Tight Placement of Erich Arch Bar While Avoiding Wire Fatigue Failure.
Kirk, Daniel; Whitney, Joseph; Shafer, David; Song, Liansheng
2016-03-01
To determine the number of wire twists needed to acquire ideal Erich arch bar tightness before wire fatigue failure (fracture) in relation to different distances and angles at which different gauge wires are grasped to provide information to improve the efficiency of arch bar application. This study mimicked surgical placement of arch bars with 24- and 26-gauge wires. The number of twists to tightness and failure was evaluated when the wire distance between the arch bar and wire holder tip changed (5 vs 10 mm) and when the degree at which the wire was held relative to the tooth axis was changed (45° vs 90°). A wire shearing test also was used to investigate the fatigability of wires tightened under these same conditions. Wires twisted to tightness, past tightness, and after shearing test movements were visualized with electron microscopy. For 24-gauge wire held at 5 mm, 2.6 to 2.8 twists were needed for wire tightness, with failure after 1.7 to 1.9 twists past tightness; for 24-gauge wire held at 10 mm, 4.4 to 4.9 twists produced tightness, with failure after 2.3 to 2.9 twists past tightness. For 26-gauge wire held at 5 mm, 3.3 to 3.5 twists provided tightness, with 1.6 to 1.8 twists past tightness causing failure; for 26-gauge wire held at 10 mm, 5.1 to 5.5 twists produced tightness, with 3.1 to 3.7 twists past tightness causing failure. At a 45° angle, the wire tightened with fewer twists and showed more resistance to failure with twists past tightness compared with 90° using 24- and 26-gauge wires. In contrast, 24-gauge wire held at a 5-mm distance showed the opposite result, with decreased resistance to failure at the 45° angle. However, the differences were not statistically meaningful. Scanning election microscopy showed no wire fatigue for either angle for 26-gauge wire held at a 5-mm distance and twisted to tightness. After overtightening and oscillation, the 90° angle trials showed fatigue, whereas the 45° angle trials did not. Holding a 24-gauge wire at 45° to the tooth axis is recommended owing to fewer twists to tightness and more resistance to failure. A 5-mm grasping distance is recommended for experienced surgeons owing to fewer twists to tightness, whereas a 10-mm grasping distance is recommended for novice surgeons owing to a greater tolerance for over-twisting before failure. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Experimental Investigation of Gauge Widening and Rail Restraint Characteristics
DOT National Transportation Integrated Search
1984-11-01
Gauge widening resulting from a loss of adequate rail restraint is one of the major track failure modes and the cause of a large number of derailments. A recent field and laboratory test program conducted by the Transportation Systems Center aimed at...
Novel Circuits for Energizing Manganin Stress Gauges
NASA Astrophysics Data System (ADS)
Tasker, Douglas
2015-06-01
This paper describes the design, manufacture and testing of novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 m Ω and are energized with pulsed currents of 50 A. Conventional pulsed current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to finite and changing source impedances. To correct these issues a novel MOSFET circuit was designed and will be described. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory and selected explosive tests will be described together with their results. LA-UR-15-20613.
Tensile strength and failure load of sutures for robotic surgery.
Abiri, Ahmad; Paydar, Omeed; Tao, Anna; LaRocca, Megan; Liu, Kang; Genovese, Bradley; Candler, Robert; Grundfest, Warren S; Dutson, Erik P
2017-08-01
Robotic surgical platforms have seen increased use among minimally invasive gastrointestinal surgeons (von Fraunhofer et al. in J Biomed Mater Res 19(5):595-600, 1985. doi: 10.1002/jbm.820190511 ). However, these systems still suffer from lack of haptic feedback, which results in exertion of excessive force, often leading to suture failures (Barbash et al. in Ann Surg 259(1):1-6, 2014. doi: 10.1097/SLA.0b013e3182a5c8b8 ). This work catalogs tensile strength and failure load among commonly used sutures in an effort to prevent robotic surgical consoles from exceeding identified thresholds. Trials were thus conducted on common sutures varying in material type, gauge size, rate of pulling force, and method of applied force. Polydioxanone, Silk, Vicryl, and Prolene, gauges 5-0 to 1-0, were pulled till failure using a commercial mechanical testing system. 2-0 and 3-0 sutures were further tested for the effect of pull rate on failure load at rates of 50, 200, and 400 mm/min. 3-0 sutures were also pulled till failure using a da Vinci robotic surgical system in unlooped, looped, and at the needle body arrangements. Generally, Vicryl and PDS sutures had the highest mechanical strength (47-179 kN/cm 2 ), while Silk had the lowest (40-106 kN/cm 2 ). Larger diameter sutures withstand higher total force, but finer gauges consistently show higher force per unit area. The difference between material types becomes increasingly significant as the diameters decrease. Comparisons of identical suture materials and gauges show 27-50% improvement in the tensile strength over data obtained in 1985 (Ballantyne in Surg Endosc Other Interv Tech 16(10):1389-1402, 2002. doi: 10.1007/s00464-001-8283-7 ). No significant differences were observed when sutures were pulled at different rates. Reduction in suture strength appeared to be strongly affected by the technique used to manipulate the suture. Availability of suture tensile strength and failure load data will help define software safety protocols for alerting a surgeon prior to suture failure during robotic surgery. Awareness of suture strength weakening with direct instrument manipulation may lead to the development of better techniques to further reduce intraoperative suture breakage.
NASA Technical Reports Server (NTRS)
Tamminga, Joshua D.
2011-01-01
Test Rationale -- Attempt to Address 10% vs. 25+% effects of crater penetration on full scale titanium alloy tanks and comparison to plate tests Utilize Baseline Burst Pressure versus HVI impacted vessels as gauge of effects Examine craters (post test) to determine penetration characteristics on a fluid filled vessel versus plate tests. Examine crater effects leading to vessel failure (if any).
Flammability testing conducted in support of Apollo 13
NASA Technical Reports Server (NTRS)
Leger, L. J.; Bricker, R. W.
1971-01-01
In support of the Apollo 13 investigation of the oxygen tank failure, flame propagation rates were determined for Teflon insulation in cryogenic and ambient temperature oxygen for upward, downward, and zero g burns. The propagation rates depended heavily on configuration and varied from 4.8 to 10.9 cm/sec for upward one g burns to 0.48 cm/sec for zero g burns. In addition to the flame propagation rates, tests were conducted to determine if Teflon burning in cryogenic oxygen could ignite metals (promoted ignition) with which it came in contact. Tests conducted on various metal alloys used in the oxygen tank indicated that most of the alloys could be ignited by burning Teflon in certain configurations. After the propagation rates and promoted metal ignitions had been evaluated, a test was conducted on a quantity gauge and wire harness used in the oxygen tank to determine if flame propagation to the tank wall was possible. Propagation of the wire bundle after ignition resulted in a catastrophic failure of the test vessel in the area of the quantity gauge.
Pressure Testing of a Minimum Gauge PRSEUS Panel
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew J.; Rouse, Marshall; Linton, Kim A.; Li, Victor P.
2011-01-01
Advanced aircraft configurations that have been developed to increase fuel efficiency require advanced, novel structural concepts capable of handling the unique load conditions that arise. One such concept is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) developed by the Boeing Company. The PRSEUS concept is being investigated by NASA s Environmentally Responsible Aviation (ERA) Program for use in a hybrid-wing body (HWB) aircraft. This paper summarizes the analysis and test of a PRSEUS panel subjected to internal pressure, the first such pressure test for this structural concept. The pressure panel used minimum gauge skin, with stringer and frame configurations consistent with previous PRSEUS tests. Analysis indicated that for the minimum gauge skin panel, the stringer locations exhibit fairly linear response, but the skin bays between the stringers exhibit nonlinear response. Excellent agreement was seen between nonlinear analysis and test results in the critical portion at the center of the panel. The pristine panel was capable of withstanding the required 18.4 psi pressure load condition without exhibiting any damage. The impacted panel was capable of withstanding a pressure load in excess of 28 psi before initial failure occurred at the center stringer, and the panel was capable of sustaining increased pressure load after the initial failure. This successful PRSEUS panel pressure panel test was a critical step in the building block approach for enabling the use of this advanced structural concept on future aircraft, such as the HWB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, G.E.; Oliver, R.G.
1972-02-17
This design criteria revision (revision 2) will cancel revision 1 and will provide complete functional supervision of the liquid level gauges. A new.counter and an electronic supervisory circuit will be installed in each waste tank liquid level gauge. The electronic supervisory circuit will monitor (via the new counter and a signal from the gauge electronics) cycling of the gauge on a one minute time cycle. This supervisory circuit will fulfill the intent of revision 1 (monitor AC power to the gauge) and, in addition, will supervise all other aspects of the gauge including: the electronics, the drive motor, all sprocketsmore » and chain linkages, and the counter. If a gauge failure should occur, this circuit will remove the +12 volts excitation from the data acquisition system inferface board; and the computer will be programmed to recognize this condition as a gauge failure. (auth)« less
High temperature thermocouple and heat flux gauge using a unique thin film-hardware hot juncture
NASA Technical Reports Server (NTRS)
Liebert, C. H.; Holanda, R.; Hippensteele, S. A.; Andracchio, C. A.
1984-01-01
A special thin film-hardware material thermocouple (TC) and heat flux gauge concept for a reasonably high temperature and high flux flat plate heat transfer experiment was fabricated and tested to gauge temperatures of 911 K. This concept was developed for minimal disturbance of boundary layer temperature and flow over the plates and minimal disturbance of heat flux through the plates. Comparison of special heat flux gauge Stanton number output at steady-state conditions with benchmark literature data was good and agreement was within a calculated uncertainty of the measurement system. Also, good agreement of special TC and standard TC outputs was obtained and the results are encouraging. Oxidation of thin film thermoelements was a primary failure mode after about 5 of operation.
High-temperature thermocouple and heat flux gauge using a unique thin film-hardware hot junction
NASA Technical Reports Server (NTRS)
Liebert, C. H.; Holanda, R.; Hippensteele, S. A.; Andracchio, C. A.
1985-01-01
A special thin film-hardware material thermocouple (TC) and heat flux gauge concept for a reasonably high temperature and high flux flat plate heat transfer experiment was fabricated and tested to gauge temperatures of 911 K. This concept was developed for minimal disturbance of boundary layer temperature and flow over the plates and minimal disturbance of heat flux through the plates. Comparison of special heat flux gauge Stanton number output at steady-state conditions with benchmark literature data was good and agreement was within a calculated uncertainty of the measurement system. Also, good agreement of special TC and standard TC outputs was obtained and the results are encouraging. Oxidation of thin film thermoelements was a primary failure mode after about 5 of operation.
Novel circuits for energizing manganin stress gauges
NASA Astrophysics Data System (ADS)
Tasker, Douglas G.
2017-01-01
This paper describes the design of a novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. The Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 mΩ and are energized with pulsed currents of 50 A. Conventional pulsed, constant current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to changing load impedances. The new circuit corrects these issues. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory in explosive experiments. [LA-UR-15-24819
Central venous catheter integrity during mechanical power injection of iodinated contrast medium.
Macha, Douglas B; Nelson, Rendon C; Howle, Laurens E; Hollingsworth, John W; Schindera, Sebastian T
2009-12-01
To evaluate a widely used nontunneled triple-lumen central venous catheter in order to determine whether the largest of the three lumina (16 gauge) can tolerate high flow rates, such as those required for computed tomographic angiography. Forty-two catheters were tested in vitro, including 10 new and 32 used catheters (median indwelling time, 5 days). Injection pressures were continuously monitored at the site of the 16-gauge central venous catheter hub. Catheters were injected with 300 and 370 mg of iodine per milliliter of iopamidol by using a mechanical injector at increasing flow rates until the catheter failed. The infusion rate, hub pressure, and location were documented for each failure event. The catheter pressures generated during hand injection by five operators were also analyzed. Mean flow rates and pressures at failure were compared by means of two-tailed Student t test, with differences considered significant at P < .05. Injections of iopamidol with 370 mg of iodine per milliliter generate more pressure than injections of iopamidol with 300 mg of iodine per milliliter at the same injection rate. All catheters failed in the tubing external to the patient. The lowest flow rate at which catheter failure occurred was 9 mL/sec. The lowest hub pressure at failure was 262 pounds per square inch gauge (psig) for new and 213 psig for used catheters. Hand injection of iopamidol with 300 mg of iodine per milliliter generated peak hub pressures ranging from 35 to 72 psig, corresponding to flow rates ranging from 2.5 to 5.0 mL/sec. Indwelling use has an effect on catheter material property, but even for used catheters there is a substantial safety margin for power injection with the particular triple-lumen central venous catheter tested in this study, as the manufacturer's recommendation for maximum pressure is 15 psig.
An ionization pressure gauge with LaB6 emitter for long-term operation in strong magnetic fields
NASA Astrophysics Data System (ADS)
Wenzel, U.; Pedersen, T. S.; Marquardt, M.; Singer, M.
2018-03-01
We report here on a potentially significant improvement in the design of neutral pressure gauges of the so-called ASDEX-type which were first used in the Axially Symmetric Divertor EXperiment (ASDEX). Such gauges are considered state-of-the-art and are in wide use in fusion experiments, but they nonetheless suffer from a relatively high failure rate when operated at high magnetic field strengths for long times. This is therefore a significant concern for long-pulse, high-field experiments such as Wendelstein 7-X (W7-X) and ITER. The new design is much more robust. The improvement is to use a LaB6 crystal instead of a tungsten wire as the thermionic emitter of electrons in the gauge. Such a LaB6 prototype gauge was successfully operated for a total of 60 h in B = 3.1 T, confirming the significantly improved robustness of the new design and qualifying it for near-term operation in W7-X. With the LaB6 crystal, an order of magnitude reduction in heating current is achieved, relative to the tungsten filament based gauges, from 15-20 A to 1-2 A. This reduces the Lorenz forces and the heating power by an order of magnitude also and is presumably the reason for the much improved robustness. The new gauge design, test environment setup at the superconducting magnet, and results from test operation are described.
Tarkkila, P; Huhtala, J; Salminen, U
1994-08-01
The effect of different size (25-, 27- and 29-gauge) Quincke-type spinal needles on the incidence of insertion difficulties and failure rates was investigated in a randomised, prospective study with 300 patients. The needle size was randomised but the insertion procedure was standardised. The time to achieve dural puncture was significantly longer with the 29-gauge spinal needle compared with the larger bore needles and was due to the greater flexibility of the thin needle. However, the difference was less than 1 min and cannot be considered clinically significant. There were no significant differences between groups in the number of insertion attempts or failures and the same sensory level of analgesia was reached with all the needle sizes studied. Postoperatively, no postdural puncture headaches occurred in the 29-gauge spinal needle group, whilst in the 25- and 27-gauge needle groups, the postdural puncture headache rates were 7.4% and 2.1% respectively. The incidence of backache was similar in all study groups. We conclude that dural puncture with a 29-gauge spinal needle is clinically as easy as with larger bore needles and its use is indicated in patients who have a high risk of postdural puncture headache.
Embedded Strain Gauges for Condition Monitoring of Silicone Gaskets
Schotzko, Timo; Lang, Walter
2014-01-01
A miniaturized strain gauge with a thickness of 5 µm is molded into a silicone O-ring. This is a first step toward embedding sensors in gaskets for structural health monitoring. The signal of the integrated sensor exhibits a linear correlation with the contact pressure of the O-ring. This affords the opportunity to monitor the gasket condition during installation. Thus, damages caused by faulty assembly can be detected instantly, and early failures, with their associated consequences, can be prevented. Through the embedded strain gauge, the contact pressure applied to the gasket can be directly measured. Excessive pressure and incorrect positioning of the gasket can cause structural damage to the material of the gasket, which can lead to an early outage. A platinum strain gauge is fabricated on a thin polyimide layer and is contacted through gold connections. The measured resistance pressure response exhibits hysteresis for the first few strain cycles, followed by a linear behavior. The short-term impact of the embedded sensor on the stability of the gasket is investigated. Pull-tests with O-rings and test specimens have indicated that the integration of the miniaturized sensors has no negative impact on the stability in the short term. PMID:25014099
Patrick, J
1993-01-01
To review the Food and Drug Administration's regulatory requirements for bringing a new or substantially changed medical device to market in the United States, noting the history and current requirements for the continuous spinal catheter. The relevant laws and guidelines for classifying, testing, and submitting a device to Food and Drug Administration approval are reviewed. The Food and Drug Administration categorizes medical devices into three classes, based on potential risk for illness or injury presented by a malfunction or failure. Class III devices are the most critical ones, and require a Premarket Approval that includes clinical trials before market introduction. Classes I and II usually require a 510(k), or premarket notification, which usually does not need any clinical data. Testing requirements include biocompatibility testing; physical, functional, and packaging testing; and sterility testing. The continuous spinal catheter (25-32 gauge) was marketed under a 510(k) claiming substantial equivalence to the Bizzarri-Giuffrida 24-gauge catheter, which was a pre-Amendment device. After incidences of cauda equina syndrome were reported with use of the continuous spinal technique, the Food and Drug Administration reclassified the small-gauge catheters as Class III devices, which require a Premarket Approval before being marketed.
Bano, Fauzia; Haider, Saeeda; Aftab, Sadqa; Sultan, S Tipu
2004-11-01
To compare the frequency of postdural puncture headache (PDPH) and failure rate of spinal anesthesia using 25-gauge Quincke and 25-gauge Whitacre needles in obstetric patients. Single blinded, interventional experimental study. This study was conducted at the Department of Anesthesiology, Pain Management and Surgical Intensive Care Unit, Dow University of Health Sciences and Civil Hospital, Karachi from November 1, 2003-April 15, 2004. One hundred females, aged 18-35 years, ASA physical status I and II, with singleton pregnancy undergoing elective or emergency cesarean section under spinal anesthesia were randomly allocated to receive spinal anesthesia either by using 25-gauge Quincke or 25-gauge Whitacre needles. Patients were followed for 3 days postoperatively. Headache, its relation with posture, onset, duration, severity and response to the treatment were recorded. Compared with the Whitacre group, frequency of postdural puncture headache was significantly higher in Quincke group (*p=0.015), while the overall occurrence of non-postdural puncture headache (NPDPH) did not differ significantly between two groups (p=0.736). Most of PDPH developed on 2nd postoperative day, were mild in nature and resolved within 48 hours of their onset. There was no significant difference in the failure rate of spinal anesthesia in both groups (p=0.149). It is suggested that use of 25-gauge Whitacre needle reduces the frequency of PDPH without increasing the failure rate of spinal anesthesia in obstetric patients.
Luo, Sida; Liu, Tao
2014-06-25
A graphite nanoplatelet (GNP) thin film enabled 1D fiber sensor (GNP-FibSen) was fabricated by a continuous roll-to-roll spray coating process, characterized by scanning electron microscopy and Raman spectroscopy and evaluated by coupled electrical-mechanical tensile testing. The neat GNP-FibSen sensor shows very high gauge sensitivity with a gauge factor of ∼17. By embedding the sensor in fiberglass prepreg laminate parts, the dual functionalities of the GNP-FibSen sensor were demonstrated. In the manufacturing process, the resistance change of the embedded sensor provides valuable local resin curing information. After the manufacturing process, the same sensor is able to map the strain/stress states and detect the failure of the host composite. The superior durability of the embedded GNP-FibSen sensor has been demonstrated through 10,000 cycles of coupled electromechanical tests.
NASA Technical Reports Server (NTRS)
Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.
2016-01-01
This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.
Lebarbé, Matthieu; Baudrit, Pascal; Potier, Pascal; Petit, Philippe; Trosseille, Xavier; Compigne, Sabine; Masuda, Mitsutoshi; Fujii, Takumi; Douard, Richard
2016-11-01
The aim of this study was to investigate the sacroiliac joint injury mechanism. Two test configurations were selected from full scale car crashes conducted with the WorldSID 50 th dummy resulting in high sacroiliac joint loads and low pubic symphysis force, i.e. severe conditions for the sacroiliac joint. The two test conditions were reproduced in laboratory using a 150-155 kg guided probe propelled respectively at 8 m/s and 7.5 m/s and with different shapes and orientations for the plate impacting the pelvis. Nine Post Mortem Human Subject (PMHS) were tested in each of the two configurations (eighteen PMHS in total). In order to get information on the time of fracture, eleven strain gauges were glued on the pelvic bone of each PMHS. Results - In the first configuration, five PMHS out of nine sustained AIS2+ pelvic injuries. All five presented sacroiliac joint injuries associated with pubic area injuries. In the second configuration, four specimens out of nine sustained AIS2+ pelvic injuries. Two of them presented sacroiliac joint fractures associated with pubic area injuries. The other two presented injuries at the pubic area and acetabulum only. The strain gauges signals suggested that the pubic fractures occurred before the sacroiliac joint fractures in the great majority of the cases (five cases out of seven). Conclusions - Even in the oblique impact conditions of the present study, the pubic symphysis area was observed to be the weakest zone of the pelvis and its failure the predominant cause of sacroiliac joint injuries. It was hypothesized that the failure of the pubic rami allowed the hemi-pelvis to rotate inward, and that this closing-book motion induced the failure of the sacroiliac joint.
Kinetic Behaviour of Failure Waves in a Filled Glass
NASA Astrophysics Data System (ADS)
Resnyansky, A. D.; Bourne, N. K.
2007-12-01
Experimental stress and velocity profiles in a lead filled glass demonstrate a pronounced kinetic behaviour for failure waves in the material during shock loading. The present work summarises the experimental proofs of the kinetic behaviour obtained with stress and velocity gauges. The work describes a model for this behaviour employing a kinetic description used earlier for fracture waves in Pyrex glass. This model is part of a family of two-phase, strain-rate sensitive models describing the behaviour of damaged brittle materials. The modelling results describe well both the stress decay of the failure wave precursor in the stress profiles and main pulse attenuation in the velocity profiles. The influences of the kinetic mechanisms and wave interactions within the test assembly on the reduction of this behaviour are discussed.
Liang, Hongxia; Huang, Ke; Su, Teng; Li, Zhenhua; Hu, Shiqi; Dinh, Phuong-Uyen; Wrona, Emily A; Shao, Chen; Qiao, Li; Vandergriff, Adam C; Hensley, M Taylor; Cores, Jhon; Allen, Tyler; Zhang, Hongyu; Zeng, Qinglei; Xing, Jiyuan; Freytes, Donald O; Shen, Deliang; Yu, Zujiang; Cheng, Ke
2018-06-26
Acute liver failure is a critical condition characterized by global hepatocyte death and often time needs a liver transplantation. Such treatment is largely limited by donor organ shortage. Stem cell therapy offers a promising option to patients with acute liver failure. Yet, therapeutic efficacy and feasibility are hindered by delivery route and storage instability of live cell products. We fabricated a nanoparticle that carries the beneficial regenerative factors from mesenchymal stem cells and further coated it with the membranes of red blood cells to increase blood stability. Unlike uncoated nanoparticles, these particles promote liver cell proliferation in vitro and have lower internalization by macrophage cells. After intravenous delivery, these artificial stem cell analogs are able to remain in the liver and mitigate carbon tetrachloride-induced liver failure in a mouse model, as gauged by histology and liver function test. Our technology provides an innovative and off-the-shelf strategy to treat liver failure.
Design with high strength steel: A case of failure and its implications
NASA Astrophysics Data System (ADS)
Rahka, Klaus
1992-10-01
A recent proof test failure of a high strength steel pressure vessel is scrutinized. Apparent deficiencies in the procedures to account for elasto-plastic local strain are indicated for the applicable routine (code) strength calculations. Tentative guidance is given for the use of material tensile fracture strain and its strain state (plane strain) correction in fracture margin estimation. A hypothesis that the calculated local strain is comparable with a gauge length weighted tensile ductility for fracture to initiate at a notch root is given. A discussion about the actual implications of the failure case and the suggested remedy in the light of the ASME Boiler and Pressure Vessel Code section 3 and 8 is presented. Further needs for research and development are delineated. Possible yield and ductility related design limits and their use as material quality indices are discussed.
Aligned Carbon Nanotube Tape for Sensor Applications
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.
2013-01-01
For this effort, will concentrate on three applications: Vibration Gyroscope utilizes piezoelectric properties of the tape and Coriolis effect Accelerometer utilizes the piezoresistive property Strain Gauge utilizes piezoresistive property Accelerometer and Strain Gauge can also utilize piezoelectric effect Test piezoelectric properties using facilities at the Microfabrication Laboratory (AMRDEC) . Enhance piezoelectric effect using polyvinylidine fluoride and P(VDF ]TrFE) which is readily polarizable .Spray matrix solution while winding fiber; Sandwich of CNT tape and PVDF film (DOE .Two Level) . Construct and test prototype vibration gyroscope . Construct and test prototype accelerometer using cantilever design . Test strain sensitivity of CNT tape against industrial strain gauge . Embed CNT tape in composite samples as well as on surface and test to failure (4 ]point bend) A piezoelectric device exhibits an electrical response from a mechanical applied stress. . A piezoelectric device has both capacitance and resistance properties in which by applying an electric field from a waveform will exert a mechanical stress that can be monitored for a response. . The typical waveform applied is a sinusoidal waveform of a defined voltage for a defined period. The defined voltage is driven from 0 volts to the positive defined volts then back to 0 and driven to negative defined volts then back to 0. . Example. Vmax set to 10V and period set to 10 ms. . Voltage will start at zero, go to 10 volts, return to zero, go to ]10 volts and return to zero during 10 ms. . Applying this electrical field to a DUT, the capacitance response and resistance response can be observed. CNT tape is easier to manufacture and cheaper than micromachining silicon or other ceramic piezoelectric used in gyroscopes and accelerometers CNT tape properties can be modified during manufacture for specific application CNT tape has enhanced mechanical and thermal properties in addition to unique electrical properties CNT tape as a strain gauge in Structural Health Monitoring will provide an excellent material to embed within composite structures
Valentín, David; Presas, Alexandre; Bossio, Matias; Egusquiza, Mònica; Egusquiza, Eduard; Valero, Carme
2018-01-10
Nowadays, hydropower plays an essential role in the energy market. Due to their fast response and regulation capacity, hydraulic turbines operate at off-design conditions with a high number of starts and stops. In this situation, dynamic loads and stresses over the structure are high, registering some failures over time, especially in the runner. Therefore, it is important to know the dynamic response of the runner while in operation, i.e., the natural frequencies, damping and mode shapes, in order to avoid resonance and fatigue problems. Detecting the natural frequencies of hydraulic turbine runners while in operation is challenging, because they are inaccessible structures strongly affected by their confinement in water. Strain gauges are used to measure the stresses of hydraulic turbine runners in operation during commissioning. However, in this paper, the feasibility of using them to detect the natural frequencies of hydraulic turbines runners while in operation is studied. For this purpose, a large Francis turbine runner (444 MW) was instrumented with several strain gauges at different positions. First, a complete experimental strain modal testing (SMT) of the runner in air was performed using the strain gauges and accelerometers. Then, the natural frequencies of the runner were estimated during operation by means of analyzing accurately transient events or rough operating conditions.
Presas, Alexandre; Bossio, Matias; Egusquiza, Eduard; Valero, Carme
2018-01-01
Nowadays, hydropower plays an essential role in the energy market. Due to their fast response and regulation capacity, hydraulic turbines operate at off-design conditions with a high number of starts and stops. In this situation, dynamic loads and stresses over the structure are high, registering some failures over time, especially in the runner. Therefore, it is important to know the dynamic response of the runner while in operation, i.e., the natural frequencies, damping and mode shapes, in order to avoid resonance and fatigue problems. Detecting the natural frequencies of hydraulic turbine runners while in operation is challenging, because they are inaccessible structures strongly affected by their confinement in water. Strain gauges are used to measure the stresses of hydraulic turbine runners in operation during commissioning. However, in this paper, the feasibility of using them to detect the natural frequencies of hydraulic turbines runners while in operation is studied. For this purpose, a large Francis turbine runner (444 MW) was instrumented with several strain gauges at different positions. First, a complete experimental strain modal testing (SMT) of the runner in air was performed using the strain gauges and accelerometers. Then, the natural frequencies of the runner were estimated during operation by means of analyzing accurately transient events or rough operating conditions. PMID:29320422
49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 5 2013-10-01 2013-10-01 false Warning signals, air pressure and vacuum gauges... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.51 Warning signals, air pressure... paragraph (f), must be equipped with a signal that provides a warning to the driver when a failure occurs in...
49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 5 2012-10-01 2012-10-01 false Warning signals, air pressure and vacuum gauges... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.51 Warning signals, air pressure... paragraph (f), must be equipped with a signal that provides a warning to the driver when a failure occurs in...
Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill
Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping
2016-01-01
In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627
NASA Astrophysics Data System (ADS)
Rossi, M.; Luciani, S.; Valigi, D.; Kirschbaum, D.; Brunetti, M. T.; Peruccacci, S.; Guzzetti, F.
2017-05-01
Models for forecasting rainfall-induced landslides are mostly based on the identification of empirical rainfall thresholds obtained exploiting rain gauge data. Despite their increased availability, satellite rainfall estimates are scarcely used for this purpose. Satellite data should be useful in ungauged and remote areas, or should provide a significant spatial and temporal reference in gauged areas. In this paper, the analysis of the reliability of rainfall thresholds based on rainfall remote sensed and rain gauge data for the prediction of landslide occurrence is carried out. To date, the estimation of the uncertainty associated with the empirical rainfall thresholds is mostly based on a bootstrap resampling of the rainfall duration and the cumulated event rainfall pairs (D,E) characterizing rainfall events responsible for past failures. This estimation does not consider the measurement uncertainty associated with D and E. In the paper, we propose (i) a new automated procedure to reconstruct ED conditions responsible for the landslide triggering and their uncertainties, and (ii) three new methods to identify rainfall threshold for the possible landslide occurrence, exploiting rain gauge and satellite data. In particular, the proposed methods are based on Least Square (LS), Quantile Regression (QR) and Nonlinear Least Square (NLS) statistical approaches. We applied the new procedure and methods to define empirical rainfall thresholds and their associated uncertainties in the Umbria region (central Italy) using both rain-gauge measurements and satellite estimates. We finally validated the thresholds and tested the effectiveness of the different threshold definition methods with independent landslide information. The NLS method among the others performed better in calculating thresholds in the full range of rainfall durations. We found that the thresholds obtained from satellite data are lower than those obtained from rain gauge measurements. This is in agreement with the literature, where satellite rainfall data underestimate the "ground" rainfall registered by rain gauges.
NASA Technical Reports Server (NTRS)
Rossi, M.; Luciani, S.; Valigi, D.; Kirschbaum, D.; Brunetti, M. T.; Peruccacci, S.; Guzzetti, F.
2017-01-01
Models for forecasting rainfall-induced landslides are mostly based on the identification of empirical rainfall thresholds obtained exploiting rain gauge data. Despite their increased availability, satellite rainfall estimates are scarcely used for this purpose. Satellite data should be useful in ungauged and remote areas, or should provide a significant spatial and temporal reference in gauged areas. In this paper, the analysis of the reliability of rainfall thresholds based on rainfall remote sensed and rain gauge data for the prediction of landslide occurrence is carried out. To date, the estimation of the uncertainty associated with the empirical rainfall thresholds is mostly based on a bootstrap resampling of the rainfall duration and the cumulated event rainfall pairs (D,E) characterizing rainfall events responsible for past failures. This estimation does not consider the measurement uncertainty associated with D and E. In the paper, we propose (i) a new automated procedure to reconstruct ED conditions responsible for the landslide triggering and their uncertainties, and (ii) three new methods to identify rainfall threshold for the possible landslide occurrence, exploiting rain gauge and satellite data. In particular, the proposed methods are based on Least Square (LS), Quantile Regression (QR) and Nonlinear Least Square (NLS) statistical approaches. We applied the new procedure and methods to define empirical rainfall thresholds and their associated uncertainties in the Umbria region (central Italy) using both rain-gauge measurements and satellite estimates. We finally validated the thresholds and tested the effectiveness of the different threshold definition methods with independent landslide information. The NLS method among the others performed better in calculating thresholds in the full range of rainfall durations. We found that the thresholds obtained from satellite data are lower than those obtained from rain gauge measurements. This is in agreement with the literature, where satellite rainfall data underestimate the 'ground' rainfall registered by rain gauges.
Symmetrical Taylor impact of glass bars
NASA Astrophysics Data System (ADS)
Murray, N. H.; Bourne, N. K.; Field, J. E.; Rosenberg, Z.
1998-07-01
Brar and Bless pioneered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass but limited their studies to relatively modest stresses (1). We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test in which two rods impact one upon the other. Previous work in the laboratory has characterised the glass types (soda-lime and borosilicate)(2). These experiments identify the failure mechanisms from high-speed photography and the stress and particle velocity histories are interpreted in the light of these results. The differences in response of the glasses and the relation of the fracture to the failure wave in uniaxial strain are discussed.
NASA Technical Reports Server (NTRS)
Moore, Thomas C., Sr.
2004-01-01
The character of force and strain measurement testing at LaRC is such that the types of strain gauge installations, the materials upon which the strain gauges are applied, and the test environments encountered, require many varied approaches. In 1997, a NASA Technical Memorandum (NASA TM 110327) was generated to provide the strain gauge application specialist with a listing of recommended procedures for strain gauging various transducers and test articles at LaRC. The technical memorandum offered here is an effort to keep the strain gauge user informed of new technological enhancements in strain-gauging methodology while preserving the strain-gauging guidelines set forth in the 1997 TM. This document provides detailed recommendations for strain gauging LaRC-designed balances and custom transducers, composite materials, cryogenic and high-temperature test articles, and selected non-typical or unique materials or test conditions. Additionally, one section offers details for installing Bragg-Grating type fiber-optic strain sensors for non-typical test scenarios.
The Shock Behaviour of a SiO2-Li2O Transparent Glass-Ceramic Armour Material
NASA Astrophysics Data System (ADS)
Pickup, I. M.; Millett, J. C. F.; Bourne, N. K.
2004-07-01
The dynamic behaviour of a transparent glass-ceramic material, Transarm, developed by Alstom UK for the UK MoD has been studied. Plate impact experiments have been used to measure the materials Hugoniot characteristics and failure behaviour. Longitudinal stresses have been measured using embedded and back surface mounted Manganin gauges. Above a threshold stress of ca. 4 GPa, the longitudinal stress histories exhibit a significant secondary rise, prior to attaining their Hugoniot stress. Lateral stresses were also measured by embedding Manganin gauges in longitudinal cuts. Significant secondary rises in stress were observed when the applied longitudinal stress exceeded the 4 GPa threshold, indicating the presence of a failure front. The dynamic shear strength of the glass has been measured using the longitudinal and lateral data. Even though significant strength drops have been measured before and behind the failure front, the material has a high post-failure strength compared to non- crystalline glasses.
Gillen, Alex M; Munsterman, Amelia S; Hanson, R Reid
2016-11-01
To investigate the strength, size, and holding capacity of the self-locking forwarder knot compared to surgeon's and square knots using large gauge suture. In vitro mechanical study. Knotted suture. Forwarder, surgeon's, and square knots were tested on a universal testing machine under linear tension using 2 and 3 USP polyglactin 910 and 2 USP polydioxanone. Knot holding capacity (KHC) and mode of failure were recorded and relative knot security (RKS) was calculated as a percentage of KHC. Knot volume and weight were assessed by digital micrometer and balance, respectively. ANOVA and post hoc testing were used tocompare strength between number of throws, suture, suture size, and knot type. P<.05 was considered significant. Forwarder knots had a higher KHC and RKS than surgeon's or square knots for all suture types and number of throws. No forwarder knots unraveled, but a proportion of square and surgeon's knots with <6 throws did unravel. Forwarder knots had a smaller volume and weight than surgeon's and square knots with equal number of throws. The forwarder knot of 4 throws using 3 USP polyglactin 910 had the highest KHC, RKS, and the smallest size and weight. Forwarder knots may be an alternative for commencing continuous patterns in large gauge suture, without sacrificing knot integrity, but further in vivo and ex vivo testing is required to assess the effects of this sliding knot on tissue perfusion before clinical application. © Copyright 2016 by The American College of Veterinary Surgeons.
Rothfeld, Alex; Pawlak, Amanda; Liebler, Stephenie A H; Morris, Michael; Paci, James M
2018-04-01
Patellar tendon repair with braided polyethylene suture alone is subject to knot slippage and failure. Several techniques to augment the primary repair have been described. Purpose/Hypothesis: The purpose was to evaluate a novel patellar tendon repair technique augmented with a knotless suture anchor internal brace with suture tape (SAIB). The hypothesis was that this technique would be biomechanically superior to a nonaugmented repair and equivalent to a standard augmentation with an 18-gauge steel wire. Controlled laboratory study. Midsubstance patellar tendon tears were created in 32 human cadaveric knees. Two comparison groups were created. Group 1 compared #2 supersuture repair without augmentation to #2 supersuture repair with SAIB augmentation. Group 2 compared #2 supersuture repair with an 18-gauge stainless steel cerclage wire augmentation to #2 supersuture repair with SAIB augmentation. The specimens were potted and biomechanically loaded on a materials testing machine. Yield load, maximum load, mode of failure, plastic displacement, elastic displacement, and total displacement were calculated for each sample. Standard statistical analysis was performed. There was a statistically significant increase in the mean ± SD yield load and maximum load in the SAIB augmentation group compared with supersuture alone (mean yield load: 646 ± 202 N vs 229 ± 60 N; mean maximum load: 868 ± 162 N vs 365 ± 54 N; P < .001). Group 2 showed no statistically significant differences between the augmented repairs (mean yield load: 495 ± 213 N vs 566 ± 172 N; P = .476; mean maximum load: 737 ± 210 N vs 697 ± 130 N; P = .721). Patellar tendon repair augmented with SAIB is biomechanically superior to repair without augmentation and is equivalent to repair with augmentation with an 18-gauge stainless steel cerclage wire. This novel patellar tendon repair augmentation is equivalent to standard 18-gauge wire augmentation at time zero. It does not require a second surgery for removal, and it is biomechanically superior to primary repair alone.
Effects of Gas Pressure on the Failure Characteristics of Coal
NASA Astrophysics Data System (ADS)
Xie, Guangxiang; Yin, Zhiqiang; Wang, Lei; Hu, Zuxiang; Zhu, Chuanqi
2017-07-01
Several experiments were conducted using self-developed equipment for visual gas-solid coupling mechanics. The raw coal specimens were stored in a container filled with gas (99% CH4) under different initial gas pressure conditions (0.0, 0.5, 1.0, and 1.5 MPa) for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the mechanical properties, surface deformation and failure modes were recorded using strain gauges, an acoustic emission (AE) system and a camera. An analysis of the fractals of fragments and dissipated energy was performed to understand the changes observed in the stress-strain and crack propagation behaviour of the gas-containing coal specimens. The results demonstrate that increased gas pressure leads to a reduction in the uniaxial compression strength (UCS) of gas-containing coal and the critical dilatancy stress. The AE, surface deformation and fractal analysis results show that the failure mode changes during the gas state. Interestingly, a higher initial gas pressure will cause the damaged cracks and failure of the gas-containing coal samples to become severe. The dissipated energy characteristic in the failure process of a gas-containing coal sample is analysed using a combination of fractal theory and energy principles. Using the theory of fracture mechanics, based on theoretical analyses and calculations, the stress intensity factor of crack tips increases as the gas pressure increases, which is the main cause of the reduction in the UCS and critical dilatancy stress and explains the influence of gas in coal failure. More serious failure is created in gas-containing coal under a high gas pressure and low exterior load.
ENRAF Series 854 Advanced Technology Gauge (ATG) Acceptance Test Procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
HUBER, J.H.
1999-08-17
This procedure provides acceptance testing for Enraf Series 854 level gauges used to monitor levels in Hanford Waste Storage Tanks. The test will verify that the gauge functions according to the manufacturer's instructions and specifications and is properly setup prior to being delivered to the tank farm area. This ATP does not set up the gauge for any specific tank, but is generalized to permit testing the gauge prior to installation package preparation.
Experimental determination of the yield stress curve of the scotch pine wood materials
NASA Astrophysics Data System (ADS)
Günay, Ezgi; Aygün, Cevdet; Kaya, Şükrü Tayfun
2013-12-01
Yield stress curve is determined for the pine wood specimens by conducting a series of tests. In this work, pinewood is modeled as a composite material with transversely isotropic fibers. Annual rings (wood grain) of the wood specimens are taken as the major fiber directions with which the strain gauge directions are aligned. For this purpose, three types of tests are arranged. These are tensile, compression and torsion loading tests. All of the tests are categorized with respect to fiber orientations and their corresponding loading conditions. Each test within these categories is conducted separately. Tensile and compression tests are conducted in accordance with standards of Turkish Standards Institution (TSE) whereas torsion tests are conducted in accordance with Standards Australia. Specimens are machined from woods of Scotch pine which is widely used in boat building industries and in other structural engineering applications. It is determined that this species behaves more flexibly than the others. Strain gauges are installed on the specimen surfaces in such a way that loading measurements are performed along directions either parallel or perpendicular to the fiber directions. During the test and analysis phase of yield stress curve, orientation of strain gauge directions with respect to fiber directions are taken into account. The diagrams of the normal stress vs. normal strain or the shear stress vs. shear strain are plotted for each test. In each plot, the yield stress is determined by selecting the point on the diagram, the tangent of which is having a slope of 5% less than the slope of the elastic portion of the diagram. The geometric locus of these selected points constitutes a single yield stress curve on σ1-σ2 principal plane. The resulting yield stress curve is plotted as an approximate ellipse which resembles Tsai-Hill failure criterion. The results attained in this work, compare well with the results which are readily available in the literature.
Material failure modelling in metals at high strain rates
NASA Astrophysics Data System (ADS)
Panov, Vili
2005-07-01
Plate impact tests have been conducted on the OFHC Cu using single-stage gas gun. Using stress gauges, which were supported with PMMA blocks on the back of the target plates, stress-time histories have been recorded. After testing, micro structural observations of the softly recovered OFHC Cu spalled specimen were carried out and evolution of damage has been examined. To account for the physical mechanisms of failure, the concept that thermal activation in material separation during fracture processes has been adopted as basic mechanism for this material failure model development. With this basic assumption, the proposed model is compatible with the Mechanical Threshold Stress model and therefore in this development it was incorporated into the MTS material model in DYNA3D. In order to analyse proposed criterion a series of FE simulations have been performed for OFHC Cu. The numerical analysis results clearly demonstrate the ability of the model to predict the spall process and experimentally observed tensile damage and failure. It is possible to simulate high strain rate deformation processes and dynamic failure in tension for wide range of temperature. The proposed cumulative criterion, introduced in the DYNA3D code, is able to reproduce the ``pull-back'' stresses of the free surface caused by creation of the internal spalling, and enables one to analyse numerically the spalling over a wide range of impact velocities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SMITH, S.G.
1999-08-13
This procedure checks the Enraf gauge received at Hanford is completely functional and has received no shipping damage. This procedure does not certify the gauge operation. The manufacturer certifies gauge operation. This procedure provides acceptance testing for Enraf Series 854 level gauges used to detect leaks in Hanford Waste Storage Tank annuli. The test will verify that the gauge functions according to the manufacturer's instructions and specifications and is properly setup prior to being delivered to the tank farm area. This ATP does not set up the gauge for any specific tank, but is generalized to permit testing the gaugemore » prior to installation package preparation.« less
Test and model correlation of the atmospheric emission photometric imager fiberglass pedestal
NASA Technical Reports Server (NTRS)
Lee, H. M., III; Barker, L. A.
1990-01-01
The correlation is presented of the static loads testing and finite element modeling for the fiberglass pedestal used on the Atmospheric Emission Photometric Imaging (AEPI) experiment. This payload is to be launched in the space shuttle as part of the ATLAS-1 experiment. Strain gauge data from rosettes around the highly loaded base are compared to the same load case run for the Spacelab 1 testing done in 1981. Correlation of the model and test data was accomplished through comparison of the composite stress invariant using the expected flight loads for the ATLAS-1 mission. Where appropriate, the Tsai-Wu failure criteria was used in the development of the key margins of safety. Margins of safety are all positive for the pedestal and are reported.
Browne, Ingrid M; Birnbach, David J; Stein, Deborah J; O'Gorman, David A; Kuroda, Maxine
2005-08-01
When using the needle-through-needle combined spinal-epidural (CSE) technique for labor analgesia, failure to obtain cerebrospinal fluid (CSF), paresthesias, and intrathecal or intravascular migration of the catheter are of concern. Epidural needles with spinal needle apertures, such as the back-hole Espocan (ES) needles, are available and may reduce these risks. We describe the efficacy and adverse events associated with a modified epidural needle (ES) versus a conventional Tuohy needle for CSE. One-hundred parturients requesting labor analgesia (CSE) were randomized into 2 groups: 50-ES 18-gauge modified epidural needle with 27-gauge Pencan atraumatic spinal needle, 50-conventional 18-gauge Tuohy needle with 27-gauge Gertie Marx atraumatic spinal needle. Information on intrathecal or intravascular catheter placement, paresthesia on introduction of spinal needle, failure to obtain CSF through the spinal needle after placement of epidural needle, unintentional dural puncture, and epidural catheter function was obtained. No intrathecal catheter placement occurred in either group. Rates of intravascular catheter placement and unintentional dural puncture were similar between the groups. Significant differences were noted regarding spinal needle-induced paresthesia (14% ES versus 42% Tuohy needles, P = 0.009) and failure to obtain CSF on first attempt (8% ES versus 28% Tuohy needles, P < 0.02). Use of ES needles for CSE significantly reduces paresthesia associated with the insertion of the spinal needle and is associated with more frequent successful spinal needle placement on the first attempt. The use of modified epidural needles with a back hole for combined spinal-epidural technique significantly reduces paresthesia associated with the insertion of the spinal needle and is associated with more frequent successful spinal needle placement on the first attempt.
Enraf Series 854 advanced technology gauge (ATG) acceptance test procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, J.H.
1996-09-11
This Acceptance Test Procedure was written to test the Enraf Series 854 Advanced Technology Gauge (ATG) prior to installation in the Tank Farms. The procedure sets various parameters and verifies that the gauge is functional.
49 CFR 230.45 - Method of testing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Method of testing. 230.45 Section 230.45 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Steam Gauges § 230.45 Method of testing. Steam gauges shall be compared with an accurate test gauge or...
49 CFR 229.25 - Tests: Every periodic inspection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... dead-weight tester or a test gauge designed for this purpose. (b) All electrical devices and visible...) Steam pressure gauges shall be tested by comparison with a dead-weight tester or a test gauge designed... 49 Transportation 4 2011-10-01 2011-10-01 false Tests: Every periodic inspection. 229.25 Section...
Thermal-Structural Analysis of PICA Tiles for Solar Tower Test
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Empey, Daniel M.; Squire, Thomas H.
2009-01-01
Thermal protection materials used in spacecraft heatshields are subjected to severe thermal and mechanical loading environments during re-entry into earth atmosphere. In order to investigate the reliability of PICA tiles in the presence of high thermal gradients as well as mechanical loads, the authors designed and conducted solar-tower tests. This paper presents the design and analysis work for this tests series. Coupled non-linear thermal-mechanical finite element analyses was conducted to estimate in-depth temperature distribution and stress contours for various cases. The first set of analyses performed on isolated PICA tile showed that stresses generated during the tests were below the PICA allowable limit and should not lead to any catastrophic failure during the test. The tests results were consistent with analytical predictions. The temperature distribution and magnitude of the measured strains were also consistent with predicted values. The second test series is designed to test the arrayed PICA tiles with various gap-filler materials. A nonlinear contact method is used to model the complex geometry with various tiles. The analyses for these coupons predict the stress contours in PICA and inside gap fillers. Suitable mechanical loads for this architecture will be predicted, which can be applied during the test to exceed the allowable limits and demonstrate failure modes. Thermocouple and strain-gauge data obtained from the solar tower tests will be used for subsequent analyses and validation of FEM models.
Application of composite materials to impact-insensitive munitions
NASA Technical Reports Server (NTRS)
Neradka, Vincent F.; Chang, Yale; Grady, Joseph E.; Trowbridge, Daniel A.
1992-01-01
An approach is outlined for developing bullet-impact-insensitive munitions based on composite materials that provide rapid venting of the rocket-motor case. Impact experiments are conducted with test specimens of hybrid laminates of graphite/epoxy and epoxy reinforcing with woven glass fibers. The dynamic strain response and initial impact force are measured with strain gauges, and perforation damage is examined in the plates. The results show that impact damage can be designed by means of parametric variations of the fiber, matrix, and ply orientations. It is suggested that rocket-motor cases can be designed with composite materials to provide rapid venting during the failure mode. The experimental ballistic testing performed provides data that can be used comparatively with analytical data on composite materials.
Mechanisms of compressive failure in woven composites and stitched laminates
NASA Technical Reports Server (NTRS)
Cox, B. N.; Dadkhah, M. S.; Inman, R. V.; Morris, W. L.; Schroeder, S.
1992-01-01
Stitched laminates and angle interlock woven composites have been studied in uniaxial, in-plane, monotonic compression. Failure mechanisms have been found to depend strongly on both the reinforcement architecture and the degree of constraint imposed by the loading grips. Stitched laminates show higher compressive strength, but are brittle, possessing no load bearing capacity beyond the strain for peak load. Post-mortem inspection shows a localized shear band of buckled and broken fibers, which is evidently the product of an unstably propagating kink band. Similar shear bands are found in the woven composites if the constraint of lateral displacements is weak; but, under strong constraint, damage is not localized but distributed throughout the gauge section. While the woven composites tested are weaker than the stitched laminates, they continue to bear significant loads to compressive strains of approx. 15 percent, even when most damage is confined to a shear band.
Calibration of thin-foil manganin gauge in ALOX material
NASA Astrophysics Data System (ADS)
Benham, R. A.; Weirick, L. J.; Lee, L. M.
1996-05-01
The purpose of this program was to develop a calibration curve (stress as a function of change in gauge resistance/gauge resistance) and to obtain gauge repeatability data for Micro-Measurements stripped manganin thin-foiled gauges up to 6.1 GPa in ALOX (42% by volume alumina in Epon 828 epoxy) material. A light-gas gun was used to drive an ALOX impactor into the ALOX target containing four gauges in a centered diamond arrangement. Tilt and velocity of the impactor were measured along with the gauge outputs. Impact stresses from 0.5 to 6.1 GPa were selected in increments of 0.7 GPa with duplicate tests done at 0.5, 3.3 and 6.1 GPa. A total of twelve tests was conducted using ALOX. Three initial tests were done using polymethyl methacrylate (PMMA) as the impactor and target at an impact pressure of 3.0 GPa for comparison of gauge output with analysis and literature values. The installed gauge, stripped of its backing, has a nominal thickness of 5 μm. The thin gauge and high speed instrumentation allowed higher time resolution measurements than can be obtained with manganin wire.
Tabedar, S; Maharjan, S K; Shrestha, B R; Shrestha, B M
2003-01-01
The study was designed to compare the insertion characteristics and incidence of PDPH between 25 gauge Quincke needle and 26 gauge Eldor needle for spinal anaesthesia in elective c/s. 60 pregnant women (aged 19-35 yrs and weighing 58 -67 kg) undergoing elective caesarean section were randomized into group A (Quincke spinal needle group) or group B (Eldor spinal needle group). Spinal anaesthesia was performed with 2.9 ml 0.5% heavy bupivacaine using 25 gauge Quincke spinal needle in group A and 26 Gauge Eldor spinal needle in group B. Onset, time of first identification of backflow of CSF, number of attempts, level of sensory and motor blockade, failure of anaesthesia, inadequate anaesthesia and incidence of PDPH were recorded. Quincke spinal needle was found easy at insertion, first attempt was successful in 90% of cases, whereas Eldor spinal needle was successful at first attempt in only 60% of cases. Early identification of CSF was seen in Eldor spinal needle group in 3.5 seconds vs. 5.2 seconds in Quincke spinal needle group. Blood mixed CSF was seen in 8 Quincke spinal needle group vs. none in Eldor spinal needle group. Onset was similar between both groups i.e. in 6 minutes. Failure of anaesthesia was none in Eldor spinal needle group vs. 2 in quincke spinal needle group. Height of sensory block achieved was T4 level in 26 parturients,T6 in 1 ,T8 in 1 and no anaesthesia at all in another 2 parturient as compared to T4 level in 29 and T3 in 1 parturient in Eldor spinal needle group. The degree of motor block with the use of Bromage criteria showed a motor score of 1 or 2 in 26 parturients in Quincke spinal needle group vs. same in all cases in Eldor spinal needle group. The total incidence of PDPH was 8.3 % (5 out of 60 parturient) which occurred all in Quincke spinal needle group. 2 parturient who developed severe PDPH required epidural blood patch. 26 gauge Eldor spinal needle was found to be better than 25 gauge Quincke spinal needle for caesarian sections to decrease the incidence of PDPH, though not all insertion characteristics were in favour of the Eldor needle.
Compressive and shear properties of commercially available polyurethane foams.
Thompson, Mark S; McCarthy, Ian D; Lidgren, Lars; Ryd, Leif
2003-10-01
The shear properties of rigid polyurethane (PU-R) foams, routinely used to simulate cancellous bone, are not well characterized. The present assessment of the shear and compressive properties of four grades of Sawbones "Rigid cellular" PU-R foam tested 20 mm gauge diameter dumb-bell specimens in torsion and under axial loading. Shear moduli ranged from 13.3 to 99.7 MPa, shear strengths from 0.7 MPa to 4.2 MPa. Compressive yield strains varied little with density while shear yield strains had peak values with "200 kgm-3" grade. PU-R foams may be used to simulate the elastic but not failure properties of cancellous bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, P.J.
1996-07-01
A simplified method for determining the reactive rate parameters for the ignition and growth model is presented. This simplified ignition and growth (SIG) method consists of only two adjustable parameters, the ignition (I) and growth (G) rate constants. The parameters are determined by iterating these variables in DYNA2D hydrocode simulations of the failure diameter and the gap test sensitivity until the experimental values are reproduced. Examples of four widely different explosives were evaluated using the SIG model. The observed embedded gauge stress-time profiles for these explosives are compared to those calculated by the SIG equation and the results are described.
B-type natriuretic peptides. A diagnostic breakthrough in heart failure.
McCullough, P A
2003-04-01
B-type natriuretic peptide (BNP) is a neurohormone synthesized in the cardiac ventricles, which is released as N-terminal pro-brain natriuretic peptide (NT-proBNP) and then enzymatically cleaved in to the NT fragment and the immunoreactive BNP. Both tests have been used to identify patients with congestive heart failure (CHF). Important considerations for these tests include their half-lives in plasma, dependence on renal function for clearance, and the interpretation of their units of measure. In general, a BNP level below 100 pg/mL has strong negative predictive value in the assessment of patients with dyspnea caused by a disorder other than CHF. In addition, BNP levels can be used to gauge the effect of short-term treatment of acutely decompensated heart failure, and the peptide has been shown to be a reliable independent predictor of sudden cardiac death. In the absence of renal dysfunction NT-proBNP has also been shown to be an independent predictor of sudden death in CHF patients. Because both a large area of myonecrosis or concomitant left ventricular failure are related to prognosis in acute coronary syndromes, B-type natriuretic peptides have also been linked to outcomes in this condition. This article describes the physiology and timing of release of B-type natriuretic peptides and the rationale for their use in the following settings: 1) evaluation of decompensated CHF, 2) screening for chronic CHF, 3) prognosis of CHF and sudden death, and 4) prognosis in acute coronary syndromes with inferred left ventricular dysfunction.
NASA Astrophysics Data System (ADS)
Murray, Natalie; Bourne, Neil; Field, John
1997-07-01
Brar and Bless pioneeered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass. We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test. In this configuration two rods impact one upon the other in a symmetrical version of the Taylor test geometry in which the impact is perfectly rigid in the centre of mass frame. Previous work in the laboratory has characterised the three glass types (float, borosilicate and a high density lead glass). These experiments will identify the 1D stress failure mechanisms from high-speed photography and the stress and particle velocity histories will be interpreted in the light of these results. The differences in response of the three glasses will be highlighted.
Performance analysis of a new hypersonic vitrector system.
Stanga, Paulo Eduardo; Pastor-Idoate, Salvador; Zambrano, Isaac; Carlin, Paul; McLeod, David
2017-01-01
To evaluate porcine vitreous flow and water flow rates in a new prototype hypersonic vitrectomy system compared to currently available pneumatic guillotine vitrectors (GVs) systems. Two vitrectors were tested, a prototype, ultrasound-powered, hypersonic vitrector (HV) and a GV. Porcine vitreous was obtained within 12 to 24 h of sacrifice and kept at 4°C. A vial of vitreous or water was placed on a precision balance and its weight measured before and after the use of each vitrector. Test parameters included changes in aspiration levels, vitrector gauge, cut rates for GVs, % ultrasound (US) power for HVs, and port size for HVs. Data was analysed using linear regression and t-tests. There was no difference in the total average mean water flow between the 25-gauge GV and the 25-gauge HV (t-test: P = 0.363); however, 25-gauge GV was superior (t-test: P < 0.001) in vitreous flow. The 23-gauge GV was only more efficient in water and vitreous removal than 23-gauge HV needle-1 (Port 0.0055) (t-test: P < 0.001). For HV, wall thickness and gauge had no effect on flow rates. Water and vitreous flows showed a direct correlation with increasing aspiration levels and % US power (p<0.05). The HV produced consistent water and vitreous flow rates across the range of US power and aspiration levels tested. Hypersonic vitrectomy may be a promising new alternative to the currently available guillotine-based technologies.
Freeman, Andrew L; Fahim, Mina S; Bechtold, Joan E
2012-10-01
Previous methods of pedicle screw strain measurement have utilized complex, time consuming methods of strain gauge application, experience high failure rates, do not effectively measure resultant bending moments, and cannot predict moment orientation. The purpose of this biomechanical study was to validate an improved method of quantifying pedicle screw bending moment orientation and magnitude. Pedicle screws were instrumented to measure biplanar screw bending moments by positioning four strain gauges on flat, machined surfaces below the screw head. Screws were calibrated to measure bending moments by hanging certified weights a known distance from the strain gauges. Loads were applied in 30 deg increments at 12 different angles while recording data from two independent strain channels. The data were then analyzed to calculate the predicted orientation and magnitude of the resultant bending moment. Finally, flexibility tests were performed on a cadaveric motion segment implanted with the instrumented screws to demonstrate the implementation of this technique. The difference between the applied and calculated orientation of the bending moments averaged (±standard error of the mean (SEM)) 0.3 ± 0.1 deg across the four screws for all rotations and loading conditions. The calculated resultant bending moments deviated from the actual magnitudes by an average of 0.00 ± 0.00 Nm for all loading conditions. During cadaveric testing, the bending moment orientations were medial/lateral in flexion-extension, variable in lateral bending, and diagonal in axial torsion. The technique developed in this study provides an accurate method of calculating the orientation and magnitude of screw bending moments and can be utilized with any pedicle screw fixation system.
48 CFR 52.232-32 - Performance-Based Payments.
Code of Federal Regulations, 2010 CFR
2010-10-01
... is endangered by the Contractor's (i) failure to make progress, or (ii) unsatisfactory financial... title; (iii) Nondurable (i.e., noncapital) tools, jigs, dies, fixtures, molds, patterns, taps, gauges... Government access. The Contractor shall promptly furnish reports, certificates, financial statements, and...
Code of Federal Regulations, 2010 CFR
2010-10-01
... vessel. Emergency means an occurrence, such as an equipment failure, a container rupture, or a control... cargo transfer operations involving connecting or disconnecting liquid or vapor hoses; cargo tank gauging and sampling; and cargo tank gas freeing, venting, and cleaning. Performance standard means the...
Code of Federal Regulations, 2013 CFR
2013-10-01
... vessel. Emergency means an occurrence, such as an equipment failure, a container rupture, or a control... cargo transfer operations involving connecting or disconnecting liquid or vapor hoses; cargo tank gauging and sampling; and cargo tank gas freeing, venting, and cleaning. Performance standard means the...
Code of Federal Regulations, 2012 CFR
2012-10-01
... vessel. Emergency means an occurrence, such as an equipment failure, a container rupture, or a control... cargo transfer operations involving connecting or disconnecting liquid or vapor hoses; cargo tank gauging and sampling; and cargo tank gas freeing, venting, and cleaning. Performance standard means the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... vessel. Emergency means an occurrence, such as an equipment failure, a container rupture, or a control... cargo transfer operations involving connecting or disconnecting liquid or vapor hoses; cargo tank gauging and sampling; and cargo tank gas freeing, venting, and cleaning. Performance standard means the...
Code of Federal Regulations, 2014 CFR
2014-10-01
... vessel. Emergency means an occurrence, such as an equipment failure, a container rupture, or a control... cargo transfer operations involving connecting or disconnecting liquid or vapor hoses; cargo tank gauging and sampling; and cargo tank gas freeing, venting, and cleaning. Performance standard means the...
The Portevin–Le Chatelier effect: a review of experimental findings
Yilmaz, Ahmet
2011-01-01
The Portevin–Le Chatelier (PLC) effect manifests itself as an unstable plastic flow during tensile tests of some dilute alloys under certain regimes of strain rate and temperature. The plastic strain becomes localized in the form of bands which move along a specimen gauge in various ways as the PLC effect occurs. Because the localization of strain causes degradation of the inherent structural properties and surface quality of materials, understanding the effect is crucial for the effective use of alloys. The characteristic behaviors of localized strain bands and techniques commonly used to study the PLC effect are summarized in this review. A brief overview of experimental findings, the effect of material properties and test parameters on the PLC effect, and some discussion on the mechanisms of the effect are included. Tests for predicting the early failure of structural materials due to embrittlement induced by the PLC effect are also discussed. PMID:27877450
49 CFR 230.44 - Time of testing.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.44 Time of testing. Steam gauges shall be tested prior to being installed or being...
NASA Astrophysics Data System (ADS)
Yin, Peng-Fei; Yang, Sheng-Qi
2018-05-01
As a typical inherently anisotropic rock, layered sandstones can differ from each other in several aspects, including grain size, type of material, type of cementation, and degree of compaction. An experimental study is essential to obtain and convictive evidence to characterize the mechanical behavior of such rock. In this paper, the mechanical behavior of a layered sandstone from Xuzhou, China, is investigated under uniaxial compression and Brazilian test conditions. The loading tests are conducted on 7 sets of bedding inclinations, which are defined as the angle between the bedding plane and horizontal direction. The uniaxial compression strength (UCS) and elastic modulus values show an undulatory variation when the bedding inclination increases. The overall trend of the UCS and elastic modulus values with bedding inclination is decreasing. The BTS value decreases with respect to the bedding inclination and the overall trend of it is approximating a linear variation. The 3D digital high-speed camera images reveal that the failure and fracture of a specimen are related to the surface deformation. Layered sandstone tested under uniaxial compression does not show a typical failure mode, although shear slip along the bedding plane occurs at high bedding inclinations. Strain gauge readings during the Brazilian tests indicate that the normal stress on the bedding plane transforms from compression to tension as the bedding inclination increases. The stress parallel to the bedding plane in a rock material transforms from tension to compression and agrees well with the fracture patterns; "central fractures" occur at bedding inclinations of 0°-75°, "layer activation" occurs at high bedding inclinations of 75°-90°, and a combination of the two occurs at 75°.
DeWitt, John; Cho, Chang-Min; Lin, Jingmei; Al-Haddad, Mohammad; Canto, Marcia Irene; Salamone, Ashley; Hruban, Ralph H.; Messallam, Ahmed A.; Khashab, Mouen A.
2015-01-01
Background and study aims: The optimal core biopsy needle for endoscopic ultrasound (EUS) is unknown. The principle aim of this study is to compare outcomes of EUS-fine-needle biopsy (EUS-FNB) with a new 19-gauge EUS histology needle (ProCore, Cook Medical Inc., Winston-Salem, North Carolina, United States) to a conventional 19-gauge Tru-Cut biopsy (EUS-TCB) needle (19G, Quick-Core, Cook Medical Inc.). Patients and methods: Patients referred for EUS who require possible histologic biopsy were prospectively randomized to EUS-FNB or EUS-TCB. With the initial needle, ≤ 3 biopsies were obtained until either technical failure or an adequate core was obtained. Patients with suspected inadequate biopsies were crossed over to the other needle and similarly ≤ 3 passes were obtained until adequate cores or technical failure occurred. Technical success, diagnostic histology, accuracy and complication rates were evaluated. Results: Eighty-five patients (mean 58 years; 43 male) were randomized to FNB (n = 44) and TCB (n = 41) with seven patients excluded. Procedure indication, biopsy site, mass size, number of passes, puncture site, overall technical success and adverse events were similar between the two groups. FNB specimens had a higher prevalence of diagnostic histology (85 % vs. 57 %; P = 0.006), accuracy (88 % vs. 62 %; P = 0.02), mean total length (19.4 vs. 4.3 mm; P = 0.001), mean complete portal triads from liver biopsies (10.4 vs. 1.3; P = 0.0004) and required fewer crossover biopsies compared to those of TCB (2 % vs. 65 %; P = 0.0001). Overall technical success and complication rates were comparable. Conclusion: EUS-FNB using a 19-gauge FNB needle is superior to 19-gauge EUS-TCB needle. PMID:26528504
Selection and static calibration of the Marsh J1678 pressure gauge
NASA Technical Reports Server (NTRS)
Oxendine, Charles R.; Smith, Howard W.
1993-01-01
During the experimental testing of the ultralight, it was determined that a pressure gauge would be required to monitor the simulated flight loads. After analyzing several factors, which are indicated in the discussion section of this report, the Marsh J1678 pressure gauge appeared to be the prominent candidate for the task. However, prior to the final selection, the Marsh pressure gauge was calibrated twice by two different techniques. As a result of the calibration, the Marsh gauge was selected as the appropriate measuring device during the structural testing of the ultralight. Although, there are commerical pressure gauges available on the market that would have proven to be more efficient and accurate. However, in order to obtain these characteristics in a gauge, one has to pay the price on the price tag, and this value is an exponential function of the degree of accuracy efficiency, precision, and many other features that may be designed into the gauge. After analyzing the extent of precision and accuracy that would be required, a more expensive gauge wouldn't have proven to be a financial benefit towards the outcome of the experiment.
Sensitivity of goodness-of-fit statistics to rainfall data rounding off
NASA Astrophysics Data System (ADS)
Deidda, Roberto; Puliga, Michelangelo
An analysis based on the L-moments theory suggests of adopting the generalized Pareto distribution to interpret daily rainfall depths recorded by the rain-gauge network of the Hydrological Survey of the Sardinia Region. Nevertheless, a big problem, not yet completely resolved, arises in the estimation of a left-censoring threshold able to assure a good fitting of rainfall data with the generalized Pareto distribution. In order to detect an optimal threshold, keeping the largest possible number of data, we chose to apply a “failure-to-reject” method based on goodness-of-fit tests, as it was proposed by Choulakian and Stephens [Choulakian, V., Stephens, M.A., 2001. Goodness-of-fit tests for the generalized Pareto distribution. Technometrics 43, 478-484]. Unfortunately, the application of the test, using percentage points provided by Choulakian and Stephens (2001), did not succeed in detecting a useful threshold value in most analyzed time series. A deeper analysis revealed that these failures are mainly due to the presence of large quantities of rounding off values among sample data, affecting the distribution of goodness-of-fit statistics and leading to significant departures from percentage points expected for continuous random variables. A procedure based on Monte Carlo simulations is thus proposed to overcome these problems.
NASA Astrophysics Data System (ADS)
Armstrong, Christopher; Rae, Philip; Heatwole, Eric; Tasker, Douglas; Los Alamos National Labortatory Team
2017-06-01
Manganin is an alloy that changes resistance when subjected to high-pressure, but is insensitive to temperature changes. Resistance curves as a function of pressure for these gauges have been established. Another commonly used piezoresistive pressure sensor are thin-film carbon gauges, which are more pressure sensitive than manganin gauges. Carbon gauge response in high temperature is not well quantified. The current research is focused on verifying these established resistance curves as well as verifying this specific experimental configuration. In this research the carbon gauges' resistance change is measured for thermally elevated gauges. In this setup a 20 mm caliber gun drove planar copper projectiles at the gauge, which was embedded in a copper anvil. The Hugoniot relationship allows for a comparison between observed and theoretical pressure over a pressure range 5 to 20 GPa for manganin gauges and 1 to 5 GPa for carbon gauges. The comparison between the data obtained in this research and that of others shows that the pressure-resistance curve of manganin does to not vary between lots of manganin. Additionally, the data shows that this setup is a relatively inexpensive quick means of testing gauge response to high-pressure shocks and is suitable for elevated temperature.
Fiber-Optic Strain Gauge With High Resolution And Update Rate
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Mahajan, Ajay; Sayeh, Mohammad; Regez, Bradley
2007-01-01
An improved fiber-optic strain gauge is capable of measuring strains in the approximate range of 0 to 50 microstrains with a resolution of 0.1 microstrain. (To some extent, the resolution of the strain gauge can be tailored and may be extensible to 0.01 microstrain.) The total cost of the hardware components of this strain gauge is less than $100 at 2006 prices. In comparison with prior strain gauges capable of measurement of such low strains, this strain gauge is more accurate, more economical, and more robust, and it operates at a higher update rate. Strain gauges like this one are useful mainly for measuring small strains (including those associated with vibrations) in such structures as rocket test stands, buildings, oilrigs, bridges, and dams. The technology was inspired by the need to measure very small strains on structures supporting liquid oxygen tanks, as a way to measure accurately mass of liquid oxygen during rocket engine testing. This improved fiber-optic strain gauge was developed to overcome some of the deficiencies of both traditional foil strain gauges and prior fiber-optic strain gauges. Traditional foil strain gages do not have adequate signal-to-noise ratios at such small strains. Fiber-optic strain gauges have been shown to be potentially useful for measuring such small strains, but heretofore, the use of fiberoptic strain gauges has been inhibited, variously, by complexity, cost, or low update rate.
Experimental Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pauly, Christopher C.; Pindera, Marek-Jerzy
1997-01-01
The results of an extensive experimental characterization and a preliminary analytical modeling effort for the elastoplastic mechanical behavior of 8-harness satin weave carbon/copper (C/Cu) composites are presented. Previous experimental and modeling investigations of woven composites are discussed, as is the evolution of, and motivation for, the continuing research on C/Cu composites. Experimental results of monotonic and cyclic tension, compression, and Iosipescu shear tests, and combined tension-compression tests, are presented. With regard to the test results, emphasis is placed on the effect of strain gauge size and placement, the effect of alloying the copper matrix to improve fiber-matrix bonding, yield surface characterization, and failure mechanisms. The analytical methodology used in this investigation consists of an extension of the three-dimensional generalized method of cells (GMC-3D) micromechanics model, developed by Aboudi (1994), to include inhomogeneity and plasticity effects on the subcell level. The extension of the model allows prediction of the elastoplastic mechanical response of woven composites, as represented by a true repeating unit cell for the woven composite. The model is used to examine the effects of refining the representative geometry of the composite, altering the composite overall fiber volume fraction, changing the size and placement of the strain gauge with respect to the composite's reinforcement weave, and including porosity within the infiltrated fiber yarns on the in-plane elastoplastic tensile, compressive, and shear response of 8-harness satin C/Cu. The model predictions are also compared with the appropriate monotonic experimental results.
Study of Cavitation and Failure Mechanisms of a Superplastic 5083 Aluminum Alloy
2003-09-01
Failure Mechanisms of a Superplastic 5083 Aluminum Alloy 6. AUTHOR( S ) Boydon, Juanito F. 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME( S ) AND...NAME( S ) AND ADDRESS(ES) General Motors Corp., Research and Development Center, Warren, MI (Dr. Paul E. Krajewski, Technical Program...of 973931(A3), deformed gauge area 1- region 1. Sample was pulled under uniaxial tension at 450 °C at a strain rate of 3x10-4 s -1 and elongated to
1976-01-01
items. The items tested were the MODI-PAC, a proprietary item of Reming)on Arms Company, a standard 12 - gauge round of No. 4 lead shot, and an...to refrain from testing this item. Therefore, the final selection of items for testing were (1) the MODI-PAC, (2) a standard 12 - gauge shotgun round of...The first item evaluated was the MODI-PAC5. The MOQ1-PAC which standsfor “modified impact “ is a 12 - gauge shotgun shell loaded with approximately 320
NASA Astrophysics Data System (ADS)
Sutherland, Herbert J.
1988-08-01
Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to equivalent gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system.
Parametric Dynamic Load Prediction of a Narrow Gauge Rocket Sled
2006-12-01
Monorail λ Compared to Sled Tests.......................................................... 11 Figure 2.1 Application of Vertical λ to a Narrow Gauge sled...Three distinct sled configurations are used: monorail , dual rail wide gauge, and dual rail narrow gauge. Of the three, the narrow gauge...weight and the resulting value was termed λ. Monorail λ factor loading was first documented by Mixon (1971) where a few measured data points were
Miniature Convection Cooled Plug-type Heat Flux Gauges
NASA Technical Reports Server (NTRS)
Liebert, Curt H.
1994-01-01
Tests and analysis of a new miniature plug-type heat flux gauge configuration are described. This gauge can simultaneously measure heat flux on two opposed active surfaces when heat flux levels are equal to or greater than about 0.2 MW/m(sup 2). The performance of this dual active surface gauge was investigated over a wide transient and steady heat flux and temperature range. The tests were performed by radiatively heating the front surface with an argon arc lamp while the back surface was convection cooled with air. Accuracy is about +20 percent. The gauge is responsive to fast heat flux transients and is designed to withstand the high temperature (1300 K), high pressure (15 MPa), erosive and corrosive environments in modern engines. This gauge can be used to measure heat flux on the surfaces of internally cooled apparatus such as turbine blades and combustors used in jet propulsion systems and on the surfaces of hypersonic vehicles. Heat flux measurement accuracy is not compromised when design considerations call for various size gauges to be fabricated into alloys of various shapes and properties. Significant gauge temperature reductions (120 K), which can lead to potential gauge durability improvement, were obtained when the gauges were air-cooled by forced convection.
An Intelligent Strain Gauge with Debond Detection and Temperature Compensation
NASA Technical Reports Server (NTRS)
Jensen, Scott L.
2012-01-01
The harsh rocket propulsion test environment will expose any inadequacies associated with preexisting instrumentation technologies, and the criticality for collecting reliable test data justifies investigating any encountered data anomalies. Novel concepts for improved systems are often conceived during the high scrutiny investigations by individuals with an in-depth knowledge from maintaining critical test operations. The Intelligent Strain Gauge concept was conceived while performing these kinds of activities. However, the novel concepts are often unexplored even if it has the potential for advancing the current state of the art. Maturing these kinds of concepts is often considered to be a tangential development or a research project which are both normally abandoned within the propulsion-oriented environment. It is also difficult to justify these kinds of projects as a facility enhancement because facility developments are only accepted for mature and proven technologies. Fortunately, the CIF program has provided an avenue for bringing the Intelligent Strain Gauge to fruition. Two types of fully functional smart strain gauges capable of performing reliable and sensitive debond detection have been successfully produced. Ordinary gauges are designed to provide test article data and they lack the ability to supply information concerning the gauge itself. A gauge is considered to be a smart gauge when it provides supplementary data relating other relevant attributes for performing diagnostic function or producing enhanced data. The developed strain gauges provide supplementary signals by measuring strain and temperature through embedded Karma and nickel chromium (NiCr) alloy elements. Intelligently interpreting the supplementary data into valuable information can be performed manually, however, integrating this functionality into an automatic system is considered to be an intelligent gauge. This was achieved while maintaining a very low mass. The low mass enables debond detection and temperature compensation to be performed when the gauge is utilized on small test articles. It was also found that the element's mass must be relatively small to avoid overbearing the desired thermal dissipation characteristics. Detecting the degradation of a gauge s bond was reliably achieved by correlating thermal dissipation with the bond s integrity. This was accomplished by precisely coupling a NiCr element with a Karma element for accurately interjecting and quantifying thermal energy. A finite amount of thermal energy is consistently placed in the gauge by electrically powering the NiCr element. The energy will only be temporarily stored before it begins to dissipate into the surrounding structure through the gauge bond. The ability to transmit the energy into the structure becomes greatly inhibited by any discontinuity in the bond s substrate. Therefore, the way the thermal dissipation occurs will reveal even the slightest change in the integrity of the bond.
Thin Film Ceramic Strain Sensor Development for High Temperature Environments
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.
2008-01-01
The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.
Plastic deformation in nanoscale gold single crystals and open-celled nanoporous gold
NASA Astrophysics Data System (ADS)
Lee, Dongyun; Wei, Xiaoding; Zhao, Manhong; Chen, Xi; Jun, Seong C.; Hone, James; Kysar, Jeffrey W.
2007-01-01
The results of two sets of experiments to measure the elastic-plastic behaviour of gold at the nanometre length scale are reported. One set of experiments was on free-standing nanoscale single crystals of gold, and the other was on free-standing nanoscale specimens of open-celled nanoporous gold. Both types of specimens were fabricated from commercially available leaf which was either pure Au or a Au/Ag alloy following by dealloying of the Ag. Mechanical testing specimens of a 'dog-bone' shape were fabricated from the leaf using standard lithographic procedures after the leaf had been glued onto a silicon wafer. The thickness of the gauge portion of the specimens was about 100 nm, the width between 250 nm and 300 nm and the length 7 µm. The specimens were mechanically loaded with a nanoindenter (MTS) at the approximate midpoint of the gauge length. The resulting force-displacement curve of the single crystal gold was serrated and it was evident that slip localization occurred on individual slip systems; however, the early stages of the plastic deformation occurred in a non-localized manner. The results of detailed finite element analyses of the specimen suggest that the critical resolved shear stress of the gold single crystal was as high as 135 MPa which would lead to a maximum uniaxial stress of about 500 MPa after several per cent strain. The behaviour of the nanoporous gold was substantially different. It exhibited an apparent elastic behaviour until the point where it failed in an apparently brittle manner, although it is assumed that plastic deformation occurred in the ligaments prior to failure. The average elastic stiffness of three specimens was measured to be Enp = 8.8 GPa and the stress at ultimate failure averaged 190 MPa for the three specimens tested. Scaling arguments suggest that the stress in the individual ligaments could approach the theoretical shear strength. Presented at the IUTAM Symposium on Plasticity at the Micron Scale, Technical University of Denmark, Copenhagen, Denmark.
High resolution radar-rain gauge data merging for urban hydrology: current practice and beyond
NASA Astrophysics Data System (ADS)
Ochoa Rodriguez, Susana; Wang, Li-Pen; Bailey, Andy; Willems, Patrick; Onof, Christian
2017-04-01
In this work a thorough test is conducted of radar-rain gauge merging techniques at urban scales, under different climatological conditions and rain gauge density scenarios. The aim is to provide guidance regarding the suitability and application of merging methods at urban scales, which is lacking at present. The test is conducted based upon two pilot locations, i.e. the cities of Edinburgh (254 km^2) and Birmingham (431 km^2), for which a total of 96 and 84 tipping bucket rain gauges were respectively available, alongside radar QPEs, dense runoff records and urban drainage models. Three merging techniques, namely Mean Field Bias (MFB) adjustment, kriging with external (KED) and Bayesian (BAY) combination, were selected for testing on grounds of performance and common use. They were initially tested as they were originally formulated and as they are reportedly commonly applied using typically available radar and rain gauge data. Afterwards, they were tested in combination with two special treatments which were identified as having the potential to improve merging applicability for urban hydrology: (1) reduction of temporal sampling errors in radar QPEs through temporal interpolation and (2) singularity-based decomposition of radar QPEs prior to merging. These treatments ultimately aim at improving the consistency between radar and rain gauge records, which has been identified as the chief factor affecting merging performance and is particularly challenging at the fine spatial-temporal resolutions required for urban applications. The main findings of this study are the following: - All merging methods were found to improve the applicability of radar QPEs for urban hydrological applications, but the degree of improvement they provide and the added value of radar information vary for each merging method and are also a function of climatological conditions and rain gauge density scenarios. - Overall, KED displayed the best performance, with BAY being a close second and MFB providing the smallest improvements upon radar QPEs. However, as compared to BAY, KED performance is more sensitive to rain gauge density and to the ability of rain gauges to sample critical features of the rainfall field. By incorporating more information from radar than KED, BAY is less sensitive to rain gauge density and to poor rain gauge predictability and proved able to provide a good representation of convective cells even in cases in which gauges completely missed such structures. - Based on the findings of this study, it is recommended that KED be used when gauge densities are relatively high (of the order of 30 km2 per gauge or higher) and/or when the quality of radar QPEs is known to be very poor, in which case it is desirable to rely more upon rain gauge records. For low rain gauge density situations and QPEs of reasonable quality (as is the case in most of EU), BAY may be a more appropriate choice. MFB should be the last choice; however, it is better than no correction at all. - The two special treatments under consideration successfully improved overall merging performance at the spatial-temporal resolutions required for urban hydrology, with benefits being particularly evident at low rain gauge density conditions.
Barber, F Alan; Bava, Eric D; Spenciner, David B; Piccirillo, Justin
2013-06-01
The purpose of this study was to assess the mechanical performance of biocomposite knotless lateral row anchors based on both anchor design and the direction of pull. Two lateral row greater tuberosity insertion sites (anterior and posterior) were identified in matched pairs of fresh-frozen human cadaveric shoulders DEXA (dual energy X-ray absorptiometry) scanned to verify comparability. The humeri were stripped of all soft tissue and 3 different biocomposite knotless lateral row anchors: HEALIX Knotless BR (DePuy Mitek, Raynham MA), BioComposite PushLock (Arthrex, Naples, FL), and Bio-SwiveLock (Arthrex). Fifty-two anchors were distributed among the insertion locations and tested them with either an anatomic or axial pull. A fixed-gauge loop (15 mm) of 2 high-strength sutures from each anchor was created. After a 10-Nm preload, anchors were cycled from 10 to 45 Nm at 0.5 Hz for 200 cycles and tested to failure at 4.23 mm/second. The load to reach 3 mm and 5 mm displacement, ultimate failure load, displacement at ultimate failure, and failure mode were recorded. Threaded anchors (Bio-SwiveLock, P = .03; HEALIX Knotless, P = .014) showed less displacement with anatomic testing than did the nonthreaded anchor (BioComposite PushLock), and the HEALIX Knotless showed less overall displacement than did the other 2 anchors. The Bio-SwiveLock exhibited greater failure loads than did the other 2 anchors (P < .05). Comparison of axial and anatomic loading showed no maximum load differences for all anchors as a whole (P = .1084). Yet, anatomic pulling produced higher failure loads than did axial pulling for the Bio-SwiveLock but not for the BioComposite PushLock or the HEALIX Knotless. The nonthreaded anchor (BioComposite PushLock) displayed lower failure loads than did both threaded anchors with axial pulling. Threaded biocomposite anchors (HEALIX Knotless BR and Bio-SwiveLock) show less anatomic loading displacement and higher axial failure loads than do the nonthreaded (BioComposite PushLock) anchor. The HEALIX Knotless BR anchor showed less displacement than did the BioComposite PushLock and Bio-SwiveLock anchors. Neither axial nor anatomic loading had an effect on overall anchor displacement. Because of the strength profiles exhibited, this study supports the use of biocomposite anchors, which have definite advantages over polyetheretherketone (PEEK) and metal products. However, the nonthreaded BioComposite PushLock anchor cannot be recommended. Copyright © 2013 Arthroscopy Association of North America. All rights reserved.
Determining the Optimal Number of Core Needle Biopsy Passes for Molecular Diagnostics.
Hoang, Nam S; Ge, Benjamin H; Pan, Lorraine Y; Ozawa, Michael G; Kong, Christina S; Louie, John D; Shah, Rajesh P
2018-03-01
The number of core biopsy passes required for adequate next-generation sequencing is impacted by needle cut, needle gauge, and the type of tissue involved. This study evaluates diagnostic adequacy of core needle lung biopsies based on number of passes and provides guidelines for other tissues based on simulated biopsies in ex vivo porcine organ tissues. The rate of diagnostic adequacy for pathology and molecular testing from lung biopsy procedures was measured for eight operators pre-implementation (September 2012-October 2013) and post-implementation (December 2013-April 2014) of a standard protocol using 20-gauge side-cut needles for ten core biopsy passes at a single academic hospital. Biopsy pass volume was then estimated in ex vivo porcine muscle, liver, and kidney using side-cut devices at 16, 18, and 20 gauge and end-cut devices at 16 and 18 gauge to estimate minimum number of passes required for adequate molecular testing. Molecular diagnostic adequacy increased from 69% (pre-implementation period) to 92% (post-implementation period) (p < 0.001) for lung biopsies. In porcine models, both 16-gauge end-cut and side-cut devices require one pass to reach the validated volume threshold to ensure 99% adequacy for molecular characterization, while 18- and 20-gauge devices require 2-5 passes depending on needle cut and tissue type. Use of 20-gauge side-cut core biopsy needles requires a significant number of passes to ensure diagnostic adequacy for molecular testing across all tissue types. To ensure diagnostic adequacy for molecular testing, 16- and 18-gauge needles require markedly fewer passes.
Measurement of the residual stress in hot rolled strip using strain gauge method
NASA Astrophysics Data System (ADS)
Kumar, Lokendra; Majumdar, Shrabani; Sahu, Raj Kumar
2017-07-01
Measurement of the surface residual stress in a flat hot rolled steel strip using strain gauge method is considered in this paper. Residual stresses arise in the flat strips when the shear cut and laser cut is applied. Bending, twisting, central buckled and edge waviness is the common defects occur during the cutting and uncoiling process. These defects arise due to the non-uniform elastic-plastic deformation, phase transformation occurring during cooling and coiling-uncoiling process. The residual stress analysis is very important because with early detection it is possible to prevent an object from failure. The goal of this paper is to measure the surface residual stress in flat hot rolled strip using strain gauge method. The residual stress was measured in the head and tail end of hot rolled strip considering as a critical part of the strip.
Interferometric step gauge for CMM verification
NASA Astrophysics Data System (ADS)
Hemming, B.; Esala, V.-P.; Laukkanen, P.; Rantanen, A.; Viitala, R.; Widmaier, T.; Kuosmanen, P.; Lassila, A.
2018-07-01
The verification of the measurement capability of coordinate measuring machines (CMM) is usually performed using gauge blocks or step gauges as reference standards. Gauge blocks and step gauges are robust and easy to use, but have some limitations such as finite lengths and uncertainty of thermal expansion. This paper describes the development, testing and uncertainty evaluation of an interferometric step gauge (ISG) for CMM verification. The idea of the ISG is to move a carriage bearing a gauge block along a rail and to measure the position with an interferometer. For a displacement of 1 m the standard uncertainty of the position of the gauge block is 0.2 µm. A short range periodic error of CMM can also be detected.
Sng, B L; Lim, Y; Sia, A T H
2009-07-01
A prospective cohort study was performed in 800 parturients undergoing elective caesarean section under spinal anaesthesia from May 2005 to April 2006 in a large maternity hospital in Singapore, in order to determine the incidence of and risk factors for total and partial failure of spinal anaesthesia. A routine single-shot spinal technique using intrathecal 0.5% heavy bupivacaine 2.0 mL (10 mg) and morphine 100 microg was administered with a 27-gauge Whitacre spinal needle via a 20-gauge introducer. Demographic, surgical and anaesthetic data were collected to determine risk factors for failure of spinal anaesthesia. Incidence of total failure requiring conversion to general anaesthesia was 0.5% (4 cases) in which three cases had inadequate block (loss of sensation to cold less than T6) and one case had no sensory block. Thirty-three parturients (4.1%) required intravenous fentanyl and seven (0.9%) required Entonox for intraoperative analgesic supplementation. Postpartum sterilization (P<0.001) was an independent risk factor for partial failure requiring intravenous fentanyl and Entonox. Spinal anaesthesia using bupivacaine 10 mg with morphine 100 microg produces reliable anaesthesia for elective caesarean section. Postpartum sterilization involves exteriorisation of the uterus with additional surgical manipulation and hence may necessitate analgesic supplementation. The initial use of a combined spinal-epidural technique or the addition of intrathecal fentanyl or clonidine or an increased dose of local anaesthetic may be considered to decrease the incidence of intraoperative pain.
RIA simulation tests using driver tube for ATF cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinbiz, Mahmut N.; Brown, N. R.; Lowden, R. R.
Pellet-cladding mechanical interaction (PCMI) is a potential failure mechanism for accident-tolerant fuel (ATF) cladding candidates during a reactivity-initiated accident (RIA). This report summarizes Fiscal Year (FY) 2017 research activities that were undertaken to evaluate the PCMI-like hoop-strain-driven mechanical response of ATF cladding candidates. To achieve various RIA-like conditions, a modified-burst test (MBT) device was developed to produce different mechanical pulses. The calibration of the MBT instrument was accomplished by performing mechanical tests on unirradiated Generation-I iron-chromium-aluminum (FeCrAl) alloy samples. Shakedown tests were also conducted in both FY 2016 and FY 2017 using unirradiated hydrided ZIRLO™ tube samples. This milestone reportmore » focuses on testing of ATF materials, but the benchmark tests with hydrided ZIRLO™ tube samples are documented in a recent journal article.a For the calibration and benchmark tests, the hoop strain was monitored using strain gauges attached to the sample surface in the hoop direction. A novel digital image correlation (DIC) system composed of a single high-speed camera and an array of six mirrors was developed for the MBT instrument to better resolve the failure behavior of samples and to provide useful data for validation of high-fidelity modeling and simulation tools. The DIC system enable a 360° view of a sample’s outer surface. This feature was added to the instrument to determine the precise failure location on a sample’s surface for strain predictions. The DIC system was tested on several silicon carbide fiber/silicon carbide matrix (SiC/SiC) composite tube samples at various pressurization rates of the driver tube (which correspond to the strain rates for the samples). The hoop strains for various loading conditions were determined for the SiC/SiC composite tube samples. Future work is planned to enhance understanding of the failure behavior of the ATF cladding candidates of age-hardened FeCrAl alloys and SiC/SiC composites in detail during RIA conditions informed by the computational studies performed under the US Department of Energy Office of Nuclear Energy Advanced Fuels Campaign. The testing instrument and the new DIC system will be further developed to reach different stress-state conditions and to perform tests at elevated temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prime, Michael B.; DeWald, Adrian T.; Hill, Michael R.
Forensic engineering - the scientific examination and analysis of failed structures and parts relating to their failure or cause of damage. Real advances in experimental mechanics require innovative theoretical and analytical thinking to go with innovative capabilities. For example, taking full field data (e.g., DIC) and treating it like discrete data (strain gauge) misses a wonderful opportunity.
Prognostic value of saturated prostate cryoablation for localized prostate cancer.
Chen, Chung-Hsin; Tai, Yi-Sheng; Pu, Yeong-Shiau
2015-10-01
To evaluate the oncological outcomes and complications of patients with saturated prostate cryoablation. A cohort of 208 patients cumulatively treated between June 2008 and December 2012 qualified for study inclusion, each undergoing total-gland cryoablation for prostate cancer. The degree of saturated prostate cryoablation was defined as the average prostate volume per cryoprobe (APVC), and divided into four groups (groups 1-4: <3 ml, 3 to <4 ml, 4 to <5 ml, ≧5 ml, respectively). Post-ablative complications were measured prospectively at weeks 1, 2, 4, 8, 12, and 24 by using the Common Terminology Criteria for Adverse Events. Biochemical failure was gauged by Phoenix criterion. The Kruskal-Wallis rank sum test and Chi-square test were used to compare clinical characteristics of therapeutic subsets. The Cox proportional hazard model was applied for comparison of recurrence risk between groups. APVC group 1 had the highest pre-operative PSA value and smallest prostate size among the groups. Multivariate analysis of risks of biochemical failures revealed that the larger the APVC, the higher the hazard (p for trend = 0.01). Compared to the group 1 patients, the hazard ratios of biochemical failures in groups 2-4 were 4.4 (confidence interval (CI): 0.5-37), 8.8 (CI 1.1-73), and 9.4 (CI 1.1-78), respectively. Nevertheless, the complication rate of APVC group 1 patients was similar to the other three groups. Saturated prostate cryoablation by reducing APVC would be beneficial for cancer control without compromising patient safety.
40 CFR 80.176 - Alternative certification test procedures and standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... temperature. At the end of this 48-hour ambient temperature soak, an injector balance test is conducted to... injector balance test. (x) Fuel pressure gauge. A fuel pressure gauge capable of measuring fuel system... conducting the injector balance test. A pressure transducer shall not be used. (xi) Gaskets. The upper intake...
NASA Astrophysics Data System (ADS)
Hdeib, Rouya; Abdallah, Chadi; Moussa, Roger; Colin, Francois
2017-04-01
Developing flood inundation maps of defined exceedance probabilities is required to provide information on the flood hazard and the associated risk. A methodology has been developed to model flood inundation in poorly gauged basins, where reliable information on the hydrological characteristics of floods are uncertain and partially captured by the traditional rain-gauge networks. Flood inundation is performed through coupling a hydrological rainfall-runoff (RR) model (HEC-HMS) with a hydraulic model (HEC-RAS). The RR model is calibrated against the January 2013 flood event in the Awali River basin, Lebanon (300 km2), whose flood peak discharge was estimated by post-event measurements. The resulting flows of the RR model are defined as boundary conditions of the hydraulic model, which is run to generate the corresponding water surface profiles and calibrated against 20 post-event surveyed cross sections after the January-2013 flood event. An uncertainty analysis is performed to assess the results of the models. Consequently, the coupled flood inundation model is simulated with design storms and flood inundation maps are generated of defined exceedance probabilities. The peak discharges estimated by the simulated RR model were in close agreement with the results from different empirical and statistical methods. This methodology can be extended to other poorly gauged basins facing common stage-gauge failure or characterized by floods with a stage exceeding the gauge measurement level, or higher than that defined by the rating curve.
A skin friction gauge for impulsive flows
NASA Technical Reports Server (NTRS)
Goyne, C. P.; Paull, A.; Stalker, R. J.
1995-01-01
A new skin friction gauge has been designed for use in impulsive facilities. The gauge was tested in the T4 free piston shock tunnel, at the University of Queensland, using a 1.5 m long plate that formed one of the inner walls of a rectangular duct. The test gas was fair and the test section free stream flow had a stagnation enthalpy of 4.7 MJ/kg. Measurements were conducted in a laminar and turbulent boundary layer. The measurements compared well with laminar and turbulent analytical theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SMITH, S.G.
1999-10-21
The following Acceptance Test Procedure was written to test the ENRAF series 854 ATG with SPU II card prior to installation in the Tank Farms. The procedure sets various parameters and verifies the gauge and alarms functionality.
Nuclear Gauge Calibration and Testing Guidelines for Hawaii
DOT National Transportation Integrated Search
2006-12-15
Project proposal brief: AASHTO and ASTM nuclear gauge testing procedures can lead to misleading density and moisture readings for certain Hawaiian soils. Calibration curves need to be established for these unique materials, along with clear standard ...
78 FR 39001 - Accreditation and Approval of Saybolt, LP, as a Commercial Gauger and Laboratory
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-28
..., has been approved to gauge and accredited to test petroleum and petroleum products, organic chemicals... gauge and accredited to test petroleum and petroleum products, organic chemicals and vegetable oils for...
Noise in pressure transducer readings produced by variations in solar radiation
Cain, S. F.; Davis, G.A.; Loheide, Steven P.; Butler, J.J.
2004-01-01
Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.
Noise in pressure transducer readings produced by variations in solar radiation.
Cain, Samuel F; Davis, Gregory A; Loheide, Steven P; Butler, James J
2004-01-01
Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.
Sensing sheets based on large area electronics for fatigue crack detection
NASA Astrophysics Data System (ADS)
Yao, Yao; Glisic, Branko
2015-03-01
Reliable early-stage damage detection requires continuous structural health monitoring (SHM) over large areas of structure, and with high spatial resolution of sensors. This paper presents the development stage of prototype strain sensing sheets based on Large Area Electronics (LAE), in which thin-film strain gauges and control circuits are integrated on the flexible electronics and deposited on a polyimide sheet that can cover large areas. These sensing sheets were applied for fatigue crack detection on small-scale steel plates. Two types of sensing-sheet interconnects were designed and manufactured, and dense arrays of strain gauge sensors were assembled onto the interconnects. In total, four (two for each design type) strain sensing sheets were created and tested, which were sensitive to strain at virtually every point over the whole sensing sheet area. The sensing sheets were bonded to small-scale steel plates, which had a notch on the boundary so that fatigue cracks could be generated under cyclic loading. The fatigue tests were carried out at the Carleton Laboratory of Columbia University, and the steel plates were attached through a fixture to the loading machine that applied cyclic fatigue load. Fatigue cracks then occurred and propagated across the steel plates, leading to the failure of these test samples. The strain sensor that was close to the notch successfully detected the initialization of fatigue crack and localized the damage on the plate. The strain sensor that was away from the crack successfully detected the propagation of fatigue crack based on the time history of measured strain. Overall, the results of the fatigue tests validated general principles of the strain sensing sheets for crack detection.
Fiber Optic Rosette Strain Gauge Development and Application on a Large-Scale Composite Structure
NASA Technical Reports Server (NTRS)
Moore, Jason P.; Przekop, Adam; Juarez, Peter D.; Roth, Mark C.
2015-01-01
A detailed description of the construction, application, and measurement of 196 FO rosette strain gauges that measured multi-axis strain across the outside upper surface of the forward bulkhead component of a multibay composite fuselage test article is presented. A background of the FO strain gauge and the FO measurement system as utilized in this application is given and results for the higher load cases of the testing sequence are shown.
Deformation behavior of micro-indentation defects under uniaxial and biaxial loads
NASA Astrophysics Data System (ADS)
Ma, Zhichao; Zhao, Hongwei; Lu, Shuai; Li, Hailian; Liu, Changyi; Liu, Xianhua
2015-09-01
The microdefects of structure frequently act as the source to generate initial cracks and lead to the fracture failure. Study on the deformation behaviors of embedded defects would be conducive to better understand the failure mechanisms of structural materials. Micro-indentation technique was applied to prepare the initial indentations as embedded surface defects at the gauge length section and central section of a cross-shaped AZ31B magnesium alloy specimen. A novel in situ biaxial tensile device was developed to apply the synchronous biaxial loads. Via the observation by an optical microscope with three-dimensional imaging and measurement functions, the changing laws of the indentation topographies under uniaxial and biaxial tensile loads were discussed. Compared with the gauge length section, the increasing trend of the indentation length of the central section was relatively flat, and the decreasing trend of the indentation depth was more significant. The changes of indentation topographies were explained by the Poisson effect, and the significant plastic tensile stress has led to the releasing of the residual stress around the indentation location and also promoted the planarization of the pileup.
Deformation behavior of micro-indentation defects under uniaxial and biaxial loads.
Ma, Zhichao; Zhao, Hongwei; Lu, Shuai; Li, Hailian; Liu, Changyi; Liu, Xianhua
2015-09-01
The microdefects of structure frequently act as the source to generate initial cracks and lead to the fracture failure. Study on the deformation behaviors of embedded defects would be conducive to better understand the failure mechanisms of structural materials. Micro-indentation technique was applied to prepare the initial indentations as embedded surface defects at the gauge length section and central section of a cross-shaped AZ31B magnesium alloy specimen. A novel in situ biaxial tensile device was developed to apply the synchronous biaxial loads. Via the observation by an optical microscope with three-dimensional imaging and measurement functions, the changing laws of the indentation topographies under uniaxial and biaxial tensile loads were discussed. Compared with the gauge length section, the increasing trend of the indentation length of the central section was relatively flat, and the decreasing trend of the indentation depth was more significant. The changes of indentation topographies were explained by the Poisson effect, and the significant plastic tensile stress has led to the releasing of the residual stress around the indentation location and also promoted the planarization of the pileup.
Alignment verification procedures
NASA Technical Reports Server (NTRS)
Edwards, P. R.; Phillips, E. P.; Newman, J. C., Jr.
1988-01-01
In alignment verification procedures each laboratory is required to align its test machines and gripping fixtures to produce a nearly uniform tensile stress field on an un-notched sheet specimen. The blank specimens (50 mm w X 305 mm l X 2.3 mm th) supplied by the coordinators were strain gauged. Strain gauge readings were taken at all gauges (n = 1 through 10). The alignment verification procedures are as follows: (1) zero all strain gauges while specimen is in a free-supported condition; (2) put strain-gauged specimen in the test machine so that specimen front face (face 1) is in contact with reference jaw (standard position of specimen), tighten grips, and at zero load measure strains on all gauges. (epsilon sub nS0 is strain at gauge n, standard position, zero load); (3) with specimen in machine and at a tensile load of 10 kN measure strains (specimen in standard position). (Strain = epsilon sub nS10); (4) remove specimen from machine. Put specimen in machine so that specimen back face (face 2) is in contact with reference jaw (reverse position of specimen), tighten grips, and at zero load measure strains on all gauges. (Strain - epsilon sub nR0); and (5) with specimen in machine and at tensile load of 10 kN measure strains (specimen in reverse position). (epsilon sub nR10 is strain at gauge n, reverse position, 10 kN load).
21. VALVES, GAUGES, AND SEVERAL TYPES OF LIGHTING ALONG ROAD ...
21. VALVES, GAUGES, AND SEVERAL TYPES OF LIGHTING ALONG ROAD AT SOUTH REAR OF TEST STAND 1-A. RP1 TANK FARM IN MIDDLE DISTANCE. Looking northeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Optimum Design of a Ceramic Tensile Creep Specimen Using a Finite Element Method
Wang, Z.; Chiang, C. K.; Chuang, T.-J.
1997-01-01
An optimization procedure for designing a ceramic tensile creep specimen to minimize stress concentration is carried out using a finite element method. The effect of pin loading and the specimen geometry are considered in the stress distribution calculations. A growing contact zone between the pin and the specimen has been incorporated into the problem solution scheme as the load is increased to its full value. The optimization procedures are performed for the specimen, and all design variables including pinhole location and pinhole diameter, head width, neck radius, and gauge length are determined based on a set of constraints imposed on the problem. In addition, for the purpose of assessing the possibility of delayed failure outside the gage section, power-law creep in the tensile specimen is considered in the analysis. Using a particular grade of advanced ceramics as an example, it is found that if the specimen is not designed properly, significant creep deformation and stress redistribution may occur in the head of the specimen resulting in undesirable (delayed) head failure of the specimen during the creep test. PMID:27805126
A wireless fatigue monitoring system utilizing a bio-inspired tree ring data tracking technique.
Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping
2014-03-05
Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc.
Tian, Panwen; Wang, Ye; Li, Lei; Zhou, Yongzhao; Luo, Wenxin; Li, Weimin
2017-02-01
Computed tomography (CT)-guided transthoracic needle biopsy is a well-established, minimally invasive diagnostic tool for pulmonary lesions. Few large studies have been conducted on the diagnostic performance and adequacy for molecular testing of transthoracic core needle biopsy (TCNB) for small pulmonary lesions. This study included CT-guided TCNB with 18-gauge cutting needles in 560 consecutive patients with small (≤3 cm) pulmonary lesions from January 2012 to January 2015. There were 323 males and 237 females, aged 51.8±12.7 years. The size of the pulmonary lesions was 1.8±0.6 cm. The sensitivity, specificity, accuracy and complications of the biopsies were investigated. The risk factors of diagnostic failure were assessed using univariate and multivariate analyses. The sample's adequacy for molecular testing of non-small cell lung cancer (NSCLC) was analyzed. The overall sensitivity, specificity, and accuracy for diagnosis of malignancy were 92.0% (311/338), 98.6% (219/222), and 94.6% (530/560), respectively. The incidence of bleeding complications was 22.9% (128/560), and the incidence of pneumothorax was 10.4% (58/560). Logistic multivariate regression analysis showed that the independent risk factors for diagnostic failure were a lesion size ≤1 cm [odds ratio (OR), 3.95; P=0.007], lower lobe lesions (OR, 2.83; P=0.001), and pneumothorax (OR, 1.98; P=0.004). Genetic analysis was successfully performed on 95.45% (168/176) of specimens diagnosed as NSCLC. At least 96.8% of samples with two or more passes from a lesion were sufficient for molecular testing. The diagnostic yield of small pulmonary lesions by CT-guided TCNB is high, and the procedure is relatively safe. A lesion size ≤1 cm, lower lobe lesions, and pneumothorax are independent risk factors for biopsy diagnostic failure. TCNB specimens could provide adequate tissues for molecular testing.
NASA Astrophysics Data System (ADS)
Colli, M.; Lanza, L. G.; La Barbera, P.; Chan, P. W.
2014-07-01
The contribution of any single uncertainty factor in the resulting performance of infield rain gauge measurements still has to be comprehensively assessed due to the high number of real world error sources involved, such as the intrinsic variability of rainfall intensity (RI), wind effects, wetting losses, the ambient temperature, etc. In recent years the World Meteorological Organization (WMO) addressed these issues by fostering dedicated investigations, which revealed further difficulties in assessing the actual reference rainfall intensity in the field. This work reports on an extensive assessment of the OTT Pluvio2 weighing gauge accuracy when measuring rainfall intensity under laboratory dynamic conditions (time varying reference flow rates). The results obtained from the weighing rain gauge (WG) were also compared with a MTX tipping-bucket rain gauge (TBR) under the same test conditions. Tests were carried out by simulating various artificial precipitation events, with unsteady rainfall intensity, using a suitable dynamic rainfall generator. Real world rainfall data measured by an Ogawa catching-type drop counter at a field test site located within the Hong Kong International Airport (HKIA) were used as a reference for the artificial rain generation system. Results demonstrate that the differences observed between the laboratory and field performance of catching-type gauges are only partially attributable to the weather and operational conditions in the field. The dynamics of real world precipitation events is responsible for a large part of the measurement errors, which can be accurately assessed in the laboratory under controlled environmental conditions. This allows for new testing methodologies and the development of instruments with enhanced performance in the field.
Equivalent theories redefine Hamiltonian observables to exhibit change in general relativity
NASA Astrophysics Data System (ADS)
Pitts, J. Brian
2017-03-01
Change and local spatial variation are missing in canonical General Relativity’s observables as usually defined, an aspect of the problem of time. Definitions can be tested using equivalent formulations of a theory, non-gauge and gauge, because they must have equivalent observables and everything is observable in the non-gauge formulation. Taking an observable from the non-gauge formulation and finding the equivalent in the gauge formulation, one requires that the equivalent be an observable, thus constraining definitions. For massive photons, the de Broglie-Proca non-gauge formulation observable {{A}μ} is equivalent to the Stueckelberg-Utiyama gauge formulation quantity {{A}μ}+{{\\partial}μ}φ, which must therefore be an observable. To achieve that result, observables must have 0 Poisson bracket not with each first-class constraint, but with the Rosenfeld-Anderson-Bergmann-Castellani gauge generator G, a tuned sum of first-class constraints, in accord with the Pons-Salisbury-Sundermeyer definition of observables. The definition for external gauge symmetries can be tested using massive gravity, where one can install gauge freedom by parametrization with clock fields X A . The non-gauge observable {{g}μ ν} has the gauge equivalent {{X}A}{{,}μ}{{g}μ ν}{{X}B}{{,}ν}. The Poisson bracket of {{X}A}{{,}μ}{{g}μ ν}{{X}B}{{,}ν} with G turns out to be not 0 but a Lie derivative. This non-zero Poisson bracket refines and systematizes Kuchař’s proposal to relax the 0 Poisson bracket condition with the Hamiltonian constraint. Thus observables need covariance, not invariance, in relation to external gauge symmetries. The Lagrangian and Hamiltonian for massive gravity are those of General Relativity + Λ + 4 scalars, so the same definition of observables applies to General Relativity. Local fields such as {{g}μ ν} are observables. Thus observables change. Requiring equivalent observables for equivalent theories also recovers Hamiltonian-Lagrangian equivalence.
Equivalent Theories and Changing Hamiltonian Observables in General Relativity
NASA Astrophysics Data System (ADS)
Pitts, J. Brian
2018-03-01
Change and local spatial variation are missing in Hamiltonian general relativity according to the most common definition of observables as having 0 Poisson bracket with all first-class constraints. But other definitions of observables have been proposed. In pursuit of Hamiltonian-Lagrangian equivalence, Pons, Salisbury and Sundermeyer use the Anderson-Bergmann-Castellani gauge generator G, a tuned sum of first-class constraints. Kuchař waived the 0 Poisson bracket condition for the Hamiltonian constraint to achieve changing observables. A systematic combination of the two reforms might use the gauge generator but permit non-zero Lie derivative Poisson brackets for the external gauge symmetry of General Relativity. Fortunately one can test definitions of observables by calculation using two formulations of a theory, one without gauge freedom and one with gauge freedom. The formulations, being empirically equivalent, must have equivalent observables. For de Broglie-Proca non-gauge massive electromagnetism, all constraints are second-class, so everything is observable. Demanding equivalent observables from gauge Stueckelberg-Utiyama electromagnetism, one finds that the usual definition fails while the Pons-Salisbury-Sundermeyer definition with G succeeds. This definition does not readily yield change in GR, however. Should GR's external gauge freedom of general relativity share with internal gauge symmetries the 0 Poisson bracket (invariance), or is covariance (a transformation rule) sufficient? A graviton mass breaks the gauge symmetry (general covariance), but it can be restored by parametrization with clock fields. By requiring equivalent observables, one can test whether observables should have 0 or the Lie derivative as the Poisson bracket with the gauge generator G. The latter definition is vindicated by calculation. While this conclusion has been reported previously, here the calculation is given in some detail.
Equivalent Theories and Changing Hamiltonian Observables in General Relativity
NASA Astrophysics Data System (ADS)
Pitts, J. Brian
2018-05-01
Change and local spatial variation are missing in Hamiltonian general relativity according to the most common definition of observables as having 0 Poisson bracket with all first-class constraints. But other definitions of observables have been proposed. In pursuit of Hamiltonian-Lagrangian equivalence, Pons, Salisbury and Sundermeyer use the Anderson-Bergmann-Castellani gauge generator G, a tuned sum of first-class constraints. Kuchař waived the 0 Poisson bracket condition for the Hamiltonian constraint to achieve changing observables. A systematic combination of the two reforms might use the gauge generator but permit non-zero Lie derivative Poisson brackets for the external gauge symmetry of General Relativity. Fortunately one can test definitions of observables by calculation using two formulations of a theory, one without gauge freedom and one with gauge freedom. The formulations, being empirically equivalent, must have equivalent observables. For de Broglie-Proca non-gauge massive electromagnetism, all constraints are second-class, so everything is observable. Demanding equivalent observables from gauge Stueckelberg-Utiyama electromagnetism, one finds that the usual definition fails while the Pons-Salisbury-Sundermeyer definition with G succeeds. This definition does not readily yield change in GR, however. Should GR's external gauge freedom of general relativity share with internal gauge symmetries the 0 Poisson bracket (invariance), or is covariance (a transformation rule) sufficient? A graviton mass breaks the gauge symmetry (general covariance), but it can be restored by parametrization with clock fields. By requiring equivalent observables, one can test whether observables should have 0 or the Lie derivative as the Poisson bracket with the gauge generator G. The latter definition is vindicated by calculation. While this conclusion has been reported previously, here the calculation is given in some detail.
Precision lattice test of the gauge/gravity duality at large N
Berkowitz, Evan; Rinaldi, Enrico; Hanada, Masanori; ...
2016-11-03
We perform a systematic, large-scale lattice simulation of D0-brane quantum mechanics. The large-N and continuum limits of the gauge theory are taken for the first time at various temperatures 0.4≤T≤1.0. As a way to test the gauge/gravity duality conjecture we compute the internal energy of the black hole as a function of the temperature directly from the gauge theory. We obtain a leading behavior that is compatible with the supergravity result E/N 2=7.41T 14/5: the coefficient is estimated to be 7.4±0.5 when the exponent is fixed and stringy corrections are included. This is the first confirmation of the supergravity predictionmore » for the internal energy of a black hole at finite temperature coming directly from the dual gauge theory. As a result, we also constrain stringy corrections to the internal energy.« less
Evaluation results of the 700 deg C Chinese strain gauges. [for gas turbine engine
NASA Technical Reports Server (NTRS)
Hobart, H. F.
1985-01-01
Gauges fabricated from specially developed Fe-Cr-Al-V-Ti-Y alloy wire in the Republic of China were evaluated for use in static strain measurement of hot gas turbine engines. Gauge factor variation with temperature, apparent strain, and drift were included. Results of gauge factor versus temperature tests show gauge factor decreasing with increasing temperature. The average slope is -3-1/2 percent/100 K, with an uncertainty band of + or - 8 percent. Values of room temperature gauge factor for the Chinese and Kanthal A-1 gauges averaged 2.73 and 2.12, respectively. The room temperature gauge factor of the Chinese gauges was specified to be 2.62. The apparent strain data for both the Chinese alloy and Kanthal A-1 showed large cycle to cycle nonrepeatability. All apparent strain curves had a similar S-shape, first going negative and then rising to positive value with increasing temperatures. The mean curve for the Chinese gauges between room temperature and 100 K had a total apparent strain of 1500 microstrain. The equivalent value for Kanthal A-1 was about 9000 microstrain. Drift tests at 950 K for 50 hr show an average drift rate of about -9 microstrain/hr. Short-term (1 hr) rates are higher, averaging about -40 microstrain for the first hour. In the temperature range 700 to 870 K, however, short-term drift rates can be as high as 1700 microstrain for the first hour. Therefore, static strain measurements in this temperature range should be avoided.
The shock and spall response of AA 7010-T7651
NASA Astrophysics Data System (ADS)
Hazell, Paul; Appleby-Thomas, Gareth; Wood, David; Painter, Jonathan
2013-06-01
Aluminium alloys are used extensively in armour. Their use as armour materials is primarily due to their relatively low densities and their high strength characteristics. The aerospace-grade 7000-series alloy Al7010-T7651 is one possible contender for armour. In this study a series of plate-impact experiments were undertaken to investigate the behaviour of this alloy under shock. Manganin stress gauges and a heterodyne velocimeter system were used to interrogate both strength and dynamic tensile failure (spall) respectively; with microscopic analysis of recovered samples providing insight into the development of failure in the material.
Calibration of the Wedge Prism
Charles B. Briscoe
1957-01-01
Since the introduction of plotless cruising in this country by Grosenbaugh and the later suggestion of using a wedge prism as an angle gauge by Bruce this method of determining basal area has been widely adopted in the South. One of the factors contributing to the occasionally unsatisfactory results obtained is failure to calibrate the prism used. As noted by Bruce the...
Understanding the etiology of the posteromedial tibial stress fracture.
Milgrom, Charles; Burr, David B; Finestone, Aharon S; Voloshin, Arkady
2015-09-01
Previous human in vivo tibial strain measurements from surface strain gauges during vigorous activities were found to be below the threshold value of repetitive cyclical loading at 2500 microstrain in tension necessary to reduce the fatigue life of bone, based on ex vivo studies. Therefore it has been hypothesized that an intermediate bone remodeling response might play a role in the development of tibial stress fractures. In young adults tibial stress fractures are usually oblique, suggesting that they are the result of failure under shear strain. Strains were measured using surface mounted unstacked 45° rosette strain gauges on the posterior aspect of the flat medial cortex just below the tibial midshaft, in a 48year old male subject while performing vertical jumps, staircase jumps and running up and down stadium stairs. Shear strains approaching 5000 microstrain were recorded during stair jumping and vertical standing jumps. Shear strains above 1250 microstrain were recorded during runs up and down stadium steps. Based on predictions from ex vivo studies, stair and vertical jumping tibial shear strain in the test subject was high enough to potentially produce tibial stress fracture subsequent to repetitive cyclic loading without necessarily requiring an intermediate remodeling response to microdamage. Copyright © 2015 Elsevier Inc. All rights reserved.
A High Precision $3.50 Open Source 3D Printed Rain Gauge Calibrator
NASA Astrophysics Data System (ADS)
Lopez Alcala, J. M.; Udell, C.; Selker, J. S.
2017-12-01
Currently available rain gauge calibrators tend to be designed for specific rain gauges, are expensive, employ low-precision water reservoirs, and do not offer the flexibility needed to test the ever more popular small-aperture rain gauges. The objective of this project was to develop and validate a freely downloadable, open-source, 3D printed rain gauge calibrator that can be adjusted for a wide range of gauges. The proposed calibrator provides for applying low, medium, and high intensity flow, and allows the user to modify the design to conform to unique system specifications based on parametric design, which may be modified and printed using CAD software. To overcome the fact that different 3D printers yield different print qualities, we devised a simple post-printing step that controlled critical dimensions to assure robust performance. Specifically, the three orifices of the calibrator are drilled to reach the three target flow rates. Laboratory tests showed that flow rates were consistent between prints, and between trials of each part, while the total applied water was precisely controlled by the use of a volumetric flask as the reservoir.
Objective measurement of postocclusion surge during phacoemulsification in human eye-bank eyes.
Georgescu, Dan; Payne, Marielle; Olson, Randall J
2007-03-01
To objectively compare the postocclusion vacuum surge among different phacoemulsification machines and devices. Experimental study. Infiniti, Legacy, Millennium, and Sovereign were tested in an eye-bank eye. All the machines were tested with 20-gauge non-ABS tips, 430 mm Hg vacuum pressure, 24 ml/minute aspiration rate, peristaltic pump, and 75 cm bottle height. In addition, Infiniti and Legacy were also tested with 20-gauge bypass tips (ABS), 125 cm bottle height, and 40 ml/minute flow rate. We also tested 19-gauge tips with Infiniti and Sovereign and the venturi pump for Millennium. Significant differences were found between all the machines tested with Millennium peristaltic generating the least and Millennium Venturi the most surge. ABS tips significantly decreased the surge for Legacy but not for Infiniti. Cruise Control (CC) had a significant effect on Sovereign but not on Millennium. Increasing the bottle height decreased surge while increasing the flow increased surge for both Infiniti and Legacy. The 19-gauge tips increased surge for both Infiniti and Sovereign. Surge varied over a range of 40 microm to more than 2 mm. ABS and CC decrease surge, especially when the machine is not functioning near the limits of surge prevention. Certain parameters, such as a 19-gauge tip and high flow, dramatically increased surge, whereas elevating the bottle ameliorates it. Understanding the impact of all these features will help in minimizing the problem.
Quantification of precipitation measurement discontinuity induced by wind shields on national gauges
Yang, Daqing; Goodison, Barry E.; Metcalfe, John R.; Louie, Paul; Leavesley, George H.; Emerson, Douglas G.; Hanson, Clayton L.; Golubev, Valentin S.; Elomaa, Esko; Gunther, Thilo; Pangburn, Timothy; Kang, Ersi; Milkovic, Janja
1999-01-01
Various combinations of wind shields and national precipitation gauges commonly used in countries of the northern hemisphere have been studied in this paper, using the combined intercomparison data collected at 14 sites during the World Meteorological Organization's (WMO) Solid Precipitation Measurement Intercomparison Project. The results show that wind shields improve gauge catch of precipitation, particularly for snow. Shielded gauges, on average, measure 20–70% more snow than unshielded gauges. Without a doubt, the use of wind shields on precipitation gauges has introduced a significant discontinuity into precipitation records, particularly in cold and windy regions. This discontinuity is not constant and it varies with wind speed, temperature, and precipitation type. Adjustment for this discontinuity is necessary to obtain homogenous precipitation data for climate change and hydrological studies. The relation of the relative catch ratio (RCR, ratio of measurements of shielded gauge to unshielded gauge) versus wind speed and temperature has been developed for Alter and Tretyakov wind shields. Strong linear relations between measurements of shielded gauge and unshielded gauge have also been found for different precipitation types. The linear relation does not fully take into account the varying effect of wind and temperature on gauge catch. Overadjustment by the linear relation may occur at those sites with lower wind speeds, and underadjustment may occur at those stations with higher wind speeds. The RCR technique is anticipated to be more applicable in a wide range of climate conditions. The RCR technique and the linear relation have been tested at selected WMO intercomparison stations, and reasonable agreement between the adjusted amounts and the shielded gauge measurements was obtained at most of the sites. Test application of the developed methodologies to a regional or national network is therefore recommended to further evaluate their applicability in different climate conditions. Significant increase of precipitation is expected due to the adjustment particularly in high latitudes and other cold regions. This will have a meaningful impact on climate variation and change analyses.
NASA Technical Reports Server (NTRS)
VanDresar, Neil T.; Zimmerli, Gregory A.
2014-01-01
Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.
Performance of the Multi-Radar Multi-Sensor System over the Lower Colorado River, Texas
NASA Astrophysics Data System (ADS)
Bayabil, H. K.; Sharif, H. O.; Fares, A.; Awal, R.; Risch, E.
2017-12-01
Recently observed increases in intensities and frequencies of climate extremes (e.g., floods, dam failure, and overtopping of river banks) necessitate the development of effective disaster prevention and mitigation strategies. Hydrologic models can be useful tools in predicting such events at different spatial and temporal scales. However, accuracy and prediction capability of such models are often constrained by the availability of high-quality representative hydro-meteorological data (e.g., precipitation) that are required to calibrate and validate such models. Improved technologies and products such as the Multi-Radar Multi-Sensor (MRMS) system that allows gathering and transmission of vast meteorological data have been developed to provide such data needs. While the MRMS data are available with high spatial and temporal resolutions (1 km and 15 min, respectively), its accuracy in estimating precipitation is yet to be fully investigated. Therefore, the main objective of this study is to evaluate the performance of the MRMS system in effectively capturing precipitation over the Lower Colorado River, Texas using observations from a dense rain gauge network. In addition, effects of spatial and temporal aggregation scales on the performance of the MRMS system were evaluated. Point scale comparisons were made at 215 gauging locations using rain gauges and MRMS data from May 2015. Moreover, the effects of temporal and spatial data aggregation scales (30, 45, 60, 75, 90, 105, and 120 min) and (4 to 50 km), respectively on the performance of the MRMS system were tested. Overall, the MRMS system (at 15 min temporal resolution) captured precipitation reasonably well, with an average R2 value of 0.65 and RMSE of 0.5 mm. In addition, spatial and temporal data aggregations resulted in increases in R2 values. However, reduction in RMSE was achieved only with an increase in spatial aggregations.
Ward identity and basis tensor gauge theory at one loop
NASA Astrophysics Data System (ADS)
Chung, Daniel J. H.
2018-06-01
Basis tensor gauge theory (BTGT) is a reformulation of ordinary gauge theory that is an analog of the vierbein formulation of gravity and is related to the Wilson line formulation. To match ordinary gauge theories coupled to matter, the BTGT formalism requires a continuous symmetry that we call the BTGT symmetry in addition to the ordinary gauge symmetry. After classically interpreting the BTGT symmetry, we construct using the BTGT formalism the Ward identities associated with the BTGT symmetry and the ordinary gauge symmetry. For a way of testing the quantum stability and the consistency of the Ward identities with a known regularization method, we explicitly renormalize the scalar QED at one loop using dimensional regularization using the BTGT formalism.
Pile Model Tests Using Strain Gauge Technology
NASA Astrophysics Data System (ADS)
Krasiński, Adam; Kusio, Tomasz
2015-09-01
Ordinary pile bearing capacity tests are usually carried out to determine the relationship between load and displacement of pile head. The measurement system required in such tests consists of force transducer and three or four displacement gauges. The whole system is installed at the pile head above the ground level. This approach, however, does not give us complete information about the pile-soil interaction. We can only determine the total bearing capacity of the pile, without the knowledge of its distribution into the shaft and base resistances. Much more information can be obtained by carrying out a test of instrumented pile equipped with a system for measuring the distribution of axial force along its core. In the case of pile model tests the use of such measurement is difficult due to small scale of the model. To find a suitable solution for axial force measurement, which could be applied to small scale model piles, we had to take into account the following requirements: - a linear and stable relationship between measured and physical values, - the force measurement accuracy of about 0.1 kN, - the range of measured forces up to 30 kN, - resistance of measuring gauges against aggressive counteraction of concrete mortar and against moisture, - insensitivity to pile bending, - economical factor. These requirements can be fulfilled by strain gauge sensors if an appropriate methodology is used for test preparation (Hoffmann [1]). In this paper, we focus on some aspects of the application of strain gauge sensors for model pile tests. The efficiency of the method is proved on the examples of static load tests carried out on SDP model piles acting as single piles and in a group.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Preconditioning cycle means any cycle that includes a fill, circulation, and drain to ensure that the water lines... truncated normal cycle without a test load if the dishwasher does not heat water in the normal cycle. 2.6.2... water temperatures encountered in the test cycle. 3.4 Water pressure gauge. The water pressure gauge...
NASA Astrophysics Data System (ADS)
Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.
2013-09-01
In this paper, we reveal characteristics of static and dynamic distributed strain measurement using a long-gauge fiber Bragg grating (FBG) and a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme. The DTR3 scheme has capability of detecting distributed strain using the long-gauge FBG with 50-cm spatial resolution. Additionally, dynamic strain measurement can be achieved using this technique in 100-Hz sampling rate. We evaluated strain sensing characteristics of the long-gauge FBG attached on 2.5-m aluminum bar by a four-point bending equipment. Experimental results showed that the DTR3 using the long-gauge FBG could detect distributed strain in static tests and resonance frequency of structure in free vibration tests. As a result, it is suggested that the DTR3 scheme using the longgauge FBG is attractive to structural health monitoring (SHM) as dynamic deformation detection of a few and tensmeters structure such as the airplane wing and the helicopter blade.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... approved to gauge and accredited to test petroleum and petroleum products, organic chemicals and vegetable... approved to gauge and accredited to test petroleum and petroleum products, organic chemicals and vegetable... Chemical and Petrochemical Inspections, LP, as a Commercial Gauger and Laboratory AGENCY: U.S. Customs and...
Application of Expert Systems for Diagnosing Equipment Failures at Central Energy Plants
1993-12-01
package to create a "friendly" user interface. Real time data can be displayed in the familiar form of digital or analog gauges. Automated data...District ATTN: CETEC-tM-T ATTN: Libary (40) ATTN: CECC-R 22060 US Military Academy 1 096 ATTN: Egr Strategic Stwiliet Cr ATTN: MAE.-A US Anry EnVr
77 FR 59673 - Petitions for Modification of Application of Existing Mandatory Safety Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
... will examine valves and nozzles for damage malfunction and close the door fully before opening the air... failure pressure of 1,300 pounds per square inch, capped at the base, and actuated by an electrically controlled ball valve at the top. 6. Air nozzles must not exceed 30 pounds per square inch gauge. 7. The...
A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals
NASA Astrophysics Data System (ADS)
Benzing, J. T.; He, M.; Vivek, A.; Taber, G. A.; Mills, M. J.; Daehn, G. S.
2017-03-01
Microsample tensile testing was conducted to evaluate the quality of impact welds created by vaporizing foil actuator welding. Tensile test samples with a gauge length of 0.6 mm were electro-discharge machined out of welds created between 1-mm-thick aluminum alloy type 6061 (AA6061) sheets and 6-mm-thick copper (Cu110) plates. Aluminum sheets were used as flyers, while copper plates acted as targets. Flyer sheets in T6 as well as T4 temper conditions were utilized to create welds. Some of the welds made with T4 temper flyers were heat treated to a T6 temper. It was found that the welds made with T4 temper flyers were slightly stronger (max. of 270 MPa) than those produced with T6 temper flyers. Generally, failure propagated in a brittle manner across the weld interface; however, elemental mapping reveals material transfer on either member of the welded system. This work proves the feasibility to apply microsample tensile testing to assess impact welding, even when conducted with flyer sheets of 1 mm or less, and provides insight that is complementary to other test methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helsen, Jan; Guo, Yi; Keller, Jonathan
This work investigates the behaviour of the high speed stage of a wind turbine gearbox during a transient grid loss event. Dynamometer testing on a full scale wind turbine nacelle is used. A combination of external and internal gearbox measurements is analysed. Particular focus is on the characterization of the high speed shaft tapered roller bearing slip behaviour. This slipping behaviour is linked to dynamic events by many researchers and described as potential bearing failure initiator. However only limited full scale dynamic testing is documented. Strain gauge bridges in grooves along the circumference of the outer ring are used tomore » characterize the bearing behaviour in detail. It is shown that during the transient event the high speed shaft experiences a combined torsional and bending deformation. These unfavourable loading conditions induce roller slip in the bearings during the torque reversals indicating the potential of the applied load case to go beyond the preload of the tapered roller bearing.« less
Modeling, Production, and Testing of an Echogenic Needle for Ultrasound-Guided Nerve Blocks.
Bigeleisen, Paul E; Hess, Aaron; Zhu, Richard; Krediet, Annelot
2016-06-01
We have designed, produced, and tested an echogenic needle based on a sawtooth pattern where the height of the tooth was 1.25 times the wavelength of the ultrasound transducer. A numeric solution to the time-independent wave equation (Helmholtz equation) was used to create a model of backscattering from a needle. A 21-gauge stainless steel prototype was manufactured and tested in a water bath. Backscattering from the needle was compared to theoretical predications from our model. Based on these results, an 18-gauge prototype needle was fabricated from stainless steel and tested in a pig cadaver. This needle was compared to a commercial 18-gauge echogenic needle (Pajunk Medical Systems, Tucker, GA) by measuring the brightness of the needle relative to the background of sonograms of a needle in a pig cadaver. The backscattering from the 21-gauge prototype needle reproduced the qualitative predictions of our model. At 30° and 45° of insonation, our prototype performed equivalently to the Pajunk needle. At 60°, our prototype was significantly brighter than the Pajunk needle (P = .017). In conclusion, we chose a model for the design of an echogenic needle and modeled it on the basis of a solution to the Helmholtz equation. A prototype needle was tested in a water bath and compared to the model prediction. After verification of our model, we designed an 18-gauge needle, which performed better than an existing echogenic needle (Pajunk) at 60° of insonation. Our needle will require further testing in human trials. © 2016 by the American Institute of Ultrasound in Medicine.
Li, Uei-Ming; Shin, Chow-Shing; Lan, Wan-Hong; Lin, Chun-Pin
2006-06-01
The purpose of this study was to investigate the application of nondestructive testing in cyclic fatigue evaluation of endodontic ProFile nickel-titanium (NiTi) rotary instruments. As-received ProFile instruments were made to rotate freely in sloped metal blocks by a contra-angle handpiece mounted on a testing machine. Rotation was interrupted periodically, and the instrument removed and engaged onto a device to monitor its stiffness by using two strain gauges in four different directions. This monitoring method has the potential to be developed into a convenient, nondestructive turnkey system that allows in situ assessment of the integrity of NiTi instruments in the clinic. Upon fracture, which was indicated by a change in instrument stiffness, the fractured surface would be examined under a scanning electron microscope. Microscopic evaluation indicated a small area of fatigue fracture with a large area of final ductile fracture, whereby the latter was the major cyclic failure mode. Based on the results of this study, we concluded that a potential nondestructive integrity assessment method for NiTi rotary instruments was developed.
Waner, T; Naveh, A; Wudovsky, I; Carmichael, L E
1996-10-01
Interference caused by maternal antibodies is considered a major cause of canine parvovirus (CPV) vaccination failure. In this study, an immunoblot clinic-based enzyme-linked immunosorbent assay (ELISA) method was used to detect CPV antibodies in sera of pregnant bitches and their offspring to study the response of pups to vaccination. With a easily accessible procedure for CPV antibody determination, the veterinarian should be able to gauge the response of pups after vaccination. The validity of the technique was tested in parallel against the standard hemagglutination inhibition (HI) test. Results of the ELISA were correlated with those of the standard HI method for quantification of CPV antibodies. With the ELISA, successfully immunized pups were identified, allowing for a more reliable and cost-effective program of vaccination. This simple clinic-based test could be used for the assessment of vaccination status of pups during the critical phase of 6 to about 16 weeks of age. This study is the first in which vaccination response to CPV in pups was followed, using a clinic-based ELISA for CPV antibody monitoring.
Distributed fiber optic strain sensing to detect artificial pitting corrosion in stirrups
NASA Astrophysics Data System (ADS)
Zhang, Jiachen; Kancharla, Vinutha; Hoult, Neil A.
2017-04-01
Pitting corrosion is difficult to identify through visual inspection and can lead to sudden structural failures. As such, an experimental study was undertaken to investigate whether distributed fiber optic strain sensors are capable of detecting the locations and strain changes associated with stirrup corrosion in reinforced concrete beams. In comparison to conventional strain gauges, this type of sensor can measure the strain response along the entire length of the fiber optic cable. Two specimens were tested: a control and a deteriorated beam. The deteriorated beam was artificially corroded by reducing the cross sectional area of the closed stirrups by 50% on both sides of the stirrup at the mid-height. This level of area reduction represents severe pitting corrosion. The beams were instrumented with nylon coated fiber optic sensors to measure the distributed strains, and then tested to failure under three point bending. The load deflection behavior of the two specimens was compared to assess the impact of the artificial pitting corrosion on the capacity. Digital Image Correlation was used to locate the extent and trajectory of the crack paths. It was found that the pitting corrosion had no impact on capacity or stiffness. Also, in this investigation the fiber optic sensing system failed to detect the location and strain changes due to pitting corrosion since the shear cracks did not intersect with the pitting location.
Heinz, Stefan; Balle, Frank; Wagner, Guntram; Eifler, Dietmar
2013-12-01
Accelerated fatigue tests with Ti6Al4V were carried out using a 20kHz ultrasonic testing facility to investigate the cyclic deformation behavior in the Very High Cycle Fatigue (VHCF) regime in detail. Beside parameters like the ultrasonic generator power and the displacement of the specimen, a 3D laser scanning vibrometer was used to characterize the oscillation and fatigue behavior of the Ti-alloy. The course of the S-N(f) curve at the stress ratio R=-1 shows a significant decrease of the bearable stress amplitude and a change from surface to subsurface failures in the VHCF regime for more than 10⁷ cycles. Microscopic investigations of the distribution of the α- and β-phase of Ti6Al4V indicate that inhomogeneities in the phase distribution are reasons for the internal crack initiation. High resolution vibrometry was used to visualize the eigenmode of the designed VHCF-specimen at 20 kHz in the initial state and to indicate local changes in the eigenmodes as a result of progressing fatigue damage. Non-contact strain measurements were realized and used to determine the stress amplitude. The determined stress amplitudes were correlated with strain gauge measurements and finite element analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-01-01
... water heating to above 120 °F in at least one wash phase of the normal cycle. 2.Testing conditions: 2... dishwasher does not heat water in the normal cycle. 2.6.2Non-soil-sensing dishwashers to be tested at a... cycle. 3.4Water pressure gauge. The water pressure gauge must have a resolution of one pound per square...
In vitro evaluation of square and surgeon's knots in large gauge suture.
Gillen, Alex M; Munsterman, Amelia S; Farag, Ramsis; Coleridge, Matthew O D; Hanson, R Reid
2017-02-01
To investigate the strength and size of surgeon's and square knots for starting and ending continuous suture lines using large gauge suture. In vitro mechanical study. Knotted suture. Surgeon's and square knots were tested using 2 and 3 USP polyglactin 910 and 2 USP polydioxanone under linear tension on a universal testing machine. Failure mode and knot holding capacity (KHC) were recorded, and relative knot security (RKS) was calculated as a percentage of KHC. Comparisons were made between number of throws, suture size, suture type, and knot types. Knot volume and weight were assessed by a digital micrometer and balance, respectively. There were no significant differences in KHC (P = .295), RKS (P = .307), volume (P = .128), or weight (P = .310) between square and surgeon's knots at the start or end of suture lines with the same number of throws and suture type. A minimum of 6 throws were required for start knots and 7 throws at end knots to prevent unraveling. Knots tied with 3 polyglactin 910 were strongest (P < .001) and 2 polyglactin 910 produced knots with higher KHC and RKS than 2 polydioxanone (P < .001). No consistent differences were detected between knots types tied with the same suture material; however, number of throws affected KHC and RKS up to 6 throws in start or 7 throws in end knots. The configuration of square and surgeon's knots performed at the end of a continuous line alters their KHC, supporting the use of additional throws for knot security. © 2017 The American College of Veterinary Surgeons.
Earthquake and submarine landslide tsunamis: how can we tell the difference? (Invited)
NASA Astrophysics Data System (ADS)
Tappin, D. R.; Grilli, S. T.; Harris, J.; Geller, R. J.; Masterlark, T.; Kirby, J. T.; Ma, G.; Shi, F.
2013-12-01
Several major recent events have shown the tsunami hazard from submarine mass failures (SMF), i.e., submarine landslides. In 1992 a small earthquake triggered landslide generated a tsunami over 25 meters high on Flores Island. In 1998 another small, earthquake-triggered, sediment slump-generated tsunami up to 15 meters high devastated the local coast of Papua New Guinea killing 2,200 people. It was this event that led to the recognition of the importance of marine geophysical data in mapping the architecture of seabed sediment failures that could be then used in modeling and validating the tsunami generating mechanism. Seabed mapping of the 2004 Indian Ocean earthquake rupture zone demonstrated, however, that large, if not great, earthquakes do not necessarily cause major seabed failures, but that along some convergent margins frequent earthquakes result in smaller sediment failures that are not tsunamigenic. Older events, such as Messina, 1908, Makran, 1945, Alaska, 1946, and Java, 2006, all have the characteristics of SMF tsunamis, but for these a SMF source has not been proven. When the 2011 tsunami struck Japan, it was generally assumed that it was directly generated by the earthquake. The earthquake has some unusual characteristics, such as a shallow rupture that is somewhat slow, but is not a 'tsunami earthquake.' A number of simulations of the tsunami based on an earthquake source have been published, but in general the best results are obtained by adjusting fault rupture models with tsunami wave gauge or other data so, to the extent that they can model the recorded tsunami data, this demonstrates self-consistency rather than validation. Here we consider some of the existing source models of the 2011 Japan event and present new tsunami simulations based on a combination of an earthquake source and an SMF mapped from offshore data. We show that the multi-source tsunami agrees well with available tide gauge data and field observations and the wave data from offshore buoys, and that the SMF generated the large runups in the Sanriku region (northern Tohoku). Our new results for the 2011 Tohoku event suggest that care is required in using tsunami wave and tide gauge data to both model and validate earthquake tsunami sources. They also suggest a potential pitfall in the use of tsunami waveform inversion from tide gauges and buoys to estimate the size and spatial characteristics of earthquake rupture. If the tsunami source has a significant SMF component such studies may overestimate earthquake magnitude. Our seabed mapping identifies other large SMFs off Sanriku that have the potential to generate significant tsunamis and which should be considered in future analyses of the tsunami hazard in Japan. The identification of two major SMF-generated tsunamis (PNG and Tohoku), especially one associated with a M9 earthquake, is important in guiding future efforts at forecasting and mitigating the tsunami hazard from large megathrust plus SMF events both in Japan and globally.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-06
... Services, LLC, has been approved to gauge and accredited to test petroleum and petroleum products, organic chemicals and vegetable oils for customs purposes for the next three years as of February 20, 2013. DATES... 07036, has been approved to gauge and accredited to test petroleum and petroleum products, organic...
78 FR 6828 - Accreditation and Approval of Saybolt LP, as a Commercial Gauger and Laboratory
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-31
... been approved to gauge and accredited to test petroleum and petroleum products, organic chemicals and... 90810, has been approved to gauge and accredited to test petroleum and petroleum products, organic chemicals and vegetable oils for customs purposes, in accordance with the provisions of 19 CFR 151.12 and 19...
Perturbative quantum gravity as a double copy of gauge theory.
Bern, Zvi; Carrasco, John Joseph M; Johansson, Henrik
2010-08-06
In a previous paper we observed that (classical) tree-level gauge-theory amplitudes can be rearranged to display a duality between color and kinematics. Once this is imposed, gravity amplitudes are obtained using two copies of gauge-theory diagram numerators. Here we conjecture that this duality persists to all quantum loop orders and can thus be used to obtain multiloop gravity amplitudes easily from gauge-theory ones. As a nontrivial test, we show that the three-loop four-point amplitude of N=4 super-Yang-Mills theory can be arranged into a form satisfying the duality, and by taking double copies of the diagram numerators we obtain the corresponding amplitude of N=8 supergravity. We also remark on a nonsupersymmetric two-loop test based on pure Yang-Mills theory resulting in gravity coupled to an antisymmetric tensor and dilaton.
Miniature high temperature plug-type heat flux gauges
NASA Technical Reports Server (NTRS)
Liebert, Curt H.
1992-01-01
The objective is to describe continuing efforts to develop methods for measuring surface heat flux, gauge active surface temperature, and heat transfer coefficient quantities. The methodology involves inventing a procedure for fabricating improved plug-type heat flux gauges and also for formulating inverse heat conduction models and calculation procedures. These models and procedures are required for making indirect measurements of these quantities from direct temperature measurements at gauge interior locations. Measurements of these quantities were made in a turbine blade thermal cycling tester (TBT) located at MSFC. The TBT partially simulates the turbopump turbine environment in the Space Shuttle Main Engine. After the TBT test, experiments were performed in an arc lamp to analyze gauge quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helsen, Jan; Guillaume, Patrick; Guo, Yi
Bearing behavior is an important factor for wind turbine drivetrain reliability. Extreme loads and dynamic excitations pose challenges to the bearing design and therefore its performance. Excessive skidding of the bearing rollers should be avoided because it can cause scuffing failures. Excitations coming from wind and the electricity grid can subject the drivetrain to fluctuating torque and nontorque loads. Wind-induced excitations have been investigated predominantly in literature. However, modern wind turbines are subjected more and more to grid-induced loads because of stricter electricity grid regulations. For example, during fault-ride-through events, turbines are required to stay connected for a longer periodmore » of time during the grid failure. This work investigates the influence of electrically induced excitations on the skidding behaviour of the tapered roller bearings on the high-speed stage of a wind turbine gearbox. This skidding behaviour during dynamic events is described as a potential bearing failure initiator by many researchers; however, only limited full-scale dynamic testing is documented. Therefore, a dedicated gridloss-type event is defined in the paper and conducted in a dynamometer test on a full-scale wind turbine nacelle. During the event, a complete electricity grid failure is simulated while the turbine is at rated speed and predefined torque levels. Particular focus is on the characterization of the high-speed shaft tapered roller bearing slip behavior. Strain-gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing load zone in detail. It is shown that during the torque reversals of the transient event, roller slip can be induced. This indicates the potential of the applied load case to go beyond the preload of the tapered roller bearing. Furthermore, the relation between the applied torque and skidding level is studied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helsen, Jan; Guillaume, Patrick; Guo, Yi
Bearing behavior is an important factor for wind turbine drivetrain reliability. Extreme loads and dynamic excitations pose challenges to the bearing design and therefore its performance. Excessive skidding of the bearing rollers should be avoided because it can cause scuffing failures. Excitations coming from wind and the electricity grid can subject the drivetrain to fluctuating torque and nontorque loads. Wind-induced excitations have been investigated predominantly in literature. However, modern wind turbines are subjected more and more to grid-induced loads because of stricter electricity grid regulations. For example, during fault-ride-through events, turbines are required to stay connected for a longer periodmore » of time during the grid failure. This work investigates the influence of electrically induced excitations on the skidding behaviour of the tapered roller bearings on the high-speed stage of a wind turbine gearbox. This skidding behaviour during dynamic events is described as a potential bearing failure initiator by many researchers; however, only limited full-scale dynamic testing is documented. Therefore, a dedicated gridloss-type event is defined in the paper and conducted in a dynamometer test on a full-scale wind turbine nacelle. During the event, a complete electricity grid failure is simulated while the turbine is at rated speed and predefined torque levels. Particular focus is on the characterization of the high-speed shaft tapered roller bearing slip behavior. Strain-gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing load zone in detail. It is shown that during the torque reversals of the transient event, roller slip can be induced. This indicates the potential of the applied load case to go beyond the preload of the tapered roller bearing. Furthermore, the relation between the applied torque and skidding level is studied.« less
A Wireless Fatigue Monitoring System Utilizing a Bio-Inspired Tree Ring Data Tracking Technique
Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping
2014-01-01
Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc. PMID:24603635
A microfabricated strain gauge array on polymer substrate for tactile neuroprostheses in rats
NASA Astrophysics Data System (ADS)
Beygi, M.; Mutlu, S.; Güçlü, B.
2016-08-01
In this study, we present the design, microfabrication and characterization of a tactile sensor system which can be used for sensory neuroprostheses in rats. The sensor system consists of an array of 2 × 7 cells, each of which has a series combination of four strain gauges. Each group of four strain gauges is placed around a square membrane with a size of 2.5 × 2.5 mm2. Unlike most common tactile sensors based on silicon substrates, we used 3D-printed polylactic acid as a substrate, because it is not brittle, and under local extremes, it would prevent the catastrophic failure of all cells. The strain gauges were fabricated by depositing and patterning a 50 nm thick aluminum (Al) film on a polyimide sheet with a thickness of 0.125 mm. Polydimethylsiloxane (PDMS) elastomer was bonded on the top surface of the PI membrane. The PDMS layer was prepared in two different thicknesses, 1.2 and 1.7 mm, to investigate its effect on the static response of the sensor. The sensitivity and the maximum allowable force, corresponding to the maximum deformation of 0.9 mm at the center of each cell, changed based on the thickness of the PDMS layer. Sensor cells operated linearly up to 3 N with an average sensitivity of 200 mΩ N-1 (0.7 Ω mm-1) for 1.2 mm thick PDMS. These values changed to 4 N and 70 mΩ N-1 (0.3 Ω mm-1), respectively, for 1.7 mm thick PDMS. The nonlinearity was less than 3%. The cells had low cross-talk (~5 mΩ N-1 and 0.02 Ω mm-1) relative to the average sensitivity. Additionally, the dynamic response of the sensor was characterized at several frequencies by using a vibrotactile stimulation system previously designed for psychophysics experiments. The sensor was also tested inside the rat conditioning chamber to demonstrate the relevant signals in a tactile neuroprosthesis.
Crashworthiness Design of the Shear Bolts for Light Collision Safety Devices
NASA Astrophysics Data System (ADS)
Kim, Jin Sung; Huh, Hoon; Kwon, Tae Soo
This paper introduces the jig set for the crash test and the crash test results of shear bolts which are designed to fail at train crash conditions. The tension and shear bolts are attached to Light Collision Safety Devices(LCSD) as a mechanical fuse when tension and shear bolts reach their failure load designed. The kinetic energy due to the crash is absorbed by the secondary energy absorbing device after LCSD are detached from the main body by the fracture of shear bolts. A single shear bolt was designed to fail at the load of 250 kN. The jig set designed to convert a compressive loading to a shear loading was installed to the high speed crash tester for dynamic shear tests. Two strain gauges were attached at the parallel section of the jig set to measure the load responses acting on the shear bolts. Crash tests were performed with a carrier whose mass was 250 kg and the initial speed of the carrier was 9 m/sec. From the quasi-static and dynamic experiments as well as the numerical analysis, the capacity of the shear bolts were accurately predicted for the crashworthiness design.
NASA Astrophysics Data System (ADS)
Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.
2014-05-01
In this paper, we describe characteristics of distributed strain sensing based on a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme with a long-gauge Fiber Bragg Grating (FBG), which is attractive to dynamic structural deformation monitoring such as a helicopter blade and an airplane wing. The DTR3 interrogator using the longgauge FBG has capability of detecting distributed strain with 50 cm spatial resolution in 100 Hz sampling rate. We evaluated distributed strain sensing characteristics of the long-gauge FBG attached on a 5.5 m helicopter blade model in static tests and free vibration dynamic tests.
11. Exterior view, showing instrumentation and gauge panel at walkin ...
11. Exterior view, showing instrumentation and gauge panel at walk-in entry level (bottom) of Test Cell 7, Systems Integration Laboratory Building (T-28), looking west. Metal stair at left leads to working platform levels surrounding test cell. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Nishiyama, Michiko; Igawa, Hirotaka; Kasai, Tokio; Watanabe, Naoyuki
2015-02-10
In this paper, we propose a delayed transmission/reflection ratiometric reflectometry (DTR(3)) scheme using a long-gauge fiber Bragg grating (FBG), which can be used for dynamic structural deformation monitoring of structures of between a few to tens of meters in length, such as airplane wings and helicopter blades. FBG sensors used for multipoint sensing generally employ wavelength division multiplexing techniques utilizing several Bragg central wavelengths; by contrast, the DTR(3) interrogator uses a continuous pulse array based on a pseudorandom number code and a long-gauge FBG utilizing a single Bragg wavelength and composed of simple hardware devices. The DTR(3) scheme can detect distributed strain at a 50 cm spatial resolution using a long-gauge FBG with a 100 Hz sampling rate. We evaluated the strain sensing characteristics of the long-gauge FBG when attached to a 2.5 m aluminum bar and a 5.5 m helicopter blade model, determining these structure natural frequencies in free vibration tests and their distributed strain characteristics in static tests.
Progress in the measurement of SSME turbine heat flux with plug-type sensors
NASA Technical Reports Server (NTRS)
Liebert, Curt H.
1991-01-01
Data reduction was completed for tests of plug-type heat flux sensors (gauges) in a turbine blade thermal cycling tester (TBT) that is located at NASA/Marshall Space Flight Center, and a typical gauge is illustrated. This is the first time that heat flux has been measured in a Space Shuttle Main Engine (SSME) Turbopump Turbine environment. The development of the concept for the gauge was performed in a heat flux measurement facility at Lewis. In this facility, transient and steady state absorbed surface heat flux information was obtained from transient temperature measurements taken at points within the gauge. A schematic of the TBT is presented, and plots of the absorbed surface heat flux measured on the three blades tested in the TBT are presented. High quality heat flux values were measured on all three blades. The experiments demonstrated that reliable and durable gauges can be repeatedly fabricated into the airfoils. The experiment heat flux data are being used for verification of SSME analytical stress, boundary layer, and heat transfer design models. Other experimental results and future plans are also presented.
Forewarning of Debris flows using Intelligent Geophones
NASA Astrophysics Data System (ADS)
PK, I.; Ramesh, M. V.
2017-12-01
Landslides are one of the major catastrophic disasters that cause significant damage to human life and civil structures. Heavy rainfall on landslide prone areas can lead to most dangerous debris flow, where the materials such as mud, sand, soil, rock, water and air will move with greater velocity down the mountain. This sudden slope instability can lead to loss of human life and infrastructure. According to our knowledge, till now no one could identify the minutest factors that lead to initiation of the landslide. In this work, we aim to study the landslide phenomena deeply, using the landslide laboratory set up in our university. This unique mechanical simulator for landslide initiation is equipped with the capability to generate rainfall, seepage, etc., in the laboratory setup. Using this setup, we aim to study several landslide initiation scenarios generated by varying different parameters. The complete setup will be equipped with heterogeneous sensors such as rain gauge, moisture sensor, pore pressure sensor, strain gauges, tiltmeter, inclinometer, extensometer, and geophones. Our work will focus on the signals received from the intelligent geophone system for identifying the underground vibrations during a debris flow. Using the large amount of signals derived from the laboratory set up, we have performed detailed signal processing and data analysis to determine the fore warning signals captured by these heterogeneous sensors. Detailed study of these heterogeneous signals has provided the insights to forewarning the community based on the signals generated during the laboratory tests. In this work we will describe the details of the design, development, methodology, results, inferences and the suggestion for the next step to detect and forewarn the students. The response of intelligent geophone sensors at the time of failure, failure style and subsequent debris flow for heterogeneous soil layers were studied, thus helping in the development of fore warning systems for debris flows.
Nd:YAG laser welding of coated sheet steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, M.P.; Kerr, H.W.; Weckman, D.C.
1994-12-31
Coated sheet steels are used extensively in the automotive industry for the fabrication of automobile body components; however, their reduced weldability by the traditional welding processes has led to numerous studies into the use of alternate process such as laser welding. In this paper, we present a modified joint geometry which allows high quality lap welds of coated sheet steels to be made by laser welding processes. Hot-dipped galvanized sheet (16 gauge), with a 60 g/m zinc coating was used in this study. A groove was created in the top sheet of a specimen pair by pressing piano wires ofmore » various diameters into the sheet. The specimens were clamped together in a lag-joint configuration such that they were in contacted only along the grove projection. A parametric study was conducted using the variables of welding speed, laser mean power (685 W, 1000 W and 1350 W), and grove size. Weld quality and weld pool dimensions were assessed using metallurgical cross-sections and image analysis techniques. Acceptable quality seam welds were produced in the galvanized sheet steel with both grove sizes when using 1000 W and 1350 W laser mean powers and a range of welding speeds. Results of the shear-tensile tests showed that high loads to failure, with failure occurring in the parent material, were predominately found in welds produced at speeds over 1.2 m/min and when using the high mean laser powers: 1000 W and 1350 W. A modified lap joint geometry, in which a groove is pre-placed in the top sheet of the lap-joint configuration, has been developed which permits laser welding of coated sheet steels. Good quality seam welds have been produced in 16 gauge galvanized sheet steels at speeds up to 2.7 m/min using a 2 kW CW Nd:YAG laser operating at 1350 W laser mean power. Weld quality was not affected by changes in groove size.« less
Development of a skin friction gauge for use in an impulse facility
NASA Technical Reports Server (NTRS)
Kelly, G. M.; Simmons, J. M.; Paull, A.
1992-01-01
Tests of a prototype skin friction gauge at Mach 3.2 in a small free piston shock tunnel demonstrate the effectiveness of the design concept and the calibration against theoretical skin friction values in a simple flow. The gauge has a rise time of about 20 microsec, sufficiently short for most shock tunnel applications and approaching the rise times needed for expansion tube applications.
Stüker, Rafael Augusto; Teixeira, Eduardo Rolim; Beck, João Carlos Pinheiro; da Costa, Nilza Pereira
2008-01-01
Several authors still consider the mechanical problems of fracture and component loosening as the main causes of failure of implant-supported restorations. The purpose of this in vitro study was to compare the preload of three types of screw for transmucosal abutment attachment used in single implant-supported prosthesis through strain gauge and removal torque measurements. Three external hex fixtures were used, and each received a transmucosal abutment (Cera One®), which was fixed to the implant with its respective screw: Group A- gold screw, Group B- titanium screw and Group C- surface-treated titanium screw (Ti-Tite®). Ten screws of each type were attached applying a 30.07±0.28 Ncm torque force and maintained in position for 5 minutes. After this, the preload values were measured using strain gauges and a measurement cell. Gold screws presented higher preload values (131.72±8.98 N), followed by surface-treated titanium screws (97.78±4.68 N) and titanium screws (37.03±5.69 N). ANOVA (p<0.05) and Tukey's test (p<0.05) were applied. Statistically significant differences were found among the groups for both preload and removal torque values. In conclusion, gold screws may be indicated to achieve superior longevity of the abutment-implant connection and, consequently, prosthetic restoration due to greater preload values yielded. PMID:19089290
The ATLAS diboson resonance in non-supersymmetric SO(10)
Evans, Jason L.; Nagata, Natsumi; Olive, Keith A.; ...
2016-02-18
SO(10) grand uni cation accommodates intermediate gauge symmetries with which gauge coupling uni cation can be realized without supersymmetry. In this paper, we discuss the possibility that a new massive gauge boson associated with an intermediate gauge symmetry explains the excess observed in the diboson resonance search recently reported by the ATLAS experiment. The model we find has two intermediate symmetries, SU(4) C Ⓧ SU(2) L Ⓧ SU(2) R and SU(3) C Ⓧ SU(2) L Ⓧ SU(2)R Ⓧ U(1) B-L, where the latter gauge group is broken at the TeV scale. This model achieves gauge coupling uni cation with amore » uni cation scale su fficiently high to avoid proton decay. In addition, this model provides a good dark matter candidates, whose stability is guaranteed by a Z 2 symmetry present after the spontaneous breaking of the intermediate gauge symmetries. In addition, we discuss prospects for testing these models in the forthcoming LHC experiments and dark matter detection experiments.« less
Reference Gauging System for a Small-Scale Liquid Hydrogen Tank
NASA Technical Reports Server (NTRS)
VanDresar, Neil T.; Siegwarth, James D.
2003-01-01
A system to accurately weigh the fluid contents of a small-scale liquid hydrogen test tank has been experimentally verified. It is intended for use as a reference or benchmark system when testing lowgravity liquid quantity gauging concepts in the terrestrial environment. The reference gauging system has shown a repeatable measurement accuracy of better than 0.5 percent of the full tank liquid weight. With further refinement, the system accuracy can be improved to within 0.10 percent of full scale. This report describes the weighing system design, calibration, and operational results. Suggestions are given for further refinement of the system. An example is given to illustrate additional sources of uncertainty when mass measurements are converted to volume equivalents. Specifications of the companion test tank and its multi-layer insulation system are provided.
NASA Technical Reports Server (NTRS)
Warshawsky, I.
1982-01-01
Calibrations by four U.S. laboratories of four hot-cathode ion gauges, in the range 0.07-13 mPa, showed systematic differences among laboratories that were much larger than the expected error of any one calibration. They also suggested that any of the four gauges tested, if properly packaged and shipped, was able to serve as a transfer standard with probable error of 2%. A second comparison was made of the calibrations by two U.S. laboratories of some other gauges that had also been calibrated by the National Physical Laboratory, England. Results did not permit conclusive determination of whether differences were due to the laboratories or to changes in the gauges.
Numerical and analytical investigation of steel beam subjected to four-point bending
NASA Astrophysics Data System (ADS)
Farida, F. M.; Surahman, A.; Sofwan, A.
2018-03-01
A One type of bending tests is four-point bending test. The aim of this test is to investigate the properties and behavior of materials with structural applications. This study uses numerical and analytical studies. Results from both of these studies help to improve in experimental works. The purpose of this study is to predict steel beam behavior subjected to four-point bending test. This study intension is to analyze flexural beam subjected to four-point bending prior to experimental work. Main results of this research are location of strain gauge and LVDT on steel beam based on numerical study, manual calculation, and analytical study. Analytical study uses linear elasticity theory of solid objects. This study results is position of strain gauge and LVDT. Strain gauge is located between two concentrated loads at the top beam and bottom beam. LVDT is located between two concentrated loads.
Huang, Hu; Zhao, Hongwei; Yang, Zhaojun; Fan, Zunqiang; Wan, Shunguang; Shi, Chengli; Ma, Zhichao
2012-01-01
Miniaturization precision positioning platforms are needed for in situ nanomechanical test applications. This paper proposes a compact precision positioning platform integrating strain gauges and the piezoactuator. Effects of geometric parameters of two parallel plates on Von Mises stress distribution as well as static and dynamic characteristics of the platform were studied by the finite element method. Results of the calibration experiment indicate that the strain gauge sensor has good linearity and its sensitivity is about 0.0468 mV/μm. A closed-loop control system was established to solve the problem of nonlinearity of the platform. Experimental results demonstrate that for the displacement control process, both the displacement increasing portion and the decreasing portion have good linearity, verifying that the control system is available. The developed platform has a compact structure but can realize displacement measurement with the embedded strain gauges, which is useful for the closed-loop control and structure miniaturization of piezo devices. It has potential applications in nanoindentation and nanoscratch tests, especially in the field of in situ nanomechanical testing which requires compact structures. PMID:23012566
Propellant Mass Gauging: Database of Vehicle Applications and Research and Development Studies
NASA Technical Reports Server (NTRS)
Dodge, Franklin T.
2008-01-01
Gauging the mass of propellants in a tank in low gravity is not a straightforward task because of the uncertainty of the liquid configuration in the tank and the possibility of there being more than one ullage bubble. Several concepts for such a low-gravity gauging system have been proposed, and breadboard or flight-like versions have been tested in normal gravity or even in low gravity, but at present, a flight-proven reliable gauging system is not available. NASA desired a database of the gauging techniques used in current and past vehicles during ascent or under settled conditions, and during short coasting (unpowered) periods, for both cryogenic and storable propellants. Past and current research and development efforts on gauging systems that are believed to be applicable in low-gravity conditions were also desired. This report documents the results of that survey.
Meyer, Jay J; Kuo, Annie F; Olson, Randall J
2010-06-01
To determine capsular breakage risk from contact by phacoemulsification needles by machine and tip type. Experimental laboratory investigation. Infiniti (Alcon, Inc.) with Intrepid cartridges and Signature (Abbott Medical Optics, Inc.) phacoemulsification machines were tested using 19- and 20-gauge sharp and rounded tips. Actual and unoccluded flow vacuum were determined at 550 mm Hg, bottle height of 75 cm, and machine-indicated flow rate of 60 mL/minute. Breakage from brief tip contact with a capsular surrogate and human cadaveric lenses was calculated. Nineteen-gauge tips had more flow and less unoccluded flow vacuum than 20-gauge tips for both machines, with highest unoccluded flow vacuum in the Infiniti. The 19-gauge sharp tip was more likely than the 20-gauge sharp tip to cause surrogate breakage for Signature with micropulse and Ellips (Abbott Medical Optics, Inc.) ultrasound at 100% power. For Infiniti using OZil (Alcon, Inc.) ultrasound, 20-gauge sharp tips were more likely than 19-gauge sharp tips to break the membrane. For cadaveric lenses, using rounded 20-gauge tips at 100% power, breakage rates were micropulse (2.3%), Ellips (2.3%), OZil (5.3%). Breakage rates for sharp 20-gauge Ellips tips were higher than for rounded tips. Factors influencing capsular breakage may include active vacuum at the tip, flow rate, needle gauge, and sharpness. Nineteen-gauge sharp tips were more likely than 20-gauge tips to cause breakage in lower vacuum methods. For higher-vacuum methods, breakage is more likely with 20-gauge than with 19-gauge tips. Rounded-edge tips are less likely than sharp-edged tips to cause breakage. Copyright 2010 Elsevier Inc. All rights reserved.
Burns, J; Hou, S; Riley, C B; Shaw, R A; Jewett, N; McClure, J T
2014-01-01
Rapid, economical, and quantitative assays for measurement of camelid serum immunoglobulin G (IgG) are limited. In camelids, failure of transfer of maternal immunoglobulins has a reported prevalence of up to 20.5%. An accurate method for quantifying serum IgG concentrations is required. To develop an infrared spectroscopy-based assay for measurement of alpaca serum IgG and compare its performance to the reference standard radial immunodiffusion (RID) assay. One hundred and seventy-five privately owned, healthy alpacas. Eighty-two serum samples were collected as convenience samples during routine herd visits whereas 93 samples were recruited from a separate study. Serum IgG concentrations were determined by RID assays and midinfrared spectra were collected for each sample. Fifty samples were set aside as the test set and the remaining 125 training samples were employed to build a calibration model using partial least squares (PLS) regression with Monte Carlo cross validation to determine the optimum number of PLS factors. The predictive performance of the calibration model was evaluated by the test set. Correlation coefficients for the IR-based assay were 0.93 and 0.87, respectively, for the entire data set and test set. Sensitivity in the diagnosis of failure of transfer of passive immunity (FTPI) ([IgG] <1,000 mg/dL) was 71.4% and specificity was 100% for the IR-based method (test set) as gauged relative to the RID reference method assay. This study indicated that infrared spectroscopy, in combination with chemometrics, is an effective method for measurement of IgG in alpaca serum. Copyright © 2014 by the American College of Veterinary Internal Medicine.
Aeronautic Instruments. Section V : Power Plant Instruments
NASA Technical Reports Server (NTRS)
Washburn, G E; Sylvander, R C; Mueller, E F; Wilhelm, R M; Eaton, H N; Warner, John A C
1923-01-01
Part 1 gives a general discussion of the uses, principles, construction, and operation of airplane tachometers. Detailed description of all available instruments, both foreign and domestic, are given. Part 2 describes methods of tests and effect of various conditions encountered in airplane flight such as change of temperature, vibration, tilting, and reduced air pressure. Part 3 describes the principal types of distance reading thermometers for aircraft engines, including an explanation of the physical principles involved in the functioning of the instruments and proper filling of the bulbs. Performance requirements and testing methods are given and a discussion of the source of error and results of tests. Part 4 gives methods of tests and calibration, also requirements of gauges of this type for the pressure measurement of the air pressure in gasoline tanks and the engine oil pressure on airplanes. Part 5 describes two types of gasoline gauges, the float type and the pressure type. Methods of testing and calibrating gasoline depth gauges are given. The Schroeder, R. A. E., and the Mark II flowmeters are described.
The origin of three-cocycles in quantum field theory
NASA Astrophysics Data System (ADS)
Carey, A. L.
1987-08-01
When quantising a classical field theory it is not automatic that a group of symmetries of the classical system is preserved as a symmetry of the quantum system. Apart from the phenomenon of symmetry breaking it can also happen (as in Faddeev's Gauss law anomaly) that only an extension of the classical group acts as a symmetry group of the quantum system. We show here that rather than signalling a failure of the associative law as has been suggested in the literature, the occurrence of a non-trivial three-cocycle on the local gauge group is an ``anomaly'' or obstruction to the existence of an extension of the local gauge group acting as a symmetry group of the quantum system. Permanent address: Department of Pure Mathematics, University of Adelaide, G.P.O. Box 498, Adelaide, SA 5000, Australia.
2011-03-08
pressure gauge on the pneumatic head and indicate the number of inches the water level was lowered in the well to induce the slug test. ERDC/CRREL...a pneumatic slug-test system and its major components. ERDC/CRREL TR-11-6 10 pressure gauge on the pneumatic head, which is graduated in inches...The water level changes induced by the slug test were measured with a 10-psi pressure transducer installed below the water level. An analog-to
Design, Development and Test Challenges: Separation Mechanisms for the Orion Pad Abort-1 Flight Test
NASA Technical Reports Server (NTRS)
Dinsel, Alison; Morrey, Jeremy M.; OMalley, Patrick; Park, Samuel
2011-01-01
On May 6, 2010, NASA launched the first successful integrated flight test, Pad Abort-1, of the Orion Project from the White Sands Missile Range in Las Cruces, New Mexico. This test demonstrated the ability to perform an emergency pad abort of a full-scale 4.8 m diameter, 8200 kg crew capsule. During development of the critical separation mechanisms for this flight test, various challenges were overcome related to environments definition, installation complications, separation joint retraction speed, thruster ordnance development issues, load path validation and significant design loads increases. The Launch Abort System retention and release (LAS R&R) mechanism consisted of 6 discrete structural connections between the LAS and the crew module (CM) simulator, each of which had a preloaded tension tie, Superbolt torque-nut and frangible nut. During the flight test, the frangible nuts were pyrotechnically split, permitting the CM to separate from the LAS. The LAS separation event was the driving case in the shock environment for many co-located hardware items. During development testing, it was necessary to measure the source shock during the separation event so the predicted shock environment could be validated and used for certification testing of multiple hardware items. The Lockheed Martin test team measured the source separation shock due to the LAS R&R function, which dramatically decreased the predicted environment by 90% at 100 Hz. During development testing a hydraulic tensioner was used to preload the joint; however, the joint relaxation with the tensioner proved unsatisfactory so the design was modified to include a Superbolt torque-nut. The observed preload creep during lab testing was 4% after 30 days, with 2.5% occurring in the first 24 hours. The conversion of strain energy (preload) to kinetic energy (retraction) was measured to be 50-75%. Design features and careful monitoring of multiple strain gauges on each tension tie allowed a pure tensile load to be applied after stacking at the launch pad. Following installation, preload in each joint was monitored for 24 hours. Due to unforeseen complications and the influence of temperature on the portable data acquisition system, the team encountered difficulty in tracking the joint relaxation. In some cases, bond-line failure of the strain gauges occurred.
Elastic Gauge Fields in Weyl Semimetals
NASA Astrophysics Data System (ADS)
Cortijo, Alberto; Ferreiros, Yago; Landsteiner, Karl; Hernandez Vozmediano, Maria Angeles
We show that, as it happens in graphene, elastic deformations couple to the electronic degrees of freedom as pseudo gauge fields in Weyl semimetals. We derive the form of the elastic gauge fields in a tight-binding model hosting Weyl nodes and see that this vector electron-phonon coupling is chiral, providing an example of axial gauge fields in three dimensions. As an example of the new response functions that arise associated to these elastic gauge fields, we derive a non-zero phonon Hall viscosity for the neutral system at zero temperature. The axial nature of the fields provides a test of the chiral anomaly in high energy with three axial vector couplings. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007).
Development and Design of a Zero-G Liquid Quantity Gauge for a Solar Thermal Vehicle
NASA Technical Reports Server (NTRS)
Dodge, Franklin T.; Green, Steven T.; Petullo, Steven P.; VanDresar, Neil T.; Taylor, William J. (Technical Monitor)
2002-01-01
The development and design of a cryogenic liquid quantity gauge for zero-g applications is described. The gauge, named the Compression Mass Gauge (CMG), operates on the principle of slightly changing the volume of the tank by an oscillating bellows. The resulting pressure change is measured and used to predict the volume of vapor in the tank, from which the volume of liquid is computed. For each gauging instance, pressures are measured for several different bellows frequencies to enable minor real-gas effects to be quantified and thereby to obtain a gauging accuracy of +/- 1% of tank volume. Southwest Research Institute (Tm) and NASA-GRC (Glenn Research Center) have developed several previous breadboard and engineering development gauges and tested them in cryogenic hydrogen and nitrogen to establish the gauge capabilities, to resolve several design issues, and to formulate data processing algorithms. The CMG has been selected by NASA's Future X program for a flight demonstration on the USAF (United States Air Force) / Boeing Solar Thermal Vehicle Space Experiment (SOTVSE). This paper reviews the design trade studies needed to satisfy the SOTVSE limitations on CMG power, volume, and mass, and describes the mechanical design of the CMG.
Time evolution of linearized gauge field fluctuations on a real-time lattice
NASA Astrophysics Data System (ADS)
Kurkela, A.; Lappi, T.; Peuron, J.
2016-12-01
Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss' law.
Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition
NASA Astrophysics Data System (ADS)
Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.
2017-03-01
Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.
Layout pattern analysis using the Voronoi diagram of line segments
NASA Astrophysics Data System (ADS)
Dey, Sandeep Kumar; Cheilaris, Panagiotis; Gabrani, Maria; Papadopoulou, Evanthia
2016-01-01
Early identification of problematic patterns in very large scale integration (VLSI) designs is of great value as the lithographic simulation tools face significant timing challenges. To reduce the processing time, such a tool selects only a fraction of possible patterns which have a probable area of failure, with the risk of missing some problematic patterns. We introduce a fast method to automatically extract patterns based on their structure and context, using the Voronoi diagram of line-segments as derived from the edges of VLSI design shapes. Designers put line segments around the problematic locations in patterns called "gauges," along which the critical distance is measured. The gauge center is the midpoint of a gauge. We first use the Voronoi diagram of VLSI shapes to identify possible problematic locations, represented as gauge centers. Then we use the derived locations to extract windows containing the problematic patterns from the design layout. The problematic locations are prioritized by the shape and proximity information of the design polygons. We perform experiments for pattern selection in a portion of a 22-nm random logic design layout. The design layout had 38,584 design polygons (consisting of 199,946 line segments) on layer Mx, and 7079 markers generated by an optical rule checker (ORC) tool. The optical rules specify requirements for printing circuits with minimum dimension. Markers are the locations of some optical rule violations in the layout. We verify our approach by comparing the coverage of our extracted patterns to the ORC-generated markers. We further derive a similarity measure between patterns and between layouts. The similarity measure helps to identify a set of representative gauges that reduces the number of patterns for analysis.
Aspects of the Antisymmetric Tensor Field
NASA Astrophysics Data System (ADS)
Lahiri, Amitabha
1991-02-01
With the possible exception of gravitation, fundamental interactions are generally described by theories of point particles interacting via massless gauge fields. Since the advent of string theories the picture of physical interaction has changed to accommodate one in which extended objects interact with each other. The generalization of the gauge theories to extended objects leads to theories of antisymmetric tensor fields. At scales corresponding to present-day laboratory experiments one expects to see only point particles, their interactions modified by the presence of antisymmetric tensor fields in the theory. Therefore, in order to establish the validity of any theory with antisymmetric tensor fields one needs to look for manifestations of these fields at low energies. The principal problem of gauge theories is the failure to provide a suitable explanation for the generation of masses for the fields in the theory. While there is a known mechanism (spontaneous symmetry breaking) for generating masses for both the matter fields and the gauge fields, the lack of experimental evidence in support of an elementary scalar field suggests that one look for alternative ways of generating masses for the fields. The interaction of gauge fields with an antisymmetric tensor field seems to be an attractive way of doing so, especially since all indications point to the possibility that there will be no remnant degrees of freedom. On the other hand the interaction of such a field with black holes suggest an independent way of verifying the existence of such fields. In this dissertation the origins of the antisymmetric tensor field are discussed in terms of string theory. The interaction of black holes with such a field is discussed next. The last chapter discusses the effects of an antisymmetric tensor field on quantum electrodynamics when the fields are minimally coupled.
Thin Film Sensors for Surface Measurements
NASA Technical Reports Server (NTRS)
Martin, Lisa C.; Wrbanek, John D.; Fralick, Gustave C.
2001-01-01
Advanced thin film sensors that can provide accurate surface temperature, strain, and heat flux measurements have been developed at NASA Glenn Research Center. These sensors provide minimally intrusive characterization of advanced propulsion materials and components in hostile, high-temperature environments as well as validation of propulsion system design codes. The sensors are designed for applications on different material systems and engine components for testing in engine simulation facilities. Thin film thermocouples and strain gauges for the measurement of surface temperature and strain have been demonstrated on metals, ceramics and advanced ceramic-based composites of various component configurations. Test environments have included both air-breathing and space propulsion-based engine and burner rig environments at surface temperatures up to 1100 C and under high gas flow and pressure conditions. The technologies developed for these sensors as well as for a thin film heat flux gauge have been integrated into a single multifunctional gauge for the simultaneous real-time measurement of surface temperature, strain, and heat flux. This is the first step toward the development of smart sensors with integrated signal conditioning and high temperature electronics that would have the capability to provide feedback to the operating system in real-time. A description of the fabrication process for the thin film sensors and multifunctional gauge will be provided. In addition, the material systems on which the sensors have been demonstrated, the test facilities and the results of the tests to-date will be described. Finally, the results will be provided of the current effort to demonstrate the capabilities of the multifunctional gauge.
NASA Astrophysics Data System (ADS)
Beck, Faith R.; Lind, R. Paul; Smith, James A.
2018-04-01
Novel fuels are part of the nationwide effort to reduce the enrichment of Uranium for energy production. Performance of such fuels is determined by irradiating their surfaces. To test irradiated samples, the instrumentation must operate remotely. The plate checker used in this experiment at Idaho National Lab (INL) performs non-destructive testing on fuel rod and plate geometries with two different types of sensors: eddy current and digital thickness gauges. The sensors measure oxide growth and total sample thickness on research fuels, respectively. Sensor measurement accuracy is crucial because even 10 microns of error is significant when determining the viability of an experimental fuel. One parameter known to affect the eddy current and thickness gauge sensors is temperature. Since both sensor accuracies depend on the ambient temperature of the system, the plate checker has been characterized for these sensitivities. The manufacturer of the digital gauge probes has noted a rather large coefficient of thermal expansion for their linear scale. It should also be noted that the accuracy of the digital gauge probes are specified at 20°C, which is approximately 7°C cooler than the average hot-cell temperature. In this work, the effect of temperature on the eddy current and digital gauge probes is studied, and thickness measurements are given as empirical functions of temperature.
Code of Federal Regulations, 2013 CFR
2013-01-01
....8Preconditioning cycle means any cycle that includes a fill, circulation, and drain to ensure that the water lines... cycle without a test load if the dishwasher does not heat water in the normal cycle. 2.6.2Non-soil... cycle. 3.4Water pressure gauge. The water pressure gauge must have a resolution of one pound per square...
Determination of the technical constants of laminates in oblique directions
NASA Technical Reports Server (NTRS)
Vidouse, F.
1979-01-01
An off-axis tensile test theory based on Hooke's Law is applied to glass fiber reinforced laminates. A corrective parameter dependent on the characteristics of the strain gauge used is introduced by testing machines set up for isotropic materials. Theoretical results for a variety of strain gauges are compared with those obtained by a finite element method and with experimental results obtained on laminates reinforced with glass.
NASA Astrophysics Data System (ADS)
Pesin, A.; Pustovoytov, D.; Lokotunina, N.
2017-12-01
The mechanism of severe plastic deformation comes from very significant shear strain. Shear-compression testing of materials is complicated by the fact that a state of large equivalent strain with dominant shear strain is not easily achievable. This paper presents the novel technique of laboratory simulation of severe plastic deformation by multi-cycle shear-compression testing at room temperature with equivalent strain e=1…5. The specimen consisted of a parallelepiped having an inclined gauge section created by two diametrically opposed semi-circular slots which were machined at 45°. Height of the specimen was 50 mm, section dimensions were 25×25 mm, gauge thickness was 5.0 mm and gauge width was 6.0 mm. The specimen provided dominant shear strain in an inclined gauge-section. The level of shear strain and equivalent strain was controlled through adjustment of the height reduction of the specimen, load application direction and number of cycles of shear-compression. Aluminium alloy Al-6.2Mg-0.7Mn was used as a material for specimen. FE simulation and analysis of the stress-strain state were performed. The microstructure of the specimen after multi-cycle shear-compression testing with equivalent strain e=1…5 was examined by optical and scanning electron microscope.
Tracer gauge: An automated dye dilution gauging system for ice‐affected streams
Clow, David W.; Fleming, Andrea C.
2008-01-01
In‐stream flow protection programs require accurate, real‐time streamflow data to aid in the protection of aquatic ecosystems during winter base flow periods. In cold regions, however, winter streamflow often can only be estimated because in‐channel ice causes variable backwater conditions and alters the stage‐discharge relation. In this study, an automated dye dilution gauging system, a tracer gauge, was developed for measuring discharge in ice‐affected streams. Rhodamine WT is injected into the stream at a constant rate, and downstream concentrations are measured with a submersible fluorometer. Data loggers control system operations, monitor key variables, and perform discharge calculations. Comparison of discharge from the tracer gauge and from a Cipoletti weir during periods of extensive ice cover indicated that the root‐mean‐square error of the tracer gauge was 0.029 m3 s−1, or 6.3% of average discharge for the study period. The tracer gauge system can provide much more accurate data than is currently available for streams that are strongly ice affected and, thus, could substantially improve management of in‐stream flow protection programs during winter in cold regions. Care must be taken, however, to test for the validity of key assumptions, including complete mixing and conservative behavior of dye, no changes in storage, and no gains or losses of water to or from the stream along the study reach. These assumptions may be tested by measuring flow‐weighted dye concentrations across the stream, performing dye mass balance analyses, and evaluating breakthrough curve behavior.
Rain gauge calibration and testing
NASA Technical Reports Server (NTRS)
Wilkerson, John
1994-01-01
Prior to the Tropical Oceans Global Atmosphere-Coupled Ocean Atmosphere Response Experiment (TOGA-COARE), 42 Model 100 series optical gauges were tested in the rain simulator facility at Wallops Island before shipment to the field. Baseline measurements at several rain rates were made simultaneously with collector cans, tipping bucket, and a precision weighing gauge and held for post-COARE evaluation with a repeat set of measurements that were to be recorded after the instruments were returned. This was done as a means of detecting any calibration changes that might have occurred while deployed. Although it was known that the artificial rain in the simulator did not contain the required exponential distribution for accurate optical rain gauge rate measurements, use of the facility was necessary because it was the only means available for taking controlled observations with instruments that were received, tested, and shipped out in groups over a period of months. At that point, it was believed that these measurements would be adequately precise for detecting performance changes over time. However, analysis of the data by STI now indicates that this may not be true. Further study of the data will be undertaken to resolve this.
A Feasibility Study into the Active Smart Patch Concept for Composite Bonded Repairs
2008-08-01
electrical resistance foil gauges and PVDF (polyvinylidene) piezoelectric film to sense the local strain relaxation that occurs in re- sponse to failure of...structural components, like a wing skin, that are ‘thin’ in comparison to the wavelengths of low frequency ultrasound , and therefore act as efficient...region for the respective excitation frequency. The processed experimental data is compared to theoretical dispersion curves for both Lamb waves and
An evaluation of the Wyoming Gauge System for snowfall measurement
Yang, Daqing; Kane, Douglas L.; Hinzman, Larry D.; Goodison, Barry E.; Metcalfe, John R.; Louie, Paul Y.T.; Leavesley, George H.; Emerson, Douglas G.; Hanson, Clayton L.
2000-01-01
The Wyoming snow fence (shield) has been widely used with precipitation gauges for snowfall measurement at more than 25 locations in Alaska since the late 1970s. This gauge's measurements have been taken as the reference for correcting wind‐induced gauge undercatch of snowfall in Alaska. Recently, this fence (shield) was tested in the World Meteorological Organization Solid Precipitation Measurement Intercomparison Project at four locations in the United States of America and Canada for six winter seasons. At the Intercomparison sites an octagonal vertical Double Fence with a Russian Tretyakov gauge or a Universal Belfort recording gauge was installed and used as the Intercomparison Reference (DFIR) to provide true snowfall amounts for this Intercomparison experiment. The Intercomparison data collected were compiled at the four sites that represent a variety of climate, terrain, and exposure. On the basis of these data sets the performance of the Wyoming gauge system for snowfall observations was carefully evaluated against the DFIR and snow cover data. The results show that (1) the mean snow catch efficiency of the Wyoming gauge compared with the DFIR is about 80–90%, (2) there exists a close linear relation between the measurements of the two gauge systems and this relation may serve as a transfer function to adjust the Wyoming gauge records to obtain an estimate of the true snowfall amount, (3) catch efficiency of the Wyoming gauge does not change with wind speed and temperature, and (4) Wyoming gauge measurements are generally compatible to the snowpack water equivalent at selected locations in northern Alaska. These results are important to our effort of determining true snowfall amounts in the high latitudes, and they are also useful for regional hydrologic and climatic analyses.
NASA Astrophysics Data System (ADS)
Wang, Hong; Wang, Jy-An John
2016-10-01
Behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending was studied. Tests were performed under load or moment control at 5 Hz. The surrogate rods fractured under moment amplitudes greater than 10.16 Nm with fatigue lives between 2.4 × 103 and 2.2 × 106 cycles. Fatigue response of Zry-4 cladding was characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition affect surrogate rod failure. Both debonding of PPI/PCI and pellet fracturing contribute to surrogate rod bending fatigue. The effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective gauge length is effective in sensor spacing correction. The database developed and the understanding gained in this study can serve as input to analysis of SNF (spent nuclear fuel) vibration integrity.
Stringer Bending Test Helps Diagnose and Prevent Cracks in the Space Shuttle's External Tank
NASA Technical Reports Server (NTRS)
Saxon, Joseph B.; Swanson, Gregory R.; Ondocsin, William P.; Wingate, Robert J.
2012-01-01
Space Shuttle Discovery's last mission, STS-133, was scheduled to launch on November 5, 2010. Just hours before liftoff, a hydrogen leak at an umbilical connection scrubbed the launch attempt. After the scrub, further inspection revealed a large crack in the foam insulation covering the External Tank, ET-137. Video replay of the launch attempt confirmed the crack first appeared as cryogenic propellants were being loaded into the ET. When the cracked foam was removed, technicians found the underlying stringer had two 9-inch-long cracks. Further inspection revealed a total of 5 of the 108 ET stringers had cracked. NASA and Lockheed Martin immediately launched an aggressive campaign to understand the cracks and repair the stringers in ET-137, targeting February 2011 as the new launch date for STS-133. Responsibilities for the various aspects of the investigation were widely distributed among NASA centers and organizations. This paper will focus on lab testing at Marshall Space Flight Center (MSFC) in Huntsville, Alabama that was intended to replicate the stringer failure and gauge the effect of proposed countermeasures.
Wang, Hong; Wang, Jy-An John
2016-07-20
We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less
NASA Astrophysics Data System (ADS)
Bertacchini, Olivier W.; Schick, Justin; Lagoudas, Dimitris C.
2009-03-01
The recent development of various aerospace applications utilizing Ni-rich NiTi Shape memory Alloys (SMAs) as actuators motivated the need to characterize the cyclic response and the transformation fatigue behavior of such alloys. The fatigue life validation and certification of new designs is required in order to be implemented and used in future applications. For that purpose, a custom built fatigue test frame was designed to perform isobaric thermally induced transformation cycles on small dogbones SMA actuators (test gauge cross-section up to: 1.270 x 0.508 mm2). A parametric study on the cyclic response and transformation fatigue behavior of Ni-rich NiTi SMAs led to the optimization of several material/process and test parameters, namely: the applied stress range, the heat treatment, the heat treatment environment and the specimen thickness. However, fatigue testing was performed in a chilled waterless glycol environment maintained at a temperature of 5°C that showed evidence of corrosion-assisted transformation fatigue failure. Therefore, it was necessary to build a fatigue test frame that would employ a dry and inert cooling methodology to get away from any detrimental interactions between the specimens and the cooling medium (corrosion). The selected cooling method was gaseous nitrogen, sprayed into a thermally insulated chamber, maintaining a temperature of -20°C. The design of the gaseous nitrogen cooling was done in such a way that the actuation frequency is similar to the one obtained using the original design (~ 0.1 Hz). For both cooling methods, Joule resistive heating was used to heat the specimens. In addition and motivated by the difference in surface quality resulting from different material processing such as EDM wire cutting and heat treatments, EDM recast layer and oxide layer were removed. The removal was followed by an ultra-fine polish (0.05 μm) that was performed on a subset of the fatigue specimens. Experimental results are presented for full actuation of the SMA actuators and are given in terms of applied stress, accumulated plastic strain and number of cycles to failure. In addition, the assessment of the influence of the surface quality is supported by fatigue tests results and post-failure microstructure analysis.
Characterization of a Y-TZP Zirconia material for gas gun experiments
NASA Astrophysics Data System (ADS)
Goff, Michael; Millett, Jeremy; Whiteman, Glenn; Collinson, Mark; Ferguson, James
2017-06-01
A number of shots were carried out on the AWE single stage gas gun with Het-V diagnostics to determine the shock Hugoniot of a commercial Y-TZP Zirconia ceramic material (ρ 6.05 g/cc). Zirconia ceramic has a higher density and acoustic impedance than alumina, this allows for higher shock pressures to be achieved in impact velocity limited scenarios where conductive materials are not suitable. For example, when using electromagnetic particle velocity gauge diagnostics. The grade examined here was highly reflective to 1550 nm wavelengths, which negated the need for window materials when taking free surface velocity measurements. The shock Hugoniot was determined to be linear up to 13.4 GPa with the form Us = 5.82 + 2.20Up and the HEL was in the range of 7-9 GPa. Additionally data from lateral gauge shots examining the failure behavior of the material are reported on. ©British Crown Owned Copyright 2017/AWE
Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE
NASA Astrophysics Data System (ADS)
Kochendorfer, John; Nitu, Rodica; Wolff, Mareile; Mekis, Eva; Rasmussen, Roy; Baker, Bruce; Earle, Michael E.; Reverdin, Audrey; Wong, Kai; Smith, Craig D.; Yang, Daqing; Roulet, Yves-Alain; Meyers, Tilden; Buisan, Samuel; Isaksen, Ketil; Brækkan, Ragnar; Landolt, Scott; Jachcik, Al
2018-02-01
Weighing precipitation gauges are used widely for the measurement of all forms of precipitation, and are typically more accurate than tipping-bucket precipitation gauges. This is especially true for the measurement of solid precipitation; however, weighing precipitation gauge measurements must still be adjusted for undercatch in snowy, windy conditions. In WMO-SPICE (World Meteorological Organization Solid Precipitation InterComparison Experiment), different types of weighing precipitation gauges and shields were compared, and adjustments were determined for the undercatch of solid precipitation caused by wind. For the various combinations of gauges and shields, adjustments using both new and previously existing transfer functions were evaluated. For most of the gauge and shield combinations, previously derived transfer functions were found to perform as well as those more recently derived. This indicates that wind shield type (or lack thereof) is more important in determining the magnitude of wind-induced undercatch than the type of weighing precipitation gauge. It also demonstrates the potential for widespread use of the previously developed transfer functions. Another overarching result was that, in general, the more effective shields, which were associated with smaller unadjusted errors, also produced more accurate measurements after adjustment. This indicates that although transfer functions can effectively reduce measurement biases, effective wind shielding is still required for the most accurate measurement of solid precipitation.
Probe Without Moving Parts Measures Flow Angle
NASA Technical Reports Server (NTRS)
Corda, Stephen; Vachon, M. Jake
2003-01-01
The measurement of local flow angle is critical in many fluid-dynamic applications, including the aerodynamic flight testing of new aircraft and flight systems. Flight researchers at NASA Dryden Flight Research Center have recently developed, flight-tested, and patented the force-based flow-angle probe (FLAP), a novel, force-based instrument for the measurement of local flow direction. Containing no moving parts, the FLAP may provide greater simplicity, improved accuracy, and increased measurement access, relative to conventional moving vane-type flow-angle probes. Forces in the FLAP can be measured by various techniques, including those that involve conventional strain gauges (based on electrical resistance) and those that involve more advanced strain gauges (based on optical fibers). A correlation is used to convert force-measurement data to the local flow angle. The use of fiber optics will enable the construction of a miniature FLAP, leading to the possibility of flow measurement in very small or confined regions. This may also enable the tufting of a surface with miniature FLAPs, capable of quantitative flow-angle measurements, similar to attaching yarn tufts for qualitative measurements. The prototype FLAP was a small, aerodynamically shaped, low-aspect-ratio fin about 2 in. (approximately equal to 5 cm) long, 1 in. (approximately equal to 2.5 cm) wide, and 0.125 in. (approximately equal to 0.3 cm) thick (see Figure 1). The prototype FLAP included simple electrical-resistance strain gauges for measuring forces. Four strain gauges were mounted on the FLAP; two on the upper surface and two on the lower surface. The gauges were connected to form a full Wheatstone bridge, configured as a bending bridge. In preparation for a flight test, the prototype FLAP was mounted on the airdata boom of a flight-test fixture (FTF) on the NASA Dryden F-15B flight research airplane.
7. Exterior view, showing instrumentation and gauge panel at the ...
7. Exterior view, showing instrumentation and gauge panel at the walk-in entry level (bottom) of Test Cell 6, Systems Integration Laboratory Building (T-28), looking west. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
High-Temperature Resistance Strain Gauges
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen
1994-01-01
Resistance strain gauges developed for use at high temperatures in demanding applications like testing aircraft engines and structures. Measures static strains at temperatures up to 800 degrees C. Small and highly reproducible. Readings corrected for temperature within small tolerances, provided temperatures measured simultaneously by thermocouples or other suitable devices. Connected in wheatstone bridge.
Strain-Gauge Measurement of Weight of Fluid in a Tank
NASA Technical Reports Server (NTRS)
Figueroa, Jorge; St. Cyr, William; Rahman, Shamim; McVay, Gregory; Van Dyke, David; Mitchell, William; Langford, Lester
2004-01-01
A method of determining the amount of fluid in a tank is based on measurement of strains induced in tank supports by the weight of the fluid. Unlike most prior methods, this method is nonintrusive: there is no need to insert instrumentation in the tank and, hence, no need to run wires, cables, or tubes through the tank wall. Also unlike most prior methods, this method is applicable even if the fluid in the tank is at supercritical pressure and temperature, because it does not depend on the presence of a liquid/gas interface (as in liquid-level-measuring methods). The strain gauges used in this method may be of two types: foil and fiber-optic. Four foil gauges (full bridge) are mounted on each of the tank-supporting legs. As the tank is filled or emptied, the deformation in each leg increases or decreases, respectively. Measured deformations of all legs are added to obtain a composite deformation indicative of the change in weight of the tank plus fluid. An initial calibration is performed by recording data at two points (usually, empty and full) for which the mass or weight of fluid is known. It is assumed that the deformations are elastic, so that the line passing through the two points can be used as a calibration curve of mass (or weight) of fluid versus deformation. One or more fiber-optic gauges may be used instead of the foil gauges. The resolution of the fiber-optic and foil gauges is approximately the same, but the fiber-optic gauges are immune to EMI (electromagnetic interference), are linear with respect to temperature over their entire dynamic range (as defined by the behavior of the sample), and measure thermally induced deformations as predictable signals. Conversely, long term testing has demonstrated that the foil gauges exhibit an erratic behavior whenever subjected to direct sun radiation (even if protected with a rubberized cover). Henceforth, for deployment in outdoor conditions, fiber-optic gauges are the only option if one is to rely on the system for an extended period of time when a recalibration procedure may not be acceptable. A set of foil gauges had been tested on the supports of a 500-gallon (1,900-liter) tank. The gauges were found to be capable of measuring the deformations (up to 22 micro-strain) that occurred during filling and emptying of the tank. The fluid masses calculated from the gauge readings were found to be accurate within 4.5 percent. However, the reliability of the foil gauges over a few hours was not acceptable. Therefore, the foil sensor system is acceptable for use only in controlled environments (complete shade, or indoors).
NASA Astrophysics Data System (ADS)
Lin, Huey-Wen; Liu, Keh-Fei
2012-03-01
It is argued by the author that the canonical form of the quark energy-momentum tensor with a partial derivative instead of the covariant derivative is the correct definition for the quark momentum and angular momentum fraction of the nucleon in covariant quantization. Although it is not manifestly gauge-invariant, its matrix elements in the nucleon will be nonvanishing and are gauge-invariant. We test this idea in the path-integral quantization by calculating correlation functions on the lattice with a gauge-invariant nucleon interpolation field and replacing the gauge link in the quark lattice momentum operator with unity, which corresponds to the partial derivative in the continuum. We find that the ratios of three-point to two-point functions are zero within errors for both the u and d quarks, contrary to the case without setting the gauge links to unity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunster, Claudio; Max-Planck-Institut fuer Gravitationsphysik; Henneaux, Marc
There exists a formulation of the Maxwell theory in terms of two vector potentials, one electric and one magnetic. The action is then manifestly invariant under electric-magnetic duality transformations, which are rotations in the two-dimensional internal space of the two potentials, and local. We ask the question: Can duality be gauged? The only known and battle-tested method of accomplishing the gauging is the Noether procedure. In its decanted form, it amounts to turning on the coupling by deforming the Abelian gauge group of the free theory, out of whose curvatures the action is built, into a non-Abelian group which becomesmore » the gauge group of the resulting theory. In this article, we show that the method cannot be successfully implemented for electric-magnetic duality. We thus conclude that, unless a radically new idea is introduced, electric-magnetic duality cannot be gauged. The implication of this result for supergravity is briefly discussed.« less
NASA Astrophysics Data System (ADS)
Burby, Joshua; Brizard, Alain
2017-10-01
Test-particle gyrocenter equations of motion play an essential role in the diagnosis of turbulent strongly-magnetized plasmas, and are playing an increasingly-important role in the formulation of kinetic-gyrokinetic hybrid models. Previous gyrocenter models required the knowledge of the perturbed electromagnetic potentials, which are not directly observable quantities (since they are gauge-dependent). A new gauge-free formulation of gyrocenter motion is presented, which enables gyrocenter trajectories to be determined using only measured values of the directly-observable electromagnetic field. Our gauge-free gyrokinetic theory is general enough to allow for gyroradius-scale fluctuations in both the electric and magnetic field. In addition, we provide gauge-free expressions for the charge and current densities produced by a distribution of gyrocenters, which explicitly include guiding-center and gyrocenter polarization and magnetization effects. This research was supported by the U.S. DOE Contract Nos. DE-SC0014032 (AB) and DE-AC05-06OR23100 (JB).
Pseudospectral method for gravitational wave collapse
NASA Astrophysics Data System (ADS)
Hilditch, David; Weyhausen, Andreas; Brügmann, Bernd
2016-03-01
We present a new pseudospectral code, bamps, for numerical relativity written with the evolution of collapsing gravitational waves in mind. We employ the first-order generalized harmonic gauge formulation. The relevant theory is reviewed, and the numerical method is critically examined and specialized for the task at hand. In particular, we investigate formulation parameters—gauge- and constraint-preserving boundary conditions well suited to nonvanishing gauge source functions. Different types of axisymmetric twist-free moment-of-time-symmetry gravitational wave initial data are discussed. A treatment of the axisymmetric apparent horizon condition is presented with careful attention to regularity on axis. Our apparent horizon finder is then evaluated in a number of test cases. Moving on to evolutions, we investigate modifications to the generalized harmonic gauge constraint damping scheme to improve conservation in the strong-field regime. We demonstrate strong-scaling of our pseudospectral penalty code. We employ the Cartoon method to efficiently evolve axisymmetric data in our 3 +1 -dimensional code. We perform test evolutions of the Schwarzschild spacetime perturbed by gravitational waves and by gauge pulses, both to demonstrate the use of our black-hole excision scheme and for comparison with earlier results. Finally, numerical evolutions of supercritical Brill waves are presented to demonstrate durability of the excision scheme for the dynamical formation of a black hole.
Laboratory Simulation and Measurement of Instrument Drift in Quartz-Resonant Pressure Gauges
NASA Astrophysics Data System (ADS)
Sasagawa, G. S.; Zumberge, M. A.
2017-12-01
Marine geodesy uses ocean bottom pressure sensors to measure vertical deformation of the sea floor, including that due to volcanic inflation and subsidence, episodic tremor and slip, plate subduction, and deformation due to hydrocarbon extraction at offshore reservoirs. Instrumental drift is inherent in existing pressure sensors and introduce uncertainties in data interpretation. Different methods have been developed to control drift, using varying techniques and instrumentation. Laboratory measurements of sensor drift, under controlled conditions that simulate seafloor pressures and temperatures, would allow for evaluating pressure gauge drift and the efficacy of new drift control methods. We have constructed and operated a laboratory system to monitor the drift of 15 quartz resonant pressure gauges over a year. The temperature and pressure are maintained and controlled at approximately 5 °C and 1900 dbar. A deadweight tester was used to provide a reference signal at frequent intervals; the time series of reference pressure signals is a direct measure of each gauge's drift. Several other tests were conducted, including a) evaluation of a custom outgassing sensor used as proxy for instrument drift, b) determination of the oscillator drift in the pressure gauge signal conditioning electronics, and c) a test of ambient air pressure calibration, also known as the A-0-A method. First results will be presented.
USU AFOSR University Engineering Design Challenge Proposal
2015-01-02
gauge, voltmeter, on/off switch Handle ◦ Aluminum, 7.5 in. wide Skirt ◦ EVA foam, abrasion resistant Friction strip ◦ Stealth Rubber 8 12/28/2014 5 Hose...0.962 Tensile Strength [Gpa] 3.2 2.9 1.103 Abrasion Resistance [cycles to failure] 286 83 3.446 Impact Resistance [Energy @ penetration, in-lbs] 125...combination of) terrain to extricate equipment and personnel in situations where the scene is actively on fire or burnt and have exposed sharp metallic
1991-01-01
bimodal theory . 1. Introduction Numerous analytical models have been proposed for prediction of the inelastic response of fibrous composites, an...necessity - especially at a higher c1 - to use the local-field theory . The shear creep strain of the composite is slightly larger in the transverse... gauge surface were also monitored. Theoretical Consideration Failure theories for anisotropic materials in plane stress conditions are in general
Inconsistency of topologically massive hypergravity
NASA Technical Reports Server (NTRS)
Aragone, C.; Deser, S.
1985-01-01
The coupled topologically massive spin-5/2 gravity system in D = 3 dimensions whose kinematics represents dynamical propagating gauge invariant massive spin-5/2 and spin-2 excitations, is shown to be inconsistent, or equivalently, not locally hypersymmetric. In contrast to D = 4, the local constraints on the system arising from failure of the fermionic Bianchi identities do not involve the 'highest spin' components of the field, but rather the auxiliary spinor required to construct a consistent massive model.
China’s Air Defense Identification Zone: Concept, Issues at Stake and Regional Impact
2013-12-23
early Chinese legal culture ” Karen Turner “War, Punishment, and The Law of Nature in Early Chinese Concepts of The State”, Harvard Journal of Asiatic...lack of strategic direction, moral relativism , a failure to gauge the significance of what is at stake, and distraction with events in other regions of...WORKING PAPER 1 posted 23 December 2013 CHINA’S AIR DEFENSE IDENTIFICATION ZONE: CONCEPT , ISSUES AT STAKE AND REGIONAL IMPACT
Automated Heat-Flux-Calibration Facility
NASA Technical Reports Server (NTRS)
Liebert, Curt H.; Weikle, Donald H.
1989-01-01
Computer control speeds operation of equipment and processing of measurements. New heat-flux-calibration facility developed at Lewis Research Center. Used for fast-transient heat-transfer testing, durability testing, and calibration of heat-flux gauges. Calibrations performed at constant or transient heat fluxes ranging from 1 to 6 MW/m2 and at temperatures ranging from 80 K to melting temperatures of most materials. Facility developed because there is need to build and calibrate very-small heat-flux gauges for Space Shuttle main engine (SSME).Includes lamp head attached to side of service module, an argon-gas-recirculation module, reflector, heat exchanger, and high-speed positioning system. This type of automated heat-flux calibration facility installed in industrial plants for onsite calibration of heat-flux gauges measuring fluxes of heat in advanced gas-turbine and rocket engines.
Automatic Monitoring System Design and Failure Probability Analysis for River Dikes on Steep Channel
NASA Astrophysics Data System (ADS)
Chang, Yin-Lung; Lin, Yi-Jun; Tung, Yeou-Koung
2017-04-01
The purposes of this study includes: (1) design an automatic monitoring system for river dike; and (2) develop a framework which enables the determination of dike failure probabilities for various failure modes during a rainstorm. The historical dike failure data collected in this study indicate that most dikes in Taiwan collapsed under the 20-years return period discharge, which means the probability of dike failure is much higher than that of overtopping. We installed the dike monitoring system on the Chiu-She Dike which located on the middle stream of Dajia River, Taiwan. The system includes: (1) vertical distributed pore water pressure sensors in front of and behind the dike; (2) Time Domain Reflectometry (TDR) to measure the displacement of dike; (3) wireless floating device to measure the scouring depth at the toe of dike; and (4) water level gauge. The monitoring system recorded the variation of pore pressure inside the Chiu-She Dike and the scouring depth during Typhoon Megi. The recorded data showed that the highest groundwater level insides the dike occurred 15 hours after the peak discharge. We developed a framework which accounts for the uncertainties from return period discharge, Manning's n, scouring depth, soil cohesion, and friction angle and enables the determination of dike failure probabilities for various failure modes such as overtopping, surface erosion, mass failure, toe sliding and overturning. The framework was applied to Chiu-She, Feng-Chou, and Ke-Chuang Dikes on Dajia River. The results indicate that the toe sliding or overturning has the highest probability than other failure modes. Furthermore, the overall failure probability (integrate different failure modes) reaches 50% under 10-years return period flood which agrees with the historical failure data for the study reaches.
Aerodynamic Applications of Boundary Layer Control Using Embedded Streamwise Vortices
2003-07-01
section, 0.02% free-stream turbulence level, free-stream velocity up to 18 m/s; the strain gauge can be used for aerodynamic force measurements. (2...section, free-stream velocity up to 28 m/s; equipped with the 3-component strain gauge (values of streamwise and normal forces measured up to 3N and 6...dimensional model: test section of 4m x 2.5m x 5.5m, free-stream velocities up to 42 m/s, multi-base 6-component strain gauge. Project Manager: Nina F
Fiber-optic strain gauge with attached ends and unattached microbend section
Weiss, J.D.
1992-07-21
A strain gauge is made of an optical fiber into which quasi-sinusoidal microbends have been permanently introduced. The permanent microbends cause a reduction in the fiber's optical transmission, but, when the gauge is attached to a substrate that is subsequently strained, the amplitude of the deformations will diminish and the optical transmission through the fiber will increase. An apparatus and process for manufacturing these microbends into the optical fiber through a heat-set process is employed; this apparatus and process includes a testing and calibration system. 5 figs.
Design, development and manufacture of a breadboard radio frequency mass gauging system
NASA Technical Reports Server (NTRS)
1975-01-01
The feasibility of the RF gauging mode, counting technique was demonstrated for gauging liquid hydrogen and liquid oxygen under all attitude conditions. With LH2, it was also demonstrated under dynamic fluid conditions, in which the fluid assumes ever changing positions within the tank, that the RF gauging technique on the average provides a very good indication of mass. It is significant that the distribution of the mode count data at each fill level during dynamic LH2 and LOX orientation testing does approach a statistical normal distribution. Multiple space-diversity probes provide better coupling to the resonant modes than utilization of a single probe element. The variable sweep rate generator technique provides a more uniform mode versus time distribution for processing.
The effect of an air knot on surgical knot integrity.
Shatkin-Margolis, Abigail; Kow, Nathan; Patonai, Nicolas; Boin, Michael; Muffly, Tyler M
2015-01-01
Surgical trainees may tie air knots, which have a questionable tensile strength and rate of untying. The purpose of this study was to determine the effect of an air knot on knot integrity. The 5 suture materials tested were 0-0 gauge coated polyethylene, polyglyconate, glycolide/lactide, polypropylene, and silk. The suture was tied between 2 hex screws 50 mm on center. The strands were tied using 5 square throws, and the knot tails were cut at 3-mm length. To create a standardized air knot, a round common nail measuring 3 mm in diameter was inserted between throws before tying square throw #3. The suture loop was positioned around the upper and lower hooks of the tensiometer so the location of the knot was roughly equidistant from the hooks. Ultimately, either the loop broke or the knot slipped. At that time, the peak tensile force as well as the outcome of the knot were recorded. A total of 480 knots were tied. The presence of an air knot significantly lowered the tension at knot failure in the glycolide/lactide (P = 0.0003), polypropylene (P = 0.0005), and silk (P = 0.0001) knot configurations. Air knots had the same integrity as surgical knots when coated polyethylene and polyglyconate suture were used. Linear regression was performed and identified both suture material (P < 0.0001) and presence of an air knot (P < 0.0001) to be independently associated with a lower tension at failure. Under laboratory conditions, an air knot may contribute to a lower tensile strength at failure for certain suture materials.
Deformation of Extruded Titanium Alloys Under Superplastic Conditions
1988-07-01
176mm wide with a flange wall 37mm high x 27mm wide and a central web 122mm wide x 18mm thick. Round-bar test pieces aligned parallel to the principal...directions L, T and ST were extrac- ted from the flange and web as shown in Fig 1; gauge length dimensions were 15mm x 5.5mm diameter for the FST test...ares. in the gauge length. Flange Web X 9 NTIS GFA&I v FL Distribut I oc / A es ’- n:ia or Fig I Position of test pieces in extruded section iste i
Stitching of near-nulled subaperture measurements
NASA Technical Reports Server (NTRS)
Devries, Gary (Inventor); Brophy, Christopher (Inventor); Forbes, Greg (Inventor); Murphy, Paul (Inventor)
2012-01-01
A metrology system for measuring aspheric test objects by subaperture stitching. A wavefront-measuring gauge having a limited capture range of wavefront shapes collects partially overlapping subaperture measurements over the test object. A variable optical aberrator reshapes the measurement wavefront with between a limited number of the measurements to maintain the measurement wavefront within the capture range of the wavefront-measuring gauge. Various error compensators are incorporated into a stitching operation to manage residual errors associated with the use of the variable optical aberrator.
Performances of the New Real Time Tsunami Detection Algorithm applied to tide gauges data
NASA Astrophysics Data System (ADS)
Chierici, F.; Embriaco, D.; Morucci, S.
2017-12-01
Real-time tsunami detection algorithms play a key role in any Tsunami Early Warning System. We have developed a new algorithm for tsunami detection (TDA) based on the real-time tide removal and real-time band-pass filtering of seabed pressure time series acquired by Bottom Pressure Recorders. The TDA algorithm greatly increases the tsunami detection probability, shortens the detection delay and enhances detection reliability with respect to the most widely used tsunami detection algorithm, while containing the computational cost. The algorithm is designed to be used also in autonomous early warning systems with a set of input parameters and procedures which can be reconfigured in real time. We have also developed a methodology based on Monte Carlo simulations to test the tsunami detection algorithms. The algorithm performance is estimated by defining and evaluating statistical parameters, namely the detection probability, the detection delay, which are functions of the tsunami amplitude and wavelength, and the occurring rate of false alarms. In this work we present the performance of the TDA algorithm applied to tide gauge data. We have adapted the new tsunami detection algorithm and the Monte Carlo test methodology to tide gauges. Sea level data acquired by coastal tide gauges in different locations and environmental conditions have been used in order to consider real working scenarios in the test. We also present an application of the algorithm to the tsunami event generated by Tohoku earthquake on March 11th 2011, using data recorded by several tide gauges scattered all over the Pacific area.
Stress Wave Attenuation in Aluminum Alloy and Mild Steel Specimens Under SHPB Tensile Testing
NASA Astrophysics Data System (ADS)
Pothnis, J. R.; Ravikumar, G.; Arya, H.; Yerramalli, Chandra S.; Naik, N. K.
2018-02-01
Investigations on the effect of intensity of incident pressure wave applied through the striker bar on the specimen force histories and stress wave attenuation during split Hopkinson pressure bar (SHPB) tensile testing are presented. Details of the tensile SHPB along with Lagrangian x- t diagram of the setup are included. Studies were carried out on aluminum alloy 7075 T651 and IS 2062 mild steel. While testing specimens using the tensile SHPB setup, it was observed that the force calculated from the transmitter bar strain gauge was smaller than the force obtained from the incident bar strain gauge. This mismatch between the forces in the incident bar and the transmitter bar is explained on the basis of stress wave attenuation in the specimens. A methodology to obtain force histories using the strain gauges on the specimen during SHPB tensile testing is also presented. Further, scanning electron microscope images and photomicrographs are given. Correlation between the microstructure and mechanical properties is explained. Further, uncertainty analysis was conducted to ascertain the accuracy of the results.
Mikrut, Sławomir; Kohut, Piotr; Pyka, Krystian; Tokarczyk, Regina; Barszcz, Tomasz; Uhl, Tadeusz
2016-01-01
The paper contains a survey of mobile scanning systems for measuring the railway clearance gauge. The research was completed as part of the project carried out for the PKP (PKP Polish Railway Lines S.A., Warsaw, Poland) in 2011–2013. The authors conducted experiments, including a search for the latest solutions relating to mobile measurement systems that meet the basic requirement. At the very least, these solutions needed to be accurate and have the ability for quick retrieval of data. In the paper, specifications and the characteristics of the component devices of the scanning systems are described. Based on experiments, the authors did some examination of the selected mobile systems to be applied for measuring the clearance gauge. The Riegl (VMX-250) and Z+F (Zoller + Fröhlich) Solution were tested. Additional test measurements were carried out within a 30-kilometer section of the Warsaw-Kraków route. These measurements were designed so as to provide various elements of the railway infrastructure, the track geometry and the installed geodetic control network. This ultimately made it possible to reduce the time for the preparation of geodetic reference measurements for the testing of the accuracy of the selected systems. Reference measurements included the use of the polar method to select profiles perpendicular to the axis of the track. In addition, the coordinates selected were well defined as measuring points of the objects of the infrastructure of the clearance gauge. All of the tested systems meet the accuracy requirements initially established (within the range of 2 cm as required by the PKP). The tested systems have shown their advantages and disadvantages. PMID:27187400
A technique for chronic, extraluminal measurement of uterine activity.
Capraro, D L; Lee, J G; Sharp, D C
1977-08-01
The construction, calibration, and surgical placement of a device for monitoring uterine motility are described. The device, a linear stretch gauge, consisted of a length of flexible tubing filled with mercury and connected at both ends to copper wire leads. An increase in the length of the mercury-filled tubing caused a change in resistance. This change was quantitated, using a modified Wheatstone bridge circuit. In in vitro test, the stretch gauges demonstrated linear response in millivolt output to elongation over a range that was comparable to physiologic responses observed with the gauges placed in vivo. If surgically placed around 1 uterine horn, stretch gauges responded to uterine contractile events with specificity and sensitivity. Calibration of the device at time of placement permitted monitoring for possible increases in uterine circumference.
Development of an automatic test equipment for nano gauging displacement transducers
NASA Astrophysics Data System (ADS)
Wang, Yung-Chen; Jywe, Wen-Yuh; Liu, Chien-Hung
2005-01-01
In order to satisfy the increasing demands on the precision in manufacturing technology, nanaometrology gradually becomes more important in manufacturing process. To ensure the precision of manufacture, precise measuring instruments and sensors play a decesive role for the accurate characterization and inspection of products. For linear length inspection, high precision gauging displacement transducers, i.e. nano gauging displacement transducers (NGDT), have been often utilized, which have been often utilized, which have the resolution in the nanometer range and can achieve an accuracy of less than 100 nm. Such measurement instruments include transducers based on electronic as well as optical measurement principles, e.g. inductive, incremental-optical or interference optical. To guarantee the accuracy and the traceability to the definition of the meter, calibration and test of NGDT are essential. Currently, there are some methods and machines for test of NGDT, but they suffer from various disadvantages. Some of them permit only manual test procedures which are time-consuming, e.g. with high accurate gauge blocks as material measures. Other tests can reach higher accuracy only in the micrometer range or result in uncertainties of more than 100 nm in the large measuring ranges. To realize the test of NGDT with a high resolution as well as a large measuring range, an automatic test equipment was constructed, that has a resolution of 1.24 nm, a measuring range of up to 20 nm (60 mm) and a measuring uncertainty of approximate ±10 nm can fulfil the requirements of high resolution within the nanometer range while simultaneously covering a large measuring range in the order of millimeters. The test system includes a stable frame, a polarization interferometer, an angle sensor, an angular control, a drive system and piezo translators. During the test procedure, the angular control and piezo translators minimize the Abbe error. For the automation of the test procedure a measuring program adhering to the measurement principle outlined in VDI/VDE 2617 guidelines was designed. With this program NGDT can be tested in less than thirty minutes with eleven measuring points and five repetitions. By mean of theoretical and experimental investigations it can be proved that the automatic test system achieves a test uncertainty of approx. ±10 nm at the measuring range of 18 mm, that corresponds to a relative uncertainty of approximately ±5 × 10-7. With small uncertainty, the minimization of the Abbe error and short test time, this system can be regarded as a universal and efficient precision test equipment, which is available for the accurate test of arbitrary high precision gauging displacement transducers.
Monopole operators and Hilbert series of Coulomb branches of 3 d = 4 gauge theories
NASA Astrophysics Data System (ADS)
Cremonesi, Stefano; Hanany, Amihay; Zaffaroni, Alberto
2014-01-01
This paper addresses a long standing problem - to identify the chiral ring and moduli space (i.e. as an algebraic variety) on the Coulomb branch of an = 4 superconformal field theory in 2+1 dimensions. Previous techniques involved a computation of the metric on the moduli space and/or mirror symmetry. These methods are limited to sufficiently small moduli spaces, with enough symmetry, or to Higgs branches of sufficiently small gauge theories. We introduce a simple formula for the Hilbert series of the Coulomb branch, which applies to any good or ugly three-dimensional = 4 gauge theory. The formula counts monopole operators which are dressed by classical operators, the Casimir invariants of the residual gauge group that is left unbroken by the magnetic flux. We apply our formula to several classes of gauge theories. Along the way we make various tests of mirror symmetry, successfully comparing the Hilbert series of the Coulomb branch with the Hilbert series of the Higgs branch of the mirror theory.
NASA Astrophysics Data System (ADS)
Kondo, Keiichiro; Hata, Hiroshi; Yuki, Kazuaki; Naganuma, Katsunori; Matsuoka, Koichi; Hasebe, Toshio
This paper is aimed at providing the designing method of a permanent magnet synchronous motor (PMSM) control system for the high-speed and the single-phase AC powered Gauge Changing Train (GCT). The state-of-the-art electrical motive unit is equipped with downsized direct drive type PMSMs for the simplified gauge changeable truck. Due to the feeding the AC single phase power, we propose a beat-less control for PMSMs. We verify the development results of designing procedures by the experimental results of operation on a high-speed test line in Colorado, USA.
NASA Astrophysics Data System (ADS)
Ghosh, Sabita; Prakash, Raghu V.
2013-01-01
Fracture toughness is the ability of a component containing a flow to resist fracture. In the current study, the Ball indentation (BI) test technique, which is well acknowledged as an alternative approach to evaluate mechanical properties of materials due to its semi-nondestructive, fast, and high accurate qualities is used to estimate damage and the fracture toughness for copper samples subjected to varying levels of creep and fatigue. The indentation fracture toughness shows the degradation of Cu samples when they are subjected to different creep conditions. Axial fatigue cycling increases the strength at the mid-gauge section compared to other regions of the samples due to initial strain hardening. The advancement of indentation depth with indentation fatigue cycles experiences transient stage, i.e., jump in indentation depth has been observed, which may be an indication of failure and followed by a steady state with almost constant depth propagation with indentation cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Wang, Jy-An John
We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodenough, D; Olafsdottir, H; Olafsson, I
Purpose: To automatically quantify the amount of missing tissue in a digital breast tomosynthesis system using four stair-stepped chest wall missing tissue gauges in the Tomophan™ from the Phantom Laboratory and image processing from Image Owl. Methods: The Tomophan™ phantom incorporates four stair-stepped missing tissue gauges by the chest wall, allowing measurement of missing chest wall in two different locations along the chest wall at two different heights. Each of the four gauges has 12 steps in 0.5 mm increments rising from the chest wall. An image processing algorithm was developed by Image Owl that first finds the two slicesmore » containing the steps then finds the signal through the highest step in all four gauges. Using the signal drop at the beginning of each gauge the distance to the end of the image gives the length of the missing tissue gauge in millimeters. Results: The Tomophan™ was imaged in digital breast tomosynthesis (DBT) systems from various vendors resulting in 46 cases used for testing. The results showed that on average 1.9 mm of 6 mm of the gauges are visible. A small focus group was asked to count the number of visible steps for each case which resulted in a good agreement between observer counts and computed data. Conclusion: First, the results indicate that the amount of missing chest wall can differ between vendors. Secondly it was shown that an automated method to estimate the amount of missing chest wall gauges agreed well with observer assessments. This finding indicates that consistency testing may be simplified using the Tomophan™ phantom and analysis by an automated image processing named Tomo QA. In general the reason for missing chest wall may be due to a function of the beam profile at the chest wall as DBT projects through the angular sampling. Research supported by Image Owl, Inc., The Phantom Laboratory, Inc. and Raforninn ehf; Mallozzi and Healy employed by The Phantom Laboratory, Inc.; Goodenough is a consultant to The Phantom Laboratory, Inc.; Fredriksson, Kristbjornsson, Olafsson, Oskarsdottir and Olafsdottir are employed by Raforninn, Ehf.« less
Finite element modelling of fibre Bragg grating strain sensors and experimental validation
NASA Astrophysics Data System (ADS)
Malik, Shoaib A.; Mahendran, Ramani S.; Harris, Dee; Paget, Mark; Pandita, Surya D.; Machavaram, Venkata R.; Collins, David; Burns, Jonathan M.; Wang, Liwei; Fernando, Gerard F.
2009-03-01
Fibre Bragg grating (FBG) sensors continue to be used extensively for monitoring strain and temperature in and on engineering materials and structures. Previous researchers have also developed analytical models to predict the loadtransfer characteristics of FBG sensors as a function of applied strain. The general properties of the coating or adhesive that is used to surface-bond the FBG sensor to the substrate has also been modelled using finite element analysis. In this current paper, a technique was developed to surface-mount FBG sensors with a known volume and thickness of adhesive. The substrates used were aluminium dog-bone tensile test specimens. The FBG sensors were tensile tested in a series of ramp-hold sequences until failure. The reflected FBG spectra were recorded using a commercial instrument. Finite element analysis was performed to model the response of the surface-mounted FBG sensors. In the first instance, the effect of the mechanical properties of the adhesive and substrate were modelled. This was followed by modelling the volume of adhesive used to bond the FBG sensor to the substrate. Finally, the predicted values obtained via finite element modelling were correlated to the experimental results. In addition to the FBG sensors, the tensile test specimens were instrumented with surface-mounted electrical resistance strain gauges.
NASA Astrophysics Data System (ADS)
Cecinati, F.; Wani, O.; Rico-Ramirez, M. A.
2016-12-01
It is widely recognised that merging radar rainfall estimates (RRE) with rain gauge data can improve the RRE and provide areal and temporal coverage that rain gauges cannot offer. Many methods to merge radar and rain gauge data are based on kriging and require an assumption of Gaussianity on the variable of interest. In particular, this work looks at kriging with external drift (KED), because it is an efficient, widely used, and well performing merging method. Rainfall, especially at finer temporal scale, does not have a normal distribution and presents a bi-modal skewed distribution. In some applications a Gaussianity assumption is made, without any correction. In other cases, variables are transformed in order to obtain a distribution closer to Gaussian. This work has two objectives: 1) compare different transformation methods in merging applications; 2) evaluate the uncertainty arising when untransformed rainfall data is used in KED. The comparison of transformation methods is addressed under two points of view. On the one hand, the ability to reproduce the original probability distribution after back-transformation of merged products is evaluated with qq-plots, on the other hand the rainfall estimates are compared with an independent set of rain gauge measurements. The tested methods are 1) no transformation, 2) Box-Cox transformations with parameter equal to λ=0.5 (square root), 3) λ=0.25 (square root - square root), and 4) λ=0.1 (almost logarithmic), 5) normal quantile transformation, and 6) singularity analysis. The uncertainty associated with the use of non-transformed data in KED is evaluated in comparison with the best performing product. The methods are tested on a case study in Northern England, using hourly data from 211 tipping bucket rain gauges from the Environment Agency and radar rainfall data at 1 km/5-min resolutions from the UK Met Office. In addition, 25 independent rain gauges from the UK Met Office were used to assess the merged products.
Exploration of a Dynamic Merging Scheme for Precipitation Estimation over a Small Urban Catchment
NASA Astrophysics Data System (ADS)
Al-Azerji, Sherien; Rico-Ramirez, Miguel, ,, Dr.; Han, Dawei, ,, Prof.
2016-04-01
The accuracy of quantitative precipitation estimation is of significant importance for urban areas due to the potentially damaging consequences that can result from pluvial flooding. Improved accuracy could be accomplished by merging rain gauge measurements with weather radar data through different merging methods. Several factors may affect the accuracy of the merged data, and the gauge density used for merging is one of the most important. However, if there are no gauges inside the research area, then a gauge network outside the research area can be used for the merging. Generally speaking, the denser the rain gauge network is, the better the merging results that can be achieved. However, in practice, the rain gauge network around the research area is fixed, and the research question is about the optimal merging area. The hypothesis is that if the merging area is too small, there are fewer gauges for merging and thus the result would be poor. If the merging area is too large, gauges far away from the research area can be included in merging. However, due to their large distances, those gauges far away from the research area provide little relevant information to the study and may even introduce noise in merging. Therefore, an optimal merging area that produces the best merged rainfall estimation in the research area could exist. To test this hypothesis, the distance from the centre of the research area and the number of merging gauges around the research area were gradually increased and merging with a new domain of radar data was then performed. The performance of the new merging scheme was compared with a gridded interpolated rainfall from four experimental rain gauges installed inside the research area for validation. The result of this analysis shows that there is indeed an optimum distance from the centre of research area and consequently an optimum number of rain gauges that produce the best merged rainfall data inside the research area. This study is of important and practical value for estimating rainfall in an urban catchment (when there are no gauges available inside the catchment) by merging weather radar with rain gauge data from outside of the catchment. This has not been reported in any literature before now.
Conformity of modified O-ring test and maximal pinch strength for cross tape application direction.
Lee, Jung-Hoon; Choi, Hyun-Su
2018-06-01
Although cross tape has recently been used by clinicians for various musculoskeletal conditions, scientific studies on the direction of cross tape application are lacking. The present study aimed to investigate whether the direction of cross tape application affected the outcomes of the modified O-ring test and maximal pinch strength using a pinch gauge and the conformity between these 2 tests when cross tape was applied to the forearm muscles of individuals with no upper extremity pain and no restriction of joint range of motion.This study used a single-blinding crossover design. The subjects comprised 39 adults (16 men and 23 women). Cross tape was applied to the dominant hand so that the 4 rows were at an angle of 45° to the right or left of the direction of the flexor digitorum superficialis muscle fibers, and then the subjects underwent a modified O-ring test and a test of maximal pinch strength using a pinch gauge. Both tests were performed in both directions, and the order of the directions and tests was randomized. SPSS 18.0 was used for statistical analysis. Cohen's kappa coefficient was used to analyze the conformity of the results from the 2 tests. The statistical significance level was P < .05. A positive response in the modified O-ring test and maximal pinch strength were both affected by cross tape direction. The modified O-ring test and maximal pinch strength using pinch gauge results were in agreement (P < .00), and the kappa coefficient was significant at 1.00. The direction of cross tape application that produced a positive response in the modified O-ring test also produced greater maximal pinch strength. Thus, we propose that when applying cross tape to muscles, the direction of the 4 lines of the cross tape should be 45° relative to the direction of the muscle fibers, toward the side that produces a positive response in the modified O-ring test or produces the greatest maximal pinch strength using a pinch gauge.
Quantifying Safety Margin Using the Risk-Informed Safety Margin Characterization (RISMC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, David; Bucknor, Matthew; Brunett, Acacia
2015-04-26
The Risk-Informed Safety Margin Characterization (RISMC), developed by Idaho National Laboratory as part of the Light-Water Reactor Sustainability Project, utilizes a probabilistic safety margin comparison between a load and capacity distribution, rather than a deterministic comparison between two values, as is usually done in best-estimate plus uncertainty analyses. The goal is to determine the failure probability, or in other words, the probability of the system load equaling or exceeding the system capacity. While this method has been used in pilot studies, there has been little work conducted investigating the statistical significance of the resulting failure probability. In particular, it ismore » difficult to determine how many simulations are necessary to properly characterize the failure probability. This work uses classical (frequentist) statistics and confidence intervals to examine the impact in statistical accuracy when the number of simulations is varied. Two methods are proposed to establish confidence intervals related to the failure probability established using a RISMC analysis. The confidence interval provides information about the statistical accuracy of the method utilized to explore the uncertainty space, and offers a quantitative method to gauge the increase in statistical accuracy due to performing additional simulations.« less
Thermocouple design for measuring temperatures of small insects.
Hanson, A A; Venette, R C
2013-01-01
Contact thermocouples often are used to measure surface body temperature changes of insects during cold exposure. However, small temperature changes of minute insects can be difficult to detect, particularly during the measurement of supercooling points. We developed two thermocouple designs, which use 0.51 mm diameter or 0.127 mm diameter copper-constantan wires, to improve our ability to resolve insect exotherms. We tested the designs with adults from three parasitoid species: Tetrastichus planipennisi, Spathius agrili, and S. floridanus. These species are <3 mm long and <0.1 mg. Mean exotherms were greater for fine-gauge thermocouples than thick-gauge thermocouples for the smallest species tested, T. planipennisi. This difference was not apparent for larger species S. agrili and S. floridanus. Thermocouple design did not affect the mean supercooling point for any of the species. The cradle thermocouple design developed with the fine gauge wire was reusable and allowed for easy insect recovery after cold exposure.
Clarkson, Douglas McG; Manna, Avinish; Hero, Mark
2014-02-01
We describe the use of an analytical weighing balance of measurement accuracy 0.00001g for determination of concentrations of perfluropropane (C3F8) gas used in ophthalmic surgical vitrectomy procedures. A range of test eyes corresponding to an eye volume of 6.1ml were constructed using 27 gauge needle exit ducts and separately 20 gauge (straight) and 23 gauge (angled) entrance ports. This method allowed determination of concentration levels in the sample preparation syringe and also levels in test eyes. It was determined that a key factor influencing gas concentrations accuracy related to the method of gas fill and the value of dead space of the gas preparation/delivery system and with a significant contribution arising from the use of the particle filter. The weighing balance technique was identified as an appropriate technique for estimation of gas concentrations. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Nissan, J; Gross, M; Shifman, A; Assif, D
2001-07-01
Unfavorable stress distribution and occlusal overload have been reported to result in failures ranging from screw loosening to loss of osseointegration. The purpose of this study was to assess the effect of different tightening forces and sequences, with different operators, on stresses generated on an accurately fitting implant superstructure on multiple working casts made with a splinted impression technique. The effects of different tightening forces (10 and 20 Ncm) were assessed with the use of 30 stone casts made from a metal master model with a splinted impression technique. Stresses generated were recorded by 4 strain gauges attached to the superior surface of the master framework. A multiple analysis of variance with repeated measures was performed to test for significant differences among the groups. Tightening force values at 10 Ncm ranged from 150.43 to 256 Ncm. At 20 Ncm, microstrain values ranged from 149.43 to 284.37 Ncm. Microstrain values related to the sequence of tightening ranged from 150.8 to 308.43 Ncm (left to right) and 154.63 to 274.80 Ncm (right to left). For the different operators, microstrain values ranged from 100.13 to 206.07 Ncm. No statistically significant differences among the variables of tightening force, tightening sequence, and operators were found ( P >.05). The interaction between groups and strain gauges was also found to be nonsignificant (P >.05). The potential of variable tightening force and tightening sequence to generate unfavorable preload stresses can be minimized through use of the splinted impression technique, which ensures an accurately fitting superstructure.
Decorated tensor network renormalization for lattice gauge theories and spin foam models
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian
2016-05-01
Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.
The problems in quantum foundations in the light of gauge theories
NASA Astrophysics Data System (ADS)
Ne'Eman, Yuval
1986-04-01
We review the issues of nonseparability and seemingly acausal propagation of information in EPR, as displayed by experiments and the failure of Bell's inequalities. We show that global effects are in the very nature of the geometric structure of modern physical theories, occurring even at the classical level. The Aharonov-Bohm effect, magnetic monopoles, instantons, etc. result from the topology and homotopy features of the fiber bundle manifolds of gauge theories. The conservation of probabilities, a supposedly highly quantum effect, is also achieved through global geometry equations. The EPR observables all fit in such geometries, and space-time is a truncated representation and is not the correct arena for their understanding. Relativistic quantum field theory represents the global action of the measurement operators as the zero-momentum (and therefore spatially infinitely spread) limit of their wave functions (form factors). We also analyze the collapse of the state vector as a case of spontaneous symmetry breakdown in the apparatus-observed state interaction.
A New Approach to Sap Flow Measurement Using 3D Printed Gauges and Open-source Electronics
NASA Astrophysics Data System (ADS)
Ham, J. M.; Miner, G. L.; Kluitenberg, G. J.
2015-12-01
A new type of sap flow gauge was developed to measure transpiration from herbaceous plants using a modified heat pulse technique. Gauges were fabricated using 3D-printing technology and low-cost electronics to keep the materials cost under $20 (U.S.) per sensor. Each gauge consisted of small-diameter needle probes fastened to a 3D-printed frame. One needle contained a resistance heater to provide a 6 to 8 second heat pulse while the other probes measured the resultant temperature increase at two distances from the heat source. The data acquisition system for the gauges was built from a low-cost Arduino microcontroller. The system read the gauges every 10 minutes and stored the results on a SD card. Different numerical techniques were evaluated for estimating sap velocity from the heat pulse data - including analytical solutions and parameter estimation approaches . Prototype gauges were tested in the greenhouse on containerized corn and sunflower. Sap velocities measured by the gauges were compared to independent gravimetric measurements of whole plant transpiration. Results showed the system could measure daily transpiration to within 3% of the gravimetric measurements. Excellent agreement was observed when two gauges were attached the same stem. Accuracy was not affected by rapidly changing transpiration rates observed under partly cloudy conditions. The gauge-based estimates of stem thermal properties suggested the system may also detect the onset of water stress. A field study showed the gauges could run for 1 to 2 weeks on a small battery pack. Sap flow measurements on multiple corn stems were scaled up by population to estimate field-scale transpiration. During full canopy cover, excellent agreement was observed between the scaled-up sap flow measurements and reference crop evapotranspiration calculated from weather data. Data also showed promise as a way to estimate real-time canopy resistance required for model verification and development. Given the low-cost, low-power, and open-source characteristics of the system; the technology is well suited for applications requiring large number of gauges (spatial scaling or treatment comparisons). While early work was done with agricultural crops, the approach is well suited for other species such as riverine shrubs.
Grading of severity of postdural puncture headache after 27-gauge Quincke and Whitacre needles.
Corbey, M P; Bach, A B; Lech, K; Frørup, A M
1997-06-01
Small-gauge needles are reported to have a low incidence of complications. Pencil-point needles are associated with a lower frequency of postdural puncture headache (PDPH), but a higher failure rate than Quincke needles. The incidence of PDPH was investigated in 200 patients under the age of 45, undergoing day-care surgery, after spinal anaesthesia with either 27-gauge Quincke or Whitacre needle. The severity of headache was graded as I (mild), II (moderate) or III (severe) using a grading system based on the visual analogue scale (VAS) associated with a functional rating (FG). The frequency of PDPH following the Whitacre needle was 0% and 5.6% after the Quincke needle (P = 0.05). Two PDPHs were assessed as grade III, and three as grade II. All PDPHs occurred when the Quincke needle bevel was withdrawn perpendicular to the dural fibres following parallel insertion. No PDPH occurred when the bevel was inserted and removed parallel to the dural fibres (P < 0.05). There was no statistical difference (P > 0.08) in the incidence of PDPH and postdural puncture-related headaches (PDPR-H) in patients with recurrent headaches or migraine compared to patients with no previous history of headaches. We conclude that the 27-gauge Whitacre needle is the 'needle of choice' in patients with normal body stature. The incidence of PDPH following Quincke needles may not only be affected by the direction of the bevel during insertion but also during removal. Statistically, there was no gender variation in PDPH in this study (P = 0.5). A previous history of recurrent headache or migraine does not predispose to PDPH.
Probabilistic reanalysis of twentieth-century sea-level rise.
Hay, Carling C; Morrow, Eric; Kopp, Robert E; Mitrovica, Jerry X
2015-01-22
Estimating and accounting for twentieth-century global mean sea level (GMSL) rise is critical to characterizing current and future human-induced sea-level change. Several previous analyses of tide gauge records--employing different methods to accommodate the spatial sparsity and temporal incompleteness of the data and to constrain the geometry of long-term sea-level change--have concluded that GMSL rose over the twentieth century at a mean rate of 1.6 to 1.9 millimetres per year. Efforts to account for this rate by summing estimates of individual contributions from glacier and ice-sheet mass loss, ocean thermal expansion, and changes in land water storage fall significantly short in the period before 1990. The failure to close the budget of GMSL during this period has led to suggestions that several contributions may have been systematically underestimated. However, the extent to which the limitations of tide gauge analyses have affected estimates of the GMSL rate of change is unclear. Here we revisit estimates of twentieth-century GMSL rise using probabilistic techniques and find a rate of GMSL rise from 1901 to 1990 of 1.2 ± 0.2 millimetres per year (90% confidence interval). Based on individual contributions tabulated in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, this estimate closes the twentieth-century sea-level budget. Our analysis, which combines tide gauge records with physics-based and model-derived geometries of the various contributing signals, also indicates that GMSL rose at a rate of 3.0 ± 0.7 millimetres per year between 1993 and 2010, consistent with prior estimates from tide gauge records.The increase in rate relative to the 1901-90 trend is accordingly larger than previously thought; this revision may affect some projections of future sea-level rise.
Evaluating a slope-stability model for shallow rain-induced landslides using gage and satellite data
Yatheendradas, S.; Kirschbaum, D.; Baum, Rex L.; Godt, Jonathan W.
2014-01-01
Improving prediction of landslide early warning systems requires accurate estimation of the conditions that trigger slope failures. This study tested a slope-stability model for shallow rainfall-induced landslides by utilizing rainfall information from gauge and satellite records. We used the TRIGRS model (Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis) for simulating the evolution of the factor of safety due to rainfall infiltration. Using a spatial subset of a well-characterized digital landscape from an earlier study, we considered shallow failure on a slope adjoining an urban transportation roadway near the Seattle area in Washington, USA.We ran the TRIGRS model using high-quality rain gage and satellite-based rainfall data from the Tropical Rainfall Measuring Mission (TRMM). Preliminary results with parameterized soil depth values suggest that the steeper slope values in this spatial domain have factor of safety values that are extremely close to the failure limit within an extremely narrow range of values, providing multiple false alarms. When the soil depths were constrained using a back analysis procedure to ensure that slopes were stable under initial condtions, the model accurately predicted the timing and location of the landslide observation without false alarms over time for gage rain data. The TRMM satellite rainfall data did not show adequately retreived rainfall peak magnitudes and accumulation over the study period, and as a result failed to predict the landslide event. These preliminary results indicate that more accurate and higher-resolution rain data (e.g., the upcoming Global Precipitation Measurement (GPM) mission) are required to provide accurate and reliable landslide predictions in ungaged basins.
Exact relativistic Toda chain eigenfunctions from Separation of Variables and gauge theory
NASA Astrophysics Data System (ADS)
Sciarappa, Antonio
2017-10-01
We provide a proposal, motivated by Separation of Variables and gauge theory arguments, for constructing exact solutions to the quantum Baxter equation associated to the N-particle relativistic Toda chain and test our proposal against numerical results. Quantum Mechanical non-perturbative corrections, essential in order to obtain a sensible solution, are taken into account in our gauge theory approach by considering codimension two defects on curved backgrounds (squashed S 5 and degenerate limits) rather than flat space; this setting also naturally incorporates exact quantization conditions and energy spectrum of the relativistic Toda chain as well as its modular dual structure.
Hwang, J J; Ho, S T; Wang, J J; Liu, H S
1997-03-01
Our previous study showed that there were no significant differences in the incidence of post dural puncture headache (PDPH) relevant to the use of 24 to 26-gauge Quincke spinal needles in obstetric patients. Again, we were eager to know if the pencil-point spinal needle (Whitacre) would be able to decrease the incidence of PDPH compared to Quincke spinal needle. We prospectively observed 94 spinal anesthesias for cesarean section performed during the period from May 1993 to July 1995. The 25-gauge Whitacre needles were used. In practice the insertion of needle was made through median line approach and the puncture was considered eligible only in one attempt. The PDPH was observed until its disappearance, and one without PDPH had also been observed for at least one week for likelihood of delayed occurrence. The data were compared with those of our previous study regarding the use of 25- and 26-gauge Quincke needles in obstetric patients. All of the data were analyzed using the Fisher exact test. The incidence of PDPH was 1.06%. In comparison there was no significant difference from that of 25- and 26-gauge Quincke needles (3.65% and 2.06%, respective). Only one case suffered from PDPH in the Whitacre group. It was mild and relieved with bed rest and hydration. Although the difference was not statistically significant, the 25-gauge Whitacre spinal needle caused a lower incidence and less severity of PDPH than the 25- and 26-gauge Quincke needles did.
NASA Technical Reports Server (NTRS)
1997-01-01
A 40 K Fastrac II duration test performed at Marshall Test Stand 116. The purpose of this test was to gauge the length of time between contact of TEA (Triethylenealuminum) and LOX (liquid oxygen) as an ignitor for the Fastrac engine.
A new method for automated dynamic calibration of tipping-bucket rain gauges
Humphrey, M.D.; Istok, J.D.; Lee, J.Y.; Hevesi, J.A.; Flint, A.L.
1997-01-01
Existing methods for dynamic calibration of tipping-bucket rain gauges (TBRs) can be time consuming and labor intensive. A new automated dynamic calibration system has been developed to calibrate TBRs with minimal effort. The system consists of a programmable pump, datalogger, digital balance, and computer. Calibration is performed in two steps: 1) pump calibration and 2) rain gauge calibration. Pump calibration ensures precise control of water flow rates delivered to the rain gauge funnel; rain gauge calibration ensures precise conversion of bucket tip times to actual rainfall rates. Calibration of the pump and one rain gauge for 10 selected pump rates typically requires about 8 h. Data files generated during rain gauge calibration are used to compute rainfall intensities and amounts from a record of bucket tip times collected in the field. The system was tested using 5 types of commercial TBRs (15.2-, 20.3-, and 30.5-cm diameters; 0.1-, 0.2-, and 1.0-mm resolutions) and using 14 TBRs of a single type (20.3-cm diameter; 0.1-mm resolution). Ten pump rates ranging from 3 to 154 mL min-1 were used to calibrate the TBRs and represented rainfall rates between 6 and 254 mm h-1 depending on the rain gauge diameter. All pump calibration results were very linear with R2 values greater than 0.99. All rain gauges exhibited large nonlinear underestimation errors (between 5% and 29%) that decreased with increasing rain gauge resolution and increased with increasing rainfall rate, especially for rates greater than 50 mm h-1. Calibration curves of bucket tip time against the reciprocal of the true pump rate for all rain gauges also were linear with R2 values of 0.99. Calibration data for the 14 rain gauges of the same type were very similar, as indicated by slope values that were within 14% of each other and ranged from about 367 to 417 s mm h-1. The developed system can calibrate TBRs efficiently, accurately, and virtually unattended and could be modified for use with other rain gauge designs. The system is now in routine use to calibrate TBRs in a large rainfall collection network at Yucca Mountain, Nevada.
1997-06-09
A 40 K Fastrac II duration test performed at Marshall Test Stand 116. The purpose of this test was to gauge the length of time between contact of TEA (Triethylenealuminum) and LOX (liquid oxygen) as an ignitor for the Fastrac engine.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Annual tests. 229.27 Section 229.27 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Inspections and Tests § 229.27 Annual tests. (a) All testing... of air pressure electronically shall be tested by comparison with a test gauge or self-test designed...
NASA Astrophysics Data System (ADS)
Wu, Bitao; Wu, Gang; Yang, Caiqian; He, Yi
2018-05-01
A novel damage identification method for concrete continuous girder bridges based on spatially-distributed long-gauge strain sensing is presented in this paper. First, the variation regularity of the long-gauge strain influence line of continuous girder bridges which changes with the location of vehicles on the bridge is studied. According to this variation regularity, a calculation method for the distribution regularity of the area of long-gauge strain history is investigated. Second, a numerical simulation of damage identification based on the distribution regularity of the area of long-gauge strain history is conducted, and the results indicate that this method is effective for identifying damage and is not affected by the speed, axle number and weight of vehicles. Finally, a real bridge test on a highway is conducted, and the experimental results also show that this method is very effective for identifying damage in continuous girder bridges, and the local element stiffness distribution regularity can be revealed at the same time. This identified information is useful for maintaining of continuous girder bridges on highways.
Comparisons Between Pretest Prediction and Flight Test Data of Aerodynamic Loading for EFT-1
NASA Technical Reports Server (NTRS)
Schwing, Alan M.
2016-01-01
Exploration Flight Test One (EFT-1) was an incredible milestone in the development NASA's Orion spacecraft. It incorporated hundreds of articles of flight test instrumentation and returned with a wealth of data. Aerodynamic surface pressures were collected during launch vehicle ascent and capsule reentry and descent. These discrete surface pressure measurements enable comparisons to computational results and ground test data. This paper details the comparisons between pre-test predictions and flight test data for the Orion MPCV Crew Module (CM) and Launch Abort Tower (LAT) during all phases of flight. Regions with strong comparisons, poor predictions, and lessons learned are discussed. 38 pressure measurements were made on the LAT during ascent. Nine of the gauges were Honeywell PPTs and the remainder were Kulite pressure transducers. In order to address bias in the Kulites, a two-point linear calibration was used and the details are discussed. Results from the flight are compared to existing database products. 44 pressure measurements were made on the CM during reentry and descent. Nine of the gauges were Honeywell PPTs and the remainder were Kulite pressure transducers. In order to address bias in the Kulites, a tare was made against the vacuum measurements as described below. Once the bias was removed from the gauges, comparisons between predicted loading and the measured results are compared.
Heat flux sensor research and development: The cool film calorimeter
NASA Technical Reports Server (NTRS)
Abtahi, A.; Dean, P.
1990-01-01
The goal was to meet the measurement requirement of the NASP program for a gauge capable of measuring heat flux into a 'typical' structure in a 'typical' hypersonic flight environment. A device is conceptually described that has fast response times and is small enough to fit in leading edge or cowl lip structures. The device relies heavily on thin film technology. The main conclusion is the description of the limitations of thin film technology both in the art of fabrication and in the assumption that thin films have the same material properties as the original bulk material. Three gauges were designed and fabricated. Thin film deposition processes were evaluated. The effect of different thin film materials on the performance and fabrication of the gauge was studied. The gauges were tested in an arcjet facility. Survivability and accuracy were determined under various hostile environment conditions.
Multi-Boson Interactions at the Run 1 LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Daniel R.; Meade, Patrick; Pleier, Marc-Andre
2016-10-24
This review article covers results on the production of all possible electroweak boson pairs and 2-to-1 vector boson fusion (VBF) at the CERN Large Hadron Collider (LHC) in proton-proton collisions at a center-of-mass energy of 7 TeV and 8 TeV. The data was taken between 2010 and 2012. Limits on anomalous triple gauge couplings (aTGCs) then follow. In addition, data on electroweak triple gauge boson production and 2-to-2 vector boson scattering (VBS) yield limits on anomalous quartic gauge boson couplings (aQGCs). The LHC hosts two general purpose experiments, ATLAS and CMS, which both have reported limits on aTGCs and aQGCsmore » which are herein summarized. The interpretation of these limits in terms of an effective field theory (EFT) is reviewed, and recommendations are made for testing other types of new physics using multi-gauge boson production.« less
Pressure Fluctuation Characteristics of Narrow Gauge Train Running Through Tunnel
NASA Astrophysics Data System (ADS)
Suzuki, Masahiro; Sakuma, Yutaka
Pressure fluctuations on the sides of narrow (1067 mm) gauge trains running in tunnels are measured for the first time to investigate the aerodynamic force acting on the trains. The present measurements are compared with earlier measurements obtained with the Shinkansen trains. The results are as follows: (1) The aerodynamic force, which stems from pressure fluctuations on the sides of cars, puts the energy into the vibration of the car body running through a tunnel. (2) While the pressure fluctuations appear only on one of the two sides of the trains running in double-track tunnels, the fluctuations in opposite phase on both sides in single-track tunnels. (3) The on-track test data of the narrow gauge trains show the same tendency as those of the Shinkansen trains, although it is suggested that the pressure fluctuations develop faster along the narrow gauge trains than the Shinkansen trains.
Wallops Island natural rain data analysis
NASA Technical Reports Server (NTRS)
Wang, TING-I.
1994-01-01
ScTI has performed a detailed analysis of four optical rain gauge ORG-105 sensors tested by Wallops Island on 8 May 1992. The four ORG's tested were S/N 2236, 2237, 2239, and 2241. Shown is a 30 minute time series of the individual ORG's, the ORG average, and the weighing gauge. The sensors tracked well with rainrates (RR) up to 45 mm/hr for the period. Also shown is a plot of accumulated rainfall over the same period. It can be seen that even though the ORG's tracked well, some ORG's tended to read higher and some read lower during the event.
NASA Astrophysics Data System (ADS)
Leal-Junior, Arnaldo G.; Frizera, Anselmo; Marques, Carlos; Sánchez, Manuel R. A.; Botelho, Thomaz R.; Segatto, Marcelo V.; Pontes, Maria José
2018-03-01
This paper presents the development of a polymer optical fiber (POF) strain gauge based on the light coupling principle, which the power attenuation is created by the misalignment between two POFs. The misalignment, in this case, is proportional to the strain on the structure that the fibers are attached. This principle has the advantages of low cost, ease of implementation, temperature insensitiveness, electromagnetic fields immunity and simplicity on the sensor interrogation and signal processing. Such advantages make the proposed solution an interesting alternative to the electronic strain gauges. For this reason, an analytical model for the POF strain gauge is proposed and validated. Furthermore, the proposed POF sensor is applied on an active orthosis for knee rehabilitation exercises through flexion/extension cycles. The controller of the orthosis provides 10 different levels of robotic assistance on the flexion/extension movement. The POF strain gauge is tested at each one of these levels. Results show good correlation between the optical and electronic strain gauges with root mean squared deviation (RMSD) of 1.87 Nm when all cycles are analyzed, which represents a deviation of less than 8%. For the application, the proposed sensor presented higher stability than the electronic one, which can provide advantages on the rehabilitation exercises and on the inner controller of the device.
NASA Astrophysics Data System (ADS)
Yoshida, Hajime; Arai, Kenta; Komatsu, Eiichi; Fujii, Kenichi; Bock, Thomas; Jousten, Karl
2015-01-01
A bilateral comparison of absolute gas pressure measurements from 3 × 10-9 Pa to 9 × 10-4 Pa was performed between the National Metrology Institute of Japan (NMIJ) and Physikalisch-Technische Bundesanstalt (PTB). It is a pilot study CCM.P-P1 for the next international comparison in this pressure range to test the stability of ultrahigh vacuum gauges (UHV gauges) as transfer standards. Two spinning rotor gauges (SRGs), an axial-symmetric transmission gauge (ATG), and an extractor gauge (EXG) were used as transfer standards. The calibration ratio of one SRG was sufficiently stable, but the other was not. This result indicates that improvements in the transport mechanism for SRG are needed. The two ionization gauges ATG and EXG, on the other hand, were sufficiently stable. Provisional equivalence of the pressures realized by the primary standards at NMIJ and PTB was found. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCM-WGS.
Sensate Scaffolds Can Reliably Detect Joint Loading
Bliss, C. L.; Szivek, J. A.; Tellis, B. C.; Margolis, D. S.; Schnepp, A. B.; Ruth, J. T.
2008-01-01
Treatment of cartilage defects is essential to the prevention of osteoarthritis. Scaffold-based cartilage tissue engineering shows promise as a viable technique to treat focal defects. Added functionality can be achieved by incorporating strain gauges into scaffolds, thereby providing a real-time diagnostic measurement of joint loading. Strain-gauged scaffolds were placed into the medial femoral condyles of 14 adult canine knees and benchtop tested. Loads between 75 and 130 N were applied to the stifle joints at 30°, 50°, and 70° of flexion. Strain-gauged scaffolds were able to reliably assess joint loading at all applied flexion angles and loads. Pressure sensitive films were used to determine joint surface pressures during loading and to assess the effect of scaffold placement on joint pressures. A comparison of peak pressures in control knees and joints with implanted scaffolds, as well as a comparison of pressures before and after scaffold placement, showed that strain-gauged scaffold implantation did not significantly alter joint pressures. Future studies could possibly use strain-gauged scaffolds to clinically establish normal joint loads and to determine loads that are damaging to both healthy and tissue-engineered cartilage. Strain-gauged scaffolds may significantly aid the development of a functional engineered cartilage tissue substitute as well as provide insight into the native environment of cartilage. PMID:16941586
Comparative study of two precision overdenture attachment designs.
Cohen, B I; Pagnillo, M; Condos, S; Deutsch, A S
1996-08-01
In this study two precision overdenture attachment designs were tested for retention--a nylon overdenture cap system and a new cap and keeper system. The new cap and keeper system was designed to reduce the time involved in replacing a cap worn by the conditions of the oral environment. Six groups were tested at two different angles and retentive failure was examined at two different angles (26 and 0 degrees). Failure was measured in pounds with a force gauge over a 2000 pull cycle. The amount of force required to remove caps for two overdenture caps and a replaced cap for the metal keeper system was determined. Two dependent variables were absolute force and relative force. Repeated measures analysis of variance (RMANOVA) was used to compare the between-subjects effects of cap and angle, and the within-subjects effect of pull. The results indicated a significant difference between cap types (p < 0.0001) with respect to the relative force required to remove the cap. There was no effect of angle. For absolute force, RMANOVA revealed a highly significant interaction between pull and cap (p < 0.0001). Thus, the way that force changed over pulls depended on which cap was used (no effect of angle). For relative force, RMANOVA revealed no interaction between pull and cap, but there was a main effect of cap type (p < 0.0001) (no effect of angle). The nylon cap design required less force for removal but showed more consistency in the force required over the course of the 2000 pulls when compared with the keeper with cap insert. The results obtained in this study were consistent with similar studies in literature.
NASA Astrophysics Data System (ADS)
Pollock, Michael; Colli, Matteo; Stagnaro, Mattia; Lanza, Luca; Quinn, Paul; Dutton, Mark; O'Donnell, Greg; Wilkinson, Mark; Black, Andrew; O'Connell, Enda
2016-04-01
Accurate rainfall measurement is a fundamental requirement in a broad range of applications including flood risk and water resource management. The most widely used method of measuring rainfall is the rain gauge, which is often also considered to be the most accurate. In the context of hydrological modelling, measurements from rain gauges are interpolated to produce an areal representation, which forms an important input to drive hydrological models and calibrate rainfall radars. In each stage of this process another layer of uncertainty is introduced. The initial measurement errors are propagated through the chain, compounding the overall uncertainty. This study looks at the fundamental source of error, in the rainfall measurement itself; and specifically addresses the largest of these, the systematic 'wind-induced' error. Snowfall is outside the scope. The shape of a precipitation gauge significantly affects its collection efficiency (CE), with respect to a reference measurement. This is due to the airflow around the gauge, which causes a deflection in the trajectories of the raindrops near the gauge orifice. Computational Fluid-Dynamic (CFD) simulations are used to evaluate the time-averaged airflows realized around the EML ARG100, EML SBS500 and EML Kalyx-RG rain gauges, when impacted by wind. These gauges have a similar aerodynamic profile - a shape comparable to that of a champagne flute - and they are used globally. The funnel diameter of each gauge, respectively, is 252mm, 254mm and 127mm. The SBS500 is used by the UK Met Office and the Scottish Environmental Protection Agency. Terms of comparison are provided by the results obtained for standard rain gauge shapes manufactured by Casella and OTT which, respectively, have a uniform and a tapered cylindrical shape. The simulations were executed for five different wind speeds; 2, 5, 7, 10 and 18 ms-1. Results indicate that aerodynamic gauges have a different impact on the time-averaged airflow patterns observed in the vicinity of the collector, compared to the standard gauge shapes. Both the air velocity and the turbulent kinetic energy fields present structures that may improve the interception of particles by the aerodynamic gauge collector. To provide empirical validation, a field-based experimental campaign was undertaken at four UK research stations to compare the results of aerodynamic and conventional gauges, mounted in juxtaposition. The reference measurement is recorded using a rain gauge pit, as specified by the WMO. The results appear to demonstrate how the effect of the wind on rainfall measurements is influenced by the gauge shape and the mounting height. Significant undercatch is observed compared to the reference measurement. Aerodynamic gauges mounted on the ground catch more rainfall than juxtaposed straight-sided gauges, in most instances. This appears to provide some preliminary validation of the CFD model. The indication that an aerodynamic profile improves the gauge catching capability could be confirmed by tracking the hydrometeor trajectories with a Lagrangian method, based on the available set of airflows; and investigating time-dependent aerodynamic features by means of dedicated CFD simulations. Furthermore, wind-tunnel tests could be carried out to provide more robust physical validation of the CFD model.
Application of High-Temperature Extrinsic Fabry-Perot Interferometer Strain Sensor
NASA Technical Reports Server (NTRS)
Piazza, Anthony
2008-01-01
In this presentation to the NASA Aeronautics Sensor Working Group the application of a strain sensor is outlined. The high-temperature extrinsic Fabry-Perot interferometer (EFPI) strain sensor was developed due to a need for robust strain sensors that operate accurately and reliably beyond 1800 F. Specifically, the new strain sensor would provide data for validating finite element models and thermal-structural analyses. Sensor attachment techniques were also developed to improve methods of handling and protecting the fragile sensors during the harsh installation process. It was determined that thermal sprayed attachments are preferable even though cements are simpler to apply as cements are more prone to bond failure and are often corrosive. Previous thermal/mechanical cantilever beam testing of EFPI yielded very little change to 1200 F, with excellent correlation with SG to 550 F. Current combined thermal/mechanical loading for sensitivity testing is accomplished by a furnace/cantilever beam loading system. Dilatometer testing has can also be used in sensor characterization to evaluate bond integrity, evaluate sensitivity and accuracy and to evaluate sensor-to-sensor scatter, repeatability, hysteresis and drift. Future fiber optic testing will examine single-mode silica EFPIs in a combined thermal/mechanical load fixture on C-C and C-SiC substrates, develop a multi-mode Sapphire strain-sensor, test and evaluate high-temperature fiber Bragg Gratings for use as strain and temperature sensors and attach and evaluate a high-temperature heat flux gauge.
Cutting force measurement of electrical jigsaw by strain gauges
NASA Astrophysics Data System (ADS)
Kazup, L.; Varadine Szarka, A.
2016-11-01
This paper describes a measuring method based on strain gauges for accurate specification of electric jigsaw's cutting force. The goal of the measurement is to provide an overall perspective about generated forces in a jigsaw's gearbox during a cutting period. The lifetime of the tool is affected by these forces primarily. This analysis is part of the research and development project aiming to develop a special linear magnetic brake for realizing automatic lifetime tests of electric jigsaws or similar handheld tools. The accurate specification of cutting force facilitates to define realistic test cycles during the automatic lifetime test. The accuracy and precision resulted by the well described cutting force characteristic and the possibility of automation provide new dimension for lifetime testing of the handheld tools with alternating movement.
NASA Astrophysics Data System (ADS)
Howard, Danny Dwayne
Part I - Shock waves are focused in extracorporeal shock wave lithotripsy (ESWL) machines to strengths sufficient to fracture kidney stones. Substantial side effects-most of them acute-have resulted from this procedure, including injury to soft tissue. The focusing of shock waves through various layers of tissue is a complex process which stimulates many bio-mechano-chemical responses.This thesis presents results of an in vitro study of the initial mechanical stimulus. Planar nitrocellulose membranes of order 10 um thick were used as models of thin tissue structures. Two modes of failure were recorded: Failure due to cavitation collapsing on or near the membranes, and failure induced by altering the structure of shock waves. Tests were done in water at and around F2 to characterize the extent of cavitation damage, and was found to be confined within the focal region, 1.2 cm along the axis of focus.Scattering media were used to simulate the effects of acoustic nonuniformity of tissue and to alter the structure of focusing shock waves. 40 um diameter (average) hollow glass spheres were added to ethylene glycol, glycerine and castor oil to vary the properties of the scattering media. Multiple layer samples of various types of phantom tissue were tested in degassed castor oil to gauge the validity of the scattering media. The scattering media and tissue samples increased the rise time decreased strain rate in a similar fashion. Membranes were damaged by the decreased strain rate and accumulated effects of the altered structure: After about 20 or so shocks immersed in the scattering media and after about 100 shocks behind the tissue samples. The mode of failure was tearing with multiple tears in some cases from about .1 cm to about 3 cm depending of the number of shocks and membrane thickness.Part II - This work examines the exsolution of volatiles-carbon dioxide from water-in a cylindrical test cell under different pressure conditions. Water was supersaturated with carbon dioxide under various pressures (620 to 1062 kPa), and depressurized rapidly to investigate how carbon dioxide is undissolved, exsolution, and its effects on the surrounding environment. Cavities grow as a result of convective diffusion: They move before depleting carbon dioxide in a given region. The radius of a cavity in this environment grows at a faster rate [...] than that of a cavity at rest [...]. Bubble growth rates were inferred by measuring the bulk liquid using high speed motion pictures. Water in the test-cell is accelerated as a result of buoyancy induced by cavity growth. Cavities are elliptical in shape and grow until mutual interaction causes them to fragment. Accelerations range from 10 to 100 g were measured with velocities ranging from 7 to 13 m/s.
Strain measurement based battery testing
Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk
2017-05-23
A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.
Coulomb branches with complex singularities
NASA Astrophysics Data System (ADS)
Argyres, Philip C.; Martone, Mario
2018-06-01
We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasoni, Richard L; Larsen, Jessica D; Lyles, Brad F.
Pahute Mesa is a groundwater recharge area at the Nevada National Security Site. Because underground nuclear testing was conducted at Pahute Mesa, groundwater recharge may transport radionuclides from underground test sites downward to the water table; the amount of groundwater recharge is also an important component of contaminant transport models. To estimate the amount of groundwater recharge at Pahute Mesa, an INFIL3.0 recharge-runoff model is being developed. Two eddy covariance (EC) stations were installed on Pahute Mesa to estimate evapotranspiration (ET) to support the groundwater recharge modeling project. This data report describes the methods that were used to estimate ETmore » and collect meteorological data. Evapotranspiration was estimated for two predominant plant communities on Pahute Mesa; one site was located in a sagebrush plant community, the other site in a pinyon pine/juniper community. Annual ET was estimated to be 310±13.9 mm for the sagebrush site and 347±15.9 mm for the pinyon pine/juniper site (March 26, 2011 to March 26, 2012). Annual precipitation measured with unheated tipping bucket rain gauges was 179 mm at the sagebrush site and 159 mm at the pinyon pine/juniper site. Annual precipitation measured with bulk precipitation gauges was 222 mm at the sagebrush site and 227 mm at the pinyon pine/juniper site (March 21, 2011 to March 28, 2012). A comparison of tipping bucket versus bulk precipitation data showed that total precipitation measured by the tipping bucket rain gauges was 17 to 20 percent lower than the bulk precipitation gauges. These differences were most likely the result of the unheated tipping bucket precipitation gauges not measuring frozen precipitation as accurately as the bulk precipitation gauges. In this one-year study, ET exceeded precipitation at both study sites because estimates of ET included precipitation that fell during the winter of 2010-2011 prior to EC instrumentation and the precipitation gauges started collecting data in March 2011.« less
Similarity indices of meteo-climatic gauging stations: definition and comparison.
Barca, Emanuele; Bruno, Delia Evelina; Passarella, Giuseppe
2016-07-01
Space-time dependencies among monitoring network stations have been investigated to detect and quantify similarity relationships among gauging stations. In this work, besides the well-known rank correlation index, two new similarity indices have been defined and applied to compute the similarity matrix related to the Apulian meteo-climatic monitoring network. The similarity matrices can be applied to address reliably the issue of missing data in space-time series. In order to establish the effectiveness of the similarity indices, a simulation test was then designed and performed with the aim of estimating missing monthly rainfall rates in a suitably selected gauging station. The results of the simulation allowed us to evaluate the effectiveness of the proposed similarity indices. Finally, the multiple imputation by chained equations method was used as a benchmark to have an absolute yardstick for comparing the outcomes of the test. In conclusion, the new proposed multiplicative similarity index resulted at least as reliable as the selected benchmark.
Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng
2017-01-01
A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model. PMID:28753912
NASA Astrophysics Data System (ADS)
Wu, Bitao; Wu, Gang; Lu, Huaxi; Feng, De-chen
2017-03-01
Fiber optic sensing technology has been widely used in civil infrastructure health monitoring due to its various advantages, e.g., anti-electromagnetic interference, corrosion resistance, etc. This paper investigates a new method for stiffness monitoring and damage identification of bridges under moving vehicle loads using spatially-distributed optical fiber sensors. The relationship between the element stiffness of the bridge and the long-gauge strain history is firstly studied, and a formula which is expressed by the long-gauge strain history is derived for the calculation of the bridge stiffness. Meanwhile, the stiffness coefficient from the formula can be used to identify the damage extent of the bridge. In order to verify the proposed method, a model test of a 1:10 scale bridge-vehicle system is conducted and the long-gauge strain history is obtained through fiber Bragg grating sensors. The test results indicate that the proposed method is suitable for stiffness monitoring and damage assessment of bridges under moving vehicular loads.
Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng
2017-07-19
A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model.
NASA Astrophysics Data System (ADS)
Arms, Steven W.; Guzik, David C.; Townsend, Christopher P.
1998-07-01
Critical civil and military structures require 'smart' sensors in order to report their strain histories; this can help to insure safe operation after exposure to potentially damaging loads. A passive resetable peak strain detector was developed by modifying the mechanics of a differential variable reluctance transducer. The peak strain detector was attached to an aluminum test beam along with a bonded resistance strain gauge and a standard DVRT. Strain measurements were recorded during cyclic beam deflections. DVRT output was compared to the bonded resistance strain gauge output, yielding correlation coefficients ranging from 0.9989 to 0.9998 for al teste, including re-attachment of the DVRT to the specimen. Peak bending strains were obtained by the modified peak detect DVRT to the specimen. Peak bending strains were obtained by the modified peak detect DVRT and this was compared to the peak bending strains as measured by the bonded strain gauge. The peak detect DVRT demonstrated an accuracy of approximately +/- 5 percent over a peak range of 2000 to 2800 microstrain.
Nuclear gauge application in road industry
NASA Astrophysics Data System (ADS)
Azmi Ismail, Mohd
2017-11-01
Soil compaction is essential in road construction. The evaluation of the degree of compaction relies on the knowledge of density and moisture of the compacted layers is very important to the performance of the pavement structure. Among the various tests used for making these determinations, the sand replacement density test and the moisture content determination by oven drying are perhaps the most widely used. However, these methods are not only time consuming and need wearisome procedures to obtain the results but also destructive and the number of measurements that can be taken at any time is limited. The test can on be fed back to the construction site the next day. To solve these problems, a nuclear technique has been introduced as a quicker and easier way of measuring the density and moisture of construction materials. Nuclear moisture density gauges have been used for many years in pavement construction as a method of non-destructive density testing The technique which can determine both wet density and moisture content offers an in situ method for construction control at the work site. The simplicity, the speed, and non-destructive nature offer a great advantage for quality control. This paper provides an overview of nuclear gauge application in road construction and presents a case study of monitoring compaction status of in Sedenak - Skudai, Johor rehabilitation projects.
NASA Astrophysics Data System (ADS)
Hürlimann, Marcel; Abancó, Clàudia; Moya, Jose; Berenguer, Marc
2015-04-01
Empirical rainfall thresholds are a widespread technique in debris-flow hazard assessment and can be established by statistical analysis of historic data. Typically, data from one or several rain gauges located nearby the affected catchment is used to define the triggering conditions. However, this procedure has been demonstrated not to be accurate enough due to the spatial variability of convective rainstorms. In 2009, a monitoring system was installed in the Rebaixader catchment, Central Pyrenees (Spain). Since then, 28 torrential flows (debris flows and debris floods) have occurred and rainfall data of 25 of them are available with a 5-minutes frequency of recording ("event rainfalls"). Other 142 rainfalls that did not trigger events ("no event rainfalls) were also collected and analysed. The goal of this work was threefold: a) characterize rainfall episodes in the Rebaixader catchment and compare rainfall data that triggered torrential events and others that did not; b) define and test Intensity-Duration (ID) thresholds using rainfall data measured inside the catchment; c) estimate the uncertainty derived from the use of rain gauges located outside the catchment based on the spatial correlation depicted by radar rainfall maps. The results of the statistical analysis showed that the parameters that more distinguish between the two populations of rainfalls are the rainfall intensities, the mean rainfall and the total precipitation. On the other side, the storm duration and the antecedent rainfall are not significantly different between "event rainfalls" and "no event rainfalls". Four different ID rainfall thresholds were derived based on the dataset of the first 5 years and tested using the 2014 dataset. The results of the test indicated that the threshold corresponding to the 90% percentile showed the best performance. Weather radar data was used to analyse the spatial variability of the triggering rainfalls. The analysis indicates that rain gauges outside the catchment may be considered useful or not to describe the rainfall depending on the type of rainfall. For widespread rainfalls, further rain gauges can give a reliable measurement, because the spatial correlation decreases slowly with the distance between the rain gauge and the debris-flow initiation area. Contrarily, local storm cells show higher space-time variability and, therefore, representative rainfall measurements are obtained only by the closest rain gauges. In conclusion, the definition of rainfall thresholds is a delicate task. When the rainfall records are coming from gauges that are outside the catchment under consideration, the data should be carefully analysed and crosschecked with radar data (especially for small convective cells).
Delivering proportionate governance in the era of eHealth
Sethi, Nayha; Laurie, Graeme T.
2013-01-01
This article advances a principled proportionate governance model (PPGM) that overcomes key impediments to using health records for research. Despite increasing initiatives for maximising benefits of data linkage, significant challenges remain, including a culture of caution around data sharing and linkage, failure to make use of flexibilities within the law and failure to incorporate intelligent iterative design. The article identifies key issues for consideration and posits a flexible and accessible governance model that provides a robust and efficient means of paying due regard to both privacy and the public interests in research. We argue that proportionate governance based on clear guiding principles accurately gauges risks associated with data uses and assigns safeguards accordingly. This requires a clear articulation of roles and responsibilities at all levels of decision-making and effective training for researchers and data custodians. Accordingly, the PPGM encourages and supports defensible judgements about data linkage in the public interest. PMID:24634569
Moore, Brent; Verdelis, Konstantinos; Kishen, Anil; Dao, Thuan; Friedman, Shimon
2016-12-01
Recently, we reported that in mandibular molars contracted endodontic cavities (CECs) improved fracture strength compared with traditional endodontic cavities (TECs) but compromised instrumentation efficacy in distal canals. This study assessed the impacts of CECs on instrumentation efficacy and axial strain responses in maxillary molars. Eighteen extracted intact maxillary molars were imaged with micro-computed tomographic imaging (12-μm voxel), assigned to CEC or TEC groups (n = 9/group), and accessed accordingly. Canals were instrumented (V-Taper2H; SSWhite Dental, Lakewood, NJ) with 2.5% sodium hypochlorite irrigation, reimaged, and the proportion of the modified canal wall determined. Cavities were restored with bonded composite resin (TPH-Spectra-LV; Dentsply International, York, PA). Another 28 similar molars (n = 14/group) with linear strain gauges (Showa Measuring Instruments, Tokyo, Japan) attached to mesiobuccal and palatal roots were subjected to load cycles (50-150 N) in the Instron Universal Testing machine (Instron, Canton, MA), and the axial microstrain was recorded before access and after restoration. These 28 molars and additional 11 intact molars (control) were cyclically fatigued (1 million cycles, 5-50 N, 15 Hz) and subsequently loaded to failure. Data were analyzed by the Wilcoxon rank sum and Kruskal-Wallis tests (α = 0.05). The overall mean proportion of the modified canal wall did not differ significantly between CECs (49.7% ± 12.0%) and TECs (44.7% ± 9.0%). Relative changes in axial microstrain responses to load varied in both groups. The mean load at failure for CECs (1703 ± 558 N) did not differ significantly from TECs (1384 ± 377 N) and was significantly lower (P < .005) for both groups compared with intact molars (2457 ± 941 N). In maxillary molars tested in vitro, CECs did not impact instrumentation efficacy and biomechanical responses compared with TECs. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Sensitivity and ex vivo validation of finite element models of the domestic pig cranium
Bright, Jen A; Rayfield, Emily J
2011-01-01
A finite element (FE) validation and sensitivity study was undertaken on a modern domestic pig cranium. Bone strain data were collected ex vivo from strain gauges, and compared with results from specimen-specific FE models. An isotropic, homogeneous model was created, then input parameters were altered to investigate model sensitivity. Heterogeneous, isotropic models investigated the effects of a constant-thickness, stiffer outer layer (representing cortical bone) atop a more compliant interior (representing cancellous bone). Loading direction and placement of strain gauges were also varied, and the use of 2D membrane elements at strain gauge locations as a method of projecting 3D model strains into the plane of the gauge was investigated. The models correctly estimate the loading conditions of the experiment, yet at some locations fail to reproduce correct principal strain magnitudes, and hence strain ratios. Principal strain orientations are predicted well. The initial model was too stiff by approximately an order of magnitude. Introducing a compliant interior reported strain magnitudes more similar to the ex vivo results without notably affecting strain orientations, ratios or contour patterns, suggesting that this simple heterogeneity was the equivalent of reducing the overall stiffness of the model. Models were generally insensitive to moderate changes in loading direction or strain gauge placement, except in the squamosal portion of the zygomatic arch. The use of membrane elements made negligible differences to the reported strains. The models therefore seem most sensitive to changes in material properties, and suggest that failure to model local heterogeneity in material properties and structure of the bone may be responsible for discrepancies between the experimental and model results. This is partially attributable to a lack of resolution in the CT scans from which the model was built, and partially due to an absence of detailed material properties data for pig cranial bone. Thus, caution is advised when using FE models to estimate absolute numerical values of breaking stress and bite force unless detailed input parameters are available. However, if the objective is to compare relative differences between models, the fact that the strain environment is replicated well means that such investigations can be robust. PMID:21718316
Akdemir, Mehmet Salim; Kaydu, Ayhan; Yanlı, Yonca; Özdemir, Mehtap; Gökçek, Erhan; Karaman, Haktan
2017-01-01
The postdural puncture headache (PDPH) and postdural puncture backache (PDPB) are well-known complications of spinal anesthesia. There are some attempts to reduce the frequency of complication such as different design of the spinal needles. The primary outcome of this study is to compare the incidence of PDPH between 26-gauge Atraucan and 26-gauge Quincke spinal needles in elective cesarean operations. The severity of symptoms, the incidence of backache, technical issues, and comparison of cost of needles are secondary outcomes. After Investigational Review Board approval, a randomized, prospective, double-blinded study was designed in 682 American Society of Anesthesiologists I-II women having elective cesarean operations under spinal anesthesia. Patients were divided into two groups as 26-gauge Atraucan Group A ( n = 323) and 26-gauge Quincke spinal needles Group Q ( n = 342). All patients were questioned about backache 1 week later. Differences between categorical variables were evaluated with Chi-square test. Continuous variables were compared by Student's t -test for two independent groups. A two-sided P < 0.05 was considered statistically significant for all analyses. There were no significant differences between groups in all demographic data. The one attempt success rate of the dural puncture in Group A (70,58%) and in Group Q (69.3%) was similar ( P > 0.05). The incidence of PDPH was 6.5% in Group A and 4.9% in Group Q ( P > 0.05). The epidural blood patch was performed to the three patients in Group A and five patients in Group Q who had severe headache ( P > 0.05). The incidence of PDPB was 4.33% versus 2.04% in Group A and Group Q ( P > 0.05). The incidence of complication rates and technical handling characteristics did not differ between two groups. Quincke needle is cheaper than Atracaun needle, so it can be a cost-effective choice in obstetric patients.
Akdemir, Mehmet Salim; Kaydu, Ayhan; Yanlı, Yonca; Özdemir, Mehtap; Gökçek, Erhan; Karaman, Haktan
2017-01-01
Background: The postdural puncture headache (PDPH) and postdural puncture backache (PDPB) are well-known complications of spinal anesthesia. There are some attempts to reduce the frequency of complication such as different design of the spinal needles. Aims: The primary outcome of this study is to compare the incidence of PDPH between 26-gauge Atraucan and 26-gauge Quincke spinal needles in elective cesarean operations. The severity of symptoms, the incidence of backache, technical issues, and comparison of cost of needles are secondary outcomes. Materials and Methods: After Investigational Review Board approval, a randomized, prospective, double-blinded study was designed in 682 American Society of Anesthesiologists I–II women having elective cesarean operations under spinal anesthesia. Patients were divided into two groups as 26-gauge Atraucan Group A (n = 323) and 26-gauge Quincke spinal needles Group Q (n = 342). All patients were questioned about backache 1 week later. Differences between categorical variables were evaluated with Chi-square test. Continuous variables were compared by Student's t-test for two independent groups. A two-sided P < 0.05 was considered statistically significant for all analyses. Results: There were no significant differences between groups in all demographic data. The one attempt success rate of the dural puncture in Group A (70,58%) and in Group Q (69.3%) was similar (P > 0.05). The incidence of PDPH was 6.5% in Group A and 4.9% in Group Q (P > 0.05). The epidural blood patch was performed to the three patients in Group A and five patients in Group Q who had severe headache (P > 0.05). The incidence of PDPB was 4.33% versus 2.04% in Group A and Group Q (P > 0.05). Conclusions: The incidence of complication rates and technical handling characteristics did not differ between two groups. Quincke needle is cheaper than Atracaun needle, so it can be a cost-effective choice in obstetric patients. PMID:28663641
Doherty, Orla; Conway, Thomas; Conway, Richard; Murray, Gerard; Casey, Vincent
2017-01-01
Noseband tightness is difficult to assess in horses participating in equestrian sports such as dressage, show jumping and three-day-eventing. There is growing concern that nosebands are commonly tightened to such an extent as to restrict normal equine behaviour and possibly cause injury. In the absence of a clear agreed definition of noseband tightness, a simple model of the equine nose-noseband interface environment was developed in order to guide further studies in this area. The normal force component of the noseband tensile force was identified as the key contributor to sub-noseband tissue compression. The model was used to inform the design of a digital tightness gauge which could reliably measure the normal force component of the noseband tensile force. A digital tightness gauge was developed to measure this parameter under nosebands fitted to bridled horses. Results are presented for field tests using two prototype designs. Prototype version three was used in field trial 1 (n = 15, frontal nasal plane sub-noseband site). Results of this trial were used to develop an ergonomically designed prototype, version 4, which was tested in a second field trial (n = 12, frontal nasal plane and lateral sub-noseband site). Nosebands were set to three tightness settings in each trial as judged by a single rater using an International Society for Equitation Science (ISES) taper gauge. Normal forces in the range 7-95 N were recorded at the frontal nasal plane while a lower range 1-28 N was found at the lateral site for the taper gauge range used in the trials. The digital tightness gauge was found to be simple to use, reliable, and safe and its use did not agitate the animals in any discernable way. A simple six point tightness scale is suggested to aid regulation implementation and the control of noseband tightness using normal force measurement as the objective tightness discriminant.
Failure Waves in Glass and Ceramics under Shock Compression
NASA Astrophysics Data System (ADS)
Singh Brar, N.
1999-06-01
The response of various types of glasses (fused silica, borosilicates, soda-lime, and lead filled) to shock wave loading, especially the failure of glass behind the shock wave through the ``so called" failure wave or front has been the subject of intense research among a number of investigators. The variations in material properties across this front include complete loss of tensile (spall) strength, loss in shear strength, reduction in acoustic impedance, and opacity to light. Both the Stress and velocity history from VISAR measurements have shown that the failure front propagates at a speed of 1.5 to 2.5 mm/s, depending on the peak shock stress level. The shear strength [τ = 1/2(σ_x-σ_y)] behind the failure front, determined using embedded transverse gauges, is found to decrease to about 2 GPa for soda-lime, borosilicate, and filled glasses. The optical (high-speed photography) observations also confirm the formation of failure front. There is a general agreement among various researchers on these observations. However, three proposed mechanisms for the formation of failure front are based on totally different formulations. The first, due to Clifton is based on the process of nucleation of local densification due to shock compression followed by shear failure around inhomogeneities resulting in phase boundary between the comminuted from the intact material. The second, proposed by Grady involves the transfer of elastic shear strain energy to dilatant strain energy as a result of severe microcracking originating from impact face. The third, by Espinosa and Brar proposes that the front is created through shear microcracks, which nucleate and propagate from the impact face, as originally suggested by Kanel. This mechanism is incorporated in multiple-plane model and simulations predict the increase in lateral stress and an observed reduction in spall strength behind the failure front. Failure front studies, in terms of loss of shear strength, have been recently extended to alumina and SiC ceramics by Bourne et. al.
Replacement Technologies for Precision Cleaning of Aerospace Hardware for Propellant Service
NASA Technical Reports Server (NTRS)
Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul
1997-01-01
The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-l13- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. Replacement technologies are being investigated for aerospace hardware and for gauges and instrumentation. This paper includes the findings of investigations of aqueous cleaning and verification of aerospace hardware using known contaminants, such as hydraulic fluid and commonly used oils. The results correlate nonvolatile residue with CFC 113. The studies also include enhancements to aqueous sampling for organic and particulate contamination. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon 225 (HCFC 225), HCFC 141b, HFE 7100(R), and Vertrel MCA(R) was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC 113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autogenous ignition and liquid oxygen mechanical impact testing.
Mass quantity gauging by RF mode analysis
NASA Technical Reports Server (NTRS)
Collier, R. S.; Ellerbruch, D.; Cruz, J. E.; Stokes, R. W.; Luft, P. E.; Peterson, R. G.; Hiester, A. E.
1973-01-01
Work done to date is reported concerning Radio Frequency Mass Quantity Gauging. Experimental apparatus has been designed and tested which measures the resonant frequencies of a tank in the time domain. These frequencies correspond to the total mass of fluid within the tank. Experimental results are discussed for nitrogen and hydrogen in normal gravity both in the supercritical state and also in the two phase (liquid-gas) region. Theoretical discussions for more general cases are given.
30 CFR 7.26 - Flame test apparatus.
Code of Federal Regulations, 2014 CFR
2014-07-01
... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Brattice Cloth and Ventilation Tubing § 7.26 Flame... cloth and ventilation tubing shall be constructed as follows: (a) A 16-gauge stainless steel gallery...
30 CFR 7.26 - Flame test apparatus.
Code of Federal Regulations, 2013 CFR
2013-07-01
... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Brattice Cloth and Ventilation Tubing § 7.26 Flame... cloth and ventilation tubing shall be constructed as follows: (a) A 16-gauge stainless steel gallery...
30 CFR 7.26 - Flame test apparatus.
Code of Federal Regulations, 2012 CFR
2012-07-01
... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Brattice Cloth and Ventilation Tubing § 7.26 Flame... cloth and ventilation tubing shall be constructed as follows: (a) A 16-gauge stainless steel gallery...
Parametric investigation of scalable tactile sensors
NASA Astrophysics Data System (ADS)
Saadatzi, Mohammad Nasser; Yang, Zhong; Baptist, Joshua R.; Sahasrabuddhe, Ritvij R.; Wijayasinghe, Indika B.; Popa, Dan O.
2017-05-01
In the near future, robots and humans will share the same environment and perform tasks cooperatively. For intuitive, safe, and reliable physical human-robot interaction (pHRI), sensorized robot skins for tactile measurements of contact are necessary. In a previous study, we presented skins consisting of strain gauge arrays encased in silicone encapsulants. Although these structures could measure normal forces applied directly onto the sensing elements, they also exhibited blind spots and response asymmetry to certain loading patterns. This study presents a parametric investigation of piezoresistive polymeric strain gauge that exhibits a symmetric omniaxial response thanks to its novel star-shaped structure. This strain gauge relies on the use of gold micro-patterned star-shaped structures with a thin layer of PEDOT:PSS which is a flexible polymer with piezoresistive properties. In this paper, the sensor is first modeled and comprehensively analyzed in the finite-element simulation environment COMSOL. Simulations include stress-strain loading for a variety of structure parameters such as gauge lengths, widths, and spacing, as well as multiple load locations relative to the gauge. Subsequently, sensors with optimized configurations obtained through simulations were fabricated using cleanroom photolithographic and spin-coating processes, and then experimentally tested. Results show a trend-wise agreement between experiments and simulations.
Compression Frequency Choice for Compression Mass Gauge Method and Effect on Measurement Accuracy
NASA Astrophysics Data System (ADS)
Fu, Juan; Chen, Xiaoqian; Huang, Yiyong
2013-12-01
It is a difficult job to gauge the liquid fuel mass in a tank on spacecrafts under microgravity condition. Without the presence of strong buoyancy, the configuration of the liquid and gas in the tank is uncertain and more than one bubble may exist in the liquid part. All these will affect the measure accuracy of liquid mass gauge, especially for a method called Compression Mass Gauge (CMG). Four resonance resources affect the choice of compression frequency for CMG method. There are the structure resonance, liquid sloshing, transducer resonance and bubble resonance. Ground experimental apparatus are designed and built to validate the gauging method and the influence of different compression frequencies at different fill levels on the measurement accuracy. Harmonic phenomenon should be considered during filter design when processing test data. Results demonstrate the ground experiment system performances well with high accuracy and the measurement accuracy increases as the compression frequency climbs in low fill levels. But low compression frequencies should be the better choice for high fill levels. Liquid sloshing induces the measurement accuracy to degrade when the surface is excited to wave by external disturbance at the liquid natural frequency. The measurement accuracy is still acceptable at small amplitude vibration.
NASA Technical Reports Server (NTRS)
Vila, Daniel; deGoncalves, Luis Gustavo; Toll, David L.; Rozante, Jose Roberto
2008-01-01
This paper describes a comprehensive assessment of a new high-resolution, high-quality gauge-satellite based analysis of daily precipitation over continental South America during 2004. This methodology is based on a combination of additive and multiplicative bias correction schemes in order to get the lowest bias when compared with the observed values. Inter-comparisons and cross-validations tests have been carried out for the control algorithm (TMPA real-time algorithm) and different merging schemes: additive bias correction (ADD), ratio bias correction (RAT) and TMPA research version, for different months belonging to different seasons and for different network densities. All compared merging schemes produce better results than the control algorithm, but when finer temporal (daily) and spatial scale (regional networks) gauge datasets is included in the analysis, the improvement is remarkable. The Combined Scheme (CoSch) presents consistently the best performance among the five techniques. This is also true when a degraded daily gauge network is used instead of full dataset. This technique appears a suitable tool to produce real-time, high-resolution, high-quality gauge-satellite based analyses of daily precipitation over land in regional domains.
Fuel cladding behavior under rapid loading conditions
NASA Astrophysics Data System (ADS)
Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.
2016-02-01
A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.
Automatic calculation of supersymmetric renormalization group equations and loop corrections
NASA Astrophysics Data System (ADS)
Staub, Florian
2011-03-01
SARAH is a Mathematica package for studying supersymmetric models. It calculates for a given model the masses, tadpole equations and all vertices at tree-level. This information can be used by SARAH to write model files for CalcHep/ CompHep or FeynArts/ FormCalc. In addition, the second version of SARAH can derive the renormalization group equations for the gauge couplings, parameters of the superpotential and soft-breaking parameters at one- and two-loop level. Furthermore, it calculates the one-loop self-energies and the one-loop corrections to the tadpoles. SARAH can handle all N=1 SUSY models whose gauge sector is a direct product of SU(N) and U(1) gauge groups. The particle content of the model can be an arbitrary number of chiral superfields transforming as any irreducible representation with respect to the gauge groups. To implement a new model, the user has just to define the gauge sector, the particle, the superpotential and the field rotations to mass eigenstates. Program summaryProgram title: SARAH Catalogue identifier: AEIB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 97 577 No. of bytes in distributed program, including test data, etc.: 2 009 769 Distribution format: tar.gz Programming language: Mathematica Computer: All systems that Mathematica is available for Operating system: All systems that Mathematica is available for Classification: 11.1, 11.6 Nature of problem: A supersymmetric model is usually characterized by the particle content, the gauge sector and the superpotential. It is a time consuming process to obtain all necessary information for phenomenological studies from these basic ingredients. Solution method: SARAH calculates the complete Lagrangian for a given model whose gauge sector can be any direct product of SU(N) gauge groups. The chiral superfields can transform as any, irreducible representation with respect to these gauge groups and it is possible to handle an arbitrary number of symmetry breakings or particle rotations. Also the gauge fixing terms can be specified. Using this information, SARAH derives the mass matrices and Feynman rules at tree-level and generates model files for CalcHep/CompHep and FeynArts/FormCalc. In addition, it can calculate the renormalization group equations at one- and two-loop level and the one-loop corrections to the one- and two-point functions. Unusual features: SARAH just needs the superpotential and gauge sector as input and not the complete Lagrangian. Therefore, the complete implementation of new models is done in some minutes. Running time: Measured CPU time for the evaluation of the MSSM on an Intel Q8200 with 2.33 GHz. Calculating the complete Lagrangian: 12 seconds. Calculating all vertices: 75 seconds. Calculating the one- and two-loop RGEs: 50 seconds. Calculating the one-loop corrections: 7 seconds. Writing a FeynArts file: 1 second. Writing a CalcHep/CompHep file: 6 seconds. Writing the LaTeX output: 1 second.
2013-01-01
Background Strong associations have been observed between exposure to fine ambient particulate matter (PM2.5) and adverse cardiovascular outcomes. In particular, exposure to traffic related PM2.5 has been associated with increases in left ventricular hypertrophy, a strong risk factor for cardiovascular mortality. As much of traffic related PM2.5 is derived from diesel exhaust (DE), we investigated the effects of chronic DE exposure on cardiac hypertrophy and heart failure in the adult mouse by exposing mice to DE combined with either of two mouse models of cardiac hypertrophy: angiotensin II infusion or pressure overload induced by transverse aortic banding. Methods Wild type male C57BL/6 J mice were either infused with angiotensin II (800 ng/kg/min) via osmotic minipump implanted subcutaneously for 1 month, or underwent transverse aortic banding (27 gauge needle 1 week for observing acute reactions, 26 gauge needle 3 months or 6 months for observing chronic reactions). Vehicle (saline) infusion or sham surgery was used as a control. Shortly after surgery, mice were transferred to our exposure facility and randomly assigned to either diesel exhaust (300 or 400 μg/m3) or filtered air exposures. After reaching the end of designated time points, echocardiography was performed to measure heart structure and function. Gravimetric analysis was used to measure the ventricular weight to body weight ratio. We also measured heart rate by telemetry using implanted ambulatory ECG monitors. Results Both angiotensin II and transverse aortic banding promoted cardiac hypertrophy compared to vehicle or sham controls. Transverse aortic banding for six months also promoted heart failure in addition to cardiac hypertrophy. In all cases, DE failed to exacerbate the development of hypertrophy or heart failure when compared to filtered air controls. Prolonged DE exposure also led to a decrease in average heart rate. Conclusions Up to 6-months of DE exposure had no effect on cardiac hypertrophy and heart function induced by angiotensin II stimulation or pressure overload in adult C57BL/6 J mice. This study highlights the potential importance of particle constituents of ambient PM2.5 to elicit cardiotoxic effects. Further investigations on particle constituents and cardiotoxicity are warranted. PMID:24093778
Self-sensing concrete-filled FRP tubes using FBG strain sensors
NASA Astrophysics Data System (ADS)
Yan, Xin; Li, Hui
2007-07-01
Concrete-filled fiber-reinforced polymer (FRP) tube is a type of newly developed structural column. It behaves brittle failure at its peak strength, and so the health monitoring on the hoop strain of the FRP tube is essential for the life cycle safety of the structure. Herein, three types of FRP tubes including 5-ply tube, 2-ply tube with local reinforcement and FRP-steel composite tube were embedded with the optic fiber Bragg grating (FBG) strain sensors in the inter-ply of FRP or the interface between FRP and steel in the middle height and the hoop direction. The compressive behaviors of the concrete-filled FRP tubes were experimentally studied. The hoop strains of the FRP tubes were recorded in real time using the embedded FBG strain sensors as well as the embedded or surface electric resistance strain gauges. Results indicated that the FBG strain sensors can faithfully record the hoop strains of the FRP tubes in compression as compared with the embedded or surface electric resistance strain gauges, and the strains recorded can reach more than μɛ.
Ab interno management of blocked Ahmed valve in the posterior segment.
Odrich, Steven; Wald, Kenneth; Sperber, Laurence
2013-01-01
To report a case of late failure of a posterior segment placed Ahmed valve in a uveitic eye with a corneal graft and a minimally invasive, ab interno approach in restoring valve function, pressure control, and preservation of vision. Case report. A 25 gauge trans-conjunctival 3-port pars plana vitrectomy was performed to inspect and clean the ostium of the Ahmed valve of any vitreous debris. The Ahmed valve was not disturbed externally and conjunctival dissection was not performed. A 27-gauge blunt cannula was introduced through the vitrector site and used to cannulate the tube and flush it with balanced salt solution. A bleb was immediately re-established and all instruments were removed requiring no sutures. Intraocular pressure returned to target levels and a filtration bleb was re-established. Corneal graft clarity was restored with resolution of preoperative microcystic edema. Postoperative inflammation was minimal and vision was restored. A nonfunctioning tube shunt residing in the vitreous cavity may be revised ab interno without disturbing the shunt placement or the conjunctiva under which it resides to re-establish filtration.
Approaches to emergent spacetime in gauge/gravity duality
NASA Astrophysics Data System (ADS)
Sully, James Kenneth
2013-08-01
In this thesis we explore approaches to emergent local spacetime in gauge/gravity duality. We first conjecture that every CFT with a large-N type limit and a parametrically large gap in the spectrum of single-trace operators has a local bulk dual. We defend this conjecture by counting consistent solutions to the four-point function in simple scalar models and matching to the number of local interaction terms in the bulk. Next, we proceed to explicitly construct local bulk operators using smearing functions. We argue that this construction allows one to probe inside black hole horizons for only short times. We then suggest that the failure to construct bulk operators inside a black hole at late times is indicative of a break-down of local effective field theory at the black hole horizon. We argue that the postulates of black hole complementarity are inconsistent and cannot be realized within gauge/gravity duality. We argue that the most conservative solution is a firewall at the black hole horizon and we critically explore alternative resolutions. We then examine the CGHS model of two-dimensional gravity to look for dynamical formation of firewalls. We find that the CGHS model does not exhibit firewalls, but rather contains long-lived remnants. We argue that, while this is consistent for the CGHS model, it cannot be so in higher-dimensional theories of gravity. Lastly, we turn to F-theory, and detail local and global obstructions to writing elliptic fibrations in Tate form. We determine more general possible forms.
Full-scale fatigue tests of CX-100 wind turbine blades. Part I: testing
NASA Astrophysics Data System (ADS)
Farinholt, Kevin M.; Taylor, Stuart G.; Park, Gyuhae; Ammerman, Curtt M.
2012-04-01
This paper overviews the test setup and experimental methods for structural health monitoring (SHM) of two 9-meter CX-100 wind turbine blades that underwent fatigue loading at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC). The first blade was a pristine blade, which was manufactured to standard specifications for the CX-100 design. The second blade was manufactured for the University of Massachusetts, Lowell with intentional simulated defects within the fabric layup. Each blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. The blades underwent harmonic excitation at their first natural frequency using the Universal Resonant Excitation (UREX) system at NREL. Blades were initially excited at 25% of their design load, and then with steadily increasing loads until each blade reached failure. Data from the sensors were collected between and during fatigue loading sessions. The data were measured over multi-scale frequency ranges using a variety of acquisition equipment, including off-the-shelf systems and specially designed hardware developed at Los Alamos National Laboratory (LANL). The hardware systems were evaluated for their aptness in data collection for effective application of SHM methods to the blades. The results of this assessment will inform the selection of acquisition hardware and sensor types to be deployed on a CX-100 flight test to be conducted in collaboration with Sandia National Laboratory at the U.S. Department of Agriculture's (USDA) Conservation and Production Research Laboratory (CPRL) in Bushland, Texas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saeki, Hiroshi, E-mail: saeki@spring8.or.jp; Magome, Tamotsu, E-mail: saeki@spring8.or.jp
2014-10-06
To compensate pressure-measurement errors caused by a synchrotron radiation environment, a precise method using a hot-cathode-ionization-gauge head with correcting electrode, was developed and tested in a simulation experiment with excess electrons in the SPring-8 storage ring. This precise method to improve the measurement accuracy, can correctly reduce the pressure-measurement errors caused by electrons originating from the external environment, and originating from the primary gauge filament influenced by spatial conditions of the installed vacuum-gauge head. As the result of the simulation experiment to confirm the performance reducing the errors caused by the external environment, the pressure-measurement error using this method wasmore » approximately less than several percent in the pressure range from 10{sup −5} Pa to 10{sup −8} Pa. After the experiment, to confirm the performance reducing the error caused by spatial conditions, an additional experiment was carried out using a sleeve and showed that the improved function was available.« less
A Deconstruction Lattice Description of the D1/D5 Brane World-Volume Gauge Theory
Giedt, Joel
2011-01-01
I genermore » alize the deconstruction lattice formulation of Endres and Kaplan to two-dimensional super-QCD with eight supercharges, denoted by (4,4), and bifundamental matter. I specialize to a particularly interesting (4,4) gauge theory, with gauge group U ( N c ) × U ( N f ) , and U ( N f ) being weakly gauged. It describes the infrared limit of the D1/D5 brane system, which has been studied extensively as an example of the AdS 3 /CFT 2 correspondence. The construction here preserves two supercharges exactly and has a lattice structure quite similar to that which has previously appeared in the deconstruction approach, that is, site, link, and diagonal fields with both the Bose and Fermi statistics. I remark on possible applications of the lattice theory that would test the AdS 3 /CFT 2 correspondence, particularly one that would exploit the recent worldsheet instanton analysis of Chen and Tong.« less
49 CFR 178.605 - Hydrostatic pressure test.
Code of Federal Regulations, 2012 CFR
2012-10-01
... hydraulic pressure (gauge) applied, taken at the top of the receptacle, and determined by any one of the... 49 Transportation 3 2012-10-01 2012-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must...
49 CFR 178.605 - Hydrostatic pressure test.
Code of Federal Regulations, 2014 CFR
2014-10-01
... hydraulic pressure (gauge) applied, taken at the top of the receptacle, and determined by any one of the... 49 Transportation 3 2014-10-01 2014-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must...
49 CFR 229.25 - Tests: Every periodic inspection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... dead-weight tester or a test gauge designed for this purpose. (b) All electrical devices and visible... pre-maintenance test reveals that the device is not recording all the specified data and that all... 49 Transportation 4 2013-10-01 2013-10-01 false Tests: Every periodic inspection. 229.25 Section...
49 CFR 229.25 - Tests: Every periodic inspection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... dead-weight tester or a test gauge designed for this purpose. (b) All electrical devices and visible... pre-maintenance test reveals that the device is not recording all the specified data and that all... 49 Transportation 4 2012-10-01 2012-10-01 false Tests: Every periodic inspection. 229.25 Section...
49 CFR 229.25 - Tests: Every periodic inspection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... dead-weight tester or a test gauge designed for this purpose. (b) All electrical devices and visible... pre-maintenance test reveals that the device is not recording all the specified data and that all... 49 Transportation 4 2014-10-01 2014-10-01 false Tests: Every periodic inspection. 229.25 Section...
NASA Technical Reports Server (NTRS)
2007-01-01
Topics include: Wearable Environmental and Physiological Sensing Unit; Broadband Phase Retrieval for Image-Based Wavefront Sensing; Filter Function for Wavefront Sensing Over a Field of View; Iterative-Transform Phase Retrieval Using Adaptive Diversity; Wavefront Sensing With Switched Lenses for Defocus Diversity; Smooth Phase Interpolated Keying; Maintaining Stability During a Conducted-Ripple EMC Test; Photodiode Preamplifier for Laser Ranging With Weak Signals; Advanced High-Definition Video Cameras; Circuit for Full Charging of Series Lithium-Ion Cells; Analog Nonvolatile Computer Memory Circuits; JavaGenes Molecular Evolution; World Wind 3D Earth Viewing; Lithium Dinitramide as an Additive in Lithium Power Cells; Accounting for Uncertainties in Strengths of SiC MEMS Parts; Ion-Conducting Organic/Inorganic Polymers; MoO3 Cathodes for High-Temperature Lithium Thin-Film Cells; Counterrotating-Shoulder Mechanism for Friction Stir Welding; Strain Gauges Indicate Differential-CTE-Induced Failures; Antibodies Against Three Forms of Urokinase; Understanding and Counteracting Fatigue in Flight Crews; Active Correction of Aberrations of Low-Quality Telescope Optics; Dual-Beam Atom Laser Driven by Spinor Dynamics; Rugged, Tunable Extended-Cavity Diode Laser; Balloon for Long-Duration, High-Altitude Flight at Venus; and Wide-Temperature-Range Integrated Operational Amplifier.
NASA Astrophysics Data System (ADS)
Ang, W. C.; Kropelnicki, P.; Soe, Oak; Ling, J. H. L.; Randles, A. B.; Hum, A. J. W.; Tsai, J. M. L.; Tay, A. A. O.; Leong, K. C.; Tan, C. S.
2012-08-01
This paper describes the novel development of a micro-tensile testing method that allows testing at elevated temperatures. Instead of using a furnace, a titanium/platinum thin film micro-heater was fabricated on a conventional dog-bone-shaped test structure to heat up its gauge section locally. An infrared (IR) camera with 5 µm resolution was employed to verify the temperature uniformity across the gauge section of the test structure. With this micro-heater-integrated test structure, micro-tensile tests can be performed at elevated temperatures using any conventional tensile testing system without any major modification to the system. In this study, the tensile test of the single crystal silicon (SCS) thin film with (1 0 0) surface orientation and <1 1 0> tensile direction was performed at room temperature and elevated temperatures, up to 300 °C. Experimental results for Young's modulus as a function of temperature are presented. A micro-sized SCS film showed a low dependence of mechanical properties on temperature up to 300 °C.
Testing the 2-TeV resonance with trileptons
Das, Arindam; Nagata, Natsumi; Okada, Nobuchika
2016-03-09
The CMS collaboration has reported a 2.8 excess in the search of the SU(2) R gauge bosons decaying through right-handed neutrinos into the two electron plus two jets (more » $eejj$) final states. This can be explained if the SU(2) Rcharged gauge bosons W$$±\\atop{R}$$ have a mass of around 2TeV and a right-handed neutrino with a mass of O(1)TeV mainly decays to electron. Indeed, recent results in several other experiments, especially that from the ATLAS diboson resonance search, also indicate signatures of such a 2TeV gauge boson. However, a lack of the same-sign electron events in the CMS $eejj$ search challenges the interpretation of the right-handed neutrino as a Majorana fermion. Taking this situation into account, in this paper, we consider a possibility of explaining the CMS eejj excess based on the SU(2) L ⓍSU(2) RⓍ U(1) B-L gauge theory with pseudo-Dirac neutrinos. We fi nd that both the CMS excess events and the ATLAS diboson anomaly can actually be explained in this framework without conflicting with the current experimental bounds. This setup in general allows sizable left-right mixing in both the charged gauge boson and neutrino sectors, which enables us to probe this model through the trilepton plus missing energy search at the LHC. It turns out that the number of events in this channel predicted in our model is in good agreement with that observed by the CMS collaboration. We also discuss prospects for testing this model at the LHC Run-II experiments.« less
78 FR 57408 - Accreditation and Approval of Saybolt, LP, as a Commercial Gauger and Laboratory
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-18
..., has been approved to gauge and accredited to test petroleum and petroleum products, organic chemicals... accredited to test petroleum and petroleum products, organic chemicals and vegetable oils for customs...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... test petroleum and petroleum products, organic chemicals and vegetable oils for customs purposes for... approved to gauge and accredited to test petroleum and petroleum products, organic chemicals and vegetable...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... test petroleum and petroleum products, organic chemicals and vegetable oils for customs purposes for... approved to gauge and accredited to test petroleum and petroleum products, organic chemicals and vegetable...
78 FR 52556 - Accreditation and Approval of Saybolt, LP, as a Commercial Gauger and Laboratory
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-23
..., has been approved to gauge and accredited to test petroleum and petroleum products, organic chemicals... accredited to test petroleum and petroleum products, organic chemicals and vegetable oils for customs...
Acquisition and evaluation of Hamburg wheel-tracking device
DOT National Transportation Integrated Search
1999-04-01
Surrogate performance tests, or "proof" tests, for asphalt mixtures are being evaluated by states to gauge mixture performance potential in the lab. The University of Arkansas constructed, ERSA (Evaluator of Rutting and Stripping in Asphalt) to "scre...
MMS Observatory Thermal Vacuum Results Contamination Summary
NASA Technical Reports Server (NTRS)
Rosecrans, Glenn P.; Errigo, Therese; Brieda, Lubos
2014-01-01
The MMS mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earths magnetosphere. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Thermal vacuum testing was conducted at the Naval Research Laboratory (NRL) in their Big Blue vacuum chamber. The individual spacecraft were tested and enclosed in a cryopanel enclosure called a Hamster cage. Specific contamination control validations were actively monitored by several QCMs, a facility RGA, and at times, with 16 Ion Gauges. Each spacecraft underwent a bakeout phase, followed by 4 thermal cycles. Unique aspects of the TV environment included slow pump downs with represses, thruster firings, Helium identification, and monitoring pressure spikes with Ion gauges. Various data from these TV tests will be shown along with lessons learned.
Failures in Hybrid Microcircuits During Environmental Testing. History Cases
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2008-01-01
This purpose of this viewgraph presentation is to discuss failures in hermetic hybrids observed at the GSFC PA Lab during environmental stress testing. The cases discussed are: Case I. Substrate metallization failures during Thermal cycling (TC). Case II. Flex lid-induced failure. Case Ill. Hermeticity failures during TC. Case IV. Die metallization cracking during TC. and how many test cycles and parts is necessary? Case V. Wire Bond failures after life test. Case VI. Failures caused by Au/In IMC growth.
Marginal deformations of gauge theories and their dual description
NASA Astrophysics Data System (ADS)
Kulaxizi, Manuela
Holography and its realization in string theory as the AdS/CFT correspondence, offers an equivalence between gauge theories and gravity that provides a means to explore the otherwise inaccessible large N and strong coupling region of SU(N) gauge theories. While considerable progress has been made in this area, a concrete method for specifying the gravitational background dual to a given gauge theory is still lacking. This is the question addressed in this thesis in the context of exactly marginal deformations of N = 4 SYM. First, a precise relation between the deformation of the superpotential and transverse space noncommutativity is established. In particular, the appropriate noncommutativity matrix theta is determined, relying solely on data from the gauge theory lagrangian and basic notions of the AdS/CFT correspondence. The set ( G , theta) of open string parameters, with G the metric of the transverse space, is then understood as a way to encode information pertaining to the moduli space of the gauge theory. It seems thus natural to expect that it may be possible to obtain the corresponding gravitational solution by mapping the open string fields ( G , theta) to the closed string ones (g, B). This hints at a purely algebraic method for constructing gravity duals to given conformal gauge theories. The idea is tested within the context of the beta-deformed theory where the dual gravity description is known and then used to construct the background for the rho-deformed theory up to third order in the deformation parameter rho. Discrepancy of the higher order in rho terms in the latter case is traced to the nonassociativity of the noncommutative matrix theta.
Wang, Wei; Lu, Hui; Yang, Dawen; Sothea, Khem; Jiao, Yang; Gao, Bin; Peng, Xueting; Pang, Zhiguo
2016-01-01
The Mekong River is the most important river in Southeast Asia. It has increasingly suffered from water-related problems due to economic development, population growth and climate change in the surrounding areas. In this study, we built a distributed Geomorphology-Based Hydrological Model (GBHM) of the Mekong River using remote sensing data and other publicly available data. Two numerical experiments were conducted using different rainfall data sets as model inputs. The data sets included rain gauge data from the Mekong River Commission (MRC) and remote sensing rainfall data from the Tropic Rainfall Measurement Mission (TRMM 3B42V7). Model calibration and validation were conducted for the two rainfall data sets. Compared to the observed discharge, both the gauge simulation and TRMM simulation performed well during the calibration period (1998–2001). However, the performance of the gauge simulation was worse than that of the TRMM simulation during the validation period (2002–2012). The TRMM simulation is more stable and reliable at different scales. Moreover, the calibration period was changed to 2, 4, and 8 years to test the impact of the calibration period length on the two simulations. The results suggest that longer calibration periods improved the GBHM performance during validation periods. In addition, the TRMM simulation is more stable and less sensitive to the calibration period length than is the gauge simulation. Further analysis reveals that the uneven distribution of rain gauges makes the input rainfall data less representative and more heterogeneous, worsening the simulation performance. Our results indicate that remotely sensed rainfall data may be more suitable for driving distributed hydrologic models, especially in basins with poor data quality or limited gauge availability. PMID:27010692
Wang, Wei; Lu, Hui; Yang, Dawen; Sothea, Khem; Jiao, Yang; Gao, Bin; Peng, Xueting; Pang, Zhiguo
2016-01-01
The Mekong River is the most important river in Southeast Asia. It has increasingly suffered from water-related problems due to economic development, population growth and climate change in the surrounding areas. In this study, we built a distributed Geomorphology-Based Hydrological Model (GBHM) of the Mekong River using remote sensing data and other publicly available data. Two numerical experiments were conducted using different rainfall data sets as model inputs. The data sets included rain gauge data from the Mekong River Commission (MRC) and remote sensing rainfall data from the Tropic Rainfall Measurement Mission (TRMM 3B42V7). Model calibration and validation were conducted for the two rainfall data sets. Compared to the observed discharge, both the gauge simulation and TRMM simulation performed well during the calibration period (1998-2001). However, the performance of the gauge simulation was worse than that of the TRMM simulation during the validation period (2002-2012). The TRMM simulation is more stable and reliable at different scales. Moreover, the calibration period was changed to 2, 4, and 8 years to test the impact of the calibration period length on the two simulations. The results suggest that longer calibration periods improved the GBHM performance during validation periods. In addition, the TRMM simulation is more stable and less sensitive to the calibration period length than is the gauge simulation. Further analysis reveals that the uneven distribution of rain gauges makes the input rainfall data less representative and more heterogeneous, worsening the simulation performance. Our results indicate that remotely sensed rainfall data may be more suitable for driving distributed hydrologic models, especially in basins with poor data quality or limited gauge availability.
NASA Astrophysics Data System (ADS)
Krajícek, Zdenek; Bergoglio, Mercede; Pražák, Dominik; Pasqualin, Stefano
2014-01-01
This report describes a EURAMET bilateral supplementary comparison between Czech CMI and Italian INRIM in low negative gauge pressure in gas (nitrogen), denoted as EURAMET.M.P-S12. The digital non-rotating pressure balance FPG8601 manufactured by Fluke/DH-Instruments, USA is normally used for gauge and absolute pressures in the range from 1 Pa to 15 kPa, but with some modifications it can be used also for the negative gauge pressures in the same range. During the preparation of the visit of INRIM at CMI for the last comparison within the framework of EURAMET.M.P-K4.2010, it was agreed to also perform an additional comparison in the range from 300 Pa to 15 kPa of negative gauge pressure. The measurements were performed in October 2012. Both institutes successfully proved their equivalence in all the tested points in the range from 300 Pa to 15 kPa of negative gauge pressure in a comparison that had, so far, been unique. . Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Evaluating Thermally Damaged Polyimide Insulated Wiring (MIL-W-81381) with Ultrasound
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Anastasi, Robert F.
2002-01-01
A series of experiments to investigate the use of ultrasound for measuring wire insulation have been conducted. Initial laboratory tests were performed on MIL-W-81381/7,/12, and /21 aviation wire, a wire that has polyimide (Kapton Registered Trademark) layers for insulation. Samples of this wiring were exposed to 370C temperatures for different periods of time to induce a range of thermal damage. For each exposure, 12 samples of each gauge (12, 16, and 20 gauges) were processed. The velocity of the lowest order axisymmetric ultrasonic guided mode, a mode that is sensitive to the geometry and stiffness of the wire conductor and insulation, was measured. The phase velocity for the 20-gauge MIL-W-81381/7 wire had a baseline value of 3023 +/- 78 m/s. After exposure to the high temperatures, the wire's phase velocity rapidly increased, and reached an asymptotic value of 3598 +/- 20 m/s after 100 hours exposure. Similar behavior was measured for the 16 gauge MIL-W-81381/21 wire and 12 gauge MIL-W-81381/12 wire which had baseline values of 3225 +/- 22 m/s and 3403 +/- 33 m/s respectively, and reached asymptotic values of 3668 +/- 19 m/s, and 3679 +/- 42 m/s respectively. These measured velocity changes represent changes of 19, 14, and 8 percent respectively for the 20, 16, and 12 gauge wires. Finally, some results for a wire with an ethylene tetrafluoroethylene insulation are reported. Qualitatively similar behaviors are noted ultrasonically.
NASA Astrophysics Data System (ADS)
Yang, D.; Smith, C.
2013-12-01
Snowfall is important to cold region climate and hydrology including Canada. Large uncertainties and biases exist in gauge-measured precipitation datasets and products. These uncertainties affect important decision-making, water resources assessments, climate change analyses, and calibrations of remote sensing algorithms and land surface models. Efforts have been made at both the national and international levels to quantity the errors/biases in precipitation measurements, such as the WMO Solid Precipitation Intercomparison Experiment (WMO-SPICE). Both the DFIR (double fence intercomparison reference) and the bush shielded gauge have been used in the past as a reference measurement for solid precipitation and they both have been selected as the references for the current SPICE project. Previous analyses of the DFIR vs. the bush (manual Tretyakov) gauge data collected at the Valdai station in Russia suggest DFIR undercatch of snowfall by up to 10% for high wind conditions. A regression relationship between the 2 systems was derived and used for the last WMO gauge intercomparison. Given the importance of the DFIR as the reference for the WMO SPICE project, it is necessary to re-examine and update the DFIR and bush gauge relationship. As part of Canada's contribution to the WMO SPICE project, a test site has been set up by EC/ASTD/WSDT in the southern Canadian Boreal forest to compare the DFIR and bush gauges. This site, called the Caribou Creek, has been installed within a modified young Jack Pine forest stand - north of Prince Albert in Saskatchewan. This study compiles and analyzes recent DFIR and bush gauge data from both the Valdai and Caribou Creek sites. This presentation summarizes the results of data analyses, and evaluates the performance of both references for snowfall observations in the northern regions. The methods and results of this research will directly support the WMO SPICE project and contribute to cold region hydrology and climate change research.
10 CFR 71.125 - Control of measuring and test equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... MATERIAL Quality Assurance § 71.125 Control of measuring and test equipment. The licensee, certificate holder, and applicant for a CoC shall establish measures to assure that tools, gauges, instruments, and other measuring and testing devices used in activities affecting quality are properly controlled...
Improving precipitation measurement
NASA Astrophysics Data System (ADS)
Strangeways, Ian
2004-09-01
Although rainfall has been measured for centuries scientifically and in isolated brief episodes over millennia for agriculture, it is still not measured adequately even today for climatology, water resources, and other precise applications. This paper outlines the history of raingauges, their errors, and describes the field testing over 3 years of a first guess design for an aerodynamic rain collector proposed by Folland in 1988. Although shown to have aerodynamic advantage over a standard 5 gauge, the new rain collector was found to suffer from outsplash in heavy rain. To study this problem, and to derive general basic design rules for aerodynamic gauges, its performance was investigated in turbulent, real-world conditions rather than in the controlled and simplified environment of a wind tunnel or mathematical model as in the past. To do this, video records were made using thread tracers to indicate the path of the wind, giving new insight into the complex flow of natural wind around and within raingauges. A new design resulted, and 2 years of field testing have shown that the new gauge has good aerodynamic and evaporative characteristics and minimal outsplash, offering the potential for improved precipitation measurement.
A simple fast pulse gas valve using a dynamic pressure differential as the primary closing mechanism
NASA Astrophysics Data System (ADS)
Thomas, J. C.; Hwang, D. Q.; Horton, R. D.; Rogers, J. H.; Raman, R.
1993-06-01
In this article we describe a simple fast pulse gas valve developed for use in a plasma discharge experiment. The valve delivers 1017-1019 molecules per pulse varied by changing the voltage on the electromagnetic driver power supply. Valve pulse widths are observed to be less than 300 μs full width at half maximum with a rise time of less than 100 μs resulting in a maximum gas flow rate of ˜1022 molecules per second. An optical transmission technique was used to determine the mechanical opening and closing characteristics of the valve piston. A fast ionization gauge (FIG) was used for diagnosis of the temporal character of the gas pulse while the total gas throughput was determined by measuring the change in pressure per pulse in a small test chamber with a convectron tube gauge. Calibration of the FIG was accomplished by comparing the net change in pressure in a large chamber as measured by the FIG to the net change in pressure in a small test chamber as measured by the convectron tube gauge.
49 CFR 178.814 - Hydrostatic pressure test.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., 21B, and 21N, for Packing Group I solids: 250 kPa (36 psig) gauge pressure. (4) For rigid plastic IBC... 49 Transportation 3 2012-10-01 2012-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification...
49 CFR 178.814 - Hydrostatic pressure test.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., 21B, and 21N, for Packing Group I solids: 250 kPa (36 psig) gauge pressure. (4) For rigid plastic IBC... 49 Transportation 3 2011-10-01 2011-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification...
49 CFR 178.814 - Hydrostatic pressure test.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., 21B, and 21N, for Packing Group I solids: 250 kPa (36 psig) gauge pressure. (4) For rigid plastic IBC... 49 Transportation 3 2014-10-01 2014-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification...
49 CFR 178.814 - Hydrostatic pressure test.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., 21B, and 21N, for Packing Group I solids: 250 kPa (36 psig) gauge pressure. (4) For rigid plastic IBC... 49 Transportation 3 2013-10-01 2013-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification...
Bonding capacity of the GFRP-S on strengthened RC beams after sea water immersion
NASA Astrophysics Data System (ADS)
Sultan, Mufti Amir; Djamaluddin, Rudy
2017-11-01
Construction of concrete structures that located in extreme environments are such as coastal areas will result in decreased strength or even the damage of the structures. As well know, chloride contained in sea water is responsible for strength reduction or structure fail were hence maintenance and repairs on concrete structure urgently needed. One popular method of structural improvements which under investigation is to use the material Glass Fibre Reinforced Polymer which has one of the advantages such as corrosion resistance. This research will be conducted experimental studies to investigate the bonding capacity behavior of reinforced concrete beams with reinforcement GFRP-S immersed in sea water using immersion time of one month, three months, six months and twelve months. Test specimen consists of 12 pieces of reinforced concrete beams with dimensions (150x200x3000) mm that had been reinforced with GFRP-S in the area of bending, the beam without immersion (B0), immersion one month (B1), three months (B3), six months (B6) and twelve months (B12). Test specimen were cured for 28 days before the application of the GFRP sheet. Test specimen B1, B3, B6 and B12 that have been immersed in sea water pool with a immersion time each 1, 3, 6 and 12 months. The test specimen without immersion test by providing a static load until it reaches the failure, to record data during the test strain gauge mounted on the surface of the specimen and the GFRP to collect the strain value. From the research it obvious that there is a decrease bonding capacity on specimens immersed for one month, three months, six months and twelve months against the test object without immersion of 8.85%; 8.89%; 9.33% and 11.04%.
49 CFR 179.500-7 - Physical tests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Physical tests. 179.500-7 Section 179.500-7... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-7 Physical tests. (a) Physical tests shall be made on two test specimens 0.505 inch in diameter within 2-inch gauge length, taken...
49 CFR 232.309 - Equipment and devices used to perform single car air brake tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... least once each calendar day of use. (b) Except for single car test devices, mechanical test devices such as pressure gauges, flow meters, orifices, etc. shall be calibrated once every 92 days. (c) Electronic test devices shall be calibrated at least once every 365 days. (d) Test equipment and single car...
49 CFR 179.500-7 - Physical tests.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Physical tests. 179.500-7 Section 179.500-7... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-7 Physical tests. (a) Physical tests shall be made on two test specimens 0.505 inch in diameter within 2-inch gauge length, taken...
49 CFR 179.500-7 - Physical tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Physical tests. 179.500-7 Section 179.500-7... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-7 Physical tests. (a) Physical tests shall be made on two test specimens 0.505 inch in diameter within 2-inch gauge length, taken...
49 CFR 179.500-7 - Physical tests.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Physical tests. 179.500-7 Section 179.500-7... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-7 Physical tests. (a) Physical tests shall be made on two test specimens 0.505 inch in diameter within 2-inch gauge length, taken...
1989-08-03
holes drilled in the seafloor from the D/V JOIDES Resolution through petrological , geochemical and paleomagnetic studies of the samples and logging...seismome- ters and/or hydrophones (or differential pressure gauges , DPG). Testing of the new instruments at very early stages is important to ensure...resolved using ocean bottom seismometers, suspended hydrophones and differential pressure gauges assisted by an orbiting radar altimeter (GEOSAT
Strain gauges used in the mechanical testing of bones. Part II: "In vitro" and "in vivo" technique.
Cordey, J; Gautier, E
1999-01-01
How to choose and prepare the strain gauges for bonding on bones "in vitro" and "in vivo"? This communication aims to elucidate technical details and some applications: direct assessment of the axial load, the bending moment, and the torque applied to long bones by the physiological loads. As a typical example of application, we will show the assessment of stress protection due to plates on the bones in the sheep tibia.
1979-11-01
diameter test cell used for laser propagation measurements is Path length-84 m to 2.0 km available and has been designed for circulating aerosols or...36- and 110-GHz and found an attenuation ratio of comparison measurements along a 4-km path with rain rate measured near the receiver end. a *02 They...time. Tipping-bucket systems . gauges are reliable, but become increasingly in- accurate at high rates . Flow gauges which The direct field measurement
Negative Gauge Pressure Moisture Management and Secure Adherence Device for Prosthetic Limbs
2013-03-01
prosthesis feels like it is sliding up and down or falling off when I am active. D. I have been more active than normal as a result of this prosthesis ...temperature. 3. My prosthesis feels like it is sliding up and down or falling off when I am active. 4. I have been more active than normal as a result of...objective of this research was to develop and test a novel prosthesis incorporating a negative gauge pressure moisture management and secure
Asymptotic symmetries and electromagnetic memory
NASA Astrophysics Data System (ADS)
Pasterski, Sabrina
2017-09-01
Recent investigations into asymptotic symmetries of gauge theory and gravity have illuminated connections between gauge field zero-mode sectors, the corresponding soft factors, and their classically observable counterparts — so called "memories". Namely, low frequency emissions in momentum space correspond to long time integrations of the corre-sponding radiation in position space. Memory effect observables constructed in this manner are non-vanishing in typical scattering processes, which has implications for the asymptotic symmetry group. Here we complete this triad for the case of large U(1) gauge symmetries at null infinity. In particular, we show that the previously studied electromagnetic memory effect, whereby the passage of electromagnetic radiation produces a net velocity kick for test charges in a distant detector, is the position space observable corresponding to th Weinberg soft photon pole in momentum space scattering amplitudes.
Pressure balance cross-calibration method using a pressure transducer as transfer standard
Olson, D; Driver, R. G.; Yang, Y
2016-01-01
Piston gauges or pressure balances are widely used to realize the SI unit of pressure, the pascal, and to calibrate pressure sensing devices. However, their calibration is time consuming and requires a lot of technical expertise. In this paper, we propose an alternate method of performing a piston gauge cross calibration that incorporates a pressure transducer as an immediate in-situ transfer standard. For a sufficiently linear transducer, the requirement to exactly balance the weights on the two pressure gauges under consideration is greatly relaxed. Our results indicate that this method can be employed without a significant increase in measurement uncertainty. Indeed, in the test case explored here, our results agreed with the traditional method within standard uncertainty, which was less than 6 parts per million. PMID:28303167
NASA Astrophysics Data System (ADS)
Santa Vélez, Camilo; Enea Romano, Antonio
2018-05-01
Static coordinates can be convenient to solve the vacuum Einstein's equations in presence of spherical symmetry, but for cosmological applications comoving coordinates are more suitable to describe an expanding Universe, especially in the framework of cosmological perturbation theory (CPT). Using CPT we develop a method to transform static spherically symmetric (SSS) modifications of the de Sitter solution from static coordinates to the Newton gauge. We test the method with the Schwarzschild de Sitter (SDS) metric and then derive general expressions for the Bardeen's potentials for a class of SSS metrics obtained by adding to the de Sitter metric a term linear in the mass and proportional to a general function of the radius. Using the gauge invariance of the Bardeen's potentials we then obtain a gauge invariant definition of the turn around radius. We apply the method to an SSS solution of the Brans-Dicke theory, confirming the results obtained independently by solving the perturbation equations in the Newton gauge. The Bardeen's potentials are then derived for new SSS metrics involving logarithmic, power law and exponential modifications of the de Sitter metric. We also apply the method to SSS metrics which give flat rotation curves, computing the radial energy density profile in comoving coordinates in presence of a cosmological constant.
Msimanga, Huggins Z; Ollis, Robert J
2010-06-01
Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to classify acetaminophen-containing medicines using their attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectra. Four formulations of Tylenol (Arthritis Pain Relief, Extra Strength Pain Relief, 8 Hour Pain Relief, and Extra Strength Pain Relief Rapid Release) along with 98% pure acetaminophen were selected for this study because of the similarity of their spectral features, with correlation coefficients ranging from 0.9857 to 0.9988. Before acquiring spectra for the predictor matrix, the effects on spectral precision with respect to sample particle size (determined by sieve size opening), force gauge of the ATR accessory, sample reloading, and between-tablet variation were examined. Spectra were baseline corrected and normalized to unity before multivariate analysis. Analysis of variance (ANOVA) was used to study spectral precision. The large particles (35 mesh) showed large variance between spectra, while fine particles (120 mesh) indicated good spectral precision based on the F-test. Force gauge setting did not significantly affect precision. Sample reloading using the fine particle size and a constant force gauge setting of 50 units also did not compromise precision. Based on these observations, data acquisition for the predictor matrix was carried out with the fine particles (sieve size opening of 120 mesh) at a constant force gauge setting of 50 units. After removing outliers, PCA successfully classified the five samples in the first and second components, accounting for 45.0% and 24.5% of the variances, respectively. The four-component PLS-DA model (R(2)=0.925 and Q(2)=0.906) gave good test spectra predictions with an overall average of 0.961 +/- 7.1% RSD versus the expected 1.0 prediction for the 20 test spectra used.
Comparing slow and fast rupture in laboratory experiments
NASA Astrophysics Data System (ADS)
Aben, F. M.; Brantut, N.; David, E.; Mitchell, T. M.
2017-12-01
During the brittle failure of rock, elastically stored energy is converted into a localized fracture plane and surrounding fracture damage, seismic radiation, and thermal energy. However, the partitioning of energy might vary with the rate of elastic energy release during failure. Here, we present the results of controlled (slow) and dynamic (fast) rupture experiments on dry Lanhélin granite and Westerly granite samples, performed under triaxial stress conditions at confining pressures of 50 and 100 MPa. During the tests, we measured sample shortening, axial load and local strains (with 2 pairs of strain gauges glued directly onto the sample). In addition, acoustic emissions (AEs) and changes in seismic velocities were monitored. The AE rate was used as an indicator to manually control the axial load on the sample to stabilize rupture in the quasi-static failure experiments. For the dynamic rupture experiments a constant strain rate of 10-5 s-1 was applied until sample failure. A third experiment, labeled semi-controlled rupture, involved controlled rupture up to a point where the rupture became unstable and the remaining elastic energy was released dynamically. All experiments were concluded after a macroscopic fracture had developed across the whole sample and frictional sliding commenced. Post-mortem samples were epoxied, cut and polished to reveal the macroscopic fracture and the surrounding damage zone. The samples failed with average rupture velocities varying from 5x10-6 m/s up to >> 0.1 m/s. The analyses of AE locations on the slow ruptures reveal that within Westerly granite samples - with a smaller grain size - fracture planes are disbanded in favor of other planes when a geometrical irregularity is encountered. For the coarser grained Lanhélin granite a single fracture plane is always formed, although irregularities are recognized as well. The semi-controlled experiments show that for both rock types the rupture can become unstable in response to these irregularities. In Westerly granite, slow rupture experiments tend to produce complex fracture patterns while during the dynamic rupture experiments secondary rupture planes are not formed. These findings show that grain or flaw size, flaw distribution, and rupture speed strongly influence fracture localization and propagation.
Failure waves in glass and ceramics under shock compression
NASA Astrophysics Data System (ADS)
Brar, N. S.
2000-04-01
The response of various types of glasses (fused silica, borosilicates, soda-lime, and lead filled) to shock wave loading, especially the failure of glass behind the shock wave through the "so called" failure wave or front, has been the subject of intense research among a number of investigators. The variations in material properties across this front include complete loss of tensile (spall) strength, loss in shear strength, reduction in acoustic impedance and opacity to light. Both the Stress and velocity history from VISAR measurements have shown that the failure front propagates at a speed of 1.5 to 2.5 mm/s, depending on the peak shock stress. The shear strength [τ=1/2(σ1-σ2)] behind the failure front, determined using embedded transverse gauges, is found to decrease to about 1 GPa for soda-lime, borosilicate, and filled glasses. Optical (high-speed photography) observations also confirm formation of this failure front. There is a general agreement among various researchers on these failure observations. However, three proposed mechanisms for the formation of failure front are based on totally different formulations. The first, due to Clifton, is based on the hypothesis of densification of glass under shock compression. Densification is followed by shear failure around inhomogeneities resulting in a phase boundary between the comminuted and the intact material. The second, proposed by Grady, involves the transfer of elastic shear strain energy to dilatant strain energy as a result of severe micro-cracking originating from impact. The third, by Espinosa and Brar, proposes that the front is created through shear micro-cracks, which nucleate and propagate from the impact face; as originally suggested by Kanel. This later mechanism is supported by the observed loss of shear strength of glass by Clifton et al. at shock stress above the threshold level. Espinosa has incorporated this mechanism in multiple-plane model and simulations predict the increase in lateral stress and an observed reduction in spall strength behind the failure front. Failure front studies, in terms of loss of shear strength, have been recently extended to alumina and SiC ceramics by Bourne et al.
[The effect of needle type and immobilization on postspinal headache].
Hafer, J; Rupp, D; Wollbrück, M; Engel, J; Hempelmann, G
1997-10-01
Post-dural puncture headache (PDPH) is a significant complication of spinal anaesthesia. Diameter and tip of the needle as well as the patient's age have been proven to be important determinants. The question of whether post-operative recumbency can reduce the risk of PDPH has not been answered uniformly. And besides, some studies referring to this subject reveal methodical failures, for example, as to clear definition and exact documentation of post-operative immobilization. Furthermore, fine-gauge needles (26G or more) have not been investigated yet. The first aim of our study was therefore to examine the role of recumbency in the prevention of PDPH under controlled conditions using thin needles. Secondly, we wanted to confirm the reported prophylactic effect of needles with a modified, atraumatic tip (Whitacre and Atraucan) by comparing them to Quincke needles of identical diameter. Most of the former investigators compared Quincke with atraumatic needles of different size regardless of the known influence of the diameter on PDPH. In a prospective study we included 481 consecutive patients undergoing a total of 500 orthopaedic operations under spinal anaesthesia. The latter was performed in a standardized manner (patient sitting, midline approach, needle with parallel bevel direction), using four different needles allocated randomly (26-gauge and 27-gauge needles with Quincke tip, 26-gauge Atraucan and 27-gauge Whitacre cannula). Half of the patients were instructed to stay in bed for 24 h (horizontal position without raising head), the others to get up as early as possible. An anaesthesiologist visited the patients on the fourth postoperative day or later and questioned them about headache and duration of recumbency. Additionally, the patients had to fill out a questionnaire 1 week after surgery. Any postural headache was considered as PDPH. The four groups of different needles had homogeneous demographic characteristics (see Table 1). A total of 47 patients (9.4%) developed PDPH. The incidence was highest after puncture with a 26-gauge Quincke cannula (17.6%) with a significant difference compared to the other needles (see Table 2). PDPH incidence correlated well with increasing age and number of dural punctures, but showed no relation to sex, patient's history of headache or experience of the anaesthesiologist. Only about half of the patients (60.5%) followed the instructions regarding mobilization or recumbency. The duration of strict bed rest did not influence the development of PDPH: The overall incidence was 9.4% in the recumbency group and 8.8% in the group of early ambulation. In all, 45 patients suffered from ordinary not posture-related headache. The significantly higher incidence of PDPH after spinal anaesthesia with 26-gauge Quincke needles compared to the 27-gauge Quincke and the 26-gauge Atraucan group confirmed the importance of both needle diameter and design of its tip. The Atraucan cannula has not been examined in a controlled study (in comparison with Quincke needle of the same diameter) before. In accordance with other investigators we found patient's age and number of puncture attempts as additional predictors of PDPH. Consequent bed rest, however, was not able to reduce its incidence. Our studies reveal the poor compliance of patients with regard to mobilization/immobilization, a problem which possibly has not been considered enough in former studies examining the influence of bed rest on PDPH. Based on the literature and the present findings, we recommend using thin needles with atraumatic tips for spinal anaesthesia if possible. Recumbency presents an avoidable stress for patients as well as medical staff and should no longer be ordered.
NASA Astrophysics Data System (ADS)
Steiner, Matthias; Houze, Robert A., Jr.; Yuter, Sandra E.
1995-09-01
Three algorithms extract information on precipitation type, structure, and amount from operational radar and rain gauge data. Tests on one month of data from one site show that the algorithms perform accurately and provide products that characterize the essential features of the precipitation climatology. Input to the algorithms are the operationally executed volume scans of a radar and the data from a surrounding rain gauge network. The algorithms separate the radar echoes into convective and stratiform regions, statistically summarize the vertical structure of the radar echoes, and determine precipitation rates and amounts on high spatial resolution.The convective and stratiform regions are separated on the basis of the intensity and sharpness of the peaks of echo intensity. The peaks indicate the centers of the convective region. Precipitation not identified as convective is stratiform. This method avoids the problem of underestimating the stratiform precipitation. The separation criteria are applied in exactly the same way throughout the observational domain and the product generated by the algorithm can be compared directly to model output. An independent test of the algorithm on data for which high-resolution dual-Doppler observations are available shows that the convective stratiform separation algorithm is consistent with the physical definitions of convective and stratiform precipitation.The vertical structure algorithm presents the frequency distribution of radar reflectivity as a function of height and thus summarizes in a single plot the vertical structure of all the radar echoes observed during a month (or any other time period). Separate plots reveal the essential differences in structure between the convective and stratiform echoes.Tests yield similar results (within less than 10%) for monthly rain statistics regardless of the technique used for estimating the precipitation, as long as the radar reflectivity values are adjusted to agree with monthly rain gauge data. It makes little difference whether the adjustment is by monthly mean rates or percentiles. Further tests show that 1-h sampling is sufficient to obtain an accurate estimate of monthly rain statistics.
NASA Technical Reports Server (NTRS)
Hall, Steven R.; Walker, Bruce K.
1990-01-01
A new failure detection and isolation algorithm for linear dynamic systems is presented. This algorithm, the Orthogonal Series Generalized Likelihood Ratio (OSGLR) test, is based on the assumption that the failure modes of interest can be represented by truncated series expansions. This assumption leads to a failure detection algorithm with several desirable properties. Computer simulation results are presented for the detection of the failures of actuators and sensors of a C-130 aircraft. The results show that the OSGLR test generally performs as well as the GLR test in terms of time to detect a failure and is more robust to failure mode uncertainty. However, the OSGLR test is also somewhat more sensitive to modeling errors than the GLR test.
NASA Astrophysics Data System (ADS)
Hajnayeb, Ali; Nikpour, Masood; Moradi, Shapour; Rossi, Gianluca
2018-02-01
The blade tip-timing (BTT) measurement technique is at present the most promising technique for monitoring the blades of axial turbines and aircraft engines in operating conditions. It is generally used as an alternative to strain gauges in turbine testing. By conducting a comparison with the standard methods such as those based on strain gauges, one determines that the technique is not intrusive and does not require a complicated installation process. Despite its superiority to other methods, the experimental performance analysis of a new BTT method needs a test stand that includes a reference measurement system (e.g. strain gauges equipped with telemetry or other complex optical measurement systems, like rotating laser Doppler vibrometers). In this article, a new reliable, low-cost BTT test setup is proposed for simulating and analyzing blade vibrations based on kinematic inversion. In the proposed test bench, instead of the blades vibrating, it is the BTT sensor that vibrates. The vibration of the sensor is generated by a shaker and can therefore be easily controlled in terms of frequency, amplitude and waveform shape. The amplitude of vibration excitation is measured by a simple accelerometer. After introducing the components of the simulator, the proposed test bench is used in practice to simulate both synchronous and asynchronous vibration scenarios. Then two BTT methods are used to evaluate the quality of the acquired data. The results demonstrate that the proposed setup is able to generate simulated pulse sequences which are almost the same as those generated by the conventional BTT systems installed around a bladed disk. Moreover, the test setup enables its users to evaluate BTT methods by using a limited number of sensors. This significantly reduces the total costs of the experiments.
Strain-Gauge Measurement of Weight of Fluid in a Tank
NASA Technical Reports Server (NTRS)
Figueroa, Jorge; SaintCyr, William; Rahman, Shamim; McVay, Gregory; VanDyke, David; Mitchell, William; Langford, Lester
2003-01-01
A method of determining the amount of fluid in a tank is based on measurement of strains induced in tank supports by the weight of the fluid. Unlike most prior methods, this method is nonintrusive: there is no need to insert instrumentation in the tank and, hence, no need to run wires, cables, or tubes through the tank wall. Also unlike most prior methods, this method is applicable even if the fluid in the tank is at supercritical pressure and temperature, because it does not depend on the presence of a liquid/gas interface (as in liquid-level-measuring methods). The strain gauges used in this method are of two types: foil and fiber-optic. Four foil gauges and one or more fiber-optic gauges are mounted on each of the tank-supporting legs. An additional fiber-optic gauge is mounted on an object, made of the same material as that of the tank-supporting legs, that is not subjected to any mechanical load. The reading obtained by the additional fiber-optic gauge is used to compensate for apparent strains caused by changes in temperature. The signals from the foil and fiber-optic gauges are conditioned, then digitized for input to a computer. As the tank is filled or emptied, the deformation in each leg increases or decreases, respectively. Measured deformations of all legs are added to obtain a composite deformation indicative of the change in weight of the tank plus fluid. An initial calibration is performed by recording data at two points (usually, empty and full) for which the mass or weight of fluid is known. It is assumed that the deformations are elastic, so that the line passing through the two points can be used as a calibration curve of mass (or weight) of fluid versus deformation. At the time of reporting the information for this article, a set of foil gauges had been tested on the supports of a 500-gallon (1,900-liter) tank. The gauges were found to be capable of measuring the deformations (up to 22 microstrain) that occurred during filling and emptying the tank. The fluid masses calculated from the gauge readings were found to be accurate within 4.5 percent. It has been estimated that once the fiber-optic gauges are put into operation, it should be possible to determine fluid masses with 3 percent or less. It may be possible to increase accuracy further by increasing the signal-to-noise ratio through the use of more deformable tank supporting legs.
Space Shuttle Solid Rocket Booster Decelerator Subsystem Drop Test 3 - Anatomy of a failure
NASA Technical Reports Server (NTRS)
Runkle, R. E.; Woodis, W. R.
1979-01-01
A test failure dramatically points out a design weakness or the limits of the material in the test article. In a low budget test program, with a very limited number of tests, a test failure sparks supreme efforts to investigate, analyze, and/or explain the anomaly and to improve the design such that the failure will not recur. The third air drop of the Space Shuttle Solid Rocket Booster Recovery System experienced such a dramatic failure. On air drop 3, the 54-ft drogue parachute was totally destroyed 0.7 sec after deployment. The parachute failure investigation, based on analysis of drop test data and supporting ground element test results is presented. Drogue design modifications are also discussed.
Rail passenger equipment collision tests : analysis of structural measurements
DOT National Transportation Integrated Search
2000-11-01
A two-car full-scale collision test was conducted on April 4, 2000. Two coupled rail passenger cars impacted a rigid wall at 26 mph. The cars were instrumented with strain gauges, accelerometers, and string potentiometers, to measure the deformation ...
Role of failure-mechanism identification in accelerated testing
NASA Technical Reports Server (NTRS)
Hu, J. M.; Barker, D.; Dasgupta, A.; Arora, A.
1993-01-01
Accelerated life testing techniques provide a short-cut method to investigate the reliability of electronic devices with respect to certain dominant failure mechanisms that occur under normal operating conditions. However, accelerated tests have often been conducted without knowledge of the failure mechanisms and without ensuring that the test accelerated the same mechanism as that observed under normal operating conditions. This paper summarizes common failure mechanisms in electronic devices and packages and investigates possible failure mechanism shifting during accelerated testing.
Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos
2016-01-01
This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform’s mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument’s working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform. PMID:27869722
Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos
2016-11-18
This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform's mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument's working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform.
Classification of reaches in the Missouri and lower Yellowstone Rivers based on flow characteristics
Pegg, Mark A.; Pierce, Clay L.
2002-01-01
Several aspects of flow have been shown to be important determinants of biological community structure and function in streams, yet direct application of this approach to large rivers has been limited. Using a multivariate approach, we grouped flow gauges into hydrologically similar units in the Missouri and lower Yellowstone Rivers and developed a model based on flow variability parameters that could be used to test hypotheses about the role of flow in determining aquatic community structure. This model could also be used for future comparisons as the hydrological regime changes. A suite of hydrological parameters for the recent, post-impoundment period (1 October 1966–30 September 1996) for each of 15 gauges along the Missouri and lower Yellowstone Rivers were initially used. Preliminary graphical exploration identified five variables for use in further multivariate analyses. Six hydrologically distinct units composed of gauges exhibiting similar flow characteristics were then identified using cluster analysis. Discriminant analyses identified the three most influential variables as flow per unit drainage area, coefficient of variation of mean annual flow, and flow constancy. One surprising result was the relative similarity of flow regimes between the two uppermost and three lowermost gauges, despite large differences in magnitude of flow and separation by roughly 3000 km. Our results synthesize, simplify and interpret the complex changes in flow occurring along the Missouri and lower Yellowstone Rivers, and provide an objective grouping for future tests of how these changes may affect biological communities.
Evaluation of cable tension sensors of FAST reflector from the perspective of EMI
NASA Astrophysics Data System (ADS)
Zhu, Ming; Wang, Qiming; Egan, Dennis; Wu, Mingchang; Sun, Xiao
2016-06-01
The active reflector of FAST (five-hundred-meter aperture spherical radio telescope) is supported by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long-term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency interference (RFI). These three types of sensors are evaluated from the view of EMI/RFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMI/RFI levels are typically below the background noise of the anechoic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable tension. The proposed study is also a reference to the monitoring equipment selection of other radio telescopes and large structures.
Analyses of Chinese Hourly Precipitation Using Gauge Observations and Satellite Estimates Products
NASA Astrophysics Data System (ADS)
Pan, Y.; Yu, J.; Shen, Y.
2010-12-01
Highly spatial-temporal and accurate precipitation analyses are essential for monitoring the catastrophic mesoscale weather systems, examining numerical model outputs, and doing dynamic researches on mesoscale meteorology. In recent years, Chinese government has gradually developed a ground-based observational net of 30000 auto-weather-stations (AWS) all over the country, most of which are in the eastern and southern China. The real-time data of gauged rainfall is transported to National Meteorological Information of China (NMIC) every hour, and its quality has been strictly and effectually controlled. Taking advantage of these resources, an hourly Chinese Precipitation Analyses Products (CPAP) with fine resolution is developed. But on the Tibetan Plateau where the AWS is still sparse, the accuracy of precipitation can not satisfy the operational needs yet. Otherwise, CMORPH has a well performance on the space structure of rainfall over China in warm season, but loses on intensity. Thus, we make a merge test analysis at resolution of 0.1 ×0.1 degree , using Optimum Interpolation (OI) to combine hourly CPAP with CMORPH estimates precipitation products. Before OI,the systematic bias in CMORPH have been partly corrected by gauge data through PDF adjustments. The validation of the merge test from June to August 2009 shows that, the combined products can obviously reduce the bias to the gauge analyses CPAP, and also have highly coefficient with it. It is more important that, the combined products provide a reasonable and full-covered precipitation structure over Tibetan Plateau.
An Investigation on Computer-Adaptive Multistage Testing Panels for Multidimensional Assessment
ERIC Educational Resources Information Center
Wang, Xinrui
2013-01-01
The computer-adaptive multistage testing (ca-MST) has been developed as an alternative to computerized adaptive testing (CAT), and been increasingly adopted in large-scale assessments. Current research and practice only focus on ca-MST panels for credentialing purposes. The ca-MST test mode, therefore, is designed to gauge a single scale. The…
ERIC Educational Resources Information Center
Brame, Cynthia J.; Biel, Rachel
2015-01-01
Testing within the science classroom is commonly used for both formative and summative assessment purposes to let the student and the instructor gauge progress toward learning goals. Research within cognitive science suggests, however, that testing can also be a learning event. We present summaries of studies that suggest that repeated retrieval…
Airborne radar and radiometer experiment for quantitative remote measurements of rain
NASA Technical Reports Server (NTRS)
Kozu, Toshiaki; Meneghini, Robert; Boncyk, Wayne; Wilheit, Thomas T.; Nakamura, Kenji
1989-01-01
An aircraft experiment has been conducted with a dual-frequency (10 GHz and 35 GHz) radar/radiometer system and an 18-GHz radiometer to test various rain-rate retrieval algorithms from space. In the experiment, which took place in the fall of 1988 at the NASA Wallops Flight Facility, VA, both stratiform and convective storms were observed. A ground-based radar and rain gauges were also used to obtain truth data. An external radar calibration is made with rain gauge data, thereby enabling quantitative reflectivity measurements. Comparisons between path attenuations derived from the surface return and from the radar reflectivity profile are made to test the feasibility of a technique to estimate the raindrop size distribution from simultaneous radar and path-attenuation measurements.
Spacecraft Parachute Recovery System Testing from a Failure Rate Perspective
NASA Technical Reports Server (NTRS)
Stewart, Christine E.
2013-01-01
Spacecraft parachute recovery systems, especially those with a parachute cluster, require testing to identify and reduce failures. This is especially important when the spacecraft in question is human-rated. Due to the recent effort to make spaceflight affordable, the importance of determining a minimum requirement for testing has increased. The number of tests required to achieve a mature design, with a relatively constant failure rate, can be estimated from a review of previous complex spacecraft recovery systems. Examination of the Apollo parachute testing and the Shuttle Solid Rocket Booster recovery chute system operation will clarify at which point in those programs the system reached maturity. This examination will also clarify the risks inherent in not performing a sufficient number of tests prior to operation with humans on-board. When looking at complex parachute systems used in spaceflight landing systems, a pattern begins to emerge regarding the need for a minimum amount of testing required to wring out the failure modes and reduce the failure rate of the parachute system to an acceptable level for human spaceflight. Not only a sufficient number of system level testing, but also the ability to update the design as failure modes are found is required to drive the failure rate of the system down to an acceptable level. In addition, sufficient data and images are necessary to identify incipient failure modes or to identify failure causes when a system failure occurs. In order to demonstrate the need for sufficient system level testing prior to an acceptable failure rate, the Apollo Earth Landing System (ELS) test program and the Shuttle Solid Rocket Booster Recovery System failure history will be examined, as well as some experiences in the Orion Capsule Parachute Assembly System will be noted.
Lepton flavor violating decays of B and K mesons in models with extended gauge group
NASA Astrophysics Data System (ADS)
Fayyazuddin; Aslam, Muhammad Jamil; Lu, Cai-Dian
2018-05-01
Lepton flavor violating (LFV) decays are forbidden in the Standard Model (SM) and to explore them one has to go beyond it. The flavor changing neutral current induced lepton flavor conserving and LFV decays of K and B mesons is discussed in the gauge group G = SU(2)L × U(1)Y1 × SU(2)X. The lepto-quark Xμ±2/3 corresponding to gauge group SU(2)X allows the quark-lepton transitions and hence giving a framework to construct the effective Lagrangian for the LFV decays. The mass of lepto-quark mX provides a scale at which the gauge group G is broken to the SM gauge group. Using the most stringent experimental limit ℬ(KL0 → μ∓e±) < 1.7 × 10‑12, the upper bound on the effective coupling constant GX GF2 < 1.1 × 10‑10 is obtained for certain pairing of lepton and quark generations in the representation (2,2¯) of the group G. Later, the effective Lagrangian for the LFV meson decays for the gauge group G = [SU(2)L × SU(2)R × U(1)Y1‧] × SU(2)X is constructed. Using ℬ(K‑→ π‑νν¯) = (1.7 ± 1.1) × 10‑10, the bound on the ratio of effective couplings is obtained to be GX GF2 < 10‑10. A number of decay modes are discussed which provide a promising area to test this model in the current and future particle physics experiments.
Health-care quality and information failure: Evidence from Nigeria.
Evans, David K; Welander Tärneberg, Anna
2018-03-01
Low-quality health services are a problem across low- and middle-income countries. Information failure may contribute, as patients may have insufficient knowledge to discern the quality of health services. That decreases the likelihood that patients will sort into higher quality facilities, increasing demand for better health services. This paper presents results from a health survey in Nigeria to investigate whether patients can evaluate health service quality effectively. Specifically, this paper demonstrates that although more than 90% of patients agree with any positive statement about the quality of their local health services, satisfaction is significantly associated with the diagnostic ability of health workers at the facility. Satisfaction is not associated with more superficial characteristics such as infrastructure quality or prescriptions of medicines. This suggests that patients may have sufficient information to discern some of the most important elements of quality, but that alternative measures are crucial for gauging the overall quality of care. Copyright © The World Bank Health Economics © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Khan, Mehbub; Hao, Yun; Hsu, Jong-Ping
2018-01-01
Based on baryon charge conservation and a generalized Yang-Mills symmetry for Abelian (and non-Abelian) groups, we discuss a new baryonic gauge field and its linear potential for two point-like baryon charges. The force between two point-like baryons is repulsive, extremely weak and independent of distance. However, for two extended baryonic systems, we have a dominant linear force α r. Thus, only in the later stage of the cosmic evolution, when two baryonic galaxies are separated by an extremely large distance, the new repulsive baryonic force can overcome the gravitational attractive force. Such a model provides a gauge-field-theoretic understanding of the late-time accelerated cosmic expansion. The baryonic force can be tested by measuring the accelerated Wu-Doppler frequency shifts of supernovae at different distances.
Development of measurement system for gauge block interferometer
NASA Astrophysics Data System (ADS)
Chomkokard, S.; Jinuntuya, N.; Wongkokua, W.
2017-09-01
We developed a measurement system for collecting and analyzing the fringe pattern images from a gauge block interferometer. The system was based on Raspberry Pi which is an open source system with python programming and opencv image manipulation library. The images were recorded by the Raspberry Pi camera with five-megapixel capacity. The noise of images was suppressed for the best result in analyses. The low noise images were processed to find the edge of fringe patterns using the contour technique for the phase shift analyses. We tested our system with the phase shift patterns between a gauge block and a reference plate. The phase shift patterns were measured by a Twyman-Green type of interferometer using the He-Ne laser with the temperature controlled at 20.0 °C. The results of the measurement will be presented and discussed.
Weak interactions and gauge theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaillard, M.K.
1979-12-01
The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and ..sqrt..(5/3)g' of SU(3)/sub c/ x SU(2)/sub 2/ x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and itmore » takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures. (RWR)« less
NASA Tech Briefs, October 2003
NASA Technical Reports Server (NTRS)
2003-01-01
Topics covered include: Cryogenic Temperature-Gradient Foam/Substrate Tensile Tester; Flight Test of an Intelligent Flight-Control System; Slat Heater Boxes for Thermal Vacuum Testing; System for Testing Thermal Insulation of Pipes; Electrical-Impedance-Based Ice-Thickness Gauges; Simulation System for Training in Laparoscopic Surgery; Flasher Powered by Photovoltaic Cells and Ultracapacitors; Improved Autoassociative Neural Networks; Toroidal-Core Microinductors Biased by Permanent Magnets; Using Correlated Photons to Suppress Background Noise; Atmospheric-Fade-Tolerant Tracking and Pointing in Wireless Optical Communication; Curved Focal-Plane Arrays Using Back-Illuminated High-Purity Photodetectors; Software for Displaying Data from Planetary Rovers; Software for Refining or Coarsening Computational Grids; Software for Diagnosis of Multiple Coordinated Spacecraft; Software Helps Retrieve Information Relevant to the User; Software for Simulating a Complex Robot; Software for Planning Scientific Activities on Mars; Software for Training in Pre-College Mathematics; Switching and Rectification in Carbon-Nanotube Junctions; Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriers; Environmentally Safer, Less Toxic Fire-Extinguishing Agents; Multiaxial Temperature- and Time-Dependent Failure Model; Cloverleaf Vibratory Microgyroscope with Integrated Post; Single-Vector Calibration of Wind-Tunnel Force Balances; Microgyroscope with Vibrating Post as Rotation Transducer; Continuous Tuning and Calibration of Vibratory Gyroscopes; Compact, Pneumatically Actuated Filter Shuttle; Improved Bearingless Switched-Reluctance Motor; Fluorescent Quantum Dots for Biological Labeling; Growing Three-Dimensional Corneal Tissue in a Bioreactor; Scanning Tunneling Optical Resonance Microscopy; The Micro-Arcsecond Metrology Testbed; Detecting Moving Targets by Use of Soliton Resonances; and Finite-Element Methods for Real-Time Simulation of Surgery.
Ultrasonic Inspection to Quantify Failure Pathologies of Crimped Electrical Connections
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.
2014-01-01
Previous work has shown that ultrasonic inspection provides a means of assessing electrical crimp quality that ensures the electrical and mechanical integrity of an initial crimp before the installation process is completed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination was shown to correlate with the results of destructive pull tests, which is a standard for assessing crimp wire junction quality. Of additional concern are crimps made at high speed assembly lines for wiring harnesses, which are used for critical applications, such as in aircraft. During high-speed assembly it is possible that many faulty crimps go undetected until long after assembly, and fail in service. The position and speed of the crimping jaw become factors as the high-speed crimp is formed. The work presented in this paper is designed to cover the more difficult and more subtle area of high-speed crimps by taking into account the rate change of the measurements. Building on the previous work, we present an analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse that is shown to correlate to the gauge of the crimp/ferrule combination and the position of the crimping jaw. Results demonstrating the detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, are presented. The ability of this technique to estimate crimp height, a mechanical measure of crimp quality, is discussed.
Ultrasonic inspection to quantify failure pathologies of crimped electrical connections
NASA Astrophysics Data System (ADS)
Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.
2015-03-01
Previous work has shown that ultrasonic inspection provides a means of assessing electrical crimp quality that ensures the electrical and mechanical integrity of an initial crimp before the installation process is completed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination was shown to correlate with the results of destructive pull tests, which is a standard for assessing crimp wire junction quality. Of additional concern are crimps made at high speed assembly lines for wiring harnesses, which are used for critical applications, such as in aircraft. During high-speed assembly it is possible that many faulty crimps go undetected until long after assembly, and fail in service. The position and speed of the crimping jaw become factors as the high-speed crimp is formed. The work presented in this paper is designed to cover the more difficult and more subtle area of high-speed crimps by taking into account the rate change of the measurements. Building on the previous work, we present an analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse that is shown to correlate to the gauge of the crimp/ferrule combination and the position of the crimping jaw. Results demonstrating the detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, are presented. The ability of this technique to estimate crimp height, a mechanical measure of crimp quality, is discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... to 19 CFR 151.12 and 19 CFR 151.13, Inspectorate America Corporation, 2 Williams Street, Chelsea, MA 02150, has been approved to gauge and accredited to test petroleum and petroleum products for customs... conduct the specific test or gauger service requested. Alternatively, inquires regarding the specific test...
49 CFR 572.76 - Limbs assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (3) Align the test probe specified in § 572.77(a) with the longitudinal center line of the femur force gauge, so that at impact, the probe's longitudinal center line coincides with the sensor's longitudinal center line within ±2 degrees. (4) Impact the knee with the test probe moving horizontally and...
49 CFR 572.76 - Limbs assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (3) Align the test probe specified in § 572.77(a) with the longitudinal center line of the femur force gauge, so that at impact, the probe's longitudinal center line coincides with the sensor's longitudinal center line within ±2 degrees. (4) Impact the knee with the test probe moving horizontally and...
49 CFR 572.76 - Limbs assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (3) Align the test probe specified in § 572.77(a) with the longitudinal center line of the femur force gauge, so that at impact, the probe's longitudinal center line coincides with the sensor's longitudinal center line within ±2 degrees. (4) Impact the knee with the test probe moving horizontally and...
49 CFR 572.76 - Limbs assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (3) Align the test probe specified in § 572.77(a) with the longitudinal center line of the femur force gauge, so that at impact, the probe's longitudinal center line coincides with the sensor's longitudinal center line within ±2 degrees. (4) Impact the knee with the test probe moving horizontally and...
Wu, Aaron Yu-Jen; Hsu, Jui-Ting; Chee, Winston; Lin, Yun-Te; Fuh, Lih-Jyh; Huang, Heng-Li
2016-09-01
Small-diameter dental implants are associated with a higher risk of implant failure. This study used both three-dimensional finite-element (FE) simulations and in-vitro experimental tests to analyze the stresses and strains in both the implant and the surrounding bone when using one-piece (NobelDirect) and two-piece (NobelReplace) small-diameter implants, with the aim of understanding the underlying biomechanical mechanisms. Six experimental artificial jawbone models and two FE models were prepared for one-piece and two-piece 3.5-mm diameter implants. Rosette strain gauges were used for in-vitro tests, with peak values of the principal bone strain recorded with a data acquisition system. Implant stability as quantified by Periotest values (PTV) were also recorded for both types of implants. Experimental data were analyzed statistically using Wilcoxon's rank-sum test. In FE simulations, the peak value and distribution of von-Mises stresses in the implant and bone were selected for evaluation. In in-vitro tests, the peak bone strain was 42% lower for two-piece implants than for one-piece implants. The PTV was slightly lower for one-piece implants (PTV = -6) than for two-piece implants (PTV = -5). In FE simulations, the stresses in the bone and implant were about 23% higher and 12% lower, respectively, for one-piece implants than those for two-piece implants. Due to the higher peri-implant bone stresses and strains, one-piece implants (NobelDirect) might be not suitable for use as small-diameter implants. Copyright © 2016. Published by Elsevier B.V.
Tracking Damage Nucleation and Propagation in Metallic Materials Using a Planar Biaxial Test System
2008-09-30
along the horizontal (x) axis. The dimensions of the system are shown in Fig. 1. It was delivered by MTS to ASU on Sep. 12, 2008, approximately 1 year...the y (vertical) and x ( horizontal ) axes is 3 Py/Px = 1.0. Figure 5 shows contours of resultant displacement in the gage area of both the simple and...sensors were used. Oile strain gauge is 1nounte<l on the horizontal flange (Fig. 4a), and one on the vertical flange (Fig. 4a) and two strain gauges
1993-07-01
borings and from the drilling of vibracore or hand auger holes for a specific project. The terrane is the unit used to map the subsurface distribution...three pieces of amethyst glass and a piece of dark green bottle glass. Two pieces of coal, one indeterminate nail fragment and a 12- gauge shotgun shell...and three pieces of indeterminate iron. Also recovered were a 12- gauge shotgun shell base, and one brick fragment. Based on the stratigraphy all were
NASA Technical Reports Server (NTRS)
Kalagher, R. J.
1973-01-01
Ten tipping bucket rain gauges have been installed at the NASA WSTF for the purpose of determining rainfall characteristics in this area which may affect the performance of the NASA Tracking and Data Relay Satellite System. A plan is presented for analyzing and utilizing the data which will be obtained during the course of this experiment. Also included is a description of a computer program which has been written to aid in the analysis.
Vanilla technicolor at linear colliders
NASA Astrophysics Data System (ADS)
Frandsen, Mads T.; Järvinen, Matti; Sannino, Francesco
2011-08-01
We analyze the reach of linear colliders for models of dynamical electroweak symmetry breaking. We show that linear colliders can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, until the maximum energy in the center of mass of the colliding leptons. In particular we analyze the Drell-Yan processes involving spin-one intermediate heavy bosons decaying either leptonically or into two standard model gauge bosons. We also analyze the light Higgs production in association with a standard model gauge boson stemming also from an intermediate spin-one heavy vector.
Landau-Khalatnikov-Fradkin transformation for the fermion propagator in QED in arbitrary dimensions
Jia, Shaoyang; Pennington, Michael R.
2017-04-10
Here, we explore the dependence of fermion propagators on the covariant gauge fixing parameter in quantum electrodynamics (QED) with the number of spacetime dimensions kept explicit. Gauge covariance is controlled by the the Landau -Khalatnikov-Fradkin transformation (LKFT). Utilizing its group nature, the LKFT for a fermion propagator in Minkowski space is solved exactly. The special scenario of 3D has been used to test claims made for general cases. When renormalized correctly, the simplification of the LKFT in 4D has been achieved with the help of fractional calculus.
Sigma models with negative curvature
Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.
2016-03-16
Here, we construct Higgs Effective Field Theory (HEFT) based on the scalar manifold Hn, which is a hyperbolic space of constant negative curvature. The Lagrangian has a non-compact O(n, 1) global symmetry group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the curvature (including its sign) determines deviations from Standard Model values.
Flavor gauge models below the Fermi scale
Babu, K. S.; Friedland, A.; Machado, P. A. N.; ...
2017-12-18
The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson,more » $X$, corresponding to the $B-L$ symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, $B^+$, $D^+$ and Upsilon decays, $$D-\\bar{D}^0$$ mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling $$g_X$$ in the range $$(10^{-2} - 10^{-4})$$ the model is shown to be consistent with the data. Possible ways of testing the model in $b$ physics, top and $Z$ decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. In conclusion, the proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.« less
Flavor gauge models below the Fermi scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babu, K. S.; Friedland, A.; Machado, P. A. N.
The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson,more » $X$, corresponding to the $B-L$ symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, $B^+$, $D^+$ and Upsilon decays, $$D-\\bar{D}^0$$ mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling $$g_X$$ in the range $$(10^{-2} - 10^{-4})$$ the model is shown to be consistent with the data. Possible ways of testing the model in $b$ physics, top and $Z$ decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. In conclusion, the proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.« less
Electron transport in gold colloidal nanoparticle-based strain gauges.
Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence
2013-03-08
A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the 'regular island array model' that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy E(C). This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the E(C) values of these 14 nm NPs cannot be neglected in determining the β values.
Electron transport in gold colloidal nanoparticle-based strain gauges
NASA Astrophysics Data System (ADS)
Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M.; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence
2013-03-01
A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the ‘regular island array model’ that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy EC. This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the EC values of these 14 nm NPs cannot be neglected in determining the β values.
NASA Astrophysics Data System (ADS)
Alharbi, Raied; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan
2018-01-01
Precipitation is a key input variable for hydrological and climate studies. Rain gauges are capable of providing reliable precipitation measurements at point scale. However, the uncertainty of rain measurements increases when the rain gauge network is sparse. Satellite -based precipitation estimations appear to be an alternative source of precipitation measurements, but they are influenced by systematic bias. In this study, a method for removing the bias from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping, climate classification, and inverse-weighted distance method. Daily PERSIANN-CCS is selected to test the capability of the method for removing the bias over Saudi Arabia during the period of 2010 to 2016. The first six years (2010 - 2015) are calibrated years and 2016 is used for validation. The results show that the yearly correlation coefficient was enhanced by 12%, the yearly mean bias was reduced by 93% during validated year. Root mean square error was reduced by 73% during validated year. The correlation coefficient, the mean bias, and the root mean square error show that the proposed method removes the bias on PERSIANN-CCS effectively that the method can be applied to other regions where the rain gauge network is sparse.
ERIC Educational Resources Information Center
Tempel, Tobias; Neumann, Roland
2016-01-01
We investigated processes underlying performance decrements of highly test-anxious persons. Three experiments contrasted conditions that differed in the degree of activation of concepts related to failure. Participants memorized a list of words either containing words related to failure or containing no words related to failure in Experiment 1. In…
49 CFR Appendix D to Part 230 - Civil Penalty Schedule
Code of Federal Regulations, 2010 CFR
2010-10-01
... the boiler 1,000 2,000 230.36Hydrostatic testing of boilers: (a) Failure to perform hydrostatic test of boiler as required 1,500 3,000 (b) Failure to properly perform hydrostatic test 1,500 3,000 (c) Failure to properly inspect boiler after conducting hydrostatic test above MAWP 1,500 3,000 230.37 Failure...
Environmental Influence of Gravity and Pressure on Arc Tracking of Insulated Wires Investigated
NASA Technical Reports Server (NTRS)
2005-01-01
Momentary short-circuit arcs between a defective polyimide-insulated wire and another conductor may thermally char (pyrolize) the insulating material. The charred polyimide, being conductive, can sustain the short-circuit arc, which may propagate along the wire through continuous pyrolization of the polyimide insulation (arc tracking). If the arcing wire is part of a multiple-wire bundle, the polyimide insulation of other wires within the bundle may become thermally charred and start arc tracking also (flash over). Such arc tracking can lead to complete failure of an entire wire bundle, causing other critical spacecraft or aircraft failures. Unfortunately, all tested candidate wire insulations for aerospace vehicles were susceptible to arc tracking. Therefore, a test procedure was designed at the NASA Lewis Research Center to select the insulation type least susceptible to arc tracking. This test procedure addresses the following three areas of concern: (1) probability of initiation, (2) probability of reinitiation (restrike), and (3) extent of arc tracking damage (propagation rate). Item 2 (restrike probability) is an issue if power can be terminated from and reapplied to the arcing wire (by a switch, fuse, or resettable circuit breaker). The degree of damage from an arcing event (item 3) refers to how easily the arc chars nearby insulation and propagates along the wire pair. Ease of nearby insulation charring can be determined by measuring the rate of arc propagation. Insulation that chars easily will propagate the arc faster than insulation that does not char very easily. A popular polyimide insulated wire for aerospace vehicles, MIL-W-81381, was tested to determine a degree of damage from an arcing event (item 3) in the following three environments: (1) microgravity with air at 1-atm pressure, (2) 1g with air at 1 atm, and (3) 1g within a 10^-6 Torr vacuum. The microgravity 1-atm air was the harshest environment, with respect to the rate of damage of arc tracking, for the 20 AWG (American Wiring Gauge) MIL-W-81381 wire insulation type . The vacuum environment resulted in the least damage. Further testing is planned to determine if the environmental results are consistent between insulation types and to evaluate the other two parameters associated with arc tracking susceptibility.
ERIC Educational Resources Information Center
Williams, Ashley; Bell, Sherry Mee
2005-01-01
With the recently passed Individuals with Disabilities Education Act (2004), federal law encourages monitoring student progress and gauging responsiveness to instruction. The Test of Silent Word Reading Fluency (TOSWRF; Mather, Hammill, Allen, & Roberts, 2004) is a group-administered test that holds promise for monitoring student progress.…
Gauging Skills of Hospital Security Personnel: a Statistically-driven, Questionnaire-based Approach.
Rinkoo, Arvind Vashishta; Mishra, Shubhra; Rahesuddin; Nabi, Tauqeer; Chandra, Vidha; Chandra, Hem
2013-01-01
This study aims to gauge the technical and soft skills of the hospital security personnel so as to enable prioritization of their training needs. A cross sectional questionnaire based study was conducted in December 2011. Two separate predesigned and pretested questionnaires were used for gauging soft skills and technical skills of the security personnel. Extensive statistical analysis, including Multivariate Analysis (Pillai-Bartlett trace along with Multi-factorial ANOVA) and Post-hoc Tests (Bonferroni Test) was applied. The 143 participants performed better on the soft skills front with an average score of 6.43 and standard deviation of 1.40. The average technical skills score was 5.09 with a standard deviation of 1.44. The study avowed a need for formal hands on training with greater emphasis on technical skills. Multivariate analysis of the available data further helped in identifying 20 security personnel who should be prioritized for soft skills training and a group of 36 security personnel who should receive maximum attention during technical skills training. This statistically driven approach can be used as a prototype by healthcare delivery institutions worldwide, after situation specific customizations, to identify the training needs of any category of healthcare staff.
Gauging Skills of Hospital Security Personnel: a Statistically-driven, Questionnaire-based Approach
Rinkoo, Arvind Vashishta; Mishra, Shubhra; Rahesuddin; Nabi, Tauqeer; Chandra, Vidha; Chandra, Hem
2013-01-01
Objectives This study aims to gauge the technical and soft skills of the hospital security personnel so as to enable prioritization of their training needs. Methodology A cross sectional questionnaire based study was conducted in December 2011. Two separate predesigned and pretested questionnaires were used for gauging soft skills and technical skills of the security personnel. Extensive statistical analysis, including Multivariate Analysis (Pillai-Bartlett trace along with Multi-factorial ANOVA) and Post-hoc Tests (Bonferroni Test) was applied. Results The 143 participants performed better on the soft skills front with an average score of 6.43 and standard deviation of 1.40. The average technical skills score was 5.09 with a standard deviation of 1.44. The study avowed a need for formal hands on training with greater emphasis on technical skills. Multivariate analysis of the available data further helped in identifying 20 security personnel who should be prioritized for soft skills training and a group of 36 security personnel who should receive maximum attention during technical skills training. Conclusion This statistically driven approach can be used as a prototype by healthcare delivery institutions worldwide, after situation specific customizations, to identify the training needs of any category of healthcare staff. PMID:23559904
Higgs mass from D-terms: a litmus test
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Roberts, Hannes L.
2013-12-01
We explore supersymmetric theories in which the Higgs mass is boosted by the non-decoupling D-terms of an extended U(1) X gauge symmetry, defined here to be a general linear combination of hypercharge, baryon number, and lepton number. Crucially, the gauge coupling, g X , is bounded from below to accommodate the Higgs mass, while the quarks and leptons are required by gauge invariance to carry non-zero charge under U(1) X . This induces an irreducible rate, σBR, for pp → X → ℓℓ relevant to existing and future resonance searches, and gives rise to higher dimension operators that are stringently constrained by precision electroweak measurements. Combined, these bounds define a maximally allowed region in the space of observables, ( σBR, m X ), outside of which is excluded by naturalness and experimental limits. If natural supersymmetry utilizes non-decoupling D-terms, then the associated X boson can only be observed within this window, providing a model independent `litmus test' for this broad class of scenarios at the LHC. Comparing limits, we find that current LHC results only exclude regions in parameter space which were already disfavored by precision electroweak data.
Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials
NASA Astrophysics Data System (ADS)
Cuesta, E.; Alvarez, B. J.; Patiño, H.; Telenti, A.; Barreiro, J.
2016-05-01
This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed.
Sensor calibration of polymeric Hopkinson bars for dynamic testing of soft materials
NASA Astrophysics Data System (ADS)
Martarelli, Milena; Mancini, Edoardo; Lonzi, Barbara; Sasso, Marco
2018-02-01
Split Hopkinson pressure bar (SHPB) testing is one of the most common techniques for the estimation of the constitutive behaviour of metallic materials. In this paper, the characterisation of soft rubber-like materials has been addressed by means of polymeric bars thanks to their reduced mechanical impedance. Due to their visco-elastic nature, polymeric bars are more sensitive to temperature changes than metallic bars, and due to their low conductance, the strain gauges used to measure the propagating wave in an SHPB may be exposed to significant heating. Consequently, a calibration procedure has been proposed to estimate quantitatively the temperature influence on strain gauge output. Furthermore, the calibration is used to determine the elastic modulus of the polymeric bars, which is an important parameter for the synchronisation of the propagation waves measured in the input and output bar strain gate stations, and for the correct determination of stress and strain evolution within the specimen. An example of the application has been reported in order to demonstrate the effectiveness of the technique. Different tests at different strain rates have been carried out on samples made of nytrile butadyene rubber (NBR) from the same injection moulding batch. Thanks to the correct synchronisation of the measured propagation waves measured by the strain gauges and applying the calibrated coefficients, the mechanical behaviour of the NBR material is obtained in terms of strain-rate-strain and stress-strain engineering curves.
NASA Technical Reports Server (NTRS)
Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin;
2014-01-01
The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb-mass/yr. to about 1 lb-mass/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.
NASA Technical Reports Server (NTRS)
Woronowicz, Michael S.; Abel, Joshua C.; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin;
2014-01-01
The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system.An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (directionality).The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lbmyr. to about 1 lbmday. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ramwake flows and structural shadowing within low Earth orbit.
Reliability Programs for Nonelectronic Designs. Volume 2
1983-04-01
afforded. Differ- ences between critical and minor failures must be defined in the RFP so that the test need not be stopped for minor failures. However...not be afforded. Specialized test plans must be developed for nonelectronic equipment. First, differences between critical and minor failures must be...determined prior to initiating the test program so that the test need not be stopped for minor failures. Second, although the test must be interrupted
Medial malleolar fractures: a biomechanical study of fixation techniques.
Fowler, T Ty; Pugh, Kevin J; Litsky, Alan S; Taylor, Benjamin C; French, Bruce G
2011-08-08
Fracture fixation of the medial malleolus in rotationally unstable ankle fractures typically results in healing with current fixation methods. However, when failure occurs, pullout of the screws from tension, compression, and rotational forces is predictable. We sought to biomechanically test a relatively new technique of bicortical screw fixation for medial malleoli fractures. Also, the AO group recommends tension-band fixation of small avulsion type fractures of the medial malleolus that are unacceptable for screw fixation. A well-documented complication of this technique is prominent symptomatic implants and secondary surgery for implant removal. Replacing stainless steel 18-gauge wire with FiberWire suture could theoretically decrease symptomatic implants. Therefore, a second goal was to biomechanically compare these 2 tension-band constructs. Using a tibial Sawbones model, 2 bicortical screws were compared with 2 unicortical cancellous screws on a servohydraulic test frame in offset axial, transverse, and tension loading. Second, tension-band fixation using stainless steel wire was compared with FiberWire under tensile loads. Bicortical screw fixation was statistically the stiffest construct under tension loading conditions compared to unicortical screw fixation and tension-band techniques with FiberWire or stainless steel wire. In fact, unicortical screw fixation had only 10% of the stiffness as demonstrated in the bicortical technique. In a direct comparison, tension-band fixation using stainless steel wire was statistically stiffer than the FiberWire construct. Copyright 2011, SLACK Incorporated.
Characterization and Strain-Hardening Behavior of Friction Stir-Welded Ferritic Stainless Steel
NASA Astrophysics Data System (ADS)
Sharma, Gaurav; Dwivedi, Dheerendra Kumar; Jain, Pramod Kumar
2017-12-01
In this study, friction stir-welded joint of 3-mm-thick plates of 409 ferritic stainless steel (FSS) was characterized in light of microstructure, x-ray diffraction analysis, hardness, tensile strength, ductility, corrosion and work hardening properties. The FSW joint made of ferritic stainless steel comprises of three distinct regions including the base metal. In stir zone highly refined ferrite grains with martensite and some carbide precipitates at the grain boundaries were observed. X-ray diffraction analysis also revealed precipitation of Cr23C6 and martensite formation in heat-affected zone and stir zone. In tensile testing of the transverse weld samples, the failure eventuated within the gauge length of the specimen from the base metal region having tensile properties overmatched to the as-received base metal. The tensile strength and elongation of the longitudinal (all weld) sample were found to be 1014 MPa and 9.47%, respectively. However, in potentiodynamic polarization test, the corrosion current density of the stir zone was highest among all the three zones. The strain-hardening exponent for base metal, transverse and longitudinal (all weld) weld samples was calculated using various equations. Both the transverse and longitudinal weld samples exhibited higher strain-hardening exponents as compared to the as-received base metal. In Kocks-Mecking plots for the base metal and weld samples at least two stages of strain hardening were observed.
NASA Astrophysics Data System (ADS)
Alkofer, Reinhard; von Smekal, Lorenz
2001-11-01
Recent studies of QCD Green's functions and their applications in hadronic physics are reviewed. We discuss the definition of the generating functional in gauge theories, in particular, the rôle of redundant degrees of freedom, possibilities of a complete gauge fixing versus gauge fixing in presence of Gribov copies, BRS invariance and positivity. The apparent contradiction between positivity and colour antiscreening in combination with BRS invariance in QCD is considered. Evidence for the violation of positivity by quarks and transverse gluons in the covariant gauge is collected, and it is argued that this is one manifestation of confinement. We summarise the derivation of the Dyson-Schwinger equations (DSEs) of QED and QCD. For the latter, the implications of BRS invariance on the Green's functions are explored. The possible influence of instantons on DSEs is discussed in a two-dimensional model. In QED in (2+1) and (3+1) dimensions, the solutions for Green's functions provide tests of truncation schemes which can under certain circumstances be extended to the DSEs of QCD. We discuss some limitations of such extensions and assess the validity of assumptions for QCD as motivated from studies in QED. Truncation schemes for DSEs are discussed in axial and related gauges, as well as in the Landau gauge. Furthermore, we review the available results from a systematic non-perturbative expansion scheme established for Landau gauge QCD. Comparisons to related lattice results, where available, are presented. The applications of QCD Green's functions to hadron physics are summarised. Properties of ground state mesons are discussed on the basis of the ladder Bethe-Salpeter equation for quarks and antiquarks. The Goldstone nature of pseudoscalar mesons and a mechanism for diquark confinement beyond the ladder approximation are reviewed. We discuss some properties of ground state baryons based on their description as Bethe-Salpeter/Faddeev bound states of quark-diquark correlations in the quantum field theory of confined quarks and gluons.
Bayesian analysis of stage-fall-discharge rating curves and their uncertainties
NASA Astrophysics Data System (ADS)
Mansanarez, Valentin; Le Coz, Jérôme; Renard, Benjamin; Lang, Michel; Pierrefeu, Gilles; Le Boursicaud, Raphaël; Pobanz, Karine
2016-04-01
Stage-fall-discharge (SFD) rating curves are traditionally used to compute streamflow records at sites where the energy slope of the flow is variable due to variable backwater effects. Building on existing Bayesian approaches, we introduce an original hydraulics-based method for developing SFD rating curves used at twin gauge stations and estimating their uncertainties. Conventional power functions for channel and section controls are used, and transition to a backwater-affected channel control is computed based on a continuity condition, solved either analytically or numerically. The difference between the reference levels at the two stations is estimated as another uncertain parameter of the SFD model. The method proposed in this presentation incorporates information from both the hydraulic knowledge (equations of channel or section controls) and the information available in the stage-fall-discharge observations (gauging data). The obtained total uncertainty combines the parametric uncertainty and the remnant uncertainty related to the model of rating curve. This method provides a direct estimation of the physical inputs of the rating curve (roughness, width, slope bed, distance between twin gauges, etc.). The performance of the new method is tested using an application case affected by the variable backwater of a run-of-the-river dam: the Rhône river at Valence, France. In particular, a sensitivity analysis to the prior information and to the gauging dataset is performed. At that site, the stage-fall-discharge domain is well documented with gaugings conducted over a range of backwater affected and unaffected conditions. The performance of the new model was deemed to be satisfactory. Notably, transition to uniform flow when the overall range of the auxiliary stage is gauged is correctly simulated. The resulting curves are in good agreement with the observations (gaugings) and their uncertainty envelopes are acceptable for computing streamflow records. Similar conclusions were drawn from the application to other similar sites.
Experimental and finite element analysis of tibial stress fractures using a rabbit model.
Franklyn, Melanie; Field, Bruce
2013-01-01
To determine if rabbit models can be used to quantify the mechanical behaviour involved in tibial stress fracture (TSF) development. Fresh rabbit tibiae were loaded under compression using a specifically-designed test apparatus. Weights were incrementally added up to a load of 30 kg and the mechanical behaviour of the tibia was analysed using tests for buckling, bone strain and hysteresis. Structural mechanics equations were subsequently employed to verify that the results were within the range of values predicted by theory. A finite element (FE) model was developed using cross-sectional computer tomography (CT) images scanned from one of the rabbit bones, and a static load of 6 kg (1.5 times the rabbit's body weight) was applied to represent running. The model was validated using the experimental strain gauge data, then geometric and elemental convergence tests were performed in order to find the minimum number of cross-sectional scans and elements respectively required for convergence. The analysis was then performed using both the model and the experimental results to investigate the mechanical behaviour of the rabbit tibia under compressive load and to examine crack initiation. The experimental tests showed that under a compressive load of up to 12 kg, the rabbit tibia demonstrates linear behaviour with little hysteresis. Up to 30 kg, the bone does not fail by elastic buckling; however, there are low levels of tensile stress which predominately occur at and adjacent to the anterior border of the tibial midshaft: this suggests that fatigue failure occurs in these regions, since bone under cyclic loading initially fails in tension. The FE model predictions were consistent with both mechanics theory and the strain gauge results. The model was highly sensitive to small changes in the position of the applied load due to the high slenderness ratio of the rabbit's tibia. The modelling technique used in the current study could have applications in the development of human FE models of bone, where, unlike rabbit tibia, the model would be relatively insensitive to very small changes in load position. However, the rabbit model itself is less beneficial as a tool to understand the mechanical behaviour of TSFs in humans due to the small size of the rabbit bone and the limitations of human-scale CT scanning equipment. The current modelling technique could be used to develop human FE models. However, the rabbit model itself has significant limitations in understanding human TSF mechanics.
DOT National Transportation Integrated Search
2015-01-01
Acceptance of earthwork construction by the Florida Department of Transportation (FDOT) : requires in-place testing conducted with a nuclear density gauge (NDG) to determine : dry density, which must obtain a required percent compaction based upon a ...
Multiboson interactions at the LHC
Green, D. R.; Meade, P.; Pleier, M. -A.
2017-09-20
This paper covers results on the production of all possible electroweak boson pairs and 2-to-1 vector boson fusion at the CERN Large Hadron Collider (LHC) in proton-proton collisions at a center of mass energy of 7 and 8 TeV. The data were taken between 2010 and 2012. Limits on anomalous triple gauge couplings (aTGCs) then follow. In addition, data on electroweak triple gauge boson production and 2-to-2 vector boson scattering yield limits on anomalous quartic gauge boson couplings (aQGCs). The LHC hosts two general purpose experiments, ATLAS and CMS, which have both reported limits on aTGCs and aQGCs which aremore » herein summarized. Finally, the interpretation of these limits in terms of an effective field theory is reviewed, and recommendations are made for testing other types of new physics using multigauge boson production.« less
Optical-fiber strain sensors with asymmetric etched structures.
Vaziri, M; Chen, C L
1993-11-01
Optical-fiber strain gauges with asymmetric etched structures have been analyzed, fabricated, and tested. These sensors are very sensitive with a gauge factor as high as 170 and a flat frequency response to at least 2.7 kHz. The gauge factor depends on the asymmetry of the etched structures and the number of etched sections. To understand the physical principles involved, researchers have used structural analysis programs based on a finite-element method to analyze fibers with asymmetric etched structures under tensile stress. The results show that lateral bends are induced on the etched fibers when they are stretched axially. To relate the lateral bending to the optical attenuation, we have also employed a ray-tracing technique to investigate the dependence of the attenuation on the structural deformation. Based on the structural analysis and the ray-tracing study parameters affecting the sensitivity have been studied. These results agree with the results of experimental investigations.
Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macdougall, James, E-mail: jbm34@mail.fresnostate.edu; Singleton, Douglas, E-mail: dougs@csufresno.edu
2014-04-15
Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect—the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology ofmore » the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed.« less
Using TRAILS to Assess Student Learning: A Step-by-Step Guide
ERIC Educational Resources Information Center
Owen, Patricia L.
2010-01-01
School librarians nationwide seek to produce evidence of the library's impact on student learning and achievement. While classroom teachers demonstrate their impact through the use of standardized test scores including end-of-grade tests and SAT/ACT tests, school librarians have long used informal or in-class assessments to gauge student learning.…
Explanatory Item Response Modeling of Children's Change on a Dynamic Test of Analogical Reasoning
ERIC Educational Resources Information Center
Stevenson, Claire E.; Hickendorff, Marian; Resing, Wilma C. M.; Heiser, Willem J.; de Boeck, Paul A. L.
2013-01-01
Dynamic testing is an assessment method in which training is incorporated into the procedure with the aim of gauging cognitive potential. Large individual differences are present in children's ability to profit from training in analogical reasoning. The aim of this experiment was to investigate sources of these differences on a dynamic test of…
Development of wheelchair caster testing equipment and preliminary testing of caster models
Mhatre, Anand; Ott, Joseph
2017-01-01
Background Because of the adverse environmental conditions present in less-resourced environments (LREs), the World Health Organization (WHO) has recommended that specialised wheelchair test methods may need to be developed to support product quality standards in these environments. A group of experts identified caster test methods as a high priority because of their common failure in LREs, and the insufficiency of existing test methods described in the International Organization for Standardization (ISO) Wheelchair Testing Standards (ISO 7176). Objectives To develop and demonstrate the feasibility of a caster system test method. Method Background literature and expert opinions were collected to identify existing caster test methods, caster failures common in LREs and environmental conditions present in LREs. Several conceptual designs for the caster testing method were developed, and through an iterative process using expert feedback, a final concept and a design were developed and a prototype was fabricated. Feasibility tests were conducted by testing a series of caster systems from wheelchairs used in LREs, and failure modes were recorded and compared to anecdotal reports about field failures. Results The new caster testing system was developed and it provides the flexibility to expose caster systems to typical conditions in LREs. Caster failures such as stem bolt fractures, fork fractures, bearing failures and tire cracking occurred during testing trials and are consistent with field failures. Conclusion The new caster test system has the capability to incorporate necessary test factors that degrade caster quality in LREs. Future work includes developing and validating a testing protocol that results in failure modes common during wheelchair use in LRE. PMID:29062762
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, T. H.; Robinson, W. R.; Holland, J. W.
1989-12-01
Results and analyses of margin to cladding failure and pre-failure axial expansion of metallic fuel are reported for TREAT in-pile transient overpower tests M5--M7. These are the first such tests on reference binary and ternary alloy fuel of the Integral Fast Reactor (IFR) concept with burnup ranging from 1 to 10 at. %. In all cases, test fuel was subjected to an exponential power rise on an 8 s period until either incipient or actual cladding failure was achieved. Objectives, designs and methods are described with emphasis on developments unique to metal fuel safety testing. The resulting database for claddingmore » failure threshold and prefailure fuel expansion is presented. The nature of the observed cladding failure and resultant fuel dispersals is described. Simple models of cladding failures and pre-failure axial expansions are described and compared with experimental results. Reported results include: temperature, flow, and pressure data from test instrumentation; fuel motion diagnostic data principally from the fast neutron hodoscope; and test remains described from both destructive and non-destructive post-test examination. 24 refs., 144 figs., 17 tabs.« less
NASA Astrophysics Data System (ADS)
Benmokrane, B.; Debaiky, A.; El-Ragaby, A.; Roy, R.; El-Gamal, S.; El-Salakawy, E.
2006-03-01
There is a growing need for designing and constructing innovative concrete bridges using FRP reinforcing bars as internal reinforcement to avoid the corrosion problems and high costs of maintenance and repair. For efficient use and to increase the lifetime of these bridges, it is important to develop efficient monitoring systems for such innovative structures. Fabry-Perot and Bragg fibre optic sensors (FOS) that can measure the strains and temperature are promising candidates for life-long health monitoring of these structures. This article reports laboratory and field performance of Fabry-Perot and Bragg FOS sensors as well as electrical strain gauges in static and dynamic strain monitoring in concrete bridge decks. The laboratory tests include tensile testing of glass FRP bars and testing of full-scale concrete bridge deck slabs reinforced with glass and carbon FRP bars under static and cyclic concentrated loads. The field tests include static and dynamic testing of two bridges reinforced with steel and glass FRP bars. The obtained strain results showed satisfactory agreement between the different gauges.
LHC signals for singlet neutrinos from a natural warped seesaw mechanism. II
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Du, Peizhi; Hong, Sungwoo
2018-04-01
A natural seesaw mechanism for obtaining the observed size of SM neutrino masses can arise in a warped extra-dimensional/composite Higgs framework. In a previous paper, we initiated the study of signals at the LHC for the associated ˜TeV mass SM singlet neutrinos, within a canonical model of S U (2 )L×S U (2 )R×U (1 )B-L (LR) symmetry in the composite sector, as motivated by consistency with the EW precision tests. Here, we investigate LHC signals in a different region of parameter space for the same model, where production of singlet neutrinos can occur from particles beyond those in the usual LR models. Specifically, we assume that the composite (B -L ) gauge boson is lighter than all the others in the EW sector. We show that the composite (B -L ) gauge boson can acquire a significant coupling to light quarks simply via mixing with elementary hypercharge gauge boson. Thus, the singlet neutrino can be pair-produced via decays of the(B -L ) gauge boson, without a charged current counterpart. Furthermore, there is no decay for the (B -L ) gauge boson directly into dibosons, unlike for the usual case of WR± and Z'. Independently of the above extension of the EW sector, we analyze production of singlet neutrinos in decays of composite partners of S U (2 )L doublet leptons, which are absent in the usual LR models. In turn, these doublet leptons can be produced in composite WL decays. We show that the 4 -5 σ signal can be achieved for both cases described above for the following spectrum with 3000 fb-1 luminosity: 2-2.5 TeV composite gauge bosons, 1 TeV composite doublet lepton (for the second case) and 500-750 GeV singlet neutrino.
Sampling design optimisation for rainfall prediction using a non-stationary geostatistical model
NASA Astrophysics Data System (ADS)
Wadoux, Alexandre M. J.-C.; Brus, Dick J.; Rico-Ramirez, Miguel A.; Heuvelink, Gerard B. M.
2017-09-01
The accuracy of spatial predictions of rainfall by merging rain-gauge and radar data is partly determined by the sampling design of the rain-gauge network. Optimising the locations of the rain-gauges may increase the accuracy of the predictions. Existing spatial sampling design optimisation methods are based on minimisation of the spatially averaged prediction error variance under the assumption of intrinsic stationarity. Over the past years, substantial progress has been made to deal with non-stationary spatial processes in kriging. Various well-documented geostatistical models relax the assumption of stationarity in the mean, while recent studies show the importance of considering non-stationarity in the variance for environmental processes occurring in complex landscapes. We optimised the sampling locations of rain-gauges using an extension of the Kriging with External Drift (KED) model for prediction of rainfall fields. The model incorporates both non-stationarity in the mean and in the variance, which are modelled as functions of external covariates such as radar imagery, distance to radar station and radar beam blockage. Spatial predictions are made repeatedly over time, each time recalibrating the model. The space-time averaged KED variance was minimised by Spatial Simulated Annealing (SSA). The methodology was tested using a case study predicting daily rainfall in the north of England for a one-year period. Results show that (i) the proposed non-stationary variance model outperforms the stationary variance model, and (ii) a small but significant decrease of the rainfall prediction error variance is obtained with the optimised rain-gauge network. In particular, it pays off to place rain-gauges at locations where the radar imagery is inaccurate, while keeping the distribution over the study area sufficiently uniform.
NASA Astrophysics Data System (ADS)
Maier, A.; Schledjewski, R.
2016-07-01
For continuous manufacturing processes mechanical preloading of the fibers occurs during the delivery of the fibers from the spool creel to the actual manufacturing process step. Moreover preloading of the dry roving bundles might be mandatory, e.g. during winding, to be able to produce high quality components. On the one hand too high tensile loads within dry roving bundles might result in a catastrophic failure and on the other hand the part produced under too low pre-tension might have low quality and mechanical properties. In this work, load conditions influencing mechanical properties of dry glass fiber bundles during continuous composite manufacturing processes were analyzed. Load conditions, i.e. fiber delivery speed, necessary pre-tension and other effects of the delivery system during continuous fiber winding, were chosen in process typical ranges. First, the strain rate dependency under static tensile load conditions was investigated. Furthermore different free gauge lengths up to 1.2 m, interactions between fiber points of contact regarding influence of sizing as well as impregnation were tested and the effect of twisting on the mechanical behavior of dry glass fiber bundles during the fiber delivery was studied.
Active investigation of material damage under load using micro-CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navalgund, Megha, E-mail: megha.navalgund@ge.com; Mishra, Debasish; Manoharan, V.
2015-03-31
Due the growth of composite materials across multiple industries such as Aviation, Wind there is an increasing need to not just standardize and improve manufacturing processes but also to design these materials for the specific applications. One of the things that this translates to is understanding how failure initiates and grows in these materials and at what loads, especially around internal flaws such as voids or features such as ply drops. Traditional methods of investigating internal damage such as CT lack the resolution to resolve ply level damage in composites. Interrupted testing with layer removal can be used to investigatemore » internal damage using microscopy; however this is a destructive method. Advanced techniques such as such as DIC are useful for in-situ damage detection, however are limited to surface information and would not enable interrogating the volume. Computed tomography has become a state of the art technique for metrology and complete volumetric investigation especially for metallic components. However, its application to the composite world is still nascent. This paper demonstrates micro-CT’s capability as a gauge to quantitatively estimate the extent of damage and understand the propagation of damage in PMC composites while the component is under stress.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-04-01
Aerial motion pictures from manned aircraft were taken of the Dog, Easy, and George Shots and from a drone aircraft on Dog Shot to determine whether asymmetries in the blast waves could be detected and measured. Only one film, that taken of Dog Shot from a drone, was considered good enough to warrant detailed analysis, but this failed to yield any positive information on asymmetries. The analysis showed that failure to obtain good arrival-time data arose from a number of cases, but primarily from uncertainities in magnification and timing. Results could only be matched with reliable data from blast-velocity switchesmore » by use of large corrections. Asymnetries, if present, were judged to have been too small or to have occurred too early to be detected with the slow-frame speed used. Recommendations for better results include locating the aircraft directly overhead at the time of burst and using a camera having greater frame speed and provided with timing marks.« less
Freedman, Benjamin R.; Zuskov, Andrey; Sarver, Joseph J.; Buckley, Mark R.; Soslowsky, Louis J.
2015-01-01
The complex structure of tendons relates to their mechanical properties. Previous research has associated the waviness of collagen fibers (crimp) during quasi-static tensile loading to tensile mechanics, but less is known about the role of fatigue loading on crimp properties. In this study (IACUC approved), mouse patellar tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties. We demonstrate a novel structural mechanism whereby tendon crimp amplitude and frequency are altered with fatigue loading. In particular, fatigue loading increased the crimp amplitude across the tendon width and length, and these structural alterations were shown to be both region and load dependent. The change in crimp amplitude was strongly correlated to mechanical tissue laxity (defined as the ratio of displacement and gauge length relative to the first cycle of fatigue loading assessed at constant load throughout testing), at all loads and regions evaluated. Together, this study highlights the role of fatigue loading on tendon crimp properties as a function of load applied and region evaluated, and offers an additional structural mechanism for mechanical alterations that may lead to ultimate tendon failure. PMID:25773654
NASA Astrophysics Data System (ADS)
Segeren, M. L. A.; Hermans, K. W.
2014-06-01
The failure of the traditional grouted connections of offshore wind turbines has led to the investigation of alternatives that provide a connection between the foundation pile and the turbine tower. An alternative to the traditional joint is a steel-to-steel connection also called a slip joint. To ensure a proper fit of the slip joint a dynamic installation of the joint is proposed. In this contribution, the effectiveness of harmonic excitation as an installation procedure is experimentally investigated using a 1:10 scaled model of the joint. During the dynamic installation test the applied static load, settlements and dynamic response of the joint are monitored using respectively load cells, taut wires and strain gauges placed both inside and outside the conical surfaces. The results show that settlement occurs only when applying a harmonic load at specific forcing frequencies. The settlement stabilizes to a certain level for each of the specific frequencies, indicating that a controlled way of installation is possible. The results show that it is essential to vibrate at specific frequencies and that a larger amplitude of the harmonic force does not automatically lead to additional settlement.
Active investigation of material damage under load using micro-CT
NASA Astrophysics Data System (ADS)
Navalgund, Megha; Zunjarrao, Suraj; Mishra, Debasish; Manoharan, V.
2015-03-01
Due the growth of composite materials across multiple industries such as Aviation, Wind there is an increasing need to not just standardize and improve manufacturing processes but also to design these materials for the specific applications. One of the things that this translates to is understanding how failure initiates and grows in these materials and at what loads, especially around internal flaws such as voids or features such as ply drops. Traditional methods of investigating internal damage such as CT lack the resolution to resolve ply level damage in composites. Interrupted testing with layer removal can be used to investigate internal damage using microscopy; however this is a destructive method. Advanced techniques such as such as DIC are useful for in-situ damage detection, however are limited to surface information and would not enable interrogating the volume. Computed tomography has become a state of the art technique for metrology and complete volumetric investigation especially for metallic components. However, its application to the composite world is still nascent. This paper demonstrates micro-CT's capability as a gauge to quantitatively estimate the extent of damage & understand the propagation of damage in PMC composites while the component is under stress.
Park, Sung Woo; Oh, Byung Kwan; Park, Hyo Seon
2015-03-30
The safety of a multi-span waler beam subjected simultaneously to a distributed load and deflections at its supports can be secured by limiting the maximum stress of the beam to a specific value to prevent the beam from reaching a limit state for failure or collapse. Despite the fact that the vast majority of accidents on construction sites occur at waler beams in retaining wall systems, no safety monitoring model that can consider deflections at the supports of the beam is available. In this paper, a maximum stress estimation model for a waler beam based on average strains measured from vibrating wire strain gauges (VWSGs), the most frequently used sensors in construction field, is presented. The model is derived by defining the relationship between the maximum stress and the average strains measured from VWSGs. In addition to the maximum stress, support reactions, deflections at supports, and the magnitudes of distributed loads for the beam structure can be identified by the estimation model using the average strains. Using simulation tests on two multi-span beams, the performance of the model is evaluated by estimating maximum stress, deflections at supports, support reactions, and the magnitudes of distributed loads.
Tensile Response of Hoop Reinforced Multiaxially Braided Thin Wall Composite Tubes
NASA Astrophysics Data System (ADS)
Roy, Sree Shankhachur; Potluri, Prasad; Soutis, Constantinos
2017-04-01
This paper presents the tensile response of thin-walled composite tubes with multi-axial fibre architecture. A hybrid braid-wound layup has the potential to optimise the composite tube properties, however, stacking sequence plays a role in the failure mechanism. A braid-winding method has been used to produce stacked overwound braid layup [(±45°/0°)5/90°4]T. Influence of stacking sequence on premature failure of hoop layers has been reported. Under tensile loading, a cross-ply composite tube with the alternate stacking of hoop and axial fibre show hoop plies splitting similar to the overwound braided composite tube. However, splitting has been restricted by the surrounding axial plies and contained between the adjacent axial fibre tows. This observation suggests hoop layers sandwiched between braid layers will improve structural integrity. A near net shape architecture with three fibre orientation in a triaxial braid will provide additional support to prevent extensive damage for plies loaded in off-axis. Several notable observations for relatively open braid structures such as tow scissoring, high Poisson's ratio and influence of axial tow crimp on the strain to failure have been reported. Digital Image Correlation (DIC) in conjunction with surface strain gauging has been employed to capture the strain pattern.
Entanglement renormalization and gauge symmetry
NASA Astrophysics Data System (ADS)
Tagliacozzo, L.; Vidal, G.
2011-03-01
A lattice gauge theory is described by a redundantly large vector space that is subject to local constraints and can be regarded as the low-energy limit of an extended lattice model with a local symmetry. We propose a numerical coarse-graining scheme to produce low-energy, effective descriptions of lattice models with a local symmetry such that the local symmetry is exactly preserved during coarse-graining. Our approach results in a variational ansatz for the ground state(s) and low-energy excitations of such models and, by extension, of lattice gauge theories. This ansatz incorporates the local symmetry in its structure and exploits it to obtain a significant reduction of computational costs. We test the approach in the context of a Z2 lattice gauge theory formulated as the low-energy theory of a specific regime of the toric code with a magnetic field, for lattices with up to 16×16 sites (162×2=512 spins) on a torus. We reproduce the well-known ground-state phase diagram of the model, consisting of a deconfined and spin-polarized phases separated by a continuous quantum phase transition, and obtain accurate estimates of energy gaps, ground-state fidelities, Wilson loops, and several other quantities.
First International Symposium on Strain Gauge Balances. Pt. 1
NASA Technical Reports Server (NTRS)
Tripp, John S. (Editor); Tcheng, Ping (Editor)
1999-01-01
The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK.
Effect of spinal needle characteristics on measurement of spinal canal opening pressure.
Bellamkonda, Venkatesh R; Wright, Thomas C; Lohse, Christine M; Keaveny, Virginia R; Funk, Eric C; Olson, Michael D; Laack, Torrey A
2017-05-01
A wide variety of spinal needles are used in clinical practice. Little is currently known regarding the impact of needle length, gauge, and tip type on the needle's ability to measure spinal canal opening pressure. This study aimed to investigate the relationship between these factors and the opening-pressure measurement or time to obtain an opening pressure. Thirteen distinct spinal needles, chosen to isolate the effects of length, gauge, and needle-point type, were prospectively tested on a lumbar puncture simulator. The key outcomes were the opening-pressure measurement and the time required to obtain that measure. Pressures were recorded at 10-s intervals until 3 consecutive, identical readings were observed. Time to measure opening pressure increased with increasing spinal needle length, increasing gauge, and the Quincke-type (cutting) point (P<0.001 for all). The time to measurement ranged from 30s to 530s, yet all needle types were able to obtain a consistent opening pressure measure. Although opening pressure estimates are unlikely to vary markedly by needle type, the time required to obtain the measurement increased with increasing needle length and gauge and with Quincke-type needles. Copyright © 2017 Elsevier Inc. All rights reserved.
Rizzo, Stanislao; Fantoni, Gualtiero; de Santis, Giovanni; Lue, Jaw-Chyng Lormen; Ciampi, Jonathan; Palla, Michele; Genovesi Ebert, Federica; Savastano, Alfonso; De Maria, Carmelo; Vozzi, Giovanni; Brant Fernandes, Rodrigo A; Faraldi, Francesco; Criscenti, Giuseppe
2017-09-01
Thorough this experimental study, the physic features of a modified 23-gauge vitrectomy probe were evaluated in vitro. A modified vitrectomy probe to increase vitreous outflow rate with a small-diameter probe, that also minimized tractional forces on the retina, was created and tested. The "new" probe was created by drilling an opening into the inner duct of a traditional 23-gauge probe with electrochemical or electrodischarge micromachining. Both vitreous outflow and tractional forces on the retina were examined using experimental models of vitreous surgery. The additional opening allowed the modified probe to have a cutting rate of 5,000 cuts per minute, while sustaining an outflow approximately 45% higher than in conventional 23-gauge probes. The modified probe performed two cutting actions per cycle, not one, as in standard probes. Because tractional force is influenced by cutting rate, retinal forces were 2.2 times lower than those observed with traditional cutters. The modified probe could be useful in vitreoretinal surgery. It allows for faster vitreous removal while minimizing tractional forces on the retina. Moreover, any available probe can be modified by creating a hole in the inner duct.
First International Symposium on Strain Gauge Balances. Part 2
NASA Technical Reports Server (NTRS)
Tripp, John S (Editor); Tcheng, Ping (Editor)
1999-01-01
The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK.
Quantitative and Qualitative Geospatial Analysis of a Probable Catastrophic Dam Failure
NASA Astrophysics Data System (ADS)
Oduor, P. G.; Stenehjem, J.
2011-12-01
Geospatial techniques were used in assessing inundation extents that would occur in the event of a catastrophic failure of Fort Peck dam. Fort Peck dam, located in Montana, USA has a spillway design which under dam failure the crest is expected to reach Williston a major economic hub in North Dakota in 1.4 days with a peak elevation of 1891 ft (576.377 m) msl (mean sea level). In this study, we address flooding extents and impacts on establishments with respect to a peak elevation of 1891 ft. From this study, we can unequivocally state that the City of Williston will be significantly impacted if Fort Peck dam fails with almost all critical needs, for example, gasoline stations, emergency facilities and grocery stores completely inundated. A secondary catastrophic event may be tied to the primary economic activity in Williston, that is, oil rigs of which most lie on the pathway of an inadvertent flood crest. We also applied a Discrete Fourier Transformation (DFT), and Lomb-Scargle normalized periodogram analyses and fitting of Fort Peck dam reservoir level fluctuations to gauge (a) likelihood of the dam overtopping, and (b) anatomic life span. Whereas we found that inasmuch as the dam could be considered stable by directly analyzing other dams that have failed, there is still a lower likelihood of it to fail at a 99-232 years range from construction. There was lack of concomitancy between overtopping and dam failure rates.
Assessment of in situ test technology for construction control of base courses and embankments.
DOT National Transportation Integrated Search
2008-04-01
The main objective of this research is to assess the use of three nondestructive testing devices, the GeoGauge, the LFWD, and the DCP, in order to evaluate the in situ elastic modulus of highway materials for application in the quality assurance/qual...
Development of a clinically validated bulk failure test for ceramic crowns.
Kelly, J Robert; Rungruanganunt, Patchnee; Hunter, Ben; Vailati, Francesca
2010-10-01
Traditional testing of ceramic crowns creates a stress state and damage modes that differ greatly from those seen clinically. There is a need to develop and communicate an in vitro testing protocol that is clinically valid. The purpose of this study was to develop an in vitro failure test for ceramic single-unit prostheses that duplicates the failure mechanism and stress state observed in clinically failed prostheses. This article first compares characteristics of traditional load-to-failure tests of ceramic crowns with the growing body of evidence regarding failure origins and stress states at failure from the examination of clinically failed crowns, finite element analysis (FEA), and data from clinical studies. Based on this analysis, an experimental technique was systematically developed and test materials were identified to recreate key aspects of clinical failure in vitro. One potential dentin analog material (an epoxy filled with woven glass fibers; NEMA grade G10) was evaluated for elastic modulus in blunt contact and for bond strength to resin cement as compared to hydrated dentin. Two bases with different elastic moduli (nickel chrome and resin-based composite) were tested for influence on failure loads. The influence of water during storage and loading (both monotonic and cyclic) was examined. Loading piston materials (G10, aluminum, stainless steel) and piston designs were varied to eliminate Hertzian cracking and to improve performance. Testing was extended from a monolayer ceramic (leucite-filled glass) to a bilayer ceramic system (glass-infiltrated alumina). The influence of cyclic rate on mean failure loads was examined (2 Hz, 10 Hz, 20 Hz) with the extremes compared statistically (t test; α=.05). Failure loads were highly influenced by base elastic modulus (t test; P<.001). Cyclic loading while in water significantly decreased mean failure loads (1-way ANOVA; P=.003) versus wet storage/dry cycling (350 N vs. 1270 N). G10 was not significantly different from hydrated dentin in terms of blunt contact elastic behavior or resin cement bond strength. Testing was successful with the bilayered ceramic, and the cycling rate altered mean failure loads only slightly (approximately 5%). Test methods and materials were developed to validly simulate many aspects of clinical failure. Copyright © 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Drought forecasting in Luanhe River basin involving climatic indices
NASA Astrophysics Data System (ADS)
Ren, Weinan; Wang, Yixuan; Li, Jianzhu; Feng, Ping; Smith, Ronald J.
2017-11-01
Drought is regarded as one of the most severe natural disasters globally. This is especially the case in Tianjin City, Northern China, where drought can affect economic development and people's livelihoods. Drought forecasting, the basis of drought management, is an important mitigation strategy. In this paper, we evolve a probabilistic forecasting model, which forecasts transition probabilities from a current Standardized Precipitation Index (SPI) value to a future SPI class, based on conditional distribution of multivariate normal distribution to involve two large-scale climatic indices at the same time, and apply the forecasting model to 26 rain gauges in the Luanhe River basin in North China. The establishment of the model and the derivation of the SPI are based on the hypothesis of aggregated monthly precipitation that is normally distributed. Pearson correlation and Shapiro-Wilk normality tests are used to select appropriate SPI time scale and large-scale climatic indices. Findings indicated that longer-term aggregated monthly precipitation, in general, was more likely to be considered normally distributed and forecasting models should be applied to each gauge, respectively, rather than to the whole basin. Taking Liying Gauge as an example, we illustrate the impact of the SPI time scale and lead time on transition probabilities. Then, the controlled climatic indices of every gauge are selected by Pearson correlation test and the multivariate normality of SPI, corresponding climatic indices for current month and SPI 1, 2, and 3 months later are demonstrated using Shapiro-Wilk normality test. Subsequently, we illustrate the impact of large-scale oceanic-atmospheric circulation patterns on transition probabilities. Finally, we use a score method to evaluate and compare the performance of the three forecasting models and compare them with two traditional models which forecast transition probabilities from a current to a future SPI class. The results show that the three proposed models outperform the two traditional models and involving large-scale climatic indices can improve the forecasting accuracy.
Bajgai, Priya; Tigari, Basavraj; Singh, Ramandeep
2017-10-04
To compare the outcome of 23-gauge as compared with 25-gauge transconjunctival sutureless vitrectomy (TSV) in the management of dislocated intraocular lenses (IOLs). Retrospective, non-consecutive, comparative, interventional case series. Patients with dislocated intraocular lens who underwent sutureless PPV using either 23-gauge or 25-gauge instruments. The patients who presented with a dislocated IOL, underwent TSV with repositioning of the intraocular lens, either in the sulcus or scleral-fixated sutured/glued. Of the total 61 eyes, 33 (54.09%) underwent 23-gauge TSV and 28 (45.90%) underwent 25-gauge TSV. The mean logMAR BCVA at baseline and 6 months after surgery was 0.8 and 0.46 in the 23-gauge group, and 0.82 and 0.47 in the 25-gauge group. There was no significant difference in logMAR BCVA values between the two groups at any time point of time during the follow-up. The mean postoperative IOP on postoperative day 1 was 14.76 ± 5.4 in 23-gauge group and 17.57 ± 7.9 in the 25-gauge group (p = 0.10). Retinal break was noticed intraoperatively in two cases in 23-gauge group and in three cases in 25-gauge group (p = 0.509). Postoperative complications included IOL decentration in one case of 23-gauge vitrectomy and two cases in 25-gauge group (p = 0.5), cystoid macular edema in four patients in 23-gauge group and six cases of 25-gauge group (p = 0.3) and retinal detachment in one case in each group (p = 0.9). 25-gauge appears to be as safe and as effective as 23-gauge TSV in the management of dislocated intraocular lenses.
Towards Scalable Strain Gauge-Based Joint Torque Sensors
D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred
2017-01-01
During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446
Towards Scalable Strain Gauge-Based Joint Torque Sensors.
Khan, Hamza; D'Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G; Cuschieri, Alfred; Semini, Claudio
2017-08-18
During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS) , the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot- MiniHyQ . This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR).
NASA Astrophysics Data System (ADS)
Nazzal, Mohammad; Abu-Farha, Fadi; Curtis, Richard
2011-08-01
Characterizing the behavior of superplastic materials is largely based on the uniaxial tensile test; yet the unique nature of these materials requires a particularly tailored testing methodology, different to that used with conventional materials. One of the crucial testing facets is the specimen geometry, which has a great impact on the outcome of a superplastic tensile test, as a result of the associated extreme conditions. And while researchers agree that it should take a notably different form than the typical dog-bone shape; there is no universal agreement on the specimen's particular size and dimensions, as evident by the disparities in test specimens used in the various superplastic testing efforts found throughout the literature. In view of that, this article is dedicated to understanding the effects of specimen geometry on the superplastic behavior of the material during tensile testing. Deformation of the Ti6Al4V titanium alloy is FE simulated based on a multitude of specimen geometries, covering a wide range of gauge length, gauge width, grip length, and grip width values. The study provides key insights on the influences of each geometrical parameter as well as their interactions, and provides recommendations on selecting the specimen's proportions for accurate and unified tensile testing of superplastic materials.
Design and evaluation of a wireless sensor network based aircraft strength testing system.
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.
Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521
Dimensional Transmutation by Monopole Condensation in QCD
NASA Astrophysics Data System (ADS)
Cho, Y. M.
2015-01-01
The dimensional transmutation by the monopole condensation in QCD is reviewed. Using Abelian projection of the gauge potential which projects out the monopole potential gauge independently, we we show that there are two types of gluons: the color neutral binding gluons which plays the role of the confining agent and the colored valence gluons which become confined prisoners. With this we calculate the one-loop QCD effective potential and show the monopole condensation becomes the true vacuum of QCD. We propose to test the existence of two types of gluons experimentally by re-analyzing the existing gluon jets data.
The NASA Lewis Strain Gauge Laboratory: An update
NASA Technical Reports Server (NTRS)
Hobart, H. F.
1986-01-01
Efforts continue in the development and evaluation of electrical resistance strain gauges of the thin film and small diameter wire type. Results obtained early in 1986 on some Chinese gauges and Kanthal A-1 gauges mounted on a Hastelloy-X substrate are presented. More recent efforts include: (1) the determination of the uncertainty in the ability to establish gauge factor, (2) the evaluation of sputtered gauges that were fabricated at Lewis, (3) an investigation of the efficacy of dual element temperature compensated gauges when using strain gauge alloys having large thermal coefficients of resistance, and (4) an evaluation of the practical methods of stabilizing gauges whose apparent strain is dependent on cooling rate (e.g., FeCrAl gauges).
NASA Astrophysics Data System (ADS)
Dugar, S.; MacClune, K.; Venkateswaran, K.; Yadav, S.; Szoenyi, M.
2015-12-01
Implementing Community Based Flood Early Warning System (EWS) in developing countries like Nepal is challenging. Complex topography and geology combined with a sparse network of river and rainfall gauges and little predictive meteorological capacity both nationally and regionally dramatically constrain EWS options. This paper provides a synopsis of the hydrological and meteorological conditions that led to flooding in the Karnali River, West Nepal during mid-August 2014, and analyses the effectiveness of flood EWS in the region. On August 14-15, 2014, a large, slow moving weather system deposited record breaking rainfall in the foothills of the Karnali River catchment. Precipitation depths of 200 to 500 mm were recorded over a 24-hour period, which led to rapid rise of river heights. At the Chisapani river gauge station used for the existing EWS, where the Karnali River exits the Himalaya onto the Indo-Gangetic Plain, water levels rapidly exceeded the 11 meter danger level. Between 3 to 6 am, water levels rose from 11 to 16. 1 meters, well beyond the design height of 15 meters. Analysis suggests that 2014 floods may have been a one-in-1000 year event. Starting with the onset of intense rainfall, the Chisapani gauge reader was in regular communication with downstream stakeholders and communities providing them with timely information regarding rising water level. This provided people just enough time to move to safe places with their livestock and key assets. Though households still lost substantial assets, without the EWS, floodwaters would have caught communities completely unaware and damage would almost certainly have been much worse. In particular, despite the complications associated with access to the Chisapani gauge and failure of critical communication nodes during the floods, EWS was instrumental in saving lives. This study explores both the details of the flood event and performance of the early warning system, and identifies lessons learned to help strengthen flood response in Nepal other regions facing similar data and technology constraints. This research also underscores the need to move from observation to forecast based EWS, ideally coupled with hydrological and meteorological models that would provide flood estimates well in advance to vulnerable communities.
CT fluoroscopy-guided core needle biopsy of anterior mediastinal masses.
Iguchi, T; Hiraki, T; Matsui, Y; Fujiwara, H; Sakurai, J; Masaoka, Y; Uka, M; Tanaka, T; Gobara, H; Kanazawa, S
2018-02-01
To retrospectively evaluate the safety, diagnostic yield, and risk factors of diagnostic failure of computed tomography (CT) fluoroscopy-guided biopsies of anterior mediastinal masses. Biopsy procedures and results of anterior mediastinal masses in 71 patients (32 women/39 men; mean [±standard deviation] age, 53.8±20.0years; range, 14-88years) were analyzed. Final diagnoses were based on surgical outcomes, imaging findings, or clinical follow-up findings. The biopsy results were compared with the final diagnosis, and the biopsy procedures grouped by pathologic findings into diagnostic success and failure groups. Multiple putative risk factors for diagnostic failure were then assessed. Seventy-one biopsies (71 masses; mean size, 67.5±27.3mm; range 8.6-128.2mm) were analyzed. We identified 17 grade 1 and one grade 2 adverse events (25.4% overall) according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0. Sixty-nine biopsies (97.2%) provided samples fit for pathologic analysis. Diagnostic failure was found for eight (11.3%) masses; the 63 masses diagnosed successfully included thymic carcinoma (n=17), lung cancer (n=14), thymoma (n=12), malignant lymphoma (n=11), germ cell tumor (n=3), and others (n=6). Using a thinner needle (i.e., a 20-gauge needle) was the sole significant risk factor for diagnostic failure (P=0.039). CT fluoroscopy-guided biopsy of anterior mediastinal masses was safe and had a high diagnostic yield; however, using a thinner biopsy needle significantly increased the risk of a failed diagnosis. Copyright © 2017 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Raju, Ivatury S; Glaessgen, Edward H.; Mason, Brian H; Krishnamurthy, Thiagarajan; Davila, Carlos G
2005-01-01
A detailed finite element analysis of the right rear lug of the American Airlines Flight 587 - Airbus A300-600R was performed as part of the National Transportation Safety Board s failure investigation of the accident that occurred on November 12, 2001. The loads experienced by the right rear lug are evaluated using global models of the vertical tail, local models near the right rear lug, and a global-local analysis procedure. The right rear lug was analyzed using two modeling approaches. In the first approach, solid-shell type modeling is used, and in the second approach, layered-shell type modeling is used. The solid-shell and the layered-shell modeling approaches were used in progressive failure analyses (PFA) to determine the load, mode, and location of failure in the right rear lug under loading representative of an Airbus certification test conducted in 1985 (the 1985-certification test). Both analyses were in excellent agreement with each other on the predicted failure loads, failure mode, and location of failure. The solid-shell type modeling was then used to analyze both a subcomponent test conducted by Airbus in 2003 (the 2003-subcomponent test) and the accident condition. Excellent agreement was observed between the analyses and the observed failures in both cases. From the analyses conducted and presented in this paper, the following conclusions were drawn. The moment, Mx (moment about the fuselage longitudinal axis), has significant effect on the failure load of the lugs. Higher absolute values of Mx give lower failure loads. The predicted load, mode, and location of the failure of the 1985-certification test, 2003-subcomponent test, and the accident condition are in very good agreement. This agreement suggests that the 1985-certification and 2003- subcomponent tests represent the accident condition accurately. The failure mode of the right rear lug for the 1985-certification test, 2003-subcomponent test, and the accident load case is identified as a cleavage-type failure. For the accident case, the predicted failure load for the right rear lug from the PFA is greater than 1.98 times the limit load of the lugs. I.
Structural Analysis of the Right Rear Lug of American Airlines Flight 587
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Glaessgen, Edward H.; Mason, Brian H.; Krishnamurthy, Thiagarajan; Davila, Carlos G.
2006-01-01
A detailed finite element analysis of the right rear lug of the American Airlines Flight 587 - Airbus A300-600R was performed as part of the National Transportation Safety Board s failure investigation of the accident that occurred on November 12, 2001. The loads experienced by the right rear lug are evaluated using global models of the vertical tail, local models near the right rear lug, and a global-local analysis procedure. The right rear lug was analyzed using two modeling approaches. In the first approach, solid-shell type modeling is used, and in the second approach, layered-shell type modeling is used. The solid-shell and the layered-shell modeling approaches were used in progressive failure analyses (PFA) to determine the load, mode, and location of failure in the right rear lug under loading representative of an Airbus certification test conducted in 1985 (the 1985-certification test). Both analyses were in excellent agreement with each other on the predicted failure loads, failure mode, and location of failure. The solid-shell type modeling was then used to analyze both a subcomponent test conducted by Airbus in 2003 (the 2003-subcomponent test) and the accident condition. Excellent agreement was observed between the analyses and the observed failures in both cases. The moment, Mx (moment about the fuselage longitudinal axis), has significant effect on the failure load of the lugs. Higher absolute values of Mx give lower failure loads. The predicted load, mode, and location of the failure of the 1985- certification test, 2003-subcomponent test, and the accident condition are in very good agreement. This agreement suggests that the 1985-certification and 2003-subcomponent tests represent the accident condition accurately. The failure mode of the right rear lug for the 1985-certification test, 2003-subcomponent test, and the accident load case is identified as a cleavage-type failure. For the accident case, the predicted failure load for the right rear lug from the PFA is greater than 1.98 times the limit load of the lugs.
Yamazaki, Hiroshi; O'Leary, Stephen; Moran, Michelle; Briggs, Robert
2014-04-01
Accurate diagnosis of cochlear implant failures is important for management; however, appropriate strategies to assess possible device failures are not always clear. The purpose of this study is to understand correlation between causes of device failure and the presenting clinical symptoms as well as results of in situ integrity testing and to propose effective strategies for diagnosis of device failure. Retrospective case review. Cochlear implant center at a tertiary referral hospital. Twenty-seven cases with suspected device failure of Cochlear Nucleus systems (excluding CI512 failures) on the basis of deterioration in auditory perception from January 2000 to September 2012 in the Melbourne cochlear implant clinic. Clinical presentations and types of abnormalities on in situ integrity testing were compared with modes of device failure detected by returned device analysis. Sudden deterioration in auditory perception was always observed in cases with "critical damage": either fracture of the integrated circuit or most or all of the electrode wires. Subacute or gradually progressive deterioration in auditory perception was significantly associated with a more limited number of broken electrode wires. Cochlear implant mediated auditory and nonauditory symptoms were significantly associated with an insulation problem. An algorithm based on the time course of deterioration in auditory perception and cochlear implant-mediated auditory and nonauditory symptoms was developed on the basis of these retrospective analyses, to help predict the mode of device failure. In situ integrity testing, which included close monitoring of device function in routine programming sessions as well as repeating the manufacturer's integrity test battery, was sensitive enough to detect malfunction in all suspected device failures, and each mode of device failure showed a characteristic abnormality on in situ integrity testing. Our clinical manifestation-based algorithm combined with in situ integrity testing may be useful for accurate diagnosis and appropriate management of device failure. Close monitoring of device function in routine programming sessions as well as repeating the manufacturer's integrity test battery is important if the initial in situ integrity testing is inconclusive because objective evidence of failure in the implanted device is essential to recommend explantation/reimplantation.
Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Daniel, Jennifer C., E-mail: jennifer.odaniel@duke.edu; Yin, Fang-Fang
Purpose: To determine clinic-specific linear accelerator quality assurance (QA) TG-142 test frequencies, to maximize physicist time efficiency and patient treatment quality. Methods and Materials: A novel quantitative approach to failure mode and effect analysis is proposed. Nine linear accelerator-years of QA records provided data on failure occurrence rates. The severity of test failure was modeled by introducing corresponding errors into head and neck intensity modulated radiation therapy treatment plans. The relative risk of daily linear accelerator QA was calculated as a function of frequency of test performance. Results: Although the failure severity was greatest for daily imaging QA (imaging vsmore » treatment isocenter and imaging positioning/repositioning), the failure occurrence rate was greatest for output and laser testing. The composite ranking results suggest that performing output and lasers tests daily, imaging versus treatment isocenter and imaging positioning/repositioning tests weekly, and optical distance indicator and jaws versus light field tests biweekly would be acceptable for non-stereotactic radiosurgery/stereotactic body radiation therapy linear accelerators. Conclusions: Failure mode and effect analysis is a useful tool to determine the relative importance of QA tests from TG-142. Because there are practical time limitations on how many QA tests can be performed, this analysis highlights which tests are the most important and suggests the frequency of testing based on each test's risk priority number.« less
Carbon Fiber Strand Tensile Failure Dynamic Event Characterization
NASA Technical Reports Server (NTRS)
Johnson, Kenneth L.; Reeder, James
2016-01-01
There are few if any clear, visual, and detailed images of carbon fiber strand failures under tension useful for determining mechanisms, sequences of events, different types of failure modes, etc. available to researchers. This makes discussion of physics of failure difficult. It was also desired to find out whether the test article-to-test rig interface (grip) played a part in some failures. These failures have nothing to do with stress rupture failure, thus representing a source of waste for the larger 13-00912 investigation into that specific failure type. Being able to identify or mitigate any competing failure modes would improve the value of the 13-00912 test data. The beginnings of the solution to these problems lay in obtaining images of strand failures useful for understanding physics of failure and the events leading up to failure. Necessary steps include identifying imaging techniques that result in useful data, using those techniques to home in on where in a strand and when in the sequence of events one should obtain imaging data.
10 CFR 36.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... area subject to irradiation are contained within a device and are not accessible by personnel), medical radiology or teletherapy, radiography (the irradiation of materials for nondestructive testing purposes), gauging, or open-field (agricultural) irradiations. ...
10 CFR 36.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... area subject to irradiation are contained within a device and are not accessible by personnel), medical radiology or teletherapy, radiography (the irradiation of materials for nondestructive testing purposes), gauging, or open-field (agricultural) irradiations. ...
10 CFR 36.1 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... area subject to irradiation are contained within a device and are not accessible by personnel), medical radiology or teletherapy, radiography (the irradiation of materials for nondestructive testing purposes), gauging, or open-field (agricultural) irradiations. ...
10 CFR 36.1 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... area subject to irradiation are contained within a device and are not accessible by personnel), medical radiology or teletherapy, radiography (the irradiation of materials for nondestructive testing purposes), gauging, or open-field (agricultural) irradiations. ...
Yilmaz, Banu; Aras, Egemen; Nacar, Sinan; Kankal, Murat
2018-05-23
The functional life of a dam is often determined by the rate of sediment delivery to its reservoir. Therefore, an accurate estimate of the sediment load in rivers with dams is essential for designing and predicting a dam's useful lifespan. The most credible method is direct measurements of sediment input, but this can be very costly and it cannot always be implemented at all gauging stations. In this study, we tested various regression models to estimate suspended sediment load (SSL) at two gauging stations on the Çoruh River in Turkey, including artificial bee colony (ABC), teaching-learning-based optimization algorithm (TLBO), and multivariate adaptive regression splines (MARS). These models were also compared with one another and with classical regression analyses (CRA). Streamflow values and previously collected data of SSL were used as model inputs with predicted SSL data as output. Two different training and testing dataset configurations were used to reinforce the model accuracy. For the MARS method, the root mean square error value was found to range between 35% and 39% for the test two gauging stations, which was lower than errors for other models. Error values were even lower (7% to 15%) using another dataset. Our results indicate that simultaneous measurements of streamflow with SSL provide the most effective parameter for obtaining accurate predictive models and that MARS is the most accurate model for predicting SSL. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woronowicz, Michael; Blackmon, Rebecca; Brown, Martin
2014-12-09
The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH{sub 3} coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performancemore » to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (“directionality”). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb{sub m/}/yr. to about 1 lb{sub m}/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.« less
Failure analysis of a tool steel torque shaft
NASA Technical Reports Server (NTRS)
Reagan, J. R.
1981-01-01
A low design load drive shaft used to deliver power from an experimental exhaust heat recovery system to the crankshaft of an experimental diesel truck engine failed during highway testing. An independent testing laboratory analyzed the failure by routine metallography and attributed the failure to fatigue induced by a banded microstructure. Visual examination by NASA of the failed shaft plus the knowledge of the torsional load that it carried pointed to a 100 percent ductile failure with no evidence of fatigue. Scanning electron microscopy confirmed this. Torsional test specimens were produced from pieces of the failed shaft and torsional overload testing produced identical failures to that which had occurred in the truck engine. This pointed to a failure caused by a high overload and although the microstructure was defective it was not the cause of the failure.
NASA Technical Reports Server (NTRS)
Williams, R. E.; Kruger, R.
1980-01-01
Estimation procedures are described for measuring component failure rates, for comparing the failure rates of two different groups of components, and for formulating confidence intervals for testing hypotheses (based on failure rates) that the two groups perform similarly or differently. Appendix A contains an example of an analysis in which these methods are applied to investigate the characteristics of two groups of spacecraft components. The estimation procedures are adaptable to system level testing and to monitoring failure characteristics in orbit.
Kim, Meehyoung; Yoon, Haesang
2011-11-01
Even though the use of a 25 gauge or smaller Quincke needle is recommended for spinal anesthesia to reduce post-dural puncture headache in Korea, lumbar puncture in older patients using a 25 gauge or smaller Quincke needle can be difficult. However, most previous studies concerning post-dural puncture headache have chosen children, parturients, and young adults as study participants. The study compared post-dural puncture headache, post-operative back pain, and the number of lumbar puncture attempts using a 23 or 25 gauge Quincke needle for spinal anesthesia of Korean patients >60-years-of-age. Randomized, double-blinded controlled trial. The 53 participants who underwent orthopedic surgery under spinal anesthesia were recruited by informed notices from December 2006 through August 2007 at a 200-bed general hospital located in Kyunggido. Inclusion criteria were an age >60 years, ASA I-II, and administration of patient controlled analgesia for the first 48 h post-operatively. The 53 patients were randomly allocated to either the experimental (23 gauge Quincke needle) or control group (25 gauge Quincke needle). All patients had 24 h bed rest post-operatively. Post-dural puncture headache was assessed by the Dittmann Scale and post-operative back pain was assessed by a visual analogue scale at 24, 48, and 72 h post-operatively. The statistical methods included the Mann-Whitney U-test and Spearman correlation. There were no differences in post-dural puncture headache, and post-operative back pain at 24, 48, and 72 h post-operatively, and no differences in the number of lumbar punctures, with the 23 and 25 gauge Quincke needle. Forty-eight hour post-operative back pain was positively associated with the number of lumbar punctures (p=.036) and age (p=.040). There were no statistically significant associations among post-dural puncture headache, the number of lumbar punctures, and 48 h post-operative back pain. Pre-operative back pain was positively associated with 48 h post-operative back pain (p<.001). The choice of a 23 or 25 gauge Quincke needle for spinal anesthesia has no significant influence on post-dural puncture headache and post-operative back pain for Korean patients greater than 60-years-of-age. The 23 gauge Quincke needle is an option for lumbar punctures in this patient population. Copyright © 2011 Elsevier Ltd. All rights reserved.
Investigating failure behavior and origins under supposed "shear bond" loading.
Sultan, Hassam; Kelly, J Robert; Kazemi, Reza B
2015-07-01
This study evaluated failure behavior when resin-composite cylinders bonded to dentin fractured under traditional "shear" testing. Failure was assessed by scaling of failure loads to changes in cylinder radii and fracture surface analysis. Three stress models were examined including failure by: bonded area; flat-on-cylinder contact; and, uniformly-loaded, cantilevered-beam. Nine 2-mm dentin occlusal dentin discs for each radii tested were embedded in resin and bonded to resin-composite cylinders; radii (mm)=0.79375; 1.5875; 2.38125; 3.175. Samples were "shear" tested at 1.0mm/min. Following testing, disks were finished with silicone carbide paper (240-600grit) to remove residual composite debris and tested again using different radii. Failure stresses were calculated for: "shear"; flat-on-cylinder contact; and, bending of a uniformly-loaded cantilevered beam. Stress equations and constants were evaluated for each model. Fracture-surface analysis was performed. Failure stresses calculated as flat-on-cylinder contact scaled best with its radii relationship. Stress equation constants were constant for failure from the outside surface of the loaded cylinders and not with the bonded surface area or cantilevered beam. Contact failure stresses were constant over all specimen sizes. Fractography reinforced that failures originated from loaded cylinder surface and were unrelated to the bonded surface area. "Shear bond" testing does not appear to test the bonded interface. Load/area "stress" calculations have no physical meaning. While failure is related to contact stresses, the mechanism(s) likely involve non-linear damage accumulation, which may only indirectly be influenced by the interface. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Effect of rain gauge density over the accuracy of rainfall: a case study over Bangalore, India.
Mishra, Anoop Kumar
2013-12-01
Rainfall is an extremely variable parameter in both space and time. Rain gauge density is very crucial in order to quantify the rainfall amount over a region. The level of rainfall accuracy is highly dependent on density and distribution of rain gauge stations over a region. Indian Space Research Organisation (ISRO) have installed a number of Automatic Weather Station (AWS) rain gauges over Indian region to study rainfall. In this paper, the effect of rain gauge density over daily accumulated rainfall is analyzed using ISRO AWS gauge observations. A region of 50 km × 50 km box over southern part of Indian region (Bangalore) with good density of rain gauges is identified for this purpose. Rain gauge numbers are varied from 1-8 in 50 km box to study the variation in the daily accumulated rainfall. Rainfall rates from the neighbouring stations are also compared in this study. Change in the rainfall as a function of gauge spacing is studied. Use of gauge calibrated satellite observations to fill the gauge station value is also studied. It is found that correlation coefficients (CC) decrease from 82% to 21% as gauge spacing increases from 5 km to 40 km while root mean square error (RMSE) increases from 8.29 mm to 51.27 mm with increase in gauge spacing from 5 km to 40 km. Considering 8 rain gauges as a standard representative of rainfall over the region, absolute error increases from 15% to 64% as gauge numbers are decreased from 7 to 1. Small errors are reported while considering 4 to 7 rain gauges to represent 50 km area. However, reduction to 3 or less rain gauges resulted in significant error. It is also observed that use of gauge calibrated satellite observations significantly improved the rainfall estimation over the region with very few rain gauge observations.
How to Build a Vacuum Spring-transport Package for Spinning Rotor Gauges
Fedchak, James A.; Scherschligt, Julia; Sefa, Makfir
2016-01-01
The spinning rotor gauge (SRG) is a high-vacuum gauge often used as a secondary or transfer standard for vacuum pressures in the range of 1.0 x 10-4 Pa to 1.0 Pa. In this application, the SRGs are frequently transported to laboratories for calibration. Events can occur during transportation that change the rotor surface conditions, thus changing the calibration factor. To assure calibration stability, a spring-transport mechanism is often used to immobilize the rotor and keep it under vacuum during transport. It is also important to transport the spring-transport mechanism using packaging designed to minimize the risk of damage during shipping. In this manuscript, a detailed description is given on how to build a robust spring-transport mechanism and shipping container. Together these form a spring-transport package. The spring-transport package design was tested using drop-tests and the performance was found to be excellent. The present spring-transport mechanism design keeps the rotor immobilized when experiencing shocks of several hundred g (g = 9.8 m/sec2 and is the acceleration due to gravity), while the shipping container assures that the mechanism will not experience shocks greater than about 100 g during common shipping mishaps (as defined by industry standards). PMID:27078575
Gluons and gravitons at one loop from ambitwistor strings
NASA Astrophysics Data System (ADS)
Geyer, Yvonne; Monteiro, Ricardo
2018-03-01
We present new and explicit formulae for the one-loop integrands of scattering amplitudes in non-supersymmetric gauge theory and gravity, valid for any number of particles. The results exhibit the colour-kinematics duality in gauge theory and the double-copy relation to gravity, in a form that was recently observed in supersymmetric theories. The new formulae are expressed in a particular representation of the loop integrand, with only one quadratic propagator, which arises naturally from the framework of the loop-level scattering equations. The starting point in our work are the expressions based on the scattering equations that were recently derived from ambitwistor string theory. We turn these expressions into explicit formulae depending only on the loop momentum, the external momenta and the external polarisations. These formulae are valid in any number of spacetime dimensions for pure Yang-Mills theory (gluon) and its natural double copy, NS-NS gravity (graviton, dilaton, B-field), and we also present formulae in four spacetime dimensions for pure gravity (graviton). We perform several tests of our results, such as checking gauge invariance and directly matching our four-particle formulae to previously known expressions. While these tests would be elaborate in a Feynman-type representation of the loop integrand, they become straightforward in the representation we use.
A High Performance Torque Sensor for Milling Based on a Piezoresistive MEMS Strain Gauge
Qin, Yafei; Zhao, Yulong; Li, Yingxue; Zhao, You; Wang, Peng
2016-01-01
In high speed and high precision machining applications, it is important to monitor the machining process in order to ensure high product quality. For this purpose, it is essential to develop a dynamometer with high sensitivity and high natural frequency which is suited to these conditions. This paper describes the design, calibration and performance of a milling torque sensor based on piezoresistive MEMS strain. A detailed design study is carried out to optimize the two mutually-contradictory indicators sensitivity and natural frequency. The developed torque sensor principally consists of a thin-walled cylinder, and a piezoresistive MEMS strain gauge bonded on the surface of the sensing element where the shear strain is maximum. The strain gauge includes eight piezoresistances and four are connected in a full Wheatstone circuit bridge, which is used to measure the applied torque force during machining procedures. Experimental static calibration results show that the sensitivity of torque sensor has been improved to 0.13 mv/Nm. A modal impact test indicates that the natural frequency of torque sensor reaches 1216 Hz, which is suitable for high speed machining processes. The dynamic test results indicate that the developed torque sensor is stable and practical for monitoring the milling process. PMID:27070620
Rapid experimental measurements of physicochemical properties to inform models and testing.
Nicolas, Chantel I; Mansouri, Kamel; Phillips, Katherine A; Grulke, Christopher M; Richard, Ann M; Williams, Antony J; Rabinowitz, James; Isaacs, Kristin K; Yau, Alice; Wambaugh, John F
2018-05-02
The structures and physicochemical properties of chemicals are important for determining their potential toxicological effects, toxicokinetics, and route(s) of exposure. These data are needed to prioritize the risk for thousands of environmental chemicals, but experimental values are often lacking. In an attempt to efficiently fill data gaps in physicochemical property information, we generated new data for 200 structurally diverse compounds, which were rigorously selected from the USEPA ToxCast chemical library, and whose structures are available within the Distributed Structure-Searchable Toxicity Database (DSSTox). This pilot study evaluated rapid experimental methods to determine five physicochemical properties, including the log of the octanol:water partition coefficient (known as log(K ow ) or logP), vapor pressure, water solubility, Henry's law constant, and the acid dissociation constant (pKa). For most compounds, experiments were successful for at least one property; log(K ow ) yielded the largest return (176 values). It was determined that 77 ToxPrint structural features were enriched in chemicals with at least one measurement failure, indicating which features may have played a role in rapid method failures. To gauge consistency with traditional measurement methods, the new measurements were compared with previous measurements (where available). Since quantitative structure-activity/property relationship (QSAR/QSPR) models are used to fill gaps in physicochemical property information, 5 suites of QSPRs were evaluated for their predictive ability and chemical coverage or applicability domain of new experimental measurements. The ability to have accurate measurements of these properties will facilitate better exposure predictions in two ways: 1) direct input of these experimental measurements into exposure models; and 2) construction of QSPRs with a wider applicability domain, as their predicted physicochemical values can be used to parameterize exposure models in the absence of experimental data. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Feldstein, J. F.
1977-01-01
Failure data from 16 commercial spacecraft were analyzed to evaluate failure trends, reliability growth, and effectiveness of tests. It was shown that the test programs were highly effective in ensuring a high level of in-orbit reliability. There was only a single catastrophic problem in 44 years of in-orbit operation on 12 spacecraft. The results also indicate that in-orbit failure rates are highly correlated with unit and systems test failure rates. The data suggest that test effectiveness estimates can be used to guide the content of a test program to ensure that in-orbit reliability goals are achieved.
Lox/Gox related failures during Space Shuttle Main Engine development
NASA Technical Reports Server (NTRS)
Cataldo, C. E.
1981-01-01
Specific rocket engine hardware and test facility system failures are described which were caused by high pressure liquid and/or gaseous oxygen reactions. The failures were encountered during the development and testing of the space shuttle main engine. Failure mechanisms are discussed as well as corrective actions taken to prevent or reduce the potential of future failures.
The Vocabulary Knowledge Scale: A Critical Analysis
ERIC Educational Resources Information Center
Bruton, Anthony
2009-01-01
There are normally two major research reasons for assessing second and foreign language (L2) knowledge: either to gauge a participant's actual level of competence/proficiency or to assess language development over a period of time. In testing, the corresponding contrasts are typically referred to as proficiency tests on the one hand and…
ERIC Educational Resources Information Center
Gorzycki, Meg; Howard, Pamela; Allen, Diane; Desa, Geoffrey; Rosegard, Erik
2016-01-01
Academic reading proficiently is characterized by the ability to perform cognitive tasks associated with interpreting text. Researchers developed an externally validated Informal Academic Reading Proficiency Test to gauge undergraduates' academic reading proficiency. A cross-sectional study of 23 classes completed the reading test in 2014. This…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
... to 19 CFR 151.12 and 19 CFR 151.13, Inspectorate America Corporation, 5237 Halls Mill Road-- Building F, Mobile, AL 36619, has been approved to gauge and accredited to test petroleum and petroleum... Border Protection to conduct the specific test or gauger service requested. [[Page 57480
Driver Aid and Education Test Project. Final Report.
ERIC Educational Resources Information Center
Shadis, W.; Soucek, S. J.
A driver education project tested the hypothesis that measurable improvements in fleet fuel economy can be achieved by driver awareness training in fuel-efficient driving techniques and by a manifold vacuum gauge, used individually or in combination with each other. From April 1976 through December 1977 data were collected in the Las Vegas,…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
... test petroleum and petroleum products, organic chemicals and vegetable oils for customs purposes for... 70123), has been approved to gauge and accredited to test petroleum and petroleum products, organic chemicals and vegetable oils for customs purposes, in accordance with the provisions of 19 CFR 151.12 and 19...
Observations of long delays to detonation in propellant for tests with marginal card gaps
NASA Technical Reports Server (NTRS)
Olinger, B.
1980-01-01
Using the large-scale card gap tests with pin and high-speed framing camera techniques, VRP propellant, and presumably others, were found to transit to detonation at marginal gaps after a long delay. In addition, manganin-constantan gauge measurements were made in the card gap stack.
Do wire fences stop ground fires?
James L. Murphy; Harry E. Schimke
1965-01-01
Five meshes (1/8 to 1 inch) of 16-gauge steel wire fences, 3 feet high, were tested as possible ground fire barriers in 4 fuel types. The 1/8-inch mesh stopped only 1 test fire but retarded others; 1/4-inch mesh retarded some. The results suggest that further trials may be worthwhile.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-06
... DEPARTMENT OF HOMELAND SECURITY Bureau of Customs and Border Protection Re-Accreditation and Re... Border Protection, Department of Homeland Security. ACTION: Notice of re-approval of Intertek Testing..., Texas 78406, has been re-approved to gauge petroleum and petroleum products, organic chemicals and...
Lutnick, Alexandra; Cooper, Erin; Dodson, Chaka; Bluthenthal, Ricky; Kral, Alex H
2013-04-01
The two main legal sources of clean needles for illicit injection drug users (IDUs) in California are syringe exchange programs (SEPs) and nonprescription syringe sales (NPSS) at pharmacies. In 2004, California became one of the last states to allow NPSS. To evaluate the implementation of NPSS and the California Disease Prevention Demonstration Project (DPDP), we conducted syringe purchase tests in San Francisco (SF) and Los Angeles (LA) between March and July of 2010. Large differences in implementation were observed in the two cities. In LA, less than one-quarter of the enrolled pharmacies sold syringes to our research assistant (RA), and none sold a single syringe. The rate of successful purchase in LA is the lowest reported in any syringe purchase test. In both sites, there was notable variation among the gauge size available, and price and quantity of syringes required for a purchase. None of the DPDP pharmacies in LA or SF provided the requisite health information. The findings suggest that more outreach needs to be conducted with pharmacists and pharmacy staff. The pharmacies' failure to disseminate the educational materials may result in missed opportunities to provide needed harm reduction information to IDUs. The varied prices and required quantities may serve as a barrier to syringe access among IDUs. Future research needs to examine reasons why pharmacies do not provide the mandated information, whether the omission of disposal options is indicative of pharmacies' reluctance to serve as disposal sites, and if the dual opt-in approach of NPSS/DPDP is a barrier to pharmacy enrollment.
NASA Astrophysics Data System (ADS)
Gharineiat, Zahra; Deng, Xiaoli
2018-05-01
This paper aims at providing a descriptive view of the low-frequency sea-level changes around the northern Australian coastline. Twenty years of sea-level observations from multi-mission satellite altimetry and tide gauges are used to characterize sea-level trends and inter-annual variability over the study region. The results show that the interannual sea-level fingerprint in the northern Australian coastline is closely related to El Niño Southern Oscillation (ENSO) and Madden-Julian Oscillation (MJO) events, with the greatest influence on the Gulf Carpentaria, Arafura Sea, and the Timor Sea. The basin average of 14 tide-gauge time series is in strong agreement with the basin average of the altimeter data, with a root mean square difference of 18 mm and a correlation coefficient of 0.95. The rate of the sea-level trend over the altimetry period (6.3 ± 1.4 mm/yr) estimated from tide gauges is slightly higher than that (6.1 ± 1.3 mm/yr) from altimetry in the time interval 1993-2013, which can vary with the length of the time interval. Here we provide new insights into examining the significance of sea-level trends by applying the non-parametric Mann-Kendall test. This test is applied to assess if the trends are significant (upward or downward). Apart from a positive rate of sea-level trends are not statistically significant in this region due to the effects of natural variability. The findings suggest that altimetric trends are not significant along the coasts and some parts of the Gulf Carpentaria (14°S-8°S), where geophysical corrections (e.g., ocean tides) cannot be estimated accurately and altimeter measurements are contaminated by reflections from the land.
NASA Astrophysics Data System (ADS)
Colli, Matteo; Lanza, Luca; Rasmussen, Roy; Thériault, Julie
2016-04-01
Despite its importance, accurate measurements of precipitation remains a challenge. Measurement errors for solid precipitation, which are often ignored for automated systems, frequently range from 20% to 70% due to undercatch in windy conditions. While solid precipitation measurements have been the subject of many studies, there have been only a limited number of numerical modeling efforts to estimate the collection efficiency of solid precipitation gauges when exposed to the wind, in both shielded and unshielded configurations. The available models use CFD simulations of the airflow pattern generated by the aerodynamic response of the gauge/shield geometry to perform the Lagrangian tracking of solid precipitation particles (Thériault et al., 2012; Colli et al. 2016a and 2016b). Validation of the results against field observations yields similarities in the overall behavior, but the model output only approximately reproduces the dependence of the experimental collection efficiency on wind speed. We present recent developments of such a modelling approach including various gauge/shield configurations, the influence of the drag coefficient calculation on the model performance, and the role of the particle size distribution in explaining the scatter of the collection efficiency observed at any particular wind speed (Colli et al. 2015). Comparison with observations at the Marshall (CO) field test site is used to validate results of the various modelling schemes and to support the analysis of the microphysical characteristics of ice crystals. References: Colli, M., Rasmussen, R.M., Thèriault, J.M., Lanza, L.G., Baker, B.C. and J. Kochendorfer (2015). An improved trajectory model to evaluate the collection performance of snow gauges. J.Appl.Meteor.Climatol., 54(8), pages 1826-1836. Colli, M., Lanza, L.G., Rasmussen, R.M. and J.M. Thèriault (2016a). The collection efficiency of shielded and unshielded precipitation gauges. Part I: CFD airflow modelling. J. of Hydrometeorol., 17(1), pages 231-243. Colli, M., Lanza, L.G., Rasmussen, R.M. and J.M. Thèriault (2016b). The collection efficiency of shielded and unshielded precipitation gauges. Part II: modelling particle trajectories. J. of Hydrometeorol., 17(1), 245-255. Thériault, J. M., R. Rasmussen, K. Ikeda, and S. Landolt, (2012). Dependence of snow gauge collection efficiency on snowflake characteristics. J. Appl. Meteor. Climatol., 51, 745-762.
On gauge independence for gauge models with soft breaking of BRST symmetry
NASA Astrophysics Data System (ADS)
Reshetnyak, Alexander
2014-12-01
A consistent quantum treatment of general gauge theories with an arbitrary gauge-fixing in the presence of soft breaking of the BRST symmetry in the field-antifield formalism is developed. It is based on a gauged (involving a field-dependent parameter) version of finite BRST transformations. The prescription allows one to restore the gauge-independence of the effective action at its extremals and therefore also that of the conventional S-matrix for a theory with BRST-breaking terms being additively introduced into a BRST-invariant action in order to achieve a consistency of the functional integral. We demonstrate the applicability of this prescription within the approach of functional renormalization group to the Yang-Mills and gravity theories. The Gribov-Zwanziger action and the refined Gribov-Zwanziger action for a many-parameter family of gauges, including the Coulomb, axial and covariant gauges, are derived perturbatively on the basis of finite gauged BRST transformations starting from Landau gauge. It is proved that gauge theories with soft breaking of BRST symmetry can be made consistent if the transformed BRST-breaking terms satisfy the same soft BRST symmetry breaking condition in the resulting gauge as the untransformed ones in the initial gauge, and also without this requirement.
27 CFR 19.93 - Quantity determination of spirits in bond.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Miscellaneous Provisions Gauging of Spirits, Wines Or Alcoholic Flavoring Materials § 19.93 Quantity determination of spirits in bond. Where bulk spirits in bond are gauged for determination of tax, or are gauged.... In all other instances where spirits are gauged in bond, gauged for denaturation, or are gauged for...
NASA Astrophysics Data System (ADS)
Chitu, Zenaida; Bogaard, Thom; Busuioc, Aristita; Burcea, Sorin; Adler, Mary-Jeanne; Sandric, Ionut
2015-04-01
Like in many parts of the world, in Romania, landslides represent recurrent phenomena that produce numerous damages to infrastructure every few years. Various studies on landslide occurrence in the Curvature Subcarpathians reveal that rainfall represents the most important triggering factor for landslides. Depending on rainfall characteristics and environmental factors different types of landslides were recorded in the Ialomita Subcarpathians: slumps, earthflows and complex landslides. This area, located in the western part of Curvature Subcarpathians, is characterized by a very complex geology whose main features are represented by the nappes system, the post tectonic covers, the diapirism phenomena and vertical faults. This work aims to investigate hydrological pre-conditions and rainfall characteristics which triggered slope failures in 2014 in the Ialomita Subcarpathians, Romania. Hydrological pre-conditions were investigated by means of water balance analysis and low flow techniques, while spatial and temporal patterns of rainfalls were estimated using radar data and six rain gauges. Additionally, six soil moisture stations that are fitted with volumetric soil moisture sensors and temperature soil sensors were used to estimate the antecedent soil moisture conditions.
Lunar Landing Operational Risk Model
NASA Technical Reports Server (NTRS)
Mattenberger, Chris; Putney, Blake; Rust, Randy; Derkowski, Brian
2010-01-01
Characterizing the risk of spacecraft goes beyond simply modeling equipment reliability. Some portions of the mission require complex interactions between system elements that can lead to failure without an actual hardware fault. Landing risk is currently the least characterized aspect of the Altair lunar lander and appears to result from complex temporal interactions between pilot, sensors, surface characteristics and vehicle capabilities rather than hardware failures. The Lunar Landing Operational Risk Model (LLORM) seeks to provide rapid and flexible quantitative insight into the risks driving the landing event and to gauge sensitivities of the vehicle to changes in system configuration and mission operations. The LLORM takes a Monte Carlo based approach to estimate the operational risk of the Lunar Landing Event and calculates estimates of the risk of Loss of Mission (LOM) - Abort Required and is Successful, Loss of Crew (LOC) - Vehicle Crashes or Cannot Reach Orbit, and Success. The LLORM is meant to be used during the conceptual design phase to inform decision makers transparently of the reliability impacts of design decisions, to identify areas of the design which may require additional robustness, and to aid in the development and flow-down of requirements.
30. STARBOARD REFUELING STATION STARBOARD LOOKING TO PORT SHOWING ...
30. STARBOARD REFUELING STATION - STARBOARD LOOKING TO PORT SHOWING RIGGING, FUEL RISER, SHUT-OFF VALVE, TEST COCK AND PRESSURE GAUGE. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA
Performance of Pallet Nails and Staples in 22 Southern Hardwoods
E.G. Stern
1976-01-01
The effectiveness of pointless, helically threaded, hardened-steel, 3 by O.120-inch, pallet nails with umbrella heads and 21/2-inch, 15-gauge, 7/16-inch crown, plastic-coated, pallet staples in 22 hardwoods grown on southern pine sites was determined on the basis of tests on 522 joints. Specific average performance values were derived from the test data for the tested...
Electronic-type vacuum gauges with replaceable elements
Edwards, Jr., David
1984-01-01
In electronic devices for measuring pressures in vacuum systems, the metal elements which undergo thermal deterioration are made readily replaceable by making them parts of a simple plug-in unit. Thus, in ionization gauges, the filament and grid or electron collector are mounted on the novel plug-in unit. In thermocouple pressure gauges, the heater and attached thermocouple are mounted on the plug-in unit. Plug-in units have been designed to function, alternatively, as ionization gauge and as thermocouple gauge, thus providing new gauges capable of measuring broader pressure ranges than is possible with either an ionization gauge or a thermocouple gauge.
Extended gauge theory and gauged free differential algebras
NASA Astrophysics Data System (ADS)
Salgado, P.; Salgado, S.
2018-01-01
Recently, Antoniadis, Konitopoulos and Savvidy introduced, in the context of the so-called extended gauge theory, a procedure to construct background-free gauge invariants, using non-abelian gauge potentials described by higher degree forms. In this article it is shown that the extended invariants found by Antoniadis, Konitopoulos and Savvidy can be constructed from an algebraic structure known as free differential algebra. In other words, we show that the above mentioned non-abelian gauge theory, where the gauge fields are described by p-forms with p ≥ 2, can be obtained by gauging free differential algebras.
Numerical simulation of failure behavior of granular debris flows based on flume model tests.
Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na
2013-01-01
In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.
MMS Observatory TV Results Contamination Summary
NASA Technical Reports Server (NTRS)
Rosecrans, Glenn; Brieda, Lubos; Errigo, Therese
2014-01-01
The Magnetospheric Multiscale (MMS) mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earth's magnetosphere. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. In this paper, we report on the extensive thermal vacuum testing campaign. The testing was performed at the Naval Research Laboratory utilizing the "Big Blue" vacuum chamber. A total of ten thermal vacuum tests were performed, including two chamber certifications, three dry runs, and five tests of the individual MMS observatories. During the test, the observatories were enclosed in a thermal enclosure known as the "hamster cage". The enclosure allowed for a detailed thermal control of various observatory zone, but at the same time, imposed additional contamination and system performance requirements. The environment inside the enclosure and the vacuum chamber was actively monitored by several QCMs, RGA, and up to 18 ion gauges. Each spacecraft underwent a bakeout phase, which was followed by 4 thermal cycles. Unique aspects of the TV campaign included slow pump downs with a partial represses, thruster firings, Helium identification, and monitoring pressure spikes with ion gauges. Selected data from these TV tests is presented along with lessons learned.
NASA Astrophysics Data System (ADS)
Zorawski, Thomas
The Standard Model (SM) of particle physics has withstood decades of experimental tests, making it the crowning achievement of 20th century physics. However, it is not a complete description of nature. Observations have revealed that most of the matter in the universe is not of the baryonic form described in the SM but rather something else known as dark matter. The SM also has theoretical shortcomings: 1) No explanation for the widely-varying masses of different particles (flavor puzzle); 2) Failure of the couplings that characterize the strength of the three SM forces to unify at a high energy scale; 3) Instability of the Higgs mass (hierarchy problem). The simplest version of supersymmetry (SUSY) introduces a partner for each SM particle, resulting in the Minimal Supersymmetric Standard Model (MSSM). The lightest of these is stable and an appealing dark matter candidate, and the extra particle content yields good gauge coupling unification. Most model-building, however, has been inspired by the natural solution that the MSSM provides to the hierarchy problem when the superpartner masses are close to the weak scale, leading to the paradigm of the Natural (weak-scale) MSSM. Although the first run of the Large Hadron Collider (LHC) did not operate at the design energy, the data is already in tension with the idea of naturalness, as the bounds on some superpartner masses in vanilla models are significantly above the weak scale. We address this by constructing a hybrid of the two most appealing SUSY breaking mechanisms (gauge and anomaly mediation) that compresses part of the superpartner spectrum and reduces experimental sensitivity, thereby loosening the constraints. Nonetheless, the recent discovery of a Higgs-like particle at the LHC with a mass around 125 GeV that can only be obtained in the weak-scale MSSM with fairly heavy superpartners casts serious doubt on naturalness. It does, however, point in the direction of a different paradigm in the MSSM known as Split SUSY, where only the superpartners that are potential dark matter candidates are light. We present a simple realization of a modification of Split SUSY, called Mini-Split SUSY, where all of the superpartner masses are determined by just one parameter. We show that it easily accommodates the Higgs mass, preserves gauge coupling unification, and has a good dark matter candidate. We then exploit the defining features of the Mini-Split framework to obtain a radiative solution to the flavor puzzle, where the hierarchy of SM particle masses is explained by successive orders of quantum corrections.
NASA Technical Reports Server (NTRS)
Gibbel, Mark; Larson, Timothy
2000-01-01
An Engineering-of-Failure approach to designing and executing an accelerated product qualification test was performed to support a risk assessment of a "work-around" necessitated by an on-orbit failure of another piece of hardware on the Mars Global Surveyor spacecraft. The proposed work-around involved exceeding the previous qualification experience both in terms of extreme cold exposure level and in terms of demonstrated low cycle fatigue life for the power shunt assemblies. An analysis was performed to identify potential failure sites, modes and associated failure mechanisms consistent with the new use conditions. A test was then designed and executed which accelerated the failure mechanisms identified by analysis. Verification of the resulting failure mechanism concluded the effort.
46 CFR 154.1300 - Liquid level gauging system: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...
46 CFR 154.1300 - Liquid level gauging system: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...
46 CFR 154.1300 - Liquid level gauging system: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...
46 CFR 154.1300 - Liquid level gauging system: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...
46 CFR 154.1300 - Liquid level gauging system: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...
Development of CFC-Free Cleaning Processes at the NASA White Sands Test Facility
NASA Technical Reports Server (NTRS)
Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul
1995-01-01
The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-113- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. The presentation will include the findings of investigations of aqueous cleaning and verification processes that are based on a draft of a proposed NASA Kennedy Space Center (KSC) cleaning procedure. Verification testing with known contaminants, such as hydraulic fluid and commonly used oils, established correlations between nonvolatile residue and CFC-113. Recoveries ranged from 35 to 60 percent of theoretical. WSTF is also investigating enhancements to aqueous sampling for organics and particulates. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon-225 (HCFC-225), tert-butylmethylether, and n-Hexane was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC-113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autoignition and liquid oxygen mechanical impact testing.
Ecological validity of the five digit test and the oral trails test.
Paiva, Gabrielle Chequer de Castro; Fialho, Mariana Braga; Costa, Danielle de Souza; Paula, Jonas Jardim de
2016-01-01
Tests evaluating the attentional-executive system are widely used in clinical practice. However, proximity of an objective cognitive test with real-world situations (ecological validity) is not frequently investigated. The present study evaluate the association between measures of the Five Digit Test (FDT) and the Oral Trails Test (OTT) with self-reported cognitive failures in everyday life as measured by the Cognitive Failures Questionnaire (CFQ). Brazilian adults from 18-to-65 years old voluntarily performed the FDT and OTT tests and reported the frequency of cognitive failures in their everyday life through the CFQ. After controlling for the age effect, the measures of controlled attentional processes were associated with cognitive failures, yet the cognitive flexibility of both FDT and OTT accounted for by the majority of variance in most aspects of the CFQ factors. The FDT and the OTT measures were predictive of real-world problems such as cognitive failures in everyday activities/situations.
49 CFR Appendix A to Part 219 - Schedule of Civil Penalties
Code of Federal Regulations, 2014 CFR
2014-10-01
...,000 Subpart F—Pre-Employment Tests 219.501Pre-employment tests: (a) Failure to perform pre-employment... required program $5,000 $7,500 219.11General conditions for chemical tests: (b)(1) Employee unlawfully....23Railroad policies: (a) Failure to provide written notice of FRA test 1,000 4,000 (b) Failure to provide...
49 CFR Appendix A to Part 219 - Schedule of Civil Penalties
Code of Federal Regulations, 2013 CFR
2013-10-01
...,000 Subpart F—Pre-Employment Tests 219.501Pre-employment tests: (a) Failure to perform pre-employment... required program $5,000 $7,500 219.11General conditions for chemical tests: (b)(1) Employee unlawfully....23Railroad policies: (a) Failure to provide written notice of FRA test 1,000 4,000 (b) Failure to provide...
49 CFR Appendix A to Part 219 - Schedule of Civil Penalties
Code of Federal Regulations, 2010 CFR
2010-10-01
...,000 Subpart F—Pre-Employment Tests 219.501Pre-employment tests: (a) Failure to perform pre-employment... required program $5,000 $7,500 219.11General conditions for chemical tests: (b)(1) Employee unlawfully....23Railroad policies: (a) Failure to provide written notice of FRA test 1,000 4,000 (b) Failure to provide...
49 CFR Appendix A to Part 219 - Schedule of Civil Penalties
Code of Federal Regulations, 2011 CFR
2011-10-01
...,000 Subpart F—Pre-Employment Tests 219.501Pre-employment tests: (a) Failure to perform pre-employment... required program $5,000 $7,500 219.11General conditions for chemical tests: (b)(1) Employee unlawfully....23Railroad policies: (a) Failure to provide written notice of FRA test 1,000 4,000 (b) Failure to provide...
49 CFR Appendix A to Part 219 - Schedule of Civil Penalties
Code of Federal Regulations, 2012 CFR
2012-10-01
...,000 Subpart F—Pre-Employment Tests 219.501Pre-employment tests: (a) Failure to perform pre-employment... required program $5,000 $7,500 219.11General conditions for chemical tests: (b)(1) Employee unlawfully....23Railroad policies: (a) Failure to provide written notice of FRA test 1,000 4,000 (b) Failure to provide...
Regularization of the light-cone gauge gluon propagator singularities using sub-gauge conditions
Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E.
2015-12-21
Perturbative QCD calculations in the light-cone gauge have long suffered from the ambiguity associated with the regularization of the poles in the gluon propagator. In this work we study sub-gauge conditions within the light-cone gauge corresponding to several known ways of regulating the gluon propagator. By using the functional integral calculation of the gluon propagator, we rederive the known sub-gauge conditions for the θ-function gauges and identify the sub-gauge condition for the principal value (PV) regularization of the gluon propagator’s light-cone poles. The obtained sub-gauge condition for the PV case is further verified by a sample calculation of the classicalmore » Yang-Mills field of two collinear ultrarelativistic point color charges. Our method does not allow one to construct a sub-gauge condition corresponding to the well-known Mandelstam-Leibbrandt prescription for regulating the gluon propagator poles.« less
Coordinate transformations and gauges in the relativistic astronomical reference systems
NASA Astrophysics Data System (ADS)
Tao, J.-H.; Huang, T.-Y.; Han, C.-H.
2000-11-01
This paper applies a fully post-Newtonian theory (Damour et al. 1991, 1992, 1993, 1994) to the problem of gauge in relativistic reference systems. Gauge fixing is necessary when the precision of time measurement and application reaches 10-16 or better. We give a general procedure for fixing the gauges of gravitational potentials in both the global and local coordinate systems, and for determining the gauge functions in all the coordinate transformations. We demonstrate that gauge fixing in a gravitational N-body problem can be solved by fixing the gauge of the self-gravitational potential of each body and the gauge function in the coordinate transformation between the global and local coordinate systems. We also show that these gauge functions can be chosen to make all the coordinate systems harmonic or any as required, no matter what gauge is chosen for the self-gravitational potential of each body.
NASA Astrophysics Data System (ADS)
Kim, Joonho; Kim, Seok; Lee, Kimyeong; Park, Jaemo; Vafa, Cumrun
2017-09-01
We study a family of 2d N=(0, 4) gauge theories which describes at low energy the dynamics of E-strings, the M2-branes suspended between a pair of M5 and M9 branes. The gauge theory is engineered using a duality with type IIA theory, leading to the D2-branes suspended between an NS5-brane and 8 D8-branes on an O8-plane. We compute the elliptic genus of this family of theories, and find agreement with the known results for single and two E-strings. The partition function can in principle be computed for arbitrary number of E-strings, and we compute them explicitly for low numbers. We test our predictions against the partially known results from topological strings, as well as from the instanton calculus of 5d Sp(1) gauge theory. Given the relation to topological strings, our computation provides the all genus partition function of the refined topological strings on the canonical bundle over 1/2K3.
On evaluating the robustness of spatial-proximity-based regionalization methods
NASA Astrophysics Data System (ADS)
Lebecherel, Laure; Andréassian, Vazken; Perrin, Charles
2016-08-01
In absence of streamflow data to calibrate a hydrological model, its parameters are to be inferred by a regionalization method. In this technical note, we discuss a specific class of regionalization methods, those based on spatial proximity, which transfers hydrological information (typically calibrated parameter sets) from neighbor gauged stations to the target ungauged station. The efficiency of any spatial-proximity-based regionalization method will depend on the density of the available streamgauging network, and the purpose of this note is to discuss how to assess the robustness of the regionalization method (i.e., its resilience to an increasingly sparse hydrometric network). We compare two options: (i) the random hydrometrical reduction (HRand) method, which consists in sub-sampling the existing gauging network around the target ungauged station, and (ii) the hydrometrical desert method (HDes), which consists in ignoring the closest gauged stations. Our tests suggest that the HDes method should be preferred, because it provides a more realistic view on regionalization performance.
Measuring Pressure Has a New Standard
NASA Technical Reports Server (NTRS)
2002-01-01
The Force-Balanced Piston Gauge (FPG) tests and calibrates instrumentation operating in the low pressure range. The system provides a traceable, primary calibration standard for measuring pressures in the range of near 0 to 15 kPa (2.2 psi) in both gauge and absolute measurement modes. The hardware combines a large area piston-cylinder with a load cell measuring the force resulting from pressures across the piston. The mass of the piston can be tared out, allowing measurement to start from zero. A pressure higher than the measured pressure, which keeps the piston centered, lubricates an innovative conical gap located between the piston and the cylinder, eliminating the need for piston rotation. A pressure controller based on the control of low gas flow automates the pressure control. DHI markets the FPG as an automated primary standard for very low-gauge and absolute pressures. DHI is selling the FPG to high-end metrology laboratories on a case by case basis, with a full commercial release to follow.
A new Grid Product of Tropical Cyclone Precipitation (TCP) for North America from 1930 to 2013
NASA Astrophysics Data System (ADS)
Zhu, L.
2015-12-01
We first developed a new method that collects daily TCP by using historical storm tracks and precipitation observation based on daily rain gauges in both U.S. and Mexico and calibrated it with satellite precipitation observation. We used a parametrized wind field to correct the possible under-estimations of precipitation in rain gauges. Grid interpolation parameters were optimized by testing different historical rain gauge densities and comparing our grid estimation of TCP and the observation from TRMM Multi-satellite Precipitation Analysis (3B42) by for the data available period from 1998 to 2013. The calibrated method was then used for the whole 94 years of TCP estimation. The preliminary result shows that the frequency of TCP events does not have significant change but the TCP intensity has significant increasing trends, especially in certain locations in North Carolina and Yucatan Peninsula in Mexico. This new long term TCP climatology can potentially assist model calibration and disaster prevention/mitigation.
Components of variation of surface hoof strain with time.
Thomason, J J; Bignell, W W; Sears, W
2001-04-01
The relative contribution of a number of random and fixed variables to variation in surface strain magnitudes on the hoof capsule was assessed for healthy feet under normal conditions. Principal strains were recorded in vivo from 5 rosette gauges glued around the circumference of the right forefeet of 4 horses on 4 occasions over a 9 month period. Recordings were made at every other trimming and reshoeing. During each session, gauges were positioned with a template for repeatability. Strains were recorded at the trot and canter (at consistent speeds), for straight motion and turns, and before and after the hoof was trimmed and reset. Up to 30 strides were recorded for each combination of these variables. ANOVAs were performed on midstance strains of 7008 strides to determine the relative contributions to strain variation of individual horse, test day, gait and direction combined as one factor, gauge position on the hoof, trimming, interstride variability and the interactions among these factors. The ANOVA model explained 87% of the variation, of which approximately 84% was due to fixed effects and 16% to random effects. Circumferential position of the gauges and several of the interactions including this term were by far the greatest contributors to strain variation. Differences among gauge positions, individuals and gait + direction are consistent with previous work. This study has added the relative effects, which are small but significant, of trimming on a regular basis and of time. The change in strain magnitudes with trimming was different for each horse, which leads to the possibility that over- and underuse may have to be quantified on an individual basis.
Yang-Mills gauge conditions from Witten's open string field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng Haidong; Siegel, Warren
2007-02-15
We construct the Zinn-Justin-Batalin-Vilkovisky action for tachyons and gauge bosons from Witten's 3-string vertex of the bosonic open string without gauge fixing. Through canonical transformations, we find the off-shell, local, gauge-covariant action up to 3-point terms, satisfying the usual field theory gauge transformations. Perturbatively, it can be extended to higher-point terms. It also gives a new gauge condition in field theory which corresponds to the Feynman-Siegel gauge on the world-sheet.
CHF - tests; Congestive heart failure - tests; Cardiomyopathy - tests; HF - tests ... An echocardiogram (echo) is a test that uses sound waves to create a moving picture of the heart. The picture is much more detailed than a plain ...
Dark gauge bosons: LHC signatures of non-abelian kinetic mixing
Argüelles, Carlos A.; He, Xiao-Gang; Ovanesyan, Grigory; ...
2017-04-20
We consider non-abelian kinetic mixing between the Standard Model and a dark sector gauge group associated with the presence of a scalar triplet. The magnitude of the resulting dark photon coupling ϵ is determined by the ratio of the triplet vacuum expectation value, constrained to by by electroweak precision tests, to the scale Λ of the effective theory. The corresponding effective operator Wilson coefficient can be while accommodating null results for dark photon searches, allowing for a distinctive LHC dark photon phenomenology. After outlining the possible LHC signatures, we illustrate by recasting current ATLAS dark photon results into the non-abelianmore » mixing context.« less
Towards deconstruction of the Type D (2,0) theory
NASA Astrophysics Data System (ADS)
Bourget, Antoine; Pini, Alessandro; Rodriguez-Gomez, Diego
2017-12-01
We propose a four-dimensional supersymmetric theory that deconstructs, in a particular limit, the six-dimensional (2, 0) theory of type D k . This 4d theory is defined by a necklace quiver with alternating gauge nodes O(2 k) and Sp( k). We test this proposal by comparing the 6d half-BPS index to the Higgs branch Hilbert series of the 4d theory. In the process, we overcome several technical difficulties, such as Hilbert series calculations for non-complete intersections, and the choice of O versus SO gauge groups. Consistently, the result matches the Coulomb branch formula for the mirror theory upon reduction to 3d.
Electronic-type vacuum gauges with replaceable elements
Edwards, D. Jr.
1984-09-18
In electronic devices for measuring pressures in vacuum systems, the metal elements which undergo thermal deterioration are made readily replaceable by making them parts of a simple plug-in unit. Thus, in ionization gauges, the filament and grid or electron collector are mounted on the novel plug-in unit. In thermocouple pressure gauges, the heater and attached thermocouple are mounted on the plug-in unit. Plug-in units have been designed to function, alternatively, as ionization gauge and as thermocouple gauge, thus providing new gauges capable of measuring broader pressure ranges than is possible with either an ionization gauge or a thermocouple gauge. 5 figs.
Tensor gauge condition and tensor field decomposition
NASA Astrophysics Data System (ADS)
Zhu, Ben-Chao; Chen, Xiang-Song
2015-10-01
We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.
NASA Astrophysics Data System (ADS)
Sin, Yongkun; Ayvazian, Talin; Brodie, Miles; Lingley, Zachary
2018-03-01
High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both terrestrial and space satellite communications systems. Since these lasers predominantly fail by catastrophic and sudden degradation due to catastrophic optical damage (COD), it is especially crucial for space satellite applications to investigate reliability, failure modes, precursor signatures of failure, and degradation mechanisms of these lasers. Our group reported a new failure mode in MM and SM InGaAs-AlGaAs strained QW lasers in 2009 and 2016, respectively. Our group also reported in 2017 that bulk failure due to catastrophic optical bulk damage (COBD) is the dominant failure mode of both SM and MM lasers that were subject to long-term life-tests. For the present study, we continued our physics of failure investigation by performing long-term life-tests followed by failure mode analysis (FMA) using nondestructive and destructive micro-analytical techniques. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs- AlGaAs strained QW lasers under ACC mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. We first employed electron beam induced current (EBIC) technique to identify failure modes of degraded SM lasers by observing dark line defects. All the SM failures that we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Keywor
Morrison, L M; McCrae, A F; Foo, I; Scott, D B; Wildsmith, J A
1996-01-01
The study was designed to evaluate the influence of needle size and design on the rate of leakage following dural puncture. An in vitro model and fresh human lumbar dura were used to examine the rate of fluid leakage after puncture with Sprotte (24-gauge and 26-gauge), Atraucan (24-gauge and 26-gauge), Quincke (26-gauge and 29-gauge), and Whitacre (22-gauge and 25-gauge) needles. The study confirmed that finer-gauge needles tend to produce less leakage and that traditional Quincke pattern bevels result in greater leakage than pencil-point designs of the same diameter. The comparably low leakage rate produced by the Atraucan, a new needle with a terminal opening, suggests that this needle is worthy of further clinical evaluation.
NASA Astrophysics Data System (ADS)
Adshead, Peter; Sfakianakis, Evangelos I.
2017-08-01
We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. We work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ < 2, where γ = g 2 ψ 2/ H 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density fluctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wave spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at inflationary energy scales well below the GUT scale.