether adenoviral TBX18 gene transfer could create biological pacemaker activity in vivo in a large-animal model of complete heart block. Biological pacemaker activity, originating from the intramyocardial injection site, was evident in TBX18-transduced animals starting at day 2 and persisted for the duration of the study (14 days) with minimal backup electronic pacemaker use. Relative to controls transduced with a reporter gene, TBX18-transduced animals exhibited enhanced autonomic responses and physiologically superior chronotropic support of physical activity. Induced sinoatrial node cells could be identified by their distinctive morphology at the site of injection in TBX18-transduced animals, but not in controls. No local or systemic safety concerns arose. Thus, minimally invasive TBX18 gene transfer creates physiologically relevant pacemaker activity in complete heart block, providing evidence for therapeutic somatic reprogramming in a clinically relevant disease model. PMID:25031269
Involvement of mitochondrial Na+–Ca2+ exchange in intestinal pacemaking activity
Kim, Byung Joo; Jun, Jae Yeoul; So, Insuk; Kim, Ki Whan
2006-01-01
AIM: Interstitial cells of Cajal (ICCs) are the pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We have aimed to investigate the involvement of mitochondrial Na+-Ca2+ exchange in intestinal pacemaking activity in cultured interstitial cells of Cajal. METHODS: Enzymatic digestions were used to dissociate ICCs from the small intestine of a mouse. The whole-cell patch-clamp configuration was used to record membrane currents (voltage clamp) and potentials (current clamp) from cultured ICCs. RESULTS: Clonazepam and CGP37157 inhibited the pacemaking activity of ICCs in a dose-dependent manner. Clonazepam from 20 to 60 µmol/L and CGP37157 from 10 to 30 µmol/L effectively inhibited Ca2+ efflux from mitochondria in pacemaking activity of ICCs. The IC50s of clonazepam and CGP37157 were 37.1 and 18.2 µmol/L, respectively. The addition of 20 µmol/L NiCl2 to the internal solution caused a “wax and wane” phenomenon of pacemaking activity of ICCs. CONCLUSION: These results suggest that mitochondrial Na+-Ca2+ exchange has an important role in intestinal pacemaking activity. PMID:16521198
NASA Astrophysics Data System (ADS)
Yadav, Dharmendra Singh; Verma, Abhishek; Sharma, Dheeraj; Tirkey, Sukeshni; Raad, Bhagwan Ram
2017-11-01
Tunnel-field-effect-transistor (TFET) has emerged as one of the most prominent devices to replace conventional MOSFET due to its ability to provide sub-threshold slope below 60 mV/decade (SS ≤ 60 mV/decade) and low leakage current. Despite this, TFETs suffer from ambipolar behavior, lower ON-state current, and poor RF performance. To address these issues, we have introduced drain and gate work function engineering with hetero gate dielectric for the first time in charge plasma based doping-less TFET (DL TFET). In this, the usage of dual work functionality over the drain region significantly reduces the ambipolar behavior of the device by varying the energy barrier at drain/channel interface. Whereas, the presence of dual work function at the gate terminal increases the ON-state current (ION). The combined effect of dual work function at the gate and drain electrode results in the increment of ON-state current (ION) and decrement of ambipolar conduction (Iambi) respectively. Furthermore, the incorporation of hetero gate dielectric along with dual work functionality at the drain and gate electrode provides an overall improvement in the performance of the device in terms of reduction in ambipolarity, threshold voltage and sub-threshold slope along with improved ON-state current and high frequency figures of merit.
Paulin, Mélanie M.; Novinscak, Amy; Lanteigne, Carine; Gadkar, Vijay J.
2017-01-01
ABSTRACT We have previously demonstrated that inoculation of tomato plants with 2,4-diacetylphloroglucinol (DAPG)- and hydrogen cyanide (HCN)-producing Pseudomonas brassicacearum LBUM300 could significantly reduce bacterial canker symptoms caused by Clavibacter michiganensis subsp. michiganensis. In this study, in order to better characterize the population dynamics of LBUM300 in the rhizosphere of tomato plants, we characterized the role played by DAPG and HCN production by LBUM300 on rhizosphere colonization of healthy and C. michiganensis subsp. michiganensis-infected tomato plants. The impact of C. michiganensis subsp. michiganensis presence on the expression of DAPG and HCN biosynthetic genes in the rhizosphere was also examined. In planta assays were performed using combinations of C. michiganensis subsp. michiganensis and wild-type LBUM300 or DAPG (LBUM300ΔphlD) or HCN (LBUM300ΔhcnC) isogenic mutant strains. Populations of LBUM300 and phlD and hcnC gene expression levels were quantified in rhizosphere soil at several time points up to 264 h postinoculation using culture-independent quantitative PCR (qPCR) and reverse transcriptase quantitative PCR (RT-qPCR) TaqMan assays, respectively. The presence of C. michiganensis subsp. michiganensis significantly increased rhizospheric populations of LBUM300. In C. michiganensis subsp. michiganensis-infected tomato rhizospheres, the populations of wild-type LBUM300 and strain LBUM300ΔhcnC, both producing DAPG, were significantly higher than the population of strain LBUM300ΔphlD. A significant upregulation of phlD expression was observed in the presence of C. michiganensis subsp. michiganensis, while hcnC expression was only slightly increased in the mutant strain LBUM300ΔphlD when C. michiganensis subsp. michiganensis was present. Additionally, biofilm production was found to be significantly reduced in strain LBUM300ΔphlD compared to the wild-type and LBUM300ΔhcnC strains. IMPORTANCE The results of this study suggest that C. michiganensis subsp. michiganensis infection of tomato plants contributes to increasing rhizospheric populations of LBUM300, a biocontrol agent, as well as the overexpression of the DAPG biosynthetic operon in this bacterium. The increasing rhizospheric populations of LBUM300 represent one of the key factors in controlling C. michiganensis subsp. michiganensis in tomato plants, as DAPG-producing bacteria have shown the ability to decrease bacterial canker symptoms in tomato plants. PMID:28432096
1978 Pacemaker Newspaper Awards: What Makes a Pacemaker?
ERIC Educational Resources Information Center
Brasler, Wayne
1979-01-01
Lists the nine high school and college newspapers, and the one newsmagazine, that won Pacemaker Awards in 1978; discusses characteristics that make each of them outstanding, and provides reproductions of a front page from each publication. (GT)
Biofilm on artificial pacemaker: fiction or reality?
Santos, Ana Paula Azevedo; Watanabe, Evandro; Andrade, Denise de
2011-11-01
Cardiac pacing through cardiac pacemaker is one of the most promising alternatives in the treatment of arrhythmias, but it can cause reactions natural or complex reactions, either early or late. This study aimed to describe the scientific evidence on the risk of infection and biofilm formation associated with cardiac pacemaker. This is a study of integrative literature review. It included 14 publications classified into three thematic categories: diagnosis (microbiological and/or clinical), complications and therapy of infections. Staphylococcus epidermidis and Staphylococcus aureus were the microorganisms most frequently isolated. It was not possible to determine the incidence of infection associated with pacemakers, since the studies were generally of prevalence. In terms of therapy, the complete removal of pacemakers stood out, especially in cases of suspected biofilm. Still controversial is the use of systemic antibiotic prophylaxis in reducing the incidence of infection associated with implantation of a pacemaker.
Case of pacemaker pocket infection caused by Finegoldia magna.
Hosseini Dehkordi, Seyed Hamed; Osorio, Georgina
2017-10-01
Finegoldia magna (formerly called Peptostreptococcus magnus) is a Gram-positive anaerobic coccus which is increasingly recognized as an opportunistic pathogen. We present a case of F. magna associated non-valvular cardiovascular device-related infection in an 83 year-old male who received a permanent pacemaker for sick sinus syndrome seven weeks prior to his presentation. Five weeks after the implantation, the pacemaker and leads were explanted because of clinical evidence of pacemaker pocket infection. He was initially treated with sulfamethoxazole-trimethoprim based on the Gram stain results from the removed pacemaker. However, two weeks later, he was readmitted with sepsis and was successfully treated with ampicillin-sulbactam. Culture results from the pacemaker and pocket as well as blood cultures grew F. magna. Clinicians should be aware of the possibility of F. magna infection when initial gram stain results show "gram positive cocci". Copyright © 2017 Elsevier Ltd. All rights reserved.
Butrous, G S; Meldrum, S J; Barton, D G; Male, J C; Bonnell, J A; Camm, A J
1982-05-01
The effect on an implanted, multiprogrammable pacemaker of power-frequency (50 Hz) electric fields up to an intensity (unperturbed value measured at 1.7 m) of 20 kV/m were assessed in ten paced patients. Radiotelemetric monitoring of the electrocardiogram allowed supervision of the electrocardiogram throughout exposure to the alternating electric field. Displacement body currents of up to 300μA were achieved depending on the position and height of the patient. None of the pacemakers was inhibited, triggered or reverted to fixed rate operation during the exposure. The programmable functions, programmability or output characteristics were not affected. Small changes in cardiac rate and rhythm elicited the correct pacemaker responses. Unlike earlier models of pacemaker, this modern implanted pacemaker, which represents `the state of the art', is not affected by 50 Hz electric fields likely to be encountered when standing underneath power lines.
A Feasibility Study for Advanced Technology Integration for General Aviation.
1980-05-01
154 4.5.9.4 Stratified Charge Reciprocating Engine ..... .. 155 4.5.9.5 Advanced Diesel Engine . ... 158 4.5.9.6 Liquid Cooling ... ........ 159... diesel , rotary combustion engine, advanced reciprocating engine concepts. (7) Powerplant control - integrated controls, microprocessor- based controls...Research Center Topics. (1) GATE (2) Positive displacement engines (a) Advanced reciprocating engines. (b) Alternative engine systems Diesel engines
A Single Center Study of 1,179 Heart Transplant Patients-Factors Affecting Pacemaker Implantation.
Wellmann, Petra; Herrmann, Florian Ernst Martin; Hagl, Christian; Juchem, Gerd
2017-03-01
After around 10% of heart transplant patients require pacemaker implantation. The bradyarrhythmias causing pacemaker requirement include sinus node dysfunction (SND) and atrioventricular block (AVB). This study sought to define clinical predictors for pacemaker requirement as well as identify differences in the patient groups developing SND and AVB. Our operative database was used to collect retrospective recipient, donor, and operative data of all patients receiving orthotopic heart transplants between 1981 and 2016. In the 35-year period 1,179 transplants were performed (mean recipient age 45.5 ± 0.5 years, 20.4% female, 90.6% biatrial technique) with bradyarrhythmias requiring pacemaker implantation developing in 135 patients (11.5%). Independent risk factors were prolonged operative time 340 minutes versus 313 minutes (P = 0.027) and a biatrial anastomosis (P = 0.036). Ischemia time, cardiopulmonary bypass time, aortic cross clamp time, and reperfusion time all had no significant effect on pacemaker implantation rates. Similarly, whether the transplant was a reoperation, a retransplant, or performed after primary assist implantation had no effects on pacemaker implantation rates. There was no survival difference between the paced and nonpaced groups. The donor age was higher in the patients who developed AVB as the indication for pacemaker implantation (43 vs 34 years, P = 0.031). Patients with AVB had longer aortic cross clamp times and developed the arrhythmia later than those who developed SND. Use of the bicaval instead of the biatrial technique and shortened operative times should reduce pacemaker requirement after heart transplantation. Survival is not affected by this complication. © 2017 Wiley Periodicals, Inc.
Lin, Yun; Melby, Daniel P; Krishnan, Balaji; Adabag, Selcuk; Tholakanahalli, Venkatakrishna; Li, Jian-Ming
2017-08-01
The aim of this study is to investigate the frequency of electrosurgery-related pacemaker malfunction. A retrospective study was conducted to investigate electrosurgery-related pacemaker malfunction in consecutive patients undergoing pulse generator (PG) replacement or upgrade from two large hospitals in Minneapolis, MN between January 2011 and January 2014. The occurrence of this pacemaker malfunction was then studied by using MAUDE database for all four major device vendors. A total of 1398 consecutive patients from 2 large tertiary referral centers in Minneapolis, MN undergoing PG replacement or upgrade surgery were retrospectively studied. Four patients (0.3% of all patients), all with pacemakers from St Jude Medical (2.8%, 4 of 142) had output failure or inappropriately low pacing rate below 30 bpm during electrosurgery, despite being programmed in an asynchronous mode. During the same period, 1174 cases of pacemaker malfunctions were reported on the same models in MAUDE database, 37 of which (3.2%) were electrosurgery-related. Twenty-four cases (65%) had output failure or inappropriate low pacing rate. The distribution of adverse events was loss of pacing (59.5%), reversion to backup pacing (32.4%), inappropriate low pacing rate (5.4%), and ventricular fibrillation (2.7%). The majority of these (78.5%) occurred during PG replacement at ERI or upgrade surgery. No electrosurgery-related malfunction was found in MAUDE database on 862 pacemaker malfunction cases during the same period from other vendors. Electrosurgery during PG replacement or upgrade surgery can trigger output failure or inappropriate low pacing rate in certain models of modern pacemakers. Cautions should be taken for pacemaker-dependent patients.
2013-01-01
Background To test the hypothesis that the oral cavity is a potential source for implantable pacemaker and cardioverter defibrillators infections, the bacterial diversity on explanted rhythm heart management devices was investigated and compared to the oral microbiome. Methods A metagenomic approach was used to analyze the bacterial diversity on the surfaces of non-infected and infected pacemakers. The DNA from surfaces swaps of 24 non-infected and 23 infected pacemaker were isolated and subjected to bacterial-specific DNA amplification, single strand conformation polymorphism- (SSCP) and sequencing analysis. Species-specific primer sets were used to analyze for any correlation between bacterial diversity on pacemakers and in the oral cavity. Results DNA of bacterial origin was detected in 21 cases on infected pacemakers and assigned to the bacterial phylotypes Staphylococcus epidermidis, Propionibacterium acnes, Staphylococcus aureus, Staphylococcus schleiferi and Stapyhlococcus. In 17 cases bacterial DNA was found on pacemakers with no clinical signs of infections. On the basis of the obtained sequence data, the phylotypes Propionibacterium acnes, Staphylococcus and an uncultured bacterium were identified. Propionibacterium acnes and Staphylococcus epidermidis were the only bacteria detected in pacemeaker (n = 25) and oral samples (n = 11). Conclusions The frequency of the coincidental detection of bacteria on infected devices and in the oral cavity is low and the detected bacteria are highly abundant colonizers of non-oral human niches. The transmission of oral bacteria to the lead or device of implantable pacemaker or cardioverter defibrillators is unlikely relevant for the pathogenesis of pacemaker or cardioverter defibrillators infections. PMID:23575037
Is pacemaker therapy the right key to patients with vasovagal syncope?
Radovanović, Nikola N; Kirćanski, Bratislav; Raspopović, Srdjan; Pavlović, Siniša U; Jovanović, Velibor; Milašinović, Goran
2016-01-01
Vasovagal syncope is the most common type of reflex syncope. Efficacy of cardiac pacing in this indication has not been the subject of many studies and pacemaker therapy in patients with vasovagal syncope is still controversial. This study aimed to assess the efficacy and safety of pacing therapy in treatment of patients with vasovagal syncope, to determine contribution of new therapeutic models in increasing its success, and to identify risk factors associated with a higher rate of symptoms after pacemaker implantation. A retrospective study included 30 patients with pacemaker implanted due to vasovagal syncope in the Pacemaker Center, Clinical Center of Serbia, between November 2003 and June 2014. Head-up tilt test was performed to diagnose vasovagal syncope. Patients with cardioinhibitory and mixed type of disease were enrolled in the study. Mean age was 48.1 ± 11.1 years and 18 (60%) patients were men. Mean follow-up period was 5.9 ± 3.0 years. Primarily, implantable loop recorder was implanted in 10 (33.3%) patients. Twenty (66.7%) patients presented cardioinhibitory and 10 (33.3%) mixed type of vasovagal syncope. After pacemaker implantation, 11 (36.7%) patients had syncope. In multiple logistic regression analysis we showed that syncope is statistically more likely to occur after pacemaker implantation in patients with mixed type of vasovagal syncope (p = 0.018). There were two (6.7%) perioperative surgical complications. Pacemaker therapy is a safe treatment for patients with vasovagal syncope, whose efficacy can be improved by strict selection of patients. We showed that symptoms occur statistically more often in patients with mixed type of disease after pacemaker implantation.
Low pacemaker incidence with continuous-sutured valves: a retrospective analysis.
Niclauss, Lars; Delay, Dominique; Pfister, Raymond; Colombier, Sebastien; Kirsch, Matthias; Prêtre, René
2017-06-01
Background Permanent pacemaker implantation after surgical aortic valve replacement depends on patient selection and risk factors for conduction disorders. We aimed to identify risk criteria and obtain a selected group comparable to patients assigned to transcatheter aortic valve implantation. Methods Isolated sutured aortic valve replacements in 994 patients treated from 2007 to 2015 were reviewed. Demographics, hospital stay, preexisting conduction disorders, surgical technique, and etiology in patients with and without permanent pacemaker implantation were compared. Reported outcomes after transcatheter aortic valve implantation were compared with those of a subgroup including only degenerative valve disease and first redo. Results The incidence of permanent pacemaker implantation was 2.9%. Longer hospital stay ( p = 0.01), preexisting rhythm disorders ( p < 0.001), complex prosthetic endocarditis ( p = 0.01), and complex redo ( p < 0.001) were associated with permanent pacemaker implantation. Although prostheses were sutured with continuous monofilament in the majority of cases (86%), interrupted pledgetted sutures were used more often in the pacemaker group ( p = 0.002). In the subgroup analysis, the incidence of permanent pacemaker implantation was 2%; preexisting rhythm disorders and the suture technique were still major risk factors. Conclusion Permanent pacemaker implantation depends on etiology, preexisting rhythm disorders, and suture technique, and the 2% incidence compares favorably with the reported 5- to 10-fold higher incidence after transcatheter aortic valve implantation. Cost analysis should take this into account. Often dismissed as minor complication, permanent pacemaker implantation increases the risks of endocarditis, impaired myocardial recovery, and higher mortality if associated with prosthesis regurgitation.
Okamura, Hideo; Padmanabhan, Deepak; Watson, Robert E; Dalzell, Connie; Acker, Nancy; Jondal, Mary; Romme, Abby L; Cha, Yong-Mei; Asirvatham, Samuel J; Felmlee, Joel P; Friedman, Paul A
2017-05-01
Magnetic resonance imaging (MRI) in patients with non-MRI-conditional cardiac implantable electronic devices (CIEDs) has been shown to be safe when performed under closely monitored protocols. However, the safety of MRI in patients with devices with a nearly depleted battery has not been reported. Prospective data were collected between January 2008 and May 2015 in patients with non-MRI-conditional CIEDs undergoing clinically indicated MRI under institutional protocol. Patients who were pacemaker dependent were excluded. Patients whose devices were at elective replacement indicator (ERI) at the time of MRI or close to ERI (ERI or replacement for battery depletion within 3 months of scan) were identified through database review and analyzed for clinical events. MRI scans (n = 569) were performed in 442 patients. Of these, we identified 13 scans performed with a nearly depleted battery in nine patients. All scans with implantable cardioverter defibrillators (ICDs, n = 9) were uneventful. However, two scans with pacemakers close to ERI resulted in a power-on-reset (PoR) event. One scan with a pacemaker close to ERI that was programmed to DOO mode reached ERI during MRI and automatically changed to VVI mode. Additionally, one scan with a pacemaker at ERI did not allow programming. All pacemakers with events were implanted before 2005. Patients with pacemakers and ICDs with a nearly depleted battery can safely undergo MRI when patients are not pacemaker dependent. Attention should be paid because old devices can result in PoR or ERI during MRI, which may lead to oversensing and inhibition of pacing. © 2017 Wiley Periodicals, Inc.
Vibrational Product States from Reactions of CN(-) with the Hydrogen Halides and Hydrogen Atoms,
1981-01-15
in these Several of the postulated schemes to synthesize CNH distributions. Each distribution is normalized to 1.0 ignoring in outer space are based on...been observed in interstellar space . 22-24 (3) One major advantage of studying HCN instead of, say, CO 2 is that the V3 mode of HCN is very anharmonic... Nebula by radio emission. 22,54-58 (Table IV) for the P3 modes of HCN and CNH in Reactions to- (6). The hatched areas are indications of the errors
NASA Astrophysics Data System (ADS)
Takayanagi, Toshiyuki; Suzuki, Kento; Yoshida, Takahiko; Kita, Yukiumi; Tachikawa, Masanori
2017-05-01
We present computational results of vibrationally enhanced positron annihilation in the e+ + HCN/DCN collisions within a local complex potential model. Vibrationally elastic and inelastic cross sections and effective annihilation rates were calculated by solving a time-dependent complex-potential Schrödinger equation under the ab initio potential energy surface for the positron attached HCN molecule, [HCN; e+], with multi-component configuration interaction level (Kita and Tachikawa, 2014). We discuss the effect of vibrational excitation on the positron affinities from the obtained vibrational resonance features.
Automatic Digital Hardware Synthesis
1990-09-01
VHDL to PALASM, a hardware synthesis language. The PALASM description is then directly implemented into a field programmable gate array (FPGAI using...process of translating VHDL to PALASM, a hardware synthesis language. The PALASM description is then directly implemented into a field programmable gate...allows the engineer to use VHDL to create and validate a design, and then to implement it in a gate array. The development of software o translate VHDL
Kameneva, Svetlana V; Tyurin, Daniil A; Feldman, Vladimir I
2017-09-13
The HCNCO complex and its X-ray induced transformation to HNCCO in solid noble gas (Ng) matrices (Ng = Ne, Ar, Kr, Xe) was first characterized by matrix isolation FTIR spectroscopy at 5 K. The HCNCO complex was obtained by deposition of HCN/CO/Ng gaseous mixtures. The assignment was based on extensive quantum chemical calculations at the CCSD(T) level of theory. The calculations predicted two computationally stable structures for HCNCO and three stable structures for HNCCO. However, only the most energetically favorable linear structures corresponding to the co-ordination between the H atom of HCN (HNC) and the C atom of CO have been found experimentally. The HCNCO complex demonstrates a considerable red shift of the H-C stretching vibrations (-24 to -38 cm -1 , depending on the matrix) and a blue shift of the HCN bending vibrations (+29 to +32 cm -1 ) with respect to that of the HCN monomer, while the C[double bond, length as m-dash]O stretching mode is blue-shifted by 15 to 20 cm -1 as compared to the CO monomer. The HNCCO complex reveals a strong red shift of the H-N bending (-77 to -118 cm -1 ) and a strong blue shift of the HNC bending mode (ca. +100 cm -1 ) as compared to the HNC monomer, whereas the C[double bond, length as m-dash]O stretching is blue-shifted by 24 to 29 cm -1 with respect to that of the CO monomer. The interaction energies were determined to be 1.01 and 1.87 kcal mol -1 for HCNCO and HNCCO, respectively. It was found that the formation of complexes with CO had a remarkable effect on the radiation-induced transformations of HCN. While the dissociation of HCN to H and CN is suppressed in complexes, the isomerization of HCN to HNC is strongly catalyzed by the complexation with CO. The astrochemical implications of the results are discussed.
The Dense Molecular Gas and Nuclear Activity in the ULIRG IRAS 13120–5453
DOE Office of Scientific and Technical Information (OSTI.GOV)
Privon, G. C.; Treister, E.; Aalto, S.
2017-02-01
We present new Atacama Large Millimeter/submillimeter Array Band 7 (∼340 GHz) observations of the dense gas tracers HCN, HCO{sup +}, and CS in the local, single-nucleus, ultraluminous infrared galaxy IRAS 13120–5453. We find centrally enhanced HCN (4–3) emission, relative to HCO{sup +} (4–3), but do not find evidence for radiative pumping of HCN. Considering the size of the starburst (0.5 kpc) and the estimated supernovae rate of ∼1.2 yr{sup −1}, the high HCN/HCO{sup +} ratio can be explained by an enhanced HCN abundance as a result of mechanical heating by the supernovae, though the active galactic nucleus and winds maymore » also contribute additional mechanical heating. The starburst size implies a high Σ{sub IR} of 4.7 × 10{sup 12} L {sub ⊙} kpc{sup −2}, slightly below predictions of radiation-pressure limited starbursts. The HCN line profile has low-level wings, which we tentatively interpret as evidence for outflowing dense molecular gas. However, the dense molecular outflow seen in the HCN line wings is unlikely to escape the Galaxy and is destined to return to the nucleus and fuel future star formation. We also present modeling of Herschel observations of the H{sub 2}O lines and find a nuclear dust temperature of ∼40 K. IRAS 13120–5453 has a lower dust temperature and Σ{sub IR} than is inferred for the systems termed “compact obscured nuclei (CONs)” (such as Arp 220 and Mrk 231). If IRAS 13120–5453 has undergone a CON phase, we are likely witnessing it at a time when the feedback has already inflated the nuclear ISM and diluted star formation in the starburst/active galactic nucleus core.« less
Cardiac pacemaker dysfunction in children after thoracic drainage catheter manipulation.
Lobdell, K W; Walters, H L; Hudson, C; Hakimi, M
1997-05-01
Two children underwent placement of permanent, epicardial-lead, dual-chamber, unipolar pacemaker systems for complete heart block. Postoperatively, both patients demonstrated subcutaneous emphysema-in the area of their pulse generators-temporally related to thoracic catheter manipulation. Acutely, each situation was managed with manual compression of the pulse generator, ascertaining appropriate pacemaker sensing and pacing. Maintenance of compression with pressure dressings, vigilant observation/monitoring, and education of the care givers resulted in satisfactory pacemaker function without invasive intervention.
Influence of internal current and pacing current on pacemaker longevity.
Schuchert, A; Kuck, K H
1994-01-01
The effects of lower pulse amplitude on battery current and pacemaker longevity were studied comparing the new, small-sized VVI pacemaker, Minix 8341, with the former model, Pasys 8329. Battery current was telemetrically measured at 0.8, 1.6, 2.5, and 5.0 V pulse amplitude and 0.05, 0.25, 0.5, and 1.0 msec pulse duration. Internal current was assumed to be equal to the battery current at 0.8 V and 0.05 msec. Pacing current was calculated subtracting internal current from battery current. The Minix pacemaker had a significantly lower battery current because of a lower internal current (Minix: 4.1 +/- 0.1 microA; Pasys: 16.1 +/- 0.1 microA); pacing current of both units was similar. At 0.5 msec pulse duration, the programming from 5.0-2.5 V pulse amplitude resulted in a greater relative reduction of battery current in the newer pacemaker (51% vs 25%). Projected longevity of each pacemaker was 7.9 years at 5.0 V and 0.5 msec. The programming from 5.0-2.5 V extended the projected longevity by 2.3 years (Pasys) and by 7.1 years (Minix). The longevity was negligibly longer after programming to 1.6 V. extension of pacemaker longevity can be achieved with the programming to 2.5 V or less if the connected pacemakers need a low internal current for their circuitry.
Lin, Yu-Sheng; Chen, Tien-Hsing; Hung, Sheng-Ping; Chen, Dong Yi; Mao, Chun-Tai; Tsai, Ming-Lung; Chang, Shih-Tai; Wang, Chun-Chieh; Wen, Ming-Shien; Chen, Mien-Cheng
2015-01-01
Several risk factors for pacemaker (PM) related complications have been reported. However, no study has investigated the impact of lead characteristics on pacemaker-related complications. Patients who received a new pacemaker implant from January 1997 to December 2011 were selected from the Taiwan National Health Insurance Database. This population was grouped according to the pacemaker lead characteristics in terms of fixation and insulation. The impact of the characteristics of leads on early heart perforation was analyzed by multivariable logistic regression analysis, while the impact of the lead characteristics on early and late infection and late heart perforation over a three-year period were analyzed using Cox regression. This study included 36,104 patients with a mean age of 73.4±12.5 years. In terms of both early and late heart perforations, there were no significant differences between groups across the different types of fixation and insulations. In the multivariable Cox regression analysis, the pacemaker-related infection rate was significantly lower in the active fixation only group compared to either the both fixation (OR, 0.23; 95% CI, 0.07-0.80; P = 0.020) or the passive fixation group (OR, 0.26; 95% CI, 0.08-0.83; P = 0.023). There was no difference in heart perforation between active and passive fixation leads. Active fixation leads were associated with reduced risk of pacemaker-related infection.
Shenthar, Jayaprakash; Rai, Maneesh K; Walia, Rohit; Ghanta, Somasekhar; Sreekumar, Praveen; Reddy, Satish S
2014-09-01
Dextrocardia is a rare congenital anomaly. Pacemaker implantation in dextrocardia can be challenging because of the distorted anatomy and associated anomalies. The literature regarding implantation of pacemaker in dextrocardia is scarce. The study involved retrospective analysis of records of patients with dextrocardia who had undergone pacemaker implantation between January 2006 and July 2013 from a single centre. Six patients with dextrocardia (five males and one female) underwent permanent pacemaker implantation (PPI) between January 2006 and July 2013. Of them, three had situs solitus dextrocardia and three situs inversus dextrocardia. All three patients with situs solitus dextrocardia had associated corrected transposition of great arteries. The indication for pacemaker implantation was symptomatic complete atrioventricular (AV) block in four, high-grade AV block in one, and sinus node dysfunction in one patient. A favourable outcome was noted during a mean follow-up of 3.9 years (4 months to 7 years) with one patient needing a pulse generator replacement. Permanent pacemaker implantation in dextrocardia can be challenging because of the distorted anatomy. Use of a technique employing angiography to delineate chamber anatomy and relationship can assist the operator during such difficult PPIs. The medium- and long-term survival after a successful pacemaker implantation in dextrocardia is favourable. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Israel, Carsten W; Ekosso-Ejangue, Lucy; Sheta, Mohamed-Karim
2015-09-01
The key to a successful analysis of a pacemaker electrocardiogram (ECG) is the application of the systematic approach used for any other ECG without a pacemaker: analysis of (1) basic rhythm and rate, (2) QRS axis, (3) PQ, QRS and QT intervals, (4) morphology of P waves, QRS, ST segments and T(U) waves and (5) the presence of arrhythmias. If only the most obvious abnormality of a pacemaker ECG is considered, wrong conclusions can easily be drawn. If a systematic approach is skipped it may be overlooked that e.g. atrial pacing is ineffective, the left ventricle is paced instead of the right ventricle, pacing competes with intrinsic conduction or that the atrioventricular (AV) conduction time is programmed too long. Apart from this analysis, a pacemaker ECG which is not clear should be checked for the presence of arrhythmias (e.g. atrial fibrillation, atrial flutter, junctional escape rhythm and endless loop tachycardia), pacemaker malfunction (e.g. atrial or ventricular undersensing or oversensing, atrial or ventricular loss of capture) and activity of specific pacing algorithms, such as automatic mode switching, rate adaptation, AV delay modifying algorithms, reaction to premature ventricular contractions (PVC), safety window pacing, hysteresis and noise mode. A systematic analysis of the pacemaker ECG almost always allows a probable diagnosis of arrhythmias and malfunctions to be made, which can be confirmed by pacemaker control and can often be corrected at the touch of the right button to the patient's benefit.
Conduction disturbances after TAVR: Electrophysiological studies and pacemaker dependency.
Makki, Nader; Dollery, Jenn; Jones, Danielle; Crestanello, Juan; Lilly, Scott
Permanent pacemaker (PPM) placement occurs in 5-20% of patients after transcatheter aortic valve replacement (TAVR). Although predictors of pacemaker implantation have been established, features that predispose patients to pacemaker utilization on follow up have not been widely reported. We performed a retrospective review of patients undergoing commercial TAVR between 2011 and 2016. We collated patients that underwent in-hospital PPM implantation and had a follow up of at least 3months. Data abstraction was performed for electrophysiological studies (EPS), pacemaker indication, timing, and device interrogation for pacemaker dependency on follow up. A total of 24 patients received in-hospital PPM post-TAVR (14% of total cohort), and mean follow up was 22months. Indications for PPM included resting complete heart block (CHB; 15/24, 63%), left bundle branch block and abnormal electrophysiological study (EPS; 7/24, 29%), alternating bundle branch block (1/24, 4%) and tachy-brady syndrome (1/24, 4%). Pacemaker dependency (underlying ventricular asystole, complete heart block, or >50% pacing) occurred in 8/24 patients (33%) during follow-up, 7 of whom had resting CHB, and one with CHB invoked during EPS. Pacemaker dependency after TAVR is common among those that exhibited CHB, but not among those with a prolonged HV delay during EPS. Although preliminary, these observations are relevant to management of rhythm disturbances after TAVR, and may inform the practice of EPS-based PPM implantation. Copyright © 2017 Elsevier Inc. All rights reserved.
Neck Pain One Week after Pacemaker Generator Replacement.
Graham, Ross F; Wightman, John M
2015-07-01
The incidence of cardiac pacemaker implantation has risen markedly in the past three decades, making awareness of possible postprocedural complications critical to the emergency physician. This case is the first documented instance of internal jugular (IJ) deep vein thrombosis (DVT) from an uncomplicated pacemaker generator replacement. A patient presented to an Emergency Department with a 2-day history of mild left temporal headache migrating to his left neck. The patient did not volunteer this information, but review of systems revealed a temporary transvenous pacemaker inserted through the right IJ vein 1 week previously during a routine exchange of a left-sided cardiac pacemaker generator. Manipulation of the existing pacemaker wires entering the left subclavian vein was minimal. Computed tomographic angiography of the neck demonstrated near-complete thrombotic occlusion of the entire length of his left IJ vein. This required hospital admission for observation and treatment with anticoagulation. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: DVT, with thrombotic extension into adjacent vessels anywhere along the course of pacemaker wires, should be considered by the emergency provider in the evaluation of head, neck, or upper extremity symptoms after recent or remote implantation or manipulation of a transvenous cardiac pacemaker, including generator replacement. Failure to identify and treat appropriately could result in significant morbidity and mortality from airway edema, septic thrombophlebitis, superior vena cava syndrome, superior sagittal sinus thrombosis, or pulmonary embolism. Published by Elsevier Inc.
Survival time with pacemaker implantation for dogs diagnosed with persistent atrial standstill.
Cervenec, R M; Stauthammer, C D; Fine, D M; Kellihan, H B; Scansen, B A
2017-06-01
To evaluate survival time in dogs with persistent atrial standstill after pacemaker implantation and to compare the survival times for cardiac-related vs. non-cardiac deaths. Secondary objectives were to evaluate the effects of breed and the presence of congestive heart failure (CHF) at the time of diagnosis on survival time. Twenty dogs with persistent atrial standstill and pacemaker implantation. Medical records were searched to identify dogs diagnosed with persistent atrial standstill based on electrocardiogram that underwent pacemaker implantation. Survival after pacemaker implantation was analyzed using the Kaplan-Meier method. The median survival time after pacemaker implantation for all-cause mortality was 866 days. There was no significant difference (p=0.573) in median survival time for cardiac (506 days) vs. non-cardiac deaths (400 days). The presence of CHF at the time of diagnosis did not affect the survival time (P=0.854). No difference in median survival time was noted between breeds (P=0.126). Dogs with persistent atrial standstill have a median survival time of 866 days with pacemaker implantation, though a wide range of survival times was observed. There was no difference in the median survival time for dogs with cardiac-related deaths and those without. Patient breed and the presence of CHF before pacemaker implantation did not affect median survival time. Copyright © 2017 Elsevier B.V. All rights reserved.
So, Keum Young; Kim, Sang Hun; Sohn, Hong Moon; Choi, Soo Jin; Parajuli, Shankar Prasad; Choi, Seok; Yeum, Cheol Ho; Yoon, Pyung Jin; Jun, Jae Yeoul
2009-05-31
We studied the effect of carbachol on pacemaker currents in cultured interstitial cells of Cajal (ICC) from the mouse small intestine by muscarinic stimulation using a whole cell patch clamp technique and Ca2+-imaging. ICC generated periodic pacemaker potentials in the current-clamp mode and generated spontaneous inward pacemaker currents at a holding potential of-70 mV. Exposure to carbachol depolarized the membrane and produced tonic inward pacemaker currents with a decrease in the frequency and amplitude of the pacemaker currents. The effects of carbachol were blocked by 1-dimethyl-4-diphenylacetoxypiperidinium, a muscarinic M(3) receptor antagonist, but not by methotramine, a muscarinic M(2) receptor antagonist. Intracellular GDP-beta-S suppressed the carbachol-induced effects. Carbachol-induced effects were blocked by external Na+-free solution and by flufenamic acid, a non-selective cation channel blocker, and in the presence of thapsigargin, a Ca2+-ATPase inhibitor in the endoplasmic reticulum. However, carbachol still produced tonic inward pacemaker currents with the removal of external Ca2+. In recording of intracellular Ca2+ concentrations using fluo 3-AM dye, carbachol increased intracellular Ca2+ concentrations with increasing of Ca2+ oscillations. These results suggest that carbachol modulates the pacemaker activity of ICC through the activation of non-selective cation channels via muscarinic M(3) receptors by a G-protein dependent intracellular Ca2+ release mechanism.
Jama, Zimasa V; Chin, Ashley; Mayosi, Bongani M; Badri, Motasim
2015-01-01
Objectives Little is known about the performance of re-used pacemakers and implantable cardioverter defibrillators (ICDs) in Africa. We sought to compare the risk of infection and the rate of malfunction of re-used pacemakers and ICDs with new devices implanted at Groote Schuur Hospital in Cape Town, South Africa. Methods This was a retrospective case comparison study of the performance of re-used pacemakers and ICDs in comparison with new devices implanted at Groote Schuur Hospital over a 10-year period. The outcomes were incidence of device infection, device malfunction, early battery depletion, and device removal due to infection, malfunction, or early battery depletion. Results Data for 126 devices implanted in 126 patients between 2003 and 2013 were analysed, of which 102 (81%) were pacemakers (51 re-used and 51 new) and 24 (19%) were ICDs (12 re-used and 12 new). There was no device infection, malfunction, early battery depletion or device removal in either the re-used or new pacemaker groups over the median follow up of 15.1 months [interquartile range (IQR), 1.3–36.24 months] for the re-used pacemakers, and 55.8 months (IQR, 20.3–77.8 months) for the new pacemakers. In the ICD group, no device infection occurred over a median follow up of 35.9 months (IQR, 17.0–70.9 months) for the re-used ICDs and 45.7 months (IQR, 37.6–53.7 months) for the new ICDs. One device delivered inappropriate shocks, which resolved without intervention and with no harm to the patient. This re-used ICD subsequently needed generator replacement 14 months later. In both the pacemaker and ICD groups, there were no procedure-non-related infections documented for the respective follow-up periods. Conclusion No significant differences were found in performance between re-used and new pacemakers and ICDs with regard to infection rates, device malfunction, battery life and device removal for complications. Pacemaker and ICD re-use is feasible and safe and is a viable option for patients with bradyarrhythmias and tachyarrthythmias. PMID:26407220
On Estimation of Contamination from Hydrogen Cyanide in Carbon Monoxide Line-intensity Mapping
NASA Astrophysics Data System (ADS)
Chung, Dongwoo T.; Li, Tony Y.; Viero, Marco P.; Church, Sarah E.; Wechsler, Risa H.
2017-09-01
Line-intensity mapping surveys probe large-scale structure through spatial variations in molecular line emission from a population of unresolved cosmological sources. Future such surveys of carbon monoxide line emission, specifically the CO(1-0) line, face potential contamination from a disjointed population of sources emitting in a hydrogen cyanide emission line, HCN(1-0). This paper explores the potential range of the strength of HCN emission and its effect on the CO auto power spectrum, using simulations with an empirical model of the CO/HCN-halo connection. We find that effects on the observed CO power spectrum depend on modeling assumptions but are very small for our fiducial model, which is based on current understanding of the galaxy-halo connection. Given the fiducial model, we expect the bias in overall CO detection significance due to HCN to be less than 1%.
Mobius Assembly: A versatile Golden-Gate framework towards universal DNA assembly.
Andreou, Andreas I; Nakayama, Naomi
2018-01-01
Synthetic biology builds upon the foundation of engineering principles, prompting innovation and improvement in biotechnology via a design-build-test-learn cycle. A community-wide standard in DNA assembly would enable bio-molecular engineering at the levels of predictivity and universality in design and construction that are comparable to other engineering fields. Golden Gate Assembly technology, with its robust capability to unidirectionally assemble numerous DNA fragments in a one-tube reaction, has the potential to deliver a universal standard framework for DNA assembly. While current Golden Gate Assembly frameworks (e.g. MoClo and Golden Braid) render either high cloning capacity or vector toolkit simplicity, the technology can be made more versatile-simple, streamlined, and cost/labor-efficient, without compromising capacity. Here we report the development of a new Golden Gate Assembly framework named Mobius Assembly, which combines vector toolkit simplicity with high cloning capacity. It is based on a two-level, hierarchical approach and utilizes a low-frequency cutter to reduce domestication requirements. Mobius Assembly embraces the standard overhang designs designated by MoClo, Golden Braid, and Phytobricks and is largely compatible with already available Golden Gate part libraries. In addition, dropout cassettes encoding chromogenic proteins were implemented for cost-free visible cloning screening that color-code different cloning levels. As proofs of concept, we have successfully assembled up to 16 transcriptional units of various pigmentation genes in both operon and multigene arrangements. Taken together, Mobius Assembly delivers enhanced versatility and efficiency in DNA assembly, facilitating improved standardization and automation.
HCN Polymers: Toward Structure Comprehension Using High Resolution Mass Spectrometry
NASA Astrophysics Data System (ADS)
Bonnet, Jean-Yves; Thissen, Roland; Frisari, Ma; Vuitton, Veronique; Quirico, Eric; Le Roy, Léna; Fray, Nicolas; Cottin, Hervé; Horst, Sarah; Yelle, Roger
A lot of solar system materials, including cometary ices and Titan aerosols, contain dark matter that can be interpreted as complex nitrogen bearing organic matter [1]. In laboratory experi-ments, HCN polymers are thus analogs of great interest. In fact they may be present in Titan atmosphere and in comet nuclei and then reprocessed as a CN distributed source [2], when ices began to sublimate and ejects from the nucleus organic matter grains [3]. The presence of HCN polymers is suggested because HCN molecule has been directly observed in 1P/Halley comet [4] and others. HCN polymers are also of prebiotic interest [5] as it can form amino acid under hydrolysis conditions. Even if they have been studied during the last decades, their chemical composition and structure are still poorly understood, and a great analytical effort has to be continued. In this way we present a high resolution mass spectrometry (HRMS) and a high resolution tandem mass spectrometry (MS/HRMS) analysis of HCN polymers. It was shown [6] that this is a suitable technique to elucidate composition and structure of the soluble part of tholins analogs of Titan's atmosphere aerosols. HCN polymers have never been studied by HRMS, thus we used a LTQ-Orbitrap XL high resolution mass spectrometer to analyse the HCN polymers. These are produced at LISA by direct polymerisation of pure liquid HCN, catalyzed by ammonia. HCN polymers have been completely dissolved in methanol and then injected in the mass spectrometer by ElectroSpray Ionization (ESI). This atmospheric pressure ionization process produces protonated or deprotonated ions, but it does not fragment molecules. Thus HRMS, allows a direct access to the stoechiometry of all the ionizable molecules present in the samples. Fragmentation analyses (MS/MS) of selected ions have also been performed. Thess analysis provide information about the different chemical fonctionnalities present in HCN poly-mers and also about their structure. Thus we are able to derive quantitative and qualitative parameters, (H/C, N/C ratios for exemple). [1] D. P. Cruikshank, H. Imanaka, and C. M. Dalle Ore. Tholins as coloring agents on outer Solar System bodies. Advances in Space Research, 36:178-183, 2005. [2] H. Cottin and N. Fray. Distributed Sources in Comets. Space Science Reviews, 138:179-197, July 2008. [3] J. Kissel, R. Z. Sagdeev, J. L. Bertaux, V. N. Angarov, J. Audouze, J. E. Blamont, K. Buchler, E. N. Evlanov, H. Fechtig, M. N. Fomenkova, H. von Hoerner, N. A. Inogamov, V. N. Khromov, W. Knabe, F. R. Krueger, Y. Langevin, B. Leonasv, A. C. Levasseur-Regourd, G. G.Managadze, S. N. Podkolzin, V. D. Shapiro, S. R. Tabaldyev, and B. V. Zubkov. Com-position of comet Halley dust particles from VEGA observations. Nature, 321:280-282, May 1986. [4] D. Despois, J. Crovisier, D. Bockelee-Morvan, E. Gerard, and J. Schraml. Observations of hydrogen cyanide in comet halley. Astronomy and Astrophysics, 160:L11+, May 1986. [5] C. N. Matthews and R. D. Minard. Hydrogen cyanide polymers connect cosmochemistry and biochemistry. In IAU Symposium, volume 251 of IAU Symposium, pages 453-458, October 2008. [6] N. Sarker, A. Somogyi, J. I. Lunine, and M. A. Smith. Titan Aerosol Analogues: Analysis of the Nonvolatile Tholins. Astrobiology, 3:719-726, December 2003.
Krasuska, Urszula; Ciacka, Katarzyna; Dębska, Karolina; Bogatek, Renata; Gniazdowska, Agnieszka
2014-08-15
Deep dormancy of apple (Malus domestica Borkh.) embryos can be overcome by short-term pre-treatment with nitric oxide (NO) or hydrogen cyanide (HCN). Dormancy alleviation of embryos modulated by NO or HCN and the first step of germination depend on temporary increased production of reactive oxygen species (ROS). Direct oxidative attack on some amino acid residues or secondary reactions via reactive carbohydrates and lipids can lead to the formation of protein carbonyl derivatives. Protein carbonylation is a widely accepted covalent and irreversible modification resulting in inhibition or alteration of enzyme/protein activities. It also increases the susceptibility of proteins to proteolytic degradation. The aim of this work was to investigate protein carbonylation in germinating apple embryos, the dormancy of which was removed by pre-treatment with NO or HCN donors. It was performed using a quantitative spectrophotometric method, while patterns of carbonylated protein in embryo axes were analyzed by immunochemical techniques. The highest concentration of protein carbonyl groups was observed in dormant embryos. It declined in germinating embryos pre-treated with NO or HCN, suggesting elevated degradation of modified proteins during seedling formation. A decrease in the concentration of carbonylated proteins was accompanied by modification in proteolytic activity in germinating apple embryos. A strict correlation between the level of protein carbonyl groups and cotyledon growth and greening was detected. Moreover, direct in vitro carbonylation of BSA treated with NO or HCN donors was analyzed, showing action of both signaling molecules as protein oxidation agents. Copyright © 2014 Elsevier GmbH. All rights reserved.
Rijavec, Tomaž; Lapanje, Aleš
2016-01-01
Plant growth promoting rhizobacteria produce chemical compounds with different benefits for the plant. Among them, HCN is recognized as a biocontrol agent, based on its ascribed toxicity against plant pathogens. Based on several past studies questioning the validity of this hypothesis, we have re-addressed the issue by designing a new set of in vitro experiments, to test if HCN-producing rhizobacteria could inhibit the growth of phytopathogens. The level of HCN produced by the rhizobacteria in vitro does not correlate with the observed biocontrol effects, thus disproving the biocontrol hypothesis. We developed a new concept, in which HCN does not act as a biocontrol agent, but rather is involved in geochemical processes in the substrate (e.g., chelation of metals), indirectly increasing the availability of phosphate. Since this scenario can be important for the pioneer plants living in oligotrophic alpine environments, we inoculated HCN producing bacteria into sterile mineral sand together with germinating plants and showed that the growth of the pioneer plant French sorrel was increased on granite-based substrate. No such effect could be observed for maize, where plantlets depend on the nutrients stored in the endosperm. To support our concept, we used KCN and mineral sand and showed that mineral mobilization and phosphate release could be caused by cyanide in vitro. We propose that in oligotrophic alpine environments, and possibly elsewhere, the main contribution of HCN is in the sequestration of metals and the consequential indirect increase of nutrient availability, which is beneficial for the rhizobacteria and their plant hosts. PMID:27917154
ALMA OBSERVATIONS OF HCN AND ITS ISOTOPOLOGUES ON TITAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molter, Edward M.; Nixon, C. A.; Cordiner, M. A.
2016-08-01
We present sub-millimeter spectra of HCN isotopologues on Titan, derived from publicly available ALMA flux calibration observations of Titan taken in early 2014. We report the detection of a new HCN isotopologue on Titan, H{sup 13}C{sup 15}N, and confirm an earlier report of detection of DCN. We model high signal-to-noise observations of HCN, H{sup 13}CN, HC{sup 15}N, DCN, and H{sup 13}C{sup 15}N to derive abundances and infer the following isotopic ratios: {sup 12}C/{sup 13}C = 89.8 ± 2.8, {sup 14}N/{sup 15}N = 72.3 ± 2.2, D/H = (2.5 ± 0.2) × 10{sup −4}, and HCN/H{sup 13}C{sup 15}N = 5800 ± 270 (1 σ errors). The carbon and nitrogen ratios are consistent with and improve on themore » precision of previous results, confirming a factor of ∼2.3 elevation in {sup 14}N/{sup 15}N in HCN compared to N{sub 2} and a lack of fractionation in {sup 12}C/{sup 13}C from the protosolar value. This is the first published measurement of D/H in a nitrile species on Titan, and we find evidence for a factor of ∼2 deuterium enrichment in hydrogen cyanide compared to methane. The isotopic ratios we derive may be used as constraints for future models to better understand the fractionation processes occurring in Titan’s atmosphere.« less
... your pacemaker. • If you work around industrial microwaves, electricity, cars or other large motors, ask your doctor about possible effects. Can I use a cell phone or microwave oven if I have a pacemaker? Microwave ovens, electric blankets, remote controls for TV and other common ...
21 CFR 870.3700 - Pacemaker programmers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker programmers. 870.3700 Section 870.3700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3700 Pacemaker programmers...
Haemophilus parainfluenzae bacteremia associated with a pacemaker wire localized by gallium scan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenbaum, G.S.; Calubiran, O.; Cunha, B.A.
1990-05-01
A young woman with a history of sick sinus syndrome and placement of a permanent pacemaker 6 months before admission had fever and Haemophilus parainfluenzae bacteremia. A gallium scan localized the infection to the site of the pacemaker wire. Echocardiograms were negative for any vegetations. The patient responded to cefotaxime and trimethoprim-sulfamethoxazole therapy. We believe that this is the first case of H. parainfluenzae bacteremia associated with a pacemaker wire and localized by gallium scan.
Of pacemakers and statistics: the actuarial method extended.
Dussel, J; Wolbarst, A B; Scott-Millar, R N; Obel, I W
1980-01-01
Pacemakers cease functioning because of either natural battery exhaustion (nbe) or component failure (cf). A study of four series of pacemakers shows that a simple extension of the actuarial method, so as to incorporate Normal statistics, makes possible a quantitative differentiation between the two modes of failure. This involves the separation of the overall failure probability density function PDF(t) into constituent parts pdfnbe(t) and pdfcf(t). The approach should allow a meaningful comparison of the characteristics of different pacemaker types.
2005-09-01
of a system to store and retrieve digital/ wireless communication information from a pacemaker/ defibrillator, or other device , and to alert medical... wireless communication information from a pacemaker/defibrillator, or other device , and to alert medical personnel when a person is experiencing...with heart, pacing, program, test, sensor , circuit) where the individual needs immediate attention an audible alert will go off at the nurse’s
Synaptic, transcriptional and chromatin genes disrupted in autism.
De Rubeis, Silvia; He, Xin; Goldberg, Arthur P; Poultney, Christopher S; Samocha, Kaitlin; Cicek, A Erucment; Kou, Yan; Liu, Li; Fromer, Menachem; Walker, Susan; Singh, Tarinder; Klei, Lambertus; Kosmicki, Jack; Shih-Chen, Fu; Aleksic, Branko; Biscaldi, Monica; Bolton, Patrick F; Brownfeld, Jessica M; Cai, Jinlu; Campbell, Nicholas G; Carracedo, Angel; Chahrour, Maria H; Chiocchetti, Andreas G; Coon, Hilary; Crawford, Emily L; Curran, Sarah R; Dawson, Geraldine; Duketis, Eftichia; Fernandez, Bridget A; Gallagher, Louise; Geller, Evan; Guter, Stephen J; Hill, R Sean; Ionita-Laza, Juliana; Jimenz Gonzalez, Patricia; Kilpinen, Helena; Klauck, Sabine M; Kolevzon, Alexander; Lee, Irene; Lei, Irene; Lei, Jing; Lehtimäki, Terho; Lin, Chiao-Feng; Ma'ayan, Avi; Marshall, Christian R; McInnes, Alison L; Neale, Benjamin; Owen, Michael J; Ozaki, Noriio; Parellada, Mara; Parr, Jeremy R; Purcell, Shaun; Puura, Kaija; Rajagopalan, Deepthi; Rehnström, Karola; Reichenberg, Abraham; Sabo, Aniko; Sachse, Michael; Sanders, Stephan J; Schafer, Chad; Schulte-Rüther, Martin; Skuse, David; Stevens, Christine; Szatmari, Peter; Tammimies, Kristiina; Valladares, Otto; Voran, Annette; Li-San, Wang; Weiss, Lauren A; Willsey, A Jeremy; Yu, Timothy W; Yuen, Ryan K C; Cook, Edwin H; Freitag, Christine M; Gill, Michael; Hultman, Christina M; Lehner, Thomas; Palotie, Aaarno; Schellenberg, Gerard D; Sklar, Pamela; State, Matthew W; Sutcliffe, James S; Walsh, Christiopher A; Scherer, Stephen W; Zwick, Michael E; Barett, Jeffrey C; Cutler, David J; Roeder, Kathryn; Devlin, Bernie; Daly, Mark J; Buxbaum, Joseph D
2014-11-13
The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.
Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN
NASA Astrophysics Data System (ADS)
Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.
2015-12-01
We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r< 17-70 pc) nuclei that have very high implied mid-infrared surface brightness > 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ.
Analytical Modeling of Triple-Metal Hetero-Dielectric DG SON TFET
NASA Astrophysics Data System (ADS)
Mahajan, Aman; Dash, Dinesh Kumar; Banerjee, Pritha; Sarkar, Subir Kumar
2018-02-01
In this paper, a 2-D analytical model of triple-metal hetero-dielectric DG TFET is presented by combining the concepts of triple material gate engineering and hetero-dielectric engineering. Three metals with different work functions are used as both front- and back gate electrodes to modulate the barrier at source/channel and channel/drain interface. In addition to this, front gate dielectric consists of high-K HfO2 at source end and low-K SiO2 at drain side, whereas back gate dielectric is replaced by air to further improve the ON current of the device. Surface potential and electric field of the proposed device are formulated solving 2-D Poisson's equation and Young's approximation. Based on this electric field expression, tunneling current is obtained by using Kane's model. Several device parameters are varied to examine the behavior of the proposed device. The analytical model is validated with TCAD simulation results for proving the accuracy of our proposed model.
NASA Astrophysics Data System (ADS)
Cui, Ning; Liang, Renrong; Wang, Jing; Xu, Jun
2012-06-01
Choosing novel materials and structures is important for enhancing the on-state current in tunnel field-effect transistors (TFETs). In this paper, we reveal that the on-state performance of TFETs is mainly determined by the energy band profile of the channel. According to this interpretation, we present a new concept of energy band profile modulation (BPM) achieved with gate structure engineering. It is believed that this approach can be used to suppress the ambipolar effect. Based on this method, a Si TFET device with a symmetrical tri-material-gate (TMG) structure is proposed. Two-dimensional numerical simulations demonstrated that the special band profile in this device can boost on-state performance, and it also suppresses the off-state current induced by the ambipolar effect. These unique advantages are maintained over a wide range of gate lengths and supply voltages. The BPM concept can serve as a guideline for improving the performance of nanoscale TFET devices.
Quantum gates by inverse engineering of a Hamiltonian
NASA Astrophysics Data System (ADS)
Santos, Alan C.
2018-01-01
Inverse engineering of a Hamiltonian (IEH) from an evolution operator is a useful technique for the protocol of quantum control with potential applications in quantum information processing. In this paper we introduce a particular protocol to perform IEH and we show how this scheme can be used to implement a set of quantum gates by using minimal quantum resources (such as entanglement, interactions between more than two qubits or auxiliary qubits). Remarkably, while previous protocols request three-qubit interactions and/or auxiliary qubits to implement such gates, our protocol requires just two-qubit interactions and no auxiliary qubits. By using this approach we can obtain a large class of Hamiltonians that allow us to implement single and two-qubit gates necessary for quantum computation. To conclude this article we analyze the performance of our scheme against systematic errors related to amplitude noise, where we show that the free parameters introduced in our scheme can be useful for enhancing the robustness of the protocol against such errors.
Biffi, Mauro; Bertini, Matteo; Saporito, Davide; Belotti, Giuseppina; Quartieri, Fabio; Piancastelli, Maurizio; Pucci, Angelo; Boggian, Giulio; Mazzocca, Gian Franco; Giorgi, Davide; Diotallevi, Paolo; Diemberger, Igor; Martignani, Cristian; Pancaldi, Stefano; Ziacchi, Matteo; Marcantoni, Lina; Toselli, Tiziano; Attala, Simone; Iori, Matteo; Bottoni, Nicola; Argnani, Selina; Tomasi, Corrado; Sassone, Biagio; Boriani, Giuseppe
2016-10-01
We investigated the applicability of the Ventricular Capture Control (VCC) and Atrial Capture Control (ACC) algorithms for automatic management of cardiac stimulation featured by Biotronik pacemakers in a broad, unselected population of pacemaker recipients. Ventricular Capture Control and Atrial Capture Control were programmed to work at a maximum adapted output voltage as 4.8 V in consecutive recipients of Biotronik pacemakers. Ambulatory threshold measurements were made 1 and 12 months after pacemaker implant/replacement in all possible pacing/sensing configurations, and were compared with manual measurements. Among 542 patients aged 80 (73-85) years, 382 had a pacemaker implant and 160 a pacemaker replacement. Ventricular Capture Control could work at long term in 97% of patients irrespectively of pacing indication, lead type, and lead service life, performance being superior with discordant pacing/sensing configurations. Atrial Capture Control could work in 93% of patients at 4.8 V maximum adapted voltage and at any pulse width, regardless of pacing indication, lead type, and service life. At 12-month follow-up, a ventricular threshold increase ≥1.5 V had occurred in 4.4% of patients uneventfully owing to VCC functioning. Projected pacemaker longevity at 1 month was strongly correlated with the 12-month estimate, and exceeded 13 years in >60% of patients. These algorithms for automatic management of pacing output ensure patient safety in the event of a huge increase of pacing threshold, while enabling maximization of battery longevity. Their applicability is quite broad in an unselected pacemaker population irrespectively of lead choice and service of life. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Huang, Allen R; Redpath, Calum J; van Walraven, Carl
2015-04-28
Cholinesterase inhibitors are used to treat the symptoms of dementia and can theoretically cause bradycardia. Previous studies suggest that patients taking these medications have an increased risk of undergoing pacemaker insertion. Since these drugs have a marginal impact on patient outcomes, it might be preferable to change drug treatment rather than implant a pacemaker. This population-based study determined the association of people with dementia exposed to cholinesterase inhibitor medication and pacemaker insertion. We used data from the Ontario health administrative databases from January 1, 1993 to June 30, 2012. We included all community-dwelling seniors who had a code for dementia and were exposed to cholinesterase inhibitors (donezepil, galantamine, and rivastigmine) and/or drugs used to treat co-morbidities of hypertension, diabetes, depression and hypothyroidism. We controlled for exposure to anti-arrhythmic drugs. Observation started at first exposure to any medication and continued until the earliest of pacemaker insertion, death, or end of study. 2,353,909 people were included with 96,000 (4.1%) undergoing pacemaker insertion during the observation period. Case-control analysis showed that pacemaker patients were less likely to be coded with dementia (unadjusted OR 0.42 [95%CI 0.41-0.42]) or exposed to cholinesterase inhibitors (unadjusted OR 0.39 [95%CI 0.37-0.41]). That Cohort analysis showed patients with dementia taking cholinesterase inhibitors had a decreased risk of pacemaker insertion (unadj-HR 0.58 [0.55-0.61]). Adjustment for patient age, sex, and other medications did not notably change results, as did restricting the analysis to incident users. Patients taking cholinesterase inhibitors rarely undergo, and have a significantly reduced risk of, cardiac pacemaker insertion.
Gadler, Fredrik; Valzania, Cinzia; Linde, Cecilia
2015-01-01
The National Swedish Pacemaker and Implantable Cardioverter-Defibrillator (ICD) Registry collects prospective data on all pacemaker and ICD implants in Sweden. We aimed to report the 2012 findings of the Registry concerning electrical devices implantation rates and changes over time, 1 year complications, long-term device longevity and patient survival. Forty-four Swedish implanting centres continuously contribute implantation of pacemakers and ICDs to the Registry by direct data entry on a specific website. Clinical and technical information on 2012 first implants and postoperative complications were analysed and compared with previous years. Patient survival data were obtained from the Swedish population register database. In 2012, the mean pacemaker and ICD first implantation rates were 697 and 136 per million inhabitants, respectively. The number of cardiac resynchronization therapy (CRT) first implantations/million capita was 41 (CRT pacemakers) and 55 (CRT defibrillators), with only a slight increase in CRT-ICD rate compared with 2011. Most device implantations were performed in men. Complication rates for pacemaker and ICD procedures were 5.3 and 10.1% at 1 year, respectively. Device and lead longevity differed among manufacturers. Pacemaker patients were older at the time of first implant and had generally worse survival rate than ICD patients (63 vs. 82% after 5 years). Pacemaker and ICD implantation rates seem to have reached a level phase in Sweden. Implantable cardioverter-defibrillator and CRT implantation rates are very low and do not reflect guideline indications. Gender differences in CRT and ICD implantations are pronounced. Device and patient survival rates are variable, and should be considered when deciding device type. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Li, Jie; Blankenship, Meredith L.; Baccei, Mark L.
2013-01-01
Pacemaker neurons in neonatal spinal nociceptive circuits generate intrinsic burst-firing and are distinguished by a lower “leak” membrane conductance compared to adjacent, non-bursting neurons. However, little is known about which subtypes of leak channels regulate the level of pacemaker activity within the developing rat superficial dorsal horn (SDH). Here we demonstrate that a hallmark feature of lamina I pacemaker neurons is a reduced conductance through inward-rectifying potassium (Kir) channels at physiological membrane potentials. Differences in the strength of inward rectification between pacemakers and non-pacemakers indicate the presence of functionally distinct Kir currents in these two populations at room temperature. However, Kir currents in both groups showed high sensitivity to block by extracellular Ba2+ (IC50 ~ 10 µM), which suggests the presence of ‘classical’ Kir (Kir2.x) channels in the neonatal SDH. The reduced Kir conductance within pacemakers is unlikely to be explained by an absence of particular Kir2.x isoforms, as immunohistochemical analysis revealed the expression of Kir2.1, Kir2.2 and Kir2.3 within spontaneously bursting neurons. Importantly, Ba2+ application unmasked rhythmic burst-firing in ~42% of non-bursting lamina I neurons, suggesting that pacemaker activity is a latent property of a sizeable population of SDH cells during early life. In addition, the prevalence of spontaneous burst-firing within lamina I was enhanced in the presence of high internal concentrations of free Mg2+, consistent with its documented ability to block Kir channels from the intracellular side. Collectively, the results indicate that Kir channels are key modulators of pacemaker activity in newborn central pain networks. PMID:23426663
Effect of monopolar radiofrequency energy on pacemaker function.
Govekar, Henry R; Robinson, Thomas N; Varosy, Paul D; Girard, Guillaume; Montero, Paul N; Dunn, Christina L; Jones, Edward L; Stiegmann, Greg V
2012-10-01
This study aimed to quantify the clinical parameters of mono- and bipolar instruments that inhibit pacemaker function. The specific aims were to quantify pacer inhibition resulting from the monopolar instrument by altering the generator power setting, the generator mode, the distance between the active electrode and the pacemaker, and the location of the dispersive electrode. A transvenous ventricular lead pacemaker overdrive paced the native heart rate of an anesthetized pig. The primary outcome variable was pacer inhibition quantified as the number of beats dropped by the pacemaker during 5 s of monopolar active electrode activation. Lowering the generator power setting from 60 to 30 W decreased the number of dropped paced events (2.3 ± 1.2 vs 1.6 ± 0.8 beats; p = 0.045). At 30 W of power, use of the cut mode decreased the number of dropped paced beats compared with the coagulation mode (0.6 ± 0.5 vs 1.6 ± 0.8; p = 0.015). At 30 W coagulation, firing the active electrode at different distances from the pacemaker generator (3.75, 7.5, 15, and 30 cm) did not change the number of dropped paced beats (p = 0.314, analysis of variance [ANOVA]). The dispersive electrode was placed in four locations (right/left gluteus, right/left shoulder). More paced beats were dropped when the current vector traveled through the pacemaker/leads than when it did not (1.5 ± 1.0 vs 0.2 ± 0.4; p < 0.001). Clinical parameters that reduce the inhibition of a pacemaker by monopolar instruments include lowering the generator power setting, using cut (vs coagulation) mode, and locating the dispersive electrode so the current vector does not traverse the pacemaker generator or leads.
Current facts on pacemaker electromagnetic interference and their application to clinical care
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sager, D.P.
1987-03-01
The development of the sensing demand cardiac pacemaker brought with it the problem of interference as a result of extraneous electric current and electromagnetic fields. This problem still deserves consideration, not only because harmful disruption of pacemaker function, while infrequent, can occur but also because myths and misunderstandings have flourished on the subject. Misinformation has often led to needless patient anxiety and unnecessary restrictions in activities of daily living. Similarly, when health care practitioners are misinformed about pacemaker interference, potentially hazardous situations can occur in the clinical environment. This article is a review of current information on the sources andmore » effects of electromagnetic interference (EMI) on pacemakers and includes a discussion of their application to patient care.« less
Djani, D M; Coleman, A E; Rapoport, G S; Schmiedt, C W; Layher, J; Thomason, J D
2016-12-01
A 16-year-old dog was presented for cough as well as increased respiratory rate and effort three years after implantation of a single-lead transvenous artificial pacemaker system. Thoracic radiographs and echocardiography disclosed prolapse of the pacemaker lead into the main pulmonary artery, causing severe pulmonary insufficiency and right-sided volume overload. Repositioning of the pacemaker lead led to improvement of pulmonary insufficiency and resolution of the dog's clinical signs and cavitary effusions. This case describes a late complication of pacemaker implantation that may be avoided by appropriate use of the manufacturer-provided anchoring sleeve and avoidance of excessive lead redundancy. Copyright © 2016 Elsevier B.V. All rights reserved.
Karjalainen, Pasi P; Nammas, Wail; Paana, Tuomas
2016-01-01
An 83-year-old lady had a DDDR pacemaker inserted in 1997 for symptomatic atrioventricular block. She underwent battery replacement in 2008. In 2010, she developed atrial fibrillation; the pacemaker was switched to VVIR mode. During the last 2years, ventricular lead threshold increased progressively. In December 2015, she presented for elective battery replacement. After successful battery replacement, the ventricular lead threshold remained high; therefore, we implanted a leadless transcatheter pacemaker, via femoral vein access, using a dedicated catheter delivery system. Electrical measurements at this stage revealed a pacing threshold of 0.28V at 0.24msec, and an impedance of 650Ω. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller-Runkel, R.; Orsolini, G.; Kalokhe, U.P.
1990-11-01
Multiprogrammable pacemakers, using complimentary metaloxide semiconductor (CMOS) circuitry, may fail during radiation therapy. We report about a patient who received 6,400 cGy for unresectable carcinoma of the left lung. In supine treatment position, arms raised above the head, the pacemaker was outside the treated area by a margin of at least 1 cm, shielded by cerrobend blocking mounted on a tray. From thermoluminescent dosimeter (TLD) measurements, we estimate that the pacemaker received 620 cGy in scatter doses. Its function was monitored before, during, and after completion of radiation therapy. The pacemaker was functioning normally until the patient's death 5 monthsmore » after completion of treatment. The relevant electrocardiograms (ECGs) are presented.« less
21 CFR 870.3670 - Pacemaker charger.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker charger. 870.3670 Section 870.3670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3670 Pacemaker charger. (a...
Beinart, Roy; Nazarian, Saman
2013-12-24
The overall risk of clinically significant adverse events related to EMI in recipients of CIEDs is very low. Therefore, no special precautions are needed when household appliances are used. Environmental and industrial sources of EMI are relatively safe when the exposure time is limited and distance from the CIEDs is maximized. The risk of EMI-induced events is highest within the hospital environment. Physician awareness of the possible interactions and methods to minimize them is warranted.
Behavior of an Automatic Pacemaker Sensing Algorithm for Single-Pass VDD Atrial Electrograms
2001-10-25
830- s lead (Medico), during several different body postures, deep respiration, and walking. The algorithm had a pre - determined sensing dynamic range...SINGLE-PASS VDD ATRIAL ELECTROGRAMS J. Kim1, S.H. Lee1, S.Y.Yang2, B. S . Cho2, and W. Huh1 1Department of Electronics Engineering, Myongji...University, Yongin, Korea 2Department of Information and Communication, Dongwon College, Kwangju, Korea S T = 5 0 % x ( B + C ) / 2 S T = 5 0 % x ( A + B
NASA Astrophysics Data System (ADS)
Hamzah, Afiq; Ezaila Alias, N.; Ismail, Razali
2018-06-01
The aim of this study is to investigate the memory performances of gate-all-around floating gate (GAA-FG) memory cell implementing engineered tunnel barrier concept of variable oxide thickness (VARIOT) of low-k/high-k for several high-k (i.e., Si3N4, Al2O3, HfO2, and ZrO2) with low-k SiO2 using three-dimensional (3D) simulator Silvaco ATLAS. The simulation work is conducted by initially determining the optimized thickness of low-k/high-k barrier-stacked and extracting their Fowler–Nordheim (FN) coefficients. Based on the optimized parameters the device performances of GAA-FG for fast program operation and data retention are assessed using benchmark set by 6 and 8 nm SiO2 tunnel layer respectively. The programming speed has been improved and wide memory window with 30% increment from conventional SiO2 has been obtained using SiO2/Al2O3 tunnel layer due to its thin low-k dielectric thickness. Furthermore, given its high band edges only 1% of charge-loss is expected after 10 years of ‑3.6/3.6 V gate stress.
DEVELOPMENT OF A MONITOR FOR HCN IN MOBILE SOURCE EMISSIONS
Three real-time monitors for measurement of HCN concentrations in mobile source emissions have been designed, built, tested, and delivered to the Environmental Protection Agency (EPA). The important design parameters for these identical instruments were determined during the firs...
NASA Astrophysics Data System (ADS)
Muller, Sébastien; Dinh-V-Trung; He, Jin-Hua; Lim, Jeremy
2008-09-01
We report high angular resolution observations of the HCN (3-2) line emission in the circumstellar envelope of the O-rich star W Hya with the Submillimeter Array. The proximity of this star allows us to image its molecular envelope with a spatial resolution of just ~40 AU, corresponding to about 10 times the stellar diameter. We resolve the HCN (3-2) emission and find that it is centrally peaked and has a roughly spherically symmetrical distribution. This shows that HCN is formed in the innermost region of the envelope (within ~10 stellar radii), which is consistent with predictions from pulsation-driven shock chemistry models, and rules out the scenario in which HCN forms through photochemical reactions in the outer envelope. Our model suggests that the envelope decreases steeply in temperature and increases smoothly in velocity with radius, inconsistent with the standard model for mass-loss driven by radiative pressure on dust grains. We detect a velocity gradient of ~5 km s-1 in the northwest-southeast direction over the central 40 AU. This velocity gradient is reminiscent of that seen in OH maser lines, and could be caused by the rotation of the envelope or by a weak bipolar outflow.
Kim, Doeun; Kim, Jung Nam; Nam, Joo Hyun; Lee, Jong Rok; Kim, Sang Chan; Kim, Byung Joo
2018-04-19
The Gamisoyo-san (GSS) has been used for -improving the gastrointestinal (GI) symptoms. The purpose of this study was to investigate the effects of GSS, a traditional Chinese herbal medicine, on the pacemaker potentials of mouse small intestinal interstitial cells of Cajal (ICCs). ICCs from the small intestines were dissociated and cultured. Whole-cell patch-clamp configuration was used to record pacemaker potentials and membrane currents. GSS depolarized ICC pacemaker potentials in a dose-dependent manner. Pretreatment with 4-diphenylacetoxypiperidinium iodide completely inhibited GSS-induced pacemaker potential depolarizations. Intracellular GDP-β-S inhibited GSS-induced effects, and in the presence of U-73122, GSS-induced effects were inhibited. Also, GSS in the presence of a Ca2+-free solution or thapsigargin did not depolarize pacemaker potentials. However, in the presence of calphostin C, GSS slightly depolarized pacemaker potentials. Furthermore, GSS inhibited both transient receptor potential melastatin7 and Ca2+-activated Cl- channel (anoctamin1) currents. GSS depolarized pacemaker potentials of ICCs via G protein and muscarinic M3 receptor signaling pathways and through internal or external Ca2+-, phospholipase C-, and protein kinase C-dependent and transient receptor potential melastatin 7-, and anoctamin 1-independent pathways. The study shows that GSS may regulate GI tract motility, suggesting that GSS could be a basis for developing novel prokinetic agents for treating GI motility dysfunctions. © 2018 S. Karger AG, Basel.
Kaul, Pankaj; Adluri, Krishna; Javangula, Kalyana; Baig, Wasir
2009-01-01
A 59 year old man underwent mechanical tricuspid valve replacement and removal of pacemaker generator along with 4 pacemaker leads for pacemaker endocarditis and superior vena cava obstruction after an earlier percutaneous extraction had to be abandoned, 13 years ago, due to cardiac arrest, accompanied by silent, unsuspected right atrial perforation and exteriorisation of lead. Postoperative course was complicated by tricuspid valve thrombosis and secondary pulmonary embolism requiring TPA thrombolysis which was instantly successful. A review of literature of pacemaker endocarditis and tricuspid thrombosis along with the relevant management strategies is presented. We believe this case report is unusual on account of non operative management of right atrial lead perforation following an unsuccessful attempt at percutaneous removal of right sided infected pacemaker leads and the incidental discovery of the perforated lead 13 years later at sternotomy, presentation of pacemaker endocarditis with a massive load of vegetations along the entire pacemaker lead tract in superior vena cava, right atrial endocardium, tricuspid valve and right ventricular endocardium, leading to a functional and structural SVC obstruction, requirement of an unusually large dose of warfarin postoperatively occasioned, in all probability, by antibiotic drug interactions, presentation of tricuspid prosthetic valve thrombosis uniquely as vasovagal syncope and isolated hypoxia and near instantaneous resolution of tricuspid prosthetic valve thrombosis with Alteplase thrombolysis. PMID:19239701
Tricuspid valve repair for severe tricuspid regurgitation due to pacemaker leads.
Uehara, Kyokun; Minakata, Kenji; Watanabe, Kentaro; Sakaguchi, Hisashi; Yamazaki, Kazuhiro; Ikeda, Tadashi; Sakata, Ryuzo
2016-07-01
Tricuspid valve regurgitation due to pacemaker leads is a well-known complication. Although some reports have suggested that pacemaker leads should be surgically explanted, strongly adhered leads cannot always be removed. The aim of this study was to describe our tricuspid valve repair techniques with pacemaker leads left in situ. Our retrospective study investigated 6 consecutive patients who required tricuspid valve surgery for severe regurgitation induced by pacemaker leads. From the operative findings, we identified 3 patterns of tricuspid valve and pacemaker lead involvement. In 3 patients, the leads were caught in the chordae, in 2 patients, tricuspid regurgitation was caused by lead impingement on the septal leaflet, and in 3 patients, tricuspid valve leaflets had been perforated by the pacemaker leads. During surgery, all leads were left in situ after being separated from the leaflet or valvular apparatus. In addition, suture annuloplasty was performed for annular dilatation in all cases. In one patient, the lead was reaffixed to the annulus after the posterior leaflet was cut back towards the annulus, and the leaflet was then closed. There was one hospital death due to sepsis. The degree of tricuspid regurgitation was trivial in all surviving patients at discharge. During a mean follow-up of 21 months, one patient died from pneumonia 20 months after tricuspid valve repair. In patients undergoing tricuspid valve surgery due to severe tricuspid regurgitation caused by pacemaker leads, the leads can be left in situ after proper repair with annuloplasty. © The Author(s) 2016.
Outcome and management of pacemaker-induced superior vena cava syndrome.
Fu, Hai-Xia; Huang, Xin-Miao; Zhong, Li; Osborn, Michael J; Bjarnason, Haraldur; Mulpuru, Siva; Zhao, Xian-Xian; Friedman, Paul A; Cha, Yong-Mei
2014-11-01
We aimed to determine the long-term outcomes of percutaneous lead extraction and stent placement in patients with pacemaker-induced superior vena cava (SVC) syndrome. The study retrospectively screened patients who underwent lead extraction followed by central vein stent implantation at Mayo Clinic (Rochester, MN, USA), from January 2005 to December 2012, to identify the patients with pacemaker-induced SVC syndrome. Demographic, clinical, and follow-up characteristics of those patients were collected from electronic medical records. Six cases were identified. The mean (standard deviation) age was 56 (15) years (male, 67%). All patients had permanent dual-chamber pacemakers, with a mean 11-year history of pacemaker placement. The entire device system was explanted in five patients; one patient had a 21-year-old pacemaker lead that could not be removed. Eight stents were implanted in six patients: five patients had one stent, one patient had three. A new pacemaker system was reimplanted through the stented vein in five patients. Technical success was achieved in all patients, without any complication. Symptoms rapidly resolved in all patients after stent deployment. The mean follow-up duration was 48 months (range, 10-100 months). Three patients remained symptom free. Reintervention with percutaneous balloon venoplasty was successful in three patients with symptom recurrence. Percutaneous stent implantation after lead removal followed by reimplantation of leads is a feasible alternative therapy for pacemaker-induced SVC syndrome, although some cases may require repeat intervention. ©2014 Wiley Periodicals, Inc.
de Campos, Nelson Leonardo Kerdahi Leite; de Andrade, Rubens Ramos; Fellicio, Marcello Laneza; Martins, Antônio Sergio; Garzesi, André Monti; Garcia, Leonardo Rufino; Takeda, Tassya Bueno
2017-01-01
Introduction The pacemaker implantation VDD is considered simpler, faster, less expensive and causes fewer complications compared to DDD. However, the VDD pacemaker has not been widely used in many centers, perhaps for fear of dysfunction of the sinus node and the reduction of atrial sensitivity by the pacemaker during follow-up after implantation. Objective To compare patients with DDD and VDD pacemakers regarding the evolution of chronic atrial fibrillation (AF) and length of stay outside this postoperative arrhythmia. Methods It was included 158 patients with dual chamber pacemakers, 48 DDD and 110 VDD. Follow-up period: between January 1, 1999 and December 31, 2015. The mean follow-up of patients with DDD was 5.35 years and the VDD, 4.74 years. The percentage of each group (DDD and VDD) which evolved to AF during follow-up was assessed. Also, it was made an actuarial study with the respective curves indicating the time free from AF for each group. Patients were classified according to the diagnosis that led to pacemaker implantation and the degree of heart failure. Results The percentage of patients who developed AF was higher in DDD group (10.42%) than in VDD group (6.36%), but without statistical significance. Patients with DDD and VDD remained free of AF for similar period. Conclusion Considering the results, the VDD pacemaker continues to be a good option to the DDD for routine use in cases properly indicated. PMID:29211212
Campos, Nelson Leonardo Kerdahi Leite de; Andrade, Rubens Ramos de; Fellicio, Marcello Laneza; Martins, Antônio Sergio; Garzesi, André Monti; Garcia, Leonardo Rufino; Takeda, Tassya Bueno
2017-01-01
The pacemaker implantation VDD is considered simpler, faster, less expensive and causes fewer complications compared to DDD. However, the VDD pacemaker has not been widely used in many centers, perhaps for fear of dysfunction of the sinus node and the reduction of atrial sensitivity by the pacemaker during follow-up after implantation. To compare patients with DDD and VDD pacemakers regarding the evolution of chronic atrial fibrillation (AF) and length of stay outside this postoperative arrhythmia. It was included 158 patients with dual chamber pacemakers, 48 DDD and 110 VDD. Follow-up period: between January 1, 1999 and December 31, 2015. The mean follow-up of patients with DDD was 5.35 years and the VDD, 4.74 years. The percentage of each group (DDD and VDD) which evolved to AF during follow-up was assessed. Also, it was made an actuarial study with the respective curves indicating the time free from AF for each group. Patients were classified according to the diagnosis that led to pacemaker implantation and the degree of heart failure. The percentage of patients who developed AF was higher in DDD group (10.42%) than in VDD group (6.36%), but without statistical significance. Patients with DDD and VDD remained free of AF for similar period. Considering the results, the VDD pacemaker continues to be a good option to the DDD for routine use in cases properly indicated.
Ghaem, Haleh; Ghorbani, Mohammad; Zare Dorniani, Samira
2017-06-01
Permanent artificial pacemaker is one of the important therapies for treatment of cardiac conduction system problems. The present study aimed to determine the association between some predictive variables and all-cause and cause-specific mortality in the patients who had undergone pacemaker implantation. This study was conducted on 1207 patients who had undergone permanent pacemaker implantation in the hospitals affiliated with Shiraz University of Medical Sciences, Iran, from Mar 2002 to Mar 2012. The variables that existed in the patients' medical records included sex, diabetes mellitus, obesity, cerebrovascular accident, cardiomegaly, smoking, hypertension, ischemic heart disease, congenital heart disease, sick sinus syndrome, and atrial fibrillation. Competing risks model was used to assess the association between the predictive variables and cause-specific (i.e., cardiac and vascular) mortality. The patients' mean age was 66.32±17.92 yr (70.62±14.45 yr in the patients with single-chamber pacemakers vs. 61.91±17.69 yr in those with two-chamber pacemakers) ( P <0.001). Sick sinus syndrome and age increased the risk of all-cause mortality, while two-chamber pacemaker decreased this risk. Obesity increased the risk of cardiac death, and diabetes mellitus and heart valve disease increased the risk of vascular death. The variables predicting mortality in all-cause model were completely different from those in cause-specific model. Moreover, death in such patients may occur due to reasons other than pacemaker. Therefore, future studies, particularly prospective ones, are recommended to use competing risks models.
Neuropeptide Secreted from a Pacemaker Activates Neurons to Control a Rhythmic Behavior
Wang, Han; Girskis, Kelly; Janssen, Tom; Chan, Jason P.; Dasgupta, Krishnakali; Knowles, James A.; Schoofs, Liliane; Sieburth, Derek
2013-01-01
Summary Background Rhythmic behaviors are driven by endogenous biological clocks in pacemakers, which must reliably transmit timing information to target tissues that execute rhythmic outputs. During the defecation motor program in C. elegans, calcium oscillations in the pacemaker (intestine), which occur about every 50 seconds, trigger rhythmic enteric muscle contractions through downstream GABAergic neurons that innervate enteric muscles. However, the identity of the timing signal released by the pacemaker and the mechanism underlying the delivery of timing information to the GABAergic neurons are unknown. Results Here we show that a neuropeptide-like protein (NLP-40) released by the pacemaker triggers a single rapid calcium transient in the GABAergic neurons during each defecation cycle. We find that mutants lacking nlp-40 have normal pacemaker function, but lack enteric muscle contractions. NLP-40 undergoes calcium-dependent release that is mediated by the calcium sensor, SNT-2/synaptotagmin. We identify AEX-2, the G protein-coupled receptor on the GABAergic neurons, as the receptor of NLP-40. Functional calcium imaging reveals that NLP-40 and AEX-2/GPCR are both necessary for rhythmic activation of these neurons. Furthermore, acute application of synthetic NLP-40-derived peptide depolarizes the GABAergic neurons in vivo. Conclusions Our results show that NLP-40 carries the timing information from the pacemaker via calcium-dependent release and delivers it to the GABAergic neurons by instructing their activation. Thus, we propose that rhythmic release of neuropeptides can deliver temporal information from pacemakers to downstream neurons to execute rhythmic behaviors. PMID:23583549
NASA Astrophysics Data System (ADS)
Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Lee, Yong Hee; Joo, Seung Ki
2017-06-01
Low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) fabricated via metal-induced crystallization (MIC) are attractive candidates for use in active-matrix flat-panel displays. However, these exhibit a large leakage current due to the nickel silicide being trapped at the grain boundaries of the poly-Si. We reduced the leakage current of the MIC poly-Si TFTs by developing a gettering method to remove the Ni impurities using a Si getter layer and natively-formed SiO2 as the etch stop interlayer. The Ni trap state density (Nt) in the MIC poly-Si film decreased after the Ni silicide gettering, and as a result, the leakage current of the MIC poly-Si TFTs decreased. Furthermore, the leakage current of MIC poly-Si TFTs gradually decreased with additional gettering. To explain the gettering effect on MIC poly-Si TFTs, we suggest an appropriate model. He received the B.S. degree in School of Advanced Materials Engineering from Kookmin University, Seoul, South Korea in 2012, and the M.S. degree in Department of Materials Science and Engineering from Seoul National University, Seoul, South Korea in 2014. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and top-gate polycrystalline-silicon thin-film transistors. He received the M.S. degree in innovation technology from Ecol Polytechnique, Palaiseau, France in 2013. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and copper-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He received the B.S. degree in metallurgical engineering from Seoul National University, Seoul, South Korea, in 1974, and the M.S. and Ph.D. degrees in material science and engineering from Stanford University, Stanford, CA, USA, in 1980 and 1983, respectively. He is currently a Professor with the Department of Materials Science and Engineering, Seoul National University, Seoul.
A Novel Way Of Repair Of Insulation Breaks During Pacemaker Generator Replacement
Manzoor Ali, Syed; Iqbal, Khurshid; Tramboo, Nisar A; Lone, Aijaz A; Kaul, Suresh; Kaul, Neelam; Hafiz, Imran
2009-01-01
Minor abrasions can occur while mobilising old lead during pacemaker generator replacement necesittating placement of additional lead adding to the financial burden and junk in heart. We describe a novel way of repair of old pacemaker lead preventing additional lead placement. PMID:19763196
21 CFR 870.3620 - Pacemaker lead adaptor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor...
21 CFR 870.3650 - Pacemaker polymeric mesh bag.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870.3650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric...
21 CFR 870.3630 - Pacemaker generator function analyzer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker generator function analyzer. 870.3630 Section 870.3630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3630 Pacemaker...
21 CFR 870.3690 - Pacemaker test magnet.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet...
21 CFR 870.3720 - Pacemaker electrode function tester.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker electrode function tester. 870.3720... electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which is... measuring the patient's pacing threshold and intracardiac R-wave potential. (b) Classification. Class II...
Reconfiguration of a Multi-oscillator Network by Light in the Drosophila Circadian Clock.
Chatterjee, Abhishek; Lamaze, Angélique; De, Joydeep; Mena, Wilson; Chélot, Elisabeth; Martin, Béatrice; Hardin, Paul; Kadener, Sebastian; Emery, Patrick; Rouyer, François
2018-06-07
The brain clock that drives circadian rhythms of locomotor activity relies on a multi-oscillator neuronal network. In addition to synchronizing the clock with day-night cycles, light also reformats the clock-driven daily activity pattern. How changes in lighting conditions modify the contribution of the different oscillators to remodel the daily activity pattern remains largely unknown. Our data in Drosophila indicate that light readjusts the interactions between oscillators through two different modes. We show that a morning s-LNv > DN1p circuit works in series, whereas two parallel evening circuits are contributed by LNds and other DN1ps. Based on the photic context, the master pacemaker in the s-LNv neurons swaps its enslaved partner-oscillator-LNd in the presence of light or DN1p in the absence of light-to always link up with the most influential phase-determining oscillator. When exposure to light further increases, the light-activated LNd pacemaker becomes independent by decoupling from the s-LNvs. The calibration of coupling by light is layered on a clock-independent network interaction wherein light upregulates the expression of the PDF neuropeptide in the s-LNvs, which inhibits the behavioral output of the DN1p evening oscillator. Thus, light modifies inter-oscillator coupling and clock-independent output-gating to achieve flexibility in the network. It is likely that the light-induced changes in the Drosophila brain circadian network could reveal general principles of adapting to varying environmental cues in any neuronal multi-oscillator system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Optogenetic pacing in Drosophila melanogaster (Conference Presentation)
NASA Astrophysics Data System (ADS)
Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao
2016-03-01
A non-invasive, contact-less cardiac pacing technology can be a powerful tool in basic cardiac research and in clinics. Currently, electrical pacing is the gold standard for cardiac pacing. Although highly effective in controlling the cardiac function, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its capabilities. Optical pacing of heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids shortcomings in electrical stimulation. Optical coherence tomography has been proved to be an effective technique in non-invasive imaging in vivo with ultrahigh resolution and imaging speed. In the last several years, non-invasive specific optical pacing in animal hearts has been reported in quail, zebrafish, and rabbit models. However, Drosophila Melanogaster, which is a significant model with orthologs of 75% of human disease genes, has rarely been studied concerning their optical pacing in heart. Here, we combined optogenetic control of Drosophila heartbeat with optical coherence microscopy (OCM) technique for the first time. The light-gated cation channel, channelrhodopsin-2 (ChR2) was specifically expressed by transgene as a pacemaker in drosophila heart. By stimulating the pacemaker with 472 nm pulsed laser light at different frequencies, we achieved non-invasive and more specific optical control of the Drosophila heart rhythm, which demonstrates the wide potential of optical pacing for studying cardiac dynamics and development. Imaging capability of our customized OCM system was also involved to observe the pacing effect visually. No tissue damage was found after long exposure to laser pulses, which proved the safety of optogenetic control of Drosophila heart.
NASA Astrophysics Data System (ADS)
Yang, Bin; Zhang, Xiao-Bing; Kang, Li-Ping; Huang, Zhi-Mei; Shen, Guo-Li; Yu, Ru-Qin; Tan, Weihong
2014-07-01
DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a ``lab-on-a-nanoparticle'', the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology.DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a ``lab-on-a-nanoparticle'', the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology. Electronic supplementary information (ESI) available: Additional figures (Table S1, Fig. S1-S5). See DOI: 10.1039/c4nr01676a
Corps of Engineers Hydraulic Design Criteria. Volume 2
1977-01-01
21.7 (Chart 310-1/1) 6 a = T - =0.3 ft. 2.7 Effective pressure D + a = 75.0 + 0.3 = 75.3 ft. I : CREST GATES1 WAVC PRESSURE SAMPLE COMPUTATION HYDRAULIC... T -x 75.3.- 25.7 ft Maximum hydraulic load on gate (R) RR y + -j--- x gate height V y - specific weight of water -62.4 lb/ft 3 16.41.7;+25.7)2...j- xhih f tutr -62.4 ( -2;5.) 80 - 192,000 lb/ft of width / t Note: Equivalent for still-water level is 175,000 lb/ft of width. CREST GATES WAVE