Science.gov

Sample records for gauss precise time

  1. The time delay in strong gravitational lensing with Gauss-Bonnet correction

    SciTech Connect

    Man, Jingyun; Cheng, Hongbo E-mail: hbcheng@ecust.edu.cn

    2014-11-01

    The time delay between two relativistic images in the strong gravitational lensing governed by Gauss-Bonnet gravity is studied. We make a complete analytical derivation of the expression of time delay in presence of Gauss-Bonnet coupling. With respect to Schwarzschild, the time delay decreases as a consequence of the shrinking of the photon sphere. As the coupling increases, the second term in the time delay expansion becomes more relevant. Thus time delay in strong limit encodes some new information about geometry in five-dimensional spacetime with Gauss-Bonnet correction.

  2. GPU-accelerated Modeling and Element-free Reverse-time Migration with Gauss Points Partition

    NASA Astrophysics Data System (ADS)

    Zhen, Z.; Jia, X.

    2014-12-01

    Element-free method (EFM) has been applied to seismic modeling and migration. Compared with finite element method (FEM) and finite difference method (FDM), it is much cheaper and more flexible because only the information of the nodes and the boundary of the study area are required in computation. In the EFM, the number of Gauss points should be consistent with the number of model nodes; otherwise the accuracy of the intermediate coefficient matrices would be harmed. Thus when we increase the nodes of velocity model in order to obtain higher resolution, we find that the size of the computer's memory will be a bottleneck. The original EFM can deal with at most 81×81 nodes in the case of 2G memory, as tested by Jia and Hu (2006). In order to solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition (GPP), and utilize the GPUs to improve the computation efficiency. Considering the characteristics of the Gaussian points, the GPP method doesn't influence the propagation of seismic wave in the velocity model. To overcome the time-consuming computation of the stiffness matrix (K) and the mass matrix (M), we also use the GPUs in our computation program. We employ the compressed sparse row (CSR) format to compress the intermediate sparse matrices and try to simplify the operations by solving the linear equations with the CULA Sparse's Conjugate Gradient (CG) solver instead of the linear sparse solver 'PARDISO'. It is observed that our strategy can significantly reduce the computational time of K and Mcompared with the algorithm based on CPU. The model tested is Marmousi model. The length of the model is 7425m and the depth is 2990m. We discretize the model with 595x298 nodes, 300x300 Gauss cells and 3x3 Gauss points in each cell. In contrast to the computational time of the conventional EFM, the GPUs-GPP approach can substantially improve the efficiency. The speedup ratio of time consumption of computing K, M is 120 and the

  3. Early-time cosmological solutions in Einstein-scalar-Gauss-Bonnet theory

    NASA Astrophysics Data System (ADS)

    Kanti, Panagiota; Gannouji, Radouane; Dadhich, Naresh

    2015-10-01

    In this work, we consider a generalized gravitational theory that contains the Einstein term, a scalar field, and the quadratic Gauss-Bonnet (GB) term. We focus on the early-universe dynamics, and demonstrate that a simple choice of the coupling function between the scalar field and the Gauss-Bonnet term and a simplifying assumption regarding the role of the Ricci scalar can lead to new, analytical, elegant solutions with interesting characteristics. We first argue, and demonstrate in the context of two different models, that the presence of the Ricci scalar in the theory at early times (when the curvature is strong) does not affect the actual cosmological solutions. By considering therefore a pure scalar-GB theory with a quadratic coupling function we derive a plethora of interesting, analytic solutions: for a negative coupling parameter, we obtain inflationary, de Sitter-type solutions or expanding solutions with a de Sitter phase in their past and a natural exit mechanism at later times; for a positive coupling function, we find instead singularity-free solutions with no big bang singularity. We show that the aforementioned solutions arise only for this particular choice of coupling function, a result that may hint at some fundamental role that this coupling function may hold in the context of an ultimate theory.

  4. PRECISION TIME-DELAY GENERATOR

    DOEpatents

    Carr, B.J.; Peckham, V.D.

    1959-06-16

    A precision time-delay generator circuit with low jitter is described. The first thyratron has a series resonant circuit and a diode which is connected to the second thyratron. The first thyratron is triggered at the begin-ning of a time delay and a capacitor is discharged through the first thyratron and the diode, thereby, triggering the second thyratron. (T.R.H.) l6l9O The instrument described can measure pressures between sea level and 300,000 ft. The pressure- sensing transducer of the instrument is a small cylindrical tube with a thin foil of titanium-tritium fastened around the inside of the tube. Output is a digital signal which can be used for storage or telemetering more conveniently than an analog signal. (W.D.M.) l6l9l An experimental study was made on rolling contacts in the temperature range of 550 to 1000 deg F. Variables such as material composition, hardness, and operating conditions were investigated in a rolling test stand. Ball bearing tests were run to determine the effect of design parameters, bearing materials, lubricants, and operating conditions. (auth)

  5. Stability of Gauss-Bonnet black holes in anti-de Sitter space-time against scalar field condensation

    SciTech Connect

    Brihaye, Yves; Hartmann, Betti

    2011-10-15

    We study the stability of static, hyperbolic Gauss-Bonnet black holes in (4+1)-dimensional anti-de Sitter (AdS) space-time against the formation of scalar hair. Close to extremality the black holes possess a near-horizon topology of AdS{sub 2}xH{sup 3} such that within a certain range of the scalar field mass one would expect that they become unstable to the condensation of an uncharged scalar field. We confirm this numerically and observe that there exists a family of hairy black hole solutions labeled by the number of nodes of the scalar field function. We construct explicit examples of solutions with a scalar field that possesses zero nodes, one node, and two nodes, respectively, and show that the solutions with nodes persist in the limit of Einstein gravity, i.e. for vanishing Gauss-Bonnet coupling. We observe that the interval of the mass for which scalar field condensation appears decreases with increasing Gauss-Bonnet coupling and/or with increasing node number.

  6. PRECISION TIME-DELAY CIRCUIT

    DOEpatents

    Creveling, R.

    1959-03-17

    A tine-delay circuit which produces a delay time in d. The circuit a capacitor, an te back resistance, connected serially with the anode of the diode going to ground. At the start of the time delay a negative stepfunction is applied to the series circuit and initiates a half-cycle transient oscillatory voltage terminated by a transient oscillatory voltage of substantially higher frequency. The output of the delay circuit is taken at the junction of the inductor and diode where a sudden voltage rise appears after the initiation of the higher frequency transient oscillations.

  7. Fundamental Limits of Scintillation Detector Timing Precision

    PubMed Central

    Derenzo, Stephen E.; Choong, Woon-Seng; Moses, William W.

    2014-01-01

    In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm × 3 mm × 30 mm Lu2SiO5:Ce and LaBr3:Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10,000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A−1/2 more than any other factor, we tabulated the parameter B, where R = BA−1/2. An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10,000 photoelectrons/ns. A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10,000 photoelectrons/ns. PMID:24874216

  8. Fundamental limits of scintillation detector timing precision.

    PubMed

    Derenzo, Stephen E; Choong, Woon-Seng; Moses, William W

    2014-07-01

    In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm × 3 mm × 30 mm Lu2SiO5:Ce and LaBr3:Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10,000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A(-1/2) more than any other factor, we tabulated the parameter B, where R = BA(-1/2). An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10,000 photoelectrons ns(-1). A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10,000 photoelectrons ns(-1).

  9. The role of precise time in IFF

    NASA Technical Reports Server (NTRS)

    Bridge, W. M.

    1982-01-01

    The application of precise time to the identification of friend or foe (IFF) problem is discussed. The simple concept of knowing when to expect each signal is exploited in a variety of ways to achieve an IFF system which is hard to detect, minimally exploitable and difficult to jam. Precise clocks are the backbone of the concept and the various candidates for this role are discussed. The compact rubidium-controlled oscillator is the only practical candidate.

  10. Precise timing when hitting falling balls.

    PubMed

    Brenner, Eli; Driesen, Ben; Smeets, Jeroen B J

    2014-01-01

    People are extremely good at hitting falling balls with a baseball bat. Despite the ball's constant acceleration, they have been reported to time hits with a standard deviation of only about 7 ms. To examine how people achieve such precision, we compared performance when there were no added restrictions, with performance when looking with one eye, when vision was blurred, and when various parts of the ball's trajectory were hidden from view. We also examined how the size of the ball and varying the height from which it was dropped influenced temporal precision. Temporal precision did not become worse when vision was blurred, when the ball was smaller, or when balls falling from different heights were randomly interleaved. The disadvantage of closing one eye did not exceed expectations from removing one of two independent estimates. Precision was higher for slower balls, but only if the ball being slower meant that one saw it longer before the hit. It was particularly important to see the ball while swinging the bat. Together, these findings suggest that people time their hits so precisely by using the changing elevation throughout the swing to adjust the bat's movement to that of the ball. PMID:24904380

  11. Precise timing when hitting falling balls

    PubMed Central

    Brenner, Eli; Driesen, Ben; Smeets, Jeroen B. J.

    2014-01-01

    People are extremely good at hitting falling balls with a baseball bat. Despite the ball's constant acceleration, they have been reported to time hits with a standard deviation of only about 7 ms. To examine how people achieve such precision, we compared performance when there were no added restrictions, with performance when looking with one eye, when vision was blurred, and when various parts of the ball's trajectory were hidden from view. We also examined how the size of the ball and varying the height from which it was dropped influenced temporal precision. Temporal precision did not become worse when vision was blurred, when the ball was smaller, or when balls falling from different heights were randomly interleaved. The disadvantage of closing one eye did not exceed expectations from removing one of two independent estimates. Precision was higher for slower balls, but only if the ball being slower meant that one saw it longer before the hit. It was particularly important to see the ball while swinging the bat. Together, these findings suggest that people time their hits so precisely by using the changing elevation throughout the swing to adjust the bat's movement to that of the ball. PMID:24904380

  12. Precise timing when hitting falling balls.

    PubMed

    Brenner, Eli; Driesen, Ben; Smeets, Jeroen B J

    2014-01-01

    People are extremely good at hitting falling balls with a baseball bat. Despite the ball's constant acceleration, they have been reported to time hits with a standard deviation of only about 7 ms. To examine how people achieve such precision, we compared performance when there were no added restrictions, with performance when looking with one eye, when vision was blurred, and when various parts of the ball's trajectory were hidden from view. We also examined how the size of the ball and varying the height from which it was dropped influenced temporal precision. Temporal precision did not become worse when vision was blurred, when the ball was smaller, or when balls falling from different heights were randomly interleaved. The disadvantage of closing one eye did not exceed expectations from removing one of two independent estimates. Precision was higher for slower balls, but only if the ball being slower meant that one saw it longer before the hit. It was particularly important to see the ball while swinging the bat. Together, these findings suggest that people time their hits so precisely by using the changing elevation throughout the swing to adjust the bat's movement to that of the ball.

  13. Carl Friedrich Gauss

    ERIC Educational Resources Information Center

    Rice, Kathryn; Scott, Paul

    2005-01-01

    This article presents a brief biography of Johann Carl Friedrich Gauss. Gauss was born on April 30, 1777, in the German city of Braunschweig (Brunswick). He was the only child of Gebhard Dietrich Gauss and Dorothea Benze. Neither of Gauss's parents had much education, his father could read and write, but earned his living doing menial jobs such as…

  14. Precise time dissemination via portable atomic clocks

    NASA Technical Reports Server (NTRS)

    Putkovich, K.

    1982-01-01

    The most precise operational method of time dissemination over long distances presently available to the Precise Time and Time Interval (PTTI) community of users is by means of portable atomic clocks. The Global Positioning System (GPS), the latest system showing promise of replacing portable clocks for global PTTI dissemination, was evaluated. Although GPS has the technical capability of providing superior world-wide dissemination, the question of present cost and future accessibility may require a continued reliance on portable clocks for a number of years. For these reasons a study of portable clock operations as they are carried out today was made. The portable clock system that was utilized by the U.S. Naval Observatory (NAVOBSY) in the global synchronization of clocks over the past 17 years is described and the concepts on which it is based are explained. Some of its capabilities and limitations are also discussed.

  15. Precision timing measurements for high energy photons

    SciTech Connect

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan

    2014-11-21

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  16. Precise time and time interval data handling and reduction

    NASA Technical Reports Server (NTRS)

    Fisher, L. C.

    1973-01-01

    In the past year, the increase in Precise Time And Time Interval data to be reduced to the U.S. Naval Observatory Master Clock and the requirement for its quick dissemination has necessitated development of more efficient methods of data handling and reduction. An outline of the data involved and of the Time Service computerization of these functions is presented.

  17. Precision Pulsar Timing at the DSN

    NASA Astrophysics Data System (ADS)

    Majid, Walid A.

    2016-01-01

    Millisecond pulsars are a class of radio pulsars with extremely stable rotations. The excellent timing stability of millisecond pulsars can be used to study a wide variety of astrophysical phenomena. In particular, observations of a large sample of these pulsars can be used to detect the presence of low-frequency gravitational waves. We have developed and are now commissioning a precision pulsar timing backend for the Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to observe and time pulses from an ensemble of millisecond pulsars. The NASA Deep Space Network (DSN) operates clusters of large dish antennas (up to 70-m in diameter), located roughly equi-distant around the Earth, for communication and tracking of deep-space spacecraft. The backend system is capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for future observations scheduled over the next few years.

  18. Precision Pulsar Timing at the DSN

    NASA Astrophysics Data System (ADS)

    Majid, Walid A.

    2015-01-01

    Millisecond pulsars are a class of radio pulsars with extremely stable rotations. The excellent timing stability of millisecond pulsars can be used to study a wide variety of astrophysical phenomena. In particular, observations of a large sample of these pulsars can be used to detect the presence of low-frequency gravitational waves. We have developed a precision pulsar timing backend for the Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to observe and time pulses from an ensemble of millisecond pulsars. The NASA Deep Space Network (DSN) operates clusters of large dish antennas (up to 70-m in diameter), located roughly equi-distant around the Earth, for communication and tracking of deep-space spacecraft. The backend system will be capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for future observations scheduled later this year.This research was performed at the Jet Propulsion Laboratory,California Institute of Technology, under the Research and TechnologyDevelopment Program, under a contract with the National Aeronautics andSpace Administration.

  19. Gauss-Bonnet cosmology unifying late and early-time acceleration eras with intermediate eras

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2016-07-01

    In this paper we demonstrate that with vacuum F(G) gravity it is possible to describe the unification of late and early-time acceleration eras with the radiation and matter domination era. The Hubble rate of the unified evolution contains two mild singularities, so called Type IV singularities, and the evolution itself has some appealing features, such as the existence of a deceleration-acceleration transition at late times. We also address quantitatively a fundamental question related to modified gravity models description of cosmological evolution: Is it possible for all modified gravity descriptions of our Universe evolution, to produce a nearly scale invariant spectrum of primordial curvature perturbations? As we demonstrate, the answer for the F(G) description is no, since the resulting power spectrum is not scale invariant, in contrast to the F(R) description studied in the literature. Therefore, although the cosmological evolution can be realized in the context of vacuum F(G) gravity, the evolution is not compatible with the observational data, in contrast to the F(R) gravity description of the same cosmological evolution.

  20. Precise time and time interval applications to electric power systems

    NASA Technical Reports Server (NTRS)

    Wilson, Robert E.

    1992-01-01

    There are many applications of precise time and time interval (frequency) in operating modern electric power systems. Many generators and customer loads are operated in parallel. The reliable transfer of electrical power to the consumer partly depends on measuring power system frequency consistently in many locations. The internal oscillators in the widely dispersed frequency measuring units must be syntonized. Elaborate protection and control systems guard the high voltage equipment from short and open circuits. For the highest reliability of electric service, engineers need to study all control system operations. Precise timekeeping networks aid in the analysis of power system operations by synchronizing the clocks on recording instruments. Utility engineers want to reproduce events that caused loss of service to customers. Precise timekeeping networks can synchronize protective relay test-sets. For dependable electrical service, all generators and large motors must remain close to speed synchronism. The stable response of a power system to perturbations is critical to continuity of electrical service. Research shows that measurement of the power system state vector can aid in the monitoring and control of system stability. If power system operators know that a lightning storm is approaching a critical transmission line or transformer, they can modify operating strategies. Knowledge of the location of a short circuit fault can speed the re-energizing of a transmission line. One fault location technique requires clocks synchronized to one microsecond. Current research seeks to find out if one microsecond timekeeping can aid and improve power system control and operation.

  1. Kerr-Gauss-Bonnet black holes: Exact analytical solution

    SciTech Connect

    Alexeyev, S. Popov, N.; Startseva, M.; Barrau, A. Grain, J.

    2008-04-15

    Gauss-Bonnet gravity provides one of the most promising frameworks for studying curvature corrections to the Einstein action in supersymmetric string theories while avoiding ghosts and keeping second-order field equations. Although Schwarzschild-type solutions for Gauss-Bonnet black holes have been known for a long time, the Kerr-Gauss-Bonnet metric was missing. A five dimensional Gauss-Bonnet solution is obtained analytically for spinning black holes, and the related thermodynamical properties are briefly outlined.

  2. Precise time and time interval users, requirements and specifications

    NASA Technical Reports Server (NTRS)

    Bowser, J. R.

    1982-01-01

    The functional areas of application of Precise Time and Time Interval (PTTI) were considered and expanded. A comprehensive overview of the PTTI requirements and applications would provide an opportunity for individuals working in a specific functional area. Mutual problems, requirements, applications or successes shared by those in other functional areas were studied. Based upon the results of a two year study a compendium of PTTI requirements, applications and the means of meeting the requirements among Department of Defense components, other government agencies and major commercial users was compiled and is presented. It was found that the planning process for PTTI support for new acquisitions or new programs was less than a well defined, coordinated process. The processes are described in general terms and a generic model for requirements determination and subsequent coordination which may enhance the planning process and introduce cost benefits to the program is also presented.

  3. Precision Timing Calorimeter for High Energy Physics

    DOE PAGESBeta

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si

    2016-04-01

    Here, we present studies on the performance and characterization of the time resolution of LYSO-based calorimeters. Results for an LYSO sampling calorimeter and an LYSO-tungsten Shashlik calorimeter are presented. We also demonstrate that a time resolution of 30 ps is achievable for the LYSO sampling calorimeter. Timing calorimetry is described as a tool for mitigating the effects due to the large number of simultaneous interactions in the high luminosity environment foreseen for the Large Hadron Collider.

  4. The Tortured History of Gauss's Law

    NASA Astrophysics Data System (ADS)

    Spencer, Ross

    2009-10-01

    American physics textbooks contain the following equation, which is called Gauss's law: E .d S = qenclosed ɛ0 It is odd, however, that biographies of Karl Friedrich Gauss (1777-1855) contain no mention of this law. A brief history of this important result will be presented in which it will be shown that what we call Gauss's law today was originally guessed at by Joseph Priestly (1733-1804) after he read a letter from Benjamin Franklin (1706-1790), then was derived, forgotten, and re-derived several times in two different contexts by many of the luminaries of physics in the eighteenth and nineteenth centuries.

  5. Precision timing calorimeter for high energy physics

    NASA Astrophysics Data System (ADS)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly

    2016-07-01

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  6. Stochastic Gauss equations

    NASA Astrophysics Data System (ADS)

    Pierret, Frédéric

    2016-02-01

    We derived the equations of Celestial Mechanics governing the variation of the orbital elements under a stochastic perturbation, thereby generalizing the classical Gauss equations. Explicit formulas are given for the semimajor axis, the eccentricity, the inclination, the longitude of the ascending node, the pericenter angle, and the mean anomaly, which are expressed in term of the angular momentum vector H per unit of mass and the energy E per unit of mass. Together, these formulas are called the stochastic Gauss equations, and they are illustrated numerically on an example from satellite dynamics.

  7. Precision frequency sources. [development and characteristics of oscillators for precise time measurement

    NASA Technical Reports Server (NTRS)

    Mccoubrey, A. O.; Kern, R. H.

    1962-01-01

    The development of precision oscillators for time and frequency standards is discussed. The applications of the oscillators to radio communication, research projects, navigation systems, and calibration sources are reported. The status of a cesium beam stabilized oscillator is examined. Photographs of the components are provided. The performance of quartz and rubidium oscillators is compared with the performance of cesium resonators.

  8. Microsecond-Scale Timing Precision in Rodent Trigeminal Primary Afferents

    PubMed Central

    Bale, Michael R.; Campagner, Dario; Erskine, Andrew

    2015-01-01

    Communication in the nervous system occurs by spikes: the timing precision with which spikes are fired is a fundamental limit on neural information processing. In sensory systems, spike-timing precision is constrained by first-order neurons. We found that spike-timing precision of trigeminal primary afferents in rats and mice is limited both by stimulus speed and by electrophysiological sampling rate. High-speed video of behaving mice revealed whisker velocities of at least 17,000°/s, so we delivered an ultrafast “ping” (>50,000°/s) to single whiskers and sampled primary afferent activity at 500 kHz. Median spike jitter was 17.4 μs; 29% of neurons had spike jitter < 10 μs. These results indicate that the input stage of the trigeminal pathway has extraordinary spike-timing precision and very high potential information capacity. This timing precision ranks among the highest in biology. PMID:25878266

  9. A monolithic time stretcher for precision time recording

    SciTech Connect

    Varner, Gary S.

    2007-04-20

    Identifying light mesons which contain only up/down quarks (pions) from those containing a strange quark (kaons) over the typical meter length scales of a particle physics detector requires instrumentation capable of measuring flight times with a resolution on the order of 20ps. In the last few years a large number of inexpensive, multi-channel Time-to-Digital Converter (TDC) chips have become available. These devices typically have timing resolution performance in the hundreds of ps regime. A technique is presented that is a monolithic version of ``time stretcher'' solution adopted for the Belle Time-Of-Flight system to address this gap between resolution need and intrinsic multi-hit TDC performance.

  10. Precision frequency synthesizing sources with excellent time/frequency performances

    NASA Technical Reports Server (NTRS)

    Zhou, Liren; Lin, Hai

    1994-01-01

    Precision frequency synthesizing sources are needed in the time / frequency measuring system, atomic frequency standards, telemetry, communication, and radar systems. This kind of frequency synthesizing source possesses high frequency accuracy and excellent long term and short term frequency stability. Several precision frequency synthesizing sources developed by Beijing Institute of Radio Metrology and Measurement (BIRMM) which have been successfully applied to the time / frequency measuring system, atomic frequency standards system, and radar system are described. In addition, the working principle, implementation approach, and the main technical specifications of the frequency synthesizing sources are also given.

  11. Force, reaction time, and precision of Kung Fu strikes.

    PubMed

    Neto, Osmar Pinto; Bolander, Richard; Pacheco, Marcos Tadeu Tavares; Bir, Cynthia

    2009-08-01

    The goal was to compare values of force, precision, and reaction time of several martial arts punches and palm strikes performed by advanced and intermediate Kung Fu practitioners, both men and women. 13 Kung Fu practitioners, 10 men and three women, participated. Only the men, three advanced and seven intermediate, were considered for comparisons between levels. Reaction time values were obtained using two high speed cameras that recorded each strike at 2500 Hz. Force of impact was measured by a load cell. For comparisons of groups, force data were normalized by participant's body mass and height. Precision of the strikes was determined by a high speed pressure sensor. The results show that palm strikes were stronger than punches. Women in the study presented, on average, lower values of reaction time and force but higher values of precision than men. Advanced participants presented higher forces than intermediate participants. Significant negative correlations between the values of force and precision and the values of force and reaction time were also found.

  12. Distributed high-precision time transfer through passive optical networks

    NASA Astrophysics Data System (ADS)

    Wu, Guiling; Hu, Liang; Zhang, Hao; Chen, Jianping

    2014-09-01

    We propose a one-point to multipoint distributed time transfer through passive optical networks using a time division multiple access (TDMA) based two-way time transfer. The clock at each clock user node is, in turn, compared with the high-precision reference clock at a master node by a two-way time transfer during assigned subperiods. The corresponding TDMA control protocol and time transfer units for the proposed scheme are designed and implemented. A 1×8 experimental system with a 20 km single-mode fiber in each subpath is demonstrated. The results show that a standard deviation of <60 ps can be reached in each comparison subperiod.

  13. A precise GPS-based time and frequency system

    NASA Technical Reports Server (NTRS)

    Mcnabb, Jack; Fossler, Earl

    1993-01-01

    An approach to implementing a compact, highly reliable and precise Master Time and Frequency subsystem usable in a variety of applications is described. These applications include, among others, Satellite Ground Terminals, Range Timing Stations, Communications Terminals, and Power Station Timing subsystems. All time and frequency output signals are locked to Universal Time via the GPS Satellite system. The system provides for continued output of precise signals in the event of GPS signal interruption from antenna or lead-in breakage or other causes. Cost/performance tradeoffs affecting system accuracy over the short, medium, and long term are discussed. A unique approach to redundant system design provides an architecture with the reliability advantage of triple-redundant majority voting and the cost advantages of dual-redundant elements. The system can be configured to output a variety of precise time and frequency signals and the design can be tailored to output as few, or as many, types and quantities of signals as are required by the application.

  14. Precision Time Protocol-Based Trilateration for Planetary Navigation

    NASA Technical Reports Server (NTRS)

    Murdock, Ron

    2015-01-01

    Progeny Systems Corporation has developed a high-fidelity, field-scalable, non-Global Positioning System (GPS) navigation system that offers precision localization over communications channels. The system is bidirectional, providing position information to both base and mobile units. It is the first-ever wireless use of the Institute of Electrical and Electronics Engineers (IEEE) Precision Time Protocol (PTP) in a bidirectional trilateration navigation system. The innovation provides a precise and reliable navigation capability to support traverse-path planning systems and other mapping applications, and it establishes a core infrastructure for long-term lunar and planetary occupation. Mature technologies are integrated to provide navigation capability and to support data and voice communications on the same network. On Earth, the innovation is particularly well suited for use in unmanned aerial vehicles (UAVs), as it offers a non-GPS precision navigation and location service for use in GPS-denied environments. Its bidirectional capability provides real-time location data to the UAV operator and to the UAV. This approach optimizes assisted GPS techniques and can be used to determine the presence of GPS degradation, spoofing, or jamming.

  15. Proceedings of the Fourth Precise Time and Time Interval Planning Meeting

    NASA Technical Reports Server (NTRS)

    Acrivos, H. N. (Compiler); Wardrip, S. C. (Compiler)

    1972-01-01

    The proceedings of a conference on Precise Time and Time Interval Planning are presented. The subjects discussed include the following: (1) satellite timing techniques, precision frequency sources, and very long baseline interferometry, (2) frequency stabilities and communications, and (3) very low frequency and ultrahigh frequency propagation and use. Emphasis is placed on the accuracy of time discrimination obtained with time measuring equipment and specific applications of time measurement to military operations and civilian research projects.

  16. Department of Defense Precise Time and Time Interval program improvement plan

    NASA Technical Reports Server (NTRS)

    Bowser, J. R.

    1981-01-01

    The United States Naval Observatory is responsible for ensuring uniformity in precise time and time interval operations including measurements, the establishment of overall DOD requirements for time and time interval, and the accomplishment of objectives requiring precise time and time interval with minimum cost. An overview of the objectives, the approach to the problem, the schedule, and a status report, including significant findings relative to organizational relationships, current directives, principal PTTI users, and future requirements as currently identified by the users are presented.

  17. Precision pulse-timing instrumentation for ultrasonic nondestructive testing

    SciTech Connect

    Duncan, M.G.

    1990-08-31

    A new, pulse-timing discriminator and B-scan time-to-pulse-height converter have been developed for the inspection of production parts. The discriminator is easy to operate and features automatic echo gating and automatic pulse polarity discrimination. This instrument combines the noise-blanking advantages of threshold discrimination with the echo-timing precision of zero-crossing discrimination to improve measurement accuracy by a factor of two over the best precious techniques. When used with the discriminator, the B-scan unit allows detection of flaws at depths less than one-fourth those obtainable with commercially available instruments. 3 refs., 20 figs., 2 tabs.

  18. Precise inhibition is essential for microsecond interaural time difference coding

    NASA Astrophysics Data System (ADS)

    Brand, Antje; Behrend, Oliver; Marquardt, Torsten; McAlpine, David; Grothe, Benedikt

    2002-05-01

    Microsecond differences in the arrival time of a sound at the two ears (interaural time differences, ITDs) are the main cue for localizing low-frequency sounds in space. Traditionally, ITDs are thought to be encoded by an array of coincidence-detector neurons, receiving excitatory inputs from the two ears via axons of variable length (`delay lines'), to create a topographic map of azimuthal auditory space. Compelling evidence for the existence of such a map in the mammalian lTD detector, the medial superior olive (MSO), however, is lacking. Equally puzzling is the role of a-temporally very precise-glycine-mediated inhibitory input to MSO neurons. Using in vivo recordings from the MSO of the Mongolian gerbil, we found the responses of ITD-sensitive neurons to be inconsistent with the idea of a topographic map of auditory space. Moreover, local application of glycine and its antagonist strychnine by iontophoresis (through glass pipette electrodes, by means of an electric current) revealed that precisely timed glycine-controlled inhibition is a critical part of the mechanism by which the physiologically relevant range of ITDs is encoded in the MSO. A computer model, simulating the response of a coincidence-detector neuron with bilateral excitatory inputs and a temporally precise contralateral inhibitory input, supports this conclusion.

  19. AIV Platform for the Galileo Precise Timing Facility

    NASA Astrophysics Data System (ADS)

    Oving, B. A.; Kroon, E.

    2008-08-01

    The Precise Timing Facility (PTF) is an element of the Galileo Ground Mission Segment (GMS) and is responsible for maintaining and distributing the Galileo System Time (GST). The PTF is based on a set of Caesium clocks and Active Hydrogen Maser clocks, the combination of which should be able to provide the required precision and stability of the GST. As the PTF is a critical element within the GMS, diversity is applied in that two PTFs are made by two different companies. The subject of this paper is the PTF that is being developed by Kayser-Threde. To perform the Assembly, Integration and Verification (AIV) activities of the PTF, a dedicated test platform, PTF-AIVP, is developed by the National Aerospace Laboratory, NLR (the Netherlands) and the Nederlands Meetinstituut (NMi). The PTF-AIVP will be used to measure and analyse the (physical) output of the PTF, so that the stringent precision and stability requirements can be verified. Furthermore, it will simulate other Elements in the GMS that are connected to the PTF.

  20. On the precision of automated activation time estimation

    NASA Technical Reports Server (NTRS)

    Kaplan, D. T.; Smith, J. M.; Rosenbaum, D. S.; Cohen, R. J.

    1988-01-01

    We examined how the assignment of local activation times in epicardial and endocardial electrograms is affected by sampling rate, ambient signal-to-noise ratio, and sinx/x waveform interpolation. Algorithms used for the estimation of fiducial point locations included dV/dtmax, and a matched filter detection algorithm. Test signals included epicardial and endocardial electrograms overlying both normal and infarcted regions of dog myocardium. Signal-to-noise levels were adjusted by combining known data sets with white noise "colored" to match the spectral characteristics of experimentally recorded noise. For typical signal-to-noise ratios and sampling rates, the template-matching algorithm provided the greatest precision in reproducibly estimating fiducial point location, and sinx/x interpolation allowed for an additional significant improvement. With few restrictions, combining these two techniques may allow for use of digitization rates below the Nyquist rate without significant loss of precision.

  1. Proceedings of the Eleventh Annual Precise Time and Time Interval (PTTI) Application and Planning Meeting. [conference

    NASA Technical Reports Server (NTRS)

    Wardrip, S. C. (Editor)

    1979-01-01

    Thirty eight papers are presented addressing various aspects of precise time and time interval applications. Areas discussed include: past accomplishments; state of the art systems; new and useful applications, procedures, and techniques; and fruitful directions for research efforts.

  2. Proceedings of the 7th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Proceedings contain the papers presented at the Seventh Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting and the edited record of the discussion period following each paper. This meeting provided a forum to promote more effective, efficient, economical and skillful applications of PTTI technology to the many problem areas to which PTTI offers solutions. Specifically the purpose of the meeting is to: disseminate, coordinate, and exchange practical information associated with precise time and frequency; acquaint systems engineers, technicians and managers with precise time and frequency technology and its applications; and review present and future requirements for PTTI.

  3. High-precision baseband timing of 15 millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Hotan, A. W.; Bailes, M.; Ord, S. M.

    2006-07-01

    We describe extremely precise timing experiments performed on five solitary and 10 binary millisecond pulsars during the past 3 yr, with the Caltech Parkes Swinburne Recorder (CPSR2) coherent dedispersion system at the Parkes 64-m radio telescope. 12 of our sources have rms timing residuals below 1.5μs and four are below 200ns. The quality of our data allows us to measure eight parallaxes and nine proper motions, from which we conclude that models of galactic electron density still have limited predictive power for individual objects. We derive a mean transverse velocity of 87+31/-14kms-1 for these pulsars, in good agreement with previous authors. We demonstrate that unless multifrequency observations are made, typical variations in dispersion measure (DM) could introduce an additional drift in arrival times of ~1μs per year at 20-cm wavelengths. Our high timing precision means that Shapiro delay can be used to constrain the inclination angles and component masses of all but two of the selected binary systems. The signature of annual orbital parallax is detected in the timing of PSR J0437-4715 and PSR J1713+0747, providing additional geometric constraints. The timing of PSR J1909-3744 is used to demonstrate that the DE405 ephemeris is a better model of the Solar system than the earlier DE200. In addition, we show that pulsar astrometric parameters measured using DE200 and DE405 often differ significantly. In order to use pulsars to search for a cosmological gravitational wave background, it is desirable to time them against each other to eliminate Earth-based time standards. We demonstrate that PSR J1909-3744 can be used as a reference against which we obtain a very small rms residual of 133ns for PSR J1713+0747. Although the gain of the Parkes antenna is small compared to other telescopes involved in precision timing, we obtain some of the lowest rms residuals ever measured, highlighting the importance of good instrumentation such as CPSR2 and good analysis

  4. Precise Time Synchronisation and Ranging in Nano-Satellite Swarms

    NASA Astrophysics Data System (ADS)

    Laabs, Martin; Plettemeier, Dirk

    2015-04-01

    Precise time synchronization and ranging is very important for a variety of scientific experiments with more than two nano-satellites: For synthetic aperture radar (SAR) applications, for example, the radar signal phase (which corresponds to a synchronized time) as well as the location must be known on each satellite forming synthetic antenna. Also multi-static radar systems, MIMO radar systems or radio tomography applications will take advantage from highly accurate synchronization and position determination. We propose a method for synchronizing the time as well as measuring the distance between nano-satellites very precisely by utilizing mm-wave radio links. This approach can also be used for time synchronization of more than two satellites and accordingly determinating the precise relative location of nano-satellites in space. The time synchronization signal is modulated onto a mm-wave carrier. In the simplest form it is a harmonic sinusoidal signal with a frequency in the MHz range. The distance is measured with a frequency sweep or short pulse modulated onto a different carrier frequency. The sweep or pulse transmission start is synchronized to the received time synchronization. The time synchronization transmitter receives the pulse/sweep signal and can calculate the (double) time of flight for both signals. This measurement can be easily converted to the distance. The use of a mm-wave carrier leads to small antennas and the free space loss linked to the high frequency reduces non line of sight echoes. It also allows a high sweep/pulse bandwidth enabling superior ranging accuracy. Additionally, there is also less electromagnetic interference probability since telemetry and scientific applications typically do not use mm-wavefrequencies. Since the system is working full-duplex the time synchronization can be performed continuously and coherently. Up to now the required semiconductor processes did not achieve enough gain/bandwidth to realize this concept at

  5. National Ignition Campaign (NIC) Precision Tuning Series Shock Timing Experiments

    SciTech Connect

    Robey, H F; Celliers, P M

    2011-07-19

    A series of precision shock timing experiments have been performed on NIF. These experiments continue to adjust the laser pulse shape and employ the adjusted cone fraction (CF) in the picket (1st 2 ns of the laser pulse) as determined from the re-emit experiment series. The NIF ignition laser pulse is precisely shaped and consists of a series of four impulses, which drive a corresponding series of shock waves of increasing strength to accelerate and compress the capsule ablator and fuel layer. To optimize the implosion, they tune not only the strength (or power) but also, to sub-nanosecond accuracy, the timing of the shock waves. In a well-tuned implosion, the shock waves work together to compress and heat the fuel. For the shock timing experiments, a re-entrant cone is inserted through both the hohlraum wall and the capsule ablator allowing a direct optical view of the propagating shocks in the capsule interior using the VISAR (Velocity Interferometer System for Any Reflector) diagnostic from outside the hohlraum. To emulate the DT ice of an ignition capsule, the inside of the cone and the capsule are filled with liquid deuterium.

  6. Coherence times of precise depth controlled NV centers in diamond

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Zhang, Wenlong; Zhang, Jian; You, Jie; Li, Yan; Guo, Guoping; Feng, Fupan; Song, Xuerui; Lou, Liren; Zhu, Wei; Wang, Guanzhong

    2016-03-01

    We investigated the depth dependence of coherence times of nitrogen-vacancy (NV) centers through precise depth control using oxidative etching at 580 °C in air. By successive nanoscale etching, NV centers could be brought close to the diamond surface step by step, which enabled us to track the evolution of the number of NV centers remaining in the chip and to study the depth dependence of coherence times of NV centers with diamond etching. Our results showed that the coherence times of NV centers declined rapidly with the depth reduction in the last about 22 nm before they finally disappeared, which revealed a critical depth for the influence of a rapid fluctuating surface spin bath. Moreover, by using the slow etching method combined with low-energy nitrogen implantation, NV centers with depths shallower than the initially implanted depths can be generated, which are preferred for detecting external spins with higher sensitivity.

  7. Ionospheric corrections to precise time transfer using GPS

    NASA Technical Reports Server (NTRS)

    Snow, Robert W.; Osborne, Allen W., III; Klobuchar, John A.; Doherty, Patricia H.

    1994-01-01

    The free electrons in the earth's ionosphere can retard the time of reception of GPS signals received at a ground station, compared to their time in free space, by many tens of nanoseconds, thus limiting the accuracy of time transfer by GPS. The amount of the ionospheric time delay is proportional to the total number of electrons encountered by the wave on its path from each GPS satellite to a receiver. This integrated number of electrons is called Total Electron Content, or TEC. Dual frequency GPS receivers designed by Allen Osborne Associates, Inc. (AOA) directly measure both the ionospheric differential group delay and the differential carrier phase advance for the two GPS frequencies and derive from this the TEC between the receiver and each GPS satellite in track. The group delay information is mainly used to provide an absolute calibration to the relative differential carrier phase, which is an extremely precise measure of relative TEC. The AOA Mini-Rogue ICS-4Z and the AOA TurboRogue ICS-4000Z receivers normally operate using the GPS P code, when available, and switch to cross-correlation signal processing when the GPS satellites are in the Anti-Spoofing (A-S) mode and the P code is encrypted. An AOA ICS-Z receiver has been operated continuously for over a year at Hanscom AFB, MA to determine the statistics of the variability of the TEC parameter using signals from up to four different directions simultaneously. The 4-channel ICS-4Z and the 8-channel ICS-4000Z, have proven capabilities to make precise, well calibrated, measurements of the ionosphere in several directions simultaneously. In addition to providing ionospheric corrections for precise time transfer via satellite, this dual frequency design allows full code and automatic codeless operation of both the differential group delay and differential carrier phase for numerous ionospheric experiments being conducted. Statistical results of the data collected from the ICS-4Z during the initial year of

  8. Real-time precision concentration measurement for flowing liquid solutions

    NASA Astrophysics Data System (ADS)

    Krishna, V.; Fan, C. H.; Longtin, J. P.

    2000-10-01

    The precise, real-time measurement of liquid concentration is important in fundamental research, chemical analysis, mixing processes, and manufacturing, e.g., in the food and semiconductor industries. This work presents a laser-based, noninvasive technique to measure concentration changes of flowing liquids in real time. The essential components in the system include a 5 mW laser diode coupled to a single-mode optical fiber, a triangular optical cell, and a high-resolution beam position sensor. The instrument provides a large range of concentration measurement, typically 0%-100% for binary liquid mixtures, while providing a resolution on the order of 0.05% concentration or better. The experimental configuration is small, reliable, and inexpensive. Results are presented for NaCl and MgCl2 aqueous solutions with concentrations ranging from 0% to 25%, with very good agreement found between measured and true concentrations.

  9. Noncoaxial Bessel-Gauss beams.

    PubMed

    Huang, Chaohong; Zheng, Yishu; Li, Hanqing

    2016-04-01

    We proposed a new family of noncoaxial Gauss-truncated Bessel beams through multiplying conventional symmetrical Bessel beams by a noncoaxial Gauss function. These beams can also be regarded as the exponential-truncated version of Bessel-Gauss beams since they can be transformed into the product of Bessel-Gauss beams and an exponential window function along a certain Cartesian axis. The closed-form solutions of the angular spectra and paraxial propagation of these beams were derived. These beams have asymmetrical intensity distributions and carry the same orbit angular momentum per photon as the corresponding Bessel-Gauss beams. While propagating along the z axis, the mth (m≠0) noncoaxial Bessel-Gauss beams rotate their intensity distributions and the mth-order vortex at the beam center has a transverse shift along the direction perpendicular to the offset axis. Depending on the product of the transverse scalar factor of the Bessel beams and the offset between the Gaussian window function and the center of the Bessel beams, the noncoaxial Bessel-Gauss beams can produce unit vortices with opposite signs in pairs during propagation. PMID:27140757

  10. The 26th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard (Editor)

    1995-01-01

    This document is a compilation of technical papers presented at the 26th Annual PTTI Applications and Planning Meeting. Papers are in the following categories: (1) Recent developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; (2) International and transnational applications of Precise Time and Time Interval technology with emphasis on satellite laser tracking, GLONASS timing, intercomparison of national time scales and international telecommunications; (3) Applications of Precise Time and Time Interval technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; (4) Applications of PTTI technology to evolving military communications and navigation systems; and (5) Dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, LORAN, and synchronous communications satellites.

  11. The 25th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1994-01-01

    Papers in the following categories are presented: recent developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; international and transnational applications of precise time and time interval (PTTI) technology with emphasis on satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunication; applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; application of PTTI technology to evolving military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, LORAN, and synchronous communications satellites.

  12. The 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1990-01-01

    Papers presented at the 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting are compiled. The following subject areas are covered: Rb, Cs, and H-based frequency standards and cryogenic and trapped-ion technology; satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunications; telecommunications, power distribution, platform positioning, and geophysical survey industries; military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, LORAN, and synchronous communication satellites.

  13. The 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    SciTech Connect

    Sydnor, R.L.

    1990-05-01

    Papers presented at the 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting are compiled. The following subject areas are covered: Rb, Cs, and H-based frequency standards and cryogenic and trapped-ion technology; satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunications; telecommunications, power distribution, platform positioning, and geophysical survey industries; military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MIL<550>STAR, LORAN, and synchronous communication satellites.

  14. Proceedings of the 8th Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Proceedings contain the papers presented at the Eight Annual Precise Time and Tme Interval PTTI Applications and Planning Meeting. The edited record of the discussions following the papers and the panel discussions are also included. This meeting provided a forum for the exchange of information on precise time and frequency technology among members of the scientific community and persons with program applications. The 282 registered attendees came from various U.S. Government agencies, private industry, universities and a number of foreign countries were represented. In this meeting, papers were presented that emphasized: (1) definitions and international regulations of precise time sources and users, (2) the scientific foundations of Hydrogen Maser standards, the current developments in this field and the application experience, and (3) how to measure the stability performance properties of precise standards. As in the previous meetings, update and new papers were presented on system applications with past, present and future requirements identified.

  15. Developing Precision Pulsar Timing Capability for the DSN

    NASA Astrophysics Data System (ADS)

    Majid, Walid A.; Kuiper, T. B.; Lazio, J.; Monroe, R.; Preston, R. A.; Spolaor, S.; Teitelbaum, L.; Trinh, J.

    2014-01-01

    Millisecond pulsars are a class of radio pulsars with extremely stable rotations. The excellent timing stability of millisecond pulsars can be used to study a wide variety of astrophysical phenomena. In particular, observations of a large sample of these pulsars can be used to detect the presence of low-frequency gravitational waves. We are currently developing a precision pulsar timing backend for the Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to observe and time pulses from an ensemble of millisecond pulsars. The NASA Deep Space Network (DSN) operates clusters of large dish antennas (up to 70-m in diameter), located roughly equi-distant around the Earth, for communication and tracking of deep-space spacecraft. The backend system will be capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for pilot observations scheduled later this year. This research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under the Research and Technology Development Program, under a contract with the National Aeronautics and Space Administration.

  16. Proceedings of the Sixteenth Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The effects of ionospheric and tropospheric propagation on time and frequency transfer, advances in the generation of precise time and frequency, time transfer techniques and filtering and modeling were among the topics emphasized. Rubidium and cesium frequency standard, crystal oscillators, masers, Kalman filters, and atomic clocks were discussed.

  17. PSR J1022+1001: profile stability and precision timing

    NASA Astrophysics Data System (ADS)

    Hotan, A. W.; Bailes, M.; Ord, S. M.

    2004-12-01

    We present an investigation of the morphology and arrival times of integrated radio pulses from the binary millisecond pulsar PSR J1022+1001. This pulsar is renowned for its poor timing properties, which have been postulated to originate from variability in its average pulse profile. Although a subclass of long-period pulsars is known to exhibit mode changes that give rise to very large deviations in their integrated profiles, this was the first millisecond pulsar thought to have an unstable mean profile. As part of a precision timing programme at the Parkes radio telescope, we observed this pulsar between 2003 January and 2004 March using a coherent de-dispersion system (the Second Caltech Parkes Swinburne Recorder). A study of morphological variability during our brightest observations suggests that the pulse profile varies by at most a few per cent, similar to the uncertainty in our calibration. Unlike previous authors, we find that this pulsar times extremely well. In 5-min integrations of 64-MHz bands, we obtain a weighted rms residual of just 2.27 μs. The reduced χ2 of our best fit is 1.43, which suggests that this pulsar can be timed to high accuracy with standard cross-correlation techniques. Combining relativistic constraints with the pulsar mass function and consideration of the Chandrasekhar mass limit on the white dwarf companion, we can constrain the inclination angle of the system to lie within the range 37° < i < 56°. For reasonable pulsar masses, this suggests that the white dwarf is at least 0.9 Msolar. We also find evidence for secular evolution of the projected semimajor axis.

  18. Precision cosmology with time delay lenses: High resolution imaging requirements

    SciTech Connect

    Meng, Xiao -Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will

  19. Precision cosmology with time delay lenses: high resolution imaging requirements

    SciTech Connect

    Meng, Xiao-Lei; Liao, Kai; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Marshall, Philip J. E-mail: tt@astro.ucla.edu E-mail: mauger@ast.cam.ac.uk E-mail: dr.phil.marshall@gmail.com

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will

  20. Compact, Low-power and Precision Timing Photodetector Readout

    SciTech Connect

    Varner, Gary S.; Ruckman, Larry L.; Schwiening, Jochen; Vavra, Jaroslav; /SLAC

    2011-06-14

    Photodetector readout for next generation high event rate particle identification and single-photon detection requires a digitizer capable of integrated recording of dense arrays of sensor elements with high analog bandwidth (precision timing) and large record depth, in a cost-effective, compact and low-power way. Simply stated, one cannot do better than having a high-fidelity 'oscilloscope on a chip' for every sensor channel. A firs version of the Buffered Large Analog Bandwidth (BLAB1) ASIC has been designed based upon the lessons learned from the development of the Large Analog Bandwidth Recorder and Digitizer with Ordered Readout (LABRADOR) ASIC. While this LABRADOR ASIC has been very successful and forms the readout basis of a generation of new, large-scale radio neutrino detectors, its limited sampling depth is a major drawback. To address this shortcoming, a prototype intended for photodetector readout has been designed and fabricated with 64k deep sampling at multi-GSa/s operation. An evaluation system has been constructed for instrumentation of Time-Of-Propagation (TOP) and focusing DIRC prototypes and test results will be reported.

  1. Accelerating Airy-Gauss-Kummer localized wave packets

    NASA Astrophysics Data System (ADS)

    Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi; Huang, Tingwen

    2014-01-01

    A general approach to generating three-dimensional nondiffracting spatiotemporal solutions of the linear Schrödinger equation with an Airy-beam time-dependence is reported. A class of accelerating optical pulses with the structure of Airy-Gauss-Kummer vortex beams is obtained. Our results demonstrate that the optical field contributions to the Airy-Gauss-Kummer accelerating optical wave packets of the cylindrical symmetry can be characterized by the radial and angular mode numbers.

  2. 27th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1996-01-01

    This document is a compilation of technical papers presented at the 27th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, held November 29 - December 1, 1995 at San Diego, CA. Papers are in the following categories: Recent developments in rubidium, cesium, and hydrogen-based frequency standards; and in cryogenic and trapped-ion technology; International and transnational applications of PTTI technology with emphasis on satellite laser tracking, GLONASS timing, intercomparison of national time scales and international telecommunications; Applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; Applications of PTTI technology to evolving military communications and navigation systems; and Dissemination of precise time and frequency by means of Global Positioning System (GPS), Global Satellite Navigation System (GLONASS), MILSTAR, LORAN, and synchronous communications satellites.

  3. Proceedings of the 30th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

    NASA Technical Reports Server (NTRS)

    Breakiron, Lee A. (Editor)

    1999-01-01

    This document is a compilation of technical papers presented at the 30th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting held 1-3 December 1998 at the Hyatt Regency Hotel at Reston Town Center, Reston, Virginia. Papers are in the following categories: 1) Recent developments in rubidium, cesium, and hydrogen-based atomic frequency standards, and in trapped-ion and space clock technology; 2) National and international applications of PTTI technology with emphasis on GPS and GLONASS timing, atomic time scales, and telecommunications; 3) Applications of PTTI technology to evolving military navigation and communication systems; geodesy; aviation; and pulsars; and 4) Dissemination of precise time and frequency by means of GPS, geosynchronous communication satellites, computer networks, WAAS, and LORAN.

  4. The 24th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L.

    1993-01-01

    A compilation of technical papers presented at the 24th Precise Time and Time Interval (PTTI) Applications and Planning Meeting held in Dec. 1992 is presented. Papers are in the following categories: recent developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; international and transnational applications of PTTI technology with emphasis on satellite laser tracking networks, GLONASS timing, intercomparison of national time scales, and international telecommunications; applications of PTTI technology to the telecommunications, power distribution, and platform positioning, and geophysical survey industries; applications of PTTI technology to evolving military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, Loran, and synchronous communications satellites.

  5. Proceedings of the 23rd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1992-01-01

    A compilation of technical papers, from the 23rd annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, is presented. Papers were given in the following categories: (1) developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; (2) international and transnational applications of PTTI technology with emphasis on satellite laser tracking networks, GLONASS timing, comparison of national time scales and international communications; (3) applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; (4) applications of PTTI technology to evolving military communications and navigation systems; and (5) dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, Loran, and synchronous communications satellites.

  6. Proceedings of the 23rd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    SciTech Connect

    Sydnor, R.L.

    1992-07-01

    A compilation of technical papers, from the 23rd annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, is presented. Papers were given in the following categories: (1) developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; (2) international and transnational applications of PTTI technology with emphasis on satellite laser tracking networks, GLONASS timing, comparison of national time scales and international communications; (3) applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; (4) applications of PTTI technology to evolving military communications and navigation systems; and (5) dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, Loran, and synchronous communications satellites.

  7. Multi-GNSS real-time precise orbit/clock/UPD products and precise positioning service at GFZ

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Ge, Maorong; Liu, Yang; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2016-04-01

    The rapid development of multi-constellation GNSSs (Global Navigation Satellite Systems, e.g., BeiDou, Galileo, GLONASS, GPS) and the IGS (International GNSS Service) Multi-GNSS Experiment (MGEX) bring great opportunities and challenges for real-time precise positioning service. In this contribution, we present a GPS+GLONASS+BeiDou+Galileo four-system model to fully exploit the observations of all these four navigation satellite systems for real-time precise orbit determination, clock estimation and positioning. A rigorous multi-GNSS analysis is performed to achieve the best possible consistency by processing the observations from different GNSS together in one common parameter estimation procedure. Meanwhile, an efficient multi-GNSS real-time precise positioning service system is designed and demonstrated by using the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) data streams including stations all over the world. The addition of the BeiDou, Galileo and GLONASS systems to the standard GPS-only processing, reduces the convergence time almost by 70%, while the positioning accuracy is improved by about 25%. Some outliers in the GPS-only solutions vanish when multi-GNSS observations are processed simultaneous. The availability and reliability of GPS precise positioning decrease dramatically as the elevation cutoff increases. However, the accuracy of multi-GNSS precise point positioning (PPP) is hardly decreased and few centimeters are still achievable in the horizontal components even with 40° elevation cutoff.

  8. Proceedings of the Thirteenth Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Wardrip, S. C.

    1982-01-01

    Proceedings of an annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting are summarized. A transparent view of the state-of-the-art, an opportunity to express needs, a view of important future trends, and a review of relevant past accomplishments were considered for PTTI managers, systems engineers, and program planner. Specific aims were: to provide PTTI users with new and useful applications, procedures, and techniques; to allow the PTTI researcher to better assess fruitful directions for research efforts.

  9. Colon Cancer Risk Assessment - Gauss Program

    Cancer.gov

    An executable file (in GAUSS) that projects absolute colon cancer risk (with confidence intervals) according to NCI’s Colorectal Cancer Risk Assessment Tool (CCRAT) algorithm. GAUSS is not needed to run the program.

  10. Self-similar propagation of Hermite-Gauss water-wave pulses.

    PubMed

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2016-01-01

    We demonstrate both theoretically and experimentally propagation dynamics of surface gravity water-wave pulses, having Hermite-Gauss envelopes. We show that these waves propagate self-similarly along an 18-m wave tank, preserving their general Hermite-Gauss envelopes in both the linear and the nonlinear regimes. The measured surface elevation wave groups enable observing the envelope phase evolution of both nonchirped and linearly frequency chirped Hermite-Gauss pulses, hence allowing us to measure Gouy phase shifts of high-order Hermite-Gauss pulses for the first time. Finally, when increasing pulse amplitude, nonlinearity becomes essential and the second harmonic of Hermite-Gauss waves was observed. We further show that these generated second harmonic bound waves still exhibit self-similar Hermite-Gauss shapes along the tank. PMID:26871174

  11. The AGS Ggamma Meter and Calibrating the Gauss Clock

    SciTech Connect

    Ahrens, Leif

    2014-03-31

    During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle’s Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than the AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).

  12. A COMPARISON OF COLLAPSING AND PRECISE ARRIVAL-TIME MAPPING OF MICROSEISMICITY

    SciTech Connect

    RUTLEDGE, JAMES T.; JONES, ROB H.

    2007-01-05

    In this paper they compare the improvements in microseismic location images obtained using precise arrival times with that obtained by the collapsing technique. They first collapse the initial locations for a hydraulic-fracture data set from the Carthage Cotton Valley gas field, they then use the precise-arrival-time locations as measure for the effectiveness of the collapsing. Finally, they examine the changes when applying collapsing to the precise-arrival-time locations.

  13. Braneworld dynamics in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Maeda, Hideki; Sahni, Varun; Shtanov, Yuri

    2007-11-15

    We discuss the cosmological evolution of a braneworld in five-dimensional Gauss-Bonnet gravity. Our discussion allows the fifth (bulk) dimension to be spacelike as well as timelike. The resulting equations of motion have the form of a cubic equation in the (H{sup 2},({rho}+{sigma}){sup 2}) plane, where {sigma} is the brane tension and {rho} is the matter density. This allows us to conduct a comprehensive pictorial analysis of cosmological evolution for the Gauss-Bonnet brane. The many interesting properties of this braneworld include the possibility of accelerated expansion at late times. For a finite region in parameter space the accelerated expansion can be phantomlike so that w<-1. At late times, this branch approaches de Sitter space (w=-1) and avoids the big-rip singularities usually present in phantom models. For a timelike extra dimension the Gauss-Bonnet brane can bounce and avoid the initial singularity.

  14. Gauss-Bonnet gravitational baryogenesis

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-09-01

    In this letter we study some variant forms of gravitational baryogenesis by using higher order terms containing the partial derivative of the Gauss-Bonnet scalar coupled to the baryonic current. This scenario extends the well known theory that uses a similar coupling between the Ricci scalar and the baryonic current. One appealing feature of the scenario we study is that the predicted baryon asymmetry during a radiation domination era is non-zero. We calculate the baryon to entropy ratio for the Gauss-Bonnet term and by using the observational constraints we investigate which are the allowed forms of the R + F (G) gravity controlling the evolution. Also we briefly discuss some alternative higher order terms that can generate a non-zero baryon asymmetry, even in the conformal invariance limit.

  15. Real-time precision measuring device of tree diameter growth

    NASA Astrophysics Data System (ADS)

    Guo, Mingming; Chen, Aijun; Li, Dongsheng; Liu, Nan; Yao, Jingyuan

    2016-01-01

    DBH(diameter at breast height) is an important factor to reflect of the quality of plant growth, also an important parameter indispensable in forest resources inventory and forest carbon sink, the accurate measurement of DBH or not is directly related to the research of forest resources inventory and forest carbon sink. In this paper, the principle and the mathematical model of DBH measurement device were introduced, the fixture measuring device and the hardware circuit for this tree diameter were designed, the measurement software programs were compiled, and the precision measuring device of tree diameter growth was developed. Some experiments with Australia fir were conducted. Based on experiment data, the correlations among the DBH variation of Australian fir, the environment temperature, air humility and PAR(photosynthetically active radiation) were obtained. The effects of environmental parameters (environment temperature, air humility and PAR) on tree diameter were analyzed. Experimental results show that there is a positive correlation between DBH variation of Australian fir and environment temperature, a negative correlation between DBH variation of Australian fir and air humility , so is PAR.

  16. Black strings in Gauss-Bonnet theory are unstable

    NASA Astrophysics Data System (ADS)

    Giacomini, Alex; Oliva, Julio; Vera, Aldo

    2015-05-01

    We report the existence of unstable s-wave modes for black strings in Gauss-Bonnet theory (which is quadratic in the curvature) in seven dimensions. This theory admits analytic uniform black strings that are, in the transverse section, black holes of the same Gauss-Bonnet theory in six dimensions. All the components of the perturbation can be written in terms of a single component and its derivatives. For this, we find a master equation that admits bounded solutions provided the characteristic time of the exponential growth of the perturbation is related to the wave number along the extra direction, as in general relativity. It is known that these configurations suffer from a thermal instability; therefore, the results presented here provide evidence for the Gubser-Mitra conjecture in the context of Gauss-Bonnet theory. Because of the nontriviality of the curvature of the background, all of the components of the metric perturbation appear in the linearized equations. Similar to spherical black holes, the black strings should be obtained as the short-distance limit r ≪α1 /2 of the black-string solution of Einstein-Gauss-Bonnet theory (which is not known analytically), where α is the Gauss-Bonnet coupling.

  17. Precise GPS ephemerides from DMA and NGS tested by time transfer

    NASA Technical Reports Server (NTRS)

    Lewandowski, Wlodzimierz W.; Petit, Gerard; Thomas, Claudine

    1992-01-01

    It was shown that the use of the Defense Mapping Agency's (DMA) precise ephemerides brings a significant improvement to the accuracy of GPS time transfer. At present a new set of precise ephemerides produced by the National Geodetic Survey (NGS) has been made available to the timing community. This study demonstrates that both types of precise ephemerides improve long-distance GPS time transfer and remove the effects of Selective Availability (SA) degradation of broadcast ephemerides. The issue of overcoming SA is also discussed in terms of the routine availability of precise ephemerides.

  18. Reheating in Gauss-Bonnet-coupled inflation

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Longden, Chris; Dimopoulos, Konstantinos

    2016-07-01

    We investigate the feasibility of models of inflation with a large Gauss-Bonnet coupling at late times, which have been shown to modify and prevent the end of inflation. Despite the potential of Gauss-Bonnet models in predicting favorable power spectra, capable of greatly lowering the tensor-to-scalar ratio compared to now-disfavored models of standard chaotic inflation, it is important to also understand in what context it is possible for postinflationary (p)reheating to proceed and hence recover an acceptable late-time cosmology. We argue that in the previously studied inverse power law coupling case, reheating cannot happen due to a lack of oscillatory solutions for the inflaton, and that neither instant preheating nor gravitational particle production would avoid this problem due to the persistence of the inflaton's energy density, even if it were to partially decay. Hence we proceed to define a minimal generalization of the model which can permit perturbative reheating and study the consequences of this, including heavily modified dynamics during reheating and predictions of the power spectra.

  19. Framed 4-graphs: Euler tours, Gauss circuits and rotating circuits

    SciTech Connect

    Il'yutko, Denis P

    2011-09-30

    We consider connected finite 4-valent graphs with the structure of opposite edges at each vertex (framed 4-graphs). For any of such graphs there exist Euler tours, in travelling along which at each vertex we turn from an edge to a nonopposite one (rotating circuits); and at the same time, it is not true that for any such graph there exists an Euler tour passing from an edge to the opposite one at each vertex (a Gauss circuit). The main result of the work is an explicit formula connecting the adjacency matrices of the Gauss circuit and an arbitrary Euler tour. This formula immediately gives us a criterion for the existence of a Gauss circuit on a given framed 4-graph. It turns out that the results are also valid for all symmetric matrices (not just for matrices realisable by a chord diagram). Bibliography: 24 titles.

  20. Improved measurement precision in decay time-based phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Abou Nada, F.; Knappe, C.; Aldén, M.; Richter, M.

    2016-06-01

    This study comprises a continuation of the previous efforts of the authors to characterize different sources of errors in phosphor thermometry based on the determination of luminescence decays from thermographic phosphors. Whereas earlier investigations focused on point detectors utilizing different sensor technology, this work presents a comparison of four PMTs that are identical in terms of their product type. These detectors are supposedly identical, but the investigations revealed that their response is strictly individual. This study also shows a linear excitation energy dependence for the decay time of cadmium tungstate (CdWO4), the phosphor being used in this work. In addition, the potential influence of the intense and short fluorescence peak preceding the weaker and longer exponential decay in some phosphor materials was investigated using the electrical signal gating capability of the PMT. Finally, the evaluated decay time also appeared to be affected by the oscilloscope settings used when recording the phosphorescence signals. The presented results indicate that all operating parameters from the calibration measurement need to be rigorously reproduced in order to avoid systematic temperature errors in phosphor thermometry experiments that are based on reproducible measurements of the decay time. These results should be of more general interest also outside the phosphor community as the findings, presented herein, in principal concern all kinds of measurements that are dependent on reproducible measurements of signal shapes or time transients.

  1. Time Delay Embedding Increases Estimation Precision of Models of Intraindividual Variability

    ERIC Educational Resources Information Center

    von Oertzen, Timo; Boker, Steven M.

    2010-01-01

    This paper investigates the precision of parameters estimated from local samples of time dependent functions. We find that "time delay embedding," i.e., structuring data prior to analysis by constructing a data matrix of overlapping samples, increases the precision of parameter estimates and in turn statistical power compared to standard…

  2. Parallel fast gauss transform

    SciTech Connect

    Sampath, Rahul S; Sundar, Hari; Veerapaneni, Shravan

    2010-01-01

    We present fast adaptive parallel algorithms to compute the sum of N Gaussians at N points. Direct sequential computation of this sum would take O(N{sup 2}) time. The parallel time complexity estimates for our algorithms are O(N/n{sub p}) for uniform point distributions and O( (N/n{sub p}) log (N/n{sub p}) + n{sub p}log n{sub p}) for non-uniform distributions using n{sub p} CPUs. We incorporate a plane-wave representation of the Gaussian kernel which permits 'diagonal translation'. We use parallel octrees and a new scheme for translating the plane-waves to efficiently handle non-uniform distributions. Computing the transform to six-digit accuracy at 120 billion points took approximately 140 seconds using 4096 cores on the Jaguar supercomputer. Our implementation is 'kernel-independent' and can handle other 'Gaussian-type' kernels even when explicit analytic expression for the kernel is not known. These algorithms form a new class of core computational machinery for solving parabolic PDEs on massively parallel architectures.

  3. High Precision Pulsar Timing: Effects of ISM Correction Schemes

    NASA Astrophysics Data System (ADS)

    Kunert, Willie; Verbiest, J. P. W.; Shannon, R.; Stinebring, D.

    2012-01-01

    Pulsar timing arrays are one of the leading methods in the search for gravitational waves (GWs). However a significant issue facing this method is the effect of the interstellar medium (ISM). There are multiple methodologies being used to correct for these effects but their efficacy has not been carefully studied. We conducted an initial study of biases induced by correcting for the interstellar medium. We simulated times of arrival (TOAs) with white noise and added ISM delays. We measure the ISM effects as is done with normal data, and created a model of these effects using polynomial fitting. This modeling method is most commonly used in the European Pulsar Timing Array. We then remove these measured ISM effects and compare final and initial TOAs. Ideally they should be the same; however, the differences between the 'corrected' TOAs and original TOAs reveal the weaknesses of this method. In preliminary results we concluded that the higher order polynomials do a better job, yet there is a limit as to how high an order one can use. We also found no significant systematic parameter bias induced by using this method. However, it is clear that certain parameters are more affected by this process of correction. The parameters most affected were the frequency and frequency derivative of the pulsar, but biases in these parameters are not important because the power due to them gets removed in the standard timing analysis. We are continuing this research by comparing and contrasting ISM correction schemes, as well as studying the actual behavior of the ISM in more detail. This research is supported by an NSF-PIRE and an NSF-AST grant.

  4. Precision Timing of Two Anomalous X-Ray Pulsars.

    PubMed

    Kaspi; Chakrabarty; Steinberger

    1999-11-01

    We report on long-term X-ray timing of two anomalous X-ray pulsars, 1RXS J170849.0-400910 and 1E 2259+586, using the Rossi X-Ray Timing Explorer. In monthly observations made over 1.4 and 2.6 yr for the two pulsars, respectively, we have obtained phase-coherent timing solutions which imply that these objects have been rotating with great stability throughout the course of our observations. For 1RXS J170849.0-400910, we find a rotation frequency of 0.0909169331(5) Hz and frequency derivative -15.687&parl0;4&parr0;x10-14 Hz s-1 for epoch MJD 51215.931. For 1E 2259+586, we find a rotation frequency of 0.1432880613(2) Hz and frequency derivative -1.0026&parl0;7&parr0;x10-14 Hz s-1 for epoch MJD 51195.583. The rms phase residuals from these simple models are only approximately 0.01 cycles for both sources. We show that the frequency derivative for 1E 2259+586 is inconsistent with that inferred from incoherent frequency observations made over the last 20 yr. Our observations are consistent with the magnetar hypothesis and make binary accretion scenarios appear unlikely.

  5. Asynchronous Laser Transponders for Precise Interplanetary Ranging and Time Transfer

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2001-01-01

    The feasibility of a two-way asynchronous (i.e. independently firing) interplanetary laser transponder pair, capable of decimeter ranging and subnanosecond time transfer from Earth to a spacecraft anywhere within the inner Solar System, is discussed. In the Introduction, we briefly discuss the current state-of-the-art in Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) which use single-ended range measurements to a passive optical reflector, and the limitations of this approach in ranging beyond the Moon to the planets. In Section 2 of this paper, we describe two types of transponders (echo and asynchronous), introduce the transponder link equation and the concept of "balanced" transponders, describe how range and time can be transferred between terminals, and preview the potential advantages of photon counting asynchronous transponders for interplanetary applications. In Section 3, we discuss and provide mathematical models for the various sources of noise in an interplanetary transponder link including planetary albedo, solar or lunar illumination of the local atmosphere, and laser backscatter off the local atmosphere. In Section 4, we introduce the key engineering elements of an interplanetary laser transponder and develop an operational scenario for the acquisition and tracking of the opposite terminal. In Section 5, we use the theoretical models of th previous sections to perform an Earth-Mars link analysis over a full synodic period of 780 days under the simplifying assumption of coaxial, coplanar, circular orbits. We demonstrate that, using slightly modified versions of existing space and ground based laser systems, an Earth-Mars transponder link is not only feasible but quite robust. We also demonstrate through analysis the advantages and feasibility of compact, low output power (<300 mW photon-counting transponders using NASA's developmental SLR2000 satellite laser ranging system as the Earth terminal. Section 6 provides a summary of the results

  6. Crafting a Gauss Gun Demonstration

    NASA Astrophysics Data System (ADS)

    Blodgett, Matthew E.; Blodgett, E. D.

    2006-12-01

    A Gauss Gun launches a ferromagnetic projectile using a pulsed electromagnet. This demonstration provides a nice counterpoint to the popular Thompson's jumping ring demonstration, which launches a nonferromagnetic ring via repulsion of an induced current. The pulsed current must be short enough in duration so that the projectile is not retarded by lingering current in the launch solenoid, but also large enough to provide a suitably impressive velocity. This project involved an iterative design process, as we worked through balancing all the different design criteria. We recommend it as a very nice electronics design project which will produce a very portable and enjoyable demonstration. AAPT sponsor Earl Blodgett.

  7. Laplace-Gauss and Helmholtz-Gauss paraxial modes in media with quadratic refraction index.

    PubMed

    Kiselev, Aleksei P; Plachenov, Alexandr B

    2016-04-01

    The scalar theory of paraxial wave propagation in an axisymmetric medium where the refraction index quadratically depends on transverse variables is addressed. Exact solutions of the corresponding parabolic equation are presented, generalizing the Laplace-Gauss and Helmholtz-Gauss modes earlier known for homogeneous media. Also, a generalization of a zero-order asymmetric Bessel-Gauss beam is given.

  8. A real-time detector system for precise timing of audiovisual stimuli.

    PubMed

    Henelius, Andreas; Jagadeesan, Sharman; Huotilainen, Minna

    2012-01-01

    The successful recording of neurophysiologic signals, such as event-related potentials (ERPs) or event-related magnetic fields (ERFs), relies on precise information of stimulus presentation times. We have developed an accurate and flexible audiovisual sensor solution operating in real-time for on-line use in both auditory and visual ERP and ERF paradigms. The sensor functions independently of the used audio or video stimulus presentation tools or signal acquisition system. The sensor solution consists of two independent sensors; one for sound and one for light. The microcontroller-based audio sensor incorporates a novel approach to the detection of natural sounds such as multipart audio stimuli, using an adjustable dead time. This aids in producing exact markers for complex auditory stimuli and reduces the number of false detections. The analog photosensor circuit detects changes in light intensity on the screen and produces a marker for changes exceeding a threshold. The microcontroller software for the audio sensor is free and open source, allowing other researchers to customise the sensor for use in specific auditory ERP/ERF paradigms. The hardware schematics and software for the audiovisual sensor are freely available from the webpage of the authors' lab. PMID:23365952

  9. A real-time detector system for precise timing of audiovisual stimuli.

    PubMed

    Henelius, Andreas; Jagadeesan, Sharman; Huotilainen, Minna

    2012-01-01

    The successful recording of neurophysiologic signals, such as event-related potentials (ERPs) or event-related magnetic fields (ERFs), relies on precise information of stimulus presentation times. We have developed an accurate and flexible audiovisual sensor solution operating in real-time for on-line use in both auditory and visual ERP and ERF paradigms. The sensor functions independently of the used audio or video stimulus presentation tools or signal acquisition system. The sensor solution consists of two independent sensors; one for sound and one for light. The microcontroller-based audio sensor incorporates a novel approach to the detection of natural sounds such as multipart audio stimuli, using an adjustable dead time. This aids in producing exact markers for complex auditory stimuli and reduces the number of false detections. The analog photosensor circuit detects changes in light intensity on the screen and produces a marker for changes exceeding a threshold. The microcontroller software for the audio sensor is free and open source, allowing other researchers to customise the sensor for use in specific auditory ERP/ERF paradigms. The hardware schematics and software for the audiovisual sensor are freely available from the webpage of the authors' lab.

  10. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array

    NASA Astrophysics Data System (ADS)

    Desvignes, G.; Caballero, R. N.; Lentati, L.; Verbiest, J. P. W.; Champion, D. J.; Stappers, B. W.; Janssen, G. H.; Lazarus, P.; Osłowski, S.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Cognard, I.; Gair, J. R.; Graikou, E.; Guillemot, L.; Hessels, J. W. T.; Jessner, A.; Jordan, C.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazaridis, K.; Lee, K. J.; Liu, K.; Lyne, A. G.; McKee, J.; Mingarelli, C. M. F.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S.; Sesana, A.; Shaifullah, G.; Smits, R.; Taylor, S. R.; Theureau, G.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.

    2016-05-01

    We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 yr. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TEMPONEST yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semimajor axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler. However, we measure an average uncertainty of 80 per cent (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binary MSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600-3053 and J1918-0642, implying pulsar and companion masses m_p=1.22_{-0.35}^{+0.5} M_{⊙}, m_c = 0.21_{-0.04}^{+0.06} M_{⊙} and m_p=1.25_{-0.4}^{+0.6} M_{⊙}, m_c = 0.23_{-0.05}^{+0.07} M_{⊙}, respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012+5307 and J1909-3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600-3053 and J1909-3744.

  11. A real-time surface inspection system for precision steel balls based on machine vision

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen

    2016-07-01

    Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s-1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.

  12. A real-time surface inspection system for precision steel balls based on machine vision

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen

    2016-07-01

    Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s‑1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.

  13. Accelerated expansion of the Universe in Gauss-Bonnet gravity

    SciTech Connect

    Dehghani, M.H.

    2004-09-15

    We show that in Gauss-Bonnet gravity with negative Gauss-Bonnet coefficient and without a cosmological constant, one can explain the acceleration of the expanding Universe. We first introduce a solution of the Gauss-Bonnet gravity with negative Gauss-Bonnet coefficient and no cosmological constant term in an empty (n+1)-dimensional bulk. This solution can generate a de Sitter spacetime with curvature n(n+1)/{l_brace}(n-2)(n-3) vertical bar {alpha} vertical bar {r_brace}. We show that an (n-1)-dimensional brane embedded in this bulk can have an expanding feature with acceleration. We also considered a four-dimensional brane world in a five-dimensional empty space with zero cosmological constant and obtain the modified Friedmann equations. The solution of these modified equations in matter-dominated era presents an expanding Universe with negative deceleration and positive jerk which is consistent with the recent cosmological data. We also find that for this solution, the 'n' th derivative of the scale factor with respect to time can be expressed only in terms of Hubble and deceleration parameters.

  14. Sex differences in accuracy and precision when judging time to arrival: data from two Internet studies.

    PubMed

    Sanders, Geoff; Sinclair, Kamila

    2011-12-01

    We report two Internet studies that investigated sex differences in the accuracy and precision of judging time to arrival. We used accuracy to mean the ability to match the actual time to arrival and precision to mean the consistency with which each participant made their judgments. Our task was presented as a computer game in which a toy UFO moved obliquely towards the participant through a virtual three-dimensional space on route to a docking station. The UFO disappeared before docking and participants pressed their space bar at the precise moment they thought the UFO would have docked. Study 1 showed it was possible to conduct quantitative studies of spatiotemporal judgments in virtual reality via the Internet and confirmed reports that men are more accurate because women underestimate, but found no difference in precision measured as intra-participant variation. Study 2 repeated Study 1 with five additional presentations of one condition to provide a better measure of precision. Again, men were more accurate than women but there were no sex differences in precision. However, within the coincidence-anticipation timing (CAT) literature, of those studies that report sex differences, a majority found that males are both more accurate and more precise than females. Noting that many CAT studies report no sex differences, we discuss appropriate interpretations of such null findings. While acknowledging that CAT performance may be influenced by experience we suggest that the sex difference may have originated among our ancestors with the evolutionary selection of men for hunting and women for gathering.

  15. Timing Precision in Population Coding of Natural Scenes in the Early Visual System

    PubMed Central

    Desbordes, Gaëlle; Jin, Jianzhong; Weng, Chong; Lesica, Nicholas A; Stanley, Garrett B; Alonso, Jose-Manuel

    2008-01-01

    The timing of spiking activity across neurons is a fundamental aspect of the neural population code. Individual neurons in the retina, thalamus, and cortex can have very precise and repeatable responses but exhibit degraded temporal precision in response to suboptimal stimuli. To investigate the functional implications for neural populations in natural conditions, we recorded in vivo the simultaneous responses, to movies of natural scenes, of multiple thalamic neurons likely converging to a common neuronal target in primary visual cortex. We show that the response of individual neurons is less precise at lower contrast, but that spike timing precision across neurons is relatively insensitive to global changes in visual contrast. Overall, spike timing precision within and across cells is on the order of 10 ms. Since closely timed spikes are more efficient in inducing a spike in downstream cortical neurons, and since fine temporal precision is necessary to represent the more slowly varying natural environment, we argue that preserving relative spike timing at a ∼10-ms resolution is a crucial property of the neural code entering cortex. PMID:19090624

  16. A Time Projection Chamber for precision 239Pu(n,f) cross section measurement

    SciTech Connect

    Heffner, M

    2008-01-14

    High precision measurements of the {sup 239}Pu(n,f) cross section have been identified as important for the Global Nuclear Energy Partnership (GNEP) and other programs. Currently the uncertainty on this cross section is of the order 2-3% for neutron energies below 14 MeV and the goal is to reduce this to less than 1%. The Time Projection Chamber (TPC) has been identified as a possible tool to make this high precision measurement.

  17. Precise Time-Tag Generator For A Local-Area-Network Monitor

    NASA Technical Reports Server (NTRS)

    Stauffer, David R.; Tran, Khoa Duy

    1995-01-01

    Time-tag-generating circuit designed for use in LAN monitor, monitors frames of data transmitted among computers on local-area network (LAN). To each frame of data that LAN monitor receives from LAN, time-tag generator appends ancillary data on time of arrival of frame, precise to within 1 microsecond of centrally generated time signal. Inserts ancillary time data in place of already used frame-check data before frames of data stored in memory of LAN monitor.

  18. What can neuromorphic event-driven precise timing add to spike-based pattern recognition?

    PubMed

    Akolkar, Himanshu; Meyer, Cedric; Clady, Zavier; Marre, Olivier; Bartolozzi, Chiara; Panzeri, Stefano; Benosman, Ryad

    2015-03-01

    This letter introduces a study to precisely measure what an increase in spike timing precision can add to spike-driven pattern recognition algorithms. The concept of generating spikes from images by converting gray levels into spike timings is currently at the basis of almost every spike-based modeling of biological visual systems. The use of images naturally leads to generating incorrect artificial and redundant spike timings and, more important, also contradicts biological findings indicating that visual processing is massively parallel, asynchronous with high temporal resolution. A new concept for acquiring visual information through pixel-individual asynchronous level-crossing sampling has been proposed in a recent generation of asynchronous neuromorphic visual sensors. Unlike conventional cameras, these sensors acquire data not at fixed points in time for the entire array but at fixed amplitude changes of their input, resulting optimally sparse in space and time-pixel individually and precisely timed only if new, (previously unknown) information is available (event based). This letter uses the high temporal resolution spiking output of neuromorphic event-based visual sensors to show that lowering time precision degrades performance on several recognition tasks specifically when reaching the conventional range of machine vision acquisition frequencies (30-60 Hz). The use of information theory to characterize separability between classes for each temporal resolution shows that high temporal acquisition provides up to 70% more information that conventional spikes generated from frame-based acquisition as used in standard artificial vision, thus drastically increasing the separability between classes of objects. Experiments on real data show that the amount of information loss is correlated with temporal precision. Our information-theoretic study highlights the potentials of neuromorphic asynchronous visual sensors for both practical applications and theoretical

  19. What can neuromorphic event-driven precise timing add to spike-based pattern recognition?

    PubMed

    Akolkar, Himanshu; Meyer, Cedric; Clady, Zavier; Marre, Olivier; Bartolozzi, Chiara; Panzeri, Stefano; Benosman, Ryad

    2015-03-01

    This letter introduces a study to precisely measure what an increase in spike timing precision can add to spike-driven pattern recognition algorithms. The concept of generating spikes from images by converting gray levels into spike timings is currently at the basis of almost every spike-based modeling of biological visual systems. The use of images naturally leads to generating incorrect artificial and redundant spike timings and, more important, also contradicts biological findings indicating that visual processing is massively parallel, asynchronous with high temporal resolution. A new concept for acquiring visual information through pixel-individual asynchronous level-crossing sampling has been proposed in a recent generation of asynchronous neuromorphic visual sensors. Unlike conventional cameras, these sensors acquire data not at fixed points in time for the entire array but at fixed amplitude changes of their input, resulting optimally sparse in space and time-pixel individually and precisely timed only if new, (previously unknown) information is available (event based). This letter uses the high temporal resolution spiking output of neuromorphic event-based visual sensors to show that lowering time precision degrades performance on several recognition tasks specifically when reaching the conventional range of machine vision acquisition frequencies (30-60 Hz). The use of information theory to characterize separability between classes for each temporal resolution shows that high temporal acquisition provides up to 70% more information that conventional spikes generated from frame-based acquisition as used in standard artificial vision, thus drastically increasing the separability between classes of objects. Experiments on real data show that the amount of information loss is correlated with temporal precision. Our information-theoretic study highlights the potentials of neuromorphic asynchronous visual sensors for both practical applications and theoretical

  20. Low scale Higgs inflation with Gauss-Bonnet coupling

    NASA Astrophysics Data System (ADS)

    Mathew, Jose; Shankaranarayanan, S.

    2016-11-01

    Recent LHC data provides precise values of coupling constants of the Higgs field, however, these measurements do not determine its coupling with gravity. We explore this freedom to see whether Higgs field non-minimally coupled to Gauss-Bonnet term in 4-dimensions can lead to inflation generating the observed density fluctuations. We obtain analytical solution for this model and that the exit of inflation (with a finite number of e-folding) demands that the energy scale of inflation is close to Electro-weak scale. We compare the scalar and tensor power spectrum of our model with PLANCK data and discuss its implications.

  1. Quartic - a Precise Time-Of Counter for the Atlas Forward Physics Project

    NASA Astrophysics Data System (ADS)

    Pinfold, James L.

    2010-04-01

    Precise ToF counters are employed by AFP to reduce pile-up background in the forward proton spectrometers. It is expected that at the highest LHC luminosity up to ~35 interactions occur at the same bunch crossing in ATLAS. A precision of the order of few mm (~10 ps) or better is required to adequately distinguish the vertex of interest - from which the unbroken scattered protons originate - from other pile-up vertices, with good efficiency. The development and testing of the QUARTIC precision ToF detector and its readout is described. This detector utilizes fused-silica radiators readout by Micro-Channel Plates Photomultipliers. The frontend readout electronics is based on the High Precision Time to Digital Converter (HPTDC).

  2. Sex differences in accuracy and precision when judging time to arrival: data from two Internet studies.

    PubMed

    Sanders, Geoff; Sinclair, Kamila

    2011-12-01

    We report two Internet studies that investigated sex differences in the accuracy and precision of judging time to arrival. We used accuracy to mean the ability to match the actual time to arrival and precision to mean the consistency with which each participant made their judgments. Our task was presented as a computer game in which a toy UFO moved obliquely towards the participant through a virtual three-dimensional space on route to a docking station. The UFO disappeared before docking and participants pressed their space bar at the precise moment they thought the UFO would have docked. Study 1 showed it was possible to conduct quantitative studies of spatiotemporal judgments in virtual reality via the Internet and confirmed reports that men are more accurate because women underestimate, but found no difference in precision measured as intra-participant variation. Study 2 repeated Study 1 with five additional presentations of one condition to provide a better measure of precision. Again, men were more accurate than women but there were no sex differences in precision. However, within the coincidence-anticipation timing (CAT) literature, of those studies that report sex differences, a majority found that males are both more accurate and more precise than females. Noting that many CAT studies report no sex differences, we discuss appropriate interpretations of such null findings. While acknowledging that CAT performance may be influenced by experience we suggest that the sex difference may have originated among our ancestors with the evolutionary selection of men for hunting and women for gathering. PMID:21125324

  3. MRI of bone marrow in the distal radius: in vivo precision of effective transverse relaxation times

    NASA Technical Reports Server (NTRS)

    Grampp, S.; Majumdar, S.; Jergas, M.; Lang, P.; Gies, A.; Genant, H. K.

    1995-01-01

    The effective transverse relaxation time T2* is influenced by the presence of trabecular bone, and can potentially provide a measure of bone density as well as bone structure. We determined the in vivo precision of T2* in repeated bone marrow measurements. The T2* measurements of the bone marrow of the distal radius were performed twice within 2 weeks in six healthy young volunteers using a modified water-presaturated 3D Gradient-Recalled Acquisition at Steady State (GRASS) sequence with TE 7, 10, 12, 20, and 30; TR 67; flip angle (FA) 90 degrees. An axial volume covering a length of 5.6 cm in the distal radius was measured. Regions of interest (ROIs) were determined manually and consisted of the entire trabecular bone cross-section extending proximally from the radial subchondral endplate. Reproducibility of T2* and area measurements was expressed as the absolute precision error (standard deviation [SD] in ms or mm2) or as the relative precision error (SD/mean x 100, or coefficient of variation [CV] in %) between the two-point measurements. Short-term precision of T2* and area measurements varied depending on section thickness and location of the ROI in the distal radius. Absolute precision errors for T2* times were between 1.3 and 2.9 ms (relative precision errors 3.8-9.5 %) and for area measurements between 20 and 55 mm2 (relative precision errors 5.1-16.4%). This MR technique for quantitative assessment of trabecular bone density showed reasonable reproducibility in vivo and is a promising future tool for the assessment of osteoporosis.

  4. Spike timing precision changes with spike rate adaptation in the owl's auditory space map

    PubMed Central

    Takahashi, Terry T.

    2015-01-01

    Spike rate adaptation (SRA) is a continuing change of responsiveness to ongoing stimuli, which is ubiquitous across species and levels of sensory systems. Under SRA, auditory responses to constant stimuli change over time, relaxing toward a long-term rate often over multiple timescales. With more variable stimuli, SRA causes the dependence of spike rate on sound pressure level to shift toward the mean level of recent stimulus history. A model based on subtractive adaptation (Benda J, Hennig RM. J Comput Neurosci 24: 113–136, 2008) shows that changes in spike rate and level dependence are mechanistically linked. Space-specific neurons in the barn owl's midbrain, when recorded under ketamine-diazepam anesthesia, showed these classical characteristics of SRA, while at the same time exhibiting changes in spike timing precision. Abrupt level increases of sinusoidally amplitude-modulated (SAM) noise initially led to spiking at higher rates with lower temporal precision. Spike rate and precision relaxed toward their long-term values with a time course similar to SRA, results that were also replicated by the subtractive model. Stimuli whose amplitude modulations (AMs) were not synchronous across carrier frequency evoked spikes in response to stimulus envelopes of a particular shape, characterized by the spectrotemporal receptive field (STRF). Again, abrupt stimulus level changes initially disrupted the temporal precision of spiking, which then relaxed along with SRA. We suggest that shifts in latency associated with stimulus level changes may differ between carrier frequency bands and underlie decreased spike precision. Thus SRA is manifest not simply as a change in spike rate but also as a change in the temporal precision of spiking. PMID:26269555

  5. Delay times of a LiDAR-guided precision sprayer control system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate flow control systems in triggering sprays against detected targets are needed for precision variable-rate sprayer development. System delay times due to the laser-sensor data buffer, software operation, and hydraulic-mechanical component response were determined for a control system used fo...

  6. The Weyl-Cartan Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Haghani, Zahra; Khosravi, Nima; Shahidi, Shahab

    2015-11-01

    In this paper, we consider the generalized Gauss-Bonnet action in four-dimensional Weyl-Cartan spacetime. In this spacetime, the presence of a torsion tensor and Weyl vector implies that the generalized Gauss-Bonnet action will not be a total derivative in four-dimensional spacetime. It will be shown that the higher than two time derivatives can be removed from the action by choosing a suitable set of parameters. In the special case where only the trace part of the torsion remains, the model reduces to general relativity plus two vector fields, one of which is massless and the other is massive. We will then obtain the healthy region of the five-dimensional parameter space of the theory in some special cases.

  7. Re-creating Gauss's method for non-electrical absolute measurements of magnetic fields and moments

    NASA Astrophysics Data System (ADS)

    Van Baak, D. A.

    2013-10-01

    In 1832, Gauss made the first absolute measurements of magnetic fields and of magnetic moments in experiments that are straightforward and instructive to replicate. We show, using rare-earth permanent magnets and a variation of Gauss's technique, that the horizontal component of the ambient geomagnetic field, as well as the size of the magnetic moments of such magnets, can be found. The method shows the connection between the SI and cgs emu unit systems for these quantities and permits an absolute realization of the Ampere with considerable precision.

  8. Precision Measurements: Testing the Time Variation of the Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Lamoreaux, Steve

    2004-05-01

    Often, precision measurements from diverse fields can be used to learn new facts about the universe. The usual definition of "precision" is based on improvements over previous measurements. A review of the present state of knowledge regarding the possible time variation of the fine structure constant α will be presented; "precise" data from natural phenomena, which include an apparent shift in the red-shift-scaled fine structure in the absorption spectra of quasar light, and the isotopic abundances in the fission products of a prehistoric natural reactor in Oklo, Gabon. Prospects to improve the accuracy for the constancy of α with laboratory experiments will be discussed. Our two experimental investigations currently being developed are based on optical spectroscopy of trapped ions and on radiofrequency spectroscopy of an atomic dysprosium beam. A sensitivity of dotα/α≈ 10-18/yr is anticipated. Because this accuracy exceeds that by which the second is defined, these measurements will necessarily be differential.

  9. Proceedings of the 14th Annual Precise Time and Time Interval (PTTI) Applications Planning Meeting

    NASA Technical Reports Server (NTRS)

    Wardrip, S. C. (Editor)

    1983-01-01

    Developments and applications in the field of frequency and time are addressed. Specific topics include rubidium frequency standards, future timing requirements, noise and atomic standards, hydrogen maser technology, synchronization, and quartz technology.

  10. Loran-C expansion: Impact on precise time/time interval

    NASA Technical Reports Server (NTRS)

    Roeber, J. F., Jr.

    1974-01-01

    On 16 May 1974, it was announced that Loran-C was chosen as the navigation system to serve the U. S. Coastal Confluence Zone. At the present time, reliable CONUS Loran-C groundwave timing coverage extends westward only about as far as Boulder, CO. The groundwave hyperbolic and timing coverage which will result from the planned CONUS expansion are illustrated. Time frames are provided. A status report on the planned reduction in Loran-C PTTI tolerances is presented.

  11. Tutorials from the 23rd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Astrophysics Data System (ADS)

    Lutes, G.; Logan, R.; Barnes, J.; Fox, C.; Gifford, G. A.

    1992-09-01

    The tutorial papers in this document are: 'Introduction to Quartz Frequency Standards,' J. Vig, Army Research Laboratory; 'Tutorial on High Performance Analog Fiber Optic Systems,' G. Lutes and R. Logan, Jet Propulsion Laboratory; 'Introduction to the Time Domain Characterization of Frequency Standards,' J. Jespersen, NIST; 'Noise Models for Time and Frequency,' J. Barnes, Austron, Inc., 'GPS Time Determination and Dissemination,' Lt. C. Fox, U.S. Air Force; G. A. Gifford, Naval Research Laboratory; and S. R. Stein, Timing Solutions.

  12. The LHCb Simulation Application, Gauss: Design, Evolution and Experience

    NASA Astrophysics Data System (ADS)

    Clemencic, M.; Corti, G.; Easo, S.; Jones, C. R.; Miglioranzi, S.; Pappagallo, M.; Robbe, P.; LHCb Collaboration

    2011-12-01

    The LHCb simulation application, Gauss, is based on the Gaudi framework and on experiment basic components such as the Event Model and Detector Description. Gauss also depends on external libraries for the generation of the primary events (PYTHIA 6, EvtGen, etc.) and on GEANT4 for particle transport in the experimental setup. The application supports the production of different types of events from minimum bias to B physics signals and particle guns. It is used for purely generator-level studies as well as full simulations. Gauss is used both directly by users and in massive central productions on the grid. The design and implementation of the application and its evolution due to evolving requirements will be described as in the case of the recently adopted Python-based configuration or the possibility of taking into account detectors conditions via a Simulation Conditions database. The challenge of supporting at the same time the flexibililty needed for the different tasks for which it is used, from evaluation of physics reach to background modeling, together with the stability and reliabilty of the code will also be described.

  13. Precise terrestrial time: A means for improved ballistic missile guidance analysis

    NASA Technical Reports Server (NTRS)

    Ehrsam, E. E.; Cresswell, S. A.; Mckelvey, G. R.; Matthews, F. L.

    1978-01-01

    An approach developed to improve the ground instrumentation time tagging accuracy and adapted to support the Minuteman ICBM program is desired. The Timing Insertion Unit (TIU) technique produces a telemetry data time tagging resolution of one tenth of a microsecond, with a relative intersite accuracy after corrections and velocity data (range, azimuth, elevation and range rate) also used in missile guidance system analysis can be correlated to within ten microseconds of the telemetry guidance data. This requires precise timing synchronization between the metric and telemetry instrumentation sites. The timing synchronization can be achieved by using the radar automatic phasing system time correlation methods. Other time correlation techniques such as Television (TV) Line-10 and the Geostationary Operational Environmental Satellites (GEOS) terrestial timing receivers are also considered.

  14. Real-Time Single Frequency Precise Point Positioning Using SBAS Corrections

    PubMed Central

    Li, Liang; Jia, Chun; Zhao, Lin; Cheng, Jianhua; Liu, Jianxu; Ding, Jicheng

    2016-01-01

    Real-time single frequency precise point positioning (PPP) is a promising technique for high-precision navigation with sub-meter or even centimeter-level accuracy because of its convenience and low cost. The navigation performance of single frequency PPP heavily depends on the real-time availability and quality of correction products for satellite orbits and satellite clocks. Satellite-based augmentation system (SBAS) provides the correction products in real-time, but they are intended to be used for wide area differential positioning at 1 meter level precision. By imposing the constraints for ionosphere error, we have developed a real-time single frequency PPP method by sufficiently utilizing SBAS correction products. The proposed PPP method are tested with static and kinematic data, respectively. The static experimental results show that the position accuracy of the proposed PPP method can reach decimeter level, and achieve an improvement of at least 30% when compared with the traditional SBAS method. The positioning convergence of the proposed PPP method can be achieved in 636 epochs at most in static mode. In the kinematic experiment, the position accuracy of the proposed PPP method can be improved by at least 20 cm relative to the SBAS method. Furthermore, it has revealed that the proposed PPP method can achieve decimeter level convergence within 500 s in the kinematic mode. PMID:27517930

  15. Real-Time Single Frequency Precise Point Positioning Using SBAS Corrections.

    PubMed

    Li, Liang; Jia, Chun; Zhao, Lin; Cheng, Jianhua; Liu, Jianxu; Ding, Jicheng

    2016-01-01

    Real-time single frequency precise point positioning (PPP) is a promising technique for high-precision navigation with sub-meter or even centimeter-level accuracy because of its convenience and low cost. The navigation performance of single frequency PPP heavily depends on the real-time availability and quality of correction products for satellite orbits and satellite clocks. Satellite-based augmentation system (SBAS) provides the correction products in real-time, but they are intended to be used for wide area differential positioning at 1 meter level precision. By imposing the constraints for ionosphere error, we have developed a real-time single frequency PPP method by sufficiently utilizing SBAS correction products. The proposed PPP method are tested with static and kinematic data, respectively. The static experimental results show that the position accuracy of the proposed PPP method can reach decimeter level, and achieve an improvement of at least 30% when compared with the traditional SBAS method. The positioning convergence of the proposed PPP method can be achieved in 636 epochs at most in static mode. In the kinematic experiment, the position accuracy of the proposed PPP method can be improved by at least 20 cm relative to the SBAS method. Furthermore, it has revealed that the proposed PPP method can achieve decimeter level convergence within 500 s in the kinematic mode. PMID:27517930

  16. Shock timing on the National Ignition Facility: The first precision tuning series

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Kline, J. L.; Mackinnon, A. J.; Boehly, T. R.; Landen, O. L.; Eggert, J. H.; Hicks, D.; Le Pape, S.; Farley, D. R.; Bowers, M. W.; Krauter, K. G.; Munro, D. H.; Jones, O. S.; Milovich, J. L.; Clark, D.; Spears, B. K.; Town, R. P. J.; Haan, S. W.; Dixit, S.; Schneider, M. B.; Dewald, E. L.; Widmann, K.; Moody, J. D.; Döppner, T.; Radousky, H. B.; Nikroo, A.; Kroll, J. J.; Hamza, A. V.; Horner, J. B.; Bhandarkar, S. D.; Dzenitis, E.; Alger, E.; Giraldez, E.; Castro, C.; Moreno, K.; Haynam, C.; LaFortune, K. N.; Widmayer, C.; Shaw, M.; Jancaitis, K.; Parham, T.; Holunga, D. M.; Walters, C. F.; Haid, B.; Malsbury, T.; Trummer, D.; Coffee, K. R.; Burr, B.; Berzins, L. V.; Choate, C.; Brereton, S. J.; Azevedo, S.; Chandrasekaran, H.; Glenzer, S.; Caggiano, J. A.; Knauer, J. P.; Frenje, J. A.; Casey, D. T.; Gatu Johnson, M.; Séguin, F. H.; Young, B. K.; Edwards, M. J.; Van Wonterghem, B. M.; Kilkenny, J.; MacGowan, B. J.; Atherton, L. J.; Lindl, J. D.; Meyerhofer, D. D.; Moses, E.

    2013-11-01

    Ignition implosions on the National Ignition Facility (NIF) [Lindl et al., Phys. Plasmas 11, 339 (2004)] are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the fuel on a low adiabat. The first series of precision tuning experiments on NIF have been performed. These experiments use optical diagnostics to directly measure the strength and timing of all four shocks inside the hohlraum-driven, cryogenic deuterium-filled capsule interior. The results of these experiments are presented demonstrating a significant decrease in the fuel adiabat over previously un-tuned implosions. The impact of the improved adiabat on fuel compression is confirmed in related deuterium-tritium (DT) layered capsule implosions by measurement of fuel areal density (ρR), which show the highest fuel compression (ρR ˜ 1.0 g/cm2) measured to date.

  17. The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion

    SciTech Connect

    Guo, Ran; Du, Jiulin

    2015-08-15

    We study the time behavior of the Fokker–Planck equation in Zwanzig’s rule (the backward-Ito’s rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation–dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker–Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution. - Highlights: • The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion is found. • The anomalous diffusion satisfies a generalized fluctuation–dissipation relation. • At long time the time-dependent solution approaches to a power-law distribution in nonextensive statistics. • Numerically we have demonstrated the accuracy and validity of the time-dependent solution.

  18. Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling.

    PubMed

    Schmogrow, R; Meyer, M; Schindler, P C; Nebendahl, B; Dreschmann, M; Meyer, J; Josten, A; Hillerkuss, D; Ben-Ezra, S; Becker, J; Koos, C; Freude, W; Leuthold, J

    2014-01-13

    We demonstrate two efficient processing techniques for Nyquist signals, namely computation of signals using dynamic precision as well as arbitrary rational oversampling factors. With these techniques along with massively parallel processing it becomes possible to generate and receive high data rate Nyquist signals with flexible symbol rates and bandwidths, a feature which is highly desirable for novel flexgrid networks. We achieved maximum bit rates of 252 Gbit/s in real-time.

  19. Anisotropic inflation in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Lahiri, Sayantani

    2016-09-01

    We study anisotropic inflation with Gauss-Bonnet correction in presence of a massless vector field. In this scenario, exact anisotropic power-law inflation is realized when the inflaton potential, gauge coupling function and the Gauss-Bonnet coupling are exponential functions. We show that anisotropy becomes proportional to two slow-roll parameters of the theory and hence gets enhanced in presence of quadratic curvature corrections. The stability analysis reveals that anisotropic power-law solutions remain stable over a substantially large parameter region.

  20. Accurate time delay technology in simulated test for high precision laser range finder

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Wenjian; Wang, Weiming; Xue, Mingxi

    2015-10-01

    With the continuous development of technology, the ranging accuracy of pulsed laser range finder (LRF) is higher and higher, so the maintenance demand of LRF is also rising. According to the dominant ideology of "time analog spatial distance" in simulated test for pulsed range finder, the key of distance simulation precision lies in the adjustable time delay. By analyzing and comparing the advantages and disadvantages of fiber and circuit delay, a method was proposed to improve the accuracy of the circuit delay without increasing the count frequency of the circuit. A high precision controllable delay circuit was designed by combining the internal delay circuit and external delay circuit which could compensate the delay error in real time. And then the circuit delay accuracy could be increased. The accuracy of the novel circuit delay methods proposed in this paper was actually measured by a high sampling rate oscilloscope actual measurement. The measurement result shows that the accuracy of the distance simulated by the circuit delay is increased from +/- 0.75m up to +/- 0.15m. The accuracy of the simulated distance is greatly improved in simulated test for high precision pulsed range finder.

  1. a Solution to Low Rfm Fitting Precision of Planetary Orbiter Images Caused by Exposure Time Changing

    NASA Astrophysics Data System (ADS)

    Liu, B.; Xu, B.; Di, K.; Jia, M.

    2016-06-01

    In this paper, we propose a new solution to the low RFM fitting precision caused by exposure time changing using sensor correction. First, we establish a new rigorous geometric model, with the same ephemerides, attitudes and sensor design parameters of Chang'E-2 and HRSC images, using an equal exposure time of each scan line. The original rigorous geometric model is also established. With a given height, we can establish the correspondence between the two rigorous models. Then we generate a sensor corrected image by resampling the original image using an average elevation or a digital elevation model. We found that the sensor corrected images can be used for topographic mapping which maintains almost the same precision of the original images under certain conditions. And RFM can fit rigorous geometric model of the sensor corrected image very well. Preliminary experimental results show that the RMS residual error of the RFM fitting can reach to 1/100 pixel level too. Using the proposed solution, sensors with changing exposure time can be precisely modelled by the generic RFM.

  2. Abdicating power for control: a precision timing strategy to modulate function of flight power muscles.

    PubMed

    Sponberg, S; Daniel, T L

    2012-10-01

    Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power-phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left-right pairs of flight muscles normally fire precisely, within 0.5-0.6 ms of each other; (ii) during a yawing optomotor response, left-right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left-right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left-right timing differences. Because many organisms also have muscles operating with high power-phase gains (Δ(power)/Δ(phase)), this motor control strategy may be ubiquitous in locomotor systems.

  3. Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH)

    PubMed Central

    Tierney, Adam; Kraus, Nina

    2014-01-01

    Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel, 2011, 2012, 2014). There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The PATH predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills. PMID:25505879

  4. Bioorthogonally cross-linked hydrogel network with precisely controlled disintegration time over a broad range.

    PubMed

    Xu, Jianwen; Feng, Ellva; Song, Jie

    2014-03-19

    Hydrogels with predictable degradation are highly desired for biomedical applications where timely disintegration of the hydrogel (e.g., drug delivery, guided tissue regeneration) is required. However, precisely controlling hydrogel degradation over a broad range in a predictable manner is challenging due to limited intrinsic variability in the degradation rate of liable bonds and difficulties in modeling degradation kinetics for complex polymer networks. More often than not, empirical tuning of the degradation profile results in undesired changes in other properties. Here we report a simple but versatile hydrogel platform that allows us to formulate hydrogels with predictable disintegration time from 2 to >250 days yet comparable macroscopic physical properties. This platform is based on a well-defined network formed by two pairs of four-armed polyethylene glycol macromers terminated with azide and dibenzocyclooctyl groups, respectively, via labile or stable linkages. The high-fidelity bioorthogonal reaction between the symmetric hydrophilic macromers enables robust cross-linking in water, phosphate-buffered saline, and cell culture medium to afford tough hydrogels capable of withstanding >90% compressive strain. Strategic placement of labile ester linkages near the cross-linking site within this superhydrophilic network, accomplished by adjustments of the ratio of the macromers used, enables broad tuning of the disintegration rates precisely matching with the theoretical predictions based on first-order linkage cleavage kinetics. This platform can be exploited for applications where a precise degradation rate is targeted.

  5. Controllable light capsules employing modified Bessel-Gauss beams.

    PubMed

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-01-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms. PMID:27388558

  6. Controllable light capsules employing modified Bessel-Gauss beams

    NASA Astrophysics Data System (ADS)

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-07-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms.

  7. Controllable light capsules employing modified Bessel-Gauss beams

    PubMed Central

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-01-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms. PMID:27388558

  8. Development of a machine vision system for a real-time precision sprayer

    NASA Astrophysics Data System (ADS)

    Bossu, Jérémie; Gée, Christelle; Truchetet, Frédéric

    2007-01-01

    In the context of precision agriculture, we have developed a machine vision system for a real time precision sprayer. From a monochrome CCD camera located in front of the tractor, the discrimination between crop and weeds is obtained with an image processing based on spatial information using a Gabor filter. This method allows to detect the periodic signals from the non periodic one and it enables to enhance the crop rows whereas weeds have patchy distribution. Thus, weed patches were clearly identified by a blob-coloring method. Finally, we use a pinhole model to transform the weed patch coordinates image in world coordinates in order to activate the right electro-pneumatic valve of the sprayer at the right moment.

  9. Fourier transform ion cyclotron resonance versus time of flight for precision mass measurements

    SciTech Connect

    Kouzes, R.T.

    1993-02-01

    Both Fourier Transform Ion Cyclotron Resonance and ICR Time-of-Flight mass spectroscopy (FTICR-MS and ICR-TOF-MS, respectively) have been applied to precision atomic mass measurements. This paper reviews the status of these approaches and compares their limitations. Comparisons are made of FTICR-MS and ICR-TOF-MS for application to precision atomic mass measurements of stable and unstable nuclei, where the relevant scale is an accuracy of 1 keV and where halflives are longer than 10 milliseconds (optimistically). The atomic mass table is built up from mass chains, and ICR-MS brings a method of producing new types of mass chains to the mass measurement arena.

  10. Near-real-time regional troposphere models for the GNSS precise point positioning technique

    NASA Astrophysics Data System (ADS)

    Hadas, T.; Kaplon, J.; Bosy, J.; Sierny, J.; Wilgan, K.

    2013-05-01

    The GNSS precise point positioning (PPP) technique requires high quality product (orbits and clocks) application, since their error directly affects the quality of positioning. For real-time purposes it is possible to utilize ultra-rapid precise orbits and clocks which are disseminated through the Internet. In order to eliminate as many unknown parameters as possible, one may introduce external information on zenith troposphere delay (ZTD). It is desirable that the a priori model is accurate and reliable, especially for real-time application. One of the open problems in GNSS positioning is troposphere delay modelling on the basis of ground meteorological observations. Institute of Geodesy and Geoinformatics of Wroclaw University of Environmental and Life Sciences (IGG WUELS) has developed two independent regional troposphere models for the territory of Poland. The first one is estimated in near-real-time regime using GNSS data from a Polish ground-based augmentation system named ASG-EUPOS established by Polish Head Office of Geodesy and Cartography (GUGiK) in 2008. The second one is based on meteorological parameters (temperature, pressure and humidity) gathered from various meteorological networks operating over the area of Poland and surrounding countries. This paper describes the methodology of both model calculation and verification. It also presents results of applying various ZTD models into kinematic PPP in the post-processing mode using Bernese GPS Software. Positioning results were used to assess the quality of the developed models during changing weather conditions. Finally, the impact of model application to simulated real-time PPP on precision, accuracy and convergence time is discussed.

  11. Galileo, Gauss, and the Green Monster

    ERIC Educational Resources Information Center

    Kalman, Dan; Teague, Daniel J.

    2013-01-01

    Galileo dropped cannonballs from the leaning tower of Pisa to demonstrate something about falling bodies. Gauss was a giant of mathematics and physics who made unparalleled contributions to both fields. More contemporary (and not a person), the Green Monster is the left-field wall at the home of the Boston Red Sox, Fenway Park. Measuring 37 feet…

  12. Prospects for high-precision pulsar timing with the new Effelsberg PSRIX backend

    NASA Astrophysics Data System (ADS)

    Lazarus, P.; Karuppusamy, R.; Graikou, E.; Caballero, R. N.; Champion, D. J.; Lee, K. J.; Verbiest, J. P. W.; Kramer, M.

    2016-05-01

    The PSRIX backend is the primary pulsar timing instrument of the Effelsberg 100 m radio telescope since early 2011. This new ROACH-based system enables bandwidths up to 500 MHz to be recorded, significantly more than what was possible with its predecessor, the Effelsberg-Berkeley Pulsar Processor (EBPP). We review the first four years of PSRIX timing data for 33 pulsars collected as part of the monthly European Pulsar Timing Array (EPTA) observations. We describe the automated data analysis pipeline, COASTGUARD, that we developed to reduce these observations. We also introduce TOASTER, the EPTA timing data base, used to store timing results, processing information and observation metadata. Using these new tools, we measure the phase-averaged flux densities at 1.4 GHz of all 33 pulsars. For seven of these pulsars, our flux density measurements are the first values ever reported. For the other 26 pulsars, we compare our flux density measurements with previously published values. By comparing PSRIX data with EBPP data, we find an improvement of ˜2-5 times in signal-to-noise ratio, which translates to an increase of ˜2-5 times in pulse time-of-arrival (TOA) precision. We show that such an improvement in TOA precision will improve the sensitivity to the stochastic gravitational wave background. Finally, we showcase the flexibility of the new PSRIX backend by observing several millisecond-period pulsars (MSPs) at 5 and 9 GHz. Motivated by our detections, we discuss the potential for complementing existing pulsar timing array data sets with MSP monitoring campaigns at these higher frequencies.

  13. Reaching a few picosecond timing precision with the 16-channel digitizer and timestamper SAMPIC ASIC

    NASA Astrophysics Data System (ADS)

    Delagnes, E.; Breton, D.; Grabas, H.; Maalmi, J.; Rusquart, P.

    2015-07-01

    SAMPIC is a Time and Waveform to Digital Converter (TWDC) multichannel chip. It integrates 16 channels each including DLL-based TDC providing a raw time associated with an ultra-fast analog memory sampling the signal used for precise timing measurements as well as other parameters of the pulse. Every channel also integrates a discriminator that can trigger it independently or participate to a more complex trigger. After triggering, the analog samples are digitized by on-chip ADCs and are sent serially to the acquisition. The paper describes the architecture of SAMPIC and reports the main performance measured on the first prototype chip with a focus on timing resolution in the range of 15 ps RMS using raw data improved to less than 5 ps RMS after a simple calibration.

  14. Precision timing measurement of phototube pulses using a flash analog-to-digital converter

    SciTech Connect

    J.V. Bennett, M. Kornicer, M.R. Shepherd, M.M. Ito

    2010-10-01

    We present the timing characteristics of the flash ADC readout of the GlueX forward calorimeter, which depends on precise measurement of arrival time of pulses from FEU 84-3 photomultiplier tubes to suppress backgrounds. The tests presented were performed using two different 250 MHz prototype flash ADC devices, one with eight-bit and one with 12-bit sampling depth. All measured time resolutions were better than 1 ns, independent of signal size, which is the design goal for the GlueX forward calorimeter. For pulses with an amplitude of 100 mV the timing resolution is 0.57±0.18 ns, while for 500 mV pulses it is 0.24±0.08 ns.

  15. CORRECTING FOR INTERSTELLAR SCATTERING DELAY IN HIGH-PRECISION PULSAR TIMING: SIMULATION RESULTS

    SciTech Connect

    Palliyaguru, Nipuni; McLaughlin, Maura; Stinebring, Daniel; Demorest, Paul; Jones, Glenn E-mail: maura.mclaughlin@mail.wvu.edu E-mail: pdemores@nrao.edu

    2015-12-20

    Light travel time changes due to gravitational waves (GWs) may be detected within the next decade through precision timing of millisecond pulsars. Removal of frequency-dependent interstellar medium (ISM) delays due to dispersion and scattering is a key issue in the detection process. Current timing algorithms routinely correct pulse times of arrival (TOAs) for time-variable delays due to cold plasma dispersion. However, none of the major pulsar timing groups correct for delays due to scattering from multi-path propagation in the ISM. Scattering introduces a frequency-dependent phase change in the signal that results in pulse broadening and arrival time delays. Any method to correct the TOA for interstellar propagation effects must be based on multi-frequency measurements that can effectively separate dispersion and scattering delay terms from frequency-independent perturbations such as those due to a GW. Cyclic spectroscopy, first described in an astronomical context by Demorest (2011), is a potentially powerful tool to assist in this multi-frequency decomposition. As a step toward a more comprehensive ISM propagation delay correction, we demonstrate through a simulation that we can accurately recover impulse response functions (IRFs), such as those that would be introduced by multi-path scattering, with a realistic signal-to-noise ratio (S/N). We demonstrate that timing precision is improved when scatter-corrected TOAs are used, under the assumptions of a high S/N and highly scattered signal. We also show that the effect of pulse-to-pulse “jitter” is not a serious problem for IRF reconstruction, at least for jitter levels comparable to those observed in several bright pulsars.

  16. Correcting for Interstellar Scattering Delay in High-precision Pulsar Timing: Simulation Results

    NASA Astrophysics Data System (ADS)

    Palliyaguru, Nipuni; Stinebring, Daniel; McLaughlin, Maura; Demorest, Paul; Jones, Glenn

    2015-12-01

    Light travel time changes due to gravitational waves (GWs) may be detected within the next decade through precision timing of millisecond pulsars. Removal of frequency-dependent interstellar medium (ISM) delays due to dispersion and scattering is a key issue in the detection process. Current timing algorithms routinely correct pulse times of arrival (TOAs) for time-variable delays due to cold plasma dispersion. However, none of the major pulsar timing groups correct for delays due to scattering from multi-path propagation in the ISM. Scattering introduces a frequency-dependent phase change in the signal that results in pulse broadening and arrival time delays. Any method to correct the TOA for interstellar propagation effects must be based on multi-frequency measurements that can effectively separate dispersion and scattering delay terms from frequency-independent perturbations such as those due to a GW. Cyclic spectroscopy, first described in an astronomical context by Demorest (2011), is a potentially powerful tool to assist in this multi-frequency decomposition. As a step toward a more comprehensive ISM propagation delay correction, we demonstrate through a simulation that we can accurately recover impulse response functions (IRFs), such as those that would be introduced by multi-path scattering, with a realistic signal-to-noise ratio (S/N). We demonstrate that timing precision is improved when scatter-corrected TOAs are used, under the assumptions of a high S/N and highly scattered signal. We also show that the effect of pulse-to-pulse “jitter” is not a serious problem for IRF reconstruction, at least for jitter levels comparable to those observed in several bright pulsars.

  17. Lake Erie Yellow perch age estimation based on three structures: Precision, processing times, and management implications

    USGS Publications Warehouse

    Vandergoot, C.S.; Bur, M.T.; Powell, K.A.

    2008-01-01

    Yellow perch Perca flavescens support economically important recreational and commercial fisheries in Lake Erie and are intensively managed. Age estimation represents an integral component in the management of Lake Erie yellow perch stocks, as age-structured population models are used to set safe harvest levels on an annual basis. We compared the precision associated with yellow perch (N = 251) age estimates from scales, sagittal otoliths, and anal spine sections and evaluated the time required to process and estimate age from each structure. Three readers of varying experience estimated ages. The precision (mean coefficient of variation) of estimates among readers was 1% for sagittal otoliths, 5-6% for anal spines, and 11-13% for scales. Agreement rates among readers were 94-95% for otoliths, 71-76% for anal spines, and 45-50% for scales. Systematic age estimation differences were evident among scale and anal spine readers; less-experienced readers tended to underestimate ages of yellow perch older than age 4 relative to estimates made by an experienced reader. Mean scale age tended to underestimate ages of age-6 and older fish relative to otolith ages estimated by an experienced reader. Total annual mortality estimates based on scale ages were 20% higher than those based on otolith ages; mortality estimates based on anal spine ages were 4% higher than those based on otolith ages. Otoliths required more removal and preparation time than scales and anal spines, but age estimation time was substantially lower for otoliths than for the other two structures. We suggest the use of otoliths or anal spines for age estimation in yellow perch (regardless of length) from Lake Erie and other systems where precise age estimates are necessary, because age estimation errors resulting from the use of scales could generate incorrect management decisions. ?? Copyright by the American Fisheries Society 2008.

  18. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity

    PubMed Central

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns. PMID:26900845

  19. A Fission Time Projection Chamber for High Precision Cross Section Measurements

    NASA Astrophysics Data System (ADS)

    Snyder, Lucas; Greife, Uwe

    2010-11-01

    The design of next generation nuclear reactors and other nuclear applications are increasingly dependent on advanced simulations. Sensitivity studies have shown a need for high precision nuclear data to improve the predictive capabilities of these simulations. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has constructed and is currently testing a prototype Time Projection Chamber (TPC) designed to measure fission cross sections to a higher accuracy than is capable with existing technology. In this talk, I will discuss the status of the fission TPC and progress on collecting the first set of data from ^252Cf spontaneous fission.

  20. Precision blood-leak detector with high long-time stability

    NASA Astrophysics Data System (ADS)

    Georgiadis, Christos; Kleuver, Wolfram

    1999-11-01

    With this publication a precision blood-leak-detector is presented. The blood-leak-detector is used for recognition of fractures in the dialyzer of a kidney-machine. It has to detect safely a blood flow of ml/min to exclude any risk for the patient. A lot of systems exist for blood-leak-detection. All of them use the same principle. They detect the light absorption in the dialyze fluid. The actual used detectors are inferior to the new developed sensor in resolution and long-time stability. Regular test of the existing systems and high failure rates are responsible for the high maintenance.

  1. White Rabbit Precision Time Protocol on Long-Distance Fiber Links.

    PubMed

    Dierikx, Erik F; Wallin, Anders E; Fordell, Thomas; Myyry, Jani; Koponen, Petri; Merimaa, Mikko; Pinkert, Tjeerd J; Koelemeij, Jeroen C J; Peek, Henk Z; Smets, Rob

    2016-07-01

    The application of White Rabbit precision time protocol (WR-PTP) in long-distance optical fiber links has been investigated. WR-PTP is an implementation of PTP in synchronous Ethernet optical fiber networks, originally intended for synchronization of equipment within a range of 10 km. This paper discusses the results and limitations of two implementations of WR-PTP in the existing communication fiber networks. A 950-km WR-PTP link was realized using unidirectional paths in a fiber pair between Espoo and Kajaani, Finland. The time transfer on this link was compared (after initial calibration) against a clock comparison by GPS precise point positioning (PPP). The agreement between the two methods remained within [Formula: see text] over three months of measurements. Another WR-PTP implementation was realized between Delft and Amsterdam, the Netherlands, by cascading two links of 137 km each. In this case, the WR links were realized as bidirectional paths in single fibers. The measured time offset between the starting and end points of the link was within 5 ns with an uncertainty of 8 ns, mainly due to the estimated delay asymmetry caused by chromatic dispersion. PMID:26780791

  2. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    SciTech Connect

    Loehl, F.; Arsov, V.; Felber, M.; Hacker, K.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Winter, A.; Jalmuzna, W.; Schmueser, P.; Schulz, S.; Zemella, J.; Szewinski, J.

    2010-04-09

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  3. Gauss's law test of gravity at short range

    NASA Technical Reports Server (NTRS)

    Moody, M. V.; Paik, H. J.

    1993-01-01

    A null test of the gravitational inverse-square law can be performed by testing Gauss's law for the field. We have constructed a three-axis superconducting gravity gradiometer and carried out such a test. A lead pendulum weighing 1500 kg was used to produce a time-varying field. This experiment places a new (2-sigma) limit of alpha = (0.9 + or - 4.6) x 10 exp -4 at lambda of 1.5 m, where alpha and lambda are parameters for the generalized potential phi = -(GM/r)(l + alpha e exp -r/lambda).

  4. Ion channel stochasticity may be critical in determining the reliability and precision of spike timing.

    PubMed

    Schneidman, E; Freedman, B; Segev, I

    1998-10-01

    The firing reliability and precision of an isopotential membrane patch consisting of a realistically large number of ion channels is investigated using a stochastic Hodgkin-Huxley (HH) model. In sharp contrast to the deterministic HH model, the biophysically inspired stochastic model reproduces qualitatively the different reliability and precision characteristics of spike firing in response to DC and fluctuating current input in neocortical neurons, as reported by Mainen & Sejnowski (1995). For DC inputs, spike timing is highly unreliable; the reliability and precision are significantly increased for fluctuating current input. This behavior is critically determined by the relatively small number of excitable channels that are opened near threshold for spike firing rather than by the total number of channels that exist in the membrane patch. Channel fluctuations, together with the inherent bistability in the HH equations, give rise to three additional experimentally observed phenomena: subthreshold oscillations in the membrane voltage for DC input, "spontaneous" spikes for subthreshold inputs, and "missing" spikes for suprathreshold inputs. We suggest that the noise inherent in the operation of ion channels enables neurons to act as "smart" encoders. Slowly varying, uncorrelated inputs are coded with low reliability and accuracy and, hence, the information about such inputs is encoded almost exclusively by the spike rate. On the other hand, correlated presynaptic activity produces sharp fluctuations in the input to the postsynaptic cell, which are then encoded with high reliability and accuracy. In this case, information about the input exists in the exact timing of the spikes. We conclude that channel stochasticity should be considered in realistic models of neurons.

  5. Time perception of action photographs is more precise than that of still photographs.

    PubMed

    Moscatelli, Alessandro; Polito, Laura; Lacquaniti, Francesco

    2011-04-01

    A photograph of an action contains implicit information about the depicted motion. Previous studies using either psychophysics or neuroimaging suggested that the neural processing of implied-motion images shares some features of real-motion processing. According to the hypothesis that the target depicted in photographs with implied motion is mentally represented as continuing in motion, such kind of photographs should be processed by the brain similarly to the individual frames of a running movie. In order to decode the functional significance of a movie, we must be able to estimate the duration of each frame and the time interval between successive frames as precisely as possible. Therefore, under naturalistic conditions, one would expect that the precision of time duration estimates is higher for action pictures than for still pictures. To test this prediction, we asked human observers to compare the variable duration of test photographs with the reference duration of their scrambled version. We found that, as expected, the duration of photographs with implied motion was discriminated better than the duration of photographs without implied motion. We also found that the average reaction time for the discrimination of photographs with implied motion was longer than that for photographs without implied motion, suggesting that the processing of implied motion involves longer and/or slower neural routes to compute time duration. This longer processing may depend on the engagement of two visual systems in parallel, one for processing form and the other one for processing implied motion. The perceptual decision about time duration would occur after the convergence of signals from these two pathways.

  6. Controlling the oscillation phase through precisely timed closed-loop optogenetic stimulation: a computational study

    PubMed Central

    Witt, Annette; Palmigiano, Agostina; Neef, Andreas; El Hady, Ahmed; Wolf, Fred; Battaglia, Demian

    2013-01-01

    Dynamic oscillatory coherence is believed to play a central role in flexible communication between brain circuits. To test this communication-through-coherence hypothesis, experimental protocols that allow a reliable control of phase-relations between neuronal populations are needed. In this modeling study, we explore the potential of closed-loop optogenetic stimulation for the control of functional interactions mediated by oscillatory coherence. The theory of non-linear oscillators predicts that the efficacy of local stimulation will depend not only on the stimulation intensity but also on its timing relative to the ongoing oscillation in the target area. Induced phase-shifts are expected to be stronger when the stimulation is applied within specific narrow phase intervals. Conversely, stimulations with the same or even stronger intensity are less effective when timed randomly. Stimulation should thus be properly phased with respect to ongoing oscillations (in order to optimally perturb them) and the timing of the stimulation onset must be determined by a real-time phase analysis of simultaneously recorded local field potentials (LFPs). Here, we introduce an electrophysiologically calibrated model of Channelrhodopsin 2 (ChR2)-induced photocurrents, based on fits holding over two decades of light intensity. Through simulations of a neural population which undergoes coherent gamma oscillations—either spontaneously or as an effect of continuous optogenetic driving—we show that precisely-timed photostimulation pulses can be used to shift the phase of oscillation, even at transduction rates smaller than 25%. We consider then a canonic circuit with two inter-connected neural populations oscillating with gamma frequency in a phase-locked manner. We demonstrate that photostimulation pulses applied locally to a single population can induce, if precisely phased, a lasting reorganization of the phase-locking pattern and hence modify functional interactions between the

  7. PRECISE {gamma}-RAY TIMING AND RADIO OBSERVATIONS OF 17 FERMI {gamma}-RAY PULSARS

    SciTech Connect

    Ray, P. S.; Wolff, M. T.; Grove, J. E.; Gwon, C.; Kerr, M.; Parent, D.; Makeev, A.; Abdo, A. A.; Guillemot, L.; Freire, P. C. C.; Kramer, M.; Ransom, S. M.; Rea, N.; Roberts, M. S. E.; Camilo, F.; Dormody, M.; Harding, A. K.; Johnston, S.; Keith, M.; Michelson, P. F.

    2011-06-01

    We present precise phase-connected pulse timing solutions for 16 {gamma}-ray-selected pulsars recently discovered using the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope plus one very faint radio pulsar (PSR J1124-5916) that is more effectively timed with the LAT. We describe the analysis techniques including a maximum likelihood method for determining pulse times of arrival from unbinned photon data. A major result of this work is improved position determinations, which are crucial for multiwavelength follow-up. For most of the pulsars, we overlay the timing localizations on X-ray images from Swift and describe the status of X-ray counterpart associations. We report glitches measured in PSRs J0007+7303, J1124-5916, and J1813-1246. We analyze a new 20 ks Chandra ACIS observation of PSR J0633+0632 that reveals an arcminute-scale X-ray nebula extending to the south of the pulsar. We were also able to precisely localize the X-ray point source counterpart to the pulsar and find a spectrum that can be described by an absorbed blackbody or neutron star atmosphere with a hard power-law component. Another Chandra ACIS image of PSR J1732-3131 reveals a faint X-ray point source at a location consistent with the timing position of the pulsar. Finally, we present a compilation of new and archival searches for radio pulsations from each of the {gamma}-ray-selected pulsars as well as a new Parkes radio observation of PSR J1124-5916 to establish the {gamma}-ray to radio phase offset.

  8. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    PubMed

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio. PMID:20480922

  9. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    PubMed

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  10. Delivery and application of precise timing for a traveling wave powerline fault locator system

    NASA Technical Reports Server (NTRS)

    Street, Michael A.

    1990-01-01

    The Bonneville Power Administration (BPA) has successfully operated an in-house developed powerline fault locator system since 1986. The BPA fault locator system consists of remotes installed at cardinal power transmission line system nodes and a central master which polls the remotes for traveling wave time-of-arrival data. A power line fault produces a fast rise-time traveling wave which emanates from the fault point and propagates throughout the power grid. The remotes time-tag the traveling wave leading edge as it passes through the power system cardinal substation nodes. A synchronizing pulse transmitted via the BPA analog microwave system on a wideband channel sychronizes the time-tagging counters in the remote units to a different accuracy of better than one microsecond. The remote units correct the raw time tags for synchronizing pulse propagation delay and return these corrected values to the fault locator master. The master then calculates the power system disturbance source using the collected time tags. The system design objective is a fault location accuracy of 300 meters. BPA's fault locator system operation, error producing phenomena, and method of distributing precise timing are described.

  11. Precise and Continuous Time and Frequency Synchronisation at the 5×10-19 Accuracy Level

    PubMed Central

    Wang, B.; Gao, C.; Chen, W. L.; Miao, J.; Zhu, X.; Bai, Y.; Zhang, J. W.; Feng, Y. Y.; Li, T. C.; Wang, L. J.

    2012-01-01

    The synchronisation of time and frequency between remote locations is crucial for many important applications. Conventional time and frequency dissemination often makes use of satellite links. Recently, the communication fibre network has become an attractive option for long-distance time and frequency dissemination. Here, we demonstrate accurate frequency transfer and time synchronisation via an 80 km fibre link between Tsinghua University (THU) and the National Institute of Metrology of China (NIM). Using a 9.1 GHz microwave modulation and a timing signal carried by two continuous-wave lasers and transferred across the same 80 km urban fibre link, frequency transfer stability at the level of 5×10−19/day was achieved. Time synchronisation at the 50 ps precision level was also demonstrated. The system is reliable and has operated continuously for several months. We further discuss the feasibility of using such frequency and time transfer over 1000 km and its applications to long-baseline radio astronomy. PMID:22870385

  12. XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker.

    PubMed

    Viman, Liviu; Daraban, Mihai; Fizesan, Raul; Iuonas, Mircea

    2016-01-01

    This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet. PMID:26978360

  13. XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker

    PubMed Central

    Viman, Liviu; Daraban, Mihai; Fizesan, Raul; Iuonas, Mircea

    2016-01-01

    This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet. PMID:26978360

  14. Precise time dissemination and applications development on the Bonneville Power Administration system

    NASA Technical Reports Server (NTRS)

    Martin, Ken E.; Esztergalyos, J.

    1992-01-01

    The Bonneville Power Administration (BPA) uses IRIG-B transmitted over microwave as its primary system time dissemination. Problems with accuracy and reliability have led to ongoing research into better methods. BPA has also developed and deployed a unique fault locator which uses precise clocks synchronized by a pulse over microwaves. It automatically transmits the data to a central computer for analysis. A proposed system could combine fault location timing and time dissemination into a Global Position System (GPS) timing receiver and close the verification loop through a master station at the Dittmer Control Center. Such a system would have many advantages, including lower cost, higher reliability, and wider industry support. Test results indicate the GPS has sufficient accuracy and reliability for this and other current timing requirements including synchronous phase angle measurements. A phasor measurement system which provides phase angle has recently been tested with excellent results. Phase angle is a key parameter in power system control applications including dynamic braking, DC modulation, remedial action schemes, and system state estimation. Further research is required to determine the applications which can most effectively use real-time phase angle measurements and the best method to apply them.

  15. A fast Gauss-Newton optimizer for estimating human body orientation.

    PubMed

    Lee, Jung Keun; Park, Edward J

    2008-01-01

    This paper presents a quaternion-based Gauss-Newton optimizer for tracking human body orientation using inertial/magnetic sensors. Since a computationally efficient and robust algorithm for estimating orientation is critical for low-cost and real-time ambulatory purposes, the optimizer is formulated using a virtual rotation concept in order to decrease the computing time. In addition, to guard against the effects of fast body motions and temporary ferromagnetic disturbances, a situational measurement vector selection procedure is adopted in conjunction with the Gauss-Newton optimizer.

  16. Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues.

    PubMed

    Zheng, Y; Escabí, M A

    2013-08-01

    Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues.

  17. Entanglement temperature with Gauss-Bonnet term

    NASA Astrophysics Data System (ADS)

    Pal, Shesansu Sekhar; Panda, Sudhakar

    2015-09-01

    We compute the entanglement temperature using the first law-like of thermodynamics, ΔE =Tent ΔSEE, up to Gauss-Bonnet term in the Jacobson-Myers entropy functional in any arbitrary spacetime dimension. The computation is done when the entangling region is the geometry of a slab. We also show that such a Gauss-Bonnet term, which becomes a total derivative, when the co-dimension two hypersurface is four dimensional, does not contribute to the finite term in the entanglement entropy. We observe that the Weyl-squared term does not contribute to the entanglement entropy. It is important to note that the calculations are performed when the entangling region is very small and the energy is calculated using the normal Hamiltonian.

  18. Vorticity, Stokes' Theorem and the Gauss's Theorem

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2004-12-01

    Vorticity is a property of the flow of any fluid and moving fluids acquire properties that allow an engineer to describe that particular flow in greater detail. It is important to recognize that mere motion alone does not guarantee that the air or any fluid has vorticity. Vorticity is one of four important quantities that define the kinematic properties of any fluid flow. The Navier-Stokes equations are the foundation of fluid mechanics, and Stokes' theorem is used in nearly every branch of mechanics as well as electromagnetics. Stokes' Theorem also plays a vital role in many secondary theorems such as those pertaining to vorticity and circulation. However, the divergence theorem is a mathematical statement of the physical fact that, in the absence of the creation or destruction of matter, the density within a region of space can change only by having it flow into, or away from the region through its boundary. This is also known as Gauss's Theorem. It should also be noted that there are many useful extensions of Gauss's Theorem, including the extension to include surfaces of discontinuity in V. Mathematically expressed, Stokes' theorem can be expressed by considering a surface S having a bounding curve C. Here, V is any sufficiently smooth vector field defined on the surface and its bounding curve C. Integral (Surface) [(DEL X V)] . dS = Integral (Contour) [V . dx] In this paper, the author outlines and stresses the importance of studying and teaching these mathematical techniques while developing a course in Hydrology and Fluid Mechanics. References Arfken, G. "Gauss's Theorem." 1.11 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 57-61, 1985. Morse, P. M. and Feshbach, H. "Gauss's Theorem." In Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 37-38, 1953. Eric W. Weisstein. "Divergence Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/DivergenceTheorem.html

  19. Real-time Precise Point Positioning with Ambiguity Resolution for Geosciences

    NASA Astrophysics Data System (ADS)

    Geng, J.; Meng, X.; Teferle, F. N.; Dodson, A. H.; Ge, M.; Shi, C.; Liu, J.

    2009-04-01

    Real-time provision of information on large scale crustal deformation during an earthquake can be crucial in assessing property damage and managing relief operations. Moreover, such a real-time monitoring system may even lead to the accurate prediction of earthquakes in future and help the subsequent studies on the mechanism involved. During the past two decades, Global Positioning System (GPS) measurements have been extensively applied to investigate such processes in the geosciences. Precise point positioning (PPP) using GPS based on single stations can achieve comparable accuracies to conventional relative positioning, when precise satellite orbits and clocks, and Earth rotation products are used. Thus, PPP does not need any reference stations to achieve high positioning accuracy, e.g. at the millimetre level in static and centimetre level in kinematic applications. This has both technical and economic advantages and may be the only feasible option in some specific applications such as Tsunami early warning systems. However, unlike relative positioning, PPP suffers from unresolved integer ambiguities, which prevented further accuracy improvements within short observation periods or in real-time. On account of the great potential of PPP, we developed a prototype real-time PPP system which also employs ambiguity resolution at a single station. This development is based on the PANDA (Positioning And Navigation Data Analyst) software, which was originally developed at Wuhan University in China, and has been significantly refined by the authors. To assess this system, about 30 stations from the EUREF Permanent Network Internet Protocol (EUREF-IP) pilot project are used to produce the real-time satellite clocks, with satellite orbits and Earth rotation parameters (ERP) fixed to the predicted part of the IGS (International GNSS Service) ultra-rapid products. This is followed by the estimation of the uncalibrated hardware delays (UHD), which are crucial in resolving the

  20. Energy conditions in modified Gauss-Bonnet gravity

    SciTech Connect

    Garcia, Nadiezhda Montelongo; Harko, Tiberiu; Lobo, Francisco S. N.; Mimoso, Jose P.

    2011-05-15

    In considering alternative higher-order gravity theories, one is liable to be motivated in pursuing models consistent and inspired by several candidates of a fundamental theory of quantum gravity. Indeed, motivations from string/M theory predict that scalar field couplings with the Gauss-Bonnet invariant, G, are important in the appearance of nonsingular early time cosmologies. In this work, we discuss the viability of an interesting alternative gravitational theory, namely, modified Gauss-Bonnet gravity or f(G) gravity. We consider specific realistic forms of f(G) analyzed in the literature that account for the late-time cosmic acceleration and that have been found to cure the finite-time future singularities present in the dark energy models. We present the general inequalities imposed by the energy conditions and use the recent estimated values of the Hubble, deceleration, jerk and snap parameters to examine the viability of the above-mentioned forms of f(G) imposed by the weak energy condition.

  1. Energy conditions in modified Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    García, Nadiezhda Montelongo; Harko, Tiberiu; Lobo, Francisco S. N.; Mimoso, José P.

    2011-05-01

    In considering alternative higher-order gravity theories, one is liable to be motivated in pursuing models consistent and inspired by several candidates of a fundamental theory of quantum gravity. Indeed, motivations from string/M theory predict that scalar field couplings with the Gauss-Bonnet invariant, G, are important in the appearance of nonsingular early time cosmologies. In this work, we discuss the viability of an interesting alternative gravitational theory, namely, modified Gauss-Bonnet gravity or f(G) gravity. We consider specific realistic forms of f(G) analyzed in the literature that account for the late-time cosmic acceleration and that have been found to cure the finite-time future singularities present in the dark energy models. We present the general inequalities imposed by the energy conditions and use the recent estimated values of the Hubble, deceleration, jerk and snap parameters to examine the viability of the above-mentioned forms of f(G) imposed by the weak energy condition.

  2. Research on high precision timing system based on FPGA non scanning imaging laser radar

    NASA Astrophysics Data System (ADS)

    Fu, Yanbo; Han, Shaokun; Wang, Liang; Ma, Yayun

    2015-08-01

    The article introduced the system structure and imaging principle of no three-dimensional imaging laser radar. This paper used the XC7K325T XILINX chip of KINTEX 7 series and used temporal interpolation method to measure distance. Rough side used PLL multiplier 400MHZ, which reached 2.5ns time accuracy. This method used a thin chip delay chains carry resources to reach 50ps accuracy and greatly improved the accuracy of the timing of imaging. Application technique used a delay line in APD array imaging system, such that each channel distance accuracy greatly improved. Echo signal by photoelectric conversion is completed by APD array detector, and designed by the impedance amplifier and other analog signal processing circuit. FPGA signal processing circuit is to complete the back-end processing, which is the timing function. FPGA array timer clock is to achieve coarse portion through timing, and delay line technique for measuring the length of time a non-integer multiple of the period of the laser pulse emission and the moment of reception, each stage of the delay units delay accuracy of sub ns magnitude, so as to achieve precision measuring part timers. With the above device was close imaging experiments, obtaining the 5 × 5 pixel imaging test results, presented to further improve system accuracy improved method.

  3. Seasonal Plasticity of Precise Spike Timing in the Avian Auditory System

    PubMed Central

    Sen, Kamal; Rubel, Edwin W; Brenowitz, Eliot A.

    2015-01-01

    Vertebrate audition is a dynamic process, capable of exhibiting both short- and long-term adaptations to varying listening conditions. Precise spike timing has long been known to play an important role in auditory encoding, but its role in sensory plasticity remains largely unexplored. We addressed this issue in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii), a songbird that shows pronounced seasonal fluctuations in circulating levels of sex-steroid hormones, which are known to be potent neuromodulators of auditory function. We recorded extracellular single-unit activity in the auditory forebrain of males and females under different breeding conditions and used a computational approach to explore two potential strategies for the neural discrimination of sound level: one based on spike counts and one based on spike timing reliability. We report that breeding condition has robust sex-specific effects on spike timing. Specifically, in females, breeding condition increases the proportion of cells that rely solely on spike timing information and increases the temporal resolution required for optimal intensity encoding. Furthermore, in a functionally distinct subset of cells that are particularly well suited for amplitude encoding, female breeding condition enhances spike timing-based discrimination accuracy. No effects of breeding condition were observed in males. Our results suggest that high-resolution temporal discharge patterns may provide a plastic neural substrate for sensory coding. PMID:25716843

  4. GPU-based high-precision real-time radiometric rendering for IR scene generation

    NASA Astrophysics Data System (ADS)

    Huang, Xi; Zhang, Jianqi; Zhang, Shaoze; Wu, Xin

    2014-07-01

    Aiming at the problem that traditional infrared scene real-time radiometric rendering method leads to greater calculation error for securing real-time purpose, this article studies the IR rendering comprehensive optimization method, which secures real-time performance as well as calculation accuracy. Firstly, based on the effective average value principle, the spectrum coupling thermal emission and reflected radiations in the spectral radiometric equation are decomposed into physical quantities, and the spectral radiometric equation is improved to become a simpler calculation between "primer" radiance terms and effective average factors. Secondly, the parameter processing method is proposed to cope with the situation when index parameters of effective average factors exceed the maximum dimensionalities of graphics processing unit (GPU) look-up-table (LUT); and pre-calculation method is applied to promote the real-time evaluation efficiency of the physical quantities in the radiometric equation. Finally, concurrent computation of radiometric equation is achieved with GPU IR scene generation software and the precise and real-time rendering of three-dimensional IR scene is realized.

  5. Real Time Precise Point Positioning: Preliminary Results for the Brazilian Region

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo; Monico, João.; Hirokazu Shimabukuro, Milton; Aquino, Marcio

    2010-05-01

    GNSS positioning can be carried out in relative or absolute approach. In the last years, more attention has been driven to the real time precise point positioning (PPP). To achieve centimeter accuracy with this method in real time it is necessary to have available the satellites precise coordinates as well as satellites clocks corrections. The coordinates can be used from the predicted IGU ephemeris, but the satellites clocks must be estimated in a real time. It can be made from a GNSS network as can be seen from EUREF Permanent Network. The infra-structure to realize the PPP in real time is being available in Brazil through the Brazilian Continuous Monitoring Network (RBMC) together with the Sao Paulo State GNSS network which are transmitting GNSS data using NTRIP (Networked Transport of RTCM via Internet Protocol) caster. Based on this information it was proposed a PhD thesis in the Univ. Estadual Paulista (UNESP) aiming to investigate and develop the methodology to estimate the satellites clocks and realize PPP in real time. Then, software is being developed to process GNSS data in the real time PPP mode. A preliminary version of the software was called PPP_RT and is able to process GNSS code and phase data using precise ephemeris and satellites clocks. The PPP processing can be accomplished considering the absolute satellite antenna Phase Center Variation (PCV), Ocean Tide Loading (OTL), Earth Body Tide, among others. The first order ionospheric effects can be eliminated or minimized by ion-free combination or parameterized in the receiver-satellite direction using a stochastic process, e.g. random walk or white noise. In the case of ionosphere estimation, a pseudo-observable is introduced in the mathematical model for each satellite and the initial value can be computed from Klobuchar model or from Global Ionospheric Map (GIM). The adjustment is realized in the recursive mode and the DIA (Detection Identification and Adaptation) is used for quality control. In

  6. Precise timing resolution measurements of GSO scintillators with different Ce concentrations combined with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Okumura, Satoshi; Yamamoto, Seiichi; Yeol Yeom, Jung; Shimura, Naoaki; Ishibashi, Hiroyuki

    2015-10-01

    Ce doped Gd2SiO5 (GSO) is a scintillator which has relatively fast decay time, high density, high light output, and is used for commercial PET systems. However as time-of-flight (TOF) PET systems become more popular in clinical diagnostic, GSO seems less attractive, because its performance is thought to be insufficient for use in TOF-PET application. Although the timing resolution of the GSO combined with photomultiplier tube (PMT) is known to be inappropriate for TOF-PET system, the performance of GSO coupled to silicon photomultipliers (Si-PM) has not been reported to date. In addition, GSO possesses a variety of decay times depending on its Ce concentration. We measured basic performance of GSOs with different Ce concentrations and then coupled them to Si-PMs to measure the precise timing resolution using a high bandwidth digital oscilloscope. The decay time of GSO with 0.4 mol% Ce were longer (63±4 ns) compared with those with 1.0 mol% (40±2 ns) and 1.5 mol% (33±1 ns). With a Si-PM, the photo-peak channels were almost the same for GSOs with 0.4 mol% Ce and those with 1.5 mol% Ce, but the GSO with 1.0 mol% Ce was ~25% higher. Energy resolutions of these three GSOs were ~13% full-width at half-maximum (FWHM) for 662 keV gamma photons without correcting for saturation effects. When coupled to Si-PMs, the timing resolution for GSO with 1.5 mol% Ce (decay time 33 ns) was 549 ps FWHM, almost good enough to use for TOF-PET system. The combination of GSO with 1.5 mol% Ce with Si-PM will be an interesting combination to realize low cost TOF-PET systems.

  7. A Time Projection Chamber for High Accuracy and Precision Fission Cross-Section Measurements

    SciTech Connect

    T. Hill; K. Jewell; M. Heffner; D. Carter; M. Cunningham; V. Riot; J. Ruz; S. Sangiorgio; B. Seilhan; L. Snyder; D. M. Asner; S. Stave; G. Tatishvili; L. Wood; R. G. Baker; J. L. Klay; R. Kudo; S. Barrett; J. King; M. Leonard; W. Loveland; L. Yao; C. Brune; S. Grimes; N. Kornilov; T. N. Massey; J. Bundgaard; D. L. Duke; U. Greife; U. Hager; E. Burgett; J. Deaven; V. Kleinrath; C. McGrath; B. Wendt; N. Hertel; D. Isenhower; N. Pickle; H. Qu; S. Sharma; R. T. Thornton; D. Tovwell; R. S. Towell; S.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4p acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  8. High precision electric gate for time-of-flight ion mass spectrometers

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C. (Inventor)

    2011-01-01

    A time-of-flight mass spectrometer having a chamber with electrodes to generate an electric field in the chamber and electric gating for allowing ions with a predetermined mass and velocity into the electric field. The design uses a row of very thin parallel aligned wires that are pulsed in sequence so the ion can pass through the gap of two parallel plates, which are biased to prevent passage of the ion. This design by itself can provide a high mass resolution capability and a very precise start pulse for an ion mass spectrometer. Furthermore, the ion will only pass through the chamber if it is within a wire diameter of the first wire when it is pulsed and has the right speed so it is near all other wires when they are pulsed.

  9. Gauss-Bonnet modified gravity models with bouncing behavior

    NASA Astrophysics Data System (ADS)

    Escofet, Anna; Elizalde, Emilio

    2016-06-01

    The following issue is addressed: How the addition of a Gauss-Bonnet term (generically coming from most fundamental theories, as string and M theories), to a viable model, can change the specific properties, and even the physical nature, of the corresponding cosmological solutions? Specifically, brand new original dark energy models are obtained in this way with quite interesting properties, which exhibit, in a unified fashion, the three distinguished possible cosmological phases corresponding to phantom matter, quintessence and ordinary matter, respectively. A model, in which the equation of state (EoS) parameter, w, is a function of time, is seen to lead either to a singularity of the Big Rip kind or to a bouncing solution which evolves into a de Sitter universe with w = -1. Moreover, new Gauss-Bonnet modified gravity models with bouncing behavior in the early stages of the universe evolution are obtained and tested for the validity and stability of the corresponding solutions. They allow for a remarkably natural, unified description of a bouncing behavior at early times and accelerated expansion at present.

  10. Magnetic-field effects on p-wave phase transition in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Bo; Lu, Jun-Wang; Jin, Yong-Yi; Lu, Jian-Bo; Zhang, Xue; Wu, Si-Yu; Wang, Cui

    2014-07-01

    In the probe limit, we study the holographic p-wave phase transition in the Gauss-Bonnet gravity via numerical and analytical methods. Concretely, we study the influences of the external magnetic field on the Maxwell complex vector model in the five-dimensional Gauss-Bonnet-AdS black hole and soliton backgrounds, respectively. For the two backgrounds, the results show that the magnetic field enhances the superconductor phase transition in the case of the lowest Landau level, while the increasing Gauss-Bonnet parameter always hinders the vector condensate. Moreover, the Maxwell complex vector model is a generalization of the SU(2) Yang-Mills model all the time. In addition, the analytical results backup the numerical results. Furthermore, this model might provide a holographic realization for the QCD vacuum instability.

  11. Inhomogeneous dust collapse in 5D Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Jhingan, S.; Ghosh, Sushant G.

    2010-01-15

    We consider a Lemaitre-Tolman-Bondi type space-time in Einstein gravity with the Gauss-Bonnet combination of quadratic curvature terms, and present an exact solution in closed form. It turns out that the presence of the coupling constant of the Gauss-Bonnet terms {alpha}>0 completely changes the causal structure of the singularities from the analogous general relativistic case. The gravitational collapse of inhomogeneous dust in the five-dimensional Gauss-Bonnet extended Einstein equations leads to formation of a massive, but weak, timelike singularity which is forbidden in general relativity. Interestingly, this is a counterexample to three conjectures, viz., cosmic censorship conjecture, hoop conjecture, and Seifert's conjecture.

  12. Inhomogeneous dust collapse in 5D Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Jhingan, S.; Ghosh, Sushant G.

    2010-01-01

    We consider a Lemaitre-Tolman-Bondi type space-time in Einstein gravity with the Gauss-Bonnet combination of quadratic curvature terms, and present an exact solution in closed form. It turns out that the presence of the coupling constant of the Gauss-Bonnet terms α>0 completely changes the causal structure of the singularities from the analogous general relativistic case. The gravitational collapse of inhomogeneous dust in the five-dimensional Gauss-Bonnet extended Einstein equations leads to formation of a massive, but weak, timelike singularity which is forbidden in general relativity. Interestingly, this is a counterexample to three conjectures, viz., cosmic censorship conjecture, hoop conjecture, and Seifert’s conjecture.

  13. Modelling the water balance of a precise weighable lysimeter for short time scales

    NASA Astrophysics Data System (ADS)

    Fank, Johann; Klammler, Gernot; Rock, Gerhard

    2015-04-01

    Precise knowledge of the water fluxes between the atmosphere and the soil-plant system and the percolation to the groundwater system is of great importance for understanding and modeling water, solute and energy transfer in the atmosphere-plant-soil-groundwater system. Weighable lysimeters yield the most precise and realistic measures for the change of stored water volume (ΔS), Precipitation (P) which can be rain, irrigation, snow and dewfall and evapotranspiration (ET) as the sum of soil evaporation, evaporation of intercepted water and transpiration. They avoid systematic errors of standard gauges and class-A pans. Lysimeters with controlled suction at the lower boundary allow estimation of capillary rise (C) and leachate (L) on short time scales. Precise weighable large scale (surface >= 1 m2) monolithic lysimeters avoiding oasis effects allow to solve the water balance equation (P - ET - L + C ± ΔS = 0) for a 3D-section of a natural atmosphere-plant-soil-system for a certain time period. Precision and accuracy of the lysimeter measurements depend not only on the precision of the weighing device but also on external conditions, which cannot be controlled or turned off. To separate the noise in measured data sets from signals the adaptive window and adaptive threshold (AWAT) filter (Peters et al., 2014) is used. The data set for the years 2010 and 2011 from the HYDRO-lysimeter (surface = 1 m2, depth = 1 m) in Wagna, Austria (Klammler and Fank, 2014) with a resolution of 0,01 mm for the lysimeter scale and of 0,001 mm for the leachate tank scale is used to evaluate the water balance. The mass of the lysimeter and the mass of the leachate tank is measured every two seconds. The measurements are stored as one minute arithmetic means. Based on calculations in a calibration period from January to May 2010 with different widths of moving window the wmax - Parameter for the AWAT filter was set to 41 minutes. A time series for the system mass ('upper boundary') of the

  14. Application of troposphere model from NWP and GNSS data into real-time precise positioning

    NASA Astrophysics Data System (ADS)

    Wilgan, Karina; Hadas, Tomasz; Kazmierski, Kamil; Rohm, Witold; Bosy, Jaroslaw

    2016-04-01

    The tropospheric delay empirical models are usually functions of meteorological parameters (temperature, pressure and humidity). The application of standard atmosphere parameters or global models, such as GPT (global pressure/temperature) model or UNB3 (University of New Brunswick, version 3) model, may not be sufficient, especially for positioning in non-standard weather conditions. The possible solution is to use regional troposphere models based on real-time or near-real time measurements. We implement a regional troposphere model into the PPP (Precise Point Positioning) software GNSS-WARP (Wroclaw Algorithms for Real-time Positioning) developed at Wroclaw University of Environmental and Life Sciences. The software is capable of processing static and kinematic multi-GNSS data in real-time and post-processing mode and takes advantage of final IGS (International GNSS Service) products as well as IGS RTS (Real-Time Service) products. A shortcoming of PPP technique is the time required for the solution to converge. One of the reasons is the high correlation among the estimated parameters: troposphere delay, receiver clock offset and receiver height. To efficiently decorrelate these parameters, a significant change in satellite geometry is required. Alternative solution is to introduce the external high-quality regional troposphere delay model to constrain troposphere estimates. The proposed model consists of zenith total delays (ZTD) and mapping functions calculated from meteorological parameters from Numerical Weather Prediction model WRF (Weather Research and Forecasting) and ZTDs from ground-based GNSS stations using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zurich.

  15. Frontend electronics for high-precision single photo-electron timing using FPGA-TDCs

    NASA Astrophysics Data System (ADS)

    Cardinali, M.; Dzyhgadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Ugur, C.; Zühlsdorf, M.; Dodokhov, V. Kh.; Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F.; Düren, M.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Cowie, E.; Keri, T.; Montgomery, R.; Rosner, G.; Achenbach, P.; Corell, O.; Ferretti Bondy, M. I.; Hoek, M.; Lauth, W.; Rosner, C.; Sfienti, C.; Thiel, M.; Bühler, P.; Gruber, L.; Marton, J.; Suzuki, K.

    2014-12-01

    The next generation of high-luminosity experiments requires excellent particle identification detectors which calls for Imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better than 100 ps is required by the Barrel DIRC to disentangle the complicated patterns created on the image plane. R&D studies have been performed to provide a design based on the TRB3 readout using FPGA-TDCs with a precision better than 20 ps RMS and custom frontend electronics with high-bandwidth pre-amplifiers and fast discriminators. The discriminators also provide time-over-threshold information thus enabling walk corrections to improve the timing resolution. Two types of frontend electronics cards optimised for reading out 64-channel PHOTONIS Planacon MCP-PMTs were tested: one based on the NINO ASIC and the other, called PADIWA, on FPGA discriminators. Promising results were obtained in a full characterisation using a fast laser setup and in a test experiment at MAMI, Mainz, with a small scale DIRC prototype.

  16. Efficient generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase elements.

    PubMed

    Aguirre-Olivas, Dilia; Mellado-Villaseñor, Gabriel; Sánchez-de-la-Llave, David; Arrizón, Victor

    2015-10-01

    We discuss the generation of Hermite-Gauss and Ince-Gauss beams employing phase elements whose transmittances coincide with the phase modulations of such beams. A scaled version of the desired field appears, distorted by marginal optical noise, at the element's Fourier domain. The motivation to perform this study is that, in the context of the proposed approach, the desired beams are generated with the maximum possible efficiency. A disadvantage of the method is the distortion of the desired beams by the influence of several nondesired beam modes generated by the phase elements. We evaluate such distortion employing the root mean square deviation as a figure of merit. PMID:26479622

  17. Precise discussion of time-reversal asymmetries in B-meson decays

    DOE PAGESBeta

    Morozumi, Takuya; Okane, Hideaki; Umeeda, Hiroyuki

    2015-02-26

    BaBar collaboration announced that they observed time reversal (T) asymmetry through B meson system. In the experiment, time dependencies of two distinctive processes, B_ →B¯0 and B¯0 → B_ (– expresses CP value) are compared with each other. In our study, we examine event number difference of these two processes. In contrast to the BaBar asymmetry, the asymmetry of events number includes the overall normalization difference for rates. Time dependence of the asymmetry is more general and it includes terms absent in one used by BaBar collaboration. Both of the BaBar asymmetry and ours are naively thought to be T-oddmore » since two processes compared are related with flipping time direction. We investigate the time reversal transformation property of our asymmetry. Using our notation, one can see that the asymmetry is not precisely a T-odd quantity, taking into account indirect CP and CPT violation of K meson systems. The effect of ϵK is extracted and gives rise to O(10–3) contribution. The introduced parameters are invariant under rephasing of quarks so that the coefficients of our asymmetry are expressed as phase convention independent quantities. Some combinations of the asymmetry enable us to extract parameters for wrong sign decays of Bd meson, CPT violation, etc. As a result, we also study the reason why the T-even terms are allowed to contribute to the asymmetry, and find that several conditions are needed for the asymmetry to be a T-odd quantity.« less

  18. Precise discussion of time-reversal asymmetries in B-meson decays

    SciTech Connect

    Morozumi, Takuya; Okane, Hideaki; Umeeda, Hiroyuki

    2015-02-26

    BaBar collaboration announced that they observed time reversal (T) asymmetry through B meson system. In the experiment, time dependencies of two distinctive processes, B_ →B¯0 and B¯0 → B_ (– expresses CP value) are compared with each other. In our study, we examine event number difference of these two processes. In contrast to the BaBar asymmetry, the asymmetry of events number includes the overall normalization difference for rates. Time dependence of the asymmetry is more general and it includes terms absent in one used by BaBar collaboration. Both of the BaBar asymmetry and ours are naively thought to be T-odd since two processes compared are related with flipping time direction. We investigate the time reversal transformation property of our asymmetry. Using our notation, one can see that the asymmetry is not precisely a T-odd quantity, taking into account indirect CP and CPT violation of K meson systems. The effect of ϵK is extracted and gives rise to O(10–3) contribution. The introduced parameters are invariant under rephasing of quarks so that the coefficients of our asymmetry are expressed as phase convention independent quantities. Some combinations of the asymmetry enable us to extract parameters for wrong sign decays of Bd meson, CPT violation, etc. As a result, we also study the reason why the T-even terms are allowed to contribute to the asymmetry, and find that several conditions are needed for the asymmetry to be a T-odd quantity.

  19. Assignment of Calibration Information to Deeper Phylogenetic Nodes is More Effective in Obtaining Precise and Accurate Divergence Time Estimates.

    PubMed

    Mello, Beatriz; Schrago, Carlos G

    2014-01-01

    Divergence time estimation has become an essential tool for understanding macroevolutionary events. Molecular dating aims to obtain reliable inferences, which, within a statistical framework, means jointly increasing the accuracy and precision of estimates. Bayesian dating methods exhibit the propriety of a linear relationship between uncertainty and estimated divergence dates. This relationship occurs even if the number of sites approaches infinity and places a limit on the maximum precision of node ages. However, how the placement of calibration information may affect the precision of divergence time estimates remains an open question. In this study, relying on simulated and empirical data, we investigated how the location of calibration within a phylogeny affects the accuracy and precision of time estimates. We found that calibration priors set at median and deep phylogenetic nodes were associated with higher precision values compared to analyses involving calibration at the shallowest node. The results were independent of the tree symmetry. An empirical mammalian dataset produced results that were consistent with those generated by the simulated sequences. Assigning time information to the deeper nodes of a tree is crucial to guarantee the accuracy and precision of divergence times. This finding highlights the importance of the appropriate choice of outgroups in molecular dating. PMID:24855333

  20. Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales.

    PubMed

    dos Reis, Mario; Thawornwattana, Yuttapong; Angelis, Konstantinos; Telford, Maximilian J; Donoghue, Philip C J; Yang, Ziheng

    2015-11-16

    The timing of divergences among metazoan lineages is integral to understanding the processes of animal evolution, placing the biological events of species divergences into the correct geological timeframe. Recent fossil discoveries and molecular clock dating studies have suggested a divergence of bilaterian phyla >100 million years before the Cambrian, when the first definite crown-bilaterian fossils occur. Most previous molecular clock dating studies, however, have suffered from limited data and biases in methodologies, and virtually all have failed to acknowledge the large uncertainties associated with the fossil record of early animals, leading to inconsistent estimates among studies. Here we use an unprecedented amount of molecular data, combined with four fossil calibration strategies (reflecting disparate and controversial interpretations of the metazoan fossil record) to obtain Bayesian estimates of metazoan divergence times. Our results indicate that the uncertain nature of ancient fossils and violations of the molecular clock impose a limit on the precision that can be achieved in estimates of ancient molecular timescales. For example, although we can assert that crown Metazoa originated during the Cryogenian (with most crown-bilaterian phyla diversifying during the Ediacaran), it is not possible with current data to pinpoint the divergence events with sufficient accuracy to test for correlations between geological and biological events in the history of animals. Although a Cryogenian origin of crown Metazoa agrees with current geological interpretations, the divergence dates of the bilaterians remain controversial. Thus, attempts to build evolutionary narratives of early animal evolution based on molecular clock timescales appear to be premature.

  1. Precision Spectroscopy of Trapped HfF^+ with a Coherence Time of 1 Second

    NASA Astrophysics Data System (ADS)

    Cossel, Kevin; Cairncross, William; Grau, Matt; Gresh, Dan; Zhou, Yan; Ye, Jun; Cornell, Eric

    2015-06-01

    Trapped molecular ions provide new systems for precision spectroscopy and tests of fundamental physics. For example, measurements of the permanent electric dipole moment of the electron (eEDM) test time-reversal symmetry. Currently, we are using Ramsey spectroscopy between spin states of the metastable ^3Δ_1 state in trapped HfF^+ for a measurement of the eEDM. We are regularly performing spectroscopy with a Ramsey time of 500 ms yielding what, to our knowledge, is the narrowest spectral line observed in a molecular system. Here, we will provide an overview of the experiment and the current eEDM results. The ACME Collaboration, et al., Science 343, 269 (2014) H. Loh, K. C. Cossel, M. C. Grau, K.-K. Ni, E. R. Meyer, J. L. Bohn, J. Ye, E. A. Cornell, Science 342, 1220 (2013). A. E. Leanhardt, J. L. Bohn, H. Loh, M. C. Grau, P. Maletinski, E. R. Meyer, L. C. Sinclair, R. P. Stutz, E. A. Cornell, J. Mol. Spec. 270, 1 (2011).

  2. Drift time spectrum and gas monitoring in the ATLAS Muon Spectrometer precision chambers

    NASA Astrophysics Data System (ADS)

    Levin, Daniel S.; Amram, Nir; Ball, Robert; ben Moshe, Meny; Benhammou, Yan; Chapman, John W.; Dai, Tiesheng; Diehl, Edward B.; Etzion, Erez; Ferretti, Claudio; Goldfarb, Steven; Gregory, Jeffery; Kiesel, Mike; McKee, Shawn; Thun, Rudi; Weaverdyck, Curtis; Wilson, Alan; Zhao, Zhengguo; Zhou, Bing

    2008-04-01

    The ATLAS Muon Spectrometer incorporates 354 000 drift tubes assembled into 1200 Monitored Drift Tube (MDT) precision chambers, with a total gas volume of 723 m3. This MDT gas, Ar 93% and CO2 7% at 3 bar, is cycled through the spectrometer at a rate of one total detector volume per day. Achieving the 80 μm drift tube design resolution requires stringent gas quality control as a fundamental component of the MDT calibration program. We report on the design, deployment and performance of a dedicated MDT mini-chamber conceived for continuous monitoring and drift time calibration of the ATLAS MDT operating gas. This chamber enables measurement of the drift spectra from which gas properties relevant to MDT calibrations and stable operating conditions are determined. Located in the ATLAS gas facility at CERN, the mini-chamber produces hourly drift spectra which are automatically analyzed. Results are published online and disseminated to the ATLAS muon system conditions and calibration databases in real time.

  3. Precision measurement of timing RPC gas mixtures with laser-beam induced electrons

    NASA Astrophysics Data System (ADS)

    Naumann, L.; Siebold, M.; Kaspar, M.; Kämpfer, B.; Kotte, R.; Laso Garcia, A.; Löser, M.; Schramm, U.; Wüstenfeld, J.

    2014-10-01

    The main goals of a new test facility at Helmholtz-Zentrum Dresden-Rossendorf are precision measurements of the electron drift velocity and the Townsend coefficient of gases at atmospheric pressure in the strongest ever used homogenous electrical fields and the search for new RPC gas mixtures to substitute the climate harmful Freon. Picosecond UV laser pulses were focused into a sub-millimeter gas gap to initialize a defined tiny charge. These gaps are formed by electrodes of low-resistive ceramics or high-resistive float glass. The charge multiplication occurs in a strong homogeneous electric field of up to 100 kV/cm. Electron-ion pairs were generated in a cylindrical micro-volume by multi-photon ionization. The laser-pulse repetition rate ranges from 1 Hz to a few kHz. The RPC time resolution has been measured for different gases. First results of the Townsend coefficient at 100 kV/cm show a strong disagreement between the present measurement and Magboltz simulations for the typical timing RPC gas mixture C2F4H2/SF6/i-C4H10, while the measured electron drift velocities are in a good agreement with the model predictions.

  4. The timing and precision of action prediction in the aging brain.

    PubMed

    Diersch, Nadine; Jones, Alex L; Cross, Emily S

    2016-01-01

    Successful social interactions depend on the ability to anticipate other people's actions. Current conceptualizations of brain function propose that causes of sensory input are inferred through their integration with internal predictions generated in the observer's motor system during action observation. Less is known concerning how action prediction changes with age. Previously we showed that internal action representations are less specific in older compared with younger adults at behavioral and neural levels. Here, we characterize how neural activity varies while healthy older adults aged 56-71 years predict the time-course of an unfolding action as well as the relation to task performance. By using fMRI, brain activity was measured while participants observed partly occluded actions and judged the temporal coherence of the action continuation that was manipulated. We found that neural activity in frontoparietal and occipitotemporal regions increased the more an action continuation was shifted backwards in time. Action continuations that were shifted towards the future preferentially engaged early visual cortices. Increasing age was associated with neural activity that extended from posterior to anterior regions in frontal and superior temporal cortices. Lower sensitivity in action prediction resulted in activity increases in the caudate. These results imply that the neural implementation of predicting actions undergoes similar changes as the neural process of executing actions in older adults. The comparison between internal predictions and sensory input seems to become less precise with age leading to difficulties in anticipating observed actions accurately, possibly due to less specific internal action models. PMID:26503586

  5. A fast algorithm to compute precise type-2 centroids for real-time control applications.

    PubMed

    Chakraborty, Sumantra; Konar, Amit; Ralescu, Anca; Pal, Nikhil R

    2015-02-01

    An interval type-2 fuzzy set (IT2 FS) is characterized by its upper and lower membership functions containing all possible embedded fuzzy sets, which together is referred to as the footprint of uncertainty (FOU). The FOU results in a span of uncertainty measured in the defuzzified space and is determined by the positional difference of the centroids of all the embedded fuzzy sets taken together. This paper provides a closed-form formula to evaluate the span of uncertainty of an IT2 FS. The closed-form formula offers a precise measurement of the degree of uncertainty in an IT2 FS with a runtime complexity less than that of the classical iterative Karnik-Mendel algorithm and other formulations employing the iterative Newton-Raphson algorithm. This paper also demonstrates a real-time control application using the proposed closed-form formula of centroids with reduced root mean square error and computational overhead than those of the existing methods. Computer simulations for this real-time control application indicate that parallel realization of the IT2 defuzzification outperforms its competitors with respect to maximum overshoot even at high sampling rates. Furthermore, in the presence of measurement noise in system (plant) states, the proposed IT2 FS based scheme outperforms its type-1 counterpart with respect to peak overshoot and root mean square error in plant response.

  6. Note: electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Panek, Petr

    2012-11-01

    We have designed, constructed, and tested the overall performance of the electronic circuit for the two-way time transfer between two timing devices over modest distances with sub-picosecond precision and a systematic error of a few picoseconds. The concept of the electronic circuit enables to carry out time tagging of pulses of interest in parallel to the comparison of the time scales of these timing devices. The key timing parameters of the circuit are: temperature change of the delay is below 100 fs/K, timing stability time deviation better than 8 fs for averaging time from minutes to hours, sub-picosecond time transfer precision, and a few picoseconds time transfer accuracy.

  7. Small-displacement measurements using high-order Hermite-Gauss modes

    SciTech Connect

    Sun, Hengxin; Liu, Kui; Liu, Zunlong; Guo, Pengliang; Zhang, Junxiang; Gao, Jiangrui

    2014-03-24

    We present a scheme for small-displacement measurements using high-order Hermite-Gauss modes and balanced homodyne detection. We demonstrate its use with experimental results of displacement measurements using fundamental transverse mode TEM{sub 00} and first order transverse mode TEM{sub 10} as signal modes. The results show a factor of 1.41 improvement in measurement precision with the TEM{sub 10} mode compared with that with the TEM{sub 00} mode. This scheme has potential applications in precision metrology, atomic force microscopy, and optical imaging.

  8. Ultrahigh-precision GPS applications using real-time kinematic technology

    NASA Astrophysics Data System (ADS)

    Kim, D.; Langley, R. B.

    2003-04-01

    RTK (real-time kinematic) processing is a GPS technique pioneered by surveyors and geodesists for determining the coordinates of points with centimetre-level accuracy or better in "real-time". GPS carrier-phase measurements must be used to attain the required positioning accuracies. As improvements are made in positioning accuracies which can be achieved in real-time, RTK techniques are being embraced for an increasing number of applications so that the distinction between navigation and geodesy applications is becoming less distinct. This is evident in high-precision, real-time, scientific and civil applications such as establishing geodetic control networks, mitigating earthquake hazards, monitoring dam and bridge deformation, auto-steering gantry cranes and so on. These applications require positioning accuracies better than a few centimetres with extremely high reliability in either static or kinematic mode and in both post-processing and real-time situations. The University of New Brunswick (UNB) RTK software, initially designed for a gantry crane auto-steering system at Korea International Terminals' Kwangyang Port in South Korea, is able to provide navigation solutions in real time at an up to 25 Hz update rate commensurate with the dual-frequency data rate. The software works in conjunction with a GPS receiver and 2.4 GHz wireless LAN (WLAN) master unit at a base station and two dual-frequency GPS receivers and a WLAN adapter installed on the cranes. We have explored the capabilities of the software in new GPS applications. Recently, tests of this software for deformation monitoring have been carried out at Highland Valley Copper Mine in British Columbia, Canada. Also, tests to investigate the performance of the software under long-baseline situations including on-land and offshore environments are planned. UHF point-to-point, WLAN and LAN communications will be used for real-time testing. In this contribution, we introduce the UNB RTK approach. Technical

  9. Multivariate curve-fitting in GAUSS

    USGS Publications Warehouse

    Bunck, C.M.; Pendleton, G.W.

    1988-01-01

    Multivariate curve-fitting techniques for repeated measures have been developed and an interactive program has been written in GAUSS. The program implements not only the one-factor design described in Morrison (1967) but also includes pairwise comparisons of curves and rates, a two-factor design, and other options. Strategies for selecting the appropriate degree for the polynomial are provided. The methods and program are illustrated with data from studies of the effects of environmental contaminants on ducklings, nesting kestrels and quail.

  10. A Comparison of Real-Time Precise Point Positioning Zenith Total Delay Estimates

    NASA Astrophysics Data System (ADS)

    Ahmed, F.; Vaclavovic, P.; Dousa, J.; Teferle, F. N.; Laurichesse, D.; Bingley, R.

    2013-12-01

    The use of observations from Global Navigation Satellite Systems (GNSS) in operational meteorology is increasing worldwide due to the continuous evolution of GNSS. The assimilation of near real-time (NRT) GNSS-derived zenith total delay (ZTD) estimates into local, regional and global scale numerical weather prediction (NWP) models is now in operation at a number of meteorological institutions. The development of NWP models with high update cycles for now-casting and monitoring of extreme weather events in recent years, requires the estimation of ZTD with minimal latencies, i.e. from 5 to 10 minutes, while maintaining an adequate level of accuracy for these. The availability of real-time (RT) observations and products from the IGS RT service and associated analysis centers make it possible to compute precise point positioning (PPP) solutions in RT, which provide ZTD along with position estimates. This study presents a comparison of the RT ZTD estimates from three different PPP software packages (G-Nut/Tefnut, BNC2.7 and PPP-Wizard) to the state-of-the-art IGS Final Troposphere Product employing PPP in the Bernese GPS Software. Overall, the ZTD time series obtained by the software packages agree fairly well with the estimates following the variations of the other solutions, but showing various biases with the reference. After correction of these the RMS differences are at the order of 0.01 m. The application of PPP ambiguity resolution in one solution or the use of different RT product streams shows little impact on the ZTD estimates.

  11. An Alternative Realization of Gauss-Newton for Frequency-Domain Acoustic Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yang, J.; Chi, B.; Dong, L.

    2014-12-01

    Since FWI was studied under the least-square misfit optimization proposed by Tarantola (1984) in time domain, it has been greatly improved by many researchers. Pratt (1998) developed FWI in frequency domain using a Gauss-Newton optimization. In recent years, FWI has been widely studied under the framework of adjoint-state methods, as summarized by Plessix (2006). Preconditioning and high order gradients are important for FWI. Many researches have focused on the Newton optimization, in which the calculation of inverse Hessian is the key problem. Pseudo Hessian such as the diagonal Hessian was firstly used to approximate inverse Hessian (Choi & Shin, 2007). Then Gauss-Newton or l-BFGS method was widely studied to iteratively calculate the inverse approximate Hessian Haor full Hessian (Sheen et al., 2006). Full Hessian is the base of the exact Newton optimization. Fichtner and Trampert (2011) presented an extension of the adjoint-state method to directly compute the full Hessian; Métivier et al. (2012) proposed a general second-order adjoint-state formula for Hessian-vector product to tackle Gauss-Newton and exact Newton. Liu et al. (2014) proposed a matrix-decomposition FWI (MDFWI) based on Born kernel. They used the Born Fréchet kernel to explicitly calculate the gradient of the objective function through matrix decomposition, no full Fréchet kernel being stored in memory beforehand. However, they didn't give a method to calculate the Gauss-Newton. In this paper, We propose a method based on Born Fréchet kernel to calculate the Gauss-Newton for acoustic full waveform inversion (FWI). The Gauss-Newton is iteratively constructed without needing to store the huge approximate Hessian (Ha) or Fréchet kernel beforehand, and the inverse of Ha is not need to be calculated either. This procedure can be efficiently accomplished through matrix decomposition. More resolved result and faster convergence are obtained when this Gauss-Newton is applied in FWI based on the Born

  12. Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals

    SciTech Connect

    Edwards, R.L.; Chen, J.H.; Ku, T.L.; Wasserburg, G.J.

    1987-06-19

    The development of mass spectrometric techniques for determination of STTh abundance has made it possible to reduce analytical errors in STYU-STUU-STTh dating of corals even with very small samples. Samples of 6 x 10Y atoms of STTh can be measured to an accuracy of +/- 3% (2sigma) and 3 x 10 atoms of STTh can be measured to an accuracy of +/- 0.2%. The time range over which useful age data on corals can be obtained now ranges from about 50 to about 500,000 years. For young corals, this approach may be preferable to UC dating. The precision should make it possible to critically test the Milankovitch hypothesis concerning Pleistocene climate fluctuations. Analyses of a number of corals that grew during the last interglacial period yield ages of 122,000 to 130,000 years. The ages coincide with, or slightly postdate, the summer solar insolation high at 65N latitude which occurred 128,000 years ago. This supports the idea that changes in Pleistocene climate can be the result of variations in the distribution of solar insolation caused by changes in the geometry of the earth's orbit and rotation axis.

  13. PRECISE HIGH-CADENCE TIME SERIES OBSERVATIONS OF FIVE VARIABLE YOUNG STARS IN AURIGA WITH MOST

    SciTech Connect

    Cody, Ann Marie; Tayar, Jamie; Hillenbrand, Lynne A.; Matthews, Jaymie M.; Kallinger, Thomas

    2013-03-15

    To explore young star variability on a large range of timescales, we have used the MOST satellite to obtain 24 days of continuous, sub-minute cadence, high-precision optical photometry on a field of classical and weak-lined T Tauri stars (TTSs) in the Taurus-Auriga star formation complex. Observations of AB Aurigae, SU Aurigae, V396 Aurigae, V397 Aurigae, and HD 31305 reveal brightness fluctuations at the 1%-10% level on timescales of hours to weeks. We have further assessed the variability properties with Fourier, wavelet, and autocorrelation techniques, identifying one significant period per star. We present spot models in an attempt to fit the periodicities, but find that we cannot fully account for the observed variability. Rather, all stars exhibit a mixture of periodic and aperiodic behavior, with the latter dominating stochastically on timescales less than several days. After removal of the main periodicity, periodograms for each light curve display power-law trends consistent with those seen for other young accreting stars. Several of our targets exhibited unusual variability patterns not anticipated by prior studies, and we propose that this behavior originates with the circumstellar disks. The MOST observations underscore the need for investigation of TTS light variations on a wide range of timescales in order to elucidate the physical processes responsible; we provide guidelines for future time series observations.

  14. A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver

    PubMed Central

    Wang, Fuhong; Gong, Xuewen; Sang, Jizhang; Zhang, Xiaohong

    2015-01-01

    Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD) for geo-referencing. Onboard Global Positioning System (GPS) has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China’s HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS) of 0.2–0.4 m and 0.2–0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3–5 dm for position and 0.3–0.5 mm/s for velocity with this RTOD method. PMID:26690149

  15. A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver.

    PubMed

    Wang, Fuhong; Gong, Xuewen; Sang, Jizhang; Zhang, Xiaohong

    2015-12-04

    Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD) for geo-referencing. Onboard Global Positioning System (GPS) has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China's HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS) of 0.2-0.4 m and 0.2-0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3-5 dm for position and 0.3-0.5 mm/s for velocity with this RTOD method.

  16. Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Wasserburg, G. J.; Ku, T.-L.; Edwards, R. Lawrence

    1987-01-01

    The development of mass spectrometric techniques for determination of Th-230 abundance has made it possible to reduce analytical errors in (U-238)-(U-234)-(Th-230) dating of corals even with very small samples. Samples of 6 x 10 to the 8th atoms of Th-230 can be measured to an accuracy of + or - 3 percent (2sigma), and 3 x 10 to the 10th atoms of Th-230 can be measured to an accuracy of + or - 0.2 percent. The time range over which useful age data on corals can be obtained now ranges from about 50 to about 500,000 years. For young corals, this approach may be preferable to C-14 dating. The precision with which the age of a coral can now be determined should make it possible to critically test the Milankovitch hypothesis concerning Pleistocene climate fluctuations. Analyses of a number of corals that grew during the last interglacial period yield ages of 122,000 to 130,000 years. The ages coincide with, or slightly post-date, the summer solar insolation high at 65 deg N latitude which occurred 128,000 years ago. This supports the idea that changes in Pleistocene climate can be the result of variations in the distribution of solar insolation caused by changes in the geometry of the earth's orbit and rotation axis.

  17. Archean gold mineralization and metamorphism: timing constraints from precise U-Pb dating

    SciTech Connect

    Colvine, A.C.; Corfu, F.; Davis, D.W.; Stott, G.M.

    1985-01-01

    Gold mineralization is tightly constrained to an event closely following establishment of peak metamorphic condition, in all areas of the Superior Province of Canada where precise dating has been applied to defined field relationships. In the Abitibi and Wabigoon Subprovinces of the Southern Superior Domain, peak metamorphism caused by major batholith emplacement is consistently >2685 Ma and affects Archean supracrustal units of all ages (mainly >2700 Ma). Gold is commonly hosted by felsic stocks, dated at a specific age in the Abitibi Belt (2688-2684 Ma), and is therefore close to or younger than peak metamorphism. Dateable units crosscutting mineralization are extremely rare, but at Shebandowan and Mine Centre dated field relationships bracket the maximum and minimum age of mineralization between 2689 - 2684 and 2692 - 2686 Ma, respectively. While the metamorphic event in the Northern Superior Domain is approximately 20 my older, relative timing of gold mineralization is identical. At Red Lake, gold is hosted by units ranging in age from 2990-2718 Ma, all metamorphosed at >2704 Ma. Peak metamorphic minerals are retrograded by alteration during gold localization and mineralization is cut by a 2704 Ma dyke. These data show that gold mineralization was the product of a tectonic event during the latest Archean which involved major plutonism, deformation and metamorphism.

  18. A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver.

    PubMed

    Wang, Fuhong; Gong, Xuewen; Sang, Jizhang; Zhang, Xiaohong

    2015-01-01

    Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD) for geo-referencing. Onboard Global Positioning System (GPS) has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China's HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS) of 0.2-0.4 m and 0.2-0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3-5 dm for position and 0.3-0.5 mm/s for velocity with this RTOD method. PMID:26690149

  19. Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales

    PubMed Central

    dos Reis, Mario; Thawornwattana, Yuttapong; Angelis, Konstantinos; Telford, Maximilian J.; Donoghue, Philip C.J.; Yang, Ziheng

    2015-01-01

    Summary The timing of divergences among metazoan lineages is integral to understanding the processes of animal evolution, placing the biological events of species divergences into the correct geological timeframe. Recent fossil discoveries and molecular clock dating studies have suggested a divergence of bilaterian phyla >100 million years before the Cambrian, when the first definite crown-bilaterian fossils occur. Most previous molecular clock dating studies, however, have suffered from limited data and biases in methodologies, and virtually all have failed to acknowledge the large uncertainties associated with the fossil record of early animals, leading to inconsistent estimates among studies. Here we use an unprecedented amount of molecular data, combined with four fossil calibration strategies (reflecting disparate and controversial interpretations of the metazoan fossil record) to obtain Bayesian estimates of metazoan divergence times. Our results indicate that the uncertain nature of ancient fossils and violations of the molecular clock impose a limit on the precision that can be achieved in estimates of ancient molecular timescales. For example, although we can assert that crown Metazoa originated during the Cryogenian (with most crown-bilaterian phyla diversifying during the Ediacaran), it is not possible with current data to pinpoint the divergence events with sufficient accuracy to test for correlations between geological and biological events in the history of animals. Although a Cryogenian origin of crown Metazoa agrees with current geological interpretations, the divergence dates of the bilaterians remain controversial. Thus, attempts to build evolutionary narratives of early animal evolution based on molecular clock timescales appear to be premature. PMID:26603774

  20. STICK: Spike Time Interval Computational Kernel, a Framework for General Purpose Computation Using Neurons, Precise Timing, Delays, and Synchrony.

    PubMed

    Lagorce, Xavier; Benosman, Ryad

    2015-11-01

    There has been significant research over the past two decades in developing new platforms for spiking neural computation. Current neural computers are primarily developed to mimic biology. They use neural networks, which can be trained to perform specific tasks to mainly solve pattern recognition problems. These machines can do more than simulate biology; they allow us to rethink our current paradigm of computation. The ultimate goal is to develop brain-inspired general purpose computation architectures that can breach the current bottleneck introduced by the von Neumann architecture. This work proposes a new framework for such a machine. We show that the use of neuron-like units with precise timing representation, synaptic diversity, and temporal delays allows us to set a complete, scalable compact computation framework. The framework provides both linear and nonlinear operations, allowing us to represent and solve any function. We show usability in solving real use cases from simple differential equations to sets of nonlinear differential equations leading to chaotic attractors. PMID:26378879

  1. Heavy duty precision leveling jacks expedite setup time on horizontal boring mill

    NASA Technical Reports Server (NTRS)

    Dellenbaugh, W.; Jones, C.

    1966-01-01

    Leveling jack is a precise alignment tool which expedites the setup of components or assemblies up to 2500 pounds on horizontal boring mills. This tool eliminates the necessity of wedges and blocks to shim the components to proper position.

  2. A 24 hr global campaign to assess precision timing of the millisecond pulsar J1713+0747

    SciTech Connect

    Dolch, T.; Lam, M. T.; Cordes, J.; Chatterjee, S.; Bassa, C.; Hessels, J. W. T.; Janssen, G.; Kondratiev, V.; Bhattacharyya, B.; Jordan, C.; Keith, M.; Champion, D. J.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Cognard, I.; Demorest, P. B.; Jenet, F. A.; Jones, G.; and others

    2014-10-10

    The radio millisecond pulsar J1713+0747 is regarded as one of the highest-precision clocks in the sky and is regularly timed for the purpose of detecting gravitational waves. The International Pulsar Timing Array Collaboration undertook a 24 hr global observation of PSR J1713+0747 in an effort to better quantify sources of timing noise in this pulsar, particularly on intermediate (1-24 hr) timescales. We observed the pulsar continuously over 24 hr with the Arecibo, Effelsberg, GMRT, Green Bank, LOFAR, Lovell, Nançay, Parkes, and WSRT radio telescopes. The combined pulse times-of-arrival presented here provide an estimate of what sources of timing noise, excluding DM variations, would be present as compared to an idealized √N improvement in timing precision, where N is the number of pulses analyzed. In the case of this particular pulsar, we find that intrinsic pulse phase jitter dominates arrival time precision when the signal-to-noise ratio of single pulses exceeds unity, as measured using the eight telescopes that observed at L band/1.4 GHz. We present first results of specific phenomena probed on the unusually long timescale (for a single continuous observing session) of tens of hours, in particular interstellar scintillation, and discuss the degree to which scintillation and profile evolution affect precision timing. This paper presents the data set as a basis for future, deeper studies.

  3. A 24 Hr Global Campaign to Assess Precision Timing of the Millisecond Pulsar J1713+0747

    NASA Astrophysics Data System (ADS)

    Dolch, T.; Lam, M. T.; Cordes, J.; Chatterjee, S.; Bassa, C.; Bhattacharyya, B.; Champion, D. J.; Cognard, I.; Crowter, K.; Demorest, P. B.; Hessels, J. W. T.; Janssen, G.; Jenet, F. A.; Jones, G.; Jordan, C.; Karuppusamy, R.; Keith, M.; Kondratiev, V.; Kramer, M.; Lazarus, P.; Lazio, T. J. W.; Lee, K. J.; McLaughlin, M. A.; Roy, J.; Shannon, R. M.; Stairs, I.; Stovall, K.; Verbiest, J. P. W.; Madison, D. R.; Palliyaguru, N.; Perrodin, D.; Ransom, S.; Stappers, B.; Zhu, W. W.; Dai, S.; Desvignes, G.; Guillemot, L.; Liu, K.; Lyne, A.; Perera, B. B. P.; Petroff, E.; Rankin, J. M.; Smits, R.

    2014-10-01

    The radio millisecond pulsar J1713+0747 is regarded as one of the highest-precision clocks in the sky and is regularly timed for the purpose of detecting gravitational waves. The International Pulsar Timing Array Collaboration undertook a 24 hr global observation of PSR J1713+0747 in an effort to better quantify sources of timing noise in this pulsar, particularly on intermediate (1-24 hr) timescales. We observed the pulsar continuously over 24 hr with the Arecibo, Effelsberg, GMRT, Green Bank, LOFAR, Lovell, Nançay, Parkes, and WSRT radio telescopes. The combined pulse times-of-arrival presented here provide an estimate of what sources of timing noise, excluding DM variations, would be present as compared to an idealized \\sqrt{N} improvement in timing precision, where N is the number of pulses analyzed. In the case of this particular pulsar, we find that intrinsic pulse phase jitter dominates arrival time precision when the signal-to-noise ratio of single pulses exceeds unity, as measured using the eight telescopes that observed at L band/1.4 GHz. We present first results of specific phenomena probed on the unusually long timescale (for a single continuous observing session) of tens of hours, in particular interstellar scintillation, and discuss the degree to which scintillation and profile evolution affect precision timing. This paper presents the data set as a basis for future, deeper studies.

  4. Potassium conductance dynamics confer robust spike-time precision in a neuromorphic model of the auditory brain stem

    PubMed Central

    Boahen, Kwabena

    2013-01-01

    A fundamental question in neuroscience is how neurons perform precise operations despite inherent variability. This question also applies to neuromorphic engineering, where low-power microchips emulate the brain using large populations of diverse silicon neurons. Biological neurons in the auditory pathway display precise spike timing, critical for sound localization and interpretation of complex waveforms such as speech, even though they are a heterogeneous population. Silicon neurons are also heterogeneous, due to a key design constraint in neuromorphic engineering: smaller transistors offer lower power consumption and more neurons per unit area of silicon, but also more variability between transistors and thus between silicon neurons. Utilizing this variability in a neuromorphic model of the auditory brain stem with 1,080 silicon neurons, we found that a low-voltage-activated potassium conductance (gKL) enables precise spike timing via two mechanisms: statically reducing the resting membrane time constant and dynamically suppressing late synaptic inputs. The relative contribution of these two mechanisms is unknown because blocking gKL in vitro eliminates dynamic adaptation but also lengthens the membrane time constant. We replaced gKL with a static leak in silico to recover the short membrane time constant and found that silicon neurons could mimic the spike-time precision of their biological counterparts, but only over a narrow range of stimulus intensities and biophysical parameters. The dynamics of gKL were required for precise spike timing robust to stimulus variation across a heterogeneous population of silicon neurons, thus explaining how neural and neuromorphic systems may perform precise operations despite inherent variability. PMID:23554436

  5. Progress in Bathymetric Surveys: Combining High Precision Positioning in Real Time with a Continuous Vertical Datum in Remote Areas

    NASA Astrophysics Data System (ADS)

    Lévesque, S.; Robin, C. M. I.; MacLeod, K.; Fadaie, K.

    2014-12-01

    For most of its bathymetric survey activities, the Canadian Hydrographic Service (CHS) requires high precision, three dimensional positioning. As part of a pilot project, one of its launches was equipped with a GNSS receiver processing a high precision correction service in real time (HP-GPS*C) via the internet using satellite telecommunication. This service was provided by Natural Resources Canada/Canadian Geodetic Survey (NRCan/CGS). The bathymetric data from a survey in eastern Hudson Bay performed by CHS in Fall 2013 was post -processed using different standard methods. This resulted in high precision positions that were compared with positions corrected with the real-time precise point positioning (PPP) service (HP-GPS*C) from NRCan/CGS. CHS bathymetric surveys must be referred to chart datum, the hydrographical vertical datum defined for use on nautical charts. In the Canadian north, another limitation to high precision bathymetric work is the availability of tide observations and/or predictions. The territory is vast and tide data is limited in space and in time while predicted tides are not always accurate. This makes reductions of bathymetric soundings to Chart datum difficult. To address this problem, CHS and NRCan/CGS have collaborated to produce a Continuous Vertical Datum for Canadian Waters (CVDCW), which incorporates data from NRCan's geoid model, tide gauge and GPS data, satellite altimetry, and ocean models. Thus high precision positioning provides ellipsoidal heights for the bathymetric depths, and the CVDCW allows to correct these ellipsoidal heights to chart datum. Comparisons of the bathymetry from the pilot survey corrected for tide data versus the bathymetry referred to its ellipsoidal height corrected to chart datum with the CVDCW are given to demonstrate the relative changes to the depths. This also illustrates the advantage of a continuous vertical datum with its potential to be combined with real-time high precision positioning.

  6. Precise High-cadence Time Series Observations of Five Variable Young Stars in Auriga with MOST

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Tayar, Jamie; Hillenbrand, Lynne A.; Matthews, Jaymie M.; Kallinger, Thomas

    2013-03-01

    To explore young star variability on a large range of timescales, we have used the MOST satellite to obtain 24 days of continuous, sub-minute cadence, high-precision optical photometry on a field of classical and weak-lined T Tauri stars (TTSs) in the Taurus-Auriga star formation complex. Observations of AB Aurigae, SU Aurigae, V396 Aurigae, V397 Aurigae, and HD 31305 reveal brightness fluctuations at the 1%-10% level on timescales of hours to weeks. We have further assessed the variability properties with Fourier, wavelet, and autocorrelation techniques, identifying one significant period per star. We present spot models in an attempt to fit the periodicities, but find that we cannot fully account for the observed variability. Rather, all stars exhibit a mixture of periodic and aperiodic behavior, with the latter dominating stochastically on timescales less than several days. After removal of the main periodicity, periodograms for each light curve display power-law trends consistent with those seen for other young accreting stars. Several of our targets exhibited unusual variability patterns not anticipated by prior studies, and we propose that this behavior originates with the circumstellar disks. The MOST observations underscore the need for investigation of TTS light variations on a wide range of timescales in order to elucidate the physical processes responsible; we provide guidelines for future time series observations. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Systems Canada Inc. (MSCI), formerly part of Dynacon, Inc., the University of Toronto Institute for Aerospace Studies, and the University of British Columbia with the assistance of the University of Vienna.

  7. Matter instabilities in general Gauss-Bonnet gravity

    SciTech Connect

    De Felice, Antonio; Tsujikawa, Shinji; Mota, David F.

    2010-01-15

    We study the evolution of cosmological perturbations in f(G) gravity, where the Lagrangian is the sum of a Ricci scalar R and an arbitrary function f in terms of a Gauss-Bonnet term G. We derive the equations for perturbations assuming matter to be described by a perfect fluid with a constant equation of state w. We show that density perturbations in perfect fluids exhibit negative instabilities during both the radiation and the matter domination, irrespective of the form of f(G). This growth of perturbations gets stronger on smaller scales, which is difficult to be compatible with the observed galaxy spectrum unless the deviation from general relativity is very small. Thus f(G) cosmological models are effectively ruled out from this ultraviolet instability, even though they can be compatible with the late-time cosmic acceleration and local gravity constraints.

  8. Precise timing for peak relaxin and decreased progesterone secretion after hysterectomy in the pig.

    PubMed

    Felder, K J; Molina, J R; Benoit, A M; Anderson, L L

    1986-10-01

    Relaxin and progesterone secretion by aging corpora lutea (days 90-120) was examined in pregnant and lactating gilts compared with that in hysterectomized animals. The length of pregnancy is about 115 days in pigs. Unmated gilts were hysterectomized on day 6 (estrus = day 0). From days 90-101, relaxin concentrations in peripheral plasma remained consistently low in pregnant gilts (range, 0.7-1.5 ng/ml) and less (P less than 0.05) than those in hysterectomized animals (range, 0.9-3.5 ng/ml). Relaxin increased abruptly (P less than 0.01) to a peak of 66 ng/ml in pregnant gilts and 37 ng/ml in hysterectomized animals. Relaxin peaked in pregnant animals at 113 +/- 0.7 days (+/- SE) and in hysterectomized gilts at 113 +/- 0.7 days; gestation length averaged 114 +/- 0.8 days. In pregnant gilts, relaxin decreased from a peak of 66 to 11 ng/ml within 1 day and remained low (less than 1.0 ng/ml) in these lactating dams until day 120. In hysterectomized gilts, peak relaxin also decreased abruptly from 37 to 4.2 ng/ml, but remained consistently greater (P less than 0.05) than that in lactating dams. Although there were abrupt shifts in relaxin concentrations within 20 min, there was no evidence for consistent episodic relaxin release between days 112-116. Plasma progesterone concentrations were consistently greater (P less than 0.05) in hysterectomized than in pregnant gilts from days 102-110. Progesterone decreased abruptly in prepartum gilts (days 111-114) from 16 to 1.2 ng/ml and remained low during lactation (0.5 ng/ml). In hysterectomized animals, it decreased abruptly on days 110-113, ranging from 20-12 ng/ml, and remained at this lower level until day 120. These results clearly indicate that a precisely timed peak release of relaxin and coincident decrease in progesterone secretion occur in unmated hysterectomized gilts at the same time as those found a few hours preceding parturition during normal pregnancy. These abrupt shifts in relaxin and progesterone secretion on

  9. Time interval measurement device based on surface acoustic wave filter excitation, providing 1 ps precision and stability

    SciTech Connect

    Panek, Petr; Prochazka, Ivan

    2007-09-15

    This article deals with the time interval measurement device, which is based on a surface acoustic wave (SAW) filter as a time interpolator. The operating principle is based on the fact that a transversal SAW filter excited by a short pulse can generate a finite signal with highly suppressed spectra outside a narrow frequency band. If the responses to two excitations are sampled at clock ticks, they can be precisely reconstructed from a finite number of samples and then compared so as to determine the time interval between the two excitations. We have designed and constructed a two-channel time interval measurement device which allows independent timing of two events and evaluation of the time interval between them. The device has been constructed using commercially available components. The experimental results proved the concept. We have assessed the single-shot time interval measurement precision of 1.3 ps rms that corresponds to the time of arrival precision of 0.9 ps rms in each channel. The temperature drift of the measured time interval on temperature is lower than 0.5 ps/K, and the long term stability is better than {+-}0.2 ps/h. These are to our knowledge the best values reported for the time interval measurement device. The results are in good agreement with the error budget based on the theoretical analysis.

  10. Time interval measurement device based on surface acoustic wave filter excitation, providing 1 ps precision and stability

    NASA Astrophysics Data System (ADS)

    Panek, Petr; Prochazka, Ivan

    2007-09-01

    This article deals with the time interval measurement device, which is based on a surface acoustic wave (SAW) filter as a time interpolator. The operating principle is based on the fact that a transversal SAW filter excited by a short pulse can generate a finite signal with highly suppressed spectra outside a narrow frequency band. If the responses to two excitations are sampled at clock ticks, they can be precisely reconstructed from a finite number of samples and then compared so as to determine the time interval between the two excitations. We have designed and constructed a two-channel time interval measurement device which allows independent timing of two events and evaluation of the time interval between them. The device has been constructed using commercially available components. The experimental results proved the concept. We have assessed the single-shot time interval measurement precision of 1.3ps rms that corresponds to the time of arrival precision of 0.9ps rms in each channel. The temperature drift of the measured time interval on temperature is lower than 0.5ps/K, and the long term stability is better than ±0.2ps/h. These are to our knowledge the best values reported for the time interval measurement device. The results are in good agreement with the error budget based on the theoretical analysis.

  11. Precise time-window for the onset of glacial termination found

    NASA Astrophysics Data System (ADS)

    Lai, C.-C.; Tseng, Y.-H.; Dietrich, D. E.

    2009-04-01

    Following a set of three simple rules, we have found a precise time-window (TW) for each onset of a glacial termination (GT) appeared during the last million years. The onset of GT (OGT) is defined as the year when the following two conditions are met: (1) the benthic delta 18-O is a maximum and greater than 4.5‰ and (2) its value continually drops 1‰ within 5 Ky. We developed the rules based on three hypotheses. We hypothesize that: (H1) The Earth's three orbital parameters (eccentricity, obliquity and precession of equinox) determine the insolation which is the key force to the climate system. (H2) However, only a small fraction of insolation is converted into sensible heat (SH) and chemical energy through photosynthesis (CETP) as influxes to the climate system's main heat capacitors (HCs), namely the world oceans. When insolation increases, both the SH flux and CETP increase. The downward SH flux will only increase the stability of the seawater. Nonetheless, the CETP gets accumulated faster than average. The CETP cascades through the marine food web and bacterial degradation. Finally, it is stored in the simple gas molecules (such as CH4) that form methane hydrate (MH) and other hydrates such as hydrogen sulfide hydrate (HSH) in deep sea sediments after a long time. While hydrates deposit accumulates with time, it also breaks off from the sediments from time to time. Since the density of MH is slightly smaller than average seawater, the MH ascends slowly from deep sea into upper part of ocean. But, HSH is slightly denser than the warm seawater in the upper part of ocean. Over the portion of glacial cycle when insolation is strong, the existence of a residual SH prevents the ascension of hydrates. (H3) Internal forcing - An internal energy converter or a heat generator exists in the oceans. Lai (2007) has found the link between the observed seawater warming at intermediate depth (400 - 750 m) (Barnett et al. 2001) and the dissociation of floating microscopic

  12. Precise time-window for the onset of glacial termination found

    NASA Astrophysics Data System (ADS)

    Lai, C.-C.; Tseng, Y.-H.; Dietrich, D. E.

    2009-04-01

    Following a set of three simple rules, we have found a precise time-window (TW) for each onset of a glacial termination (GT) appeared during the last million years. The onset of GT (OGT) is defined as the year when the following two conditions are met: (1) the benthic delta 18-O is a maximum and greater than 4.5‰ and (2) its value continually drops 1‰ within 5 Ky. We developed the rules based on three hypotheses. We hypothesize that: (H1) The Earth's three orbital parameters (eccentricity, obliquity and precession of equinox) determine the insolation which is the key force to the climate system. (H2) However, only a small fraction of insolation is converted into sensible heat (SH) and chemical energy through photosynthesis (CETP) as influxes to the climate system's main heat capacitors (HCs), namely the world oceans. When insolation increases, both the SH flux and CETP increase. The downward SH flux will only increase the stability of the seawater. Nonetheless, the CETP gets accumulated faster than average. The CETP cascades through the marine food web and bacterial degradation. Finally, it is stored in the simple gas molecules (such as CH4) that form methane hydrate (MH) and other hydrates such as hydrogen sulfide hydrate (HSH) in deep sea sediments after a long time. While hydrates deposit accumulates with time, it also breaks off from the sediments from time to time. Since the density of MH is slightly smaller than average seawater, the MH ascends slowly from deep sea into upper part of ocean. But, HSH is slightly denser than the warm seawater in the upper part of ocean. Over the portion of glacial cycle when insolation is strong, the existence of a residual SH prevents the ascension of hydrates. (H3) Internal forcing - An internal energy converter or a heat generator exists in the oceans. Lai (2007) has found the link between the observed seawater warming at intermediate depth (400 - 750 m) (Barnett et al. 2001) and the dissociation of floating microscopic

  13. An experimental validation of the Gauss-Markov model for nonuniformity noise in infrared focal plane array sensors

    NASA Astrophysics Data System (ADS)

    Zapata, Octavio; Pedreros, Felipe; Torres, Sergio N.

    2012-06-01

    The aim of this research is to experimentally validate a Gauss-Markov model, previously developed by our group, for the non-uniformity parameters of infrared (IR) focal plane arrays (FPAs). The Gauss-Markov model assumed that both, the gain and the offset parameters at each detector, are random state-variables modeled by a recursive discrete-time process. For simplicity, however, we have regarded here the gain parameter as a constant and assumed that solely the offset parameter follows a Gauss-Markov model. Experiments have been conducted at room temperature and IR data was collected from black-body radiator sources using microbolometer-based IR cameras operating in the 8 to 12 μm. Next, well-known statistical techniques were used to analyze the offset time series and determinate whether the Gauss-Markov model truly fits the temporal dynamics of the offset. The validity of the Gauss-Markov model for the offset parameter was tested at two time scales: seconds and minutes. It is worth mentioning that the statistical analysis conducted in this work is a key in providing mechanisms for capturing the drift in the fixed pattern noise parameters.

  14. High-Precision Time Delay Control with Continuous Phase Shifter for Pump-Probe Experiments Using Synchrotron Radiation Pulses

    SciTech Connect

    Tanaka, Yoshihito; Ohshima, Takashi; Moritomo, Yutaka; Tanaka, Hitoshi; Takata, Masaki

    2010-06-23

    Brilliant pulsed x-ray synchrotron radiation (SR) is useful for pump-probe experiment such as time-resolved x-ray diffraction, x-ray absorption fine structure, and x-ray spectroscopy. For laser pump-SR x-ray probe experiments, short pulsed lasers are generally synchronized to the SR master oscillator controlling the voltage for acceleration of electron bunches in an accelerator, and the interval between the laser and the SR pulses is changed around the time scale of target phenomenon. Ideal delay control produces any time delay as keeping the time-precision and pointing-stability of optical pulses at a sample position. We constructed the time delay control module using a continuous phase shifter of radio frequency signal and a frequency divider, which can produce the delayed trigger pulses to the laser without degradation of the time precision and the pointing stability. A picoseconds time-resolved x-ray diffraction experiment was demonstrated at SPring-8 storage ring for fast lattice response by femtosecond pulsed laser irradiation, and suggested the possibility of accurate sound velocity measurement. A delay control unit operating with subpicosecond precision has also been designed for femtosecond pump-probe experiments using a free electron laser at SPring-8 campus.

  15. An Efficient Real-Time Precise Point Positioning (RT-PPP) Solution for Offshore Surveys in Turkey

    NASA Astrophysics Data System (ADS)

    Abdelazeem, Mohamed; Nurhan Çelik, Rahmi

    2016-07-01

    Recently, the international global navigation satellite systems (GNSS) service (IGS) has launched the real-time service (IGS-RTS). The IGS-RTS has shown promise accuracy in precise point positioning applications. Currently, the precise point positioning technique is used extensively in marine applications. In this study, we evaluate the accuracy of the real-time precise point positioning (RT-PPP) solution using the IGS-RTS for offshore surveys in Turkey. Dual-frequency GPS data is collected onboard a vessel and then processed using the Bernese 5.2 PPP module. The IGS-RTS precise orbit and clock products are used in order to account for the satellite orbit and clock products. To investigate the accuracy of the RT-PPP technique, the positioning accuracy is assessed and compared with the traditional double-difference solution. It is shown that the RT-PPP solution has good agreement with the double-difference solution. Also, the proposed solution efficiently fulfills the international maritime organization (IMO) standards for the offshore surveys.

  16. Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Dominguez, Alfredo E.; Gallo, Emanuel

    2006-03-15

    In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in n-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as the Gauss-Bonnet versions of the Bonnor-Vaidya (de Sitter/anti-de Sitter) solution, a global monopole, and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditions on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics.

  17. Composite Gauss-Legendre Quadrature with Error Control

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2011-01-01

    We describe composite Gauss-Legendre quadrature for determining definite integrals, including a means of controlling the approximation error. We compare the form and performance of the algorithm with standard Newton-Cotes quadrature. (Contains 1 table.)

  18. Domain walls in Einstein-Gauss-Bonnet bulk

    SciTech Connect

    Mazharimousavi, S. Habib; Halilsoy, M.

    2010-10-15

    We investigate the dynamics of a n-dimensional domain wall in a n+1-dimensional Einstein-Gauss-Bonnet bulk. Exact effective potential induced by the Gauss-Bonnet (GB) term on the wall is derived. In the absence of the GB term we recover the familiar gravitational and antiharmonic oscillator potentials. Inclusion of the GB correction gives rise to a minimum radius of bounce for the Friedmann-Robertson-Walker universe expanding with a negative pressure on the domain wall.

  19. Strong gravitational lensing with Gauss-Bonnet correction

    SciTech Connect

    Sadeghi, J.; Vaez, H. E-mail: h.vaez@umz.ac.ir

    2014-06-01

    In this paper we investigate the strong gravitational lensing in a five dimensional background with Gauss-Bonnet gravity, so that in 4-dimensions the Gauss-Bonnet correction disappears. By considering the logarithmic term for deflection angle, we obtain the deflection angle α-circumflex and corresponding parameters ā and b-bar . Finally, we estimate some properties of relativistic images such as θ{sub ∞}, s and r{sub m}.

  20. The Gauss Rifle and Magnetic Energy

    NASA Astrophysics Data System (ADS)

    Rabchuk, James A.

    2003-03-01

    With the advent of cheap and easy-to-come-by NdFeB magnets, it has become possible to design a number of simple but effective demonstrations of magnetic force. One such demonstration, dubbed the "gauss rifle," is a type of linear magnetic accelerator. It is relatively easy to assemble and involves a rapid and dramatic increase in kinetic energy of the steel ball bearings used in the demonstration. This makes the demonstration a good attention getter, setting the stage for a discussion of a number of physics topics, including conservation of energy, magnetic energy, and magnetic force. It also has the potential for becoming a laboratory experiment since the materials are relatively cheap, there is some challenge in the arrangement of the magnets, and the performance of the accelerator can be characterized by measuring the initial and final velocities of the bearings. Finally, by using freely available finite element magnetics software, it is even possible to make predictions of the final velocity for different configurations of the magnets.

  1. Introducing SummerTime: A package for high-precision computation of sums appearing in DRA1 method

    NASA Astrophysics Data System (ADS)

    Lee, Roman N.; Mingulov, Kirill T.

    2016-06-01

    We present the Mathematica package SummerTime for arbitrary-precision computation of sums appearing in the results of DRA method (Lee, 2010). So far these results include the following families of the integrals: 3-loop onshell massless vertices, 3-loop onshell mass operator type integrals, 4-loop QED-type tadpoles, 4-loop massless propagators (Lee et al., 2010; Lee and Smirnov, 2011; Lee et al., 2011, 2012). The package can be used for high-precision numerical computation of the expansion of the integrals from the above families around arbitrary space-time dimension. In addition, this package contains convenient tools for the calculation of multiple zeta values, harmonic polylogarithms and other transcendental numbers expressed in terms of nested sums with factorized summand.

  2. Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems

    SciTech Connect

    Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej; Orosz, Jerome A.; Welsh, William F.; Fabrycky, Daniel C.

    2014-02-01

    We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levels in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.

  3. Adaptive force generation for precision-grip lifting by a spectral timing model of the cerebellum.

    PubMed

    Ulloa, Antonio; Bullock, Daniel; Rhodes, Bradley J

    2003-01-01

    We modeled adaptive generation of precision grip forces during object lifting. The model presented adjusts reactive and anticipatory grip forces to a level just above that needed to stabilize lifted objects in the hand. The model obeys principles of cerebellar structure and function by using slip sensations as error signals to adapt phasic motor commands to tonic force generators associated with output synergies controlling grip aperture. The learned phasic commands are weight- and texture-dependent. Simulations of the new circuit model reproduce key aspects of experimental observations of force application. Over learning trials, the onset of grip force buildup comes to lead the load force buildup, and the rate-of-rise of grip force, but not load force, scales inversely with the friction of the object.

  4. Alternated Prone and Supine Whole-Breast Irradiation Using IMRT: Setup Precision, Respiratory Movement and Treatment Time

    SciTech Connect

    Veldeman, Liv; De Gersem, Werner; Speleers, Bruno; Truyens, Bart; Van Greveling, Annick; Van den Broecke, Rudy; De Neve, Wilfried

    2012-04-01

    Purpose: The objective of this study was to compare setup precision, respiration-related breast movement and treatment time between prone and supine positions for whole-breast irradiation. Methods and Materials: Ten patients with early-stage breast carcinoma after breast-conserving surgery were treated with prone and supine whole breast-irradiation in a daily alternating schedule. Setup precision was monitored using cone-beam computed tomography (CBCT) imaging. Respiration-related breast movement in the vertical direction was assessed by magnetic sensors. The time needed for patient setup and for the CBCT procedure, the beam time, and the length of the whole treatment slot were also recorded. Results: Random and systematic errors were not significantly different between positions in individual patients for each of the three axes (left-right, longitudinal, and vertical). Respiration-related movement was smaller in prone position, but about 80% of observations showed amplitudes <1 mm in both positions. Treatment slots were longer in prone position (21.2 {+-} 2.5 min) than in supine position (19.4 {+-} 0.8 min; p = 0.044). Conclusion: Comparison of setup precision between prone and supine position in the same patient showed no significant differences in random and systematic errors. Respiratory movement was smaller in prone position. The longer treatment slots in prone position can probably be attributed to the higher repositioning need.

  5. ASSESSING THE ROLE OF SPIN NOISE IN THE PRECISION TIMING OF MILLISECOND PULSARS

    SciTech Connect

    Shannon, Ryan M.; Cordes, James M. E-mail: cordes@astro.cornell.ed

    2010-12-20

    We investigate rotational spin noise (referred to as timing noise) in non-accreting pulsars: millisecond pulsars, canonical pulsars, and magnetars. Particular attention is placed on quantifying the strength and non-stationarity of timing noise in millisecond pulsars because the long-term stability of these objects is required to detect nanohertz gravitational radiation. We show that a single scaling law is sufficient to characterize timing noise in millisecond and canonical pulsars while the same scaling law underestimates the levels of timing noise in magnetars. The scaling law, along with a detailed study of the millisecond pulsar B1937+21, leads us to conclude that timing noise is latent in most millisecond pulsars and will be measurable in many objects when better arrival time estimates are obtained over long data spans. The sensitivity of a pulsar timing array to gravitational radiation is strongly affected by any timing noise. We conclude that detection of proposed gravitational wave backgrounds will require the analysis of more objects than previously suggested over data spans that depend on the spectra of both the gravitational wave background and of the timing noise. It is imperative to find additional millisecond pulsars in current and future surveys in order to reduce the effects of timing noise.

  6. Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws.

    PubMed

    Timmann, D; Watts, S; Hore, J

    1999-07-01

    We investigated the idea that the cerebellum is required for precise timing of fast skilled arm movements by studying one situation where timing precision is required, namely finger opening in overarm throwing. Specifically, we tested the hypothesis that in overarm throws made by cerebellar patients, ball high-low inaccuracy is due to disordered timing of finger opening. Six cerebellar patients and six matched control subjects were instructed to throw tennis balls at three different speeds from a seated position while angular positions in three dimensions of five arm segments were recorded at 1,000 Hz with the search-coil technique. Cerebellar patients threw more slowly than controls, were markedly less accurate, had more variable hand trajectories, and showed increased variability in the timing, amplitude, and velocity of finger opening. Ball high-low inaccuracy was not related to variability in the height or direction of the hand trajectory or to variability in finger amplitude or velocity. Instead, the cause was variable timing of finger opening and thereby ball release occurring on a flattened arc hand trajectory. The ranges of finger opening times and ball release times (timing windows) for 95% of the throws were on average four to five times longer for cerebellar patients; e.g., across subjects mean ball release timing windows for throws made under the medium-speed instruction were 11 ms for controls and 55 ms for cerebellar patients. This increased timing variability could not be explained by disorder in control of force at the fingers. Because finger opening in throwing is likely controlled by a central command, the results implicate the cerebellum in timing the central command that initiates finger opening in this fast skilled multijoint arm movement. PMID:10400939

  7. Synthetic biosensors for precise gene control and real-time monitoring of metabolites

    PubMed Central

    Rogers, Jameson K.; Guzman, Christopher D.; Taylor, Noah D.; Raman, Srivatsan; Anderson, Kelley; Church, George M.

    2015-01-01

    Characterization and standardization of inducible transcriptional regulators has transformed how scientists approach biology by allowing precise and tunable control of gene expression. Despite their utility, only a handful of well-characterized regulators exist, limiting the complexity of engineered biological systems. We apply a characterization pipeline to four genetically encoded sensors that respond to acrylate, glucarate, erythromycin and naringenin. We evaluate how the concentration of the inducing chemical relates to protein expression, how the extent of induction affects protein expression kinetics, and how the activation behavior of single cells relates to ensemble measurements. We show that activation of each sensor is orthogonal to the other sensors, and to other common inducible systems. We demonstrate independent control of three fluorescent proteins in a single cell, chemically defining eight unique transcriptional states. To demonstrate biosensor utility in metabolic engineering, we apply the glucarate biosensor to monitor product formation in a heterologous glucarate biosynthesis pathway and identify superior enzyme variants. Doubling the number of well-characterized inducible systems makes more complex synthetic biological circuits accessible. Characterizing sensors that transduce the intracellular concentration of valuable metabolites into fluorescent readouts enables high-throughput screening of biological catalysts and alleviates the primary bottleneck of the metabolic engineering design-build-test cycle. PMID:26152303

  8. Stability of anti-de sitter space in Einstein-Gauss-Bonnet gravity.

    PubMed

    Deppe, Nils; Kolly, Allison; Frey, Andrew; Kunstatter, Gabor

    2015-02-20

    Recently it has been argued that in Einstein gravity anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass-energy content of the spacetime is too small, thereby restoring the stability of anti-de Sitter spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude. PMID:25763946

  9. Stability of anti-de sitter space in Einstein-Gauss-Bonnet gravity.

    PubMed

    Deppe, Nils; Kolly, Allison; Frey, Andrew; Kunstatter, Gabor

    2015-02-20

    Recently it has been argued that in Einstein gravity anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass-energy content of the spacetime is too small, thereby restoring the stability of anti-de Sitter spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude.

  10. Live-timer method of automatic dead-time correction for precision counting

    NASA Technical Reports Server (NTRS)

    Porges, K. G.; Rudnick, S. J.

    1969-01-01

    Automatic correction for dead time losses in nuclear counting experiments is implemented by a simple live timer arrangement in which each counting interval is extended for compensation for the dead time during that interval. this method eliminates repetitious manual calculations, source of error, and dependence upon paralysis shifts.

  11. Combined dynamic stiffness matrix and precise time integration method for transient forced vibration response analysis of beams

    NASA Astrophysics Data System (ADS)

    Tang, Bin

    2008-01-01

    A method has been developed for determining the transient response of a beam. The beam is divided into several continuous Timoshenko beam elements. The overall dynamic stiffness matrix is assembled in turn. Using Leung's equation, we derive the overall mass and stiffness matrices which are more suitable for response analysis than the overall dynamic stiffness matrix. The forced vibration of the beam is computed by the precise time integration method. Three illustrative beams are discussed to evaluate the performance of the current method. Solutions calculated by the finite element method and theoretical analysis are also enumerated for comparison. In these examples, we have found that the current method can solve the forced vibration of structures with a higher precision.

  12. NUT-charged black holes in Gauss-Bonnet gravity

    SciTech Connect

    Dehghani, M.H.; Mann, R.B.

    2005-12-15

    We investigate the existence of Taub-NUT (Newman-Unti-Tamburino) and Taub-bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in d dimensions. We find that for all nonextremal NUT solutions of Einstein gravity having no curvature singularity at r=N, there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter {alpha} goes to zero. Furthermore there are no NUT solutions in Gauss-Bonnet gravity that yield nonextremal NUT solutions to Einstein gravity having a curvature singularity at r=N in the limit {alpha}{yields}0. Indeed, we have nonextreme NUT solutions in 2+2k dimensions with nontrivial fibration only when the 2k-dimensional base space is chosen to be CP{sup 2k}. We also find that the Gauss-Bonnet gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a two-dimensional factor space of positive curvature. Indeed, when the base space has at most one positively curved two-dimensional space as one of its factor spaces, then Gauss-Bonnet gravity admits extreme NUT solutions, even though there a curvature singularity exists at r=N. We also find that one can have bolt solutions in Gauss-Bonnet gravity with any base space with factor spaces of zero or positive constant curvature. The only case for which one does not have bolt solutions is in the absence of a cosmological term with zero curvature base space.

  13. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--September 1996

    SciTech Connect

    1998-12-31

    This document is a Final Technical Report that describes the results of the Geophex Airborne Unmanned Survey System (GAUSS) research project. The objectives were to construct a geophysical data acquisition system that uses a remotely operated unmanned aerial vehicle (UAV) and to evaluate its effectiveness for characterization of hazardous environmental sites. The GAUSS is a data acquisition system that mitigates the potential risk to personnel during geophysical characterization of hazardous or radioactive sites. The fundamental basis of the GAUSS is as follows: (1) an unmanned survey vehicle carries geophysical sensors into a hazardous location, (2) the pilot remains outside the hazardous site and operates the vehicle using radio control, (3) geophysical measurements and their spatial locations are processed by an automated data-acquisition system which displays data on an off-site monitor in real-time, and (4) the pilot uses the display to direct the survey vehicle for complete site coverage. The objective of our Phase I research was to develop a data acquisition and processing (DAP) subsystem and geophysical sensors suitable for UAV deployment. We integrated these two subsystems to produce an automated, hand-held geophysical surveying system. The objective of the Phase II effort was to modify the subsystems and integrate them into an airborne prototype. The completed GAUSS DAP system consists of a UAV platform, a laser tracking and ranging subsystem, a telemetry subsystem, light-weight geophysical sensors, a base-station computer (BC), and custom-written survey control software (SCS). We have utilized off-the-shelf commercial products, where possible, to reduce cost and design time.

  14. Search for the best timing strategy in high-precision drift chambers

    SciTech Connect

    Va'vra, J.

    1983-06-01

    Computer simulated drift chamber pulses are used to investigate various possible timing strategies in the drift chambers. In particular, the leading edge, the multiple threshold and the flash ADC timing methods are compared. Although the presented method is general for any drift geometry, we concentrate our discussion on the jet chambers where the drift velocity is about 3 to 5 cm/..mu..sec and the individual ionization clusters are not resolved due to a finite speed of our electronics.

  15. Time-Separating Heating and Sensor Functions of Thermistors in Precision Thermal Control Applications

    NASA Technical Reports Server (NTRS)

    Cho, Hyung J.; Sukhatme, Kalyani G.; Mahoney, John C.; Penanen, Konstantin Penanen; Vargas, Rudolph, Jr.

    2010-01-01

    A method allows combining the functions of a heater and a thermometer in a single device, a thermistor, with minimal temperature read errors. Because thermistors typically have a much smaller thermal mass than the objects they monitor, the thermal time to equilibrate the thermometer to the temperature of the object is typically much shorter than the thermal time of the object to change its temperature in response to an external perturbation.

  16. A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxiang; Chen, Yu; Li, Mei; Yan, Mufu; Ni, Meng; Xia, Changrong

    2016-03-01

    A new Tikhonov regularization approach without adjusting parameters is proposed for reconstructing distribution of relaxation time (DRT). It is capable of eliminating the pseudo peaks and capturing discontinuities in the DRT, making it feasible to resolve the number and the nature of electrochemical processes without making assumptions.

  17. Entanglement of Ince-Gauss Modes of Photons

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Fickler, Robert; Plick, William; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2012-02-01

    Ince-Gauss modes are solutions of the paraxial wave equation in elliptical coordinates [1]. They are natural generalizations both of Laguerre-Gauss and of Hermite-Gauss modes, which have been used extensively in quantum optics and quantum information processing over the last decade [2]. Ince-Gauss modes are described by one additional real parameter -- ellipticity. For each value of ellipticity, a discrete infinite-dimensional Hilbert space exists. This conceptually new degree of freedom could open up exciting possibilities for higher-dimensional quantum optical experiments. We present the first entanglement of non-trivial Ince-Gauss Modes. In our setup, we take advantage of a spontaneous parametric down-conversion process in a non-linear crystal to create entangled photon pairs. Spatial light modulators (SLMs) are used as analyzers. [1] Miguel A. Bandres and Julio C. Guti'errez-Vega ``Ince Gaussian beams", Optics Letters, Vol. 29, Issue 2, 144-146 (2004) [2] Adetunmise C. Dada, Jonathan Leach, Gerald S. Buller, Miles J. Padgett, and Erika Andersson, ``Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities", Nature Physics 7, 677-680 (2011)

  18. Gravity effects obtained from global hydrology models in comparison with high precision gravimetric time series

    NASA Astrophysics Data System (ADS)

    Wziontek, Hartmut; Wilmes, Herbert; Güntner, Andreas; Creutzfeldt, Benjamin

    2010-05-01

    Water mass changes are a major source of variations in residual gravimetric time series obtained from the combination of observations with superconducting and absolute gravimeters. Changes in the local water storage are the main influence, but global variations contribute to the signal significantly. For three European gravity stations, Bad Homburg, Wettzell and Medicina, different global hydrology models are compared. The influence of topographic effects is discussed and due to the long-term stability of the combined gravity time series, inter-annual signals in model data and gravimetric observations are compared. Two sources of influence are discriminated, i.e., the effect of a local zone with an extent of a few kilometers around the gravimetric station and the global contribution beyond 50km. Considering their coarse resolution and uncertainties, local effects calculated from global hydrological models are compared with the in-situ gravity observations and, for the station Wettzell, with local hydrological monitoring data.

  19. Proposal for an MRPC system with high-precision timing in the LVD structure

    NASA Astrophysics Data System (ADS)

    Zichichi, A.

    2012-04-01

    The purpose of this paper is to present a project in order to verify —without the need of knowing the distance CERN-Gran Sasso— the discovery made by the OPERA Collaboration concerning the speed of the CERN neutrinos. The project consists of two parts. A simple one and a less simple one. Both have the great advantage of being totally independent of the knowledge of the distance, ≃ 732 km, between the two Labs, CERN and LNGS, where the neutrinos are produced and detected, respectively. The "simple" version of this project is based on the high-energy horizontal cosmic muons, which traverse LVD and OPERA detectors, thus allowing to cross-calibrate the timing systems of both experiments in a way which is totally independent of the TOF measurements of CNGS. This component of the project is being studied in collaboration with the OPERA group, as the time stabilities of both experiments are needed. In fact it is since a long time that the two groups are engaged with this problem. In this paper we will present and discuss the "less simple" part which allows to establish, at the highest possible level of accuracy, if ( v > c) effects really exist.

  20. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  1. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  2. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now. PMID:27250477

  3. Precise time-of-flight calculation for 3-D synthetic aperture focusing.

    PubMed

    Andresen, Henrik; Nikolov, Svetoslav Ivanov; Jensen, Jørgen Arendt

    2009-09-01

    Conventional linear arrays can be used for 3-D ultrasound imaging by moving the array in the elevation direction and stacking the planes in a volume. The point-spread function is larger in the elevation plane, because the aperture is smaller and has a fixed elevation focus. Resolution improvements in elevation can be achieved by applying synthetic aperture focusing to the beamformed-in-plane RF data. The proposed method uses a virtual source placed at the elevation focus for postbeamforming. This has previously been done in 2 steps, in-plane focusing followed by synthetic aperture postfocusing in elevation, due to lack of a simple expression for the exact time of flight. This paper presents a new single step method for calculating the time of flight for a 3-D case using a linear array. The new method is more flexible and is able to beamform a fewer number of points much more efficiently. The method is evaluated using both simulated data and phantom measurements using the RASMUS experimental scanner. Computational cost of the method is higher than the 2-step method for a full volume beamforming, but it allows for a reduction of an order-of-magnitude if 3 planes are used for real-time visualization. In addition, the need for a temporary storage of beamformed data is removed.

  4. Using precise word timing information improves decoding accuracy in a multiband-accelerated multimodal reading experiment.

    PubMed

    Vu, An T; Phillips, Jeffrey S; Kay, Kendrick; Phillips, Matthew E; Johnson, Matthew R; Shinkareva, Svetlana V; Tubridy, Shannon; Millin, Rachel; Grossman, Murray; Gureckis, Todd; Bhattacharyya, Rajan; Yacoub, Essa

    2016-01-01

    The blood-oxygen-level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments is generally regarded as sluggish and poorly suited for probing neural function at the rapid timescales involved in sentence comprehension. However, recent studies have shown the value of acquiring data with very short repetition times (TRs), not merely in terms of improvements in contrast to noise ratio (CNR) through averaging, but also in terms of additional fine-grained temporal information. Using multiband-accelerated fMRI, we achieved whole-brain scans at 3-mm resolution with a TR of just 500 ms at both 3T and 7T field strengths. By taking advantage of word timing information, we found that word decoding accuracy across two separate sets of scan sessions improved significantly, with better overall performance at 7T than at 3T. The effect of TR was also investigated; we found that substantial word timing information can be extracted using fast TRs, with diminishing benefits beyond TRs of 1000 ms. PMID:27686111

  5. Using precise word timing information improves decoding accuracy in a multiband-accelerated multimodal reading experiment.

    PubMed

    Vu, An T; Phillips, Jeffrey S; Kay, Kendrick; Phillips, Matthew E; Johnson, Matthew R; Shinkareva, Svetlana V; Tubridy, Shannon; Millin, Rachel; Grossman, Murray; Gureckis, Todd; Bhattacharyya, Rajan; Yacoub, Essa

    2016-01-01

    The blood-oxygen-level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments is generally regarded as sluggish and poorly suited for probing neural function at the rapid timescales involved in sentence comprehension. However, recent studies have shown the value of acquiring data with very short repetition times (TRs), not merely in terms of improvements in contrast to noise ratio (CNR) through averaging, but also in terms of additional fine-grained temporal information. Using multiband-accelerated fMRI, we achieved whole-brain scans at 3-mm resolution with a TR of just 500 ms at both 3T and 7T field strengths. By taking advantage of word timing information, we found that word decoding accuracy across two separate sets of scan sessions improved significantly, with better overall performance at 7T than at 3T. The effect of TR was also investigated; we found that substantial word timing information can be extracted using fast TRs, with diminishing benefits beyond TRs of 1000 ms.

  6. Efficient population coding of naturalistic whisker motion in the ventro-posterior medial thalamus based on precise spike timing

    PubMed Central

    Bale, Michael R.; Ince, Robin A. A.; Santagata, Greta; Petersen, Rasmus S.

    2015-01-01

    The rodent whisker-associated thalamic nucleus (VPM) contains a somatotopic map where whisker representation is divided into distinct neuronal sub-populations, called “barreloids”. Each barreloid projects to its associated cortical barrel column and so forms a gateway for incoming sensory stimuli to the barrel cortex. We aimed to determine how the population of neurons within one barreloid encodes naturalistic whisker motion. In rats, we recorded the extracellular activity of up to nine single neurons within a single barreloid, by implanting silicon probes parallel to the longitudinal axis of the barreloids. We found that play-back of texture-induced whisker motion evoked sparse responses, timed with millisecond precision. At the population level, there was synchronous activity: however, different subsets of neurons were synchronously active at different times. Mutual information between population responses and whisker motion increased near linearly with population size. When normalized to factor out firing rate differences, we found that texture was encoded with greater informational-efficiency than white noise. These results indicate that, within each VPM barreloid, there is a rich and efficient population code for naturalistic whisker motion based on precisely timed, population spike patterns. PMID:26441549

  7. Resimulation of noise: a precision estimator for least square error curve-fitting tested for axial strain time constant imaging.

    PubMed

    Nair, S P; Righetti, R

    2015-05-01

    Recent elastography techniques focus on imaging information on properties of materials which can be modeled as viscoelastic or poroelastic. These techniques often require the fitting of temporal strain data, acquired from either a creep or stress-relaxation experiment to a mathematical model using least square error (LSE) parameter estimation. It is known that the strain versus time relationships for tissues undergoing creep compression have a non-linear relationship. In non-linear cases, devising a measure of estimate reliability can be challenging. In this article, we have developed and tested a method to provide non linear LSE parameter estimate reliability: which we called Resimulation of Noise (RoN). RoN provides a measure of reliability by estimating the spread of parameter estimates from a single experiment realization. We have tested RoN specifically for the case of axial strain time constant parameter estimation in poroelastic media. Our tests show that the RoN estimated precision has a linear relationship to the actual precision of the LSE estimator. We have also compared results from the RoN derived measure of reliability against a commonly used reliability measure: the correlation coefficient (CorrCoeff). Our results show that CorrCoeff is a poor measure of estimate reliability for non-linear LSE parameter estimation. While the RoN is specifically tested only for axial strain time constant imaging, a general algorithm is provided for use in all LSE parameter estimation.

  8. Time-resolved optical spectrometer based on a monolithic array of high-precision TDCs and SPADs

    NASA Astrophysics Data System (ADS)

    Tamborini, Davide; Markovic, Bojan; Di Sieno, Laura; Contini, Davide; Bassi, Andrea; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2013-12-01

    We present a compact time-resolved spectrometer suitable for optical spectroscopy from 400 nm to 1 μm wavelengths. The detector consists of a monolithic array of 16 high-precision Time-to-Digital Converters (TDC) and Single-Photon Avalanche Diodes (SPAD). The instrument has 10 ps resolution and reaches 70 ps (FWHM) timing precision over a 160 ns full-scale range with a Differential Non-Linearity (DNL) better than 1.5 % LSB. The core of the spectrometer is the application-specific integrated chip composed of 16 pixels with 250 μm pitch, containing a 20 μm diameter SPAD and an independent TDC each, fabricated in a 0.35 μm CMOS technology. In front of this array a monochromator is used to focus different wavelengths into different pixels. The spectrometer has been used for fluorescence lifetime spectroscopy: 5 nm spectral resolution over an 80 nm bandwidth is achieved. Lifetime spectroscopy of Nile blue is demonstrated.

  9. Low noise buffer amplifiers and buffered phase comparators for precise time and frequency measurement and distribution

    NASA Technical Reports Server (NTRS)

    Eichinger, R. A.; Dachel, P.; Miller, W. H.; Ingold, J. S.

    1982-01-01

    Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients.

  10. Note: Precise phase and frequency comparator based on direct phase-time measurements

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Panek, Petr; Kodet, Jan

    2014-12-01

    We are reporting on the design, performance, and application results of a phase and frequency comparator based on the direct phase-time measurement using a high performance event timer. The advantages of this approach are the simple implementation, a broad frequency range, and the clear interpretation of the measured results. Primarily we analyzed the background instability of the instrument in a common-clock test when a 200 MHz clock signal was connected to both inputs and the noise bandwidth was kept at 5 Hz by a preprocessing of the measured data. The results show that the Allan deviation of the background instability follows 4 × 10-14/τ for a wide range of averaging intervals from 0.1 s up to 104 s. These results are better than background instability of commercially available state-of-the-art instruments based on the phase difference multiplication. Finally the instrument was used for comparison of two H-masers. This experiment proofed that one of possible applications is a comparison of low-noise highly stable frequency sources and measurement of their frequency stability in the time-domain. The noise background of the instrument was negligible for averaging intervals longer than 100 ms.

  11. Precise stellar surface gravities from the time scales of convectively driven brightness variations.

    PubMed

    Kallinger, Thomas; Hekker, Saskia; García, Rafael A; Huber, Daniel; Matthews, Jaymie M

    2016-01-01

    A significant part of the intrinsic brightness variations in cool stars of low and intermediate mass arises from surface convection (seen as granulation) and acoustic oscillations (p-mode pulsations). The characteristics of these phenomena are largely determined by the stars' surface gravity (g). Detailed photometric measurements of either signal can yield an accurate value of g. However, even with ultraprecise photometry from NASA's Kepler mission, many stars are too faint for current methods or only moderate accuracy can be achieved in a limited range of stellar evolutionary stages. This means that many of the stars in the Kepler sample, including exoplanet hosts, are not sufficiently characterized to fully describe the sample and exoplanet properties. We present a novel way to measure surface gravities with accuracies of about 4%. Our technique exploits the tight relation between g and the characteristic time scale of the combined granulation and p-mode oscillation signal. It is applicable to all stars with a convective envelope, including active stars. It can measure g in stars for which no other analysis is now possible. Because it depends on the time scale (and no other properties) of the signal, our technique is largely independent of the type of measurement (for example, photometry or radial velocity measurements) and the calibration of the instrumentation used. However, the oscillation signal must be temporally resolved; thus, it cannot be applied to dwarf stars observed by Kepler in its long-cadence mode.

  12. Precise stellar surface gravities from the time scales of convectively driven brightness variations

    PubMed Central

    Kallinger, Thomas; Hekker, Saskia; García, Rafael A.; Huber, Daniel; Matthews, Jaymie M.

    2016-01-01

    A significant part of the intrinsic brightness variations in cool stars of low and intermediate mass arises from surface convection (seen as granulation) and acoustic oscillations (p-mode pulsations). The characteristics of these phenomena are largely determined by the stars’ surface gravity (g). Detailed photometric measurements of either signal can yield an accurate value of g. However, even with ultraprecise photometry from NASA’s Kepler mission, many stars are too faint for current methods or only moderate accuracy can be achieved in a limited range of stellar evolutionary stages. This means that many of the stars in the Kepler sample, including exoplanet hosts, are not sufficiently characterized to fully describe the sample and exoplanet properties. We present a novel way to measure surface gravities with accuracies of about 4%. Our technique exploits the tight relation between g and the characteristic time scale of the combined granulation and p-mode oscillation signal. It is applicable to all stars with a convective envelope, including active stars. It can measure g in stars for which no other analysis is now possible. Because it depends on the time scale (and no other properties) of the signal, our technique is largely independent of the type of measurement (for example, photometry or radial velocity measurements) and the calibration of the instrumentation used. However, the oscillation signal must be temporally resolved; thus, it cannot be applied to dwarf stars observed by Kepler in its long-cadence mode. PMID:26767193

  13. Precise stellar surface gravities from the time scales of convectively driven brightness variations.

    PubMed

    Kallinger, Thomas; Hekker, Saskia; García, Rafael A; Huber, Daniel; Matthews, Jaymie M

    2016-01-01

    A significant part of the intrinsic brightness variations in cool stars of low and intermediate mass arises from surface convection (seen as granulation) and acoustic oscillations (p-mode pulsations). The characteristics of these phenomena are largely determined by the stars' surface gravity (g). Detailed photometric measurements of either signal can yield an accurate value of g. However, even with ultraprecise photometry from NASA's Kepler mission, many stars are too faint for current methods or only moderate accuracy can be achieved in a limited range of stellar evolutionary stages. This means that many of the stars in the Kepler sample, including exoplanet hosts, are not sufficiently characterized to fully describe the sample and exoplanet properties. We present a novel way to measure surface gravities with accuracies of about 4%. Our technique exploits the tight relation between g and the characteristic time scale of the combined granulation and p-mode oscillation signal. It is applicable to all stars with a convective envelope, including active stars. It can measure g in stars for which no other analysis is now possible. Because it depends on the time scale (and no other properties) of the signal, our technique is largely independent of the type of measurement (for example, photometry or radial velocity measurements) and the calibration of the instrumentation used. However, the oscillation signal must be temporally resolved; thus, it cannot be applied to dwarf stars observed by Kepler in its long-cadence mode. PMID:26767193

  14. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link.

    PubMed

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-01-01

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10(-19)/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a "virtual" clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10(-20) at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology. PMID:26691731

  15. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-12-01

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10-19/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a “virtual” clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10-20 at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology.

  16. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link

    PubMed Central

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-01-01

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10−19/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a “virtual” clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10−20 at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology. PMID:26691731

  17. IMPROVING THE PRECISION OF TIME-DELAY COSMOGRAPHY WITH OBSERVATIONS OF GALAXIES ALONG THE LINE OF SIGHT

    SciTech Connect

    Greene, Zach S.; Suyu, Sherry H.; Treu, Tommaso; Hilbert, Stefan; Blandford, Roger D.; Auger, Matthew W.; Collett, Thomas E.; Marshall, Philip J.; Fassnacht, Christopher D.; Bradac, Marusa; Koopmans, Leon V. E.

    2013-05-01

    In order to use strong gravitational lens time delays to measure precise and accurate cosmological parameters the effects of mass along the line of sight must be taken into account. We present a method to achieve this by constraining the probability distribution function of the effective line-of-sight convergence {kappa}{sub ext}. The method is based on matching the observed overdensity in the weighted number of galaxies to that found in mock catalogs with {kappa}{sub ext} obtained by ray-tracing through structure formation simulations. We explore weighting schemes based on projected distance, mass, luminosity, and redshift. This additional information reduces the uncertainty of {kappa}{sub ext} from {sigma}{sub {kappa}} {approx} 0.06 to {approx}0.04 for very overdense LOSs like that of the system B1608+656. For more common LOSs, {sigma}{sub {kappa}} is reduced to {approx}<0.03, corresponding to an uncertainty of {approx}< 3% on distance. This uncertainty has comparable effects on cosmological parameters to that arising from the mass model of the deflector and its immediate environment. Photometric redshifts based on g, r, i and K photometries are sufficient to constrain {kappa}{sub ext} almost as well as with spectroscopic redshifts. As an illustration, we apply our method to the system B1608+656. Our most reliable {kappa}{sub ext} estimator gives {sigma}{sub {kappa}} = 0.047 down from 0.065 using only galaxy counts. Although deeper multiband observations of the field of B1608+656 are necessary to obtain a more precise estimate, we conclude that griK photometry, in addition to spectroscopy to characterize the immediate environment, is an effective way to increase the precision of time-delay cosmography.

  18. Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Motto-Ros, V.; Negre, E.; Pelascini, F.; Panczer, G.; Yu, J.

    2014-02-01

    Improving the repeatability and the reproducibility of measurement with laser-induced breakdown spectroscopy (LIBS) is one of the actual challenging issues faced by the technique to fit the requirements of precise and accurate quantitative analysis. Among the numerous factors influencing the measurement stability in short and long terms, there are shot-to-shot and day-to-day fluctuations of the morphology of the plasma. Such fluctuations are due to the high sensitivity of laser-induced plasma to experimental conditions including properties of the sample, the laser parameters as well as properties of the ambient gas. In this paper, we demonstrate that precise alignment of the optical fiber for the collection of the plasma emission with respect to the actual morphology of the plasma assisted by real-time imaging, greatly improves the stability of LIBS measurements in short as well as in long terms. The used setup is based on a plasma imaging arrangement using a CCD camera and a real-time image processing. The obtained plasma image is displayed in a 2-dimensional frame where the position of the optical fiber is beforehand calibrated. In addition, the setup provides direct sample surface monitoring, which allows a precise control of the distance between the focusing lens and the sample surface. Test runs with a set of 8 reference samples show very high determination coefficient for calibration curves (R2 = 0.9999), and a long term repeatability and reproducibility of 4.6% (relative standard deviation) over a period of 3 months without any signal normalization. The capacity of the system to automatically correct the sample surface position for a tilted or non-regular sample surface during a surface mapping measurement is also demonstrated.

  19. [Precision of estimating the time of death by mathematical expression of rectal body cooling (author's transl)].

    PubMed

    Henssge, C

    1979-04-27

    A representative material of experimental rectal cooling curves proves the basic validity of the model described by Marshall et al. for the mathematical expression of body cooling. For defined conditions of cooling as a relating standard the values of the exponents needed for the solution of the formula closely correlate with the weight of body to be raised to the -0.625 power. For applying in forensic cases a prescription easily to be used for the chosen relating standard of cooling is given for the computing of the time of death with permissible variation. From the first experiments of different conditions of body cooling to be met in forensic cases the possibilities of extending the range of application are derived.

  20. Gram-Schmidt Orthogonalization by Gauss Elimination.

    ERIC Educational Resources Information Center

    Pursell, Lyle; Trimble, S. Y.

    1991-01-01

    Described is the hand-calculation method for the orthogonalization of a given set of vectors through the integration of Gaussian elimination with existing algorithms. Although not numerically preferable, this method adds increased precision as well as organization to the solution process. (JJK)

  1. A Double Transducer for High Precision Ultrasonic Time-Domain Reflectometry Measurements

    PubMed Central

    Stade, Sam; Hakkarainen, Tuomas; Kallioinen, Mari; Mänttäri, Mika; Tuuva, Tuure

    2015-01-01

    Membrane fouling, where unwanted particles accumulate on the membrane surface and reduce its permeability, causes problems in membrane filtration processes. With ultrasonic time-domain reflectometry (UTDR) it is possible to measure the extent of membrane fouling and hence take actions to minimize it. However, the usability of UTDR is very limited to constant filtration conditions if the sonic velocity, which has a great impact on UTDR measurement accuracy, is unknown. With a reference transducer the actual sonic velocity can be measured. This requires another transducer to be installed in the module, where there may be only limited space or the module dimensions may not be suitable for the reference transducer. A double transducer described in this study eliminates the need for a separate reference transducer because in the double transducer the reference measurement is included in the design of the transducer holder. Two sensors in the same holder require less space. Other advantage is that the double transducer can be placed near the measurement target and hence the local sonic velocity can be determined. PMID:26131667

  2. Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time.

    PubMed

    Müllner, Fiona E; Wierenga, Corette J; Bonhoeffer, Tobias

    2015-08-01

    Inhibition plays a fundamental role in controlling neuronal activity in the brain. While perisomatic inhibition has been studied in detail, the majority of inhibitory synapses are found on dendritic shafts and are less well characterized. Here, we combine paired patch-clamp recordings and two-photon Ca(2+) imaging to quantify inhibition exerted by individual GABAergic contacts on hippocampal pyramidal cell dendrites. We observed that Ca(2+) transients from back-propagating action potentials were significantly reduced during simultaneous activation of individual nearby inhibitory contacts. The inhibition of Ca(2+) transients depended on the precise spike-timing (time constant < 5 ms) and declined steeply in the proximal and distal direction (length constants 23-28 μm). Notably, Ca(2+) amplitudes in spines were inhibited to the same degree as in the shaft. Given the known anatomical distribution of inhibitory synapses, our data suggest that the collective inhibitory input to a pyramidal cell is sufficient to control Ca(2+) levels across the entire dendritic arbor with micrometer and millisecond precision.

  3. Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor.

    PubMed

    Yasumatsu, Naoya; Watanabe, Shinichi

    2012-02-01

    We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.

  4. Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory.

    PubMed

    Kleihaus, Burkhard; Kunz, Jutta; Radu, Eugen

    2011-04-15

    We construct generalizations of the Kerr black holes by including higher-curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. We show that the domain of existence of these Einstein-Gauss-Bonnet-dilaton (EGBD) black holes is bounded by the Kerr black holes, the critical EGBD black holes, and the singular extremal EGBD solutions. The angular momentum of the EGBD black holes can exceed the Kerr bound. The EGBD black holes satisfy a generalized Smarr relation. We also compare their innermost stable circular orbits with those of the Kerr black holes and show the existence of differences which might be observable in astrophysical systems.

  5. GaussFit: Solving least squares and robust estimation problems

    NASA Astrophysics Data System (ADS)

    Jefferys, William; McArthur, Barbara; McCartney, James

    2013-05-01

    GaussFit solves least squares and robust estimation problems; written originally for reduction of NASA Hubble Space Telescope data, it includes a complete programming language designed especially to formulate estimation problems, a built-in compiler and interpreter to support the programming language, and a built-in algebraic manipulator for calculating the required partial derivatives analytically. The code can handle nonlinear models, exact constraints, correlated observations, and models where the equations of condition contain more than one observed quantity. Written in C, GaussFit includes an experimental robust estimation capability so data sets contaminated by outliers can be handled simply and efficiently.

  6. Buchdahl's inequality in five dimensional Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Wright, Matthew

    2016-07-01

    The Buchdahl limit for static spherically symmetric isotropic stars is generalised to the case of five dimensional Gauss-Bonnet gravity. Our result depends on the sign of the Gauss-Bonnet coupling constant α . When α >0, we find, unlike in general relativity, that the bound is dependent on the stellar structure, in particular the central energy density and we find that stable stellar structures can exist arbitrarily close to the black hole horizon. Thus stable stars can exist with extra mass in this theory compared to five dimensional general relativity. For α <0 it is found that the Buchdahl bound is more restrictive than the general relativistic case.

  7. High Precision and Real Time Tracking of Low Earth Orbiters With GPS: Case Studies With TOPEX/POSEIDON and EUVE

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P.; Bertiger, Winy I.; Gold, Kenn; Guinn, Joseph; Reichert, Angie; Watkins, Michael

    1995-01-01

    TOPEX/POSEIDON carries a dual-frequency 6 channel GPS receiver while EUVE has a 12 channel single frequency receiver. Flying at an altitude of 1334 km, TOPEX/POSEIDON performs precise ocean altimetry, which demands the highest possible accuracy in determining the radial orbit component in post-processing. Radial RMS accuracies of about 2 cm were realized using reduced dynamic tracking techniques. In this approach, orbit errors due to force are substantially reduced by exploiting the geometric strength of GPS to solve for a set of stochastic forces. On EUVE, the emphasis was on evaluating real time positioning techniques with a single frequency receiver. The capability for real time 3D accuracies of 15 m in the presence of Selective Availability was shown. This was validated by comparing to a post-processed differential GPS truth orbit believed accurate to about 1 m.!.

  8. Impact of age and obstacles on navigation precision and reaction time during blind navigation in dual-task conditions.

    PubMed

    Richer, Natalie; Paquet, Nicole; Lajoie, Yves

    2014-03-01

    Navigation without vision is a skill that is often employed in our daily lives, such as walking in the dark at night. Navigating without vision to a remembered target has previously been studied. However, little is known about the impact of age or obstacles on the attentional demands of a blind navigation task. This study examined the impacts of age and obstacles on reaction time (RT) and navigation precision during blind navigation in dual-task conditions. The aims were to determine the effects of age, obstacles, and auditory stimulus location on RT and navigation precision in a blind navigation task. Ten healthy young adults (24.5±2.5 years) and ten healthy older adults (69.5±2.9 years) participated in the study. Participants were asked to walk to a target located 8m ahead. In half the trials, the path was obstructed with hanging obstacles. Participants performed this task in the absence of vision, while executing a discrete RT task. Results demonstrated that older adults presented increased RT, linear distance travelled (LDT), and obstacle contact; that obstacle presence significantly increased RT compared to trials with no obstacles; and that an auditory stimulus emitted early versus late in the path increased LDT. Results suggest that the attentional demands of blind navigation are higher in older than young adults, as well as when obstacles are present. Furthermore, navigation precision is affected by age and when participants are distracted by the secondary task early in navigation, presumably because the secondary task interferes with path estimation.

  9. Cosmological dynamics of spatially flat Einstein-Gauss-Bonnet models in various dimensions: Vacuum case

    NASA Astrophysics Data System (ADS)

    Pavluchenko, Sergey A.

    2016-07-01

    In this paper we perform a systematic study of vacuum spatially flat anisotropic [(3 +D )+1 ]-dimensional Einstein-Gauss-Bonnet cosmological models. We consider models that topologically are the product of two flat isotropic submanifolds with different scale factors. One of these submanifolds is three dimensional and represents our 3D space and the other is D dimensional and represents extra dimensions. We consider no Ansatz on the scale factors, which makes our results quite general. With both Einstein-Hilbert and Gauss-Bonnet contributions in play and with the symmetry involved, the cases with D =1 , D =2 , D =3 , and D ≥4 have different dynamics due to the different structures of the equations of motion. We analytically analyze equations of motion in all cases and describe all possible regimes. It appears that the only regimes with nonsingular future asymptotes are the Kasner regime in general relativity and exponential regimes. As of the past asymptotes, for a smooth transition only the Kasner regime in Gauss-Bonnet is an option. With this at hand, we are down to only two viable regimes: the "pure" Kasner regime [transition from a high-energy (Gauss-Bonnet) to a low-energy (general relativity) Kasner regime] and a transition from a high-energy Kasner regime to an anisotropic exponential solution. It appears that these regimes take place for different signs of the Gauss-Bonnet coupling α : the "pure" Kasner regime occurs for α >0 at low D and α <0 for high D ; the anisotropic exponential regime is reached only for α >0 . So if we restrain ourselves with α >0 solutions (which would be the case, say, if we identify α with inverse string tension in heterotic string theory), the only late-time regimes are Kasner for D =1 , 2 and anisotropic exponential for D ≥2 . Also, low-energy Kasner regimes [a (t )∝tp] have expansion rates for (3 +1 )-dimensional subspace ("our Universe") ranging from p =0.5 (D =1 ) to p =1 /√{3 }≈0.577 (D →∞ ), which

  10. Precision methylome characterization of Mycobacterium tuberculosis complex (MTBC) using PacBio single-molecule real-time (SMRT) technology.

    PubMed

    Zhu, Lingxiang; Zhong, Jun; Jia, Xinmiao; Liu, Guan; Kang, Yu; Dong, Mengxing; Zhang, Xiuli; Li, Qian; Yue, Liya; Li, Cuidan; Fu, Jing; Xiao, Jingfa; Yan, Jiangwei; Zhang, Bing; Lei, Meng; Chen, Suting; Lv, Lingna; Zhu, Baoli; Huang, Hairong; Chen, Fei

    2016-01-29

    Tuberculosis (TB) remains one of the most common infectious diseases caused by Mycobacterium tuberculosis complex (MTBC). To panoramically analyze MTBC's genomic methylation, we completed the genomes of 12 MTBC strains (Mycobacterium bovis; M. bovis BCG; M. microti; M. africanum; M. tuberculosis H37Rv; H37Ra; and 6 M. tuberculosis clinical isolates) belonging to different lineages and characterized their methylomes using single-molecule real-time (SMRT) technology. We identified three (m6)A sequence motifs and their corresponding methyltransferase (MTase) genes, including the reported mamA, hsdM and a newly discovered mamB. We also experimentally verified the methylated motifs and functions of HsdM and MamB. Our analysis indicated the MTase activities varied between 12 strains due to mutations/deletions. Furthermore, through measuring 'the methylated-motif-site ratio' and 'the methylated-read ratio', we explored the methylation status of each modified site and sequence-read to obtain the 'precision methylome' of the MTBC strains, which enabled intricate analysis of MTase activity at whole-genome scale. Most unmodified sites overlapped with transcription-factor binding-regions, which might protect these sites from methylation. Overall, our findings show enormous potential for the SMRT platform to investigate the precise character of methylome, and significantly enhance our understanding of the function of DNA MTase.

  11. Precision methylome characterization of Mycobacterium tuberculosis complex (MTBC) using PacBio single-molecule real-time (SMRT) technology

    PubMed Central

    Zhu, Lingxiang; Zhong, Jun; Jia, Xinmiao; Liu, Guan; Kang, Yu; Dong, Mengxing; Zhang, Xiuli; Li, Qian; Yue, Liya; Li, Cuidan; Fu, Jing; Xiao, Jingfa; Yan, Jiangwei; Zhang, Bing; Lei, Meng; Chen, Suting; Lv, Lingna; Zhu, Baoli; Huang, Hairong; Chen, Fei

    2016-01-01

    Tuberculosis (TB) remains one of the most common infectious diseases caused by Mycobacterium tuberculosis complex (MTBC). To panoramically analyze MTBC's genomic methylation, we completed the genomes of 12 MTBC strains (Mycobacterium bovis; M. bovis BCG; M. microti; M. africanum; M. tuberculosis H37Rv; H37Ra; and 6 M. tuberculosis clinical isolates) belonging to different lineages and characterized their methylomes using single-molecule real-time (SMRT) technology. We identified three m6A sequence motifs and their corresponding methyltransferase (MTase) genes, including the reported mamA, hsdM and a newly discovered mamB. We also experimentally verified the methylated motifs and functions of HsdM and MamB. Our analysis indicated the MTase activities varied between 12 strains due to mutations/deletions. Furthermore, through measuring ‘the methylated-motif-site ratio’ and ‘the methylated-read ratio’, we explored the methylation status of each modified site and sequence-read to obtain the ‘precision methylome’ of the MTBC strains, which enabled intricate analysis of MTase activity at whole-genome scale. Most unmodified sites overlapped with transcription-factor binding-regions, which might protect these sites from methylation. Overall, our findings show enormous potential for the SMRT platform to investigate the precise character of methylome, and significantly enhance our understanding of the function of DNA MTase. PMID:26704977

  12. Understanding Gauss's Law Using Spreadsheets

    ERIC Educational Resources Information Center

    Baird, William H.

    2013-01-01

    Some of the results from the electrostatics portion of introductory physics are particularly difficult for students to understand and/or believe. For students who have yet to take vector calculus, Gauss's law is far from obvious and may seem more difficult than Coulomb's. When these same students are told that the minimum potential…

  13. Wormholes in dilatonic Einstein-Gauss-Bonnet theory.

    PubMed

    Kanti, Panagiota; Kleihaus, Burkhard; Kunz, Jutta

    2011-12-30

    We construct traversable wormholes in dilatonic Einstein-Gauss-Bonnet theory in four spacetime dimensions, without needing any form of exotic matter. We determine their domain of existence, and show that these wormholes satisfy a generalized Smarr relation. We demonstrate linear stability with respect to radial perturbations for a subset of these wormholes.

  14. An Exodus II specification for handling gauss points.

    SciTech Connect

    Thompson, David C.; Jortner, Jeffrey N.; Pebay, Philippe Pierre

    2007-11-01

    This report specifies the way in which Gauss points shall be named and ordered when storing them in an EXODUS II file so that they may be properly interpreted by visualization tools. This naming convention covers hexahedra and tetrahedra. Future revisions of this document will cover quadrilaterals, triangles, and shell elements.

  15. Progress integrating ID-TIMS U-Pb geochronology with accessory mineral geochemistry: towards better accuracy and higher precision time

    NASA Astrophysics Data System (ADS)

    Schoene, B.; Samperton, K. M.; Crowley, J. L.; Cottle, J. M.

    2012-12-01

    It is increasingly common that hand samples of plutonic and volcanic rocks contain zircon with dates that span between zero and >100 ka. This recognition comes from the increased application of U-series geochronology on young volcanic rocks and the increased precision to better than 0.1% on single zircons by the U-Pb ID-TIMS method. It has thus become more difficult to interpret such complicated datasets in terms of ashbed eruption or magma emplacement, which are critical constraints for geochronologic applications ranging from biotic evolution and the stratigraphic record to magmatic and metamorphic processes in orogenic belts. It is important, therefore, to develop methods that aid in interpreting which minerals, if any, date the targeted process. One promising tactic is to better integrate accessory mineral geochemistry with high-precision ID-TIMS U-Pb geochronology. These dual constraints can 1) identify cogenetic populations of minerals, and 2) record magmatic or metamorphic fluid evolution through time. Goal (1) has been widely sought with in situ geochronology and geochemical analysis but is limited by low-precision dates. Recent work has attempted to bridge this gap by retrieving the typically discarded elution from ion exchange chemistry that precedes ID-TIMS U-Pb geochronology and analyzing it by ICP-MS (U-Pb TIMS-TEA). The result integrates geochemistry and high-precision geochronology from the exact same volume of material. The limitation of this method is the relatively coarse spatial resolution compared to in situ techniques, and thus averages potentially complicated trace element profiles through single minerals or mineral fragments. In continued work, we test the effect of this on zircon by beginning with CL imaging to reveal internal zonation and growth histories. This is followed by in situ LA-ICPMS trace element transects of imaged grains to reveal internal geochemical zonation. The same grains are then removed from grain-mount, fragmented, and

  16. A discrete time-varying internal model-based approach for high precision tracking of a multi-axis servo gantry.

    PubMed

    Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing

    2014-09-01

    In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals.

  17. Digital signal processor-based high-precision on-line Voigt lineshape fitting for direct absorption spectroscopy.

    PubMed

    Xu, Lijun; Liu, Chang; Zheng, Deyan; Cao, Zhang; Cai, Weiwei

    2014-12-01

    To realize on-line high-accuracy measurement in direct absorption spectroscopy (DAS), a system-on-chip, high-precision digital signal processor-based on-line Voigt lineshape fitting implementation is introduced in this paper. Given that the Voigt lineshape is determined by the Gauss full width at half maximum (FWHM) and Lorentz FWHM, a look-up table, which covers a range of combinations of both, is first built to achieve rapid and accurate calculation of Voigt lineshape. With the look-up table and raw absorbance data in hand, Gauss-Newton nonlinear fitting module is implemented to obtain the parameters including both the Gauss and Lorentz FWHMs, which can be used to calculate the integrated absorbance. To realize the proposed method in hardware, a digital signal processor (DSP) is adopted to fit the Voigt lineshape in a real-time DAS measurement system. In experiment, temperature and H2O concentration of a flat flame are recovered from the transitions of 7444.36 cm(-1) and 7185.6 cm(-1) by the DSP-based on-line Voigt lineshape fitting and on-line integral of the raw absorbance, respectively. The results show that the proposed method can not only fit the Voigt lineshape on-line but also improve the measurement accuracy compared with those obtained from the direct integral of the raw absorbance. PMID:25554273

  18. Digital signal processor-based high-precision on-line Voigt lineshape fitting for direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Liu, Chang; Zheng, Deyan; Cao, Zhang; Cai, Weiwei

    2014-12-01

    To realize on-line high-accuracy measurement in direct absorption spectroscopy (DAS), a system-on-chip, high-precision digital signal processor-based on-line Voigt lineshape fitting implementation is introduced in this paper. Given that the Voigt lineshape is determined by the Gauss full width at half maximum (FWHM) and Lorentz FWHM, a look-up table, which covers a range of combinations of both, is first built to achieve rapid and accurate calculation of Voigt lineshape. With the look-up table and raw absorbance data in hand, Gauss-Newton nonlinear fitting module is implemented to obtain the parameters including both the Gauss and Lorentz FWHMs, which can be used to calculate the integrated absorbance. To realize the proposed method in hardware, a digital signal processor (DSP) is adopted to fit the Voigt lineshape in a real-time DAS measurement system. In experiment, temperature and H2O concentration of a flat flame are recovered from the transitions of 7444.36 cm-1 and 7185.6 cm-1 by the DSP-based on-line Voigt lineshape fitting and on-line integral of the raw absorbance, respectively. The results show that the proposed method can not only fit the Voigt lineshape on-line but also improve the measurement accuracy compared with those obtained from the direct integral of the raw absorbance.

  19. Dynamic subnanosecond time-of-flight detection for ultra-precise diffusion monitoring and optimization of biomarker preservation

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel R.; Stevens, Benjamin; Taft, Jefferson; Chafin, David; Petre, Vinnie; Theiss, Abbey P.; Otter, Michael

    2014-03-01

    Recently, it has been demonstrated that the preservation of cancer biomarkers, such as phosphorylated protein epitopes, in formalin-fixed paraffin-embedded tissue is highly dependent on the localized concentration of the crosslinking agent. This study details a real-time diffusion monitoring system based on the acoustic time-of-flight (TOF) between pairs of 4 MHz focused transducers. Diffusion affects TOF because of the distinct acoustic velocities of formalin and interstitial fluid. Tissue is placed between the transducers and vertically translated to obtain TOF values at multiple locations with a spatial resolution of approximately 1 mm. Imaging is repeated for several hours until osmotic equilibrium is reached. A post-processing technique, analogous to digital acoustic interferometry, enables detection of subnanosecond TOF differences. Reference subtraction is used to compensate for environmental effects. Diffusion measurements with TOF monitoring ex vivo human tonsil tissue are well-correlated with a single exponential curve (R2>0.98) with a magnitude of up to 50 ns, depending on the tissue size (2-6 mm). The average exponential decay constant of 2 and 6 mm diameter samples are 20 and 315 minutes, respectively, although times varied significantly throughout the tissue (σmax=174 min). This technique can precisely monitor diffusion progression and could be used to mitigate effects from tissue heterogeneity and intersample variability, enabling improved preservation of cancer biomarkers distinctly sensitive to degradation during preanalytical tissue processing.

  20. Time-optimized laser micro machining by using a new high dynamic and high precision galvo scanner

    NASA Astrophysics Data System (ADS)

    Jaeggi, Beat; Neuenschwander, Beat; Zimmermann, Markus; Zecherle, Markus; Boeckler, Ernst W.

    2016-03-01

    High accuracy, quality and throughput are key factors in laser micro machining. To obtain these goals the ablation process, the machining strategy and the scanning device have to be optimized. The precision is influenced by the accuracy of the galvo scanner and can further be enhanced by synchronizing the movement of the mirrors with the laser pulse train. To maintain a high machining quality i.e. minimum surface roughness, the pulse-to-pulse distance has also to be optimized. Highest ablation efficiency is obtained by choosing the proper laser peak fluence together with highest specific removal rate. The throughput can now be enhanced by simultaneously increasing the average power, the repetition rate as well as the scanning speed to preserve the fluence and the pulse-to-pulse distance. Therefore a high scanning speed is of essential importance. To guarantee the required excellent accuracy even at high scanning speeds a new interferometry based encoder technology was used, that provides a high quality signal for closed-loop control of the galvo scanner position. Low inertia encoder design enables a very dynamic scanner system, which can be driven to very high line speeds by a specially adapted control solution. We will present results with marking speeds up to 25 m/s using a f = 100 mm objective obtained with a new scanning system and scanner tuning maintaining a precision of about 5 μm. Further it will be shown that, especially for short line lengths, the machining time can be minimized by choosing the proper speed which has not to be the maximum one.

  1. Real-time analysis of δ13C- and δD-CH4 by high precision laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Eyer, Simon; Emmenegger, Lukas; Tuzson, Béla; Fischer, Hubertus; Mohn, Joachim

    2014-05-01

    Methane (CH4) is the most important non-CO2 greenhouse gas (GHG) contributing 18% to total radiative forcing. Anthropogenic sources (e.g. ruminants, landfills) contribute 60% to total emissions and led to an increase in its atmospheric mixing ratio from 700 ppb in pre-industrial times to 1819 ± 1 ppb in 2012 [1]. Analysis of the most abundant methane isotopologues 12CH4, 13CH4 and 12CH3D can be used to disentangle the various source/sink processes [2] and to develop target oriented reduction strategies. High precision isotopic analysis of CH4 can be accomplished by isotope-ratio mass-spectrometry (IRMS) [2] and more recently by mid-infrared laser-based spectroscopic techniques. For high precision measurements in ambient air, however, both techniques rely on preconcentration of the target gas [3]. In an on-going project, we developed a fully-automated, field-deployable CH4 preconcentration unit coupled to a dual quantum cascade laser absorption spectrometer (QCLAS) for real-time analysis of CH4 isotopologues. The core part of the rack-mounted (19 inch) device is a highly-efficient adsorbent trap attached to a motorized linear drive system and enclosed in a vacuum chamber. Thereby, the adsorbent trap can be decoupled from the Stirling cooler during desorption for fast desorption and optimal heat management. A wide variety of adsorbents, including: HayeSep D, molecular sieves as well as the novel metal-organic frameworks and carbon nanotubes were characterized regarding their surface area, isosteric enthalpy of adsorption and selectivity for methane over nitrogen. The most promising candidates were tested on the preconcentration device and a preconcentration by a factor > 500 was obtained. Furthermore analytical interferants (e.g. N2O, CO2) are separated by step-wise desorption of trace gases. A QCL absorption spectrometer previously described by Tuzson et al. (2010) for CH4 flux measurements was modified to obtain a platform for high precision and simultaneous

  2. A Stable Clock Error Model Using Coupled First and Second Order Gauss-Markov Processes

    NASA Technical Reports Server (NTRS)

    Carpenter, Russell; Lee, Taesul

    2008-01-01

    Long data outages may occur in applications of global navigation satellite system technology to orbit determination for missions that spend significant fractions of their orbits above the navigation satellite constellation(s). Current clock error models based on the random walk idealization may not be suitable in these circumstances, since the covariance of the clock errors may become large enough to overflow flight computer arithmetic. A model that is stable, but which approximates the existing models over short time horizons is desirable. A coupled first- and second-order Gauss-Markov process is such a model.

  3. Phase space analysis for a scalar-tensor model with kinetic and Gauss-Bonnet couplings

    NASA Astrophysics Data System (ADS)

    Granda, L. N.; Loaiza, E.

    2016-09-01

    We study the phase space for a scalar-tensor string inspired model of dark energy with nonminimal kinetic and Gauss-Bonnet couplings. The form of the scalar potential and of the coupling terms is of the exponential type, which gives rise to appealing cosmological solutions. The critical points describe a variety of cosmological scenarios that go from a matter or radiation dominated universe to a dark energy dominated universe. Trajectories were found in the phase space departing from unstable or saddle fixed points and arriving at the stable scalar field dominated point corresponding to late-time accelerated expansion.

  4. Some exact solutions with torsion in 5D Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Canfora, F.; Giacomini, A.; Willison, S.

    2007-08-15

    Exact solutions with torsion in Einstein-Gauss-Bonnet gravity are derived. These solutions have a cross product structure of two constant curvature manifolds. The equations of motion give a relation for the coupling constants of the theory in order to have solutions with nontrivial torsion. This relation is not the Chern-Simons combination. One of the solutions has an AdS{sub 2}xS{sup 3} structure and is so the purely gravitational analogue of the Bertotti-Robinson space-time where the torsion can be seen as the dual of the covariantly constant electromagnetic field.

  5. The Feynman-Y Statistic in Relation to Shift-Register Neutron Coincidence Counting: Precision and Dead Time

    SciTech Connect

    Croft, Stephen; Santi, Peter A.; Henzlova, Daniela; Hauck, Danielle K.; Favalli, Andrea

    2012-07-13

    The Feynman-Y statistic is a type of autocorrelation analysis. It is defined as the excess variance-to-mean ratio, Y = VMR - 1, of the number count distribution formed by sampling a pulse train using a series of non-overlapping gates. It is a measure of the degree of correlation present on the pulse train with Y = 0 for Poisson data. In the context of neutron coincidence counting we show that the same information can be obtained from the accidentals histogram acquired using the multiplicity shift-register method, which is currently the common autocorrelation technique applied in nuclear safeguards. In the case of multiplicity shift register analysis however, overlapping gates, either triggered by the incoming pulse stream or by a periodic clock, are used. The overlap introduces additional covariance but does not alter the expectation values. In this paper we discuss, for a particular data set, the relative merit of the Feynman and shift-register methods in terms of both precision and dead time correction. Traditionally the Feynman approach is applied with a relatively long gate width compared to the dieaway time. The main reason for this is so that the gate utilization factor can be taken as unity rather than being treated as a system parameter to be determined at characterization/calibration. But because the random trigger interval gate utilization factor is slow to saturate this procedure requires a gate width many times the effective 1/e dieaway time. In the traditional approach this limits the number of gates that can be fitted into a given assay duration. We empirically show that much shorter gates, similar in width to those used in traditional shift register analysis can be used. Because the way in which the correlated information present on the pulse train is extracted is different for the moments based method of Feynman and the various shift register based approaches, the dead time losses are manifested differently for these two approaches. The resulting

  6. High precision thorium-230 ages of corals and the timing of sea level fluctuations in the late Quaternary

    SciTech Connect

    Edwards, R.L.

    1988-01-01

    Mass spectrometric techniques for the measurement of {sup 230}Th and {sup 234}U have been developed. These techniques have made it possible to reduce the analytical errors in {sup 230}Th dating of corals using very small samples (10{sup 7} to 10{sup 10} atoms). The time range over which useful data on corals can now be obtained ranges from 15 to 500,000 years. For young corals, this approach may be preferable to {sup 14}C dating. The precision with which the age of a coral can not be determined makes it possible to determine the timing of sea level fluctuations in the late Quaternary. Analyses of a number of corals that grew during the last interglacial period yield ages of 122 to 130 ky. The ages coincide with or slightly postdate the summer solar insolation high at 65{degree}N latitude, which occurred 128 ky ago. This supports the idea that changes in Pleistocene climate can be the result of orbital forcing. Coral ages may allow us to resolve the ages of individual coseismic uplift events and thereby date prehistoric earthquakes. This possibility has been examined at two localities, northwest Santo Island and north Malekula Island, Vanuatu. The {sup 230}Th growth dates of the surfaces of adjacent emerged coral heads, collected from the same elevation on northwest Santo Island, were, within analytical error, identical (A.D. 1866 {plus minus} 4 and A.D. 1864 {plus minus} 4). This indicates that the corals died at the same time and is consistent with the idea that they were killed by coseismic uplift. Similar adjacent coral heads on north Malekula Island yielded {sup 230}Th growth dates of A.D. 1729 {plus minus} 3 and A.D. 1718 {plus minus} 5. The ages are similar but analytically distinguishable. The difference may be due to erosion of the outer, younger, portion of the latter coral head.

  7. Bouncing loop quantum cosmology in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Haro, J.; Makarenko, A. N.; Myagky, A. N.; Odintsov, S. D.; Oikonomou, V. K.

    2015-12-01

    We develop an effective Gauss-Bonnet extension of loop quantum cosmology, by introducing holonomy corrections in modified F (G ) theories of gravity. Within the context of our formalism, we provide a perturbative expansion in the critical density, a parameter characteristic of loop quantum gravity theories, and we result in having leading order corrections to the classical F (G ) theories of gravity. After extensively discussing the formalism, we present a reconstruction method that makes it possible to find the loop quantum cosmology corrected F (G ) theory that can realize various cosmological scenarios. We exemplify our theoretical constructions by using bouncing cosmologies, and we investigate which loop quantum cosmology corrected Gauss-Bonnet modified gravities can successfully realize such cosmologies.

  8. Debye screening versus Gauss law in electrostatics: Finite size effects

    NASA Astrophysics Data System (ADS)

    Dubey, Ritesh Kumar; Menon, V. J.; Mishra, M.; Tripathi, D. N.

    2007-10-01

    We revisit the well-known topics of self- and induced-screening in an otherwise isotropic neutral plasma/colloid. It is pointed out that the standard Debye-Hückel (DH) theory (ignoring finite size effects) suffers from many ambiguities related to net ionic numbers, total charge of the system, role of the electrostatic Gauss law, short-distance behaviour of the potential and incorrectly normalized pair correlation functions. We give a new formulation (incorporating finite size effects) such that ionic numbers are maintained, the total charge of the system has physically correct value, the Gauss law boundary conditions are rigorously obeyed, short-distance behaviour of the potential is guaranteed automatically, and correlation functions are correctly normalized. Numerical differences between the two approaches show up if the screening length μ-1 becomes comparable to the size R of the system.

  9. On the supersymmetric extension of Gauss-Bonnet like gravity

    NASA Astrophysics Data System (ADS)

    Concha, P. K.; Ipinza, M. C.; Ravera, L.; Rodríguez, E. K.

    2016-09-01

    We explore the supersymmetry invariance of a supergravity theory in the presence of a non-trivial boundary. The explicit construction of a bulk Lagrangian based on an enlarged superalgebra, known as AdS-Lorentz, is presented. Using a geometric approach we show that the supersymmetric extension of a Gauss-Bonnet like gravity is required in order to restore the supersymmetry invariance of the theory.

  10. Flat Gauss illumination for the step-and-scan lithographic system

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Ying; Zeng, Aijun; Zhu, Jing; Yang, Baoxi; Huang, Huijie

    2016-08-01

    To meet the uniform dose exposure in optical lithography, it is desirable to get uniform illumination in the scanning direction on wafer for the step-and-scan lithographic system. We present a flat Gauss illumination for the step-and-scan lithographic system in this paper. Through flat Gauss illumination in scanning direction, pulse quantization effect could be reduced effectively. Correspondingly, the uniformity of the reticle and wafer is improved. Compared with the trapezoid illumination, flat Gauss illumination could keep the slit edge fixed, and pulse quantization effect will not be enhanced. Moreover flat Gauss illumination could be obtained directly without defocusing and blocking, which results in high energy efficiency and high throughput of the lithography. A design strategy for flat Gauss illumination is also proposed which offers high uniformity illumination, fixed slope and integral energy of flat Gauss illumination in different coherence factors. The strategy describes a light uniform device which contains first microlens array, second microlens array, one-dimensional Gauss diffuser and a Fourier lens. The device produces flat Gauss illumination directly at the scanning slit. The design and simulation results show that the uniformity of flat Gauss illumination in two directions satisfy the requirements of lithographic illumination system and the slope. In addition, slit edge of flat Gauss illumination does not change.

  11. Towards the GEOSAT Follow-On Precise Orbit Determination Goals of High Accuracy and Near-Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Zelensky, Nikita P.; Chinn, Douglas S.; Beckley, Brian D.; Lillibridge, John L.

    2006-01-01

    The US Navy's GEOSAT Follow-On spacecraft (GFO) primary mission objective is to map the oceans using a radar altimeter. Satellite laser ranging data, especially in combination with altimeter crossover data, offer the only means of determining high-quality precise orbits. Two tuned gravity models, PGS7727 and PGS7777b, were created at NASA GSFC for GFO that reduce the predicted radial orbit through degree 70 to 13.7 and 10.0 mm. A macromodel was developed to model the nonconservative forces and the SLR spacecraft measurement offset was adjusted to remove a mean bias. Using these improved models, satellite-ranging data, altimeter crossover data, and Doppler data are used to compute both daily medium precision orbits with a latency of less than 24 hours. Final precise orbits are also computed using these tracking data and exported with a latency of three to four weeks to NOAA for use on the GFO Geophysical Data Records (GDR s). The estimated orbit precision of the daily orbits is between 10 and 20 cm, whereas the precise orbits have a precision of 5 cm.

  12. Accelerating the Gauss-Seidel Power Flow Solver on a High Performance Reconfigurable Computer

    SciTech Connect

    Byun, Jong-Ho; Ravindran, Arun; Mukherjee, Arindam; Joshi, Bharat; Chassin, David P.

    2009-09-01

    The computationally intensive power flow problem determines the voltage magnitude and phase angle at each bus in a power system for hundreds of thousands of buses under balanced three-phase steady-state conditions. We report an FPGA acceleration of the Gauss-Seidel based power flow solver employed in the transmission module of the GridLAB-D power distribution simulator and analysis tool. The prototype hardware is implemented on an SGI Altix-RASC system equipped with a Xilinx Virtex II 6000 FPGA. Due to capacity limitations of the FPGA, only the bus voltage calculations of the power network are implemented on hardware while the branch current calculations are implemented in software. For a 200,000 bus system, the bus voltage calculation on the FPGA achieves a 48x speed-up with PQ buses and a 62 times for PV over an equivalent sequential software implementation. The average overall speed up of the FPGA-CPU implementation with 100 iterations of the Gauss-Seidel power solver is 2.6x over a software implementation, with the branch calculations on the CPU accounting for 85% of the total execution time. The FPGA-CPU implementation also shows linear scaling with increase in the size of the input power network.

  13. Time Variable Gravity modeling for Precise Orbits Across the TOPEX/Poseidon, Jason-l and Jason-2 Missions

    NASA Technical Reports Server (NTRS)

    Zelensky, Nikita P.; Lemoine, Frank G.; Chinn, Douglas; Beckley, Brain D.; Melachroinos, Stavros; Rowlands, David D.; Luthcke, Scott B.

    2011-01-01

    Modeling of the Time Variable Gravity (TVG) is believed to constitute one of the the largest remaining source of orbit error for altimeter satellite POD. The GSFC operational TVG model consists of forward modeling the atmospheric gravity using ECMWF 6-hour pressure data, a GRACE derived 20x20 annual field to account for changes in the hydrology and ocean water mass, and linear rates for C20, C30, C40, based on 17 years of SLR data analysis (IERS 2003) using the EIGEN-GL04S1 (a GRACE+Lageos-based geopotential solution). Although the GSFC Operational model can be applied from 1987, there may be long-term variations not captured by these linear models, and more importantly the linear models may not be consistent with more recent surface mass trends due to global climate change, We have evaluated the impact of TVG in two different wavs: (1) by using the more recent EIGEN-6S gravity model developed by the GFZ/GRGS tearm, which consists of annual, semi-annual and secular changes in the coefficients to 50x50 determined over 8(?) years of GRACE+Lageos+GOCE data (2003-200?): (2) Application of 4x4 solutions developed from a multi satellite SLR+DORIS solution based on GGM03S that span the period from 1993 to 2011. We have evaluated the recently released EIGEN6s static and time-varying gravity field for Jason-2 (J2). Jason-I (J1), and TOPEX/Posiedon (TP) Precise Orbit Determination (POD) spanning 1993-2011. Although EIGEN6s shows significant improvement for J2POD spanning 2008 - 2011, it also shows significant degradation for TP POD from 1992. The GSFC 4x4 time SLR+DORIS-based series spans 1993 to mid 2011, and shows promise for POD. We evaluate the performance of the different TVG models based on analysis of tracking data residuals use of independent data such as altimeter crossovers, and through analysis of differences with internally-generated and externally generated orbits.

  14. Precision errors, least significant change, and monitoring time interval in pediatric measurements of bone mineral density, body composition, and mechanostat parameters by GE lunar prodigy.

    PubMed

    Jaworski, Maciej; Pludowski, Pawel

    2013-01-01

    Dual-energy X-ray absorptiometry (DXA) method is widely used in pediatrics in the study of bone density and body composition. However, there is a limit to how precise DXA can estimate bone and body composition measures in children. The study was aimed to (1) evaluate precision errors for bone mineral density, bone mass and bone area, body composition, and mechanostat parameters, (2) assess the relationships between precision errors and anthropometric parameters, and (3) calculate a "least significant change" and "monitoring time interval" values for DXA measures in children of wide age range (5-18yr) using GE Lunar Prodigy densitometer. It is observed that absolute precision error values were different for thin and standard technical modes of DXA measures and depended on age, body weight, and height. In contrast, relative precision error values expressed in percentages were similar for thin and standard modes (except total body bone mineral density [TBBMD]) and were not related to anthropometric variables (except TBBMD). Concluding, due to stability of percentage coefficient of variation values in wide range of age, the use of precision error expressed in percentages, instead of absolute error, appeared as convenient in pediatric population.

  15. Configurational entropy as a constraint for Gauss-Bonnet braneworld models

    NASA Astrophysics Data System (ADS)

    Correa, R. A. C.; Moraes, P. H. R. S.; de Souza Dutra, A.; de Paula, W.; Frederico, T.

    2016-10-01

    Configurational entropy has been revealed as a reliable method for constraining some parameters of a given model [Phys. Rev. D 92, 126005 (2015); Eur. Phys. J. C 76, 100 (2016)]. In this work, we calculate the configurational entropy in Gauss-Bonnet braneworld models. Our results restrict the range of acceptability of the Gauss-Bonnet scalar values. In this way, the information theoretical measure in Gauss-Bonnet scenarios opens a new window to probe situations where the additional parameters, responsible for the Gauss-Bonnet sector, are arbitrary.

  16. Nonzonal Expressions of GAUSS-KRÜGER Projection in Polar Regions

    NASA Astrophysics Data System (ADS)

    Li, Zhongmei; Bian, Shaofeng; Liu, Qiang; Li, Houpu; Chen, Cheng; Hu, Yanfeng

    2016-06-01

    With conformal colatitude introduced, based on the mathematical relationship between exponential and logarithmic functions by complex numbers, strict equation of complex conformal colatitude is derived, and then theoretically strict nonzonal expressions of Gauss projection in polar regions are carried out. By means of the computer algebra system, correctness of these expressions is verified, and sketches of Gauss-krüger projection without bandwidth restriction in polar regions are charted. In the Arctic or Antarctic region, graticule of nonzonal Gauss projection complies with people's reading habit and reflects real ground-object distribution. Achievements in this paper could perfect mathematical basis of Gauss projection and provide reference frame for polar surveying and photogrammetry.

  17. Inner Structure of Gauss-Bonnet-Chern Theorem and the Morse Theory

    NASA Astrophysics Data System (ADS)

    Duan, Yi-Shi; Zhang, Peng-Ming

    We define a new one-form HA based on the second fundamental tensor HabA¯, the Gauss-Bonnet-Chern form can be novelly expressed with this one-form. Using the φ-mapping theory we find that the Gauss-Bonnet-Chern density can be expressed in terms of the δ-function δ(φ) and the relationship between the Gauss-Bonnet-Chern theorem and Hopf-Poincaré theorem is given straightforwardly. The topological current of the Gauss-Bonnet-Chern theorem and its topological structure are discussed in details. At last, the Morse theory formula of the Euler characteristic is generalized.

  18. Nonsingular Universes in Gauss-Bonnet Gravity’s Rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, Seyed Hossein; Momennia, Mehrab; Eslam Panah, Behzad; Faizal, Mir

    2016-08-01

    In this paper, we study the rainbow deformation of Friedmann-Robertson-Walker (FRW) cosmology in both Einstein gravity and Gauss-Bonnet (GB) gravity. We demonstrate that the singularity in FRW cosmology can be removed because of the rainbow deformation of the FRW metric. We obtain the general constraints required for FRW cosmology to be free of singularities. We observe that the inclusion of GB gravity can significantly change the constraints required to obtain nonsingular universes. We use rainbow functions motivated by the hard spectra of gamma-ray bursts to deform FRW cosmology and explicitly demonstrate that such a deformation removes the singularity in FRW cosmology.

  19. Fractional Hamiltonian monodromy from a Gauss-Manin monodromy

    SciTech Connect

    Sugny, D.; Jauslin, H. R.; Mardesic, P.; Pelletier, M.; Jebrane, A.

    2008-04-15

    Fractional Hamiltonian monodromy is a generalization of the notion of Hamiltonian monodromy, recently introduced by [Nekhoroshev, Sadovskii, and Zhilinskii, C. R. Acad. Sci. Paris, Ser. 1 335, 985 (2002); and Ann. Henri Poincare 7, 1099 (2006)] for energy-momentum maps whose image has a particular type of nonisolated singularities. In this paper, we analyze the notion of fractional Hamiltonian monodromy in terms of the Gauss-Manin monodromy of a Riemann surface constructed from the energy-momentum map and associated with a loop in complex space which bypasses the line of singularities. We also prove some propositions on fractional Hamiltonian monodromy for 1:-n and m:-n resonant systems.

  20. Gauss-Bonnet Brane World Gravity with a Scalar Field

    SciTech Connect

    Davis, Stephen C.

    2004-11-17

    The effective four-dimensional, linearised gravity of a brane world model with one extra dimension and a single brane is analysed. The model includes higher order curvature terms (such as the Gauss-Bonnet term) and a conformally coupled scalar field. Large and small distance gravitational laws are derived. In contrast to the corresponding Einstein gravity models, it is possible to obtain solutions with localised gravity which are compatible with observations. Solutions with non-standard large distance Newtonian potentials are also described.

  1. Remarks on generalized Gauss-Bonnet dark energy

    SciTech Connect

    Alimohammadi, M.; Ghalee, A.

    2009-03-15

    The modified gravity with F(R,G) Lagrangian, G is the Gauss-Bonnet invariant, is considered. It is shown that the phantom-divide-line crossing and the deceleration to acceleration transition generally occur in these models. Our results coincide with the known results of f(R)-gravity and f(G)-gravity models. The contribution of quantum effects to these transitions is calculated, and it is shown that in some special cases where there are no transitions in classical level, quantum contributions can induce transitions. The quantum effects are described via the account of conformal anomaly.

  2. Extension of Gauss' method for the solution of Kepler's equation

    NASA Technical Reports Server (NTRS)

    Battin, R. H.; Fill, T. J.

    1978-01-01

    Gauss' method for solving Kepler's equation is extended to arbitrary epochs and orbital eccentricities. Although originally developed for near parabolic orbits in the vicinity of pericenter, a generalization of the method leads to a highly efficient algorithm which compares favorably to other methods in current use. A key virtue of the technique is that convergence is obtained by a method of successive substitutions with an initial approximation that is independent of the orbital parameters. The equations of the algorithm are universal, i.e., independent of the nature of the orbit whether elliptic, hyperbolic, parabolic or rectilinear.

  3. A Day in the Life of Millisecond Pulsar J1713+0747: Limits on Timing Precision Over 24 Hours and Implications for Gravitational Wave Detection

    NASA Astrophysics Data System (ADS)

    Dolch, Timothy; Bailes, M.; Bassa, C.; Bhat, R.; Bhattacharyya, B.; Champion, D.; Chatterjee, S.; Cognard, I.; Cordes, J. M.; Crowter, K.; Demorest, P.; Finn, L. S.; Fonseca, E.; Hessels, J.; Hobbs, G.; Janssen, G.; Jones, G.; Jordan, C.; Karuppusamy, R.; Keith, M.; Kramer, M.; Kraus, A.; Lam, M. T.; Lazarus, P.; Lazio, J.; Lee, K.; Levin, L.; Liu, K.; Lorimer, D.; Manchester, R. N.; McLaughlin, M.; Palliyaguru, N.; Perrodin, D.; Petroff, E.; Rajwade, K.; Rankin, J. M.; Ransom, S. M.; Rosenblum, J.; Roy, J.; Shannon, R.; Stappers, B.; Stinebring, D.; Stovall, K.; Teixeira, M.; van Leeuwen, J.; van Straten, W.; Verbiest, J.; Zhu, W.

    2014-01-01

    A 24-hour global observation of millisecond radio pulsar J1713+0747 was undertaken by the International Pulsar Timing Array (IPTA) collaboration as an effort to better quantify sources of noise in this object, which is regularly timed for the purpose of detecting gravitational waves (GWs). Given an 8-year timing RMS of 30ns, it is regarded as one of the best precision clocks in the PTA. However, sources of timing noise visible on timescales longer than the usual 20-30min biweekly observation may nonetheless be present. Data from the campaign were taken contiguously with the Parkes, Arecibo, Green Bank, GMRT, LOFAR, Effelsberg, WSRT, Lovell, and Nancay radio telescopes. The combined pulse times-of-arrival provide an estimate of the absolute noise floor, in other words, what unaccounted sources of timing noise impede an otherwise simple sqrt(N) improvement in timing precision, where N is the number of pulses in a single observing session. We present first results of specific phenomena probed on the unusual timescale of tens of hours, in particular interstellar scattering (ISS), and discuss the degree to which ISS affects precision timing. Finally, we examine single pulse information during selected portions of the observation and determine the degree to which the pulse jitter of J1713+0747 varies throughout the course of the day-long dataset.

  4. The Validity and Precision of the Comparative Interrupted Time Series Design and the Difference-in-Difference Design in Educational Evaluation

    ERIC Educational Resources Information Center

    Somers, Marie-Andrée; Zhu, Pei; Jacob, Robin; Bloom, Howard

    2013-01-01

    In this paper, we examine the validity and precision of two nonexperimental study designs (NXDs) that can be used in educational evaluation: the comparative interrupted time series (CITS) design and the difference-in-difference (DD) design. In a CITS design, program impacts are evaluated by looking at whether the treatment group deviates from its…

  5. Dejittered spike-conditioned stimulus waveforms yield improved estimates of neuronal feature selectivity and spike-timing precision of sensory interneurons.

    PubMed

    Aldworth, Zane N; Miller, John P; Gedeon, Tomás; Cummins, Graham I; Dimitrov, Alexander G

    2005-06-01

    What is the meaning associated with a single action potential in a neural spike train? The answer depends on the way the question is formulated. One general approach toward formulating this question involves estimating the average stimulus waveform preceding spikes in a spike train. Many different algorithms have been used to obtain such estimates, ranging from spike-triggered averaging of stimuli to correlation-based extraction of "stimulus-reconstruction" kernels or spatiotemporal receptive fields. We demonstrate that all of these approaches miscalculate the stimulus feature selectivity of a neuron. Their errors arise from the manner in which the stimulus waveforms are aligned to one another during the calculations. Specifically, the waveform segments are locked to the precise time of spike occurrence, ignoring the intrinsic "jitter" in the stimulus-to-spike latency. We present an algorithm that takes this jitter into account. "Dejittered" estimates of the feature selectivity of a neuron are more accurate (i.e., provide a better estimate of the mean waveform eliciting a spike) and more precise (i.e., have smaller variance around that waveform) than estimates obtained using standard techniques. Moreover, this approach yields an explicit measure of spike-timing precision. We applied this technique to study feature selectivity and spike-timing precision in two types of sensory interneurons in the cricket cercal system. The dejittered estimates of the mean stimulus waveforms preceding spikes were up to three times larger than estimates based on the standard techniques used in previous studies and had power that extended into higher-frequency ranges. Spike timing precision was approximately 5 ms.

  6. Quantum dynamics of electronic transitions with Gauss-Hermite wave packets

    NASA Astrophysics Data System (ADS)

    Borrelli, Raffaele; Peluso, Andrea

    2016-03-01

    A new methodology based on the superposition of time-dependent Gauss-Hermite wave packets is developed to describe the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave function parameters are obtained by employing the Dirac-Frenkel time-dependent variational principle. The methodology is applied to study the quantum dynamical behaviour of model systems with two interacting electronic states characterized by a relatively large reorganization energy and a range of energy biases. The favourable scaling properties make it a promising tool for the study of the dynamics of chemico-physical processes in molecular systems.

  7. Quantum dynamics of electronic transitions with Gauss-Hermite wave packets.

    PubMed

    Borrelli, Raffaele; Peluso, Andrea

    2016-03-21

    A new methodology based on the superposition of time-dependent Gauss-Hermite wave packets is developed to describe the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave function parameters are obtained by employing the Dirac-Frenkel time-dependent variational principle. The methodology is applied to study the quantum dynamical behaviour of model systems with two interacting electronic states characterized by a relatively large reorganization energy and a range of energy biases. The favourable scaling properties make it a promising tool for the study of the dynamics of chemico-physical processes in molecular systems. PMID:27004857

  8. Dynamical black holes with symmetry in Einstein Gauss Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Nozawa, Masato; Maeda, Hideki

    2008-03-01

    We explore various aspects of dynamical black holes defined by a future outer trapping horizon in n(>=5)-dimensional Einstein Gauss Bonnet gravity. In the present paper, we assume that the spacetime has symmetries corresponding to the isometries of an (n - 2)-dimensional maximally symmetric space and the Gauss Bonnet coupling constant is non-negative. Depending on the existence or absence of the general relativistic limit, solutions are classified into GR and non-GR branches, respectively. Assuming the null energy condition on matter fields, we show that a future outer trapping horizon in the GR branch possesses the same properties as that in general relativity. In contrast, that in the non-GR branch is shown to be non-spacelike with its area non-increasing into the future. We can recognize that this peculiar behavior arises from the fact that the null energy condition necessarily leads to the null convergence condition for radial null vectors in the GR branch, but not in the non-GR branch. The energy balance law yields the first law of a trapping horizon, from which we can read off the entropy of a trapping horizon reproducing Iyer Wald's expression. The entropy of a future outer trapping horizon is shown to be non-decreasing in both branches along its generator.

  9. Application of linear gauss pseudospectral method in model predictive control

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Zhou, Hao; Chen, Wanchun

    2014-03-01

    This paper presents a model predictive control(MPC) method aimed at solving the nonlinear optimal control problem with hard terminal constraints and quadratic performance index. The method combines the philosophies of the nonlinear approximation model predictive control, linear quadrature optimal control and Gauss Pseudospectral method. The current control is obtained by successively solving linear algebraic equations transferred from the original problem via linearization and the Gauss Pseudospectral method. It is not only of high computational efficiency since it does not need to solve nonlinear programming problem, but also of high accuracy though there are a few discrete points. Therefore, this method is suitable for on-board applications. A design of terminal impact with a specified direction is carried out to evaluate the performance of this method. Augmented PN guidance law in the three-dimensional coordinate system is applied to produce the initial guess. And various cases for target with straight-line movements are employed to demonstrate the applicability in different impact angles. Moreover, performance of the proposed method is also assessed by comparison with other guidance laws. Simulation results indicate that this method is not only of high computational efficiency and accuracy, but also applicable in the framework of guidance design.

  10. Gauss-Bonnet black holes with nonconstant curvature horizons

    SciTech Connect

    Maeda, Hideki

    2010-06-15

    We investigate static and dynamical n({>=}6)-dimensional black holes in Einstein-Gauss-Bonnet gravity of which horizons have the isometries of an (n-2)-dimensional Einstein space with a condition on its Weyl tensor originally given by Dotti and Gleiser. Defining a generalized Misner-Sharp quasilocal mass that satisfies the unified first law, we show that most of the properties of the quasilocal mass and the trapping horizon are shared with the case with horizons of constant curvature. It is shown that the Dotti-Gleiser solution is the unique vacuum solution if the warp factor on the (n-2)-dimensional Einstein space is nonconstant. The quasilocal mass becomes constant for the Dotti-Gleiser black hole and satisfies the first law of the black-hole thermodynamics with its Wald entropy. In the non-negative curvature case with positive Gauss-Bonnet constant and zero cosmological constant, it is shown that the Dotti-Gleiser black hole is thermodynamically unstable. Even if it becomes locally stable for the nonzero cosmological constant, it cannot be globally stable for the positive cosmological constant.

  11. Ion microscopy with resonant ionization mass spectrometry : time-of-flight depth profiling with improved isotopic precision.

    SciTech Connect

    Pellin, M. J.; Veryovkin, I. V.; Levine, J.; Zinovev, A.; Davis, A. M.; Stephan, T.; Tripa, C. E.; King, B. V.; Savina, M. R.

    2010-01-01

    There are four generally mutually exclusive requirements that plague many mass spectrometric measurements of trace constituents: (1) the small size (limited by the depth probed) of many interesting materials requires high useful yields to simply detect some trace elements, (2) the low concentrations of interesting elements require efficient discrimination from isobaric interferences, (3) it is often necessary to measure the depth distribution of elements with high surface and low bulk contributions, and (4) many applications require precise isotopic analysis. Resonant ionization mass spectrometry has made dramatic progress in addressing these difficulties over the past five years.

  12. The preconditioned Gauss-Seidel iterative methods for solving Fredholm integral equations of the second kind

    NASA Astrophysics Data System (ADS)

    Muthuvalu, Mohana Sundaram

    2016-06-01

    In this paper, performance analysis of the preconditioned Gauss-Seidel iterative methods for solving dense linear system arise from Fredholm integral equations of the second kind is investigated. The formulation and implementation of the preconditioned Gauss-Seidel methods are presented. Numerical results are included in order to verify the performance of the methods.

  13. [A Hyperspectral Imagery Anomaly Detection Algorithm Based on Gauss-Markov Model].

    PubMed

    Gao, Kun; Liu, Ying; Wang, Li-jing; Zhu, Zhen-yu; Cheng, Hao-bo

    2015-10-01

    With the development of spectral imaging technology, hyperspectral anomaly detection is getting more and more widely used in remote sensing imagery processing. The traditional RX anomaly detection algorithm neglects spatial correlation of images. Besides, it does not validly reduce the data dimension, which costs too much processing time and shows low validity on hyperspectral data. The hyperspectral images follow Gauss-Markov Random Field (GMRF) in space and spectral dimensions. The inverse matrix of covariance matrix is able to be directly calculated by building the Gauss-Markov parameters, which avoids the huge calculation of hyperspectral data. This paper proposes an improved RX anomaly detection algorithm based on three-dimensional GMRF. The hyperspectral imagery data is simulated with GMRF model, and the GMRF parameters are estimated with the Approximated Maximum Likelihood method. The detection operator is constructed with GMRF estimation parameters. The detecting pixel is considered as the centre in a local optimization window, which calls GMRF detecting window. The abnormal degree is calculated with mean vector and covariance inverse matrix, and the mean vector and covariance inverse matrix are calculated within the window. The image is detected pixel by pixel with the moving of GMRF window. The traditional RX detection algorithm, the regional hypothesis detection algorithm based on GMRF and the algorithm proposed in this paper are simulated with AVIRIS hyperspectral data. Simulation results show that the proposed anomaly detection method is able to improve the detection efficiency and reduce false alarm rate. We get the operation time statistics of the three algorithms in the same computer environment. The results show that the proposed algorithm improves the operation time by 45.2%, which shows good computing efficiency.

  14. [A Hyperspectral Imagery Anomaly Detection Algorithm Based on Gauss-Markov Model].

    PubMed

    Gao, Kun; Liu, Ying; Wang, Li-jing; Zhu, Zhen-yu; Cheng, Hao-bo

    2015-10-01

    With the development of spectral imaging technology, hyperspectral anomaly detection is getting more and more widely used in remote sensing imagery processing. The traditional RX anomaly detection algorithm neglects spatial correlation of images. Besides, it does not validly reduce the data dimension, which costs too much processing time and shows low validity on hyperspectral data. The hyperspectral images follow Gauss-Markov Random Field (GMRF) in space and spectral dimensions. The inverse matrix of covariance matrix is able to be directly calculated by building the Gauss-Markov parameters, which avoids the huge calculation of hyperspectral data. This paper proposes an improved RX anomaly detection algorithm based on three-dimensional GMRF. The hyperspectral imagery data is simulated with GMRF model, and the GMRF parameters are estimated with the Approximated Maximum Likelihood method. The detection operator is constructed with GMRF estimation parameters. The detecting pixel is considered as the centre in a local optimization window, which calls GMRF detecting window. The abnormal degree is calculated with mean vector and covariance inverse matrix, and the mean vector and covariance inverse matrix are calculated within the window. The image is detected pixel by pixel with the moving of GMRF window. The traditional RX detection algorithm, the regional hypothesis detection algorithm based on GMRF and the algorithm proposed in this paper are simulated with AVIRIS hyperspectral data. Simulation results show that the proposed anomaly detection method is able to improve the detection efficiency and reduce false alarm rate. We get the operation time statistics of the three algorithms in the same computer environment. The results show that the proposed algorithm improves the operation time by 45.2%, which shows good computing efficiency. PMID:26904830

  15. Application of Gauss's law space-charge limited emission model in iterative particle tracking method

    NASA Astrophysics Data System (ADS)

    Altsybeyev, V. V.; Ponomarev, V. A.

    2016-11-01

    The particle tracking method with a so-called gun iteration for modeling the space charge is discussed in the following paper. We suggest to apply the emission model based on the Gauss's law for the calculation of the space charge limited current density distribution using considered method. Based on the presented emission model we have developed a numerical algorithm for this calculations. This approach allows us to perform accurate and low time consumpting numerical simulations for different vacuum sources with the curved emitting surfaces and also in the presence of additional physical effects such as bipolar flows and backscattered electrons. The results of the simulations of the cylindrical diode and diode with elliptical emitter with the use of axysimmetric coordinates are presented. The high efficiency and accuracy of the suggested approach are confirmed by the obtained results and comparisons with the analytical solutions.

  16. Border detection on Common Carotid Artery using Gauss-Markov Estimation

    NASA Astrophysics Data System (ADS)

    Koya, Yoshiharu; Mizoshiri, Isao

    The arteriosclerosis is on the increase with an aging or change of our living environment. For that reason, diagnosis of the common carotid artery using echocardiogram is doing to take precautions carebropathy. The arteriosclerosis of the common carotid artery is diagnosed using Intima-Media Thickness (IMT) which is obtained from echocardiogram. In order to measure IMT from echocardiogram, it is required to detect a border which is a boundary between vessel tissue layers. The method of border detection requires reproducibility, high accuracy and high-speed. In this paper, we propose the high-accuracy and high-speed detection method by Gauss-Markov estimation. About high-accuracy, it realized by attaching importance to high reliable candidate point of border. And, about high-speed, it realized by calculating matrix only one time.

  17. Volcano clustering determination: Bivariate Gauss vs. Fisher kernels

    NASA Astrophysics Data System (ADS)

    Cañón-Tapia, Edgardo

    2013-05-01

    Underlying many studies of volcano clustering is the implicit assumption that vent distribution can be studied by using kernels originally devised for distribution in plane surfaces. Nevertheless, an important change in topology in the volcanic context is related to the distortion that is introduced when attempting to represent features found on the surface of a sphere that are being projected into a plane. This work explores the extent to which different topologies of the kernel used to study the spatial distribution of vents can introduce significant changes in the obtained density functions. To this end, a planar (Gauss) and a spherical (Fisher) kernels are mutually compared. The role of the smoothing factor in these two kernels is also explored with some detail. The results indicate that the topology of the kernel is not extremely influential, and that either type of kernel can be used to characterize a plane or a spherical distribution with exactly the same detail (provided that a suitable smoothing factor is selected in each case). It is also shown that there is a limitation on the resolution of the Fisher kernel relative to the typical separation between data that can be accurately described, because data sets with separations lower than 500 km are considered as a single cluster using this method. In contrast, the Gauss kernel can provide adequate resolutions for vent distributions at a wider range of separations. In addition, this study also shows that the numerical value of the smoothing factor (or bandwidth) of both the Gauss and Fisher kernels has no unique nor direct relationship with the relevant separation among data. In order to establish the relevant distance, it is necessary to take into consideration the value of the respective smoothing factor together with a level of statistical significance at which the contributions to the probability density function will be analyzed. Based on such reference level, it is possible to create a hierarchy of

  18. Black holes in the Einstein-Gauss-Bonnet theory and the geometry of their thermodynamics—II

    NASA Astrophysics Data System (ADS)

    Biswas, Ritabrata; Chakraborty, Subenoy

    2010-03-01

    In the present work we study (i) the charged black hole in Einstein-Gauss-Bonnet (EGB) theory, known as the Einstein-Maxwell-Gauss-Bonnet (EMGB) black hole and (ii) the black hole in EGB gravity with a Yang-Mills field. The thermodynamic geometry of these two black hole solutions has been investigated, using the modified entropy in Gauss-Bonnet theory.

  19. Fractional Hamiltonian monodromy from a Gauss-Manin monodromy

    NASA Astrophysics Data System (ADS)

    Sugny, D.; Mardešić, P.; Pelletier, M.; Jebrane, A.; Jauslin, H. R.

    2008-04-01

    Fractional Hamiltonian monodromy is a generalization of the notion of Hamiltonian monodromy, recently introduced by [Nekhoroshev, Sadovskií, and Zhilinskií, C. R. Acad. Sci. Paris, Ser. 1 335, 985 (2002); Nekhoroshev, Sadovskií, and Zhilinskií, Ann. Henri Poincare 7, 1099 (2006)] for energy-momentum maps whose image has a particular type of nonisolated singularities. In this paper, we analyze the notion of fractional Hamiltonian monodromy in terms of the Gauss-Manin monodromy of a Riemann surface constructed from the energy-momentum map and associated with a loop in complex space which bypasses the line of singularities. We also prove some propositions on fractional Hamiltonian monodromy for 1:-n and m :-n resonant systems.

  20. Gauss-Manin Connection in Disguise: Calabi-Yau Threefolds

    NASA Astrophysics Data System (ADS)

    Alim, Murad; Movasati, Hossein; Scheidegger, Emanuel; Yau, Shing-Tung

    2016-06-01

    We describe a Lie Algebra on the moduli space of non-rigid compact Calabi-Yau threefolds enhanced with differential forms and its relation to the Bershadsky-Cecotti-Ooguri-Vafa holomorphic anomaly equation. In particular, we describe algebraic topological string partition functions {{F}g^alg, g ≥ 1}, which encode the polynomial structure of holomorphic and non-holomorphic topological string partition functions. Our approach is based on Grothendieck's algebraic de Rham cohomology and on the algebraic Gauss-Manin connection. In this way, we recover a result of Yamaguchi-Yau and Alim-Länge in an algebraic context. Our proofs use the fact that the special polynomial generators defined using the special geometry of deformation spaces of Calabi-Yau threefolds correspond to coordinates on such a moduli space. We discuss the mirror quintic as an example.

  1. Extended Gauss-Bonnet gravities in Weyl geometry

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Koivisto, Tomi S.

    2014-07-01

    In this paper we consider an extended Gauss-Bonnet gravity theory in arbitrary dimensions and in a space provided with a Weyl connection, which is torsion-free but non-metric-compatible, the non-metricity tensor being determined by a vector field. The action considered consists of the usual Einstein-Hilbert action plus all the terms quadratic in the curvature that reduce to the usual Gauss-Bonnet term for vanishing Weyl connection, i.e., when only the Levi-Civita part of the connection is present. We expand the action in terms of Riemannian quantities and obtain vector-tensor theories. We find that all the free parameters only appear in the kinetic term of the vector field, so two branches are possible: one with a propagating vector field and another one where the vector field does not propagate. We focus on the propagating case. We find that in four dimensions, the theory is equivalent to Einstein's gravity plus a Proca field. This field is naturally decoupled from matter, so it represents a natural dark matter candidate. Also for d = 4, we discuss a non-trivial cubic term in the curvature that can be constructed without spoiling the second-order nature of the field equations, because it leads to the vector-tensor Horndeski interaction. In arbitrary dimensions, the theory becomes more involved. We show that, even though the vector field presents kinetic interactions which do not have U\\left( 1 \\right) symmetry, there are no additional propagating degrees of freedom with respect to the usual massive case. We show that, interestingly, this relies on the fact that the corresponding Stückelberg field belongs to a specific class within the general Horndeski theories. Finally, since Weyl geometries provide the natural ground on which to build scale invariant theories, we apply the usual Weyl gauging in order to make the Horndeski action locally scale invariant, and discuss new terms that can be added.

  2. Using the LCOGT Network To Measure a High-Precision Time Delay in the Four-Image Gravitational Lens HE0435-1223

    NASA Astrophysics Data System (ADS)

    Boroson, Todd A.; Moustakas, Leonidas A.; Romero-Wolf, Andrew; McCully, Curtis

    2016-01-01

    Accurate measurements of the delays in arrival time of photons between images in multiply-imaged time-varying sources such as strongly-lensed quasars opens new doors to astrophysical constraints on cosmological parameters, the structure of galaxies and their environments, and the nature of dark matter. The confidence level and accuracy of a time delay measurement in a given gravitational lens system depends on a combination of photometric precision, observational cadence, and the value of the time delay. While many such time differences have been measured, the absolute precision is rarely better than one day. To unlock the greatest potential of time delay probes, a greater than 100-fold improvement in precision is needed.In this contribution we describe a pilot ground-based campaign with the Las Cumbres Observatory Global Telescope (LCOGT) Network, monitoring the four-image lensed quasar HE0435-1223. The LCOGT Network comprises nine 1-meter and two 2-meter telescopes at five sites, with optical imagers on all telescopes and low-dispersion optical spectrographs on the 2-meter telescopes. The geographical distribution of the network sites allows continuous coverage, and a single scheduler produces an optimal mapping of observation requests to the telescopes. Using network sites in Chile, Australia, and South Africa, we were able to obtain continuous optical images with a six-minute cadence over a period of 50 hours, with only one substantial gap due to bad weather at one site. Using a Bayesian-inference based analysis, we derive two plausible time delays between the leading and second images of the lensed system, with statistical uncertainties of 0.01 days (15 minutes).

  3. Simple inflationary models in Gauss-Bonnet brane-world cosmology

    NASA Astrophysics Data System (ADS)

    Okada, Nobuchika; Okada, Satomi

    2016-06-01

    In light of the recent Planck 2015 results for the measurement of the cosmic microwave background (CMB) anisotropy, we study simple inflationary models in the context of the Gauss-Bonnet (GB) brane-world cosmology. The brane-world cosmological effect modifies the power spectra of scalar and tensor perturbations generated by inflation and causes a dramatic change for the inflationary predictions of the spectral index (n s) and the tensor-to-scalar ratio (r) from those obtained in the standard cosmology. In particular, the predicted r values in the inflationary models favored by the Planck 2015 results are suppressed due to the GB brane-world cosmological effect, which is in sharp contrast with inflationary scenario in the Randall-Sundrum brane-world cosmology, where the r values are enhanced. Hence, these two brane-world cosmological scenarios are distinguishable. With the dramatic change of the inflationary predictions, the inflationary scenario in the GB brane-world cosmology can be tested by more precise measurements of n s and future observations of the CMB B-mode polarization.

  4. A time series generalized functional model based method for vibration-based damage precise localization in structures consisting of 1D, 2D, and 3D elements

    NASA Astrophysics Data System (ADS)

    Sakaris, C. S.; Sakellariou, J. S.; Fassois, S. D.

    2016-06-01

    This study focuses on the problem of vibration-based damage precise localization via data-based, time series type, methods for structures consisting of 1D, 2D, or 3D elements. A Generalized Functional Model Based method is postulated based on an expanded Vector-dependent Functionally Pooled ARX (VFP-ARX) model form, capable of accounting for an arbitrary structural topology. The FP model's operating parameter vector elements are properly constrained to reflect any given topology. Damage localization is based on operating parameter vector estimation within the specified topology, so that the location estimate and its uncertainty bounds are statistically optimal. The method's effectiveness is experimentally demonstrated through damage precise localization on a laboratory spatial truss structure using various damage scenarios and a single pair of random excitation - vibration response signals in a low and limited frequency bandwidth.

  5. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs.

    PubMed

    Tamborini, D; Portaluppi, D; Villa, F; Tisa, S; Tosi, A

    2014-11-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  6. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    NASA Astrophysics Data System (ADS)

    Tamborini, D.; Portaluppi, D.; Villa, F.; Tisa, S.; Tosi, A.

    2014-11-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  7. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    SciTech Connect

    Tamborini, D. Portaluppi, D.; Villa, F.; Tosi, A.; Tisa, S.

    2014-11-15

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  8. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs.

    PubMed

    Tamborini, D; Portaluppi, D; Villa, F; Tisa, S; Tosi, A

    2014-11-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link. PMID:25430129

  9. Quasispherical gravitational collapse in 5D Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Ghosh, Sushant G.; Jhingan, S.

    2010-07-15

    We obtain a general five-dimensional quasispherical collapsing solutions of irrotational dust in Einstein gravity with the Gauss-Bonnet combination of quadratic curvature terms. These solutions are a generalization, to Einstein-Gauss-Bonnet gravity, of the five-dimensional quasispherical Szkeres like collapsing solutions in general relativity. It is found that the collapse proceeds in the same way as in the analogous spherical collapse, i.e., there exists regular initial data such that the collapse proceed to form naked singularities violating cosmic censorship conjecture. The effect of Gauss-Bonnet quadratic curvature terms on the formation and locations of the apparent horizon is deduced.

  10. Hydrodynamics of a black brane in Gauss-Bonnet massive gravity

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mehdi; Parvizi, Shahrokh

    2016-02-01

    A black brane solution to Gauss-Bonnet massive gravity is introduced. In the context of AdS/CFT correspondence, the viscosity to entropy ratio is found by the Green-Kubo formula. The result indicates a violation of the well-known KSS bound, as expected in a higher derivative theory. Setting mass zero gives back the known viscosity to entropy ratio dependent on the Gauss-Bonnet coupling, while without the Gauss-Bonnet term, a nonzero mass parameter does not contribute to the ratio which saturates the bound of \\frac{1}{4π }.

  11. Holographic superconductors in Gauss-Bonnet gravity with Born-Infeld electrodynamics

    SciTech Connect

    Jing Jiliang; Wang Liancheng; Pan Qiyuan; Chen Songbai

    2011-03-15

    We investigate the holographic superconductors in Gauss-Bonnet gravity with Born-Infeld electrodynamics. We find that the Gauss-Bonnet constant, the model parameters, and the Born-Infeld coupling parameter will affect the formation of the scalar hair, the transition point of the phase transition from the second order to the first order, and the relation connecting the gap frequency in conductivity with the critical temperature. The combination of Gauss-Bonnet gravity and the Born-Infeld electrodynamics provides richer physics in the phase transition and the condensation of the scalar hair.

  12. Valuing option on the maximum of two assets using improving modified Gauss-Seidel method

    NASA Astrophysics Data System (ADS)

    Koh, Wei Sin; Muthuvalu, Mohana Sundaram; Aruchunan, Elayaraja; Sulaiman, Jumat

    2014-07-01

    This paper presents the numerical solution for the option on the maximum of two assets using Improving Modified Gauss-Seidel (IMGS) iterative method. Actually, this option can be governed by two-dimensional Black-Scholes partial differential equation (PDE). The Crank-Nicolson scheme is applied to discretize the Black-Scholes PDE in order to derive a linear system. Then, the IMGS iterative method is formulated to solve the linear system. Numerical experiments involving Gauss-Seidel (GS) and Modified Gauss-Seidel (MGS) iterative methods are implemented as control methods to test the computational efficiency of the IMGS iterative method.

  13. Single-frequency precise point positioning: an analytical approach

    NASA Astrophysics Data System (ADS)

    Sterle, Oskar; Stopar, Bojan; Pavlovčič Prešeren, Polona

    2015-08-01

    An analytical approach to single-frequency precise point positioning (PPP) is discussed in this paper. To obtain highest precision results, all biases must be eliminated or modelled to centimetre level. The use of the GRAPHIC ionosphere-free linear combination that is based on single-frequency phase and code observations eliminates the ionosphere bias; however, the rank deficient Gauss-Markov model is obtained. We explicitly determine rank deficiency of a Gauss-Markov model as a number of all ambiguity clusters, each of them defined as a set of all ambiguities overlapping in time. On the basis of S-transformation we prove that the single-frequency PPP represents an unbiased estimator for station coordinates and troposphere parameters, while it presents a biased estimator for ambiguities and receiver-clock error parameters. Additionally we describe the estimable parameters in each ambiguity cluster as the differences between ambiguity parameters and the sum of receiver-clock parameters with one of the ambiguities. We also show that any other particular solution on the basis of S-transformation is obtained only when the common least-squares estimation in single step is applied. The recursive least-squares estimation with parameter pre-elimination only determines the vector of unknowns as possible to transform through S-transformation, whereas the same does not hold for the cofactor matrix of unknowns. For a case study, we present our method on GPS data from 19 permanent stations (14 IGS and 5 EPN) in Europe, for 89 consecutive days in the beginning of 2013. The static case study revealed the precision of daily coordinates as 7.6, 11.7 and 19.6 mm for , and , respectively. The accuracies of the , and components were determined as 6.9, 13.5 and 31.4 mm, respectively, and were calculated using the Helmert transformation of weighted-mean daily single-frequency PPP and IGb08 coordinates. The estimated convergence times were relatively diverse, expanding from 1.75 h (CAGL

  14. Determination of short-term error caused by the reference clock in precision time-interval measurement and generation

    NASA Astrophysics Data System (ADS)

    Kalisz, Jozef

    1988-06-01

    A simple analysis based on the randomized clock cycle T(o) yields a useful formula on its variance in terms of the Allan variance. The short-term uncertainty of the measured or generated time interval t is expressed by the standard deviation in an approximate form as a function of the Allen variance. The estimates obtained are useful for determining the measurement uncertainty of time intervals within the approximate range of 10 ms-100 s.

  15. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  16. Precisions Measurement for the Grasp of Welding Deformation amount of Time Series for Large-Scale Industrial Products

    NASA Astrophysics Data System (ADS)

    Abe, R.; Hamada, K.; Hirata, N.; Tamura, R.; Nishi, N.

    2015-05-01

    As well as the BIM of quality management in the construction industry, demand for quality management of the manufacturing process of the member is higher in shipbuilding field. The time series of three-dimensional deformation of the each process, and are accurately be grasped strongly demanded. In this study, we focused on the shipbuilding field, will be examined three-dimensional measurement method. The shipyard, since a large equipment and components are intricately arranged in a limited space, the installation of the measuring equipment and the target is limited. There is also the element to be measured is moved in each process, the establishment of the reference point for time series comparison is necessary to devise. In this paper will be discussed method for measuring the welding deformation in time series by using a total station. In particular, by using a plurality of measurement data obtained from this approach and evaluated the amount of deformation of each process.

  17. Development of a high-speed real-time PCR system for rapid and precise nucleotide recognition

    NASA Astrophysics Data System (ADS)

    Terazono, Hideyuki; Takei, Hiroyuki; Hattori, Akihiro; Yasuda, Kenji

    2010-04-01

    Polymerase chain reaction (PCR) is a common method used to create copies of a specific target region of a DNA sequence and to produce large quantities of DNA. A few DNA molecules, which act as templates, are rapidly amplified by PCR into many billions of copies. PCR is a key technology in genome-based biological analysis, revolutionizing many life science fields such as medical diagnostics, food safety monitoring, and countermeasures against bioterrorism. Thus, many applications have been developed with the thermal cycling. For these PCR applications, one of the most important key factors is reduction in the data acquisition time. To reduce the acquisition time, it is necessary to decrease the temperature transition time between the high and low ends as much as possible. We have developed a novel rapid real-time PCR system based on rapid exchange of media maintained at different temperatures. This system consists of two thermal reservoirs and a reaction chamber for PCR observation. The temperature transition was achieved within 0.3 sec, and good thermal stability was achieved during thermal cycling with rapid exchange of circulating media. This system allows rigorous optimization of the temperatures required for each stage of the PCR processes. Resulting amplicons were confirmed by electrophoresis. Using the system, rapid DNA amplification was accomplished within 3.5 min, including initial heating and complete 50 PCR cycles. It clearly shows that the device could allow us faster temperature switching than the conventional conduction-based heating systems based on Peltier heating/cooling.

  18. The Validity and Precision of the Comparative Interrupted Time-Series Design: Three Within-Study Comparisons

    ERIC Educational Resources Information Center

    St. Clair, Travis; Hallberg, Kelly; Cook, Thomas D.

    2016-01-01

    We explore the conditions under which short, comparative interrupted time-series (CITS) designs represent valid alternatives to randomized experiments in educational evaluations. To do so, we conduct three within-study comparisons, each of which uses a unique data set to test the validity of the CITS design by comparing its causal estimates to…

  19. Examining the Internal Validity and Statistical Precision of the Comparative Interrupted Time Series Design by Comparison with a Randomized Experiment

    ERIC Educational Resources Information Center

    St.Clair, Travis; Cook, Thomas D.; Hallberg, Kelly

    2014-01-01

    Although evaluators often use an interrupted time series (ITS) design to test hypotheses about program effects, there are few empirical tests of the design's validity. We take a randomized experiment on an educational topic and compare its effects to those from a comparative ITS (CITS) design that uses the same treatment group as the…

  20. Sport expertise: the role of precise timing of verbal-analytical engagement and the ability to detect visual cues.

    PubMed

    Taliep, Mogammad Sharhidd; John, Lester

    2014-01-01

    This study proposed that relative timing of high-alpha (10-12 Hz) left (T3) and right (T4) cortical temporal electroencephalographic (EEG) power levels would differentiate performance groups in a reactive sport such as cricket batting. The time course of EEG event-related alpha synchronisation (ERS) and desynchronisation was investigated in two groups (eight skilled and ten less skilled) of right-handed cricket batsmen whilst viewing projected video footage of a bowler delivering a randomised series of 24 deliveries repeated 10 times (total of 240 deliveries). Ball release from the bowler's hand was used as the corresponding reaction cue. Participants were instructed to press one of two buttons on a keypad to identify in-swingers or out-swingers. T3 ERS was significantly greater in skilled batsmen from approximately 1500 ms prior to ball release, but differences reduced close to ball release, reaching nonsignificance by 250 ms. There was no significant difference in T4 between the groups. This study uniquely highlights that the relative timing of the T3 high-alpha ERS state appears to differentiate batting skill groups in a reactive task.

  1. PRECISION OF REAL-TIME ESTIMATION OF LIQUEFACTION POTENCIALS DURING THE 2011 OFF THE PACIFIC COAST OF TOHOKU EARTHQUAKE

    NASA Astrophysics Data System (ADS)

    Ishida, Eisuke; Suetomi, Iwao; Tsukamoto, Hiroyuki; Inomata, Wataru; Hamanaka, Ryo; Norito, Yuuki; Yasuda, Susumu

    The coast area in Tokyo-wan which is far from the earthquake fault, were heavily liquefied during the 2011 off the Pacific coast of Tohoku earthquake. It is very important to predict the occurence and degree of liquafaction, because the liquafaction affects the safety of underground pipilines and facilities of roads and ports. The real-time disaster prevention system "SUPREME" is established and used by Tokyo Gas supply system in order to secure the safety. The system collected the SI value from 4,000 sensor, calculated the distribution of SI value, liquafaction potencial, damages of pipelines for about 20 minutes after the earthquake. In this paper, it is shown that estimated liquafaction area corresponds actual liquafaction area very well, and the reason is that "SUPREME" uses very dense SPT data and SI sensors and the estimate method of liquafaction considers the effect of duration time of earthqauke groun motion.

  2. Precise time and frequency intercomparison between NPL, India and PTB, Federal Republic of Germany via satellite symphonie-1

    NASA Technical Reports Server (NTRS)

    Mathur, B. S.; Banerjee, P.; Sood, P. C.; Saxena, M.; Kumar, N.; Suri, A. K.

    1981-01-01

    A time and frequency intercomparison experiment conducted using Earth stations in New Delhi, India and Raisting, FRG is described. The NPL clock was placed at New Delhi Earth Station and the Raisting Clock was calibrated with PTB/Primary standard via LORAN-C and travelling clocks. The random uncertainity of time comparisons, represented by two sample Allan Variance sigma (30 seconds), was less than 10 nanoseconds. The relative frequency difference between the NPL and Raisting Clocks, SNPL, RAIS, as measured over the 44 days period was found to be -15.7 x 10 to the -13th power. The relative frequency difference between PTB Primary Standard and Raisting Clock, SPTB, RAIS, during this period, was measured to be -22.8 x 10 to the -13th power. The relative frequency difference between NPL clock and PTB Primary Standard, SNPL, PTB, thus, is +7.1 x 10 to the -13th power. The clock rate (UTC, India) of +7.1 + or - 0.5 x 10 to the -13th power, agrees well with that obtained via VLF phase measurements over one year period and with USNO travelling clock time comparisons made in September, 1980.

  3. Clock accuracy and precision evolve as a consequence of selection for adult emergence in a narrow window of time in fruit flies Drosophila melanogaster.

    PubMed

    Kannan, Nisha N; Vaze, Koustubh M; Sharma, Vijay Kumar

    2012-10-15

    Although circadian clocks are believed to have evolved under the action of periodic selection pressures (selection on phasing) present in the geophysical environment, there is very little rigorous and systematic empirical evidence to support this. In the present study, we examined the effect of selection for adult emergence in a narrow window of time on the circadian rhythms of fruit flies Drosophila melanogaster. Selection was imposed in every generation by choosing flies that emerged during a 1 h window of time close to the emergence peak of baseline/control flies under 12 h:12 h light:dark cycles. To study the effect of selection on circadian clocks we estimated several quantifiable features that reflect inter- and intra-individual variance in adult emergence and locomotor activity rhythms. The results showed that with increasing generations, incidence of adult emergence and activity of adult flies during the 1 h selection window increased gradually in the selected populations. Flies from the selected populations were more homogenous in their clock period, were more coherent in their phase of entrainment, and displayed enhanced accuracy and precision in their emergence and activity rhythms compared with controls. These results thus suggest that circadian clocks in D. melanogaster evolve enhanced accuracy and precision when subjected to selection for emergence in a narrow window of time.

  4. Parallel full-waveform inversion in the frequency domain by the Gauss-Newton method

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Zhuang, Yuan

    2016-06-01

    In this paper, we investigate the full-waveform inversion in the frequency domain. We first test the inversion ability of three numerical optimization methods, i.e., the steepest-descent method, the Newton-CG method and the Gauss- Newton method, for a simple model. The results show that the Gauss-Newton method performs well and efficiently. Then numerical computations for a benchmark model named Marmousi model by the Gauss-Newton method are implemented. Parallel algorithm based on message passing interface (MPI) is applied as the inversion is a typical large-scale computational problem. Numerical computations show that the Gauss-Newton method has good ability to reconstruct the complex model.

  5. Warm starting the projected Gauss-Seidel algorithm for granular matter simulation

    NASA Astrophysics Data System (ADS)

    Wang, Da; Servin, Martin; Berglund, Tomas

    2016-03-01

    The effect on the convergence of warm starting the projected Gauss-Seidel solver for nonsmooth discrete element simulation of granular matter are investigated. It is found that the computational performance can be increased by a factor 2-5.

  6. Precision translator

    DOEpatents

    Reedy, R.P.; Crawford, D.W.

    1982-03-09

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  7. Precision translator

    DOEpatents

    Reedy, Robert P.; Crawford, Daniel W.

    1984-01-01

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  8. Precise survival time and physical activity after fatal left ventricle injury from sharp pointed weapon: a case report and a review of the literature.

    PubMed

    Franchi, Angélique; Kolopp, Martin; Coudane, Henry; Martrille, Laurent

    2016-09-01

    Survival time and physical activity following fatal injury are especially important during investigation of homicide cases and the estimation of a victim's survival time and physical activity following a fatal injury from a sharp weapon is a commonly raised issue, particularly at trial. According to the literature, survival time and physical activity after cardiac damage are short-term estimates without high accuracy. We report the homicide case of a young man who died as a result of a left ventricle injury caused by a sharp pointed weapon. This case is based on evidence from a video surveillance camera that recorded the whole scene after the fatal injury: The victim showed an adapted physical activity for 38 s, although the left ventricle incision measured 2 cm. Despite several cases in the literature, it is not possible to correlate precisely the size of the wounds and the acting capability.

  9. Precise survival time and physical activity after fatal left ventricle injury from sharp pointed weapon: a case report and a review of the literature.

    PubMed

    Franchi, Angélique; Kolopp, Martin; Coudane, Henry; Martrille, Laurent

    2016-09-01

    Survival time and physical activity following fatal injury are especially important during investigation of homicide cases and the estimation of a victim's survival time and physical activity following a fatal injury from a sharp weapon is a commonly raised issue, particularly at trial. According to the literature, survival time and physical activity after cardiac damage are short-term estimates without high accuracy. We report the homicide case of a young man who died as a result of a left ventricle injury caused by a sharp pointed weapon. This case is based on evidence from a video surveillance camera that recorded the whole scene after the fatal injury: The victim showed an adapted physical activity for 38 s, although the left ventricle incision measured 2 cm. Despite several cases in the literature, it is not possible to correlate precisely the size of the wounds and the acting capability. PMID:26914799

  10. Delayed photolysis of liposomes: a strategy for the precision timing of bolus drug release using ex-vivo photochemical sensitization

    NASA Astrophysics Data System (ADS)

    Kozikowski, Raymond T.; Sorg, Brian S.

    2012-03-01

    Chemotherapy is a standard treatment for metastatic cancer. However drug toxicity limits the dosage that can safely be used, thus reducing treatment efficacy. Drug carrier particles, like liposomes, can help reduce toxicity by shielding normal tissue from drug and selectively depositing drug in tumors. Over years of development, liposomes have been optimized to avoid uptake by the Reticuloendothelial System (RES) as well as effectively retain their drug content during circulation. As a result, liposomes release drug passively, by slow leakage, but this uncontrolled drug release can limit treatment efficacy as it can be difficult to achieve therapeutic concentrations of drug at tumor sites even with tumor-specific accumulation of the carriers. Lipid membranes can be photochemically lysed by both Type I (photosensitizer-substrate) and Type II (photosensitizer-oxygen) reactions. It has been demonstrated in red blood cells (RBCs) in vitro that these photolysis reactions can occur in two distinct steps: a light-initiated reaction followed by a thermally-initiated reaction. These separable activation steps allow for the delay of photohemolysis in a controlled manner using the irradiation energy, temperature and photosensitizer concentration. In this work we have translated this technique from RBCs to liposomal nanoparticles. To that end, we present in vitro data demonstrating this delayed bolus release from liposomes, as well as the ability to control the timing of this event. Further, we demonstrate for the first time the improved delivery of bioavailable cargo selectively to target sites in vivo.

  11. Curvatures and discrete Gauss-Codazzi equation in (2 + 1)-dimensional loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Ariwahjoedi, Seramika; Kosasih, Jusak Sali; Rovelli, Carlo; Zen, Freddy P.

    2015-07-01

    We derive the Gauss-Codazzi equation in the holonomy and plane-angle representations and we use the result to write a Gauss-Codazzi equation for a discrete (2 + 1)-dimensional manifold, triangulated by isosceles tetrahedra. This allows us to write operators acting on spin network states in (2 + 1)-dimensional loop quantum gravity, representing the 3-dimensional intrinsic, 2-dimensional intrinsic, and 2-dimensional extrinsic curvatures.

  12. Isometric immersions via compensated compactness for slowly decaying negative Gauss curvature and rough data

    NASA Astrophysics Data System (ADS)

    Christoforou, Cleopatra; Slemrod, Marshall

    2015-12-01

    In this paper, the method of compensated compactness is applied to the problem of isometric immersion of a two-dimensional Riemannian manifold with negative Gauss curvature into three-dimensional Euclidean space. Previous applications of the method to this problem have required decay of order t -4 in the Gauss curvature. Here, we show that the decay of Hong (Commun Anal Geom 1:487-514, 1993) t -2- δ/2 where δ ∈ (0, 4) suffices.

  13. Charged black hole solutions in Gauss-Bonnet-massive gravity

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Panahiyan, S.; Panah, B. Eslam

    2016-01-01

    Motivated by high interest in the close relation between string theory and black hole solutions, in this paper, we take into account the Einstein-Gauss-Bonnet Lagrangian in the context of massive gravity. We examine the possibility of black hole in this regard, and discuss the types of horizons. Next, we calculate conserved and thermodynamic quantities and check the validity of the first law of thermodynamics. In addition, we investigate the stability of these black holes in context of canonical ensemble. We show that number, type and place of phase transition points may be significantly affected by different parameters. Next, by considering cosmological constant as thermodynamical pressure, we will extend phase space and calculate critical values. Then, we construct thermodynamical spacetime by considering mass as thermodynamical potential. We study geometrical thermodynamics of these black holes in context of heat capacity and extended phase space. We show that studying heat capacity, geometrical thermodynamics and critical behavior in extended phase space lead to consistent results. Finally, we will employ a new method for obtaining critical values and show that the results of this method are consistent with those of other methods.

  14. Black Hole Thermodynamic Products in Einstein Gauss Bonnet Gravity

    NASA Astrophysics Data System (ADS)

    Biswas, Ritabrata

    2016-07-01

    By now, there are many hints from string theory that collective excitations of solitonic objects can be described by effective low energy theories. The entropy of general rotating black holes in five dimensions may be interpreted as an indication that, it derives from two independent microscopic contributions and each of these may be attributed to a gas of strings. In the present work, we consider a charged black hole in five dimensional Einstein Gauss Bonnet gravity. In spite of presenting the thermodynamic quantities' product as summation/ subtraction of two independent integers, our motive is to check whether the product of the same quantity for event horizon and Cauchy horizon is free of mass, i.e., global, or not. We derive the thermodynamic products of characteristic parameters to mark which are global. We further interpret the stability of the black holes by computing the specific heat for both horizons. Stable and unstable phases of horizons are pointed out. The phase transitions with respect to the charge in nature of specific heat are also observed. All these calculation might be helpful to understand the microscopic nature of such black holes.

  15. Calibration of the Late Cretaceous to Paleocene geomagnetic polarity and astrochronological time scales: new results from high-precision U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Ramezani, Jahandar; Clyde, William; Wang, Tiantian; Johnson, Kirk; Bowring, Samuel

    2016-04-01

    Reversals in the Earth's magnetic polarity are geologically abrupt events of global magnitude that makes them ideal timelines for stratigraphic correlation across a variety of depositional environments, especially where diagnostic marine fossils are absent. Accurate and precise calibration of the Geomagnetic Polarity Timescale (GPTS) is thus essential to the reconstruction of Earth history and to resolving the mode and tempo of biotic and environmental change in deep time. The Late Cretaceous - Paleocene GPTS is of particular interest as it encompasses a critical period of Earth history marked by the Cretaceous greenhouse climate, the peak of dinosaur diversity, the end-Cretaceous mass extinction and its paleoecological aftermaths. Absolute calibration of the GPTS has been traditionally based on sea-floor spreading magnetic anomaly profiles combined with local magnetostratigraphic sequences for which a numerical age model could be established by interpolation between an often limited number of 40Ar/39Ar dates from intercalated volcanic ash deposits. Although the Neogene part of the GPTS has been adequately calibrated using cyclostratigraphy-based, astrochronological schemes, the application of these approaches to pre-Neogene parts of the timescale has been complicated given the uncertainties of the orbital models and the chaotic behavior of the solar system this far back in time. Here we present refined chronostratigraphic frameworks based on high-precision U-Pb geochronology of ash beds from the Western Interior Basin of North America and the Songliao Basin of Northeast China that places tight temporal constraints on the Late Cretaceous to Paleocene GPTS, either directly or by testing their astrochronological underpinnings. Further application of high-precision radioisotope geochronology and calibrated astrochronology promises a complete and robust Cretaceous-Paleogene GPTS, entirely independent of sea-floor magnetic anomaly profiles.

  16. High precision finite-differences time-domain direct modelling of wave equation for seismic oceanography experiments

    NASA Astrophysics Data System (ADS)

    Sallares, V.; Kormann, J.; Cobo, P.; Biescas, B.; Carbonell, R.

    2007-05-01

    Holbrook et al. (2003) demonstrated recently the possibility of visualizing fine structures in the water column, like thermohaline intrusion or internal waves, through seismic exploration experiments. Seismic exploration is becoming a popular technique for providing high-lateral resolution images of the explored area, in contrast with the classical oceanography probes, like XBT or XCDT. In this work we present a wave propagation model based upon a high order finite-differences time-domain (FDTD) scheme which includes special absorbing conditions in the boundaries. FDTD algorithms are known for presenting problems with reflections on the computational edges. Classical boundary conditions, like those of Engquist, provide reflection coefficients or the order of 10-2. However, reflection coefficients of fine structures in the water we are trying to model are about 10-4. Thus, the key point of the algorithm we present is in the implementation of Perfectly Matched Layer (PML) boundary conditions. These consist in zones with high absorption (therefore, very low reflection coefficient). The PML implemented in this scheme consists in a second order algorithm in the time domain, to take advantage of its stability and convergence properties. In this work we specify the propagation algorithm, and compare it results with the with Engquist and PML absorbing boundaries conditions. The PML condition affords reflection coefficients in the numerical edges lower than 10-4. Holbrook, W.S., Paramo, P., Pearse, S. and Schmitt, R.W., 2003. Thermohaline fine structure in an oceanographic front from seismic reflection profiling. Science, 301, 821-824.

  17. Repeated application of Modafinil and Levodopa reveals a drug-independent precise timing of spatial working memory modulation.

    PubMed

    Bezu, M; Shanmugasundaram, B; Lubec, G; Korz, V

    2016-10-01

    Cognition enhancing drugs often target the dopaminergic system, which is involved in learning and memory, including working memory that in turn involves mainly the prefrontal cortex and the hippocampus. In most animal models for modulations of working memory animals are pre-trained to a certain criterion and treated then acutely to test drugs effects on working memory. Thus, little is known regarding subchronic or chronic application of cognition enhancing drugs and working memory performance. Therefore we trained male rats over six days in a rewarded alternation test in a T-maze. Rats received daily injections of either modafinil or Levodopa (L-Dopa) at a lower and a higher dose 30min before training. Levodopa but not modafinil increased working memory performance during early training significantly at day 3 when compared to vehicle controls. Both drugs induced dose dependent differences in working memory with significantly better performance at low doses compared to high doses for modafinil, in contrast to L-Dopa where high dose treated rats performed better than low dose rats. Strikingly, these effects appeared only at day 3 for both drugs, followed by a decline in behavioral performance. Thus, a critical drug independent time window for dopaminergic effects upon working memory could be revealed. Evaluating the underlying mechanisms contributes to the understanding of temporal effects of dopamine on working memory performance.

  18. AdS and Lifshitz scalar hairy black holes in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Fan, Zhong-Ying; Zhu, Lu-Yao

    2016-09-01

    We consider Gauss-Bonnet (GB) gravity in general dimensions, which is nonminimally coupled to a scalar field. By choosing a scalar potential of the type V (ϕ )=2 Λ0+1/2 m2ϕ2+γ4ϕ4 , we first obtain large classes of scalar hairy black holes with spherical/hyperbolic/planar topologies that are asymptotic to locally anti- de Sitter (AdS) space-times. We derive the first law of black hole thermodynamics using Wald formalism. In particular, for one class of the solutions, the scalar hair forms a thermodynamic conjugate with the graviton and nontrivially contributes to the thermodynamical first law. We observe that except for one class of the planar black holes, all these solutions are constructed at the critical point of GB gravity where there exist unique AdS vacua. In fact, a Lifshitz vacuum is also allowed at the critical point. We then construct many new classes of neutral and charged Lifshitz black hole solutions for an either minimally or nonminimally coupled scalar and derive the thermodynamical first laws. We also obtain new classes of exact dynamical AdS and Lifshitz solutions which describe radiating white holes. The solutions eventually become AdS or Lifshitz vacua at late retarded times. However, for one class of the solutions, the final state is an AdS space-time with a globally naked singularity.

  19. Sensor based real-time process monitoring for ultra-precision manufacturing processes with non-linearity and non-stationarity

    NASA Astrophysics Data System (ADS)

    Beyca, Omer Faruk

    This research investigates methodologies for real-time process monitoring in ultra-precision manufacturing processes, specifically, chemical mechanical planarization (CMP) and ultra-precision machining (UPM), are investigated in this dissertation. The three main components of this research are as follows: (1) developing a predictive modeling approaches for early detection of process anomalies/change points, (2) devising approaches that can capture the non-Gaussian and non-stationary characteristics of CMP and UPM processes, and (3) integrating multiple sensor data to make more reliable process related decisions in real-time. In the first part, we establish a quantitative relationship between CMP process performance, such as material removal rate (MRR) and data acquired from wireless vibration sensors. Subsequently, a non-linear sequential Bayesian analysis is integrated with decision theoretic concepts for detection of CMP process end-point for blanket copper wafers. Using this approach, CMP polishing end-point was detected within a 5% error rate. Next, a non-parametric Bayesian analytical approach is utilized to capture the inherently complex, non-Gaussian, and non-stationary sensor signal patterns observed in CMP process. An evolutionary clustering analysis, called Recurrent Nested Dirichlet Process (RNDP) approach is developed for monitoring CMP process changes using MEMS vibration signals. Using this novel signal analysis approach, process drifts are detected within 20 milliseconds and is assessed to be 3-7 times faster than traditional SPC charts. This is very beneficial to the industry from an application standpoint, because, wafer yield losses will be mitigated to a great extent, if the onset of CMP process drifts can be detected timely and accurately. Lastly, a non-parametric Bayesian modeling approach, termed Dirichlet Process (DP) is combined with a multi-level hierarchical information fusion technique for monitoring of surface finish in UPM process

  20. High-precision U-Pb zircon geochronological constraints on the End-Triassic Mass Extinction, the late Triassic Astronomical Time Scale and geochemical evolution of CAMP magmatism

    NASA Astrophysics Data System (ADS)

    Blackburn, T. J.; Olsen, P. E.; Bowring, S. A.; McLean, N. M.; Kent, D. V.; Puffer, J. H.; McHone, G.; Rasbury, T.

    2012-12-01

    Mass extinction events that punctuate Earth's history have had a large influence on the evolution, diversity and composition of our planet's biosphere. The approximate temporal coincidence between the five major extinction events over the last 542 million years and the eruption of Large Igneous Provinces (LIPs) has led to the speculation that climate and environmental perturbations generated by the emplacement of a large volume of magma in a short period of time triggered each global biologic crisis. Establishing a causal link between extinction and the onset and tempo of LIP eruption has proved difficult because of the geographic separation between LIP volcanic deposits and stratigraphic sequences preserving evidence of the extinction. In most cases, the uncertainties on available radioisotopic dates used to correlate between geographically separated study areas often exceed the duration of both the extinction interval and LIP volcanism by an order of magnitude. The "end-Triassic extinction" (ETE) is one of the "big five" and is characterized by the disappearance of several terrestrial and marine species and dominance of Dinosaurs for the next 134 million years. Speculation on the cause has centered on massive climate perturbations thought to accompany the eruption of flood basalts related to the Central Atlantic Magmatic Province (CAMP), the most aerially extensive and volumetrically one of the largest LIPs on Earth. Despite an approximate temporal coincidence between extinction and volcanism, there lacks evidence placing the eruption of CAMP prior to or at the initiation of the extinction. Estimates of the timing and/or duration of CAMP volcanism provided by astrochronology and Ar-Ar geochronology differ by an order of magnitude, precluding high-precision tests of the relationship between LIP volcanism and the mass extinction, the causes of which are dependent upon the rate of magma eruption. Here we present high precision zircon U-Pb ID-TIMS geochronologic data

  1. Time-scale calibration by high-precision U sbnd Pb zircon dating of interstratified volcanic ashes in the Ordovician and Lower Silurian stratotypes of Britain

    NASA Astrophysics Data System (ADS)

    Tucker, R. D.; Krogh, T. E.; Ross, R. J.; Williams, S. H.

    1990-10-01

    High initial parent/daughter element ratios and a unique dual decay scheme make U sbnd Pb zicron ages more precise and reliable than most isotopic ages, and thus inherently superior for time-scale calibration. Employing improved techniques to the conventional method of U sbnd Pb dating, we have analyzed microgram-size (2-12 × 10 -8 g) zircon fractions from biostratigraphically controlled volcanic ashes and dated key Paleozoic time-markers with a precision better than 1% (±2Ma). Four of the stratotype samples from Britain for which fission-track ages [ 1] were previously reported have yielded improved ages of:438.7 ± 2.0Ma for the lower Silurian zone of Coronograptus cyphus from Llandovery strata at Dob's Linn, southern Scotland;457.5 ± 2.2 Ma for a Middle Ordovician Caradoc (Longvillian) ash near Bala, North Wales, and;465.7 ± 2.1and464.6 ± 1.8 Ma for the Didymograptus artus Zone and the type Didymograptus Murchisoni Zone, respectively, of the Llanvirn Series at Arenig Fawr and Abereiddi Bay, Wales. Another sample from the zone of Dicellograptus anceps ( P. pacificus Subzone) of the Ashgill Series at Dob's Linn has been dated at445.7 ± 2.4Ma, suggesting placement of the Ordovician-Silurian time boundary at approximately 441 Ma. A sixth bentonite from Caradocian age strata of North America (Spechts Ferry Shale, Decorah Formation, Missouri) is453.7 ± 1.8Ma old, indicating that the Rocklandian Stage of the Mohawkian Series is only slightly younger than the Longvillian Stage of the Caradoc Series in Britain.

  2. GAUSS-SEIDEL AND SUCCESSIVE OVERRELAXATION METHODS FOR RADIATIVE TRANSFER WITH PARTIAL FREQUENCY REDISTRIBUTION

    SciTech Connect

    Sampoorna, M.; Bueno, J. Trujillo

    2010-04-01

    The linearly polarized solar limb spectrum that is produced by scattering processes contains a wealth of information on the physical conditions and magnetic fields of the solar outer atmosphere, but the modeling of many of its strongest spectral lines requires solving an involved non-local thermodynamic equilibrium radiative transfer problem accounting for partial redistribution (PRD) effects. Fast radiative transfer methods for the numerical solution of PRD problems are also needed for a proper treatment of hydrogen lines when aiming at realistic time-dependent magnetohydrodynamic simulations of the solar chromosphere. Here we show how the two-level atom PRD problem with and without polarization can be solved accurately and efficiently via the application of highly convergent iterative schemes based on the Gauss-Seidel and successive overrelaxation (SOR) radiative transfer methods that had been previously developed for the complete redistribution case. Of particular interest is the Symmetric SOR method, which allows us to reach the fully converged solution with an order of magnitude of improvement in the total computational time with respect to the Jacobi-based local accelerated lambda iteration method.

  3. On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals.

    PubMed

    Aydöre, Sergül; Mihçak, M Kivanç; Ciftçi, Koray; Akin, Ata

    2010-03-01

    Functional near-infrared spectroscopy (fNIRS) is an optical imaging method, which monitors the brain activation by measuring the successive changes in the concentration of oxy- and deoxyhemoglobin in real time. In this study, we present a method to investigate the functional connectivity of prefrontal cortex (PFC) Sby applying a Gauss-Markov model to fNIRS signals. The hemodynamic changes on PFC during the performance of cognitive paradigm are measured by fNIRS for 17 healthy adults. The color-word matching Stroop task is performed to activate 16 different regions of PFC. There are three different types of stimuli in this task, which can be listed as incongruent stimulus (IS), congruent stimulus (CS), and neutral stimulus (NS), respectively. We introduce a new measure, called "information transfer metric" (ITM) for each time sample. The behavior of ITMs during IS are significantly different from the ITMs during CS and NS, which is consistent with the outcome of the previous research, which concentrated on fNIRS signal analysis via color-word matching Stroop task. Our analysis shows that the functional connectivity of PFC is highly relevant with the cognitive load, i.e., functional connectivity increases with the increasing cognitive load.

  4. Potential for bias and low precision in molecular divergence time estimation of the Canopy of Life: an example from aquatic bird families

    PubMed Central

    van Tuinen, Marcel; Torres, Christopher R.

    2015-01-01

    Uncertainty in divergence time estimation is frequently studied from many angles but rarely from the perspective of phylogenetic node age. If appropriate molecular models and fossil priors are used, a multi-locus, partitioned analysis is expected to equally minimize error in accuracy and precision across all nodes of a given phylogeny. In contrast, if available models fail to completely account for rate heterogeneity, substitution saturation and incompleteness of the fossil record, uncertainty in divergence time estimation may increase with node age. While many studies have stressed this concern with regard to deep nodes in the Tree of Life, the inference that molecular divergence time estimation of shallow nodes is less sensitive to erroneous model choice has not been tested explicitly in a Bayesian framework. Because of available divergence time estimation methods that permit fossil priors across any phylogenetic node and the present increase in efficient, cheap collection of species-level genomic data, insight is needed into the performance of divergence time estimation of shallow (<10 MY) nodes. Here, we performed multiple sensitivity analyses in a multi-locus data set of aquatic birds with six fossil constraints. Comparison across divergence time analyses that varied taxon and locus sampling, number and position of fossil constraint and shape of prior distribution showed various insights. Deviation from node ages obtained from a reference analysis was generally highest for the shallowest nodes but determined more by temporal placement than number of fossil constraints. Calibration with only the shallowest nodes significantly underestimated the aquatic bird fossil record, indicating the presence of saturation. Although joint calibration with all six priors yielded ages most consistent with the fossil record, ages of shallow nodes were overestimated. This bias was found in both mtDNA and nDNA regions. Thus, divergence time estimation of shallow nodes may suffer

  5. Features of warped geometry in presence of Gauss-Bonnet coupling

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; SenGupta, Soumitra

    2013-02-01

    We study the role of the Gauss-Bonnet corrections and two loop higher genus contribution to the gravity action on the Kaluza-Klien modes and their interactions for different bulk fields which enable one to study various phenomenological implications of string loop corrected Gauss-Bonnet modified warped geometry model in one canvas. We have explicitly derived a phenomenological bound on the Gauss-Bonnet parameter so that the required Planck to TeV scale hierarchy can be achieved through the warp factor in the light of recently discovered Higgs like boson at 125GeV. Moreover due to the presence of small perturbative Gauss-Bonnet as well as string loop corrections we have shown that the warping solution can be obtained for both de-Sitter and anti-de-Sitter bulk which is quite distinct from Randall-Sundrum scenario. Finally we have evaluated various interactions among these bulk fields and determined the coupling parameters and the Kaluza-Klien mode masses which is crucial to understand the phenomenology of a string two loop corrected Einstein-Gauss-Bonnet warp geometry.

  6. Gauss-Newton inspired preconditioned optimization in large deformation diffeomorphic metric mapping.

    PubMed

    Hernandez, Monica

    2014-10-21

    In this work, we propose a novel preconditioned optimization method in the paradigm of Large Deformation Diffeomorphic Metric Mapping (LDDMM). The preconditioned update scheme is formulated for the non-stationary and the stationary parameterizations of diffeomorphisms, yielding three different LDDMM methods. The preconditioning matrices are inspired in the Hessian approximation used in Gauss-Newton method. The derivatives are computed using Frechet differentials. Thus, optimization is performed in a Sobolev space, in contrast to optimization in L(2) commonly used in non-rigid registration literature. The proposed LDDMM methods have been evaluated and compared with their respective implementations of gradient descent optimization. Evaluation has been performed using real and simulated images from the Non-rigid Image Registration Evaluation Project (NIREP). The experiments conducted in this work reported that our preconditioned LDDMM methods achieved a performance similar or superior to well-established-in-literature gradient descent non-stationary LDDMM in the great majority of cases. Moreover, preconditioned optimization showed a substantial reduction in the execution time with an affordable increase of the memory usage per iteration. Additional experiments reported that optimization using Frechet differentials should be preferable to optimization using L(2) differentials.

  7. How Physics Got Precise

    SciTech Connect

    Kleppner, Daniel

    2005-01-19

    Although the ancients knew the length of the year to about ten parts per million, it was not until the end of the 19th century that precision measurements came to play a defining role in physics. Eventually such measurements made it possible to replace human-made artifacts for the standards of length and time with natural standards. For a new generation of atomic clocks, time keeping could be so precise that the effects of the local gravitational potentials on the clock rates would be important. This would force us to re-introduce an artifact into the definition of the second - the location of the primary clock. I will describe some of the events in the history of precision measurements that have led us to this pleasing conundrum, and some of the unexpected uses of atomic clocks today.

  8. Dark matter relic density in Gauss-Bonnet braneworld cosmology

    SciTech Connect

    Meehan, Michael T.; Whittingham, Ian B. E-mail: Ian.Whittingham@jcu.edu.au

    2014-12-01

    The relic density of symmetric and asymmetric dark matter in a Gauss-Bonnet (GB) modified Randall-Sundrum (RS) type II braneworld cosmology is investigated. The existing study of symmetric dark matter in a GB braneworld (Okada and Okada, 2009) found that the expansion rate was reduced compared to that in standard General Relativity (GR), thereby delaying particle freeze-out and resulting in relic abundances which are suppressed by up to O(10{sup −2}). This is in direct contrast to the behaviour observed in RS braneworlds where the expansion rate is enhanced and the final relic abundance boosted. However, this finding that relic abundances are suppressed in a GB braneworld is based upon a highly contrived situation in which the GB era evolves directly into a standard GR era, rather than passing through a RS era as is the general situation. This collapse of the RS era requires equating the mass scale m{sub α} of the GB modification and the mass scale m{sub σ} of the brane tension. However, if the GB contribution is to be considered as the lowest order correction from string theory to the RS action, we would expect m{sub α} > m{sub σ}. We investigate the effect upon the relic abundance of choosing more realistic values for the ratio R{sub m} ≡ m{sub α}/m{sub σ} and find that the relic abundance can be either enhanced or suppressed by more than two orders of magnitude. However, suppression only occurs for a small range of parameter choices and, overwhelmingly, the predominant situation is that of enhancement as we recover the usual Randall-Sundrum type behaviour in the limit R{sub m} >> 1. We use the latest observational bound Ω{sub DM}h{sup 2} = 0.1187 ± 0.0017 to constrain the various model parameters and briefly discuss the implications for direct/indirect dark matter detection experiments as well as dark matter particle models.

  9. U-Pb dating of Plinian-eruption ashfalls by the isotope dilution method: A reliable and precise tool for time-scale calibration and biostratigraphic correlation

    SciTech Connect

    Tucker, R.D. . Dept. of Earth and Planetary Sciences)

    1992-01-01

    Through a combination of low analytical blanks, clean Pb-205 enriched tracer-solution, and refined procedures of sample preparation, it is possible to isolate and measure minute quantities of radiogenic Pb in concordant zircon, thereby permitting accurate isotopic age determinations of small multigrain samples of Paleozoic zircon with 7--20 ppm radiogenic Pb. Refinement of these procedures, including reduction of laboratory blank, allows for analysis of single grains of Paleozoic zircon with greater than 25 ppm radiogenic Pb with an age precision of better than 1%. Mass spectrometric measurement of all Pb and U isotopes allows for the calculation of three isotopic ages from a single sample. Concordant multigrain and single-grain U-Pb zircon analyses from 13 biostratigraphically dated K-bentonites in Europe and North America define an internally consistent, absolute chronostratigraphy of Middle ordovician to Upper silurian stratotypes. As a test of trans-Atlantic stratigraphic correlation, a volcanic ash from Middle Ordovician (Rocklandian) strata of North America was found to be in excellent age agreement with Caradocian K-bentonites in Britain and Sweden, demonstrating age equivalence of sedimentary sequences lacking directly comparable fauna. In other case, precise dating of single zircons from three Caradocian K-bentonite in Sweden and Virginia was performed to test a hypothesis that a single ultraplinian volcanic eruption deposited airborne debris on both Larentia and Baltica. The ages of these presumed correlative ashes will be shown to provide quantitative information about the depositional rates of their enclosing strata, as well as tectonic events affecting the margins of Iapetus in Ordovician time.

  10. A Three Corner Hat-based analysis of station position time series for the assessment of inter-technique precision at ITRF co-located sites

    NASA Astrophysics Data System (ADS)

    Abbondanza, C.; Chin, T. M.; Gross, R. S.; Heflin, M. B.; Hurst, K. J.; Parker, J. W.; Wu, X.; Altamimi, Z.

    2012-12-01

    Assessing the uncertainty in geodetic positioning is a crucial factor when combining independent space-geodetic solutions for the computation of the International Terrestrial Reference Frame (ITRF). ITRF is a combined product based on the stacking of VLBI, GPS, SLR and DORIS solutions and merging the single technique reference frames with terrestrial local tie measurements at co-located sites. In current ITRF realizations, the uncertainty evaluation of the four techniques relies on the analysis of the post-fit residuals, which are a by-product of the combination process. An alternative approach to the assessment of the inter-technique precision can be offered by a Three Corner Hat (TCH) analysis of the non-linear residual time series obtained at ITRF co-location sites as a by-product of the stacking procedure. Non-linear residuals of station position time series stemming from global networks of the four techniques can be modeled as a composition of periodic signals (commonly annual and semi-annual) and stochastic noise, typically characterized as a combination of flicker and white noise. Pair-wise differences of station position time series of at least three co-located instruments can be formed with the aim of removing the common geophysical signal and characterizing the inter-technique precision. The application of TCH relies on the hypothesis of absence of correlation between the error processes of the four techniques and assumes the stochastic noise to be Gaussian. If the hypothesis of statistical independence between the space-geodetic technique errors is amply verified, the assumption of pure white noise of the stochastic error processes appears to be more questionable. In fact, previous studies focused on geodetic positioning consistently showed that flicker noise generally prevails over white noise in the analysis of global network GPS time series, whereas in VLBI, SLR and DORIS time series Gaussian noise is predominant. In this investigation, TCH is applied

  11. A soliton and a black hole are in Gauss-Bonnet gravity: Who wins?

    NASA Astrophysics Data System (ADS)

    Wong, Anson W. C.; Mann, Robert B.

    2012-12-01

    We study here the phase-transitional evolution between the Eguchi-Hanson soliton, the orbifolded Schwarzschild anti-de Sitter black hole, and orbifolded thermal anti-de Sitter space in Gauss-Bonnet gravity for a small Gauss-Bonnet coefficient α. Novel phase structure is uncovered for both negative and positive α with spacetime configurations that are stable in Gauss-Bonnet gravity without being so in Einsteinian gravity. The evolutionary tracks taken towards such stable configurations are guided by quantum tunneling and can be represented with a phase diagram constructed by comparing the Euclidean actions of each of our states as a function of α and the black hole radius rb. According to the AdS/CFT correspondence dictionary, it is expected that some generalized version of closed-string tachyon condensation will exhibit the phase behavior found here.

  12. Eigenfields and output beams of an unstable Bessel-Gauss resonator.

    PubMed

    Ling, Dongxiong; Li, Chongguang; Li, Junchang

    2006-06-10

    We evaluate the eigenfields of an unstable Bessel-Gauss resonator (UBGR) by use of the transfer-matrix method in which the transverse profiles and their corresponding losses of the UBGR are considered as the eigenvectors and eigenvalues of a transfer matrix so that the dominant mode fields and their losses of the UBGR can be readily extracted in terms of the matrix eigenvalue algorithm. Moreover, based on the eigenfields across two mirrors that resulted from the transfer-matrix method, we simulate the field distributions in the cavity and the propagation of output beams by means of the angular spectrum method. The computation results show that the UBGR easily produces a fundamental Bessel-Gauss mode of good quality, and the output beams retain the original Bessel-Gauss distribution during propagation. PMID:16761051

  13. Gauss-bonnet black holes and possibilities for their experimental search

    SciTech Connect

    Alexeyev, S. O. Rannu, K. A.

    2012-03-15

    Corollaries of gravity models with second-order curvature corrections in the form of a Gauss-Bonnet term and possibilities (or impossibilities) for their experimental search or observations are discussed. The full version of the four-dimensional Schwarzschild-Gauss-Bonnet black hole solution and the constraint on the possible minimal black hole mass following from this model are considered. Using our solution as a model for the final stages of Hawking evaporation of black holes with a low initial mass (up to 10{sup 15} g) whose lifetime is comparable to that of our Universe, we have revealed differences in the patterns of evaporation: we have obtained high values of the emitted energy and showed the impossibility of an experimental search for primordial black holes by their evaporation products. Scenarios for the evaporation of Gauss-Bonnet black holes in multidimensional gravity models and possibilities for their experimental search are also discussed.

  14. Static solutions with nontrivial boundaries for the Einstein-Gauss-Bonnet theory in vacuum

    SciTech Connect

    Dotti, Gustavo; Oliva, Julio; Troncoso, Ricardo

    2010-07-15

    The classification of a certain class of static solutions for the Einstein-Gauss-Bonnet theory in vacuum is performed in d{>=}5 dimensions. The class of metrics under consideration is such that the spacelike section is a warped product of the real line and an arbitrary base manifold. It is shown that for a generic value of the Gauss-Bonnet coupling, the base manifold must be necessarily Einstein, with an additional restriction on its Weyl tensor for d>5. The boundary admits a wider class of geometries only in the special case when the Gauss-Bonnet coupling is such that the theory admits a unique maximally symmetric solution. The additional freedom in the boundary metric enlarges the class of allowed geometries in the bulk, which are classified within three main branches, containing new black holes and wormholes in vacuum.

  15. Carl Friedrich Gauss - General Theory of Terrestrial Magnetism - a revised translation of the German text

    NASA Astrophysics Data System (ADS)

    Glassmeier, K.-H.; Tsurutani, B. T.

    2014-02-01

    This is a translation of the Allgemeine Theorie des Erdmagnetismus published by Carl Friedrich Gauss in 1839 in the Resultate aus den Beobachtungen des Magnetischen Vereins im Jahre 1838. The current translation is based on an earlier translation by Elizabeth Juliana Sabine published in 1841. This earlier translation has been revised, corrected, and extended. Numerous biographical comments on the scientists named in the original text have been added as well as further information on the observational material used by Carl Friedrich Gauss. An attempt is made to provide a readable text to a wider scientific community, a text laying the foundation of today's understanding of planetary magnetic fields.

  16. High precision in Raman frequency achieved using real-time calibration with a neon emission line: application to three-dimensional stress mapping observations.

    PubMed

    Odake, Shoko; Fukura, Satoshi; Kagi, Hiroyuki

    2008-10-01

    A three-dimensional (3D) Raman mapping system with a real-time calibration function was developed for detecting stress distributions in solid materials from subtle frequency shifts in Raman spectra. An atomic emission line of neon at 918.3 cm(-1) when excited at 514.5 nm was used as a wavenumber standard. An emission spectrum of neon and a Raman spectrum from a sample were introduced into a single polychromator using a bifurcated optical fiber. These two spectra were recorded simultaneously on a charge-coupled device (CCD) detector using double-track mode. Energy deviation induced by the fluctuation of laboratory temperature, etc., was removed effectively using the neon emission line. High stability during long measurements was achieved. By applying curve fitting, positions of the Raman line were determined with precision of about 0.05 cm(-1). The present system was applied to measurements of residual pressure around mineral inclusions in a natural diamond: 3D stress mapping was achieved. PMID:18926016

  17. On the precision of time-of-flight shear wave speed estimation in homogeneous soft solids: initial results using a matrix array transducer.

    PubMed

    Wang, Michael; Byram, Brett; Palmeri, Mark; Rouze, Ned; Nightingale, Kathryn

    2013-04-01

    A system capable of tracking radiation-force-induced shear wave propagation in a 3-D volume using ultrasound is presented. In contrast to existing systems, which use 1-D array transducers, a 2-D matrix array is used for tracking shear wave displacements. A separate single-element transducer is used for radiation force excitation. This system allows shear wave propagation in all directions away from the push to be observed. It is shown that for a limit of 64 tracking beams, by placing the beams at the edges of the measurement region of interest (ROI) at multiple directions from the push, time-of- flight (TOF) shear wave speed (SWS) measurement uncertainty can theoretically be reduced by 40% compared with equally spacing the tracking beams within the ROI along a single plane, as is typical when using a 1-D array for tracking. This was verified by simulation, and a reduction of 30% was experimentally observed on a homogeneous phantom. Analytical expressions are presented for the relationship between TOF SWS measurement uncertainty and various shear wave imaging parameters. It is shown that TOF SWS uncertainty is inversely proportional to ROI size, and inversely proportional to the square root of the number of tracking locations for a given distribution of beam locations relative to the push. TOF SWS uncertainty is shown to increase with the square of the SWS, indicating that TOF SWS measurements are intrinsically less precise for stiffer materials.

  18. Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Can Precisely Discriminate the Lineages of Listeria monocytogenes and Species of Listeria.

    PubMed

    Ojima-Kato, Teruyo; Yamamoto, Naomi; Takahashi, Hajime; Tamura, Hiroto

    2016-01-01

    The genetic lineages of Listeria monocytogenes and other species of the genus Listeria are correlated with pathogenesis in humans. Although matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a prevailing tool for rapid and reliable microbial identification, the precise discrimination of Listeria species and lineages remains a crucial issue in clinical settings and for food safety. In this study, we constructed an accurate and reliable MS database to discriminate the lineages of L. monocytogenes and the species of Listeria (L. monocytogenes, L. innocua, L. welshimeri, L. seeligeri, L. ivanovii, L. grayi, and L. rocourtiae) based on the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) proteotyping method, which relies on both genetic information (genomics) and observed MS peaks in MALDI-TOF MS (proteomics). The specific set of eight biomarkers (ribosomal proteins L24, L6, L18, L15, S11, S9, L31 type B, and S16) yielded characteristic MS patterns for the lineages of L. monocytogenes and the different species of Listeria, and led to the construction of a MS database that was successful in discriminating between these organisms in MALDI-TOF MS fingerprinting analysis followed by advanced proteotyping software Strain Solution analysis. We also confirmed the constructed database on the proteotyping software Strain Solution by using 23 Listeria strains collected from natural sources.

  19. Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Can Precisely Discriminate the Lineages of Listeria monocytogenes and Species of Listeria

    PubMed Central

    Yamamoto, Naomi; Takahashi, Hajime; Tamura, Hiroto

    2016-01-01

    The genetic lineages of Listeria monocytogenes and other species of the genus Listeria are correlated with pathogenesis in humans. Although matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a prevailing tool for rapid and reliable microbial identification, the precise discrimination of Listeria species and lineages remains a crucial issue in clinical settings and for food safety. In this study, we constructed an accurate and reliable MS database to discriminate the lineages of L. monocytogenes and the species of Listeria (L. monocytogenes, L. innocua, L. welshimeri, L. seeligeri, L. ivanovii, L. grayi, and L. rocourtiae) based on the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) proteotyping method, which relies on both genetic information (genomics) and observed MS peaks in MALDI-TOF MS (proteomics). The specific set of eight biomarkers (ribosomal proteins L24, L6, L18, L15, S11, S9, L31 type B, and S16) yielded characteristic MS patterns for the lineages of L. monocytogenes and the different species of Listeria, and led to the construction of a MS database that was successful in discriminating between these organisms in MALDI-TOF MS fingerprinting analysis followed by advanced proteotyping software Strain Solution analysis. We also confirmed the constructed database on the proteotyping software Strain Solution by using 23 Listeria strains collected from natural sources. PMID:27442502

  20. Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Can Precisely Discriminate the Lineages of Listeria monocytogenes and Species of Listeria.

    PubMed

    Ojima-Kato, Teruyo; Yamamoto, Naomi; Takahashi, Hajime; Tamura, Hiroto

    2016-01-01

    The genetic lineages of Listeria monocytogenes and other species of the genus Listeria are correlated with pathogenesis in humans. Although matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a prevailing tool for rapid and reliable microbial identification, the precise discrimination of Listeria species and lineages remains a crucial issue in clinical settings and for food safety. In this study, we constructed an accurate and reliable MS database to discriminate the lineages of L. monocytogenes and the species of Listeria (L. monocytogenes, L. innocua, L. welshimeri, L. seeligeri, L. ivanovii, L. grayi, and L. rocourtiae) based on the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) proteotyping method, which relies on both genetic information (genomics) and observed MS peaks in MALDI-TOF MS (proteomics). The specific set of eight biomarkers (ribosomal proteins L24, L6, L18, L15, S11, S9, L31 type B, and S16) yielded characteristic MS patterns for the lineages of L. monocytogenes and the different species of Listeria, and led to the construction of a MS database that was successful in discriminating between these organisms in MALDI-TOF MS fingerprinting analysis followed by advanced proteotyping software Strain Solution analysis. We also confirmed the constructed database on the proteotyping software Strain Solution by using 23 Listeria strains collected from natural sources. PMID:27442502

  1. Second-order p-iterative solution of the Lambert/Gauss problem. [algorithm for efficient orbit determination

    NASA Technical Reports Server (NTRS)

    Boltz, F. W.

    1984-01-01

    An algorithm is presented for efficient p-iterative solution of the Lambert/Gauss orbit-determination problem using second-order Newton iteration. The algorithm is based on a universal transformation of Kepler's time-of-flight equation and approximate inverse solutions of this equation for short-way and long-way flight paths. The approximate solutions provide both good starting values for iteration and simplified computation of the second-order term in the iteration formula. Numerical results are presented which indicate that in many cases of practical significance (except those having collinear position vectors) the algorithm produces at least eight significant digits of accuracy with just two or three steps of iteration.

  2. Rotating wave packet caused by the superposition of two Bessel-Gauss beams

    NASA Astrophysics Data System (ADS)

    Zheng, Shuiqin; Cai, Yi; Li, Ying; Li, Jingzhen; Zheng, Guoliang; Chen, Hongyi; Xu, Shixiang

    2015-12-01

    This paper presents, theoretically, a rotating wave packet by overlapping two Bessel-Gauss beams with different longitudinal wave vectors and topological charges. Our results show that the angular velocity of this kind of packet varies with propagating distance, and that Gauss amplitude modulation thus depends strongly on the Fresnel number N f. In the far field, the angular velocity of the packet tends to zero, so the packet will no longer rotate. If N f > 3.18, the packet will rotate with a constant velocity or have a stable rotating velocity along the propagation distance. Interestingly, if appropriate Gauss waist size and propagating distance z are chosen so that 0.006 < N f < 3.18, both the amplitude and the direction of the rotating angular velocity can be manipulated for given topological charges and longitudinal wave vectors. The small Gauss waist radius can induce angular velocity dispersion, causing radial rotation with out-sync and thereby the phase distortion of the BG beam.

  3. A note on the Gauss-Bonnet-Chern theorem for general connection

    NASA Astrophysics Data System (ADS)

    Zhao, Haoran

    2015-12-01

    In this paper, we prove a local index theorem for the DeRham Hodge-Laplacian which is defined by the connection compatible with metric. This connection need not be the Levi-Civita connection. When the connection is Levi-Civita connection, this is the classical local Gauss-Bonnet-Chern theorem.

  4. An Alternative Method to Gauss-Jordan Elimination: Minimizing Fraction Arithmetic

    ERIC Educational Resources Information Center

    Smith, Luke; Powell, Joan

    2011-01-01

    When solving systems of equations by using matrices, many teachers present a Gauss-Jordan elimination approach to row reducing matrices that can involve painfully tedious operations with fractions (which I will call the traditional method). In this essay, I present an alternative method to row reduce matrices that does not introduce additional…

  5. A Simple Gauss-Newton Procedure for Covariance Structure Analysis with High-Level Computer Languages.

    ERIC Educational Resources Information Center

    Cudeck, Robert; And Others

    1993-01-01

    An implementation of the Gauss-Newton algorithm for the analysis of covariance structure that is specifically adapted for high-level computer languages is reviewed. This simple method for estimating structural equation models is useful for a variety of standard models, as is illustrated. (SLD)

  6. A Modified Gauss-Jordan Procedure as an Alternative to Iterative Procedures in Multiple Regression.

    ERIC Educational Resources Information Center

    Roscoe, John T.; Kittleson, Howard M.

    Correlation matrices involving linear dependencies are common in educational research. In such matrices, there is no unique solution for the multiple regression coefficients. Although computer programs using iterative techniques are used to overcome this problem, these techniques possess certain disadvantages. Accordingly, a modified Gauss-Jordan…

  7. Variation of the orbital elements for parabolic trajectories due to a small impulse using Gauss equations

    NASA Astrophysics Data System (ADS)

    Kamel, Osman M.; Ammar, M. K.

    2006-12-01

    Firstly we derive Gauss' perturbation equation for parabolic motion using Murray-Dermott and Kovalevsky procedures. Secondly, we easily deduce the variations of the orbital elements for the parabolic trajectories due to a small impulse at any point along the path and at the vertex of the parabola.

  8. Holographic superconductor/insulator transition with logarithmic electromagnetic field in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Jing, Jiliang; Pan, Qiyuan; Chen, Songbai

    2012-10-01

    The behaviors of the holographic superconductors/insulator transition are studied by introducing a charged scalar field coupled with a logarithmic electromagnetic field in both the Einstein-Gauss-Bonnet AdS black hole and soliton. For the Einstein-Gauss-Bonnet AdS black hole, we find that: i) the larger coupling parameter of logarithmic electrodynamic field b makes it easier for the scalar hair to be condensed; ii) the ratio of the gap frequency in conductivity ωg to the critical temperature Tc depends on both b and the Gauss-Bonnet constant α; and iii) the critical exponents are independent of the b and α. For the Einstein-Gauss-Bonnet AdS soliton, we show that the system is the insulator phase when the chemical potential μ is small, but there is a phase transition and the AdS soliton reaches the superconductor (or superfluid) phase when μ is larger than critical chemical potential. A special property should be noted is that the critical chemical potential is not changed by the coupling parameter b but depends on α.

  9. The Gauss and Ampere Laws: Different Laws but Similar Difficulties for Student Learning

    ERIC Educational Resources Information Center

    Guisasola, Jenaro; Almudi, Jose M.; Salinas, Julia; Zuza, Kristina; Ceberio, Mikel

    2008-01-01

    This study aims to analyse university students' reasoning regarding two laws of electromagnetism: Gauss's law and Ampere's law. It has been supposed that the problems seen in understanding and applying both laws do not spring from students' misconceptions. Students habitually use reasoning known in the literature as 'common sense' methodology that…

  10. Optical Systems Design With Reference To The Evolution Of The Double Gauss Lens

    NASA Astrophysics Data System (ADS)

    Woltche, Walter

    1980-09-01

    This year 140 years have elapsed since the first photographic objective was designed, more than 90 years have passed since the first anastigmatic lenses were created and about 20 years ago computer-aided lens design was started. The double Gauss lens will be used as an example to outline the problems, procedures and results obtained in designing optical systems. In retrospect a search will be made for the first introduction and development of the double Gauss lens in order to draw further conclusions from the historical facts as to the ideas that have led to the present state of the art. Contemporary systems of the double Gauss lens will be demonstrated with regard to the available construction parameters and the numerous fields of application. While discussing several variants emphasis will be placed on the choice of glass types for high speed lenses, the relationship between refractive index and image quality and the comparison between performance and costs. Recent explorations led to double Gauss lenses with special properties. New objectives with stabilized performance, ultra high speed lenses and lenses with reduced secondary spectrum will be presented.

  11. Development of sustainable precision farming systems for swine: estimating real-time individual amino acid requirements in growing-finishing pigs.

    PubMed

    Hauschild, L; Lovatto, P A; Pomar, J; Pomar, C

    2012-07-01

    The objective of this study was to develop and evaluate a mathematical model used to estimate the daily amino acid requirements of individual growing-finishing pigs. The model includes empirical and mechanistic model components. The empirical component estimates daily feed intake (DFI), BW, and daily gain (DG) based on individual pig information collected in real time. Based on DFI, BW, and DG estimates, the mechanistic component uses classic factorial equations to estimate the optimal concentration of amino acids that must be offered to each pig to meet its requirements. The model was evaluated with data from a study that investigated the effect of feeding pigs with a 3-phase or daily multiphase system. The DFI and BW values measured in this study were compared with those estimated by the empirical component of the model. The coherence of the values estimated by the mechanistic component was evaluated by analyzing if it followed a normal pattern of requirements. Lastly, the proposed model was evaluated by comparing its estimates with those generated by the existing growth model (InraPorc). The precision of the proposed model and InraPorc in estimating DFI and BW was evaluated through the mean absolute error. The empirical component results indicated that the DFI and BW trajectories of individual pigs fed ad libitum could be predicted 1 d (DFI) or 7 d (BW) ahead with the average mean absolute error of 12.45 and 1.85%, respectively. The average mean absolute error obtained with the InraPorc for the average individual of the population was 14.72% for DFI and 5.38% for BW. Major differences were observed when estimates from InraPorc were compared with individual observations. The proposed model, however, was effective in tracking the change in DFI and BW for each individual pig. The mechanistic model component estimated the optimal standardized ileal digestible Lys to NE ratio with reasonable between animal (average CV = 7%) and overtime (average CV = 14%) variation

  12. Comparisons between real and complex Gauss wavelet transform methods of three-dimensional shape reconstruction

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Dan, Youquan; Wang, Qingyuan

    2015-10-01

    The continuous wavelet transform (CWT) introduces an expandable spatial and frequency window which can overcome the inferiority of localization characteristic in Fourier transform and windowed Fourier transform. The CWT method is widely applied in the non-stationary signal analysis field including optical 3D shape reconstruction with remarkable performance. In optical 3D surface measurement, the performance of CWT for optical fringe pattern phase reconstruction usually depends on the choice of wavelet function. A large kind of wavelet functions of CWT, such as Mexican Hat wavelet, Morlet wavelet, DOG wavelet, Gabor wavelet and so on, can be generated from Gauss wavelet function. However, so far, application of the Gauss wavelet transform (GWT) method (i.e. CWT with Gauss wavelet function) in optical profilometry is few reported. In this paper, the method using GWT for optical fringe pattern phase reconstruction is presented first and the comparisons between real and complex GWT methods are discussed in detail. The examples of numerical simulations are also given and analyzed. The results show that both the real GWT method along with a Hilbert transform and the complex GWT method can realize three-dimensional surface reconstruction; and the performance of reconstruction generally depends on the frequency domain appearance of Gauss wavelet functions. For the case of optical fringe pattern of large phase variation with position, the performance of real GWT is better than that of complex one due to complex Gauss series wavelets existing frequency sidelobes. Finally, the experiments are carried out and the experimental results agree well with our theoretical analysis.

  13. More Questions on Precision Teaching.

    ERIC Educational Resources Information Center

    Raybould, E. C.; Solity, J. E.

    1988-01-01

    Precision teaching can accelerate basic skills progress of special needs children. Issues discussed include using probes as performance tests, charting daily progress, using the charted data to modify teaching methods, determining appropriate age levels, assessing the number of students to be precision taught, and carefully allocating time. (JDD)

  14. The Effects of Repeated Testing, Simulated Malingering, and Traumatic Brain Injury on High-Precision Measures of Simple Visual Reaction Time

    PubMed Central

    Woods, David L.; Wyma, John M.; Yund, E. William; Herron, Timothy J.

    2015-01-01

    Simple reaction time (SRT), the latency to respond to a stimulus, has been widely used as a basic measure of processing speed. In the current experiments, we examined clinically-relevant properties of a new SRT test that presents visual stimuli to the left or right hemifield at varying stimulus onset asynchronies (SOAs). Experiment 1 examined test-retest reliability in 48 participants who underwent three test sessions at weekly intervals. In the first test, log-transformed (log-SRT) z-scores, corrected for the influence of age and computer-use, were well predicted by regression functions derived from a normative population of 189 control participants. Test-retest reliability of log-SRT z-scores was measured with an intraclass correlation coefficient (ICC = 0.83) and equaled or exceeded those of other SRT tests and other widely used tests of processing speed that are administered manually. No significant learning effects were observed across test sessions. Experiment 2 investigated the same participants when instructed to malinger during a fourth testing session: 94% showed abnormal log-SRT z-scores, with 83% producing log-SRT z-scores exceeding a cutoff of 3.0, a degree of abnormality never seen in full-effort conditions. Thus, a log-SRT z-score cutoff of 3.0 had a sensitivity (83%) and specificity (100%) that equaled or exceeded that of existing symptom validity tests. We argue that even expert malingerers, fully informed of the malingering-detection metric, would be unable to successfully feign impairments on the SRT test because of the precise control of SRT latencies that would be required. Experiment 3 investigated 26 patients with traumatic brain injury (TBI) tested more than 1 year post-injury. The 22 patients with mild TBI showed insignificantly faster SRTs than controls, but a small group of four patients with severe TBI showed slowed SRTs. Simple visual reaction time is a reliable measure of processing speed that is sensitive to the effects of malingering

  15. The Effects of Repeated Testing, Simulated Malingering, and Traumatic Brain Injury on High-Precision Measures of Simple Visual Reaction Time.

    PubMed

    Woods, David L; Wyma, John M; Yund, E William; Herron, Timothy J

    2015-01-01

    Simple reaction time (SRT), the latency to respond to a stimulus, has been widely used as a basic measure of processing speed. In the current experiments, we examined clinically-relevant properties of a new SRT test that presents visual stimuli to the left or right hemifield at varying stimulus onset asynchronies (SOAs). Experiment 1 examined test-retest reliability in 48 participants who underwent three test sessions at weekly intervals. In the first test, log-transformed (log-SRT) z-scores, corrected for the influence of age and computer-use, were well predicted by regression functions derived from a normative population of 189 control participants. Test-retest reliability of log-SRT z-scores was measured with an intraclass correlation coefficient (ICC = 0.83) and equaled or exceeded those of other SRT tests and other widely used tests of processing speed that are administered manually. No significant learning effects were observed across test sessions. Experiment 2 investigated the same participants when instructed to malinger during a fourth testing session: 94% showed abnormal log-SRT z-scores, with 83% producing log-SRT z-scores exceeding a cutoff of 3.0, a degree of abnormality never seen in full-effort conditions. Thus, a log-SRT z-score cutoff of 3.0 had a sensitivity (83%) and specificity (100%) that equaled or exceeded that of existing symptom validity tests. We argue that even expert malingerers, fully informed of the malingering-detection metric, would be unable to successfully feign impairments on the SRT test because of the precise control of SRT latencies that would be required. Experiment 3 investigated 26 patients with traumatic brain injury (TBI) tested more than 1 year post-injury. The 22 patients with mild TBI showed insignificantly faster SRTs than controls, but a small group of four patients with severe TBI showed slowed SRTs. Simple visual reaction time is a reliable measure of processing speed that is sensitive to the effects of malingering

  16. EDITORIAL: Precision proteins Precision proteins

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  17. EDITORIAL: Precision proteins Precision proteins

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  18. Construction and Operation of a High-Speed, High-Precision Eye Tracker for Tight Stimulus Synchronization and Real-Time Gaze Monitoring in Human and Animal Subjects.

    PubMed

    Farivar, Reza; Michaud-Landry, Danny

    2016-01-01

    Measurements of the fast and precise movements of the eye-critical to many vision, oculomotor, and animal behavior studies-can be made non-invasively by video oculography. The protocol here describes the construction and operation of a research-grade video oculography system with ~0.1° precision over the full typical viewing range at over 450 Hz with tight synchronization with stimulus onset. The protocol consists of three stages: (1) system assembly, (2) calibration for both cooperative, and for minimally cooperative subjects (e.g., animals or infants), and (3) gaze monitoring and recording. PMID:27683545

  19. Construction and Operation of a High-Speed, High-Precision Eye Tracker for Tight Stimulus Synchronization and Real-Time Gaze Monitoring in Human and Animal Subjects

    PubMed Central

    Farivar, Reza; Michaud-Landry, Danny

    2016-01-01

    Measurements of the fast and precise movements of the eye—critical to many vision, oculomotor, and animal behavior studies—can be made non-invasively by video oculography. The protocol here describes the construction and operation of a research-grade video oculography system with ~0.1° precision over the full typical viewing range at over 450 Hz with tight synchronization with stimulus onset. The protocol consists of three stages: (1) system assembly, (2) calibration for both cooperative, and for minimally cooperative subjects (e.g., animals or infants), and (3) gaze monitoring and recording. PMID:27683545

  20. Construction and Operation of a High-Speed, High-Precision Eye Tracker for Tight Stimulus Synchronization and Real-Time Gaze Monitoring in Human and Animal Subjects

    PubMed Central

    Farivar, Reza; Michaud-Landry, Danny

    2016-01-01

    Measurements of the fast and precise movements of the eye—critical to many vision, oculomotor, and animal behavior studies—can be made non-invasively by video oculography. The protocol here describes the construction and operation of a research-grade video oculography system with ~0.1° precision over the full typical viewing range at over 450 Hz with tight synchronization with stimulus onset. The protocol consists of three stages: (1) system assembly, (2) calibration for both cooperative, and for minimally cooperative subjects (e.g., animals or infants), and (3) gaze monitoring and recording.

  1. A passion for precision

    ScienceCinema

    None

    2016-07-12

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  2. A passion for precision

    SciTech Connect

    2010-05-19

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  3. Accuracy, precision and response time of consumer fork, remote digital probe and disposable indicator thermometers for cooked ground beef patties and chicken breasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nine different commercially available instant-read consumer thermometers (forks, remotes, digital probe and disposable color change indicators) were tested for accuracy and precision compared to a calibrated thermocouple in 80 percent and 90 percent lean ground beef patties, and boneless and bone-in...

  4. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  5. Hybrid solution of stochastic optimal control problems using Gauss pseudospectral method and generalized polynomial chaos algorithms

    NASA Astrophysics Data System (ADS)

    Cottrill, Gerald C.

    A hybrid numerical algorithm combining the Gauss Pseudospectral Method (GPM) with a Generalized Polynomial Chaos (gPC) method to solve nonlinear stochastic optimal control problems with constraint uncertainties is presented. TheGPM and gPC have been shown to be spectrally accurate numerical methods for solving deterministic optimal control problems and stochastic differential equations, respectively. The gPC uses collocation nodes to sample the random space, which are then inserted into the differential equations and solved by applying standard differential equation methods. The resulting set of deterministic solutions is used to characterize the distribution of the solution by constructing a polynomial representation of the output as a function of uncertain parameters. Optimal control problems are especially challenging to solve since they often include path constraints, bounded controls, boundary conditions, and require solutions that minimize a cost functional. Adding random parameters can make these problems even more challenging. The hybrid algorithm presented in this dissertation is the first time the GPM and gPC algorithms have been combined to solve optimal control problems with random parameters. Using the GPM in the gPC construct provides minimum cost deterministic solutions used in stochastic computations that meet path, control, and boundary constraints, thus extending current gPC methods to be applicable to stochastic optimal control problems. The hybrid GPM-gPC algorithm was applied to two concept demonstration problems: a nonlinear optimal control problem with multiplicative uncertain elements and a trajectory optimization problem simulating an aircraft flying through a threat field where exact locations of the threats are unknown. The results show that the expected value, variance, and covariance statistics of the polynomial output function approximations of the state, control, cost, and terminal time variables agree with Monte-Carlo simulation

  6. Capacity of a bosonic memory channel with Gauss-Markov noise

    SciTech Connect

    Schaefer, Joachim; Daems, David; Karpov, Evgueni; Cerf, Nicolas J.

    2009-12-15

    We address the classical capacity of a quantum bosonic memory channel with additive noise, subject to an input energy constraint. The memory is modeled by correlated noise emerging from a Gauss-Markov process. Under reasonable assumptions, we show that the optimal modulation results from a 'quantum water-filling' solution above a certain input energy threshold, similar to the optimal modulation for parallel classical Gaussian channels. We also derive analytically the optimal multimode input state above this threshold, which enables us to compute the capacity of this memory channel in the limit of an infinite number of modes. The method can also be applied to a more general noise environment which is constructed by a stationary Gauss process. The extension of our results to the case of broadband bosonic channels with colored Gaussian noise should also be straightforward.

  7. Excitation of high orbital angular momentum Rydberg states with Laguerre-Gauss beams

    NASA Astrophysics Data System (ADS)

    Rodrigues, J. D.; Marcassa, L. G.; Mendonça, J. T.

    2016-04-01

    We consider the excitation of Rydberg states through photons carrying an intrinsic orbital angular momentum degree of freedom. Laguerre-Gauss modes, with a helical wave-front structure, correspond to such a set of laser beams, which carry {{\\ell }}0 units of orbital angular momentum in their propagation direction, with ℓ 0 the winding number. We demonstrate that, in a proper geometry setting, this orbital angular momentum can be transferred to the internal degrees of freedom of the atoms, thus violating the standard dipole selection rules. Higher orbital angular momentum states become accessible through a single photon excitation process. We investigate how the spacial structure of the Laguerre-Gauss beam affects the radial coupling strength, assuming the simplest case of hydrogen-like wavefunctions. Finally we discuss a generalization of the angular momentum coupling, in order to include the effects of the fine and hyperfine splitting, in the context of the Wigner-Eckart theorem.

  8. Area functional relation for 5D-Gauss-Bonnet-AdS black hole

    NASA Astrophysics Data System (ADS)

    Pradhan, Parthapratim

    2016-08-01

    We present area (or entropy) functional relation for multi-horizons five dimensional (5D) Einstein-Maxwell-Gauss-Bonnet-AdS black hole. It has been observed by exact and explicit calculation that some complicated function of two or three horizons area is mass-independent whereas the entropy product relation is not mass-independent. We also study the local thermodynamic stability of this black hole. The phase transition occurs at certain condition. Smarr mass formula and first law of thermodynamics have been derived. This mass-independent relation suggests they could turn out to be an universal quantity and further helps us to understanding the nature of black hole entropy (both interior and exterior) at the microscopic level. In the "Appendix", we have derived the thermodynamic products for 5D Einstein-Maxwell-Gauss-Bonnet black hole with vanishing cosmological constant.

  9. Magnetic fields greater than 10 to the 20th power gauss. [in astrophysical systems

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Schramm, D. N.

    1977-01-01

    Zaumen (1976) found that spontaneous pair production in a uniform magnetic field should be a feasible process for field strengths at least of the order of 10 to the 20th power gauss. This note points out that a magnetic field of this order of magnitude is most unlikely to occur in realistic astrophysical situations because of the large dynamical and quantum-mechanical effects such a field would produce. It is suggested that Zaumen's calculation would probably have little bearing on the suspected evolution of astrophysical systems since other processes (either dynamical or quantum-mechanical) apparently limit the field strength before such high magnetic fields would be reached. An upper limit of about 10 to the 16th power gauss is obtained by considering the isotropy of the 3-K blackbody radiation, the formation of collapsed objects in very high magnetic fields, and magnetic bremsstrahlung processes in quantum electrodynamics.

  10. Hong-Ou-Mandel interference of entangled Hermite-Gauss modes

    NASA Astrophysics Data System (ADS)

    Zhang, Yingwen; Prabhakar, Shashi; Rosales-Guzmán, Carmelo; Roux, Filippus S.; Karimi, Ebrahim; Forbes, Andrew

    2016-09-01

    Hong-Ou-Mandel (HOM) interference is demonstrated experimentally for entangled photon pairs in the Hermite-Gauss (HG) basis. We use two Dove prisms in one of the paths of the photons to manipulate the entangled quantum state that enters the HOM interferometer. It is demonstrated that, when entangled photon pairs are in a symmetric Bell state in the Laguerre-Gauss (LG) basis, they will remain symmetric after decomposing them into the HG basis, thereby resulting in no coincidence events after the HOM interference. On the other hand, if the photon pairs are in an antisymmetric Bell state in the LG basis, then they will also be antisymmetric in the HG basis, thereby producing only coincidence events as a result of the HOM interference.

  11. The Evaluation of the Error Term in Some Gauss-Type Formulae for the Approximation of Cauchy Principal Value Integrals

    ERIC Educational Resources Information Center

    Smith, H. V.

    2008-01-01

    A method is derived for the numerical evaluation of the error term arising in some Gauss-type formulae modified so as to approximate Cauchy Principal Value integrals. The method uses Chebyshev polynomials of the first kind. (Contains 1 table.)

  12. Precise clock synchronization protocol

    NASA Astrophysics Data System (ADS)

    Luit, E. J.; Martin, J. M. M.

    1993-12-01

    A distributed clock synchronization protocol is presented which achieves a very high precision without the need for very frequent resynchronizations. The protocol tolerates failures of the clocks: clocks may be too slow or too fast, exhibit omission failures and report inconsistent values. Synchronization takes place in synchronization rounds as in many other synchronization protocols. At the end of each round, clock times are exchanged between the clocks. Each clock applies a convergence function (CF) to the values obtained. This function estimates the difference between its clock and an average clock and corrects its clock accordingly. Clocks are corrected for drift relative to this average clock during the next synchronization round. The protocol is based on the assumption that clock reading errors are small with respect to the required precision of synchronization. It is shown that the CF resynchronizes the clocks with high precision even when relatively large clock drifts are possible. It is also shown that the drift-corrected clocks remain synchronized until the end of the next synchronization round. The stability of the protocol is proven.

  13. Rotation of large asymmetrical absorbing objects by Laguerre-Gauss beams.

    PubMed

    Herne, Catherine M; Capuzzi, Kristina M; Sobel, Emily; Kropas, Ryan T

    2015-09-01

    In this Letter, we show the manipulation and rotation of opaque graphite through adhesion with optically trapped polystyrene spheres. The absorbing graphite is rotated by the orbital angular momentum transfer from a Laguerre-Gauss laser mode and is trapped due to the presence of refracting spheres. This technique is effective for trapping and rotating absorbing objects of all sizes, including those larger than the laser mode.

  14. Dirac Variables and Zero Modes of Gauss Constraint in Finite-Volume Two-Dimensional QED

    NASA Astrophysics Data System (ADS)

    Gogilidze, S.; Ilieva, Nevena; Pervushin, V. N.

    The finite-volume QED1+1 is formulated in terms of Dirac variables by an explicit solution of the Gauss constraint with possible nontrivial boundary conditions taken into account. The intrinsic nontrivial topology of the gauge group is thus revealed together with its zero-mode residual dynamics. Topologically nontrivial gauge transformations generate collective excitations of the gauge field above Coleman's ground state, that are completely decoupled from local dynamics, the latter being equivalent to a free massive scalar field theory.

  15. Extremal dyonic black holes in D=4 Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Chen, Chiang-Mei; Gal'Tsov, Dmitri V.; Orlov, Dmitry G.

    2008-11-01

    We investigate extremal dyon black holes in the Einstein-Maxwell-dilaton theory with higher curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. In the same theory without the Gauss-Bonnet term the extremal dyon solutions exist only for discrete values of the dilaton coupling constant a. We show that the Gauss-Bonnet term acts as a dyon hair tonic enlarging the allowed values of a to continuous domains in the plane (a,qm) where qm is the magnetic charge. In the limit of the vanishing curvature coupling (a large magnetic charge) the dyon solutions obtained tend to the Reissner-Nordström solution but not to the extremal dyons of the Einstein-Maxwell-dilaton theory. Both solutions have the same dependence of the horizon radius in terms of charges. The entropy of new dyonic black holes interpolates between the Bekenstein-Hawking value in the limit of the large magnetic charge (equivalent to the vanishing Gauss-Bonnet coupling) and twice this value for the vanishing magnetic charge. Although an expression for the entropy can be obtained analytically using purely local near-horizon solutions, its interpretation as the black hole entropy is legitimate only once the global black hole solution is known to exist, and we obtain numerically the corresponding conditions on the parameters. Thus, a purely local analysis is insufficient to fully understand the entropy of the curvature-corrected black holes. We also find dyon solutions which are not asymptotically flat, but approach the linear dilaton background at infinity. They describe magnetic black holes on the electric linear dilaton background.

  16. Taub-NUT/bolt black holes in Gauss-Bonnet-Maxwell gravity

    SciTech Connect

    Dehghani, M.H.; Hendi, S. H.

    2006-04-15

    We present a class of higher-dimensional solutions to Gauss-Bonnet-Maxwell equations in 2k+2 dimensions with a U(1) fibration over a 2k-dimensional base space B. These solutions depend on two extra parameters, other than the mass and the Newman-Unti-Tamburino charge, which are the electric charge q and the electric potential at infinity V. We find that the form of metric is sensitive to geometry of the base space, while the form of electromagnetic field is independent of B. We investigate the existence of Taub-Newman-Unti-Tamburino/bolt solutions and find that in addition to the two conditions of uncharged Newman-Unti-Tamburino solutions, there exist two other conditions. These two extra conditions come from the regularity of vector potential at r=N and the fact that the horizon at r=N should be the outer horizon of the black hole. We find that for all nonextremal Newman-Unti-Tamburino solutions of Einstein gravity having no curvature singularity at r=N, there exist Newman-Unti-Tamburino solutions in Gauss-Bonnet-Maxwell gravity. Indeed, we have nonextreme Newman-Unti-Tamburino solutions in 2+2k dimensions only when the 2k-dimensional base space is chosen to be CP{sup 2k}. We also find that the Gauss-Bonnet-Maxwell gravity has extremal Newman-Unti-Tamburino solutions whenever the base space is a product of 2-torii with at most a 2-dimensional factor space of positive curvature, even though there a curvature singularity exists at r=N. We also find that one can have bolt solutions in Gauss-Bonnet-Maxwell gravity with any base space. The only case for which one does not have black hole solutions is in the absence of a cosmological term with zero curvature base space.

  17. Fiber-optic confocal probe with an integrated real-time apex finder for high-precision center thickness measurement of ball lenses

    NASA Astrophysics Data System (ADS)

    Somboonkaew, Armote; Amarit, Ratthasart; Chanhorm, Sataporn; Sutapun, Boonsong

    2012-11-01

    This paper describes the development of a fiber-optic confocal probe suitable to measuring the central thickness of highcurvature small-diameter optical ball lenses. The confocal probe utilizes an integrated camera that functions as a realtime apex-sensing device. An additional camera is used to monitor the shape of the reflected light beam. Placing the instrument sensing spot off-center from the apex will produce a non-circular image at the camera plane that closely resembles an ellipse for small displacement. By analyzing the shape of the reflected light spot, we are able to precisely determine the focus point of the confocal probe relative to the apex point to better than 2-μm precision for ball lenses with diameters in the range of 3 - 10 mm. The proposed confocal probe offers a low-cost alternative technique for quality control of ball lenses during the manufacturing process.

  18. Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning

    NASA Astrophysics Data System (ADS)

    Bradley, Ben K.

    Motivated by the growing space catalog and the demands for precise orbit determination with shorter latency for science and reconnaissance missions, this research improves the computational performance of orbit propagation through more efficient and precise numerical integration and frame transformation implementations. Propagation of satellite orbits is required for astrodynamics applications including mission design, orbit determination in support of operations and payload data analysis, and conjunction assessment. Each of these applications has somewhat different requirements in terms of accuracy, precision, latency, and computational load. This dissertation develops procedures to achieve various levels of accuracy while minimizing computational cost for diverse orbit determination applications. This is done by addressing two aspects of orbit determination: (1) numerical integration used for orbit propagation and (2) precise frame transformations necessary for force model evaluation and station coordinate rotations. This dissertation describes a recently developed method for numerical integration, dubbed Bandlimited Collocation Implicit Runge-Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. It requires significantly fewer force function evaluations than explicit Runge-Kutta schemes and approaches the efficiency of the 8th-order Gauss-Jackson multistep method. Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit propagation, orbit determination, and analyzing geoscience data from satellite missions. This dissertation provides simplifications to the Celestial Intermediate Origin (CIO) transformation scheme and Earth orientation parameter (EOP) storage for use in positioning and

  19. Wake Numerical Simulation Based on the Park-Gauss Model and Considering Atmospheric Stability

    NASA Astrophysics Data System (ADS)

    Yang, Xiangsheng; Zhao, Ning; Tian, Linlin; Zhu, Jun

    2016-06-01

    In this paper, a new Park-Gauss model based on the assumption of the Park model and the Eddy-viscosity model is investigated to conduct the wake numerical simulation for solving a single wind turbine problem. The initial wake radius has been modified to improve the model’s numerical accuracy. Then the impact of the atmospheric stability based on the Park-Gauss model has been studied in the wake region. By the comparisons and the analyses of the test results, it turns out that the new Park-Gauss model could achieve better effects of the wind velocity simulation in the wake region. The wind velocity in the wake region recovers quickly under the unstable atmospheric condition provided the wind velocity is closest to the test result, and recovers slowly under stable atmospheric condition in case of the wind velocity is lower than the test result. Meanwhile, the wind velocity recovery falls in between the unstable and stable neutral atmospheric conditions.

  20. Asymptotically (anti)-de Sitter solutions in Gauss-Bonnet gravity without a cosmological constant

    SciTech Connect

    Dehghani, M.H.

    2004-09-15

    In this paper I show that one can have asymptotically de Sitter, anti-de Sitter (AdS), and flat solutions in Gauss-Bonnet gravity without a cosmological constant term in field equations. First, I introduce static solutions whose three surfaces at fixed r and t have constant positive (k=1), negative (k=-1), or zero (k=0) curvature. I show that for k={+-}1 one can have asymptotically de Sitter, AdS, and flat spacetimes, while for the case of k=0, one has only asymptotically AdS solutions. Some of these solutions present naked singularities, while some others are black hole or topological black hole solutions. I also find that the geometrical mass of these five-dimensional spacetimes is m+2{alpha}|k|, which is different from the geometrical mass m of the solutions of Einstein gravity. This feature occurs only for the five-dimensional solutions, and is not repeated for the solutions of Gauss-Bonnet gravity in higher dimensions. Second, I add angular momentum to the static solutions with k=0, and introduce the asymptotically AdS charged rotating solutions of Gauss-Bonnet gravity. Finally, I introduce a class of solutions which yields an asymptotically AdS spacetime with a longitudinal magnetic field, which presents a naked singularity, and generalize it to the case of magnetic rotating solutions with two rotation parameters.

  1. State space orderings for Gauss-Seidel in Markov chains revisited

    SciTech Connect

    Dayar, T.

    1996-12-31

    Symmetric state space orderings of a Markov chain may be used to reduce the magnitude of the subdominant eigenvalue of the (Gauss-Seidel) iteration matrix. Orderings that maximize the elemental mass or the number of nonzero elements in the dominant term of the Gauss-Seidel splitting (that is, the term approximating the coefficient matrix) do not necessarily converge faster. An ordering of a Markov chain that satisfies Property-R is semi-convergent. On the other hand, there are semi-convergent symmetric state space orderings that do not satisfy Property-R. For a given ordering, a simple approach for checking Property-R is shown. An algorithm that orders the states of a Markov chain so as to increase the likelihood of satisfying Property-R is presented. The computational complexity of the ordering algorithm is less than that of a single Gauss-Seidel iteration (for sparse matrices). In doing all this, the aim is to gain an insight for faster converging orderings. Results from a variety of applications improve the confidence in the algorithm.

  2. From entropy-maximization to equality-maximization: Gauss, Laplace, Pareto, and Subbotin

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2014-12-01

    The entropy-maximization paradigm of statistical physics is well known to generate the omnipresent Gauss law. In this paper we establish an analogous socioeconomic model which maximizes social equality, rather than physical disorder, in the context of the distributions of income and wealth in human societies. We show that-on a logarithmic scale-the Laplace law is the socioeconomic equality-maximizing counterpart of the physical entropy-maximizing Gauss law, and that this law manifests an optimized balance between two opposing forces: (i) the rich and powerful, striving to amass ever more wealth, and thus to increase social inequality; and (ii) the masses, struggling to form more egalitarian societies, and thus to increase social equality. Our results lead from log-Gauss statistics to log-Laplace statistics, yield Paretian power-law tails of income and wealth distributions, and show how the emergence of a middle-class depends on the underlying levels of socioeconomic inequality and variability. Also, in the context of asset-prices with Laplace-distributed returns, our results imply that financial markets generate an optimized balance between risk and predictability.

  3. Propagation Dynamics of Nonspreading Cosine-Gauss Water-Wave Pulses.

    PubMed

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2015-12-18

    Linear gravity water waves are highly dispersive; therefore, the spreading of initially short wave trains characterizes water surface waves, and is a universal property of a dispersive medium. Only if there is sufficient nonlinearity does this envelope admit solitary solutions which do not spread and remain in fixed forms. Here, in contrast to the nonlinear localized wave packets, we present both theoretically and experimentally a new type of linearly nondispersive water wave, having a cosine-Gauss envelope, as well as its higher-order Hermite cosine-Gauss variations. We show that these waves preserve their width despite the inherent dispersion while propagating in an 18-m wave tank, accompanied by a slowly varying carrier-envelope phase. These wave packets exhibit self-healing; i.e., they are restored after bypassing an obstacle. We further demonstrate that these nondispersive waves are robust to weakly nonlinear perturbations. In the strong nonlinear regime, symmetry breaking of these waves is observed, but their cosine-Gauss shapes are still approximately preserved during propagation. PMID:26722925

  4. Propagation Dynamics of Nonspreading Cosine-Gauss Water-Wave Pulses

    NASA Astrophysics Data System (ADS)

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2015-12-01

    Linear gravity water waves are highly dispersive; therefore, the spreading of initially short wave trains characterizes water surface waves, and is a universal property of a dispersive medium. Only if there is sufficient nonlinearity does this envelope admit solitary solutions which do not spread and remain in fixed forms. Here, in contrast to the nonlinear localized wave packets, we present both theoretically and experimentally a new type of linearly nondispersive water wave, having a cosine-Gauss envelope, as well as its higher-order Hermite cosine-Gauss variations. We show that these waves preserve their width despite the inherent dispersion while propagating in an 18-m wave tank, accompanied by a slowly varying carrier-envelope phase. These wave packets exhibit self-healing; i.e., they are restored after bypassing an obstacle. We further demonstrate that these nondispersive waves are robust to weakly nonlinear perturbations. In the strong nonlinear regime, symmetry breaking of these waves is observed, but their cosine-Gauss shapes are still approximately preserved during propagation.

  5. Propagation Dynamics of Nonspreading Cosine-Gauss Water-Wave Pulses.

    PubMed

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2015-12-18

    Linear gravity water waves are highly dispersive; therefore, the spreading of initially short wave trains characterizes water surface waves, and is a universal property of a dispersive medium. Only if there is sufficient nonlinearity does this envelope admit solitary solutions which do not spread and remain in fixed forms. Here, in contrast to the nonlinear localized wave packets, we present both theoretically and experimentally a new type of linearly nondispersive water wave, having a cosine-Gauss envelope, as well as its higher-order Hermite cosine-Gauss variations. We show that these waves preserve their width despite the inherent dispersion while propagating in an 18-m wave tank, accompanied by a slowly varying carrier-envelope phase. These wave packets exhibit self-healing; i.e., they are restored after bypassing an obstacle. We further demonstrate that these nondispersive waves are robust to weakly nonlinear perturbations. In the strong nonlinear regime, symmetry breaking of these waves is observed, but their cosine-Gauss shapes are still approximately preserved during propagation.

  6. Modified Einstein-Gauss-Bonnet gravity: Riemann-Cartan and pseudo-Riemannian cases

    NASA Astrophysics Data System (ADS)

    Özer, Hatice; Baykal, Ahmet; Delice, Özgür

    2016-08-01

    A modified Einstein-Gauss-Bonnet gravity in four dimensions where the quadratic Gauss-Bonnet term is coupled to a scalar field is considered. The field equations of the model are obtained by variational methods by making use of the constrained first-order formalism covering both pseudo-Riemannian and non-Riemannian cases. In the pseudo-Riemannian case, the Lagrange multiplier forms, which impose the vanishing torsion constraint, are eliminated in favor of the remaining fields and the resulting metric field equations are expressed in terms of the double dual curvature 2-form. In the non-Riemannian case with torsion, the field equations are expressed in terms of the pseudo-Riemannian quantities by a perturbative scheme valid for a weak coupling constant. It is shown that, for both cases, the model admits a maximally symmetric de Sitter solution with non-trivial scalar field. Minimal coupling of a Dirac spinor to the Gauss-Bonnet modified gravity is also discussed briefly.

  7. Gauss-Codazzi thermodynamics on the timelike screen

    SciTech Connect

    Piazza, Federico

    2010-10-15

    It is a known result by Jacobson that the flux of energy matter through a local Rindler horizon is related with the expansion of the null generators in a way that mirrors the first law of thermodynamics. We extend such a result to a timelike screen of observers with finite acceleration. Since timelike curves have more freedom than null geodesics, the construction is more involved than Jacobson's and few geometrical constraints need to be imposed: the observers' acceleration has to be constant in time and everywhere orthogonal to the screen. Moreover, at any given time, the extrinsic curvature of the screen has to be flat. The latter requirement can be weakened by asking that the extrinsic curvature, if present at the beginning, evolves in time like on a cone and just rescales proportionally to the expansion.

  8. Proposition of real-time precise prediction model of infectious disease patients from Prescription Surveillance using the National Database of Electronic Medical Claims.

    PubMed

    Nakamura, Yuuki; Kawanohara, Hirokazu; Kamei, Miwako

    2015-11-01

    The incidence of common pediatric infectious diseases has been monitored officially at sentinel medical institutions in Japan. However, the numbers of affected patients are not provided. Prescription Surveillance (PS), which infers the number of patients with influenza, varicella, and gastrointestinal infections from data related to prescriptions at external pharmacies, provides estimates to the public the following morning. This study assessed the prediction ability of the incidence of common pediatric infectious diseases from PS information using the National Database of Electronic Medical Claims (NDBEMC): the number of patients prescribed neuraminidase inhibitors, anti-herpes virus drugs, antibiotic drugs, antipyretic analgesics, and multi-ingredient cold medications. The diseases include RS virus infection, pharyngoconjunctival fever, hand, foot and mouth disease, erythema infectiosum, exanthem subitum, pertussis, herpangina, influenza, varicella, and gastrointestinal infection. For comparison, we used the estimated number of patients who were prescribed neuraminidase inhibitor in PS, which had been confirmed already for precision, and provided estimates to the general public via the internet. The discrepancy rates of all considered diseases between the reported number in NDBEMC and the predicted numbers of patients from PS were less than the value in NI counts and the coefficients of determination in the estimation were from .8109 to .9825. These predictions were sufficiently precise to provide to the general public. PMID:26320387

  9. Precision targeting in guided munition using IR sensor and MmW radar

    NASA Astrophysics Data System (ADS)

    Sreeja, S.; Hablani, H. B.; Arya, H.

    2015-10-01

    Conventional munitions are not guided with sensors and therefore miss the target, particularly if the target is mobile. The miss distance of these munitions can be decreased by incorporating sensors to detect the target and guide the munition during flight. This paper is concerned with a Precision Guided Munition(PGM) equipped with an infrared sensor and a millimeter wave radar [IR and MmW, for short]. Three-dimensional flight of the munition and its pitch and yaw motion models are developed and simulated. The forward and lateral motion of a target tank on the ground is modeled as two independent second-order Gauss-Markov process. To estimate the target location on the ground and the line-of-sight rate to intercept it an Extended Kalman Filter is composed whose state vector consists of cascaded state vectors of missile dynamics and target dynamics. The line-of-sight angle measurement from the infrared seeker is by centroiding the target image in 40 Hz. The centroid estimation of the images in the focal plane is at a frequency of 10 Hz. Every 10 Hz, centroids of four consecutive images are averaged, yielding a time-averaged centroid, implying some measurement delay. The miss distance achieved by including by image processing delays is 1:45m.

  10. Absolute High-Precision Localisation of an Unmanned Ground Vehicle by Using Real-Time Aerial Video Imagery for Geo-referenced Orthophoto Registration

    NASA Astrophysics Data System (ADS)

    Kuhnert, Lars; Ax, Markus; Langer, Matthias; Nguyen van, Duong; Kuhnert, Klaus-Dieter

    This paper describes an absolute localisation method for an unmanned ground vehicle (UGV) if GPS is unavailable for the vehicle. The basic idea is to combine an unmanned aerial vehicle (UAV) to the ground vehicle and use it as an external sensor platform to achieve an absolute localisation of the robotic team. Beside the discussion of the rather naive method directly using the GPS position of the aerial robot to deduce the ground robot's position the main focus of this paper lies on the indirect usage of the telemetry data of the aerial robot combined with live video images of an onboard camera to realise a registration of local video images with apriori registered orthophotos. This yields to a precise driftless absolute localisation of the unmanned ground vehicle. Experiments with our robotic team (AMOR and PSYCHE) successfully verify this approach.

  11. The pioneers of interplanetary communication: From Gauss to Tesla

    NASA Astrophysics Data System (ADS)

    Raulin-Cerceau, Florence

    2010-12-01

    The present overview covers the period from 1820 to the beginning of the 20th century. Emphasis is laid on the latter half of the 19th century because many efforts have been done at that time to elaborate schemes for contacting our neighboring planets by interplanetary telegraphy. This period knew many advances not only in planetary studies but also in the nascent field of telecommunications. Such a context led astronomers who were also interested in the problem of planetary habitability, to envisage that other planets could be contacted, especially the planet Mars. Interplanetary communication using a celestial telegraphy was planned during this period of great speculations about life on Mars. This paper focuses on four authors: the Frenchmen C. Flammarion, Ch. Cros, A. Mercier and the Serbian N. Tesla, who formulated early proposals to communicate with Mars or Venus. The first proposals (which remained only theoretical) showed that an initial reflection had started as early as the second part of the 19th century on the type of language that could be both universal and distinguishable from a natural signal. Literary history of interplanetary communication preceded by far the scientific one. Authors of the 1900s were very prolific on this topic. French fictions are mentioned in this paper as examples of such a literature. This incursion into selected texts stresses the fact that the problem of techniques and messages employed to communicate with other planets goes beyond the strict scientific framework. Finally, this paper aims to highlight the similarities as well as the differences between the different proposals and to underline what that could possibly help present SETI research to define messages supposed to be sent to other planetary systems.

  12. Parallelization of Lower-Upper Symmetric Gauss-Seidel Method for Chemically Reacting Flow

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Jost, Gabriele; Chang, Sherry

    2005-01-01

    Development of technologies for exploration of the solar system has revived an interest in computational simulation of chemically reacting flows since planetary probe vehicles exhibit non-equilibrium phenomena during the atmospheric entry of a planet or a moon as well as the reentry to the Earth. Stability in combustion is essential for new propulsion systems. Numerical solution of real-gas flows often increases computational work by an order-of-magnitude compared to perfect gas flow partly because of the increased complexity of equations to solve. Recently, as part of Project Columbia, NASA has integrated a cluster of interconnected SGI Altix systems to provide a ten-fold increase in current supercomputing capacity that includes an SGI Origin system. Both the new and existing machines are based on cache coherent non-uniform memory access architecture. Lower-Upper Symmetric Gauss-Seidel (LU-SGS) relaxation method has been implemented into both perfect and real gas flow codes including Real-Gas Aerodynamic Simulator (RGAS). However, the vectorized RGAS code runs inefficiently on cache-based shared-memory machines such as SGI system. Parallelization of a Gauss-Seidel method is nontrivial due to its sequential nature. The LU-SGS method has been vectorized on an oblique plane in INS3D-LU code that has been one of the base codes for NAS Parallel benchmarks. The oblique plane has been called a hyperplane by computer scientists. It is straightforward to parallelize a Gauss-Seidel method by partitioning the hyperplanes once they are formed. Another way of parallelization is to schedule processors like a pipeline using software. Both hyperplane and pipeline methods have been implemented using openMP directives. The present paper reports the performance of the parallelized RGAS code on SGI Origin and Altix systems.

  13. Analytical and numerical study of Gauss-Bonnet holographic superconductors with Power-Maxwell field

    NASA Astrophysics Data System (ADS)

    Sheykhi, Ahmad; Salahi, Hamid Reza; Montakhab, Afshin

    2016-04-01

    We provide an analytical as well as a numerical study of the holographic s-wave superconductors in Gauss-Bonnet gravity with Power-Maxwell electrodynamics. We limit our study to the case where scalar and gauge fields do not have an effect on the background metric. We use a variational method, based on Sturm-Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. Interestingly enough, we observe that unlike Born-Infeld-like nonlinear electrodynamics which decrease the critical temperature compared to the linear Maxwell field, the Power-Maxwell electrodynamics is able to increase the critical temperature of the holographic superconductors in the sublinear regime. We find that requiring the finite value for the gauge field on the asymptotic boundary r → ∞, restricts the power parameter, q, of the Power-Maxwell field to be in the range 1 /2 < q < ( d - 1) /2. Our study indicates that it is quite possible to make condensation easier as q decreases in its allowed range. We also find that for all values of q, the condensation can be affected by the Gauss-Bonnet coefficient α. However, the presence of the Gauss-Bonnet term makes the transition slightly harder. Finally, we obtain an analytic expression for the order parameter and thus obtain the associated critical exponent near the phase transition. We find that the critical exponent has its universal value of β = 1 /2 regardless of the parameters q, α as well as dimension d, consistent with mean-field values obtained in previous studies.

  14. Hydrodynamics with conserved current via AdS/CFT correspondence in the Maxwell-Gauss-Bonnet gravity

    SciTech Connect

    Hu Yapeng; Sun Peng; Zhang Jianhui

    2011-06-15

    Using the AdS/CFT correspondence, we study the hydrodynamics with conserved current from the dual Maxwell-Gauss-Bonnet gravity. After constructing the perturbative solution to the first order based on the boosted black brane solution in the bulk Maxwell-Gauss-Bonnet gravity, we extract the stress tensor and conserved current of the dual conformal fluid on its boundary, and also find the effect of the Gauss-Bonnet term on the dual conformal fluid. Our results show that the Gauss-Bonnet term can affect the parameters such as the shear viscosity {eta}, entropy density s, thermal conductivity {kappa} and electrical conductivity {sigma}. However, it does not affect the so-called Wiedemann-Franz law which relates {kappa} to {sigma}, while it affects the ratio {eta}/s. In addition, another interesting result is that {eta}/s can also be affected by the bulk Maxwell field in our case, which is consistent with some previous results predicted through the Kubo formula. Moreover, the anomalous magnetic and vortical effects by adding the Chern-Simons term are also considered in our case in the Maxwell-Gauss-Bonnet gravity.

  15. Analysis of charge-exchange spectroscopy data by combining genetic and Gauss-Newton algorithms

    NASA Astrophysics Data System (ADS)

    Qian, Ma; Haoyi, Zuo; Yanling, Wei; Liang, Liu; Wenjin, Chen; Xiaoxue, He; Shirong, Luo

    2015-11-01

    The temperature and rotation velocity profile of ions in a tokamak are two characteristic parameters that reflect the plasma's behavior. Measurement of the two parameters relies on analyzing an active charge exchange spectroscopy diagnostic. However, a very challenging problem in such a diagnostic is the existence of interfering spectral lines, which can mislead the spectrum analysis process. This work proposes combining a genetic algorithm with the Gauss-Newton method (GAGN) to address this problem. Using this GAGN algorithm, we can effectively distinguish between the useful spectrum line and the interfering spectral lines within the spectroscopic output. The accuracy and stability of this algorithm are verified using both numerical simulation and actual measurements.

  16. Five-dimensional black strings in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Kobayashi, Tsutomu; Tanaka, Takahiro

    2005-04-15

    We consider black-string-type solutions in five-dimensional Einstein-Gauss-Bonnet gravity. Numerically constructed solutions under static, axially symmetric and translationally invariant metric ansatz are presented. The solutions are specified by two asymptotic charges: mass of a black string and a scalar charge associated with the radion part of the metric. Regular black string solutions are found if and only if the two charges satisfy a fine-tuned relation, and otherwise the spacetime develops a singular event horizon or a naked singularity. We can also generate bubble solutions from the black strings by using a double Wick rotation.

  17. Five-dimensional black strings in Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tsutomu; Tanaka, Takahiro

    2005-04-01

    We consider black-string-type solutions in five-dimensional Einstein-Gauss-Bonnet gravity. Numerically constructed solutions under static, axially symmetric and translationally invariant metric ansatz are presented. The solutions are specified by two asymptotic charges: mass of a black string and a scalar charge associated with the radion part of the metric. Regular black string solutions are found if and only if the two charges satisfy a fine-tuned relation, and otherwise the spacetime develops a singular event horizon or a naked singularity. We can also generate bubble solutions from the black strings by using a double Wick rotation.

  18. An incremental block-line-Gauss-Seidel method for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Napolitano, M.; Walters, R. W.

    1985-01-01

    A block-line-Gauss-Seidel (LGS) method is developed for solving the incompressible and compressible Navier-Stokes equations in two dimensions. The method requires only one block-tridiagonal solution process per iteration and is consequently faster per step than the linearized block-ADI methods. Results are presented for both incompressible and compressible separated flows: in all cases the proposed block-LGS method is more efficient than the block-ADI methods. Furthermore, for high Reynolds number weakly separated incompressible flow in a channel, which proved to be an impossible task for a block-ADI method, solutions have been obtained very efficiently by the new scheme.

  19. Observational limits on Gauss-Bonnet and Randall-Sundrum gravities

    SciTech Connect

    Alexeyev, S. O. Rannu, K. A.; Dyadina, P. I.; Latosh, B. N.; Turyshev, S. G.

    2015-06-15

    We discuss the possibilities of experimental search for the new physics predicted by the Gauss-Bonnet and the Randall-Sundrum theories of gravity. The effective four-dimensional spherically symmetrical solutions of these theories are analyzed. We consider these solutions in the weak-field limit and in the process of the primordial black hole evaporation. We show that the predictions of the discussed models are the same as of general relativity. Hence, current experiments are not applicable for such search, and therefore different methods of observation and higher accuracy are required.

  20. Gauss Decomposition of the Yangian Y({mathfrak{gl}}_{m|n})

    NASA Astrophysics Data System (ADS)

    Gow, Lucy

    2007-12-01

    We describe a Gauss decomposition for the Yangian Y({mathfrak{gl}}_{m|n}) of the general linear Lie superalgebra. This gives a connection between this Yangian and the Yangian of the classical Lie superalgebra Y( A( m - 1, n - 1)) (for m ≠ n) defined and studied in papers by Stukopin, and suggests natural definitions for the Yangians Y({mathfrak{sl}}_{n|n}) and Y( A( n, n)). We also show that the coefficients of the quantum Berezinian generate the centre of the Yangian Y({mathfrak{gl}}_{m|n}) . This was conjectured by Nazarov in 1991.

  1. Black holes with scalar hair in Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Brihaye, Y.; Ducobu, L.

    2016-05-01

    The Einstein-Gauss-Bonnet gravity in five dimensions is extended by scalar fields and the corresponding equations are reduced to a system of nonlinear differential equations. A large family of regular solutions of these equations is shown to exist. Generically, these solutions are spinning black holes with scalar hairs. They can be characterized (but not uniquely) by an horizon and an angular velocity on this horizon. Taking particular limits, the black holes approach boson star or become extremal, in any case the limiting configurations remain hairy.

  2. Uniqueness of the Gauss-Bonnet-Chern formula (after Gilkey-Park-Sekigawa)

    NASA Astrophysics Data System (ADS)

    Navarro, Alberto; Navarro, José

    2016-03-01

    On an oriented Riemannian manifold, the Gauss-Bonnet-Chern formula establishes that the Pfaffian of the metric represents, in de Rham cohomology, the Euler class of the tangent bundle. Hence, if the underlying manifold is compact, the integral of the Pfaffian is a topological invariant; namely, the Euler characteristic of the manifold. In this paper we refine a classical result, originally due to Gilkey, that characterizes this formula as the only (non-trivial) integral of a differential invariant that is independent of the underlying metric. To this end, we use some computations regarding dimensional identities of the curvature due to Gilkey-Park-Sekigawa (Gilkey, 2012; Navarro and Navarro, 2014).

  3. Black hole initial data in Gauss-Bonnet gravity: Momentarily static case

    SciTech Connect

    Yoshino, Hirotaka

    2011-05-15

    We study the method for generating the initial data of black hole systems in Gauss-Bonnet gravity. The initial data are assumed to be momentarily static and conformally flat. Although the equation for the conformal factor is highly nonlinear, it is successfully solved by numerical relaxation for one-black-hole and two-black-hole systems. The common apparent horizon is studied in the two-black-hole initial data, and the result suggests that the Penrose inequalities are satisfied in this system. This is the first step for simulating black hole collisions in higher-curvature theories.

  4. Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas.

    PubMed

    Winnerl, S; Zimmermann, B; Peter, F; Schneider, H; Helm, M

    2009-02-01

    We report on emission and detection of pulsed terahertz radiation of radial and azimuthal polarization by microstructured photoconductive antennas. To this end the electrode geometry of the emitter is inverse to the desired THz field pattern and a second periodic structure prevents destructive interference effects. Beam profiles of freely propagating THz waves are studied for divergent and refocused beams. They can be well described as the lowest order Bessel-Gauss modes with a divergence comparable to linearly polarized Gaussian beams. Additionally, mode sensitive detection is demonstrated for radially polarized radiation. PMID:19188986

  5. Parameter investigation with line-implicit lower-upper symmetric Gauss-Seidel on 3D stretched grids

    NASA Astrophysics Data System (ADS)

    Otero, Evelyn; Eliasson, Peter

    2015-03-01

    An implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solver has been implemented as a multigrid smoother combined with a line-implicit method as an acceleration technique for Reynolds-averaged Navier-Stokes (RANS) simulation on stretched meshes. The computational fluid dynamics code concerned is Edge, an edge-based finite volume Navier-Stokes flow solver for structured and unstructured grids. The paper focuses on the investigation of the parameters related to our novel line-implicit LU-SGS solver for convergence acceleration on 3D RANS meshes. The LU-SGS parameters are defined as the Courant-Friedrichs-Lewy number, the left-hand side dissipation, and the convergence of iterative solution of the linear problem arising from the linearisation of the implicit scheme. The influence of these parameters on the overall convergence is presented and default values are defined for maximum convergence acceleration. The optimised settings are applied to 3D RANS computations for comparison with explicit and line-implicit Runge-Kutta smoothing. For most of the cases, a computing time acceleration of the order of 2 is found depending on the mesh type, namely the boundary layer and the magnitude of residual reduction.

  6. High-precision U-Pb zircon age from the Anfiteatro de Ticó Formation: Implications for the timing of the early angiosperm diversification in Patagonia

    NASA Astrophysics Data System (ADS)

    Perez Loinaze, Valeria S.; Vera, Ezequiel I.; Passalia, Mauro G.; Llorens, Magdalena; Friedman, Richard; Limarino, Carlos O.; Césari, Silvia N.

    2013-12-01

    The Baqueró Group is one of the most relevant units regarding the study of the early diversification of angiosperms in South America. Whereas the age of the upper part of the Group, namely the Punta del Barco Formation, has been recently dated at 114.67 ± 0.18 Ma, the rest of the unit still lacks precise dating. In this contribution a CA-TIMS U-Pb zircon age of 118.23 ± 0.09 Ma for a tuff interlayered with fossiliferous rocks of the Anfiteatro de Ticó Formation (lower part of the Baqueró Group) is reported. This age constrains the duration of deposition of the Baqueró Group to approximately 4 Ma and provides new evidence for the age interpretation of the previously described angiosperm flora and associated pollen assemblages from this unit, until now interpreted as early Aptian or possibly Barremian in age. The Aptian age of the Baqueró Group allows a better comparison between the paleofloras from this southernmost region.

  7. Arrival Metering Precision Study

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.

    2015-01-01

    This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.

  8. Variation in the mantle sources of the northern Izu arc with time and space — Constraints from high-precision Pb isotopes

    NASA Astrophysics Data System (ADS)

    Ishizuka, Osamu; Taylor, Rex N.; Milton, J. Andy; Nesbitt, Robert W.; Yuasa, Makoto; Sakamoto, Izumi

    2006-09-01

    We present new ages and geochemical data for back-arc lavas from the northern Izu Bonin arc 33 35° N including high-precision double-spike Pb isotope measurements. The northern part of the Izu Bonin arc is distinct from the rest of the arc as it lacks active rifting behind the volcanic front but it does have Quaternary volcanoes (e.g. Niijima). However, in common with the rest of the arc the northern section has back-arc seamount chains and NE SW volcanic ridges. 40Ar/39Ar dating of volcanic rocks has revealed that Quaternary volcanism is limited to within 40 km of the volcanic front. Miocene and Pliocene volcanism extended as far as 120 km west of the current volcanic front along the back-arc seamounts and ridges. The chemical characteristics of back-arc volcanism are significantly different in the Pliocene Quaternary compared to the Miocene. Opx cpx andesite and hornblende andesite are dominant in Miocene volcanic centres, while Pliocene and Quaternary centres are characterized by basalt and rhyolite. Miocene volcanic centres show a marked correlation between Th/Ce and Pb and Nd isotopes. Generally, these lavas have higher Δ7/4 and lower 143Nd/144Nd with increasing Th/Ce. In contrast, the Pliocene and Quaternary lavas show little, if any, Th enrichment relative to potential mantle sources and no correlation with isotopes. These correlations suggest that partial melt of sediment from the subducting slab was an important component in the Miocene, whereas, the Pliocene Quaternary volcanic centres show little evidence of sediment melt and are restricted to a contribution of fluid from altered oceanic crust and fluid from sediment. Quaternary volcanoes at similar distances from the volcanic front are calculated to have similar compositions and amounts of slab-derived fluid in their sources. However, on Pb Pb isotope plots, they lie closer to the NHRL towards south (i.e., Δ8/4 decreases towards south). Almost parallel but distinct trends on Pb Pb plots imply

  9. Precision performance lamp technology

    NASA Astrophysics Data System (ADS)

    Bell, Dean A.; Kiesa, James E.; Dean, Raymond A.

    1997-09-01

    A principal function of a lamp is to produce light output with designated spectra, intensity, and/or geometric radiation patterns. The function of a precision performance lamp is to go beyond these parameters and into the precision repeatability of performance. All lamps are not equal. There are a variety of incandescent lamps, from the vacuum incandescent indictor lamp to the precision lamp of a blood analyzer. In the past the definition of a precision lamp was described in terms of wattage, light center length (LCL), filament position, and/or spot alignment. This paper presents a new view of precision lamps through the discussion of a new segment of lamp design, which we term precision performance lamps. The definition of precision performance lamps will include (must include) the factors of a precision lamp. But what makes a precision lamp a precision performance lamp is the manner in which the design factors of amperage, mscp (mean spherical candlepower), efficacy (lumens/watt), life, not considered individually but rather considered collectively. There is a statistical bias in a precision performance lamp for each of these factors; taken individually and as a whole. When properly considered the results can be dramatic to the system design engineer, system production manage and the system end-user. It can be shown that for the lamp user, the use of precision performance lamps can translate to: (1) ease of system design, (2) simplification of electronics, (3) superior signal to noise ratios, (4) higher manufacturing yields, (5) lower system costs, (6) better product performance. The factors mentioned above are described along with their interdependent relationships. It is statistically shown how the benefits listed above are achievable. Examples are provided to illustrate how proper attention to precision performance lamp characteristics actually aid in system product design and manufacturing to build and market more, market acceptable product products in the

  10. Orbital angular momentum density of a general Lorentz-Gauss vortex beam

    NASA Astrophysics Data System (ADS)

    Zhou, Guoquan; Ji, Zhiyue; Ru, Guoyun

    2016-07-01

    Based on the vectorial Rayleigh-Sommerfeld integral formulae, the analytical expression of a general Lorentz-Gauss vortex beam with an arbitrary topological charge is derived in free space. By using the analytical expressions of the electromagnetic field beyond the paraxial approximation, the orbital angular momentum density of a general Lorentz-Gauss vortex beam can be calculated. The effects of the linearly polarized angle and the topological charge on the three components of the orbital angular momentum density are investigated in the reference plane. The two transversal components of the orbital angular momentum are composed of two lobes with the same areas and opposite signs. The longitudinal component of the orbital angular momentum density is composed of four lobes with the same areas. The sign of the orbital angular momentum density in a pair of lobes is positive, and that of the orbital angular momentum density in the other pair of lobes is negative. Moreover, the negative magnitude of the orbital angular momentum density is larger than the positive magnitude of the orbital angular momentum density. The linearly polarized angle affects not only the shape and the location of the lobes, but also the magnitude of the three components of the orbital angular momentum density. With increasing the topological charge, the distribution of the orbital angular momentum density expands, the magnitude of the orbital angular momentum density increases, and the shape of the lobe also slightly changes.

  11. Orbital angular momentum density of a general Lorentz–Gauss vortex beam

    NASA Astrophysics Data System (ADS)

    Zhou, Guoquan; Ji, Zhiyue; Ru, Guoyun

    2016-07-01

    Based on the vectorial Rayleigh–Sommerfeld integral formulae, the analytical expression of a general Lorentz–Gauss vortex beam with an arbitrary topological charge is derived in free space. By using the analytical expressions of the electromagnetic field beyond the paraxial approximation, the orbital angular momentum density of a general Lorentz–Gauss vortex beam can be calculated. The effects of the linearly polarized angle and the topological charge on the three components of the orbital angular momentum density are investigated in the reference plane. The two transversal components of the orbital angular momentum are composed of two lobes with the same areas and opposite signs. The longitudinal component of the orbital angular momentum density is composed of four lobes with the same areas. The sign of the orbital angular momentum density in a pair of lobes is positive, and that of the orbital angular momentum density in the other pair of lobes is negative. Moreover, the negative magnitude of the orbital angular momentum density is larger than the positive magnitude of the orbital angular momentum density. The linearly polarized angle affects not only the shape and the location of the lobes, but also the magnitude of the three components of the orbital angular momentum density. With increasing the topological charge, the distribution of the orbital angular momentum density expands, the magnitude of the orbital angular momentum density increases, and the shape of the lobe also slightly changes.

  12. Static and symmetric wormholes respecting energy conditions in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Maeda, Hideki; Nozawa, Masato

    2008-07-15

    Properties of n({>=}5)-dimensional static wormhole solutions are investigated in Einstein-Gauss-Bonnet gravity with or without a cosmological constant {lambda}. We assume that the spacetime has symmetries corresponding to the isometries of an (n-2)-dimensional maximally symmetric space with the sectional curvature k={+-}1, 0. It is also assumed that the metric is at least C{sup 2} and the (n-2)-dimensional maximally symmetric subspace is compact. Depending on the existence or absence of the general relativistic limit {alpha}{yields}0, solutions are classified into general relativistic (GR) and non-GR branches, respectively, where {alpha} is the Gauss-Bonnet coupling constant. We show that a wormhole throat respecting the dominant energy condition coincides with a branch surface in the GR branch, otherwise the null energy condition is violated there. In the non-GR branch, it is shown that there is no wormhole solution for k{alpha}{>=}0. For the matter field with zero tangential pressure, it is also shown in the non-GR branch with k{alpha}<0 and {lambda}{<=}0 that the dominant energy condition holds at the wormhole throat if the radius of the throat satisfies some inequality. In the vacuum case, a fine-tuning of the coupling constants is shown to be necessary and the radius of a wormhole throat is fixed. Explicit wormhole solutions respecting the energy conditions in the whole spacetime are obtained in the vacuum and dust cases with k=-1 and {alpha}>0.

  13. Novel Gauss-Hermite integration based Bayesian inference on optimal wavelet parameters for bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tsui, Kwok-Leung; Zhou, Qiang

    2016-05-01

    Rolling element bearings are commonly used in machines to provide support for rotating shafts. Bearing failures may cause unexpected machine breakdowns and increase economic cost. To prevent machine breakdowns and reduce unnecessary economic loss, bearing faults should be detected as early as possible. Because wavelet transform can be used to highlight impulses caused by localized bearing faults, wavelet transform has been widely investigated and proven to be one of the most effective and efficient methods for bearing fault diagnosis. In this paper, a new Gauss-Hermite integration based Bayesian inference method is proposed to estimate the posterior distribution of wavelet parameters. The innovations of this paper are illustrated as follows. Firstly, a non-linear state space model of wavelet parameters is constructed to describe the relationship between wavelet parameters and hypothetical measurements. Secondly, the joint posterior probability density function of wavelet parameters and hypothetical measurements is assumed to follow a joint Gaussian distribution so as to generate Gaussian perturbations for the state space model. Thirdly, Gauss-Hermite integration is introduced to analytically predict and update moments of the joint Gaussian distribution, from which optimal wavelet parameters are derived. At last, an optimal wavelet filtering is conducted to extract bearing fault features and thus identify localized bearing faults. Two instances are investigated to illustrate how the proposed method works. Two comparisons with the fast kurtogram are used to demonstrate that the proposed method can achieve better visual inspection performances than the fast kurtogram.

  14. Thermodynamics of rotating solutions in Gauss-Bonnet-Maxwell gravity and the counterterm method

    SciTech Connect

    Dehghani, M. H.; Bordbar, G. H.; Shamirzaie, M.

    2006-09-15

    By a suitable transformation, we present the (n+1)-dimensional charged rotating solutions of Gauss-Bonnet gravity with a complete set of allowed rotation parameters which are real in the whole spacetime. We show that these charged rotating solutions present black hole solutions with two inner and outer event horizons, extreme black holes, or naked singularities provided the parameters of the solutions are chosen suitable. Using the surface terms that make the action well defined for Gauss-Bonnet gravity and the counterterm method for eliminating the divergences in action, we compute finite action of the solutions. We compute the conserved and thermodynamical quantities through the use of free energy and the counterterm method, and find that the two methods give the same results. We also find that these quantities satisfy the first law of thermodynamics. Finally, we perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable. This is commensurate with the fact that there is no Hawking-Page phase transition for black objects with zero curvature horizon.

  15. Stability of thin-shell wormholes supported by normal matter in Einstein-Maxwell-Gauss-Bonnet gravity

    SciTech Connect

    Mazharimousavi, S. Habib; Halilsoy, M.; Amirabi, Z.

    2010-05-15

    Recently in [Phys. Rev. D 76, 087502 (2007) and Phys. Rev. D 77, 089903 (2008)] a thin-shell wormhole has been introduced in five-dimensional Einstein-Maxwell-Gauss-Bonnet gravity which was supported by normal matter. We wish to consider this solution and investigate its stability. Our analysis shows that for the Gauss-Bonnet parameter {alpha}<0, stability regions form for a narrow band of finely tuned mass and charge. For the case {alpha}>0, we iterate once more that no stable, normal matter thin-shell wormhole exists.

  16. Drilling Precise Orifices and Slots

    NASA Technical Reports Server (NTRS)

    Richards, C. W.; Seidler, J. E.

    1983-01-01

    Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.

  17. Precision volume measuring system

    SciTech Connect

    Klevgard, P.A.

    1984-11-01

    An engineering study was undertaken to calibrate and certify a precision volume measurement system that uses the ideal gas law and precise pressure measurements (of low-pressure helium) to ratio a known to an unknown volume. The constant-temperature, computer-controlled system was tested for thermodynamic instabilities, for precision (0.01%), and for bias (0.01%). Ratio scaling was used to optimize the quartz crystal pressure transducer calibration.

  18. Precision positioning device

    DOEpatents

    McInroy, John E.

    2005-01-18

    A precision positioning device is provided. The precision positioning device comprises a precision measuring/vibration isolation mechanism. A first plate is provided with the precision measuring mean secured to the first plate. A second plate is secured to the first plate. A third plate is secured to the second plate with the first plate being positioned between the second plate and the third plate. A fourth plate is secured to the third plate with the second plate being positioned between the third plate and the fourth plate. An adjusting mechanism for adjusting the position of the first plate, the second plate, the third plate, and the fourth plate relative to each other.

  19. Variation in the Source Mantle of the Northern Izu arc with Time and Space -Constraints from High-precision Pb Isotopes -

    NASA Astrophysics Data System (ADS)

    Ishizuka, O.; Taylor, R. N.; Milton, J. A.; Nesbitt, R. W.; Uto, K.; Yuasa, M.; Sakamoto, I.

    2002-12-01

    We present new isotopic and trace element data for back-arc lavas from the northern Izu arc (33-36oN) including high-precision double-spike Pb isotope measurements. The northern part of the Izu arc is distinct from the rest of the arc in the lack of active rifting and presence of Quaternary volcanoes behind the front (e.g. Niijima). Common features with the rest of the arc include the presence of the back-arc seamounts chains and NE-SW volcanic ridges. 40Ar/39Ar dating of volcanic rocks has revealed that Quaternary volcanism is limited to within 40 km of the volcanic front. Active volcanism occurred from Miocene and Pliocene in the back-arc seamounts and ridges as far as 120km west of the current volcanic front. Chemical characteristics of the Quaternary behind-the-front volcanism and Tertiary volcanism in the back-arc seamounts are significantly different. Opx-cpx andesite and hornblende andesite are dominant in the back-arc seamounts, while Quaternary behind-the-front volcanism is characterized by basalt and rhyolite. In terms of the trace element and isotopic characteristics, Tertiary back-arc seamount lavas show a marked correlation between Th/Ce and Pb and Nd isotopes. Generally these lavas have higher Δ7/4 and lower 143Nd/144Nd with increasing Th/Ce. In contrast, the Quaternary lavas show little, if any, Th enrichment relative to potential mantle sources and no correlation with isotopes. These correlations suggest that sediment melt from the subducting slab is an important component in the Tertiary back-arc seamounts, whereas, the Quaternary volcanism behind the front shows little indication of sediment melt and is restricted to a contribution of fluid from altered oceanic crust. Quaternary volcanoes at similar distances from the volcanic front are estimated to have similar compositions and amounts of slab-derived fluid in their sources. However, on Pb-Pb isotope plots, they lie closer to the NHRL towards south (i.e., Δ8/4 decreases towards south). Almost

  20. A Computer Aided Implementation of Precision Teaching.

    ERIC Educational Resources Information Center

    Lyons, Dave

    A computer implementation of precision teaching for severely mentally handicapped students is described. Computer technology reduces staff time during a typical precision teaching routine: design of suitable teaching programs, a series of timed short drills using these programs, conversion of results into numeric quantities, and design of improved…

  1. Analysis of High Precision GPS Time Series and Strain Rates for the Geothermal Play Fairway Analysis of Washington State Prospects Project

    DOE Data Explorer

    Michael Swyer

    2015-02-22

    Global Positioning System (GPS) time series from the National Science Foundation (NSF) Earthscope’s Plate Boundary Observatory (PBO) and Central Washington University’s Pacific Northwest Geodetic Array (PANGA). GPS station velocities were used to infer strain rates using the ‘splines in tension’ method. Strain rates were derived separately for subduction zone locking at depth and block rotation near the surface within crustal block boundaries.

  2. MOST Space-based Photometry of the Transiting Exoplanet System HD 189733: Precise Timing Measurements for Transits across an Active Star

    NASA Astrophysics Data System (ADS)

    Miller-Ricci, Eliza; Rowe, Jason F.; Sasselov, Dimitar; Matthews, Jaymie M.; Kuschnig, Rainer; Croll, Bryce; Guenther, David B.; Moffat, Anthony F. J.; Rucinski, Slavek M.; Walker, Gordon A. H.; Weiss, Werner W.

    2008-07-01

    We have measured transit times for HD 189733b passing in front of its bright (V = 7.67), chromospherically active, and spotted parent star. Nearly continuous broadband optical photometry of this system was obtained with the Microvariability and Oscillations of Stars (MOST) space telescope during 21 days in 2006 August, monitoring 10 consecutive transits. We have used these data to search for deviations from a constant orbital period which can indicate the presence of additional planets in the system that are as yet undetected by Doppler searches. There are no transit timing variations above the level of ±45 s, ruling out super-Earths (of masses 1-4 M⊕) in the 1:2 and 2:3 inner resonances, and planets of 20 M⊕ in the 2:1 outer resonance of the known planet. We also discuss complications in measuring transit times for a planet that transits an active star with large starspots, and how the transits can help constrain and test spot models. This has implications for the large number of such systems expected to be discovered by the COROT and Kepler missions. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies, and the University of British Columbia, with the assistance of the University of Vienna.

  3. Precision Teaching: An Introduction.

    ERIC Educational Resources Information Center

    West, Richard P.; And Others

    1990-01-01

    Precision teaching is introduced as a method of helping students develop fluency or automaticity in the performance of academic skills. Precision teaching involves being aware of the relationship between teaching and learning, measuring student performance regularly and frequently, and analyzing the measurements to develop instructional and…

  4. Precision Optics Curriculum.

    ERIC Educational Resources Information Center

    Reid, Robert L.; And Others

    This guide outlines the competency-based, two-year precision optics curriculum that the American Precision Optics Manufacturers Association has proposed to fill the void that it suggests will soon exist as many of the master opticians currently employed retire. The model, which closely resembles the old European apprenticeship model, calls for 300…

  5. SkyProbe: Real-Time Precision Monitoring in the Optical of the Absolute Atmospheric Absorption on the Telescope Science and Calibration Fields

    NASA Astrophysics Data System (ADS)

    Cuillandre, J.-C.; Magnier, E.; Sabin, D.; Mahoney, B.

    2016-05-01

    Mauna Kea is known for its pristine seeing conditions but sky transparency can be an issue for science operations since at least 25% of the observable (i.e. open dome) nights are not photometric, an effect mostly due to high-altitude cirrus. Since 2001, the original single channel SkyProbe mounted in parallel on the Canada-France-Hawaii Telescope (CFHT) has gathered one V-band exposure every minute during each observing night using a small CCD camera offering a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (40 seconds) to capture at least 100 stars of Hipparcos' Tycho catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). The measurement of the true atmospheric absorption is achieved within 2%, a key advantage over all-sky direct thermal infrared imaging detection of clouds. The absolute measurement of the true atmospheric absorption by clouds and particulates affecting the data being gathered by the telescope's main science instrument has proven crucial for decision making in the CFHT queued service observing (QSO) representing today all of the telescope time. Also, science exposures taken in non-photometric conditions are automatically registered for a new observation at a later date at 1/10th of the original exposure time in photometric conditions to ensure a proper final absolute photometric calibration. Photometric standards are observed only when conditions are reported as being perfectly stable by SkyProbe. The more recent dual color system (simultaneous B & V bands) will offer a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinnest cirrus (absorption down to 0.01 mag., or 1%).

  6. Is there a relation between the 2D Causal Set action and the Lorentzian Gauss-Bonnet theorem?

    NASA Astrophysics Data System (ADS)

    Benincasa, Dionigi M. T.

    2011-07-01

    We investigate the relation between the two dimensional Causal Set action, Script S, and the Lorentzian Gauss-Bonnet theorem (LGBT). We give compelling reasons why the answer to the title's question is no. In support of this point of view we calculate the causal set inspired action of causal intervals in some two dimensional spacetimes: Minkowski, the flat cylinder and the flat trousers.

  7. Quasi-minimal Lorentz surfaces with pointwise 1-type Gauss map in pseudo-Euclidean 4-space

    NASA Astrophysics Data System (ADS)

    Milousheva, Velichka; Turgay, Nurettin Cenk

    2016-08-01

    A Lorentz surface in the four-dimensional pseudo-Euclidean space with neutral metric is called quasi-minimal if its mean curvature vector is lightlike at each point. In the present paper we obtain the complete classification of quasi-minimal Lorentz surfaces with pointwise 1-type Gauss map.

  8. An analysis on local convergence of inexact newton-gauss method for solving singular systems of equations.

    PubMed

    Zhou, Fangqin

    2014-01-01

    We study the local convergence properties of inexact Newton-Gauss method for singular systems of equations. Unified estimates of radius of convergence balls for one kind of singular systems of equations with constant rank derivatives are obtained. Application to the Smale point estimate theory is provided and some important known results are extended and/or improved.

  9. Prompt and Precise Prototyping

    NASA Technical Reports Server (NTRS)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  10. Spatial properties of a diffracted high-order radial Laguerre-Gauss LG p0 beam

    NASA Astrophysics Data System (ADS)

    Haddadi, S.; Louhibi, D.; Hasnaoui, A.; Harfouche, A.; Aït-Ameur, K.

    2015-12-01

    Diffraction of a high-order radial Laguerre-Gauss LG p0 beam truncated by a circular aperture is considered. In contrast with the truncated usual Gaussian LG00 beam, which is not Gaussian in the near-field and quasi-Gaussian in the far-field, the truncated LG p0 beam (for p  =  1 to 4) behaves very differently. Depending on the diaphragm size, the radial intensity distribution of a truncated LG p0 beam in the far-field (focal plane of a lens) can take the shape of (i) a flat-top, (ii) a hollow beam and (iii) one central peak and a ring having the same intensity. In addition, clipping—even weakly—of an LG p0 beam splits the usual focal point into two.

  11. A Gauss-Newton approach to joint image registration and intensity correction.

    PubMed

    Ebrahimi, Mehran; Lausch, Anthony; Martel, Anne L

    2013-12-01

    We develop a new efficient numerical methodology for automated simultaneous registration and intensity correction of images. The approach separates the intensity correction term from the images being registered in a regularized expression. Our formulation is consistent with the existing non-parametric image registration techniques, however, an extra additive intensity correction term is carried throughout. An objective functional is formed for which the corresponding Hessian and Jacobian is computed and employed in a multi-level Gauss-Newton minimization approach. In this paper, our experiments are based on elastic regularization on the transformation and total variation on the intensity correction. Validations on dynamic contrast enhanced MR abdominal images for both real and simulated data verified the efficacy of the model. The pursued approach is flexible in which we can exploit various forms of regularization on the transformation and the intensity correction. PMID:24075154

  12. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    PubMed Central

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-01-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration. PMID:27796327

  13. Critical behavior of charged black holes in Gauss-Bonnet gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, Seyed Hossein; Panahiyan, Shahram; Eslam Panah, Behzad; Faizal, Mir; Momennia, Mehrab

    2016-07-01

    Following an earlier study regarding Gauss-Bonnet-Maxwell black holes in the presence of gravity's rainbow [S. H. Hendi and M. Faizal, Phys. Rev. D 92, 044027 (2015)], in this paper, we consider all constants as energy dependent ones. The geometrical and thermodynamical properties of this generalization is studied and the validation of the first law of thermodynamics is examined. Next, through the use of proportionality between the cosmological constant and the thermodynamical pressure, van der Waals-like behavior of these black holes in extended phase space is investigated. An interesting critical behavior for sets of rainbow functions in this case is reported. Also, the critical behavior of uncharged and charged solutions is analyzed and it is shown that the generalization to a charged case puts an energy dependent restriction on values of different parameters.

  14. Flexibility-based structural damage identification using Gauss-Newton method

    NASA Astrophysics Data System (ADS)

    Chen, Bilei; Nagarajaiah, Satish

    2007-04-01

    Structural damage will change the dynamic characteristics, including natural frequencies, modal shapes, damping ratios and modal flexibility matrix of the structure. Modal flexibility matrix is a function of natural frequencies and mode shapes and can be used for structural damage detection and health monitoring. In this paper, experimental modal flexibility matrix is obtained from the first few lower measured natural frequencies and incomplete modal shapes. The optimization problem is then constructed by minimizing Frobenius norm of the change of flexibility matrix. Gauss- Newton method is used to solve the optimization problem, where the sensitivity of flexibility matrix with respect to structural parameters is calculated iteratively by only using the first few lower modes. The optimal solution corresponds to structural parameters which can be used to identify damage sites and extent. Numerical results show that flexibility-based method can be successfully applied to identify the damage elements and is robust to measurement noise.

  15. Spherical-earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration

    NASA Technical Reports Server (NTRS)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J.

    1981-01-01

    Gauss-Legendre quadrature integration is used to calculate the anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical earth. The procedure involves representation of the anomalous source as a distribution of equivalent point gravity poles or point magnetic dipoles. The distribution of equivalent point sources is determined directly from the volume limits of the anomalous body. The variable limits of integration for an arbitrarily shaped body are obtained from interpolations performed on a set of body points which approximate the body's surface envelope. The versatility of the method is shown by its ability to treat physical property variations within the source volume as well as variable magnetic fields over the source and observation surface. Examples are provided which illustrate the capabilities of the technique, including a preliminary modeling of potential field signatures for the Mississippi embayment crustal structure at 450 km.

  16. Higher-Order Laguerre-Gauss Mode Generation and Interferometry for Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Granata, M.; Buy, C.; Ward, R.; Barsuglia, M.

    2010-12-01

    We report on the first experimental demonstration of higher-order Laguerre-Gauss (LGpℓ) mode generation and interferometry using a method scalable to the requirements of gravitational wave (GW) detection. GW detectors which use higher-order LGpℓ modes will be less susceptible to mirror thermal noise, which is expected to limit the sensitivity of all currently planned terrestrial detectors. We used a diffractive optic and a mode-cleaner cavity to convert a fundamental LG00 Gaussian beam into an LG33 mode with a purity of 98%. The ratio between the power of the LG00 mode of our laser and the power of the LG33 transmitted by the cavity was 36%. By measuring the transmission of our setup using the LG00, we inferred that the conversion efficiency specific to the LG33 mode was 49%. We illuminated a Michelson interferometer with the LG33 beam and achieved a visibility of 97%.

  17. Thermodynamic instability of topological black holes in Gauss-Bonnet gravity with a generalized electrodynamics

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Panahiyan, S.

    2014-12-01

    Motivated by the string corrections on the gravity and electrodynamics sides, we consider a quadratic Maxwell invariant term as a correction of the Maxwell Lagrangian to obtain exact solutions of higher dimensional topological black holes in Gauss-Bonnet gravity. We first investigate the asymptotically flat solutions and obtain conserved and thermodynamic quantities which satisfy the first law of thermodynamics. We also analyze thermodynamic stability of the solutions by calculating the heat capacity and the Hessian matrix. Then, we focus on horizon-flat solutions with an anti-de Sitter (AdS) asymptote and produce a rotating spacetime with a suitable transformation. In addition, we calculate the conserved and thermodynamic quantities for asymptotically AdS black branes which satisfy the first law of thermodynamics. Finally, we perform thermodynamic instability criterion to investigate the effects of nonlinear electrodynamics in canonical and grand canonical ensembles.

  18. A Gauss-Newton approach to joint image registration and intensity correction.

    PubMed

    Ebrahimi, Mehran; Lausch, Anthony; Martel, Anne L

    2013-12-01

    We develop a new efficient numerical methodology for automated simultaneous registration and intensity correction of images. The approach separates the intensity correction term from the images being registered in a regularized expression. Our formulation is consistent with the existing non-parametric image registration techniques, however, an extra additive intensity correction term is carried throughout. An objective functional is formed for which the corresponding Hessian and Jacobian is computed and employed in a multi-level Gauss-Newton minimization approach. In this paper, our experiments are based on elastic regularization on the transformation and total variation on the intensity correction. Validations on dynamic contrast enhanced MR abdominal images for both real and simulated data verified the efficacy of the model. The pursued approach is flexible in which we can exploit various forms of regularization on the transformation and the intensity correction.

  19. AdS/BCFT correspondence, holographic g-theorem and Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Najian, Bahman

    2014-09-01

    We investigate some aspects of holographic dual of boundary conformal field theories for higher derivative Gauss-Bonnet (GB) gravity. We explore the holographic g-theorem for GB gravity and introduce holographic g-functions in five and six dimensions. Focusing on the coefficients of the logarithmic terms in the partition functions of BCFTs holographically, and in the presence of higher derivative terms, in even dimensions we show that these are associated with corrected A-type trace anomaly. Building on this, in odd dimensions, we present supporting evidence for monotonicity property of boundary central charge in BCFT5 in Einstein gravity. However, in the GB gravity case, we find that the monotonicity behavior is violated. This invalidates the holographic g-theorem for the GB gravity.

  20. The role of Gauss curvature in a membrane phase separation problem

    NASA Astrophysics Data System (ADS)

    Gillmor, Susan; Lee, Jieun; Ren, Xiaofeng

    2011-12-01

    Consider a two-phase lipid vesicle. Below the transition temperature, the phases separate into non-connecting domains that coarsen into larger areas. The free energy of phase properties determines the length of the boundaries separating the regions. The two phases correspond to different lipid compositions, and in cells, this fluctuation in composition is a dynamic process vital to its function. We prove that a small patch of the minority lipids forms at a point of the membrane where the Gauss curvature attains a maximum. This patch has a round shape approximately and its boundary has a constant geodesic curvature. The proof consists of three steps. The construction of a family of good approximate solutions, an improvement of the approximate solutions so that their geodesic curvature is a constant modulo translation, and the identification of an exact solution from the family of the improved approximate solutions. Our theoretical results are supported by vesicle experiments.

  1. Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem

    NASA Astrophysics Data System (ADS)

    Ishihara, Asahi; Suzuki, Yusuke; Ono, Toshiaki; Kitamura, Takao; Asada, Hideki

    2016-10-01

    We discuss a possible extension of calculations of the bending angle of light in a static, spherically symmetric and asymptotically flat spacetime to a nonasymptotically flat case. We examine a relation between the bending angle of light and the Gauss-Bonnet theorem by using the optical metric. A correspondence between the deflection angle of light and the surface integral of the Gaussian curvature may allow us to take account of the finite distance from a lens object to a light source and a receiver. Using this relation, we propose a method for calculating the bending angle of light for such cases. Finally, this method is applied to two examples of the nonasymptotically flat spacetimes to suggest finite-distance corrections: the Kottler (Schwarzschild-de Sitter) solution to the Einstein equation and an exact solution in Weyl conformal gravity.

  2. Vacuum energy in Einstein-Gauss-Bonnet anti de Sitter gravity

    NASA Astrophysics Data System (ADS)

    Kofinas, Georgios; Olea, Rodrigo

    2006-10-01

    A finite action principle for Einstein-Gauss-Bonnet anti de Sitter gravity is achieved by supplementing the bulk Lagrangian by a suitable boundary term, whose form substantially differs in odd and even dimensions. For even dimensions, this term is given by the boundary contribution in the Euler theorem with a coupling constant fixed, demanding the spacetime to have constant (negative) curvature in the asymptotic region. For odd dimensions, the action is stationary under a boundary condition on the variation of the extrinsic curvature. A well-posed variational principle leads to an appropriate definition of energy and other conserved quantities using the Noether theorem, and to a correct description of black hole thermodynamics. In particular, this procedure assigns a nonzero energy to anti de Sitter spacetime in all odd dimensions.

  3. Slowly-Rotating Black Hole Solution in Einstein-Dilaton-Gauss-Bonnet Gravity

    NASA Astrophysics Data System (ADS)

    Ayzenberg, Dimitry; Yunes, Nicolas

    2015-04-01

    We present a stationary and axisymmetric black hole solution in Einstein-Dilaton-Gauss-Bonnet gravity to quadratic order in the ratio of the spin angular momentum to the black hole mass squared. This solution introduces new corrections to previously found nonspinning and linear-in-spin solutions. The location of the event horizon and the ergosphere are modified, as well as the quadrupole moment. The new solution is of Petrov type I, although lower order in spin solutions are of Petrov type D. There are no closed timelike curves or spacetime regions that violate causality outside of the event horizon in the new solution. We calculate the modifications to the binding energy, Kepler's third law, and properties of the innermost stable circular orbit. These modifications are important for determining how the electromagnetic properties of accretion disks around supermassive black holes are changed from those expected in general relativity.

  4. Thermodynamics and holographic entanglement entropy for spherical black holes in 5D Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Xu, Hao; Zhao, Liu

    2016-09-01

    The holographic entanglement entropy is studied numerically in (4+1)-dimensional spherically symmetric Gauss-Bonnet AdS black hole spacetime with compact boundary. On the bulk side the black hole spacetime undergoes a van der Waals-like phase transition in the extended phase space, which is reviewed with emphasis on the behavior on the temperature-entropy plane. On the boundary, we calculated the regularized HEE of a disk region of different sizes. We find strong numerical evidence for the failure of equal area law for isobaric curves on the temperature-HEE plane and for the correctness of first law of entanglement entropy, and briefly give an explanation for why the latter may serve as a reason for the former, i.e. the failure of equal area law on the temperature-HEE plane.

  5. Office Chromatography: Precise printing of sample solutions on miniaturized thin-layer phases and utilization for scanning Direct Analysis in Real Time mass spectrometry.

    PubMed

    Häbe, Tim T; Morlock, Gertrud E

    2015-09-25

    Office Chromatography combines achievements in office technologies with miniaturized planar chromatography. In the life sciences, printing of materials became an accepted technique, whereas in separation science, the use of printers for chromatography is at its infancy. A bubble-jet printer was modified for exact application on miniaturized plates. Technical modifications included the removal of all unnecessary parts and the improvement of the positioning system, purge unit and sample supply system. Evaluation was performed via a slide scanner and image evaluation software. Printing of a food dye mixture solution (n=5) led to a calculated mean deposition volume of 13±1nL/mm(2) per print-cycle. A mean determination coefficient (R(2); n=5) of 0.9990 was obtained for application of increasing volumes, executed via increasing band widths of 50-200μm (corresponding to 2-8nL). Using larger band widths and multiple print jobs, deposition volumes of up to the microliter scale represented an alternative to cost-intensive standard equipment. After print, separation, detection and digital evaluation of five food dyes, mean R(2) (n=5) were obtained between 0.9977 and 0.9995. The accuracy of printing was proven by mean recovery rates of 101-105% with repeatabilities of 3-7% (%RSD, n=5). The transfer to nanostructured ultrathin-layer plates proved the synergetic potential of these fields of research. First, this modified printer was suited for printing of finely graduated scales of three preservatives for determination of the spatial resolution of scanning Direct Analysis in Real Time mass spectrometry. PMID:26303254

  6. Electromagnetism, Local Covariance, the Aharonov-Bohm Effect and Gauss' Law

    NASA Astrophysics Data System (ADS)

    Sanders, Ko; Dappiaggi, Claudio; Hack, Thomas-Paul

    2014-06-01

    We quantise the massless vector potential A of electromagnetism in the presence of a classical electromagnetic (background) current, j, in a generally covariant way on arbitrary globally hyperbolic spacetimes M. By carefully following general principles and procedures we clarify a number of topological issues. First we combine the interpretation of A as a connection on a principal U(1)-bundle with the perspective of general covariance to deduce a physical gauge equivalence relation, which is intimately related to the Aharonov-Bohm effect. By Peierls' method we subsequently find a Poisson bracket on the space of local, affine observables of the theory. This Poisson bracket is in general degenerate, leading to a quantum theory with non-local behaviour. We show that this non-local behaviour can be fully explained in terms of Gauss' law. Thus our analysis establishes a relationship, via the Poisson bracket, between the Aharonov-Bohm effect and Gauss' law - a relationship which seems to have gone unnoticed so far. Furthermore, we find a formula for the space of electric monopole charges in terms of the topology of the underlying spacetime. Because it costs little extra effort, we emphasise the cohomological perspective and derive our results for general p-form fields A ( p < dim( M)), modulo exact fields, for the Lagrangian density . In conclusion we note that the theory is not locally covariant, in the sense of Brunetti-Fredenhagen-Verch. It is not possible to obtain such a theory by dividing out the centre of the algebras, nor is it physically desirable to do so. Instead we argue that electromagnetism forces us to weaken the axioms of the framework of local covariance, because the failure of locality is physically well-understood and should be accommodated.

  7. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--March 1995

    SciTech Connect

    1995-03-01

    The objectives of the project are to construct a geophysical sensor system based on a remotely operated model helicopter (ROH) and to evaluate the efficacy of the system for characterization of hazardous environmental sites. Geophex Airborne Unmanned Survey System (GAUSS) is a geophysical survey system that uses a ROH as the survey vehicle. We have selected the ROH because of its advantages over fixed wing and ground based vehicles. Lower air speed and superior maneuverability of the ROH make it better suited for geophysical surveys than a fixed wing model aircraft. The ROH can fly close to the ground, allowing detection of weak or subtle anomalies. Unlike ground based vehicles, the ROH can traverse difficult terrain while providing a stable sensor platform. ROH does not touch the ground during the course of a survey and is capable of functioning over water and surf zones. The ROH has been successfully used in the motion picture industry and by geology companies for payload bearing applications. The only constraint to use of the airborne system is that the ROH must remain visible to the pilot. Obstructed areas within a site can be characterized by relocating the base station to alternate positions. GAUSS consists of a ROH with radio controller, a data acquisition and processing (DAP) system, and lightweight digital sensor systems. The objective of our Phase I research was to develop a DAP and sensors suitable for ROH operation. We have constructed these subsystems and integrated them to produce an automated, hand-held geophysical surveying system, referred to as the ``pre-prototype``. We have performed test surveys with the pre-prototype to determine the functionality of the and DAP and sensor subsystems and their suitability for airborne application. The objective of the Phase II effort will be to modify the existing subsystems and integrate them into an airborne prototype. Efficacy of the prototype for geophysical survey of hazardous sites will then be determined.

  8. Application of Gauss algorithm and Monte Carlo simulation to the identification of aquifer parameters

    USGS Publications Warehouse

    Durbin, Timothy J.

    1983-01-01

    The Gauss optimization technique can be used to identify the parameters of a model of a groundwater system for which the parameter identification problem is formulated as a least squares comparison between the response of the prototype and the response of the model. Unavoidable uncertainty in the true stress on the prototype and in the true response of the prototype to that stress will introduce errors into the parameter identification problem. A method for evaluating errors in the predictions of future water levels due to errors in recharge estimates was demonstrated. The method involves a Monte Carlo simulation of the parameter identification problem and of the prediction problem. The steps in the method are: (1) to prescribe the distribution of the recharge estimates; (2) to use this distribution to generate random sets of recharge estimates; (3) to use the Gauss optimization technique to identify the corresponding set of parameter estimates for each set of recharge estimates; (4) to make the corresponding set of hydraulic head predictions for each set of parameter estimates; and (5) to examine the distribution of hydraulic head predictions and to draw appropriate conclusions. Similarly, the method can be used independently or simultaneously to estimate the effect on hydraulic head predictions of errors in the measured water levels that are used in the parameter identification problem. The fit of the model to the data that are used to identify parameters is not a good indicator of these errors. A Monte Carlo simulation of the parameter identification problem can be used, however, to evaluate the effects on water level predictions of errors in the recharge (and pumpage) data used in the parameter identification problem. (Lantz-PTT)

  9. Precision volume measurement system.

    SciTech Connect

    Fischer, Erin E.; Shugard, Andrew D.

    2004-11-01

    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  10. Precision cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Fendt, William Ashton, Jr.

    2009-09-01

    Experimental efforts of the last few decades have brought. a golden age to mankind's endeavor to understand tine physical properties of the Universe throughout its history. Recent measurements of the cosmic microwave background (CMB) provide strong confirmation of the standard big bang paradigm, as well as introducing new mysteries, to unexplained by current physical models. In the following decades. even more ambitious scientific endeavours will begin to shed light on the new physics by looking at the detailed structure of the Universe both at very early and recent times. Modern data has allowed us to begins to test inflationary models of the early Universe, and the near future will bring higher precision data and much stronger tests. Cracking the codes hidden in these cosmological observables is a difficult and computationally intensive problem. The challenges will continue to increase as future experiments bring larger and more precise data sets. Because of the complexity of the problem, we are forced to use approximate techniques and make simplifying assumptions to ease the computational workload. While this has been reasonably sufficient until now, hints of the limitations of our techniques have begun to come to light. For example, the likelihood approximation used for analysis of CMB data from the Wilkinson Microwave Anistropy Probe (WMAP) satellite was shown to have short falls, leading to pre-emptive conclusions drawn about current cosmological theories. Also it can he shown that an approximate method used by all current analysis codes to describe the recombination history of the Universe will not be sufficiently accurate for future experiments. With a new CMB satellite scheduled for launch in the coming months, it is vital that we develop techniques to improve the analysis of cosmological data. This work develops a novel technique of both avoiding the use of approximate computational codes as well as allowing the application of new, more precise analysis

  11. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  12. Precision Measurement in Biology

    NASA Astrophysics Data System (ADS)

    Quake, Stephen

    Is biology a quantitative science like physics? I will discuss the role of precision measurement in both physics and biology, and argue that in fact both fields can be tied together by the use and consequences of precision measurement. The elementary quanta of biology are twofold: the macromolecule and the cell. Cells are the fundamental unit of life, and macromolecules are the fundamental elements of the cell. I will describe how precision measurements have been used to explore the basic properties of these quanta, and more generally how the quest for higher precision almost inevitably leads to the development of new technologies, which in turn catalyze further scientific discovery. In the 21st century, there are no remaining experimental barriers to biology becoming a truly quantitative and mathematical science.

  13. Ultra-precision processes for optics manufacturing

    NASA Astrophysics Data System (ADS)

    Martin, William R.

    1991-12-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  14. Precision Constraints on Extra Fermion Generations

    SciTech Connect

    Erler, Jens; Langacker, Paul

    2010-07-16

    There has been recent renewed interest in the possibility of additional fermion generations. At the same time there have been significant changes in the relevant electroweak precision constraints, in particular, in the interpretation of several of the low energy experiments. We summarize the various motivations for extra families and analyze them in view of the latest electroweak precision data.

  15. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  16. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  17. Precision Muonium Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    2016-09-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.

  18. Precision Heating Process

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.

  19. Precision manometer gauge

    DOEpatents

    McPherson, Malcolm J.; Bellman, Robert A.

    1984-01-01

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  20. Precision manometer gauge

    DOEpatents

    McPherson, M.J.; Bellman, R.A.

    1982-09-27

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.