Chialvo, Ariel A.; Vlcek, Lukas
2014-11-01
We present a detailed derivation of the complete set of expressions required for the implementation of an Ewald summation approach to handle the long-range electrostatic interactions of polar and ionic model systems involving Gaussian charges and induced dipole moments with a particular application to the isobaricisothermal molecular dynamics simulation of our Gaussian Charge Polarizable (GCP) water model and its extension to aqueous electrolytes solutions. The set comprises the individual components of the potential energy, electrostatic potential, electrostatic field and gradient, the electrostatic force and the corresponding virial. Moreover, we show how the derived expressions converge to known point-based electrostatic counterpartsmore » when the parameters, defining the Gaussian charge and induced-dipole distributions, are extrapolated to their limiting point values. Finally, we illustrate the Ewald implementation against the current reaction field approach by isothermal-isobaric molecular dynamics of ambient GCP water for which we compared the outcomes of the thermodynamic, microstructural, and polarization behavior.« less
Charged particle dynamics in the presence of non-Gaussian Lévy electrostatic fluctuations
Del-Castillo-Negrete, Diego B.; Moradi, Sara; Anderson, Johan
2016-09-01
Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of -stable Levy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Levy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Levy fluctuations. The absolute value ofmore » the power law decay exponents are linearly proportional to the Levy index. Furthermore, the observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Levy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.« less
Charged particle dynamics in the presence of non-Gaussian Lévy electrostatic fluctuations
NASA Astrophysics Data System (ADS)
Moradi, Sara; del-Castillo-Negrete, Diego; Anderson, Johan
2016-09-01
Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of α-stable Lévy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Lévy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Lévy fluctuations. The absolute value of the power law decay exponents is linearly proportional to the Lévy index α. The observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Lévy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.
Chaudret, Robin; Gresh, Nohad; Narth, Christophe; Lagardère, Louis; Darden, Thomas A; Cisneros, G Andrés; Piquemal, Jean-Philip
2014-09-04
We demonstrate as a proof of principle the capabilities of a novel hybrid MM'/MM polarizable force field to integrate short-range quantum effects in molecular mechanics (MM) through the use of Gaussian electrostatics. This lead to a further gain in accuracy in the representation of the first coordination shell of metal ions. It uses advanced electrostatics and couples two point dipole polarizable force fields, namely, the Gaussian electrostatic model (GEM), a model based on density fitting, which uses fitted electronic densities to evaluate nonbonded interactions, and SIBFA (sum of interactions between fragments ab initio computed), which resorts to distributed multipoles. To understand the benefits of the use of Gaussian electrostatics, we evaluate first the accuracy of GEM, which is a pure density-based Gaussian electrostatics model on a test Ca(II)-H2O complex. GEM is shown to further improve the agreement of MM polarization with ab initio reference results. Indeed, GEM introduces nonclassical effects by modeling the short-range quantum behavior of electric fields and therefore enables a straightforward (and selective) inclusion of the sole overlap-dependent exchange-polarization repulsive contribution by means of a Gaussian damping function acting on the GEM fields. The S/G-1 scheme is then introduced. Upon limiting the use of Gaussian electrostatics to metal centers only, it is shown to be able to capture the dominant quantum effects at play on the metal coordination sphere. S/G-1 is able to accurately reproduce ab initio total interaction energies within closed-shell metal complexes regarding each individual contribution including the separate contributions of induction, polarization, and charge-transfer. Applications of the method are provided for various systems including the HIV-1 NCp7-Zn(II) metalloprotein. S/G-1 is then extended to heavy metal complexes. Tested on Hg(II) water complexes, S/G-1 is shown to accurately model polarization up to quadrupolar response level. This opens up the possibility of embodying explicit scalar relativistic effects in molecular mechanics thanks to the direct transferability of ab initio pseudopotentials. Therefore, incorporating GEM-like electron density for a metal cation enable the introduction of nonambiguous short-range quantum effects within any point-dipole based polarizable force field without the need of an extensive parametrization.
The electrostatic interaction is a critical component of intermolecular interactions in biological processes. Rapid methods for the computation and characterization of the molecular electrostatic potential (MEP) that segment the molecular charge distribution and replace this cont...
Chen, Jiahao; Martínez, Todd J
2009-07-28
An analytical solution of fluctuating-charge models using Gaussian elimination allows us to isolate the contribution of charge conservation effects in determining the charge distribution. We use this analytical solution to calculate dipole moments and polarizabilities and show that charge conservation plays a critical role in maintaining the correct translational invariance of the electrostatic properties predicted by these models.
Martin, Daniel R; Matyushov, Dmitry V
2012-08-30
We show that electrostatic fluctuations of the protein-water interface are globally non-Gaussian. The electrostatic component of the optical transition energy (energy gap) in a hydrated green fluorescent protein is studied here by classical molecular dynamics simulations. The distribution of the energy gap displays a high excess in the breadth of electrostatic fluctuations over the prediction of the Gaussian statistics. The energy gap dynamics include a nanosecond component. When simulations are repeated with frozen protein motions, the statistics shifts to the expectations of linear response and the slow dynamics disappear. We therefore suggest that both the non-Gaussian statistics and the nanosecond dynamics originate largely from global, low-frequency motions of the protein coupled to the interfacial water. The non-Gaussian statistics can be experimentally verified from the temperature dependence of the first two spectral moments measured at constant-volume conditions. Simulations at different temperatures are consistent with other indicators of the non-Gaussian statistics. In particular, the high-temperature part of the energy gap variance (second spectral moment) scales linearly with temperature and extrapolates to zero at a temperature characteristic of the protein glass transition. This result, violating the classical limit of the fluctuation-dissipation theorem, leads to a non-Boltzmann statistics of the energy gap and corresponding non-Arrhenius kinetics of radiationless electronic transitions, empirically described by the Vogel-Fulcher-Tammann law.
Atomic Forces for Geometry-Dependent Point Multipole and Gaussian Multipole Models
Elking, Dennis M.; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G.
2010-01-01
In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise due to 1) the transfer of torque between neighboring atoms, and 2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole models. In the current study, atomic force expressions for geometry-dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives ∂Dlm′m/∂Ω. The force equations can be applied to electrostatic models based on atomic point multipoles or Gaussian multipole charge density. Hydrogen bonded dimers are used to test the inter-molecular electrostatic energies and atomic forces calculated by geometry-dependent multipoles fit to the ab initio electrostatic potential (ESP). The electrostatic energies and forces are compared to their reference ab initio values. It is shown that both static and geometry-dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, while geometry-dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry-dependent multipole models. PMID:20839297
Raudsepp, Allan; A K Williams, Martin; B Hall, Simon
2016-07-01
Measurements of the electrostatic force with separation between a fixed and an optically trapped colloidal particle are examined with experiment, simulation and analytical calculation. Non-Gaussian Brownian motion is observed in the position of the optically trapped particle when particles are close and traps weak. As a consequence of this motion, a simple least squares parameterization of direct force measurements, in which force is inferred from the displacement of an optically trapped particle as separation is gradually decreased, contains forces generated by the rectification of thermal fluctuations in addition to those originating directly from the electrostatic interaction between the particles. Thus, when particles are close and traps weak, simply fitting the measured direct force measurement to DLVO theory extracts parameters with modified meanings when compared to the original formulation. In such cases, however, physically meaningful DLVO parameters can be recovered by comparing the measured non-Gaussian statistics to those predicted by solutions to Smoluchowski's equation for diffusion in a potential.
NASA Astrophysics Data System (ADS)
Bauer, Sebastian; Mathias, Gerald; Tavan, Paul
2014-03-01
We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ɛ(r) is close to one everywhere inside the protein. The Gaussian widths σi of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σi. A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by comparison with so-called generalized Born methods. A follow-up paper describes how the method enables Hamiltonian, efficient, and accurate MM molecular dynamics simulations of proteins in dielectric solvent continua.
Bauer, Sebastian; Mathias, Gerald; Tavan, Paul
2014-03-14
We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ε(r) is close to one everywhere inside the protein. The Gaussian widths σ(i) of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σ(i). A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by comparison with so-called generalized Born methods. A follow-up paper describes how the method enables Hamiltonian, efficient, and accurate MM molecular dynamics simulations of proteins in dielectric solvent continua.
Electrostatic twisted modes in multi-component dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayub, M. K.; National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000; Pohang University of Sciences and Technology, Pohang, Gyeongbuk 790-784
Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular modemore » numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas.« less
Gaussian polarizable-ion tight binding.
Boleininger, Max; Guilbert, Anne Ay; Horsfield, Andrew P
2016-10-14
To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).
Gaussian polarizable-ion tight binding
NASA Astrophysics Data System (ADS)
Boleininger, Max; Guilbert, Anne AY; Horsfield, Andrew P.
2016-10-01
To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).
Ferroelectric hydration shells around proteins: electrostatics of the protein-water interface.
LeBard, David N; Matyushov, Dmitry V
2010-07-22
Numerical simulations of hydrated proteins show that protein hydration shells are polarized into a ferroelectric layer with large values of the average dipole moment magnitude and the dipole moment variance. The emergence of the new polarized mesophase dramatically alters the statistics of electrostatic fluctuations at the protein-water interface. The linear response relation between the average electrostatic potential and its variance breaks down, with the breadth of the electrostatic fluctuations far exceeding the expectations of the linear response theories. The dynamics of these non-Gaussian electrostatic fluctuations are dominated by a slow (approximately = 1 ns) component that freezes in at the temperature of the dynamical transition of proteins. The ferroelectric shell propagates 3-5 water diameters into the bulk.
SVM-based multisensor data fusion for phase concentration measurement in biomass-coal co-combustion
NASA Astrophysics Data System (ADS)
Wang, Xiaoxin; Hu, Hongli; Jia, Huiqin; Tang, Kaihao
2018-05-01
In this paper, the electrical method combines the electrostatic sensor and capacitance sensor to measure the phase concentration of pulverized coal/biomass/air three-phase flow through data fusion technology. In order to eliminate the effects of flow regimes and improve the accuracy of the phase concentration measurement, the mel frequency cepstrum coefficient features extracted from electrostatic signals are used to train the Continuous Gaussian Mixture Hidden Markov Model (CGHMM) for flow regime identification. Support Vector Machine (SVM) is introduced to establish the concentration information fusion model under identified flow regimes. The CGHMM models and SVM models are transplanted on digital signal processing (DSP) to realize on-line accurate measurement. The DSP flow regime identification time is 1.4 ms, and the concentration predict time is 164 μs, which can fully meet the real-time requirement. The average absolute value of the relative error of the pulverized coal is about 1.5% and that of the biomass is about 2.2%.
Fluorescence decay of naphthalene studied in an electrostatic storage ring, the Mini-Ring
NASA Astrophysics Data System (ADS)
Martin, S.; Matsumoto, J.; Kono, N.; Ji, M.-C.; Brédy, R.; Bernard, J.; Cassimi, A.; Chen, L.
2017-10-01
The cooling of naphthalene cations (C10H8)+ has been studied in a compact electrostatic ion storage ring, the Mini-Ring. A nano second laser pulse of 532 nm (2.33 eV) was used to probe the internal energy distribution every millisecond during the storage time up to 5 ms. The evolution of the internal energy distribution of the stored ions was simulated with a model taking into account the dissociation and the radiative decay processes. Calculated decay curves were fitted to the corresponding laser induced neutral decays. For a laser power of 200 μJ/pulse, a good agreement between experiment and modeling was found using an initial Gaussian energy distribution centered to 5.9 eV and a fluorescence decay rate varying from 200 to 300 s-1 in the energy range from 6 to 7 eV. This fast decay was attributed to the delayed Poincaré fluorescence process.
Electrostatic stiffening and induced persistence length for coassembled molecular bottlebrushes
NASA Astrophysics Data System (ADS)
Storm, Ingeborg M.; Stuart, Martien A. Cohen; de Vries, Renko; Leermakers, Frans A. M.
2018-03-01
A self-consistent field analysis for tunable contributions to the persistence length of isolated semiflexible polymer chains including electrostatically driven coassembled deoxyribonucleic acid (DNA) bottlebrushes is presented. When a chain is charged, i.e., for polyelectrolytes, there is, in addition to an intrinsic rigidity, an electrostatic stiffening effect, because the electric double layer resists bending. For molecular bottlebrushes, there is an induced contribution due to the grafts. We explore cases beyond the classical phantom main-chain approximation and elaborate molecularly more realistic models where the backbone has a finite volume, which is necessary for treating coassembled bottlebrushes. We find that the way in which the linear charge density or the grafting density is regulated is important. Typically, the stiffening effect is reduced when there is freedom for these quantities to adapt to the curvature stresses. Electrostatically driven coassembled bottlebrushes, however, are relatively stiff because the chains have a low tendency to escape from the compressed regions and the electrostatic binding force is largest in the convex part. For coassembled bottlebrushes, the induced persistence length is a nonmonotonic function of the polymer concentration: For low polymer concentrations, the stiffening grows quadratically with coverage; for semidilute polymer concentrations, the brush chains retract and regain their Gaussian size. When doing so, they lose their induced persistence length contribution. Our results correlate well with observed physical characteristics of electrostatically driven coassembled DNA-bioengineered protein-polymer bottlebrushes.
NASA Astrophysics Data System (ADS)
Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.
2006-11-01
The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys. 124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys. 26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15kcal/mol error for Coulomb and exchange, respectively. Timing results for single Coulomb energy-force calculations for (H2O)n, n =64, 128, 256, 512, and 1024, in periodic boundary conditions with PME and FFP at two different rms force tolerances are also presented. For the small and intermediate auxiliaries, PME shows faster times than FFP at both accuracies and the advantage of PME widens at higher accuracy, while for the largest auxiliary, the opposite occurs.
Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.
2007-01-01
The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys. 124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys. 26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15 kcal/mol error for Coulomb and exchange, respectively. Timing results for single Coulomb energy-force calculations for (H2O)n, n=64, 128, 256, 512, and 1024, in periodic boundary conditions with PME and FFP at two different rms force tolerances are also presented. For the small and intermediate auxiliaries, PME shows faster times than FFP at both accuracies and the advantage of PME widens at higher accuracy, while for the largest auxiliary, the opposite occurs. PMID:17115732
Transferability of polarizable models for ion-water electrostatic interaction
NASA Astrophysics Data System (ADS)
Masia, Marco
2009-06-01
Studies of ion-water systems at condensed phase and at interfaces have pointed out that molecular and ionic polarization plays an important role for many phenomena ranging from hydrogen bond dynamics to water interfaces' structure. Classical and ab initio Molecular Dynamics simulations reveal that induced dipole moments at interfaces (e.g. air-water and water-protein) are usually high, hinting that polarizable models to be implemented in classical force fields should be very accurate in reproducing the electrostatic properties of the system. In this paper the electrostatic properties of three classical polarizable models for ion-water interaction are compared with ab initio results both at gas and condensed phase. For Li+- water and Cl--water dimers the reproducibility of total dipole moments obtained with high level quantum chemical calculations is studied; for the same ions in liquid water, Car-Parrinello Molecular Dynamics simulations are used to compute the time evolution of ionic and molecular dipole moments, which are compared with the classical models. The PD2-H2O model developed by the author and coworkers [Masia et al. J. Chem. Phys. 2004, 121, 7362] together with the gaussian intermolecular damping for ion-water interaction [Masia et al. J. Chem. Phys. 2005, 123, 164505] showed to be the fittest in reproducing the ab initio results from gas to condensed phase, allowing for force field transferability.
Quasi-electrostatic twisted waves in Lorentzian dusty plasmas
NASA Astrophysics Data System (ADS)
Arshad, Kashif; Lazar, M.; Poedts, S.
2018-07-01
The quasi electrostatic modes are investigated in non thermal dusty plasma using non-gyrotropic Kappa distribution in the presence of helical electric field. The Laguerre Gaussian (LG) mode function is employed to decompose the perturbed distribution function and helical electric field. The modified dielectric function is obtained for the dust ion acoustic (DIA) and dust acoustic (DA) twisted modes from the solution of Vlasov-Poisson equation. The threshold conditions for the growing modes is also illustrated.
How ions affect the structure of water.
Hribar, Barbara; Southall, Noel T; Vlachy, Vojko; Dill, Ken A
2002-10-16
We model ion solvation in water. We use the MB model of water, a simple two-dimensional statistical mechanical model in which waters are represented as Lennard-Jones disks having Gaussian hydrogen-bonding arms. We introduce a charge dipole into MB waters. We perform (NPT) Monte Carlo simulations to explore how water molecules are organized around ions and around nonpolar solutes in salt solutions. The model gives good qualitative agreement with experiments, including Jones-Dole viscosity B coefficients, Samoilov and Hirata ion hydration activation energies, ion solvation thermodynamics, and Setschenow coefficients for Hofmeister series ions, which describe the salt concentration dependence of the solubilities of hydrophobic solutes. The two main ideas captured here are (1) that charge densities govern the interactions of ions with water, and (2) that a balance of forces determines water structure: electrostatics (water's dipole interacting with ions) and hydrogen bonding (water interacting with neighboring waters). Small ions (kosmotropes) have high charge densities so they cause strong electrostatic ordering of nearby waters, breaking hydrogen bonds. In contrast, large ions (chaotropes) have low charge densities, and surrounding water molecules are largely hydrogen bonded.
Kinetic Theory of quasi-electrostatic waves in non-gyrotropic plasmas
NASA Astrophysics Data System (ADS)
Arshad, K.; Poedts, S.; Lazar, M.
2017-12-01
The orbital angular momentum (OAM) is a trait of helically phased light or helical (twisted) electric field. Lasers carrying orbital angular momentum (OAM) revolutionized many scientific and technological paradigms like microscopy, imaging and ionospheric radar facility to analyze three dimensional plasma dynamics in ionosphere, ultra-intense twisted laser pulses, twisted gravitational waves and astrophysics. This trend has also been investigated in plasma physics. Laguerre-Gaussian type solutions are predicted for magnetic tornadoes and Alfvénic tornadoes which exhibit spiral, split and ring-like morphologies. The ring shape morphology is ideal to fit the observed solar corona, solar atmosphere and Earth's ionosphere. The orbital angular momentum indicates the mediation of electrostatic and electromagnetic waves in new phenomena like Raman and Brillouin scattering. A few years ago, some new effects have been included in studies of orbital angular momentum in plasma regimes such as wave-particle interaction in the presence of helical electric field. Therefore, kinetic studies are carried out to investigate the Landau damping of the waves and growth of the instabilities in the presence helical electric field carrying orbital angular momentum for the Maxwellian distributed plasmas. Recently, a well suited approach involving a kappa distribution function has been adopted to model the twisted space plasmas. This leads to the development of new theoretical grounds for the study of Lorentzian or kappa distributed twisted Langmuir, ion acoustic, dust ion acoustic and dust acoustic modes. The quasi-electrostatic twisted waves have been studied now for the non-gyrotropic dusty plasmas in the presence of the orbital angular momentum of the helical electric field using Generalized Lorentzian or kappa distribution function. The Laguerre-Gaussian (LG) mode function is employed to decompose the perturbed distribution function and electric field into planar (longitudinal) and non-planar (azimuthal) components. The modified Vlasov and Poisson equations are solved to obtain the dielectric function for quasi-electrostatic twisted modes the non-gyrotropic dusty plasmas. Some numerical and graphical analysis is also illustrated for the better understanding of the twisted non-gyrotropic plasmas.
NASA Astrophysics Data System (ADS)
Cheraghalizadeh, Jafar; Najafi, Morteza N.; Mohammadzadeh, Hossein
2018-05-01
The effect of metallic nano-particles (MNPs) on the electrostatic potential of a disordered 2D dielectric media is considered. The disorder in the media is assumed to be white-noise Coulomb impurities with normal distribution. To realize the correlations between the MNPs we have used the Ising model with an artificial temperature T that controls the number of MNPs as well as their correlations. In the T → 0 limit, one retrieves the Gaussian free field (GFF), and in the finite temperature the problem is equivalent to a GFF in iso-potential islands. The problem is argued to be equivalent to a scale-invariant random surface with some critical exponents which vary with T and correspondingly are correlation-dependent. Two type of observables have been considered: local and global quantities. We have observed that the MNPs soften the random potential and reduce its statistical fluctuations. This softening is observed in the local as well as the geometrical quantities. The correlation function of the electrostatic and its total variance are observed to be logarithmic just like the GFF, i.e. the roughness exponent remains zero for all temperatures, whereas the proportionality constants scale with T - T c . The fractal dimension of iso-potential lines ( D f ), the exponent of the distribution function of the gyration radius ( τ r ), and the loop lengths ( τ l ), and also the exponent of the loop Green function x l change in terms of T - T c in a power-law fashion, with some critical exponents reported in the text. Importantly we have observed that D f ( T) - D f ( T c ) 1/√ ξ( T), in which ξ( T) is the spin correlation length in the Ising model.
Przybytek, Michal; Helgaker, Trygve
2013-08-07
We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems; however, this scaling can be reduced to linear by introducing more effective techniques for recognizing significant three-center overlap distributions.
Last, Isidore; Jortner, Joshua
2004-08-15
In this paper we present a theoretical and computational study of the energetics and temporal dynamics of Coulomb explosion of molecular clusters of deuterium (D2)n/2 (n = 480 - 7.6 x 10(4), cluster radius R0 = 13.1 - 70 A) in ultraintense laser fields (laser peak intensity I = 10(15) - 10(20)W cm(-2)). The energetics of Coulomb explosion was inferred from the dependence of the maximal energy EM and the average energy Eav of the product D+ ions on the laser intensity, the laser pulse shape, the cluster radius, and the laser frequency. Electron dynamics of outer cluster ionization and nuclear dynamics of Coulomb explosion were investigated by molecular dynamics simulations. Several distinct laser pulse shape envelopes, involving a rectangular field, a Gaussian field, and a truncated Gaussian field, were employed to determine the validity range of the cluster vertical ionization (CVI) approximation. The CVI predicts that Eav, EM proportional to R0(2) and that the energy distribution is P(E) proportional to E1/2. For a rectangular laser pulse the CVI conditions are satisfied when complete outer ionization is obtained, with the outer ionization time toi being shorter than both the pulse width and the cluster radius doubling time tau2. By increasing toi, due to the increase of R0 or the decrease of I, we have shown that the deviation of Eav from the corresponding CVI value (Eav(CVI)) is (Eav(CVI) - Eav)/Eav(CVI) approximately (toi/2.91tau2)2. The Gaussian pulses trigger outer ionization induced by adiabatic following of the laser field and of the cluster size, providing a pseudo-CVI behavior at sufficiently large laser fields. The energetics manifest the existence of a finite range of CVI size dependence, with the validity range for the applicability of the CVI being R0 < or = (R0)I, with (R0)I representing an intensity dependent boundary radius. Relating electron dynamics of outer ionization to nuclear dynamics for Coulomb explosion induced by a Gaussian pulse, the boundary radius (R0)I and the corresponding ion average energy (Eav)I were inferred from simulations and described in terms of an electrostatic model. Two independent estimates of (R0)I, which involve the cluster size where the CVI relation breaks down and the cluster size for the attainment of complete outer ionization, are in good agreement with each other, as well as with the electrostatic model for cluster barrier suppression. The relation (Eav)I proportional to (R0)I(2) provides the validity range of the pseudo-CVI domain for the cluster sizes and laser intensities, where the energetics of D+ ions produced by Coulomb explosion of (D)n clusters is optimized. The currently available experimental data [Madison et al., Phys. Plasmas 11, 1 (2004)] for the energetics of Coulomb explosion of (D)n clusters (Eav = 5 - 7 keV at I = 2 x 10(18) W cm(-2)), together with our simulation data, lead to the estimates of R0 = 51 - 60 A, which exceed the experimental estimate of R0 = 45 A. The predicted anisotropy of the D+ ion energies in the Coulomb explosion at I = 10(18) W cm(-2) is in accord with experiment. We also explored the laser frequency dependence of the energetics of Coulomb explosion in the range nu = 0.1 - 2.1 fs(-1) (lambda = 3000 - 140 nm), which can be rationalized in terms of the electrostatic model. (c) 2004 American Institute of Physics.
Electrostatic lens to focus an ion beam to uniform density
Johnson, Cleland H.
1977-01-11
A focusing lens for an ion beam having a gaussian or similar density profile is provided. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to a uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens.
Electrostatic Levitation of Lunar Dust: Preliminary Experimental Observations
NASA Astrophysics Data System (ADS)
Marshall, J.; Davis, S.; Laub, J.
2007-12-01
A lunar dust laboratory has been established in the Space Science Division at NASA Ames to evaluate fundamental electrostatic processes at the Moon's surface. Photoelectric charging, triboelectric charging, and interactions of these processes are investigated for dust-size materials. An electric field simulating the solar- plasma induced E-field of the lunar surface has been created with parallel charged capacitance plates. The field is linear, but field-shaping to create lunar-like exponentially decaying E-fields will be conducted in the near future. Preliminary tests of dust tribocharging have been conducted using a vibrating base plate within the electric field and have produced electrostatic levitation of 1.6 micron diameter silicate particles. We were able to achieve levitation in a modest vacuum environment (1.7 Torr) with the particles charged to approximately 15 percent of the Gaussian limit (defined as 2.64 E-5 C/m-2 for atmospheric air) at a threshold field strength of 2250 V/m. This charging corresponds to only a few hundred (negative) charges per particle; the field strength drops to 375 V/m when gravitationally scaled for the Moon, while dust tribocharging to greater than 100 percent of the Gaussian limit would be possible in the ultra high vacuum environment on the Moon and result in even lower threshold field strengths. We conclude therefore, that anthropogenic disturbance of lunar dust (as a result of NASA's proposed base construction, mining, vehicle motion, etc) could potentially pollute the lunar environment with levitated dust and severely impair scientific experiments requiring a pristine lunar exosphere.
A theoretical study on 3-(4-methoxyphenyl)-1-(pyridin-2-Yl) prop-2-en-1-one
DOE Office of Scientific and Technical Information (OSTI.GOV)
Öner, Nazmiye, E-mail: fizikcinaz@gmail.com; Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Avci, Davut, E-mail: davcir@sakarya.edu.tr
This study reports the geometric parameters, vibration frequencies, {sup 13}C and {sup 1}H NMR chemical shifts of 3-(4-Methoxyphenyl)-1-(pyridin-2-yl) prop-2-en-1-one (MPP) molecule calculated by B3LYP level of density functional theory (DFT) with 6-311++G(d,p) basis set. {sup 13}C and {sup 1}H NMR chemical shifts were calculated within GIAO approach which is one of the most common approaches. Additionally, 3D molecular surfaces such as molecular electrostatic potential (MEP) and electrostatic potential (ESP), were simulated by the same level. As a result, obtained theoretical results were found to be consistent with experimental ones. All of calculations were carried out Gaussian 09 package program.
Statistical properties of Charney-Hasegawa-Mima zonal flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Johan, E-mail: anderson.johan@gmail.com; Botha, G. J. J.
2015-05-15
A theoretical interpretation of numerically generated probability density functions (PDFs) of intermittent plasma transport events in unforced zonal flows is provided within the Charney-Hasegawa-Mima (CHM) model. The governing equation is solved numerically with various prescribed density gradients that are designed to produce different configurations of parallel and anti-parallel streams. Long-lasting vortices form whose flow is governed by the zonal streams. It is found that the numerically generated PDFs can be matched with analytical predictions of PDFs based on the instanton method by removing the autocorrelations from the time series. In many instances, the statistics generated by the CHM dynamics relaxesmore » to Gaussian distributions for both the electrostatic and vorticity perturbations, whereas in areas with strong nonlinear interactions it is found that the PDFs are exponentially distributed.« less
On the origin of the electrostatic potential difference at a liquid-vacuum interface.
Harder, Edward; Roux, Benoît
2008-12-21
The microscopic origin of the interface potential calculated from computer simulations is elucidated by considering a simple model of molecules near an interface. The model posits that molecules are isotropically oriented and their charge density is Gaussian distributed. Molecules that have a charge density that is more negative toward their interior tend to give rise to a negative interface potential relative to the gaseous phase, while charge densities more positive toward their interior give rise to a positive interface potential. The interface potential for the model is compared to the interface potential computed from molecular dynamics simulations of the nonpolar vacuum-methane system and the polar vacuum-water interface system. The computed vacuum-methane interface potential from a molecular dynamics simulation (-220 mV) is captured with quantitative precision by the model. For the vacuum-water interface system, the model predicts a potential of -400 mV compared to -510 mV, calculated from a molecular dynamics simulation. The physical implications of this isotropic contribution to the interface potential is examined using the example of ion solvation in liquid methane.
Predictions for Proteins, RNAs and DNAs with the Gaussian Dielectric Function Using DelPhiPKa
Wang, Lin; Li, Lin; Alexov, Emil
2015-01-01
We developed a Poisson-Boltzmann based approach to calculate the PKa values of protein ionizable residues (Glu, Asp, His, Lys and Arg), nucleotides of RNA and single stranded DNA. Two novel features were utilized: the dielectric properties of the macromolecules and water phase were modeled via the smooth Gaussian-based dielectric function in DelPhi and the corresponding electrostatic energies were calculated without defining the molecular surface. We tested the algorithm by calculating PKa values for more than 300 residues from 32 proteins from the PPD dataset and achieved an overall RMSD of 0.77. Particularly, the RMSD of 0.55 was achieved for surface residues, while the RMSD of 1.1 for buried residues. The approach was also found capable of capturing the large PKa shifts of various single point mutations in staphylococcal nuclease (SNase) from PKa -cooperative dataset, resulting in an overall RMSD of 1.6 for this set of pKa’s. Investigations showed that predictions for most of buried mutant residues of SNase could be improved by using higher dielectric constant values. Furthermore, an option to generate different hydrogen positions also improves PKa predictions for buried carboxyl residues. Finally, the PKa calculations on two RNAs demonstrated the capability of this approach for other types of biomolecules. PMID:26408449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poklonski, N. A., E-mail: poklonski@bsu.by; Vyrko, S. A.; Poklonskaya, O. N.
The electrostatic model of ionization equilibrium between hydrogen-like acceptors and v-band holes in crystalline covalent p-type semiconductors is developed. The range of applicability of the model is the entire insulator side of the insulator–metal (Mott) phase transition. The density of the spatial distribution of acceptor- and donor-impurity atoms and holes over a crystal was assumed to be Poissonian and the fluctuations of their electrostatic potential energy, to be Gaussian. The model takes into account the effect of a decrease in the energy of affinity of an ionized acceptor to a v-band hole due to Debye–Hückel ion screening by both freemore » v-band holes and localized holes hopping over charge states (0) and (–1) of acceptors in the acceptor band. All donors are in charge state (+1) and are not directly involved in the screening, but ensure the total electroneutrality of a sample. In the quasiclassical approximation, analytical expressions for the root-mean-square fluctuation of the v-band hole energy W{sub p} and effective acceptor bandwidth W{sub a} are obtained. In calculating W{sub a}, only fluctuations caused by the Coulomb interaction between two nearest point charges (impurity ions and holes) are taken into account. It is shown that W{sub p} is lower than W{sub a}, since electrostatic fluctuations do not manifest themselves on scales smaller than the average de Broglie wavelength of a free hole. The delocalization threshold for v-band holes is determined as the sum of the diffusive-percolation threshold and exchange energy of holes. The concentration of free v-band holes is calculated at the temperature T{sub j} of the transition from dc band conductivity to conductivity implemented via hopping over acceptor states, which is determined from the virial theorem. The dependence of the differential energy of the thermal ionization of acceptors at the temperature 3T{sub j}/2 on their concentration N and degree of compensation K (the ratio between the donor and acceptor concentrations) is determined. Good quantitative agreement between the results of the calculation and data on the series of neutron transmutation doped p-Ge samples is obtained up to the Mott transition without using any fitting parameters.« less
NASA Astrophysics Data System (ADS)
Schwartz, Craig R.; Thelen, Brian J.; Kenton, Arthur C.
1995-06-01
A statistical parametric multispectral sensor performance model was developed by ERIM to support mine field detection studies, multispectral sensor design/performance trade-off studies, and target detection algorithm development. The model assumes target detection algorithms and their performance models which are based on data assumed to obey multivariate Gaussian probability distribution functions (PDFs). The applicability of these algorithms and performance models can be generalized to data having non-Gaussian PDFs through the use of transforms which convert non-Gaussian data to Gaussian (or near-Gaussian) data. An example of one such transform is the Box-Cox power law transform. In practice, such a transform can be applied to non-Gaussian data prior to the introduction of a detection algorithm that is formally based on the assumption of multivariate Gaussian data. This paper presents an extension of these techniques to the case where the joint multivariate probability density function of the non-Gaussian input data is known, and where the joint estimate of the multivariate Gaussian statistics, under the Box-Cox transform, is desired. The jointly estimated multivariate Gaussian statistics can then be used to predict the performance of a target detection algorithm which has an associated Gaussian performance model.
NASA Astrophysics Data System (ADS)
Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald
2013-06-01
Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.
Yuan, Jing; Yeung, David Ka Wai; Mok, Greta S P; Bhatia, Kunwar S; Wang, Yi-Xiang J; Ahuja, Anil T; King, Ann D
2014-01-01
To technically investigate the non-Gaussian diffusion of head and neck diffusion weighted imaging (DWI) at 3 Tesla and compare advanced non-Gaussian diffusion models, including diffusion kurtosis imaging (DKI), stretched-exponential model (SEM), intravoxel incoherent motion (IVIM) and statistical model in the patients with nasopharyngeal carcinoma (NPC). After ethics approval was granted, 16 patients with NPC were examined using DWI performed at 3T employing an extended b-value range from 0 to 1500 s/mm(2). DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models on primary tumor, metastatic node, spinal cord and muscle. Non-Gaussian parameter maps were generated and compared to apparent diffusion coefficient (ADC) maps in NPC. Diffusion in NPC exhibited non-Gaussian behavior at the extended b-value range. Non-Gaussian models achieved significantly better fitting of DWI signal than the mono-exponential model. Non-Gaussian diffusion coefficients were substantially different from mono-exponential ADC both in magnitude and histogram distribution. Non-Gaussian diffusivity in head and neck tissues and NPC lesions could be assessed by using non-Gaussian diffusion models. Non-Gaussian DWI analysis may reveal additional tissue properties beyond ADC and holds potentials to be used as a complementary tool for NPC characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, J.S.; Grice, M.E.; Politzer, P.
1990-01-01
The electrostatic potential V(r) that the nuclei and electrons of a molecule create in the surrounding space is well established as a guide in the study of molecular reactivity, and particularly, of biological recognition processes. Its rigorous computation is, however, very demanding of computer time for large molecules, such as those of interest in recognition interactions. The authors have accordingly investigated the use of an approximate finite multicenter multipole expansion technique to determine its applicability for producing reliable electrostatic potentials of dibenzo-p-dioxins and related molecules, with significantly reduced amounts of computer time, at distances of interest in recognition studies. Amore » comparative analysis of the potentials of three dibenzo-q-dioxins and a substituted naphthalene molecule computed using both the multipole expansion technique and GAUSSIAN 82 at the STO-5G level has been carried out. Overall they found that regions of negative and positive V(r) at 1.75 A above the molecular plane are very well reproduced by the multipole expansion technique, with up to a twenty-fold improvement in computer time.« less
Multiscale geometric modeling of macromolecules I: Cartesian representation
NASA Astrophysics Data System (ADS)
Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2014-01-01
This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the polarized curvature, for the prediction of protein binding sites.
Polarizable six-point water models from computational and empirical optimization.
Tröster, Philipp; Lorenzen, Konstantin; Tavan, Paul
2014-02-13
Tröster et al. (J. Phys. Chem B 2013, 117, 9486-9500) recently suggested a mixed computational and empirical approach to the optimization of polarizable molecular mechanics (PMM) water models. In the empirical part the parameters of Buckingham potentials are optimized by PMM molecular dynamics (MD) simulations. The computational part applies hybrid calculations, which combine the quantum mechanical description of a H2O molecule by density functional theory (DFT) with a PMM model of its liquid phase environment generated by MD. While the static dipole moments and polarizabilities of the PMM water models are fixed at the experimental gas phase values, the DFT/PMM calculations are employed to optimize the remaining electrostatic properties. These properties cover the width of a Gaussian inducible dipole positioned at the oxygen and the locations of massless negative charge points within the molecule (the positive charges are attached to the hydrogens). The authors considered the cases of one and two negative charges rendering the PMM four- and five-point models TL4P and TL5P. Here we extend their approach to three negative charges, thus suggesting the PMM six-point model TL6P. As compared to the predecessors and to other PMM models, which also exhibit partial charges at fixed positions, TL6P turned out to predict all studied properties of liquid water at p0 = 1 bar and T0 = 300 K with a remarkable accuracy. These properties cover, for instance, the diffusion constant, viscosity, isobaric heat capacity, isothermal compressibility, dielectric constant, density, and the isobaric thermal expansion coefficient. This success concurrently provides a microscopic physical explanation of corresponding shortcomings of previous models. It uniquely assigns the failures of previous models to substantial inaccuracies in the description of the higher electrostatic multipole moments of liquid phase water molecules. Resulting favorable properties concerning the transferability to other temperatures and conditions like the melting of ice are also discussed.
NASA Astrophysics Data System (ADS)
Wen, Xian-Huan; Gómez-Hernández, J. Jaime
1998-03-01
The macrodispersion of an inert solute in a 2-D heterogeneous porous media is estimated numerically in a series of fields of varying heterogeneity. Four different random function (RF) models are used to model log-transmissivity (ln T) spatial variability, and for each of these models, ln T variance is varied from 0.1 to 2.0. The four RF models share the same univariate Gaussian histogram and the same isotropic covariance, but differ from one another in terms of the spatial connectivity patterns at extreme transmissivity values. More specifically, model A is a multivariate Gaussian model for which, by definition, extreme values (both high and low) are spatially uncorrelated. The other three models are non-multi-Gaussian: model B with high connectivity of high extreme values, model C with high connectivity of low extreme values, and model D with high connectivities of both high and low extreme values. Residence time distributions (RTDs) and macrodispersivities (longitudinal and transverse) are computed on ln T fields corresponding to the different RF models, for two different flow directions and at several scales. They are compared with each other, as well as with predicted values based on first-order analytical results. Numerically derived RTDs and macrodispersivities for the multi-Gaussian model are in good agreement with analytically derived values using first-order theories for log-transmissivity variance up to 2.0. The results from the non-multi-Gaussian models differ from each other and deviate largely from the multi-Gaussian results even when ln T variance is small. RTDs in non-multi-Gaussian realizations with high connectivity at high extreme values display earlier breakthrough than in multi-Gaussian realizations, whereas later breakthrough and longer tails are observed for RTDs from non-multi-Gaussian realizations with high connectivity at low extreme values. Longitudinal macrodispersivities in the non-multi-Gaussian realizations are, in general, larger than in the multi-Gaussian ones, while transverse macrodispersivities in the non-multi-Gaussian realizations can be larger or smaller than in the multi-Gaussian ones depending on the type of connectivity at extreme values. Comparing the numerical results for different flow directions, it is confirmed that macrodispersivities in multi-Gaussian realizations with isotropic spatial correlation are not flow direction-dependent. Macrodispersivities in the non-multi-Gaussian realizations, however, are flow direction-dependent although the covariance of ln T is isotropic (the same for all four models). It is important to account for high connectivities at extreme transmissivity values, a likely situation in some geological formations. Some of the discrepancies between first-order-based analytical results and field-scale tracer test data may be due to the existence of highly connected paths of extreme conductivity values.
Yuan, Jing; Yeung, David Ka Wai; Mok, Greta S. P.; Bhatia, Kunwar S.; Wang, Yi-Xiang J.; Ahuja, Anil T.; King, Ann D.
2014-01-01
Purpose To technically investigate the non-Gaussian diffusion of head and neck diffusion weighted imaging (DWI) at 3 Tesla and compare advanced non-Gaussian diffusion models, including diffusion kurtosis imaging (DKI), stretched-exponential model (SEM), intravoxel incoherent motion (IVIM) and statistical model in the patients with nasopharyngeal carcinoma (NPC). Materials and Methods After ethics approval was granted, 16 patients with NPC were examined using DWI performed at 3T employing an extended b-value range from 0 to 1500 s/mm2. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models on primary tumor, metastatic node, spinal cord and muscle. Non-Gaussian parameter maps were generated and compared to apparent diffusion coefficient (ADC) maps in NPC. Results Diffusion in NPC exhibited non-Gaussian behavior at the extended b-value range. Non-Gaussian models achieved significantly better fitting of DWI signal than the mono-exponential model. Non-Gaussian diffusion coefficients were substantially different from mono-exponential ADC both in magnitude and histogram distribution. Conclusion Non-Gaussian diffusivity in head and neck tissues and NPC lesions could be assessed by using non-Gaussian diffusion models. Non-Gaussian DWI analysis may reveal additional tissue properties beyond ADC and holds potentials to be used as a complementary tool for NPC characterization. PMID:24466318
Assessment of parametric uncertainty for groundwater reactive transport modeling,
Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun
2014-01-01
The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood functions, improve model calibration, and reduce predictive uncertainty in other groundwater reactive transport and environmental modeling.
NGMIX: Gaussian mixture models for 2D images
NASA Astrophysics Data System (ADS)
Sheldon, Erin
2015-08-01
NGMIX implements Gaussian mixture models for 2D images. Both the PSF profile and the galaxy are modeled using mixtures of Gaussians. Convolutions are thus performed analytically, resulting in fast model generation as compared to methods that perform the convolution in Fourier space. For the galaxy model, NGMIX supports exponential disks and de Vaucouleurs and Sérsic profiles; these are implemented approximately as a sum of Gaussians using the fits from Hogg & Lang (2013). Additionally, any number of Gaussians can be fit, either completely free or constrained to be cocentric and co-elliptical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, E.; Gupta, S.
This project mainly involves a molecular dynamics and Monte Carlo study of the effect of molecular shape on thermophysical properties of bulk fluids with an emphasis on the aromatic hydrocarbon liquids. In this regard we have studied the modeling, simulation methodologies, and predictive and correlating methods for thermodynamic properties of fluids of nonspherical molecules. In connection with modeling we have studied the use of anisotropic site-site potentials, through a modification of the Gay-Berne Gaussian overlap potential, to successfully model the aromatic rings after adding the necessary electrostatic moments. We have also shown these interaction sites should be located at themore » geometric centers of the chemical groups. In connection with predictive methods, we have shown two perturbation type theories to work well for fluids modeled using one-center anisotropic potentials and the possibility exists for extending these to anisotropic site-site models. In connection with correlation methods, we have studied, through simulations, the effect of molecular shape on the attraction term in the generalized van der Waals equation of state for fluids of nonspherical molecules and proposed a possible form which is to be studied further. We have successfully studied the vector and parallel processing aspects of molecular simulations for fluids of nonspherical molecules.« less
Investigation of non-Gaussian effects in the Brazilian option market
NASA Astrophysics Data System (ADS)
Sosa-Correa, William O.; Ramos, Antônio M. T.; Vasconcelos, Giovani L.
2018-04-01
An empirical study of the Brazilian option market is presented in light of three option pricing models, namely the Black-Scholes model, the exponential model, and a model based on a power law distribution, the so-called q-Gaussian distribution or Tsallis distribution. It is found that the q-Gaussian model performs better than the Black-Scholes model in about one third of the option chains analyzed. But among these cases, the exponential model performs better than the q-Gaussian model in 75% of the time. The superiority of the exponential model over the q-Gaussian model is particularly impressive for options close to the expiration date, where its success rate rises above ninety percent.
pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa.
Wang, Lin; Li, Lin; Alexov, Emil
2015-12-01
We developed a Poisson-Boltzmann based approach to calculate the pKa values of protein ionizable residues (Glu, Asp, His, Lys and Arg), nucleotides of RNA and single stranded DNA. Two novel features were utilized: the dielectric properties of the macromolecules and water phase were modeled via the smooth Gaussian-based dielectric function in DelPhi and the corresponding electrostatic energies were calculated without defining the molecular surface. We tested the algorithm by calculating pKa values for more than 300 residues from 32 proteins from the PPD dataset and achieved an overall RMSD of 0.77. Particularly, the RMSD of 0.55 was achieved for surface residues, while the RMSD of 1.1 for buried residues. The approach was also found capable of capturing the large pKa shifts of various single point mutations in staphylococcal nuclease (SNase) from pKa-cooperative dataset, resulting in an overall RMSD of 1.6 for this set of pKa's. Investigations showed that predictions for most of buried mutant residues of SNase could be improved by using higher dielectric constant values. Furthermore, an option to generate different hydrogen positions also improves pKa predictions for buried carboxyl residues. Finally, the pKa calculations on two RNAs demonstrated the capability of this approach for other types of biomolecules. © 2015 Wiley Periodicals, Inc.
Development and application of coarse-grained models for lipids
NASA Astrophysics Data System (ADS)
Cui, Qiang
2013-03-01
I'll discuss a number of topics that represent our efforts in developing reliable molecular models for describing chemical and physical processes involving biomembranes. This is an exciting yet challenging research area because of the multiple length and time scales that are present in the relevant problems. Accordingly, we attempt to (1) understand the value and limitation of popular coarse-grained (CG) models for lipid membranes with either a particle or continuum representation; (2) develop new CG models that are appropriate for the particular problem of interest. As specific examples, I'll discuss (1) a comparison of atomistic, MARTINI (a particle based CG model) and continuum descriptions of a membrane fusion pore; (2) the development of a modified MARTINI model (BMW-MARTINI) that features a reliable description of membrane/water interfacial electrostatics and its application to cell-penetration peptides and membrane-bending proteins. Motivated specifically by the recent studies of Wong and co-workers, we compare the self-assembly behaviors of lipids with cationic peptides that include either Arg residues or a combination of Lys and hydrophobic residues; in particular, we attempt to reveal factors that stabilize the cubic ``double diamond'' Pn3m phase over the inverted hexagonal HII phase. For example, to explicitly test the importance of the bidentate hydrogen-bonding capability of Arg to the stabilization of negative Gaussian curvature, we also compare results using variants of the BMW-MARTINI model that treat the side chain of Arg with different levels of details. Collectively, the results suggest that both the bidentate feature of Arg and the overall electrostatic properties of cationic peptides are important to the self-assembly behavior of these peptides with lipids. The results are expected to have general implications to the mechanism of peptides and proteins that stimulate pore formation in biomembranes. Work in collaboration with Zhe Wu, Leili Zhang and Arun Yethiraj
A non-gaussian model of continuous atmospheric turbulence for use in aircraft design
NASA Technical Reports Server (NTRS)
Reeves, P. M.; Joppa, R. G.; Ganzer, V. M.
1976-01-01
A non-Gaussian model of atmospheric turbulence is presented and analyzed. The model is restricted to the regions of the atmosphere where the turbulence is steady or continuous, and the assumptions of homogeneity and stationarity are justified. Also spatial distribution of turbulence is neglected, so the model consists of three independent, stationary stochastic processes which represent the vertical, lateral, and longitudinal gust components. The non-Gaussian and Gaussian models are compared with experimental data, and it is shown that the Gaussian model underestimates the number of high velocity gusts which occur in the atmosphere, while the non-Gaussian model can be adjusted to match the observed high velocity gusts more satisfactorily. Application of the proposed model to aircraft response is investigated, with particular attention to the response power spectral density, the probability distribution, and the level crossing frequency. A numerical example is presented which illustrates the application of the non-Gaussian model to the study of an aircraft autopilot system. Listings and sample results of a number of computer programs used in working with the model are included.
Truncated Gaussians as tolerance sets
NASA Technical Reports Server (NTRS)
Cozman, Fabio; Krotkov, Eric
1994-01-01
This work focuses on the use of truncated Gaussian distributions as models for bounded data measurements that are constrained to appear between fixed limits. The authors prove that the truncated Gaussian can be viewed as a maximum entropy distribution for truncated bounded data, when mean and covariance are given. The characteristic function for the truncated Gaussian is presented; from this, algorithms are derived for calculation of mean, variance, summation, application of Bayes rule and filtering with truncated Gaussians. As an example of the power of their methods, a derivation of the disparity constraint (used in computer vision) from their models is described. The authors' approach complements results in Statistics, but their proposal is not only to use the truncated Gaussian as a model for selected data; they propose to model measurements as fundamentally in terms of truncated Gaussians.
The area of isodensity contours in cosmological models and galaxy surveys
NASA Technical Reports Server (NTRS)
Ryden, Barbara S.; Melott, Adrian L.; Craig, David A.; Gott, J. Richard, III; Weinberg, David H.
1989-01-01
The contour crossing statistic, defined as the mean number of times per unit length that a straight line drawn through the field crosses a given contour, is applied to model density fields and to smoothed samples of galaxies. Models in which the matter is in a bubble structure, in a filamentary net, or in clusters can be distinguished from Gaussian density distributions. The shape of the contour crossing curve in the initially Gaussian fields considered remains Gaussian after gravitational evolution and biasing, as long as the smoothing length is longer than the mass correlation length. With a smoothing length of 5/h Mpc, models containing cosmic strings are indistinguishable from Gaussian distributions. Cosmic explosion models are significantly non-Gaussian, having a bubbly structure. Samples from the CfA survey and the Haynes and Giovanelli (1986) survey are more strongly non-Gaussian at a smoothing length of 6/h Mpc than any of the models examined. At a smoothing length of 12/h Mpc, the Haynes and Giovanelli sample appears Gaussian.
Connections between Graphical Gaussian Models and Factor Analysis
ERIC Educational Resources Information Center
Salgueiro, M. Fatima; Smith, Peter W. F.; McDonald, John W.
2010-01-01
Connections between graphical Gaussian models and classical single-factor models are obtained by parameterizing the single-factor model as a graphical Gaussian model. Models are represented by independence graphs, and associations between each manifest variable and the latent factor are measured by factor partial correlations. Power calculations…
A Theoretical Study on N'-[(Z)-(4-Methylphenyl)Methylidene]-4-Nitrobenzohydrazide (NMPMN)
NASA Astrophysics Data System (ADS)
Okur, Muhammet; Albayrak, Nazmiye; Tamer, Ömer; Avcı, Davut; Atalay, Yusuf
2018-05-01
Quantum mechanical calculations of ground state energy, vibration wavenumbers, and electronic absorption wavelengths of N'-[(Z)-(4-methylphenyl)methylidene]-4-nitrobenzohydrazide with C15H13N3O3 empirical formula was performed by using Gaussian 09 program. Becke's three-parameter exchange functional in conjunction with the Lee-Yang-Parr correlation functional and Heyd-Scuseria-Ernzerhof functional levels of density functional theory (DFT) with the 6-311++G(d,p) basis set were used in the performing of above mentioned calculations. The highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO) energies have been also calculated at the same levels. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) behavior of the title molecule has been examined by the determining of electric dipole moment (μ), polarizability (α), and static first-order hyperpolarizability (β). Finally, molecular electrostatic potential (MEP) surface as well as Mulliken and NBO atomic charges were calculated by using Gaussian 09 program.
Comparisons of non-Gaussian statistical models in DNA methylation analysis.
Ma, Zhanyu; Teschendorff, Andrew E; Yu, Hong; Taghia, Jalil; Guo, Jun
2014-06-16
As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance.
Comparisons of Non-Gaussian Statistical Models in DNA Methylation Analysis
Ma, Zhanyu; Teschendorff, Andrew E.; Yu, Hong; Taghia, Jalil; Guo, Jun
2014-01-01
As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance. PMID:24937687
NASA Astrophysics Data System (ADS)
Yuan, Quan; Ma, Guangcai; Xu, Ting; Serge, Bakire; Yu, Haiying; Chen, Jianrong; Lin, Hongjun
2016-10-01
Poly-/perfluoroalkyl substances (PFASs) are a class of synthetic fluorinated organic substances that raise increasing concern because of their environmental persistence, bioaccumulation and widespread presence in various environment media and organisms. PFASs can be released into the atmosphere through both direct and indirect sources, and the gas/particle partition coefficient (KP) is an important parameter that helps us to understand their atmospheric behavior. In this study, we developed a temperature-dependent predictive model for log KP of PFASs and analyzed the molecular mechanism that governs their partitioning equilibrium between gas phase and particle phase. All theoretical computation was carried out at B3LYP/6-31G (d, p) level based on neutral molecular structures by Gaussian 09 program package. The regression model has a good statistical performance and robustness. The application domain has also been defined according to OECD guidance. The mechanism analysis shows that electrostatic interaction and dispersion interaction play the most important role in the partitioning equilibrium. The developed model can be used to predict log KP values of neutral fluorotelomer alcohols and perfluor sulfonamides/sulfonamidoethanols with different substitutions at nitrogen atoms, providing basic data for their ecological risk assessment.
Two-dimensional computer simulation of EMVJ and grating solar cells under AMO illumination
NASA Technical Reports Server (NTRS)
Gray, J. L.; Schwartz, R. J.
1984-01-01
A computer program, SCAP2D (Solar Cell Analysis Program in 2-Dimensions), is used to evaluate the Etched Multiple Vertical Junction (EMVJ) and grating solar cells. The aim is to demonstrate how SCAP2D can be used to evaluate cell designs. The cell designs studied are by no means optimal designs. The SCAP2D program solves the three coupled, nonlinear partial differential equations, Poisson's Equation and the hole and electron continuity equations, simultaneously in two-dimensions using finite differences to discretize the equations and Newton's Method to linearize them. The variables solved for are the electrostatic potential and the hole and electron concentrations. Each linear system of equations is solved directly by Gaussian Elimination. Convergence of the Newton Iteration is assumed when the largest correction to the electrostatic potential or hole or electron quasi-potential is less than some predetermined error. A typical problem involves 2000 nodes with a Jacobi matrix of order 6000 and a bandwidth of 243.
Electrostatic potential map modelling with COSY Infinity
NASA Astrophysics Data System (ADS)
Maloney, J. A.; Baartman, R.; Planche, T.; Saminathan, S.
2016-06-01
COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY's existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.
Xu, Junzhong; Li, Ke; Smith, R. Adam; Waterton, John C.; Zhao, Ping; Ding, Zhaohua; Does, Mark D.; Manning, H. Charles; Gore, John C.
2016-01-01
Background Diffusion-weighted MRI (DWI) signal attenuation is often not mono-exponential (i.e. non-Gaussian diffusion) with stronger diffusion weighting. Several non-Gaussian diffusion models have been developed and may provide new information or higher sensitivity compared with the conventional apparent diffusion coefficient (ADC) method. However the relative merits of these models to detect tumor therapeutic response is not fully clear. Methods Conventional ADC, and three widely-used non-Gaussian models, (bi-exponential, stretched exponential, and statistical model), were implemented and compared for assessing SW620 human colon cancer xenografts responding to barasertib, an agent known to induce apoptosis via polyploidy. Bayesian Information Criterion (BIC) was used for model selection among all three non-Gaussian models. Results All of tumor volume, histology, conventional ADC, and three non-Gaussian DWI models could show significant differences between control and treatment groups after four days of treatment. However, only the non-Gaussian models detected significant changes after two days of treatment. For any treatment or control group, over 65.7% of tumor voxels indicate the bi-exponential model is strongly or very strongly preferred. Conclusion Non-Gaussian DWI model-derived biomarkers are capable of detecting tumor earlier chemotherapeutic response of tumors compared with conventional ADC and tumor volume. The bi-exponential model provides better fitting compared with statistical and stretched exponential models for the tumor and treatment models used in the current work. PMID:27919785
Neves-Petersen, Maria Teresa; Petersen, Steffen B
2003-01-01
The molecular understanding of the initial interaction between a protein and, e.g., its substrate, a surface or an inhibitor is essentially an understanding of the role of electrostatics in intermolecular interactions. When studying biomolecules it is becoming increasingly evident that electrostatic interactions play a role in folding, conformational stability, enzyme activity and binding energies as well as in protein-protein interactions. In this chapter we present the key basic equations of electrostatics necessary to derive the equations used to model electrostatic interactions in biomolecules. We will also address how to solve such equations. This chapter is divided into two major sections. In the first part we will review the basic Maxwell equations of electrostatics equations called the Laws of Electrostatics that combined will result in the Poisson equation. This equation is the starting point of the Poisson-Boltzmann (PB) equation used to model electrostatic interactions in biomolecules. Concepts as electric field lines, equipotential surfaces, electrostatic energy and when can electrostatics be applied to study interactions between charges will be addressed. In the second part we will arrive at the electrostatic equations for dielectric media such as a protein. We will address the theory of dielectrics and arrive at the Poisson equation for dielectric media and at the PB equation, the main equation used to model electrostatic interactions in biomolecules (e.g., proteins, DNA). It will be shown how to compute forces and potentials in a dielectric medium. In order to solve the PB equation we will present the continuum electrostatic models, namely the Tanford-Kirkwood and the modified Tandord-Kirkwood methods. Priority will be given to finding the protonation state of proteins prior to solving the PB equation. We also present some methods that can be used to map and study the electrostatic potential distribution on the molecular surface of proteins. The combination of graphical visualisation of the electrostatic fields combined with knowledge about the location of key residues on the protein surface allows us to envision atomic models for enzyme function. Finally, we exemplify the use of some of these methods on the enzymes of the lipase family.
Marenich, Aleksandr V; Cramer, Christopher J; Truhlar, Donald G
2009-05-07
We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the "D" stands for "density" to denote that the full solute electron density is used without defining partial atomic charges. "Continuum" denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute-solvent boundary. SMD is a universal solvation model, where "universal" denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM). The cavities for the bulk electrostatic calculation are defined by superpositions of nuclear-centered spheres. The second component is called the cavity-dispersion-solvent-structure term and is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The SMD model has been parametrized with a training set of 2821 solvation data including 112 aqueous ionic solvation free energies, 220 solvation free energies for 166 ions in acetonitrile, methanol, and dimethyl sulfoxide, 2346 solvation free energies for 318 neutral solutes in 91 solvents (90 nonaqueous organic solvents and water), and 143 transfer free energies for 93 neutral solutes between water and 15 organic solvents. The elements present in the solutes are H, C, N, O, F, Si, P, S, Cl, and Br. The SMD model employs a single set of parameters (intrinsic atomic Coulomb radii and atomic surface tension coefficients) optimized over six electronic structure methods: M05-2X/MIDI!6D, M05-2X/6-31G, M05-2X/6-31+G, M05-2X/cc-pVTZ, B3LYP/6-31G, and HF/6-31G. Although the SMD model has been parametrized using the IEF-PCM protocol for bulk electrostatics, it may also be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space. This includes, for example, the conductor-like screening algorithm. With the 6-31G basis set, the SMD model achieves mean unsigned errors of 0.6-1.0 kcal/mol in the solvation free energies of tested neutrals and mean unsigned errors of 4 kcal/mol on average for ions with either Gaussian03 or GAMESS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marenich, Aleksandr; Cramer, Christopher J; Truhlar, Donald G
2009-04-30
We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the “D” stands for “density” to denote that the full solute electron density is used without defining partial atomic charges. “Continuum” denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute-solvent boundary. SMD is a universal solvation model, where “universal” denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which amore » few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM). The cavities for the bulk electrostatic calculation are defined by superpositions of nuclear-centered spheres. The second component is called the cavity-dispersion-solvent-structure term and is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The SMD model has been parametrized with a training set of 2821 solvation data including 112 aqueous ionic solvation free energies, 220 solvation free energies for 166 ions in acetonitrile, methanol, and dimethyl sulfoxide, 2346 solvation free energies for 318 neutral solutes in 91 solvents (90 nonaqueous organic solvents and water), and 143 transfer free energies for 93 neutral solutes between water and 15 organic solvents. The elements present in the solutes are H, C, N, O, F, Si, P, S, Cl, and Br. The SMD model employs a single set of parameters (intrinsic atomic Coulomb radii and atomic surface tension coefficients) optimized over six electronic structure methods: M05-2X/MIDI!6D, M05-2X/6-31G*, M05-2X/6-31+G**, M05-2X/cc-pVTZ, B3LYP/6-31G*, and HF/6-31G*. Although the SMD model has been parametrized using the IEF-PCM protocol for bulk electrostatics, it may also be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space. This includes, for example, the conductor-like screening algorithm. With the 6-31G* basis set, the SMD model achieves mean unsigned errors of 0.6-1.0 kcal/mol in the solvation free energies of tested neutrals and mean unsigned errors of 4 kcal/mol on average for ions with either Gaussian03 or GAMESS.« less
Non-Gaussian Analysis of Turbulent Boundary Layer Fluctuating Pressure on Aircraft Skin Panels
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Steinwolf, Alexander
2005-01-01
The purpose of the study is to investigate the probability density function (PDF) of turbulent boundary layer fluctuating pressures measured on the outer sidewall of a supersonic transport aircraft and to approximate these PDFs by analytical models. Experimental flight results show that the fluctuating pressure PDFs differ from the Gaussian distribution even for standard smooth surface conditions. The PDF tails are wider and longer than those of the Gaussian model. For pressure fluctuations in front of forward-facing step discontinuities, deviations from the Gaussian model are more significant and the PDFs become asymmetrical. There is a certain spatial pattern of the skewness and kurtosis behavior depending on the distance upstream from the step. All characteristics related to non-Gaussian behavior are highly dependent upon the distance from the step and the step height, less dependent on aircraft speed, and not dependent on the fuselage location. A Hermite polynomial transform model and a piecewise-Gaussian model fit the flight data well both for the smooth and stepped conditions. The piecewise-Gaussian approximation can be additionally regarded for convenience in usage after the model is constructed.
Temporal self-splitting of optical pulses
NASA Astrophysics Data System (ADS)
Ding, Chaoliang; Koivurova, Matias; Turunen, Jari; Pan, Liuzhan
2018-05-01
We present mathematical models for temporally and spectrally partially coherent pulse trains with Laguerre-Gaussian and Hermite-Gaussian Schell-model statistics as extensions of the standard Gaussian Schell model for pulse trains. We derive propagation formulas of both classes of pulsed fields in linearly dispersive media and in temporal optical systems. It is found that, in general, both types of fields exhibit time-domain self-splitting upon propagation. The Laguerre-Gaussian model leads to multiply peaked pulses, while the Hermite-Gaussian model leads to doubly peaked pulses, in the temporal far field (in dispersive media) or at the Fourier plane of a temporal system. In both model fields the character of the self-splitting phenomenon depends both on the degree of temporal and spectral coherence and on the power spectrum of the field.
Linear velocity fields in non-Gaussian models for large-scale structure
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.
1992-01-01
Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.
NASA Astrophysics Data System (ADS)
Guo, Yongfeng; Shen, Yajun; Tan, Jianguo
2016-09-01
The phenomenon of stochastic resonance (SR) in a piecewise nonlinear model driven by a periodic signal and correlated noises for the cases of a multiplicative non-Gaussian noise and an additive Gaussian white noise is investigated. Applying the path integral approach, the unified colored noise approximation and the two-state model theory, the analytical expression of the signal-to-noise ratio (SNR) is derived. It is found that conventional stochastic resonance exists in this system. From numerical computations we obtain that: (i) As a function of the non-Gaussian noise intensity, the SNR is increased when the non-Gaussian noise deviation parameter q is increased. (ii) As a function of the Gaussian noise intensity, the SNR is decreased when q is increased. This demonstrates that the effect of the non-Gaussian noise on SNR is different from that of the Gaussian noise in this system. Moreover, we further discuss the effect of the correlation time of the non-Gaussian noise, cross-correlation strength, the amplitude and frequency of the periodic signal on SR.
Skewness in large-scale structure and non-Gaussian initial conditions
NASA Technical Reports Server (NTRS)
Fry, J. N.; Scherrer, Robert J.
1994-01-01
We compute the skewness of the galaxy distribution arising from the nonlinear evolution of arbitrary non-Gaussian intial conditions to second order in perturbation theory including the effects of nonlinear biasing. The result contains a term identical to that for a Gaussian initial distribution plus terms which depend on the skewness and kurtosis of the initial conditions. The results are model dependent; we present calculations for several toy models. At late times, the leading contribution from the initial skewness decays away relative to the other terms and becomes increasingly unimportant, but the contribution from initial kurtosis, previously overlooked, has the same time dependence as the Gaussian terms. Observations of a linear dependence of the normalized skewness on the rms density fluctuation therefore do not necessarily rule out initially non-Gaussian models. We also show that with non-Gaussian initial conditions the first correction to linear theory for the mean square density fluctuation is larger than for Gaussian models.
Arbitrage with fractional Gaussian processes
NASA Astrophysics Data System (ADS)
Zhang, Xili; Xiao, Weilin
2017-04-01
While the arbitrage opportunity in the Black-Scholes model driven by fractional Brownian motion has a long history, the arbitrage strategy in the Black-Scholes model driven by general fractional Gaussian processes is in its infancy. The development of stochastic calculus with respect to fractional Gaussian processes allowed us to study such models. In this paper, following the idea of Shiryaev (1998), an arbitrage strategy is constructed for the Black-Scholes model driven by fractional Gaussian processes, when the stochastic integral is interpreted in the Riemann-Stieltjes sense. Arbitrage opportunities in some fractional Gaussian processes, including fractional Brownian motion, sub-fractional Brownian motion, bi-fractional Brownian motion, weighted-fractional Brownian motion and tempered fractional Brownian motion, are also investigated.
How Many Separable Sources? Model Selection In Independent Components Analysis
Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen
2015-01-01
Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher's iris data set and Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian. PMID:25811988
Liu, Chengyu; Zheng, Dingchang; Zhao, Lina; Liu, Changchun
2014-01-01
It has been reported that Gaussian functions could accurately and reliably model both carotid and radial artery pressure waveforms (CAPW and RAPW). However, the physiological relevance of the characteristic features from the modeled Gaussian functions has been little investigated. This study thus aimed to determine characteristic features from the Gaussian functions and to make comparisons of them between normal subjects and heart failure patients. Fifty-six normal subjects and 51 patients with heart failure were studied with the CAPW and RAPW signals recorded simultaneously. The two signals were normalized first and then modeled by three positive Gaussian functions, with their peak amplitude, peak time, and half-width determined. Comparisons of these features were finally made between the two groups. Results indicated that the peak amplitude of the first Gaussian curve was significantly decreased in heart failure patients compared with normal subjects (P<0.001). Significantly increased peak amplitude of the second Gaussian curves (P<0.001) and significantly shortened peak times of the second and third Gaussian curves (both P<0.001) were also presented in heart failure patients. These results were true for both CAPW and RAPW signals, indicating the clinical significance of the Gaussian modeling, which should provide essential tools for further understanding the underlying physiological mechanisms of the artery pressure waveform.
MSEE: Stochastic Cognitive Linguistic Behavior Models for Semantic Sensing
2013-09-01
recognition, a Gaussian Process Dynamic Model with Social Network Analysis (GPDM-SNA) for a small human group action recognition, an extended GPDM-SNA...44 3.2. Small Human Group Activity Modeling Based on Gaussian Process Dynamic Model and Social Network Analysis (SN-GPDM...51 Approved for public release; distribution unlimited. 3 3.2.3. Gaussian Process Dynamical Model and
Salt dependence of compression normal forces of quenched polyelectrolyte brushes
NASA Astrophysics Data System (ADS)
Hernandez-Zapata, Ernesto; Tamashiro, Mario N.; Pincus, Philip A.
2001-03-01
We obtained mean-field expressions for the compression normal forces between two identical opposing quenched polyelectrolyte brushes in the presence of monovalent salt. The brush elasticity is modeled using the entropy of ideal Gaussian chains, while the entropy of the microions and the electrostatic contribution to the grand potential is obtained by solving the non-linear Poisson-Boltzmann equation for the system in contact with a salt reservoir. For the polyelectrolyte brush we considered both a uniformly charged slab as well as an inhomogeneous charge profile obtained using a self-consistent field theory. Using the Derjaguin approximation, we related the planar-geometry results to the realistic two-crossed cylinders experimental set up. Theoretical predictions are compared to experimental measurements(Marc Balastre's abstract, APS March 2001 Meeting.) of the salt dependence of the compression normal forces between two quenched polyelectrolyte brushes formed by the adsorption of diblock copolymers poly(tert-butyl styrene)-sodium poly(styrene sulfonate) [PtBs/NaPSS] onto an octadecyltriethoxysilane (OTE) hydrophobically modified mica, as well as onto bare mica.
Effects of scale-dependent non-Gaussianity on cosmological structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
LoVerde, Marilena; Miller, Amber; Shandera, Sarah
2008-04-15
The detection of primordial non-Gaussianity could provide a powerful means to test various inflationary scenarios. Although scale-invariant non-Gaussianity (often described by the f{sub NL} formalism) is currently best constrained by the CMB, single-field models with changing sound speed can have strongly scale-dependent non-Gaussianity. Such models could evade the CMB constraints but still have important effects at scales responsible for the formation of cosmological objects such as clusters and galaxies. We compute the effect of scale-dependent primordial non-Gaussianity on cluster number counts as a function of redshift, using a simple ansatz to model scale-dependent features. We forecast constraints on these modelsmore » achievable with forthcoming datasets. We also examine consequences for the galaxy bispectrum. Our results are relevant for the Dirac-Born-Infeld model of brane inflation, where the scale dependence of the non-Gaussianity is directly related to the geometry of the extra dimensions.« less
NASA Technical Reports Server (NTRS)
Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.
1995-01-01
We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.
Zhang, Guangwen; Wang, Shuangshuang; Wen, Didi; Zhang, Jing; Wei, Xiaocheng; Ma, Wanling; Zhao, Weiwei; Wang, Mian; Wu, Guosheng; Zhang, Jinsong
2016-12-09
Water molecular diffusion in vivo tissue is much more complicated. We aimed to compare non-Gaussian diffusion models of diffusion-weighted imaging (DWI) including intra-voxel incoherent motion (IVIM), stretched-exponential model (SEM) and Gaussian diffusion model at 3.0 T MRI in patients with rectal cancer, and to determine the optimal model for investigating the water diffusion properties and characterization of rectal carcinoma. Fifty-nine consecutive patients with pathologically confirmed rectal adenocarcinoma underwent DWI with 16 b-values at a 3.0 T MRI system. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models (IVIM-mono, IVIM-bi and SEM) on primary tumor and adjacent normal rectal tissue. Parameters of standard apparent diffusion coefficient (ADC), slow- and fast-ADC, fraction of fast ADC (f), α value and distributed diffusion coefficient (DDC) were generated and compared between the tumor and normal tissues. The SEM exhibited the best fitting results of actual DWI signal in rectal cancer and the normal rectal wall (R 2 = 0.998, 0.999 respectively). The DDC achieved relatively high area under the curve (AUC = 0.980) in differentiating tumor from normal rectal wall. Non-Gaussian diffusion models could assess tissue properties more accurately than the ADC derived Gaussian diffusion model. SEM may be used as a potential optimal model for characterization of rectal cancer.
Evaluation of non-Gaussian diffusion in cardiac MRI.
McClymont, Darryl; Teh, Irvin; Carruth, Eric; Omens, Jeffrey; McCulloch, Andrew; Whittington, Hannah J; Kohl, Peter; Grau, Vicente; Schneider, Jürgen E
2017-09-01
The diffusion tensor model assumes Gaussian diffusion and is widely applied in cardiac diffusion MRI. However, diffusion in biological tissue deviates from a Gaussian profile as a result of hindrance and restriction from cell and tissue microstructure, and may be quantified better by non-Gaussian modeling. The aim of this study was to investigate non-Gaussian diffusion in healthy and hypertrophic hearts. Thirteen rat hearts (five healthy, four sham, four hypertrophic) were imaged ex vivo. Diffusion-weighted images were acquired at b-values up to 10,000 s/mm 2 . Models of diffusion were fit to the data and ranked based on the Akaike information criterion. The diffusion tensor was ranked best at b-values up to 2000 s/mm 2 but reflected the signal poorly in the high b-value regime, in which the best model was a non-Gaussian "beta distribution" model. Although there was considerable overlap in apparent diffusivities between the healthy, sham, and hypertrophic hearts, diffusion kurtosis and skewness in the hypertrophic hearts were more than 20% higher in the sheetlet and sheetlet-normal directions. Non-Gaussian diffusion models have a higher sensitivity for the detection of hypertrophy compared with the Gaussian model. In particular, diffusion kurtosis may serve as a useful biomarker for characterization of disease and remodeling in the heart. Magn Reson Med 78:1174-1186, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Hamby, D M
2002-01-01
Reconstructed meteorological data are often used in some form of long-term wind trajectory models for estimating the historical impacts of atmospheric emissions. Meteorological data for the straight-line Gaussian plume model are put into a joint frequency distribution, a three-dimensional array describing atmospheric wind direction, speed, and stability. Methods using the Gaussian model and joint frequency distribution inputs provide reasonable estimates of downwind concentration and have been shown to be accurate to within a factor of four. We have used multiple joint frequency distributions and probabilistic techniques to assess the Gaussian plume model and determine concentration-estimate uncertainty and model sensitivity. We examine the straight-line Gaussian model while calculating both sector-averaged and annual-averaged relative concentrations at various downwind distances. The sector-average concentration model was found to be most sensitive to wind speed, followed by horizontal dispersion (sigmaZ), the importance of which increases as stability increases. The Gaussian model is not sensitive to stack height uncertainty. Precision of the frequency data appears to be most important to meteorological inputs when calculations are made for near-field receptors, increasing as stack height increases.
Electrostatics of proteins in dielectric solvent continua. I. Newton's third law marries qE forces
NASA Astrophysics Data System (ADS)
Stork, Martina; Tavan, Paul
2007-04-01
The authors reformulate and revise an electrostatic theory treating proteins surrounded by dielectric solvent continua [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)] to make the resulting reaction field (RF) forces compatible with Newton's third law. Such a compatibility is required for their use in molecular dynamics (MD) simulations, in which the proteins are modeled by all-atom molecular mechanics force fields. According to the original theory the RF forces, which are due to the electric field generated by the solvent polarization and act on the partial charges of a protein, i.e., the so-called qE forces, can be quite accurately computed from Gaussian RF dipoles localized at the protein atoms. Using a slightly different approximation scheme also the RF energies of given protein configurations are obtained. However, because the qE forces do not account for the dielectric boundary pressure exerted by the solvent continuum on the protein, they do not obey the principle that actio equals reactio as required by Newton's third law. Therefore, their use in MD simulations is severely hampered. An analysis of the original theory has led the authors now to a reformulation removing the main difficulties. By considering the RF energy, which represents the dominant electrostatic contribution to the free energy of solvation for a given protein configuration, they show that its negative configurational gradient yields mean RF forces obeying the reactio principle. Because the evaluation of these mean forces is computationally much more demanding than that of the qE forces, they derive a suggestion how the qE forces can be modified to obey Newton's third law. Various properties of the thus established theory, particularly issues of accuracy and of computational efficiency, are discussed. A sample application to a MD simulation of a peptide in solution is described in the following paper [M. Stork and P. Tavan, J. Chem. Phys., 126, 165106 (2007).
Optimisation of dispersion parameters of Gaussian plume model for CO₂ dispersion.
Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip
2015-11-01
The carbon capture and storage (CCS) and enhanced oil recovery (EOR) projects entail the possibility of accidental release of carbon dioxide (CO2) into the atmosphere. To quantify the spread of CO2 following such release, the 'Gaussian' dispersion model is often used to estimate the resulting CO2 concentration levels in the surroundings. The Gaussian model enables quick estimates of the concentration levels. However, the traditionally recommended values of the 'dispersion parameters' in the Gaussian model may not be directly applicable to CO2 dispersion. This paper presents an optimisation technique to obtain the dispersion parameters in order to achieve a quick estimation of CO2 concentration levels in the atmosphere following CO2 blowouts. The optimised dispersion parameters enable the Gaussian model to produce quick estimates of CO2 concentration levels, precluding the necessity to set up and run much more complicated models. Computational fluid dynamics (CFD) models were employed to produce reference CO2 dispersion profiles in various atmospheric stability classes (ASC), different 'source strengths' and degrees of ground roughness. The performance of the CFD models was validated against the 'Kit Fox' field measurements, involving dispersion over a flat horizontal terrain, both with low and high roughness regions. An optimisation model employing a genetic algorithm (GA) to determine the best dispersion parameters in the Gaussian plume model was set up. Optimum values of the dispersion parameters for different ASCs that can be used in the Gaussian plume model for predicting CO2 dispersion were obtained.
'A device for being able to book P&L': the organizational embedding of the Gaussian copula.
MacKenzie, Donald; Spears, Taylor
2014-06-01
This article, the second of two articles on the Gaussian copula family of models, discusses the attitude of 'quants' (modellers) to these models, showing that contrary to some accounts, those quants were not 'model dopes' who uncritically accepted the outputs of the models. Although sometimes highly critical of Gaussian copulas - even 'othering' them as not really being models --they nevertheless nearly all kept using them, an outcome we explain with reference to the embedding of these models in inter- and intra-organizational processes: communication, risk control and especially the setting of bonuses. The article also examines the role of Gaussian copula models in the 2007-2008 global crisis and in a 2005 episode known as 'the correlation crisis'. We end with the speculation that all widely used derivatives models (and indeed the evaluation culture in which they are embedded) help generate inter-organizational co-ordination, and all that is special in this respect about the Gaussian copula is that its status as 'other' makes this role evident.
Limiting assumptions in molecular modeling: electrostatics.
Marshall, Garland R
2013-02-01
Molecular mechanics attempts to represent intermolecular interactions in terms of classical physics. Initial efforts assumed a point charge located at the atom center and coulombic interactions. It is been recognized over multiple decades that simply representing electrostatics with a charge on each atom failed to reproduce the electrostatic potential surrounding a molecule as estimated by quantum mechanics. Molecular orbitals are not spherically symmetrical, an implicit assumption of monopole electrostatics. This perspective reviews recent evidence that requires use of multipole electrostatics and polarizability in molecular modeling.
Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai
2009-03-14
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
NASA Astrophysics Data System (ADS)
Bardhan, Jaydeep P.; Knepley, Matthew G.; Anitescu, Mihai
2009-03-01
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
Cameron, Donnie; Bouhrara, Mustapha; Reiter, David A; Fishbein, Kenneth W; Choi, Seongjin; Bergeron, Christopher M; Ferrucci, Luigi; Spencer, Richard G
2017-07-01
This work characterizes the effect of lipid and noise signals on muscle diffusion parameter estimation in several conventional and non-Gaussian models, the ultimate objectives being to characterize popular fat suppression approaches for human muscle diffusion studies, to provide simulations to inform experimental work and to report normative non-Gaussian parameter values. The models investigated in this work were the Gaussian monoexponential and intravoxel incoherent motion (IVIM) models, and the non-Gaussian kurtosis and stretched exponential models. These were evaluated via simulations, and in vitro and in vivo experiments. Simulations were performed using literature input values, modeling fat contamination as an additive baseline to data, whereas phantom studies used a phantom containing aliphatic and olefinic fats and muscle-like gel. Human imaging was performed in the hamstring muscles of 10 volunteers. Diffusion-weighted imaging was applied with spectral attenuated inversion recovery (SPAIR), slice-select gradient reversal and water-specific excitation fat suppression, alone and in combination. Measurement bias (accuracy) and dispersion (precision) were evaluated, together with intra- and inter-scan repeatability. Simulations indicated that noise in magnitude images resulted in <6% bias in diffusion coefficients and non-Gaussian parameters (α, K), whereas baseline fitting minimized fat bias for all models, except IVIM. In vivo, popular SPAIR fat suppression proved inadequate for accurate parameter estimation, producing non-physiological parameter estimates without baseline fitting and large biases when it was used. Combining all three fat suppression techniques and fitting data with a baseline offset gave the best results of all the methods studied for both Gaussian diffusion and, overall, for non-Gaussian diffusion. It produced consistent parameter estimates for all models, except IVIM, and highlighted non-Gaussian behavior perpendicular to muscle fibers (α ~ 0.95, K ~ 3.1). These results show that effective fat suppression is crucial for accurate measurement of non-Gaussian diffusion parameters, and will be an essential component of quantitative studies of human muscle quality. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden, Zachary C.; Richard, Ryan M.; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu
2013-12-28
An implementation of Ewald summation for use in mixed quantum mechanics/molecular mechanics (QM/MM) calculations is presented, which builds upon previous work by others that was limited to semi-empirical electronic structure for the QM region. Unlike previous work, our implementation describes the wave function's periodic images using “ChElPG” atomic charges, which are determined by fitting to the QM electrostatic potential evaluated on a real-space grid. This implementation is stable even for large Gaussian basis sets with diffuse exponents, and is thus appropriate when the QM region is described by a correlated wave function. Derivatives of the ChElPG charges with respect tomore » the QM density matrix are a potentially serious bottleneck in this approach, so we introduce a ChElPG algorithm based on atom-centered Lebedev grids. The ChElPG charges thus obtained exhibit good rotational invariance even for sparse grids, enabling significant cost savings. Detailed analysis of the optimal choice of user-selected Ewald parameters, as well as timing breakdowns, is presented.« less
Moving target detection method based on improved Gaussian mixture model
NASA Astrophysics Data System (ADS)
Ma, J. Y.; Jie, F. R.; Hu, Y. J.
2017-07-01
Gaussian Mixture Model is often employed to build background model in background difference methods for moving target detection. This paper puts forward an adaptive moving target detection algorithm based on improved Gaussian Mixture Model. According to the graylevel convergence for each pixel, adaptively choose the number of Gaussian distribution to learn and update background model. Morphological reconstruction method is adopted to eliminate the shadow.. Experiment proved that the proposed method not only has good robustness and detection effect, but also has good adaptability. Even for the special cases when the grayscale changes greatly and so on, the proposed method can also make outstanding performance.
Fusco, Diana; Barnum, Timothy J.; Bruno, Andrew E.; Luft, Joseph R.; Snell, Edward H.; Mukherjee, Sayan; Charbonneau, Patrick
2014-01-01
X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis. PMID:24988076
Fusco, Diana; Barnum, Timothy J; Bruno, Andrew E; Luft, Joseph R; Snell, Edward H; Mukherjee, Sayan; Charbonneau, Patrick
2014-01-01
X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis.
The properties of the anti-tumor model with coupling non-Gaussian noise and Gaussian colored noise
NASA Astrophysics Data System (ADS)
Guo, Qin; Sun, Zhongkui; Xu, Wei
2016-05-01
The anti-tumor model with correlation between multiplicative non-Gaussian noise and additive Gaussian-colored noise has been investigated in this paper. The behaviors of the stationary probability distribution demonstrate that the multiplicative non-Gaussian noise plays a dual role in the development of tumor and an appropriate additive Gaussian colored noise can lead to a minimum of the mean value of tumor cell population. The mean first passage time is calculated to quantify the effects of noises on the transition time of tumors between the stable states. An increase in both the non-Gaussian noise intensity and the departure from the Gaussian noise can accelerate the transition from the disease state to the healthy state. On the contrary, an increase in cross-correlated degree will slow down the transition. Moreover, the correlation time can enhance the stability of the disease state.
A Nonlinear Elasticity Model of Macromolecular Conformational Change Induced by Electrostatic Forces
Zhou, Y. C.; Holst, Michael; McCammon, J. Andrew
2008-01-01
In this paper we propose a nonlinear elasticity model of macromolecular conformational change (deformation) induced by electrostatic forces generated by an implicit solvation model. The Poisson-Boltzmann equation for the electrostatic potential is analyzed in a domain varying with the elastic deformation of molecules, and a new continuous model of the electrostatic forces is developed to ensure solvability of the nonlinear elasticity equations. We derive the estimates of electrostatic forces corresponding to four types of perturbations to an electrostatic potential field, and establish the existance of an equilibrium configuration using a fixed-point argument, under the assumption that the change in the ionic strength and charges due to the additional molecules causing the deformation are sufficiently small. The results are valid for elastic models with arbitrarily complex dielectric interfaces and cavities, and can be generalized to large elastic deformation caused by high ionic strength, large charges, and strong external fields by using continuation methods. PMID:19461946
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, S.; Bukhari, S.; Department of Physics, The University of Azad Jammu and Kashmir, Muzaffarabad 13100, Azad Kashmir
Keeping in view the kinetic treatment for plasma particles, the electrostatic twisted dust-acoustic (DA) and dust-ion-acoustic (DIA) waves are investigated in a collisionless unmagnetized multi-component dusty plasma, whose constituents are the electrons, singly ionized positive ions, and negatively charged massive dust particulates. With this background, the Vlasov–Poisson equations are coupled together to derive a generalized dielectric constant by utilizing the Laguerre-Gaussian perturbed distribution function and electrostatic potential in the paraxial limit. The dispersion and damping rates of twisted DA and DIA waves are analyzed with finite orbital angular momentum states in a multi-component dusty plasma. Significant modifications concerning the realmore » wave frequencies and damping rates appeared with varying twisted dimensionless parameter and dust concentration. In particular, it is shown that dust concentration enhances the phase speed of the DIA waves in contrary to DA waves, whereas the impact of twisted parameter reduces the frequencies of both DA and DIA waves. The results should be useful for the understanding of particle transport and trapping phenomena caused by wave excitation in laboratory dusty plasmas.« less
Probability density and exceedance rate functions of locally Gaussian turbulence
NASA Technical Reports Server (NTRS)
Mark, W. D.
1989-01-01
A locally Gaussian model of turbulence velocities is postulated which consists of the superposition of a slowly varying strictly Gaussian component representing slow temporal changes in the mean wind speed and a more rapidly varying locally Gaussian turbulence component possessing a temporally fluctuating local variance. Series expansions of the probability density and exceedance rate functions of the turbulence velocity model, based on Taylor's series, are derived. Comparisons of the resulting two-term approximations with measured probability density and exceedance rate functions of atmospheric turbulence velocity records show encouraging agreement, thereby confirming the consistency of the measured records with the locally Gaussian model. Explicit formulas are derived for computing all required expansion coefficients from measured turbulence records.
Gaussian mixture models as flux prediction method for central receivers
NASA Astrophysics Data System (ADS)
Grobler, Annemarie; Gauché, Paul; Smit, Willie
2016-05-01
Flux prediction methods are crucial to the design and operation of central receiver systems. Current methods such as the circular and elliptical (bivariate) Gaussian prediction methods are often used in field layout design and aiming strategies. For experimental or small central receiver systems, the flux profile of a single heliostat often deviates significantly from the circular and elliptical Gaussian models. Therefore a novel method of flux prediction was developed by incorporating the fitting of Gaussian mixture models onto flux profiles produced by flux measurement or ray tracing. A method was also developed to predict the Gaussian mixture model parameters of a single heliostat for a given time using image processing. Recording the predicted parameters in a database ensures that more accurate predictions are made in a shorter time frame.
Korsgaard, Inge Riis; Lund, Mogens Sandø; Sorensen, Daniel; Gianola, Daniel; Madsen, Per; Jensen, Just
2003-01-01
A fully Bayesian analysis using Gibbs sampling and data augmentation in a multivariate model of Gaussian, right censored, and grouped Gaussian traits is described. The grouped Gaussian traits are either ordered categorical traits (with more than two categories) or binary traits, where the grouping is determined via thresholds on the underlying Gaussian scale, the liability scale. Allowances are made for unequal models, unknown covariance matrices and missing data. Having outlined the theory, strategies for implementation are reviewed. These include joint sampling of location parameters; efficient sampling from the fully conditional posterior distribution of augmented data, a multivariate truncated normal distribution; and sampling from the conditional inverse Wishart distribution, the fully conditional posterior distribution of the residual covariance matrix. Finally, a simulated dataset was analysed to illustrate the methodology. This paper concentrates on a model where residuals associated with liabilities of the binary traits are assumed to be independent. A Bayesian analysis using Gibbs sampling is outlined for the model where this assumption is relaxed. PMID:12633531
Gaussian Mixture Model of Heart Rate Variability
Costa, Tommaso; Boccignone, Giuseppe; Ferraro, Mario
2012-01-01
Heart rate variability (HRV) is an important measure of sympathetic and parasympathetic functions of the autonomic nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV, namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum. Comparisons have been made also with synthetic data generated from different physiologically based models showing the plausibility of the Gaussian mixture parameters. PMID:22666386
Random medium model for cusping of plane waves.
Li, Jia; Korotkova, Olga
2017-09-01
We introduce a model for a three-dimensional (3D) Schell-type stationary medium whose degree of potential's correlation satisfies the Fractional Multi-Gaussian (FMG) function. Compared with the scattered profile produced by the Gaussian Schell-model (GSM) medium, the Fractional Multi-Gaussian Schell-model (FMGSM) medium gives rise to a sharp concave intensity apex in the scattered field. This implies that the FMGSM medium also accounts for a larger than Gaussian's power in the bucket (PIB) in the forward scattering direction, hence being a better candidate than the GSM medium for generating highly-focused (cusp-like) scattered profiles in the far zone. Compared to other mathematical models for the medium's correlation function which can produce similar cusped scattered profiles the FMG function offers unprecedented tractability being the weighted superposition of Gaussian functions. Our results provide useful applications to energy counter problems and particle manipulation by weakly scattered fields.
Orthogonal Gaussian process models
Plumlee, Matthew; Joseph, V. Roshan
2017-01-01
Gaussian processes models are widely adopted for nonparameteric/semi-parametric modeling. Identifiability issues occur when the mean model contains polynomials with unknown coefficients. Though resulting prediction is unaffected, this leads to poor estimation of the coefficients in the mean model, and thus the estimated mean model loses interpretability. This paper introduces a new Gaussian process model whose stochastic part is orthogonal to the mean part to address this issue. As a result, this paper also discusses applications to multi-fidelity simulations using data examples.
Orthogonal Gaussian process models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plumlee, Matthew; Joseph, V. Roshan
Gaussian processes models are widely adopted for nonparameteric/semi-parametric modeling. Identifiability issues occur when the mean model contains polynomials with unknown coefficients. Though resulting prediction is unaffected, this leads to poor estimation of the coefficients in the mean model, and thus the estimated mean model loses interpretability. This paper introduces a new Gaussian process model whose stochastic part is orthogonal to the mean part to address this issue. As a result, this paper also discusses applications to multi-fidelity simulations using data examples.
Poly-Gaussian model of randomly rough surface in rarefied gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksenova, Olga A.; Khalidov, Iskander A.
2014-12-09
Surface roughness is simulated by the model of non-Gaussian random process. Our results for the scattering of rarefied gas atoms from a rough surface using modified approach to the DSMC calculation of rarefied gas flow near a rough surface are developed and generalized applying the poly-Gaussian model representing probability density as the mixture of Gaussian densities. The transformation of the scattering function due to the roughness is characterized by the roughness operator. Simulating rough surface of the walls by the poly-Gaussian random field expressed as integrated Wiener process, we derive a representation of the roughness operator that can be appliedmore » in numerical DSMC methods as well as in analytical investigations.« less
Non-Gaussian PDF Modeling of Turbulent Boundary Layer Fluctuating Pressure Excitation
NASA Technical Reports Server (NTRS)
Steinwolf, Alexander; Rizzi, Stephen A.
2003-01-01
The purpose of the study is to investigate properties of the probability density function (PDF) of turbulent boundary layer fluctuating pressures measured on the exterior of a supersonic transport aircraft. It is shown that fluctuating pressure PDFs differ from the Gaussian distribution even for surface conditions having no significant discontinuities. The PDF tails are wider and longer than those of the Gaussian model. For pressure fluctuations upstream of forward-facing step discontinuities and downstream of aft-facing step discontinuities, deviations from the Gaussian model are more significant and the PDFs become asymmetrical. Various analytical PDF distributions are used and further developed to model this behavior.
NASA Astrophysics Data System (ADS)
Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing
2018-05-01
We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.
Non-Gaussianities in multifield DBI inflation with a waterfall phase transition
NASA Astrophysics Data System (ADS)
Kidani, Taichi; Koyama, Kazuya; Mizuno, Shuntaro
2012-10-01
We study multifield Dirac-Born-Infeld (DBI) inflation models with a waterfall phase transition. This transition happens for a D3 brane moving in the warped conifold if there is an instability along angular directions. The transition converts the angular perturbations into the curvature perturbation. Thanks to this conversion, multifield models can evade the stringent constraints that strongly disfavor single field ultraviolet (UV) DBI inflation models in string theory. We explicitly demonstrate that our model satisfies current observational constraints on the spectral index and equilateral non-Gaussianity as well as the bound on the tensor to scalar ratio imposed in string theory models. In addition, we show that large local type non-Gaussianity is generated together with equilateral non-Gaussianity in this model.
NASA Astrophysics Data System (ADS)
Rubinstein, A.; Sabirianov, R. F.; Mei, W. N.; Namavar, F.; Khoynezhad, A.
2010-08-01
Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.
Rubinstein, A; Sabirianov, R F; Mei, W N; Namavar, F; Khoynezhad, A
2010-08-01
Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.
Geometric and electrostatic modeling using molecular rigidity functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Xia, Kelin; Wei, Guowei
Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less
Geometric and electrostatic modeling using molecular rigidity functions
Mu, Lin; Xia, Kelin; Wei, Guowei
2017-03-01
Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less
Multiview road sign detection via self-adaptive color model and shape context matching
NASA Astrophysics Data System (ADS)
Liu, Chunsheng; Chang, Faliang; Liu, Chengyun
2016-09-01
The multiview appearance of road signs in uncontrolled environments has made the detection of road signs a challenging problem in computer vision. We propose a road sign detection method to detect multiview road signs. This method is based on several algorithms, including the classical cascaded detector, the self-adaptive weighted Gaussian color model (SW-Gaussian model), and a shape context matching method. The classical cascaded detector is used to detect the frontal road signs in video sequences and obtain the parameters for the SW-Gaussian model. The proposed SW-Gaussian model combines the two-dimensional Gaussian model and the normalized red channel together, which can largely enhance the contrast between the red signs and background. The proposed shape context matching method can match shapes with big noise, which is utilized to detect road signs in different directions. The experimental results show that compared with previous detection methods, the proposed multiview detection method can reach higher detection rate in detecting signs with different directions.
Non-Gaussian Multi-resolution Modeling of Magnetosphere-Ionosphere Coupling Processes
NASA Astrophysics Data System (ADS)
Fan, M.; Paul, D.; Lee, T. C. M.; Matsuo, T.
2016-12-01
The most dynamic coupling between the magnetosphere and ionosphere occurs in the Earth's polar atmosphere. Our objective is to model scale-dependent stochastic characteristics of high-latitude ionospheric electric fields that originate from solar wind magnetosphere-ionosphere interactions. The Earth's high-latitude ionospheric electric field exhibits considerable variability, with increasing non-Gaussian characteristics at decreasing spatio-temporal scales. Accurately representing the underlying stochastic physical process through random field modeling is crucial not only for scientific understanding of the energy, momentum and mass exchanges between the Earth's magnetosphere and ionosphere, but also for modern technological systems including telecommunication, navigation, positioning and satellite tracking. While a lot of efforts have been made to characterize the large-scale variability of the electric field in the context of Gaussian processes, no attempt has been made so far to model the small-scale non-Gaussian stochastic process observed in the high-latitude ionosphere. We construct a novel random field model using spherical needlets as building blocks. The double localization of spherical needlets in both spatial and frequency domains enables the model to capture the non-Gaussian and multi-resolutional characteristics of the small-scale variability. The estimation procedure is computationally feasible due to the utilization of an adaptive Gibbs sampler. We apply the proposed methodology to the computational simulation output from the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) magnetosphere model. Our non-Gaussian multi-resolution model results in characterizing significantly more energy associated with the small-scale ionospheric electric field variability in comparison to Gaussian models. By accurately representing unaccounted-for additional energy and momentum sources to the Earth's upper atmosphere, our novel random field modeling approach will provide a viable remedy to the current numerical models' systematic biases resulting from the underestimation of high-latitude energy and momentum sources.
Flat-top beam for laser-stimulated pain
NASA Astrophysics Data System (ADS)
McCaughey, Ryan; Nadeau, Valerie; Dickinson, Mark
2005-04-01
One of the main problems during laser stimulation in human pain research is the risk of tissue damage caused by excessive heating of the skin. This risk has been reduced by using a laser beam with a flattop (or superGaussian) intensity profile, instead of the conventional Gaussian beam. A finite difference approximation to the heat conduction equation has been applied to model the temperature distribution in skin as a result of irradiation by flattop and Gaussian profile CO2 laser beams. The model predicts that a 15 mm diameter, 15 W, 100 ms CO2 laser pulse with an order 6 superGaussian profile produces a maximum temperature 6 oC less than a Gaussian beam with the same energy density. A superGaussian profile was created by passing a Gaussian beam through a pair of zinc selenide aspheric lenses which refract the more intense central region of the beam towards the less intense periphery. The profiles of the lenses were determined by geometrical optics. In human pain trials the superGaussian beam required more power than the Gaussian beam to reach sensory and pain thresholds.
Gaussian-input Gaussian mixture model for representing density maps and atomic models.
Kawabata, Takeshi
2018-07-01
A new Gaussian mixture model (GMM) has been developed for better representations of both atomic models and electron microscopy 3D density maps. The standard GMM algorithm employs an EM algorithm to determine the parameters. It accepted a set of 3D points with weights, corresponding to voxel or atomic centers. Although the standard algorithm worked reasonably well; however, it had three problems. First, it ignored the size (voxel width or atomic radius) of the input, and thus it could lead to a GMM with a smaller spread than the input. Second, the algorithm had a singularity problem, as it sometimes stopped the iterative procedure due to a Gaussian function with almost zero variance. Third, a map with a large number of voxels required a long computation time for conversion to a GMM. To solve these problems, we have introduced a Gaussian-input GMM algorithm, which considers the input atoms or voxels as a set of Gaussian functions. The standard EM algorithm of GMM was extended to optimize the new GMM. The new GMM has identical radius of gyration to the input, and does not suddenly stop due to the singularity problem. For fast computation, we have introduced a down-sampled Gaussian functions (DSG) by merging neighboring voxels into an anisotropic Gaussian function. It provides a GMM with thousands of Gaussian functions in a short computation time. We also have introduced a DSG-input GMM: the Gaussian-input GMM with the DSG as the input. This new algorithm is much faster than the standard algorithm. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele
A number of 2D layered perovskites A{sub 2}PbI{sub 4} and BPbI{sub 4}, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps havemore » been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another’s place.« less
MacKenzie, Donald; Spears, Taylor
2014-06-01
Drawing on documentary sources and 114 interviews with market participants, this and a companion article discuss the development and use in finance of the Gaussian copula family of models, which are employed to estimate the probability distribution of losses on a pool of loans or bonds, and which were centrally involved in the credit crisis. This article, which explores how and why the Gaussian copula family developed in the way it did, employs the concept of 'evaluation culture', a set of practices, preferences and beliefs concerning how to determine the economic value of financial instruments that is shared by members of multiple organizations. We identify an evaluation culture, dominant within the derivatives departments of investment banks, which we call the 'culture of no-arbitrage modelling', and explore its relation to the development of Gaussian copula models. The article suggests that two themes from the science and technology studies literature on models (modelling as 'impure' bricolage, and modelling as articulating with heterogeneous objectives and constraints) help elucidate the history of Gaussian copula models in finance.
Review on the Modeling of Electrostatic MEMS
Chuang, Wan-Chun; Lee, Hsin-Li; Chang, Pei-Zen; Hu, Yuh-Chung
2010-01-01
Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices. PMID:22219707
Nonlinear Coherent Structures, Microbursts and Turbulence
NASA Astrophysics Data System (ADS)
Lakhina, G. S.
2015-12-01
Nonlinear waves are found everywhere, in fluids, atmosphere, laboratory, space and astrophysical plasmas. The interplay of nonlinear effects, dispersion and dissipation in the medium can lead to a variety of nonlinear waves and turbulence. Two cases of coherent nonlinear waves: chorus and electrostatic solitary waves (ESWs) and their impact on modifying the plasma medium are discussed. Chorus is a right-hand, circularly-polarized electromagnetic plane wave. Dayside chorus is a bursty emission composed of rising frequency "elements" with duration of ~0.1 to 1.0 s. Each element is composed of coherent subelements with durations of ~1 to 100 ms or more. The cyclotron resonant interaction between energetic electrons and the coherent chorus waves is studied. An expression for the pitch angle transport due to this interaction is derived considering a Gaussian distribution for the time duration of the chorus elements. The rapid pitch scattering can provide an explanation for the ionospheric microbursts of ~0.1 to 0.5 s in bremsstrahlung x-rays formed by ~10-100 keV precipitating electrons. On the other hand, the ESWs are observed in the electric field component parallel to the background magnetic field, and are usually bipolar or tripolar. Generation of coherent ESWs has been explained in terms of nonlinear fluid models of ion- and electron-acoustic solitons and double layers (DLs) based on Sagdeev pseudopotential technique. Fast Fourier transform of electron- and ion-acoustic solitons/DLs produces broadband wave spectra which can explain the properties of the electrostatic turbulence observed in the magnetosheath and plasma sheet boundary layer, and in the solar wind, respectively.
Gaussian temporal modulation for the behavior of multi-sinc Schell-model pulses in dispersive media
NASA Astrophysics Data System (ADS)
Liu, Xiayin; Zhao, Daomu; Tian, Kehan; Pan, Weiqing; Zhang, Kouwen
2018-06-01
A new class of pulse source with correlation being modeled by the convolution operation of two legitimate temporal correlation function is proposed. Particularly, analytical formulas for the Gaussian temporally modulated multi-sinc Schell-model (MSSM) pulses generated by such pulse source propagating in dispersive media are derived. It is demonstrated that the average intensity of MSSM pulses on propagation are reshaped from flat profile or a train to a distribution with a Gaussian temporal envelope by adjusting the initial correlation width of the Gaussian pulse. The effects of the Gaussian temporal modulation on the temporal degree of coherence of the MSSM pulse are also analyzed. The results presented here show the potential of coherence modulation for pulse shaping and pulsed laser material processing.
NASA Astrophysics Data System (ADS)
Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.
2018-04-01
The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.
Marias, Kostas; Lambregts, Doenja M. J.; Nikiforaki, Katerina; van Heeswijk, Miriam M.; Bakers, Frans C. H.; Beets-Tan, Regina G. H.
2017-01-01
Purpose The purpose of this study was to compare the performance of four diffusion models, including mono and bi-exponential both Gaussian and non-Gaussian models, in diffusion weighted imaging of rectal cancer. Material and methods Nineteen patients with rectal adenocarcinoma underwent MRI examination of the rectum before chemoradiation therapy including a 7 b-value diffusion sequence (0, 25, 50, 100, 500, 1000 and 2000 s/mm2) at a 1.5T scanner. Four different diffusion models including mono- and bi-exponential Gaussian (MG and BG) and non-Gaussian (MNG and BNG) were applied on whole tumor volumes of interest. Two different statistical criteria were recruited to assess their fitting performance, including the adjusted-R2 and Root Mean Square Error (RMSE). To decide which model better characterizes rectal cancer, model selection was relied on Akaike Information Criteria (AIC) and F-ratio. Results All candidate models achieved a good fitting performance with the two most complex models, the BG and the BNG, exhibiting the best fitting performance. However, both criteria for model selection indicated that the MG model performed better than any other model. In particular, using AIC Weights and F-ratio, the pixel-based analysis demonstrated that tumor areas better described by the simplest MG model in an average area of 53% and 33%, respectively. Non-Gaussian behavior was illustrated in an average area of 37% according to the F-ratio, and 7% using AIC Weights. However, the distributions of the pixels best fitted by each of the four models suggest that MG failed to perform better than any other model in all patients, and the overall tumor area. Conclusion No single diffusion model evaluated herein could accurately describe rectal tumours. These findings probably can be explained on the basis of increased tumour heterogeneity, where areas with high vascularity could be fitted better with bi-exponential models, and areas with necrosis would mostly follow mono-exponential behavior. PMID:28863161
Manikis, Georgios C; Marias, Kostas; Lambregts, Doenja M J; Nikiforaki, Katerina; van Heeswijk, Miriam M; Bakers, Frans C H; Beets-Tan, Regina G H; Papanikolaou, Nikolaos
2017-01-01
The purpose of this study was to compare the performance of four diffusion models, including mono and bi-exponential both Gaussian and non-Gaussian models, in diffusion weighted imaging of rectal cancer. Nineteen patients with rectal adenocarcinoma underwent MRI examination of the rectum before chemoradiation therapy including a 7 b-value diffusion sequence (0, 25, 50, 100, 500, 1000 and 2000 s/mm2) at a 1.5T scanner. Four different diffusion models including mono- and bi-exponential Gaussian (MG and BG) and non-Gaussian (MNG and BNG) were applied on whole tumor volumes of interest. Two different statistical criteria were recruited to assess their fitting performance, including the adjusted-R2 and Root Mean Square Error (RMSE). To decide which model better characterizes rectal cancer, model selection was relied on Akaike Information Criteria (AIC) and F-ratio. All candidate models achieved a good fitting performance with the two most complex models, the BG and the BNG, exhibiting the best fitting performance. However, both criteria for model selection indicated that the MG model performed better than any other model. In particular, using AIC Weights and F-ratio, the pixel-based analysis demonstrated that tumor areas better described by the simplest MG model in an average area of 53% and 33%, respectively. Non-Gaussian behavior was illustrated in an average area of 37% according to the F-ratio, and 7% using AIC Weights. However, the distributions of the pixels best fitted by each of the four models suggest that MG failed to perform better than any other model in all patients, and the overall tumor area. No single diffusion model evaluated herein could accurately describe rectal tumours. These findings probably can be explained on the basis of increased tumour heterogeneity, where areas with high vascularity could be fitted better with bi-exponential models, and areas with necrosis would mostly follow mono-exponential behavior.
NASA Astrophysics Data System (ADS)
Rubinstein, Alexander; Sabirianov, Renat
2011-03-01
Using a non-local electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an low-dielectric interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.
Gaussian processes: a method for automatic QSAR modeling of ADME properties.
Obrezanova, Olga; Csanyi, Gabor; Gola, Joelle M R; Segall, Matthew D
2007-01-01
In this article, we discuss the application of the Gaussian Process method for the prediction of absorption, distribution, metabolism, and excretion (ADME) properties. On the basis of a Bayesian probabilistic approach, the method is widely used in the field of machine learning but has rarely been applied in quantitative structure-activity relationship and ADME modeling. The method is suitable for modeling nonlinear relationships, does not require subjective determination of the model parameters, works for a large number of descriptors, and is inherently resistant to overtraining. The performance of Gaussian Processes compares well with and often exceeds that of artificial neural networks. Due to these features, the Gaussian Processes technique is eminently suitable for automatic model generation-one of the demands of modern drug discovery. Here, we describe the basic concept of the method in the context of regression problems and illustrate its application to the modeling of several ADME properties: blood-brain barrier, hERG inhibition, and aqueous solubility at pH 7.4. We also compare Gaussian Processes with other modeling techniques.
Automatic image equalization and contrast enhancement using Gaussian mixture modeling.
Celik, Turgay; Tjahjadi, Tardi
2012-01-01
In this paper, we propose an adaptive image equalization algorithm that automatically enhances the contrast in an input image. The algorithm uses the Gaussian mixture model to model the image gray-level distribution, and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input gray-level intervals. The contrast equalized image is generated by transforming the pixels' gray levels in each input interval to the appropriate output gray-level interval according to the dominant Gaussian component and the cumulative distribution function of the input interval. To take account of the hypothesis that homogeneous regions in the image represent homogeneous silences (or set of Gaussian components) in the image histogram, the Gaussian components with small variances are weighted with smaller values than the Gaussian components with larger variances, and the gray-level distribution is also used to weight the components in the mapping of the input interval to the output interval. Experimental results show that the proposed algorithm produces better or comparable enhanced images than several state-of-the-art algorithms. Unlike the other algorithms, the proposed algorithm is free of parameter setting for a given dynamic range of the enhanced image and can be applied to a wide range of image types.
PCE: web tools to compute protein continuum electrostatics
Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.
2005-01-01
PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492
NASA Astrophysics Data System (ADS)
Poklonski, N. A.; Vyrko, S. A.; Poklonskaya, O. N.; Kovalev, A. I.; Zabrodskii, A. G.
2016-06-01
A quasi-classical model of ionization equilibrium in the p-type diamond between hydrogen-like acceptors (boron atoms which substitute carbon atoms in the crystal lattice) and holes in the valence band (v-band) is proposed. The model is applicable on the insulator side of the insulator-metal concentration phase transition (Mott transition) in p-Dia:B crystals. The densities of the spatial distributions of impurity atoms (acceptors and donors) and of holes in the crystal are considered to be Poissonian, and the fluctuations of their electrostatic potential energy are considered to be Gaussian. The model accounts for the decrease in thermal ionization energy of boron atoms with increasing concentration, as well as for electrostatic fluctuations due to the Coulomb interaction limited to two nearest point charges (impurity ions and holes). The mobility edge of holes in the v-band is assumed to be equal to the sum of the threshold energy for diffusion percolation and the exchange energy of the holes. On the basis of the virial theorem, the temperature Tj is determined, in the vicinity of which the dc band-like conductivity of holes in the v-band is approximately equal to the hopping conductivity of holes via the boron atoms. For compensation ratio (hydrogen-like donor to acceptor concentration ratio) K ≈ 0.15 and temperature Tj, the concentration of "free" holes in the v-band and their jumping (turbulent) drift mobility are calculated. Dependence of the differential energy of thermal ionization of boron atoms (at the temperature 3Tj/2) as a function of their concentration N is calculated. The estimates of the extrapolated into the temperature region close to Tj hopping drift mobility of holes hopping from the boron atoms in the charge states (0) to the boron atoms in the charge states (-1) are given. Calculations based on the model show good agreement with electrical conductivity and Hall effect measurements for p-type diamond with boron atom concentrations in the range from 3 × 1017 to 3 × 1020 cm-3, i.e., up to the Mott transition. The model uses no fitting parameters.
Stochastic resonance in micro/nano cantilever sensors
NASA Astrophysics Data System (ADS)
Singh, Priyanka; Yadava, R. D. S.
2018-05-01
In this paper we present a comparative study on the stochastic resonance in micro/nano cantilever resonators due to fluctuations in the fundamental frequency or the damping coefficient. Considering DC+AC electrostatic actuation in the presence of zero-mean Gaussian noise with exponential autocorrelation we analyze stochastic resonance behaviors for the frequency and the damping fluctuations separately, and compare the effects of stochastic resonance on Q-factor of the resonators for different levels of damping losses. It is found that even though the stochastic resonance occurs for both types of fluctuations, only the damping fluctuation produces right cooperative influence on the fundamental resonance that improves both the amplitude response and the quality factor of the resonator.
Spatio-Temporal Data Analysis at Scale Using Models Based on Gaussian Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Michael
Gaussian processes are the most commonly used statistical model for spatial and spatio-temporal processes that vary continuously. They are broadly applicable in the physical sciences and engineering and are also frequently used to approximate the output of complex computer models, deterministic or stochastic. We undertook research related to theory, computation, and applications of Gaussian processes as well as some work on estimating extremes of distributions for which a Gaussian process assumption might be inappropriate. Our theoretical contributions include the development of new classes of spatial-temporal covariance functions with desirable properties and new results showing that certain covariance models lead tomore » predictions with undesirable properties. To understand how Gaussian process models behave when applied to deterministic computer models, we derived what we believe to be the first significant results on the large sample properties of estimators of parameters of Gaussian processes when the actual process is a simple deterministic function. Finally, we investigated some theoretical issues related to maxima of observations with varying upper bounds and found that, depending on the circumstances, standard large sample results for maxima may or may not hold. Our computational innovations include methods for analyzing large spatial datasets when observations fall on a partially observed grid and methods for estimating parameters of a Gaussian process model from observations taken by a polar-orbiting satellite. In our application of Gaussian process models to deterministic computer experiments, we carried out some matrix computations that would have been infeasible using even extended precision arithmetic by focusing on special cases in which all elements of the matrices under study are rational and using exact arithmetic. The applications we studied include total column ozone as measured from a polar-orbiting satellite, sea surface temperatures over the Pacific Ocean, and annual temperature extremes at a site in New York City. In each of these applications, our theoretical and computational innovations were directly motivated by the challenges posed by analyzing these and similar types of data.« less
Topology of large-scale structure in seeded hot dark matter models
NASA Technical Reports Server (NTRS)
Beaky, Matthew M.; Scherrer, Robert J.; Villumsen, Jens V.
1992-01-01
The topology of the isodensity surfaces in seeded hot dark matter models, in which static seed masses provide the density perturbations in a universe dominated by massive neutrinos is examined. When smoothed with a Gaussian window, the linear initial conditions in these models show no trace of non-Gaussian behavior for r0 equal to or greater than 5 Mpc (h = 1/2), except for very low seed densities, which show a shift toward isolated peaks. An approximate analytic expression is given for the genus curve expected in linear density fields from randomly distributed seed masses. The evolved models have a Gaussian topology for r0 = 10 Mpc, but show a shift toward a cellular topology with r0 = 5 Mpc; Gaussian models with an identical power spectrum show the same behavior.
Alidoosti, Elaheh; Zhao, Hui
2018-05-15
At concentrated electrolytes, the ion-ion electrostatic correlation effect is considered an important factor in electrokinetics. In this paper, we compute, in theory and simulation, the dipole moment for a spherical particle (charged, dielectric) under the action of an alternating electric field using the modified continuum Poisson-Nernst-Planck (PNP) model by Bazant et al. [ Double Layer in Ionic Liquids: Overscreening Versus Crowding . Phys. Rev. Lett. 2011 , 106 , 046102 ] We investigate the dependency of the dipole moment in terms of frequency and its variation with such quantities like ζ-potential, electrostatic correlation length, and double-layer thickness. With thin electric double layers, we develop simple models through performing an asymptotic analysis of the modified PNP model. We also present numerical results for an arbitrary Debye screening length and electrostatic correlation length. From the results, we find a complicated impact of electrostatic correlations on the dipole moment. For instance, with increasing the electrostatic correlation length, the dipole moment decreases and reaches a minimum and then it goes up. This is because of initially decreasing of surface conduction and finally increasing due to the impact of ion-ion electrostatic correlations on ion's convection and migration. Also, we show that in contrast to the standard PNP model, the modified PNP model can qualitatively explain the data from the experimental results in multivalent electrolytes.
Kärkkäinen, Hanni P; Sillanpää, Mikko J
2013-09-04
Because of the increased availability of genome-wide sets of molecular markers along with reduced cost of genotyping large samples of individuals, genomic estimated breeding values have become an essential resource in plant and animal breeding. Bayesian methods for breeding value estimation have proven to be accurate and efficient; however, the ever-increasing data sets are placing heavy demands on the parameter estimation algorithms. Although a commendable number of fast estimation algorithms are available for Bayesian models of continuous Gaussian traits, there is a shortage for corresponding models of discrete or censored phenotypes. In this work, we consider a threshold approach of binary, ordinal, and censored Gaussian observations for Bayesian multilocus association models and Bayesian genomic best linear unbiased prediction and present a high-speed generalized expectation maximization algorithm for parameter estimation under these models. We demonstrate our method with simulated and real data. Our example analyses suggest that the use of the extra information present in an ordered categorical or censored Gaussian data set, instead of dichotomizing the data into case-control observations, increases the accuracy of genomic breeding values predicted by Bayesian multilocus association models or by Bayesian genomic best linear unbiased prediction. Furthermore, the example analyses indicate that the correct threshold model is more accurate than the directly used Gaussian model with a censored Gaussian data, while with a binary or an ordinal data the superiority of the threshold model could not be confirmed.
Kärkkäinen, Hanni P.; Sillanpää, Mikko J.
2013-01-01
Because of the increased availability of genome-wide sets of molecular markers along with reduced cost of genotyping large samples of individuals, genomic estimated breeding values have become an essential resource in plant and animal breeding. Bayesian methods for breeding value estimation have proven to be accurate and efficient; however, the ever-increasing data sets are placing heavy demands on the parameter estimation algorithms. Although a commendable number of fast estimation algorithms are available for Bayesian models of continuous Gaussian traits, there is a shortage for corresponding models of discrete or censored phenotypes. In this work, we consider a threshold approach of binary, ordinal, and censored Gaussian observations for Bayesian multilocus association models and Bayesian genomic best linear unbiased prediction and present a high-speed generalized expectation maximization algorithm for parameter estimation under these models. We demonstrate our method with simulated and real data. Our example analyses suggest that the use of the extra information present in an ordered categorical or censored Gaussian data set, instead of dichotomizing the data into case-control observations, increases the accuracy of genomic breeding values predicted by Bayesian multilocus association models or by Bayesian genomic best linear unbiased prediction. Furthermore, the example analyses indicate that the correct threshold model is more accurate than the directly used Gaussian model with a censored Gaussian data, while with a binary or an ordinal data the superiority of the threshold model could not be confirmed. PMID:23821618
Non-gaussianity versus nonlinearity of cosmological perturbations.
Verde, L
2001-06-01
Following the discovery of the cosmic microwave background, the hot big-bang model has become the standard cosmological model. In this theory, small primordial fluctuations are subsequently amplified by gravity to form the large-scale structure seen today. Different theories for unified models of particle physics, lead to different predictions for the statistical properties of the primordial fluctuations, that can be divided in two classes: gaussian and non-gaussian. Convincing evidence against or for gaussian initial conditions would rule out many scenarios and point us toward a physical theory for the origin of structures. The statistical distribution of cosmological perturbations, as we observe them, can deviate from the gaussian distribution in several different ways. Even if perturbations start off gaussian, nonlinear gravitational evolution can introduce non-gaussian features. Additionally, our knowledge of the Universe comes principally from the study of luminous material such as galaxies, but galaxies might not be faithful tracers of the underlying mass distribution. The relationship between fluctuations in the mass and in the galaxies distribution (bias), is often assumed to be local, but could well be nonlinear. Moreover, galaxy catalogues use the redshift as third spatial coordinate: the resulting redshift-space map of the galaxy distribution is nonlinearly distorted by peculiar velocities. Nonlinear gravitational evolution, biasing, and redshift-space distortion introduce non-gaussianity, even in an initially gaussian fluctuation field. I investigate the statistical tools that allow us, in principle, to disentangle the above different effects, and the observational datasets we require to do so in practice.
Role of non-native electrostatic interactions in the coupled folding and binding of PUMA with Mcl-1
Chu, Wen-Ting; Clarke, Jane; Shammas, Sarah L.; Wang, Jin
2017-01-01
PUMA, which belongs to the BH3-only protein family, is an intrinsically disordered protein (IDP). It binds to its cellular partner Mcl-1 through its BH3 motif, which folds upon binding into an α helix. We have applied a structure-based coarse-grained model, with an explicit Debye—Hückel charge model, to probe the importance of electrostatic interactions both in the early and the later stages of this model coupled folding and binding process. This model was carefully calibrated with the experimental data on helical content and affinity, and shown to be consistent with previously published experimental data on binding rate changes with respect to ionic strength. We find that intramolecular electrostatic interactions influence the unbound states of PUMA only marginally. Our results further suggest that intermolecular electrostatic interactions, and in particular non-native electrostatic interactions, are involved in formation of the initial encounter complex. We are able to reveal the binding mechanism in more detail than is possible using experimental data alone however, and in particular we uncover the role of non-native electrostatic interactions. We highlight the potential importance of such electrostatic interactions for describing the binding reactions of IDPs. Such approaches could be used to provide predictions for the results of mutational studies. PMID:28369057
Petersen, Per H; Lund, Flemming; Fraser, Callum G; Sölétormos, György
2016-11-01
Background The distributions of within-subject biological variation are usually described as coefficients of variation, as are analytical performance specifications for bias, imprecision and other characteristics. Estimation of specifications required for reference change values is traditionally done using relationship between the batch-related changes during routine performance, described as Δbias, and the coefficients of variation for analytical imprecision (CV A ): the original theory is based on standard deviations or coefficients of variation calculated as if distributions were Gaussian. Methods The distribution of between-subject biological variation can generally be described as log-Gaussian. Moreover, recent analyses of within-subject biological variation suggest that many measurands have log-Gaussian distributions. In consequence, we generated a model for the estimation of analytical performance specifications for reference change value, with combination of Δbias and CV A based on log-Gaussian distributions of CV I as natural logarithms. The model was tested using plasma prolactin and glucose as examples. Results Analytical performance specifications for reference change value generated using the new model based on log-Gaussian distributions were practically identical with the traditional model based on Gaussian distributions. Conclusion The traditional and simple to apply model used to generate analytical performance specifications for reference change value, based on the use of coefficients of variation and assuming Gaussian distributions for both CV I and CV A , is generally useful.
GaussianCpG: a Gaussian model for detection of CpG island in human genome sequences.
Yu, Ning; Guo, Xuan; Zelikovsky, Alexander; Pan, Yi
2017-05-24
As crucial markers in identifying biological elements and processes in mammalian genomes, CpG islands (CGI) play important roles in DNA methylation, gene regulation, epigenetic inheritance, gene mutation, chromosome inactivation and nuclesome retention. The generally accepted criteria of CGI rely on: (a) %G+C content is ≥ 50%, (b) the ratio of the observed CpG content and the expected CpG content is ≥ 0.6, and (c) the general length of CGI is greater than 200 nucleotides. Most existing computational methods for the prediction of CpG island are programmed on these rules. However, many experimentally verified CpG islands deviate from these artificial criteria. Experiments indicate that in many cases %G+C is < 50%, CpG obs /CpG exp varies, and the length of CGI ranges from eight nucleotides to a few thousand of nucleotides. It implies that CGI detection is not just a straightly statistical task and some unrevealed rules probably are hidden. A novel Gaussian model, GaussianCpG, is developed for detection of CpG islands on human genome. We analyze the energy distribution over genomic primary structure for each CpG site and adopt the parameters from statistics of Human genome. The evaluation results show that the new model can predict CpG islands efficiently by balancing both sensitivity and specificity over known human CGI data sets. Compared with other models, GaussianCpG can achieve better performance in CGI detection. Our Gaussian model aims to simplify the complex interaction between nucleotides. The model is computed not by the linear statistical method but by the Gaussian energy distribution and accumulation. The parameters of Gaussian function are not arbitrarily designated but deliberately chosen by optimizing the biological statistics. By using the pseudopotential analysis on CpG islands, the novel model is validated on both the real and artificial data sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirayama, S; Takayanagi, T; Fujii, Y
2014-06-15
Purpose: To present the validity of our beam modeling with double and triple Gaussian dose kernels for spot scanning proton beams in Nagoya Proton Therapy Center. This study investigates the conformance between the measurements and calculation results in absolute dose with two types of beam kernel. Methods: A dose kernel is one of the important input data required for the treatment planning software. The dose kernel is the 3D dose distribution of an infinitesimal pencil beam of protons in water and consists of integral depth doses and lateral distributions. We have adopted double and triple Gaussian model as lateral distributionmore » in order to take account of the large angle scattering due to nuclear reaction by fitting simulated inwater lateral dose profile for needle proton beam at various depths. The fitted parameters were interpolated as a function of depth in water and were stored as a separate look-up table for the each beam energy. The process of beam modeling is based on the method of MDACC [X.R.Zhu 2013]. Results: From the comparison results between the absolute doses calculated by double Gaussian model and those measured at the center of SOBP, the difference is increased up to 3.5% in the high-energy region because the large angle scattering due to nuclear reaction is not sufficiently considered at intermediate depths in the double Gaussian model. In case of employing triple Gaussian dose kernels, the measured absolute dose at the center of SOBP agrees with calculation within ±1% regardless of the SOBP width and maximum range. Conclusion: We have demonstrated the beam modeling results of dose distribution employing double and triple Gaussian dose kernel. Treatment planning system with the triple Gaussian dose kernel has been successfully verified and applied to the patient treatment with a spot scanning technique in Nagoya Proton Therapy Center.« less
Variational Gaussian approximation for Poisson data
NASA Astrophysics Data System (ADS)
Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen
2018-02-01
The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.
NASA Astrophysics Data System (ADS)
Wissman, J.; Finkenauer, L.; Deseri, L.; Majidi, C.
2014-10-01
We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K <0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theory based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wissman, J., E-mail: jwissman@andrew.cmu.edu; Finkenauer, L.; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K<0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theorymore » based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.« less
Low-bias flat band-stop filter based on velocity modulated gaussian graphene superlattice
NASA Astrophysics Data System (ADS)
Sattari-Esfahlan, S. M.; Shojaei, S.
2018-05-01
Transport properties of biased planar Gaussian graphene superlattice (PGGSL) with Fermi velocity barrier is investigated by transfer matrix method (TMM). It is observed that enlargement of bias voltage over miniband width breaks the miniband to WSLs leads to suppressing resonant tunneling. Transmission spectrum shows flat wide stop-band property controllable by external bias voltage with stop-band width of near 200 meV. The simulations demonstrate that strong velocity barriers prevent tunneling of Dirac electrons leading to controllable enhancement of stop-band width. By increasing ratio of Fermi velocity in barriers to wells υc stop-band width increase. As wide transmission stop-band width (BWT) of filter is tunable from 40 meV to 340 meV is obtained by enhancing ratio of υc from 0.2 to 1.5, respectively. Proposed structure suggests easy tunable wide band-stop electronic filter with a modulated flat stop-band characteristic by height of electrostatic barrier and structural parameters. Robust sensitivity of band width to velocity barrier intensity in certain bias voltages and flat band feature of proposed filter may be opens novel venue in GSL based flat band low noise filters and velocity modulation devices.
Extinction time of a stochastic predator-prey model by the generalized cell mapping method
NASA Astrophysics Data System (ADS)
Han, Qun; Xu, Wei; Hu, Bing; Huang, Dongmei; Sun, Jian-Qiao
2018-03-01
The stochastic response and extinction time of a predator-prey model with Gaussian white noise excitations are studied by the generalized cell mapping (GCM) method based on the short-time Gaussian approximation (STGA). The methods for stochastic response probability density functions (PDFs) and extinction time statistics are developed. The Taylor expansion is used to deal with non-polynomial nonlinear terms of the model for deriving the moment equations with Gaussian closure, which are needed for the STGA in order to compute the one-step transition probabilities. The work is validated with direct Monte Carlo simulations. We have presented the transient responses showing the evolution from a Gaussian initial distribution to a non-Gaussian steady-state one. The effects of the model parameter and noise intensities on the steady-state PDFs are discussed. It is also found that the effects of noise intensities on the extinction time statistics are opposite to the effects on the limit probability distributions of the survival species.
NASA Astrophysics Data System (ADS)
Krohn, Olivia; Armbruster, Aaron; Gao, Yongsheng; Atlas Collaboration
2017-01-01
Software tools developed for the purpose of modeling CERN LHC pp collision data to aid in its interpretation are presented. Some measurements are not adequately described by a Gaussian distribution; thus an interpretation assuming Gaussian uncertainties will inevitably introduce bias, necessitating analytical tools to recreate and evaluate non-Gaussian features. One example is the measurements of Higgs boson production rates in different decay channels, and the interpretation of these measurements. The ratios of data to Standard Model expectations (μ) for five arbitrary signals were modeled by building five Poisson distributions with mixed signal contributions such that the measured values of μ are correlated. Algorithms were designed to recreate probability distribution functions of μ as multi-variate Gaussians, where the standard deviation (σ) and correlation coefficients (ρ) are parametrized. There was good success with modeling 1-D likelihood contours of μ, and the multi-dimensional distributions were well modeled within 1- σ but the model began to diverge after 2- σ due to unmerited assumptions in developing ρ. Future plans to improve the algorithms and develop a user-friendly analysis package will also be discussed. NSF International Research Experiences for Students
Bardhan, Jaydeep P; Knepley, Matthew G
2011-09-28
We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics
Hirayama, Shusuke; Takayanagi, Taisuke; Fujii, Yusuke; Fujimoto, Rintaro; Fujitaka, Shinichiro; Umezawa, Masumi; Nagamine, Yoshihiko; Hosaka, Masahiro; Yasui, Keisuke; Omachi, Chihiro; Toshito, Toshiyuki
2016-03-01
The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. The accuracy of calculations was important for treatment planning software (TPS) because the energy, spot position, and absolute dose had to be determined by TPS for the spot scanning technique. The dose distribution was calculated by convolving in-air fluence with the dose kernel. The dose kernel was the in-water 3D dose distribution of an infinitesimal pencil beam and consisted of an integral depth dose (IDD) and a lateral distribution. Accurate modeling of the low-dose region was important for spot scanning technique because the dose distribution was formed by cumulating hundreds or thousands of delivered beams. The authors employed a double Gaussian function as the in-air fluence model of an individual beam. Double and triple Gaussian kernel models were also prepared for comparison. The parameters of the kernel lateral model were derived by fitting a simulated in-water lateral dose profile induced by an infinitesimal proton beam, whose emittance was zero, at various depths using Monte Carlo (MC) simulation. The fitted parameters were interpolated as a function of depth in water and stored as a separate look-up table. These stored parameters for each energy and depth in water were acquired from the look-up table when incorporating them into the TPS. The modeling process for the in-air fluence and IDD was based on the method proposed in the literature. These were derived using MC simulation and measured data. The authors compared the measured and calculated absolute doses at the center of the spread-out Bragg peak (SOBP) under various volumetric irradiation conditions to systematically investigate the influence of the two types of kernel models on the dose calculations. The authors investigated the difference between double and triple Gaussian kernel models. The authors found that the difference between the two studied kernel models appeared at mid-depths and the accuracy of predicting the double Gaussian model deteriorated at the low-dose bump that appeared at mid-depths. When the authors employed the double Gaussian kernel model, the accuracy of calculations for the absolute dose at the center of the SOBP varied with irradiation conditions and the maximum difference was 3.4%. In contrast, the results obtained from calculations with the triple Gaussian kernel model indicated good agreement with the measurements within ±1.1%, regardless of the irradiation conditions. The difference between the results obtained with the two types of studied kernel models was distinct in the high energy region. The accuracy of calculations with the double Gaussian kernel model varied with the field size and SOBP width because the accuracy of prediction with the double Gaussian model was insufficient at the low-dose bump. The evaluation was only qualitative under limited volumetric irradiation conditions. Further accumulation of measured data would be needed to quantitatively comprehend what influence the double and triple Gaussian kernel models had on the accuracy of dose calculations.
Bayesian sensitivity analysis of bifurcating nonlinear models
NASA Astrophysics Data System (ADS)
Becker, W.; Worden, K.; Rowson, J.
2013-01-01
Sensitivity analysis allows one to investigate how changes in input parameters to a system affect the output. When computational expense is a concern, metamodels such as Gaussian processes can offer considerable computational savings over Monte Carlo methods, albeit at the expense of introducing a data modelling problem. In particular, Gaussian processes assume a smooth, non-bifurcating response surface. This work highlights a recent extension to Gaussian processes which uses a decision tree to partition the input space into homogeneous regions, and then fits separate Gaussian processes to each region. In this way, bifurcations can be modelled at region boundaries and different regions can have different covariance properties. To test this method, both the treed and standard methods were applied to the bifurcating response of a Duffing oscillator and a bifurcating FE model of a heart valve. It was found that the treed Gaussian process provides a practical way of performing uncertainty and sensitivity analysis on large, potentially-bifurcating models, which cannot be dealt with by using a single GP, although an open problem remains how to manage bifurcation boundaries that are not parallel to coordinate axes.
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.
1992-01-01
The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.
NASA Technical Reports Server (NTRS)
Wang, P. K. C.; Hadaegh, F. Y.
1996-01-01
In modeling micromachined deformable mirrors with electrostatic actuators whose gap spacings are of the same order of magnitude as those of the surface deformations, it is necessary to use nonlinear models for the actuators. In this paper, we consider micromachined deformable mirrors modeled by a membrane or plate equation with nonlinear electrostatic actuator characteristics. Numerical methods for computing the mirror deformation due to given actuator voltages and the actuator voltages required for producing the desired deformations at the actuator locations are presented. The application of the proposed methods to circular deformable mirrors whose surfaces are modeled by elastic membranes is discussed in detail. Numerical results are obtained for a typical circular micromachined mirror with electrostatic actuators.
Wear, Keith A
2002-11-01
For a wide range of applications in medical ultrasound, power spectra of received signals are approximately Gaussian. It has been established previously that an ultrasound beam with a Gaussian spectrum propagating through a medium with linear attenuation remains Gaussian. In this paper, Gaussian transformations are derived to model the effects of scattering (according to a power law, as is commonly applicable in soft tissues, especially over limited frequency ranges) and gating (with a Hamming window, a commonly used gate function). These approximations are shown to be quite accurate even for relatively broad band systems with fractional bandwidths approaching 100%. The theory is validated by experiments in phantoms consisting of glass particles suspended in agar.
Plechawska, Małgorzata; Polańska, Joanna
2009-01-01
This article presents the method of the processing of mass spectrometry data. Mass spectra are modelled with Gaussian Mixture Models. Every peak of the spectrum is represented by a single Gaussian. Its parameters describe the location, height and width of the corresponding peak of the spectrum. An authorial version of the Expectation Maximisation Algorithm was used to perform all calculations. Errors were estimated with a virtual mass spectrometer. The discussed tool was originally designed to generate a set of spectra within defined parameters.
NASA Astrophysics Data System (ADS)
Lylova, A. N.; Sheldakova, Yu. V.; Kudryashov, A. V.; Samarkin, V. V.
2018-01-01
We consider the methods for modelling doughnut and super-Gaussian intensity distributions in the far field by means of deformable bimorph mirrors. A method for the rapid formation of a specified intensity distribution using a Shack - Hartmann sensor is proposed, and the results of the modelling of doughnut and super-Gaussian intensity distributions are presented.
Revisiting non-Gaussianity from non-attractor inflation models
NASA Astrophysics Data System (ADS)
Cai, Yi-Fu; Chen, Xingang; Namjoo, Mohammad Hossein; Sasaki, Misao; Wang, Dong-Gang; Wang, Ziwei
2018-05-01
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition—such as in the case of smooth transition or some sharp transition scenarios—the Script O(1) local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.
Li, Derong; Lv, Xiaohua; Bowlan, Pamela; Du, Rui; Zeng, Shaoqun; Luo, Qingming
2009-09-14
The evolution of the frequency chirp of a laser pulse inside a classical pulse compressor is very different for plane waves and Gaussian beams, although after propagating through the last (4th) dispersive element, the two models give the same results. In this paper, we have analyzed the evolution of the frequency chirp of Gaussian pulses and beams using a method which directly obtains the spectral phase acquired by the compressor. We found the spatiotemporal couplings in the phase to be the fundamental reason for the difference in the frequency chirp acquired by a Gaussian beam and a plane wave. When the Gaussian beam propagates, an additional frequency chirp will be introduced if any spatiotemporal couplings (i.e. angular dispersion, spatial chirp or pulse front tilt) are present. However, if there are no couplings present, the chirp of the Gaussian beam is the same as that of a plane wave. When the Gaussian beam is well collimated, the introduced frequency chirp predicted by the plane wave and Gaussian beam models are in closer agreement. This work improves our understanding of pulse compressors and should be helpful for optimizing dispersion compensation schemes in many applications of femtosecond laser pulses.
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising.
Zhang, Kai; Zuo, Wangmeng; Chen, Yunjin; Meng, Deyu; Zhang, Lei
2017-07-01
The discriminative model learning for image denoising has been recently attracting considerable attentions due to its favorable denoising performance. In this paper, we take one step forward by investigating the construction of feed-forward denoising convolutional neural networks (DnCNNs) to embrace the progress in very deep architecture, learning algorithm, and regularization method into image denoising. Specifically, residual learning and batch normalization are utilized to speed up the training process as well as boost the denoising performance. Different from the existing discriminative denoising models which usually train a specific model for additive white Gaussian noise at a certain noise level, our DnCNN model is able to handle Gaussian denoising with unknown noise level (i.e., blind Gaussian denoising). With the residual learning strategy, DnCNN implicitly removes the latent clean image in the hidden layers. This property motivates us to train a single DnCNN model to tackle with several general image denoising tasks, such as Gaussian denoising, single image super-resolution, and JPEG image deblocking. Our extensive experiments demonstrate that our DnCNN model can not only exhibit high effectiveness in several general image denoising tasks, but also be efficiently implemented by benefiting from GPU computing.
Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
NASA Astrophysics Data System (ADS)
Borges, G. M.; Ferreira, A. S.; da Silva, M. A. A.; Cressoni, J. C.; Viswanathan, G. M.; Mariz, A. M.
2012-09-01
Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e.g., fractional Brownian motion, Lévy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation σt which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.
Robust radio interferometric calibration using the t-distribution
NASA Astrophysics Data System (ADS)
Kazemi, S.; Yatawatta, S.
2013-10-01
A major stage of radio interferometric data processing is calibration or the estimation of systematic errors in the data and the correction for such errors. A stochastic error (noise) model is assumed, and in most cases, this underlying model is assumed to be Gaussian. However, outliers in the data due to interference or due to errors in the sky model would have adverse effects on processing based on a Gaussian noise model. Most of the shortcomings of calibration such as the loss in flux or coherence, and the appearance of spurious sources, could be attributed to the deviations of the underlying noise model. In this paper, we propose to improve the robustness of calibration by using a noise model based on Student's t-distribution. Student's t-noise is a special case of Gaussian noise when the variance is unknown. Unlike Gaussian-noise-model-based calibration, traditional least-squares minimization would not directly extend to a case when we have a Student's t-noise model. Therefore, we use a variant of the expectation-maximization algorithm, called the expectation-conditional maximization either algorithm, when we have a Student's t-noise model and use the Levenberg-Marquardt algorithm in the maximization step. We give simulation results to show the robustness of the proposed calibration method as opposed to traditional Gaussian-noise-model-based calibration, especially in preserving the flux of weaker sources that are not included in the calibration model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zang, L., E-mail: l-zang@center.iae.kyoto-u.ac.jp; Kasajima, K.; Hashimoto, K.
Edge fluctuation in a supersonic molecular-beam injection (SMBI) fueled plasma has been measured using an electrostatic probe array. After SMBI, the plasma stored energy (W{sub p}) temporarily decreased then started to increase. The local plasma fluctuation and fluctuation induced particle transport before and after SMBI have been analyzed. In a short duration (∼4 ms) just after SMBI, the density fluctuation of broad-band low frequency increased, and the probability density function (PDF) changed from a nearly Gaussian to a positively skewed non-Gaussian one. This suggests that intermittent structures were produced due to SMBI. Also the fluctuation induced particle transport was greatly enhancedmore » during this short duration. About 4 ms after SMBI, the low frequency broad-band density fluctuation decreased, and the PDF returned to a nearly Gaussian shape. Also the fluctuation induced particle transport was reduced. Compared with conventional gas puff, W{sub p} degradation window is very short due to the short injection period of SMBI. After this short degradation window, fluctuation induced particle transport was reduced and W{sub p} started the climbing phase. Therefore, the short period of the influence to the edge fluctuation might be an advantage of this novel fueling technique. On the other hand, although their roles are not identified at present, coherent MHD modes are also suppressed as well by the application of SMBI. These MHD modes are thought to be de-exited due to a sudden change of the edge density and/or excitation conditions.« less
Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.
Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G
2016-01-01
While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.
NASA Astrophysics Data System (ADS)
Zhou, Anran; Xie, Weixin; Pei, Jihong; Chen, Yapei
2018-02-01
For ship targets detection in cluttered infrared image sequences, a robust detection method, based on the probabilistic single Gaussian model of sea background in Fourier domain, is put forward. The amplitude spectrum sequences at each frequency point of the pure seawater images in Fourier domain, being more stable than the gray value sequences of each background pixel in the spatial domain, are regarded as a Gaussian model. Next, a probability weighted matrix is built based on the stability of the pure seawater's total energy spectrum in the row direction, to make the Gaussian model more accurate. Then, the foreground frequency points are separated from the background frequency points by the model. Finally, the false-alarm points are removed utilizing ships' shape features. The performance of the proposed method is tested by visual and quantitative comparisons with others.
Leong, Siow Hoo; Ong, Seng Huat
2017-01-01
This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index.
Leong, Siow Hoo
2017-01-01
This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index. PMID:28686634
Electrostatic Estimation of Intercalant Jump-Diffusion Barriers Using Finite-Size Ion Models.
Zimmermann, Nils E R; Hannah, Daniel C; Rong, Ziqin; Liu, Miao; Ceder, Gerbrand; Haranczyk, Maciej; Persson, Kristin A
2018-02-01
We report on a scheme for estimating intercalant jump-diffusion barriers that are typically obtained from demanding density functional theory-nudged elastic band calculations. The key idea is to relax a chain of states in the field of the electrostatic potential that is averaged over a spherical volume using different finite-size ion models. For magnesium migrating in typical intercalation materials such as transition-metal oxides, we find that the optimal model is a relatively large shell. This data-driven result parallels typical assumptions made in models based on Onsager's reaction field theory to quantitatively estimate electrostatic solvent effects. Because of its efficiency, our potential of electrostatics-finite ion size (PfEFIS) barrier estimation scheme will enable rapid identification of materials with good ionic mobility.
NASA Astrophysics Data System (ADS)
Sagui, Celeste; Pedersen, Lee G.; Darden, Thomas A.
2004-01-01
The accurate simulation of biologically active macromolecules faces serious limitations that originate in the treatment of electrostatics in the empirical force fields. The current use of "partial charges" is a significant source of errors, since these vary widely with different conformations. By contrast, the molecular electrostatic potential (MEP) obtained through the use of a distributed multipole moment description, has been shown to converge to the quantum MEP outside the van der Waals surface, when higher order multipoles are used. However, in spite of the considerable improvement to the representation of the electronic cloud, higher order multipoles are not part of current classical biomolecular force fields due to the excessive computational cost. In this paper we present an efficient formalism for the treatment of higher order multipoles in Cartesian tensor formalism. The Ewald "direct sum" is evaluated through a McMurchie-Davidson formalism [L. McMurchie and E. Davidson, J. Comput. Phys. 26, 218 (1978)]. The "reciprocal sum" has been implemented in three different ways: using an Ewald scheme, a particle mesh Ewald (PME) method, and a multigrid-based approach. We find that even though the use of the McMurchie-Davidson formalism considerably reduces the cost of the calculation with respect to the standard matrix implementation of multipole interactions, the calculation in direct space remains expensive. When most of the calculation is moved to reciprocal space via the PME method, the cost of a calculation where all multipolar interactions (up to hexadecapole-hexadecapole) are included is only about 8.5 times more expensive than a regular AMBER 7 [D. A. Pearlman et al., Comput. Phys. Commun. 91, 1 (1995)] implementation with only charge-charge interactions. The multigrid implementation is slower but shows very promising results for parallelization. It provides a natural way to interface with continuous, Gaussian-based electrostatics in the future. It is hoped that this new formalism will facilitate the systematic implementation of higher order multipoles in classical biomolecular force fields.
Castillo-Barnes, Diego; Peis, Ignacio; Martínez-Murcia, Francisco J.; Segovia, Fermín; Illán, Ignacio A.; Górriz, Juan M.; Ramírez, Javier; Salas-Gonzalez, Diego
2017-01-01
A wide range of segmentation approaches assumes that intensity histograms extracted from magnetic resonance images (MRI) have a distribution for each brain tissue that can be modeled by a Gaussian distribution or a mixture of them. Nevertheless, intensity histograms of White Matter and Gray Matter are not symmetric and they exhibit heavy tails. In this work, we present a hidden Markov random field model with expectation maximization (EM-HMRF) modeling the components using the α-stable distribution. The proposed model is a generalization of the widely used EM-HMRF algorithm with Gaussian distributions. We test the α-stable EM-HMRF model in synthetic data and brain MRI data. The proposed methodology presents two main advantages: Firstly, it is more robust to outliers. Secondly, we obtain similar results than using Gaussian when the Gaussian assumption holds. This approach is able to model the spatial dependence between neighboring voxels in tomographic brain MRI. PMID:29209194
NASA Astrophysics Data System (ADS)
Stork, Martina; Tavan, Paul
2007-04-01
In the preceding paper by Stork and Tavan, [J. Chem. Phys. 126, 165105 (2007)], the authors have reformulated an electrostatic theory which treats proteins surrounded by dielectric solvent continua and approximately solves the associated Poisson equation [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)]. The resulting solution comprises analytical expressions for the electrostatic reaction field (RF) and potential, which are generated within the protein by the polarization of the surrounding continuum. Here the field and potential are represented in terms of Gaussian RF dipole densities localized at the protein atoms. Quite like in a polarizable force field, also the RF dipole at a given protein atom is induced by the partial charges and RF dipoles at the other atoms. Based on the reformulated theory, the authors have suggested expressions for the RF forces, which obey Newton's third law. Previous continuum approaches, which were also built on solutions of the Poisson equation, used to violate the reactio principle required by this law, and thus were inapplicable to molecular dynamics (MD) simulations. In this paper, the authors suggest a set of techniques by which one can surmount the few remaining hurdles still hampering the application of the theory to MD simulations of soluble proteins and peptides. These techniques comprise the treatment of the RF dipoles within an extended Lagrangian approach and the optimization of the atomic RF polarizabilities. Using the well-studied conformational dynamics of alanine dipeptide as the simplest example, the authors demonstrate the remarkable accuracy and efficiency of the resulting RF-MD approach.
Improved Gaussian Beam-Scattering Algorithm
NASA Technical Reports Server (NTRS)
Lock, James A.
1995-01-01
The localized model of the beam-shape coefficients for Gaussian beam-scattering theory by a spherical particle provides a great simplification in the numerical implementation of the theory. We derive an alternative form for the localized coefficients that is more convenient for computer computations and that provides physical insight into the details of the scattering process. We construct a FORTRAN program for Gaussian beam scattering with the localized model and compare its computer run time on a personal computer with that of a traditional Mie scattering program and with three other published methods for computing Gaussian beam scattering. We show that the analytical form of the beam-shape coefficients makes evident the fact that the excitation rate of morphology-dependent resonances is greatly enhanced for far off-axis incidence of the Gaussian beam.
Adzhemyan, L Ts; Antonov, N V; Honkonen, J; Kim, T L
2005-01-01
The field theoretic renormalization group and operator-product expansion are applied to the model of a passive scalar quantity advected by a non-Gaussian velocity field with finite correlation time. The velocity is governed by the Navier-Stokes equation, subject to an external random stirring force with the correlation function proportional to delta(t- t')k(4-d-2epsilon). It is shown that the scalar field is intermittent already for small epsilon, its structure functions display anomalous scaling behavior, and the corresponding exponents can be systematically calculated as series in epsilon. The practical calculation is accomplished to order epsilon2 (two-loop approximation), including anisotropic sectors. As for the well-known Kraichnan rapid-change model, the anomalous scaling results from the existence in the model of composite fields (operators) with negative scaling dimensions, identified with the anomalous exponents. Thus the mechanism of the origin of anomalous scaling appears similar for the Gaussian model with zero correlation time and the non-Gaussian model with finite correlation time. It should be emphasized that, in contrast to Gaussian velocity ensembles with finite correlation time, the model and the perturbation theory discussed here are manifestly Galilean covariant. The relevance of these results for real passive advection and comparison with the Gaussian models and experiments are briefly discussed.
Geometries in Soft Matter From Geometric Frustration, Liquid Droplets to Electrostatics in Solution
NASA Astrophysics Data System (ADS)
Yao, Zhenwei
This thesis explores geometric aspects of soft matter systems. The topics covered fall into three categories: (i) geometric frustrations, including the interplay of geometry and topological defects in two dimensional systems, and the frustration of a planar sheet attached to a curved surface; (ii) geometries of liquid droplets, including the curvature driven instabilities of toroidal liquid droplets and the self-propulsion of droplets on a spatially varying surface topography; (iii) the study of the electric double layer structure around charged spherical interfaces by a geometric method. In (i), we study the crystalline order on capillary bridges with varying Gaussian curvature. Energy requires the appearance of topological defects on the surface, which are natural spots for biological activity and chemical functionalization. We further study how liquid crystalline order deforms flexible structured vesicles. In particular we find faceted tetrahedral vesicle as the ground state, which may lead to the design of supra-molecular structures with tetrahedral symmetry and new classes of nano-carriers. Furthermore, by a simple paper model we explore the geometric frustration on a planar sheet when brought to a negative curvature surface in a designed elasto-capillary system. In (ii), motivated by the idea of realizing crystalline order on a stable toroidal droplet and a beautiful experiment on toroidal droplets, we study the Rayleigh instability and the shrinking instability of thin and fat toroidal droplets, where the toroidal geometry plays an essential role. In (iii), by a geometric mapping we construct an approximate analytic spherical solution to the nonlinear Poisson-Boltzmann equation, and identify the applicability regime of the solution. The derived geometric solution enables further analytical study of spherical electrostatic systems such as colloidal suspensions.
Soft Mixer Assignment in a Hierarchical Generative Model of Natural Scene Statistics
Schwartz, Odelia; Sejnowski, Terrence J.; Dayan, Peter
2010-01-01
Gaussian scale mixture models offer a top-down description of signal generation that captures key bottom-up statistical characteristics of filter responses to images. However, the pattern of dependence among the filters for this class of models is prespecified. We propose a novel extension to the gaussian scale mixture model that learns the pattern of dependence from observed inputs and thereby induces a hierarchical representation of these inputs. Specifically, we propose that inputs are generated by gaussian variables (modeling local filter structure), multiplied by a mixer variable that is assigned probabilistically to each input from a set of possible mixers. We demonstrate inference of both components of the generative model, for synthesized data and for different classes of natural images, such as a generic ensemble and faces. For natural images, the mixer variable assignments show invariances resembling those of complex cells in visual cortex; the statistics of the gaussian components of the model are in accord with the outputs of divisive normalization models. We also show how our model helps interrelate a wide range of models of image statistics and cortical processing. PMID:16999575
Mazumdar, Anupam; Nadathur, Seshadri
2012-03-16
We provide a model in which both the inflaton and the curvaton are obtained from within the minimal supersymmetric standard model, with known gauge and Yukawa interactions. Since now both the inflaton and curvaton fields are successfully embedded within the same sector, their decay products thermalize very quickly before the electroweak scale. This results in two important features of the model: first, there will be no residual isocurvature perturbations, and second, observable non-Gaussianities can be generated with the non-Gaussianity parameter f(NL)~O(5-1000) being determined solely by the combination of weak-scale physics and the standard model Yukawa interactions.
Lin, Chuan-Kai; Wang, Sheng-De
2004-11-01
A new autopilot design for bank-to-turn (BTT) missiles is presented. In the design of autopilot, a ridge Gaussian neural network with local learning capability and fewer tuning parameters than Gaussian neural networks is proposed to model the controlled nonlinear systems. We prove that the proposed ridge Gaussian neural network, which can be a universal approximator, equals the expansions of rotated and scaled Gaussian functions. Although ridge Gaussian neural networks can approximate the nonlinear and complex systems accurately, the small approximation errors may affect the tracking performance significantly. Therefore, by employing the Hinfinity control theory, it is easy to attenuate the effects of the approximation errors of the ridge Gaussian neural networks to a prescribed level. Computer simulation results confirm the effectiveness of the proposed ridge Gaussian neural networks-based autopilot with Hinfinity stabilization.
Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.
Dinpajooh, Mohammadhasan; Matyushov, Dmitry V
2014-07-17
Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.
Zapp, Jascha; Domsch, Sebastian; Weingärtner, Sebastian; Schad, Lothar R
2017-05-01
To characterize the reversible transverse relaxation in pulmonary tissue and to study the benefit of a quadratic exponential (Gaussian) model over the commonly used linear exponential model for increased quantification precision. A point-resolved spectroscopy sequence was used for comprehensive sampling of the relaxation around spin echoes. Measurements were performed in an ex vivo tissue sample and in healthy volunteers at 1.5 Tesla (T) and 3 T. The goodness of fit using χred2 and the precision of the fitted relaxation time by means of its confidence interval were compared between the two relaxation models. The Gaussian model provides enhanced descriptions of pulmonary relaxation with lower χred2 by average factors of 4 ex vivo and 3 in volunteers. The Gaussian model indicates higher sensitivity to tissue structure alteration with increased precision of reversible transverse relaxation time measurements also by average factors of 4 ex vivo and 3 in volunteers. The mean relaxation times of the Gaussian model in volunteers are T2,G' = (1.97 ± 0.27) msec at 1.5 T and T2,G' = (0.83 ± 0.21) msec at 3 T. Pulmonary signal relaxation was found to be accurately modeled as Gaussian, providing a potential biomarker T2,G' with high sensitivity. Magn Reson Med 77:1938-1945, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Pires, Carlos A. L.; Ribeiro, Andreia F. S.
2017-02-01
We develop an expansion of space-distributed time series into statistically independent uncorrelated subspaces (statistical sources) of low-dimension and exhibiting enhanced non-Gaussian probability distributions with geometrically simple chosen shapes (projection pursuit rationale). The method relies upon a generalization of the principal component analysis that is optimal for Gaussian mixed signals and of the independent component analysis (ICA), optimized to split non-Gaussian scalar sources. The proposed method, supported by information theory concepts and methods, is the independent subspace analysis (ISA) that looks for multi-dimensional, intrinsically synergetic subspaces such as dyads (2D) and triads (3D), not separable by ICA. Basically, we optimize rotated variables maximizing certain nonlinear correlations (contrast functions) coming from the non-Gaussianity of the joint distribution. As a by-product, it provides nonlinear variable changes `unfolding' the subspaces into nearly Gaussian scalars of easier post-processing. Moreover, the new variables still work as nonlinear data exploratory indices of the non-Gaussian variability of the analysed climatic and geophysical fields. The method (ISA, followed by nonlinear unfolding) is tested into three datasets. The first one comes from the Lorenz'63 three-dimensional chaotic model, showing a clear separation into a non-Gaussian dyad plus an independent scalar. The second one is a mixture of propagating waves of random correlated phases in which the emergence of triadic wave resonances imprints a statistical signature in terms of a non-Gaussian non-separable triad. Finally the method is applied to the monthly variability of a high-dimensional quasi-geostrophic (QG) atmospheric model, applied to the Northern Hemispheric winter. We find that quite enhanced non-Gaussian dyads of parabolic shape, perform much better than the unrotated variables in which concerns the separation of the four model's centroid regimes (positive and negative phases of the Arctic Oscillation and of the North Atlantic Oscillation). Triads are also likely in the QG model but of weaker expression than dyads due to the imposed shape and dimension. The study emphasizes the existence of nonlinear dyadic and triadic nonlinear teleconnections.
Kwok, Ezra; Gopaluni, Bhushan; Kizhakkedathu, Jayachandran N.
2013-01-01
Molecular dynamics (MD) simulations results are herein incorporated into an electrostatic model used to determine the structure of an effective polymer-based antidote to the anticoagulant fondaparinux. In silico data for the polymer or its cationic binding groups has not, up to now, been available, and experimental data on the structure of the polymer-fondaparinux complex is extremely limited. Consequently, the task of optimizing the polymer structure is a daunting challenge. MD simulations provided a means to gain microscopic information on the interactions of the binding groups and fondaparinux that would have otherwise been inaccessible. This was used to refine the electrostatic model and improve the quantitative model predictions of binding affinity. Once refined, the model provided guidelines to improve electrostatic forces between candidate polymers and fondaparinux in order to increase association rate constants. PMID:27006916
Faheem, Muhammad; Heyden, Andreas
2014-08-12
We report the development of a quantum mechanics/molecular mechanics free energy perturbation (QM/MM-FEP) method for modeling chemical reactions at metal-water interfaces. This novel solvation scheme combines planewave density function theory (DFT), periodic electrostatic embedded cluster method (PEECM) calculations using Gaussian-type orbitals, and classical molecular dynamics (MD) simulations to obtain a free energy description of a complex metal-water system. We derive a potential of mean force (PMF) of the reaction system within the QM/MM framework. A fixed-size, finite ensemble of MM conformations is used to permit precise evaluation of the PMF of QM coordinates and its gradient defined within this ensemble. Local conformations of adsorbed reaction moieties are optimized using sequential MD-sampling and QM-optimization steps. An approximate reaction coordinate is constructed using a number of interpolated states and the free energy difference between adjacent states is calculated using the QM/MM-FEP method. By avoiding on-the-fly QM calculations and by circumventing the challenges associated with statistical averaging during MD sampling, a computational speedup of multiple orders of magnitude is realized. The method is systematically validated against the results of ab initio QM calculations and demonstrated for C-C cleavage in double-dehydrogenated ethylene glycol on a Pt (111) model surface.
Erickson, Collin B; Ankenman, Bruce E; Sanchez, Susan M
2018-06-01
This data article provides the summary data from tests comparing various Gaussian process software packages. Each spreadsheet represents a single function or type of function using a particular input sample size. In each spreadsheet, a row gives the results for a particular replication using a single package. Within each spreadsheet there are the results from eight Gaussian process model-fitting packages on five replicates of the surface. There is also one spreadsheet comparing the results from two packages performing stochastic kriging. These data enable comparisons between the packages to determine which package will give users the best results.
Analysis of low altitude atmospheric turbulence data measured in flight
NASA Technical Reports Server (NTRS)
Ganzer, V. M.; Joppa, R. G.; Vanderwees, G.
1977-01-01
All three components of turbulence were measured simultaneously in flight at each wing tip of a Beech D-18 aircraft. The flights were conducted at low altitude, 30.5 - 61.0 meters (100-200 ft.), over water in the presence of wind driven turbulence. Statistical properties of flight measured turbulence were compared with Gaussian and non-Gaussian turbulence models. Spatial characteristics of the turbulence were analyzed using the data from flight perpendicular and parallel to the wind. The probability density distributions of the vertical gusts show distinctly non-Gaussian characteristics. The distributions of the longitudinal and lateral gusts are generally Gaussian. The power spectra compare in the inertial subrange at some points better with the Dryden spectrum, while at other points the von Karman spectrum is a better approximation. In the low frequency range the data show peaks or dips in the power spectral density. The cross between vertical gusts in the direction of the mean wind were compared with a matched non-Gaussian model. The real component of the cross spectrum is in general close to the non-Gaussian model. The imaginary component, however, indicated a larger phase shift between these two gust components than was found in previous research.
NASA Astrophysics Data System (ADS)
Žáček, K.
Summary- The only way to make an excessively complex velocity model suitable for application of ray-based methods, such as the Gaussian beam or Gaussian packet methods, is to smooth it. We have smoothed the Marmousi model by choosing a coarser grid and by minimizing the second spatial derivatives of the slowness. This was done by minimizing the relevant Sobolev norm of slowness. We show that minimizing the relevant Sobolev norm of slowness is a suitable technique for preparing the optimum models for asymptotic ray theory methods. However, the price we pay for a model suitable for ray tracing is an increase of the difference between the smoothed and original model. Similarly, the estimated error in the travel time also increases due to the difference between the models. In smoothing the Marmousi model, we have found the estimated error of travel times at the verge of acceptability. Due to the low frequencies in the wavefield of the original Marmousi data set, we have found the Gaussian beams and Gaussian packets at the verge of applicability even in models sufficiently smoothed for ray tracing.
Simulation of Aluminum Micro-mirrors for Space Applications at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Kuhn, J. L.; Dutta, S. B.; Greenhouse, M. A.; Mott, D. B.
2000-01-01
Closed form and finite element models are developed to predict the device response of aluminum electrostatic torsion micro-mirrors fabricated on silicon substrate for space applications at operating temperatures of 30K. Initially, closed form expressions for electrostatic pressure arid mechanical restoring torque are used to predict the pull-in and release voltages at room temperature. Subsequently, a detailed mechanical finite element model is developed to predict stresses and vertical beam deflection induced by the electrostatic and thermal loads. An incremental and iterative solution method is used in conjunction with the nonlinear finite element model and closed form electrostatic equations to solve. the coupled electro-thermo-mechanical problem. The simulation results are compared with experimental measurements at room temperature of fabricated micro-mirror devices.
Topology in two dimensions. IV - CDM models with non-Gaussian initial conditions
NASA Astrophysics Data System (ADS)
Coles, Peter; Moscardini, Lauro; Plionis, Manolis; Lucchin, Francesco; Matarrese, Sabino; Messina, Antonio
1993-02-01
The results of N-body simulations with both Gaussian and non-Gaussian initial conditions are used here to generate projected galaxy catalogs with the same selection criteria as the Shane-Wirtanen counts of galaxies. The Euler-Poincare characteristic is used to compare the statistical nature of the projected galaxy clustering in these simulated data sets with that of the observed galaxy catalog. All the models produce a topology dominated by a meatball shift when normalized to the known small-scale clustering properties of galaxies. Models characterized by a positive skewness of the distribution of primordial density perturbations are inconsistent with the Lick data, suggesting problems in reconciling models based on cosmic textures with observations. Gaussian CDM models fit the distribution of cell counts only if they have a rather high normalization but possess too low a coherence length compared with the Lick counts. This suggests that a CDM model with extra large scale power would probably fit the available data.
The Poisson-Helmholtz-Boltzmann model.
Bohinc, K; Shrestha, A; May, S
2011-10-01
We present a mean-field model of a one-component electrolyte solution where the mobile ions interact not only via Coulomb interactions but also through a repulsive non-electrostatic Yukawa potential. Our choice of the Yukawa potential represents a simple model for solvent-mediated interactions between ions. We employ a local formulation of the mean-field free energy through the use of two auxiliary potentials, an electrostatic and a non-electrostatic potential. Functional minimization of the mean-field free energy leads to two coupled local differential equations, the Poisson-Boltzmann equation and the Helmholtz-Boltzmann equation. Their boundary conditions account for the sources of both the electrostatic and non-electrostatic interactions on the surface of all macroions that reside in the solution. We analyze a specific example, two like-charged planar surfaces with their mobile counterions forming the electrolyte solution. For this system we calculate the pressure between the two surfaces, and we analyze its dependence on the strength of the Yukawa potential and on the non-electrostatic interactions of the mobile ions with the planar macroion surfaces. In addition, we demonstrate that our mean-field model is consistent with the contact theorem, and we outline its generalization to arbitrary interaction potentials through the use of a Laplace transformation. © EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2011
Capacity of PPM on Gaussian and Webb Channels
NASA Technical Reports Server (NTRS)
Divsalar, D.; Dolinar, S.; Pollara, F.; Hamkins, J.
2000-01-01
This paper computes and compares the capacities of M-ary PPM on various idealized channels that approximate the optical communication channel: (1) the standard additive white Gaussian noise (AWGN) channel;(2) a more general AWGN channel (AWGN2) allowing different variances in signal and noise slots;(3) a Webb-distributed channel (Webb2);(4) a Webb+Gaussian channel, modeling Gaussian thermal noise added to Webb-distributed channel outputs.
Simulation and analysis of scalable non-Gaussian statistically anisotropic random functions
NASA Astrophysics Data System (ADS)
Riva, Monica; Panzeri, Marco; Guadagnini, Alberto; Neuman, Shlomo P.
2015-12-01
Many earth and environmental (as well as other) variables, Y, and their spatial or temporal increments, ΔY, exhibit non-Gaussian statistical scaling. Previously we were able to capture some key aspects of such scaling by treating Y or ΔY as standard sub-Gaussian random functions. We were however unable to reconcile two seemingly contradictory observations, namely that whereas sample frequency distributions of Y (or its logarithm) exhibit relatively mild non-Gaussian peaks and tails, those of ΔY display peaks that grow sharper and tails that become heavier with decreasing separation distance or lag. Recently we overcame this difficulty by developing a new generalized sub-Gaussian model which captures both behaviors in a unified and consistent manner, exploring it on synthetically generated random functions in one dimension (Riva et al., 2015). Here we extend our generalized sub-Gaussian model to multiple dimensions, present an algorithm to generate corresponding random realizations of statistically isotropic or anisotropic sub-Gaussian functions and illustrate it in two dimensions. We demonstrate the accuracy of our algorithm by comparing ensemble statistics of Y and ΔY (such as, mean, variance, variogram and probability density function) with those of Monte Carlo generated realizations. We end by exploring the feasibility of estimating all relevant parameters of our model by analyzing jointly spatial moments of Y and ΔY obtained from a single realization of Y.
Receiver design for SPAD-based VLC systems under Poisson-Gaussian mixed noise model.
Mao, Tianqi; Wang, Zhaocheng; Wang, Qi
2017-01-23
Single-photon avalanche diode (SPAD) is a promising photosensor because of its high sensitivity to optical signals in weak illuminance environment. Recently, it has drawn much attention from researchers in visible light communications (VLC). However, existing literature only deals with the simplified channel model, which only considers the effects of Poisson noise introduced by SPAD, but neglects other noise sources. Specifically, when an analog SPAD detector is applied, there exists Gaussian thermal noise generated by the transimpedance amplifier (TIA) and the digital-to-analog converter (D/A). Therefore, in this paper, we propose an SPAD-based VLC system with pulse-amplitude-modulation (PAM) under Poisson-Gaussian mixed noise model, where Gaussian-distributed thermal noise at the receiver is also investigated. The closed-form conditional likelihood of received signals is derived using the Laplace transform and the saddle-point approximation method, and the corresponding quasi-maximum-likelihood (quasi-ML) detector is proposed. Furthermore, the Poisson-Gaussian-distributed signals are converted to Gaussian variables with the aid of the generalized Anscombe transform (GAT), leading to an equivalent additive white Gaussian noise (AWGN) channel, and a hard-decision-based detector is invoked. Simulation results demonstrate that, the proposed GAT-based detector can reduce the computational complexity with marginal performance loss compared with the proposed quasi-ML detector, and both detectors are capable of accurately demodulating the SPAD-based PAM signals.
Mulkern, Robert V; Balasubramanian, Mukund; Mitsouras, Dimitrios
2014-07-30
To determine whether Lorentzian or Gaussian intra-voxel frequency distributions are better suited for modeling data acquired with gradient-echo sampling of single spin-echoes for the simultaneous characterization of irreversible and reversible relaxation rates. Clinical studies (e.g., of brain iron deposition) using such acquisition schemes have typically assumed Lorentzian distributions. Theoretical expressions of the time-domain spin-echo signal for intra-voxel Lorentzian and Gaussian distributions were used to fit data from a human brain scanned at both 1.5 Tesla (T) and 3T, resulting in maps of irreversible and reversible relaxation rates for each model. The relative merits of the Lorentzian versus Gaussian model were compared by means of quality of fit considerations. Lorentzian fits were equivalent to Gaussian fits primarily in regions of the brain where irreversible relaxation dominated. In the multiple brain regions where reversible relaxation effects become prominent, however, Gaussian fits were clearly superior. The widespread assumption that a Lorentzian distribution is suitable for quantitative transverse relaxation studies of the brain should be reconsidered, particularly at 3T and higher field strengths as reversible relaxation effects become more prominent. Gaussian distributions offer alternate fits of experimental data that should prove quite useful in general. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
The Stiffness Variation of a Micro-Ring Driven by a Traveling Piecewise-Electrode
Li, Yingjie; Yu, Tao; Hu, Yuh-Chung
2014-01-01
In the practice of electrostatically actuated micro devices; the electrostatic force is implemented by sequentially actuated piecewise-electrodes which result in a traveling distributed electrostatic force. However; such force was modeled as a traveling concentrated electrostatic force in literatures. This article; for the first time; presents an analytical study on the stiffness variation of microstructures driven by a traveling piecewise electrode. The analytical model is based on the theory of shallow shell and uniform electrical field. The traveling electrode not only applies electrostatic force on the circular-ring but also alters its dynamical characteristics via the negative electrostatic stiffness. It is known that; when a structure is subjected to a traveling constant force; its natural mode will be resonated as the traveling speed approaches certain critical speeds; and each natural mode refers to exactly one critical speed. However; for the case of a traveling electrostatic force; the number of critical speeds is more than that of the natural modes. This is due to the fact that the traveling electrostatic force makes the resonant frequencies of the forward and backward traveling waves of the circular-ring different. Furthermore; the resonance and stability can be independently controlled by the length of the traveling electrode; though the driving voltage and traveling speed of the electrostatic force alter the dynamics and stabilities of microstructures. This paper extends the fundamental insights into the electromechanical behavior of microstructures driven by electrostatic forces as well as the future development of MEMS/NEMS devices with electrostatic actuation and sensing. PMID:25230308
The stiffness variation of a micro-ring driven by a traveling piecewise-electrode.
Li, Yingjie; Yu, Tao; Hu, Yuh-Chung
2014-09-16
In the practice of electrostatically actuated micro devices; the electrostatic force is implemented by sequentially actuated piecewise-electrodes which result in a traveling distributed electrostatic force. However; such force was modeled as a traveling concentrated electrostatic force in literatures. This article; for the first time; presents an analytical study on the stiffness variation of microstructures driven by a traveling piecewise electrode. The analytical model is based on the theory of shallow shell and uniform electrical field. The traveling electrode not only applies electrostatic force on the circular-ring but also alters its dynamical characteristics via the negative electrostatic stiffness. It is known that; when a structure is subjected to a traveling constant force; its natural mode will be resonated as the traveling speed approaches certain critical speeds; and each natural mode refers to exactly one critical speed. However; for the case of a traveling electrostatic force; the number of critical speeds is more than that of the natural modes. This is due to the fact that the traveling electrostatic force makes the resonant frequencies of the forward and backward traveling waves of the circular-ring different. Furthermore; the resonance and stability can be independently controlled by the length of the traveling electrode; though the driving voltage and traveling speed of the electrostatic force alter the dynamics and stabilities of microstructures. This paper extends the fundamental insights into the electromechanical behavior of microstructures driven by electrostatic forces as well as the future development of MEMS/NEMS devices with electrostatic actuation and sensing.
The report briefly describes the fundamental mechanisms and limiting factors involved in the electrostatic precipitation process. It discusses theories and procedures used in the computer model to describe the physical mechanisms, and generally describes the major operations perf...
Interactive Gaussian Graphical Models for Discovering Depth Trends in ChemCam Data
NASA Astrophysics Data System (ADS)
Oyen, D. A.; Komurlu, C.; Lanza, N. L.
2018-04-01
Interactive Gaussian graphical models discover surface compositional features on rocks in ChemCam targets. Our approach visualizes shot-to-shot relationships among LIBS observations, and identifies the wavelengths involved in the trend.
The impact of electrostatic correlations on Dielectrophoresis of Non-conducting Particles
NASA Astrophysics Data System (ADS)
Alidoosti, Elaheh; Zhao, Hui
2017-11-01
The dipole moment of a charged, dielectric, spherical particle under the influence of a uniform alternating electric field is computed theoretically and numerically by solving the modified continuum Poisson-Nernst-Planck (PNP) equations accounting for ion-ion electrostatic correlations that is important at concentrated electrolytes (Phys. Rev. Lett. 106, 2011). The dependence on the frequency, zeta potential, electrostatic correlation lengths, and double layer thickness is thoroughly investigated. In the limit of thin double layers, we carry out asymptotic analysis to develop simple models which are in good agreement with the modified PNP model. Our results suggest that the electrostatic correlations have a complicated impact on the dipole moment. As the electrostatic correlations length increases, the dipole moment decreases, initially, reach a minimum, and then increases since the surface conduction first decreases and then increases due to the ion-ion correlations. The modified PNP model can improve the theoretical predictions particularly at low frequencies where the simple model can't qualitatively predict the dipole moment. This work was supported, in part, by NIH R15GM116039.
Rational redesign of inhibitors of furin/kexin processing proteases by electrostatic mutations.
Cai, Xiao-hui; Zhang, Qing; Ding, Da-fu
2004-12-01
To model the three-dimensional structure and investigate the interaction mechanism of the proprotein convertase furin/kexin and their inhibitors (eglin c mutants). The three-dimensional complex structures of furin/kexin with its inhibitors, eglin c mutants, were generated by modeller program using the newly published X-ray crystallographical structures of mouse furin and yeast kexin as templates. The electrostatic interaction energy of each complex was calculated and the results were compared with the experimentally determined inhibition constants to find the correlation between them. High quality models of furin/kexin-eglin c mutants were obtained and used for calculation of the electrostatic interaction energies between the proteases and their inhibitors. The calculated electrostatic energies of interaction showed a linear correlation to the experimental inhibition constants. The modeled structures give good explanations of the specificity of eglin c mutants to furin/kexin. The electrostatic interactions play important roles in inhibitory activity of eglin c mutants to furin/kexin. The results presented here provided quantitative structural and functional information concerning the role of the charge-charge interactions in the binding of furin/kexin and their inhibitors.
Polarizable multipolar electrostatics for cholesterol
NASA Astrophysics Data System (ADS)
Fletcher, Timothy L.; Popelier, Paul L. A.
2016-08-01
FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.
Characterization of Adrenal Adenoma by Gaussian Model-Based Algorithm.
Hsu, Larson D; Wang, Carolyn L; Clark, Toshimasa J
2016-01-01
We confirmed that computed tomography (CT) attenuation values of pixels in an adrenal nodule approximate a Gaussian distribution. Building on this and the previously described histogram analysis method, we created an algorithm that uses mean and standard deviation to estimate the percentage of negative attenuation pixels in an adrenal nodule, thereby allowing differentiation of adenomas and nonadenomas. The institutional review board approved both components of this study in which we developed and then validated our criteria. In the first, we retrospectively assessed CT attenuation values of adrenal nodules for normality using a 2-sample Kolmogorov-Smirnov test. In the second, we evaluated a separate cohort of patients with adrenal nodules using both the conventional 10HU unit mean attenuation method and our Gaussian model-based algorithm. We compared the sensitivities of the 2 methods using McNemar's test. A total of 183 of 185 observations (98.9%) demonstrated a Gaussian distribution in adrenal nodule pixel attenuation values. The sensitivity and specificity of our Gaussian model-based algorithm for identifying adrenal adenoma were 86.1% and 83.3%, respectively. The sensitivity and specificity of the mean attenuation method were 53.2% and 94.4%, respectively. The sensitivities of the 2 methods were significantly different (P value < 0.001). In conclusion, the CT attenuation values within an adrenal nodule follow a Gaussian distribution. Our Gaussian model-based algorithm can characterize adrenal adenomas with higher sensitivity than the conventional mean attenuation method. The use of our algorithm, which does not require additional postprocessing, may increase workflow efficiency and reduce unnecessary workup of benign nodules. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Miyoshi, T.; Teramura, T.; Ruiz, J.; Kondo, K.; Lien, G. Y.
2016-12-01
Convective weather is known to be highly nonlinear and chaotic, and it is hard to predict their location and timing precisely. Our Big Data Assimilation (BDA) effort has been exploring to use dense and frequent observations to avoid non-Gaussian probability density function (PDF) and to apply an ensemble Kalman filter under the Gaussian error assumption. The phased array weather radar (PAWR) can observe a dense three-dimensional volume scan with 100-m range resolution and 100 elevation angles in only 30 seconds. The BDA system assimilates the PAWR reflectivity and Doppler velocity observations every 30 seconds into 100 ensemble members of storm-scale numerical weather prediction (NWP) model at 100-m grid spacing. The 30-second-update, 100-m-mesh BDA system has been quite successful in multiple case studies of local severe rainfall events. However, with 1000 ensemble members, the reduced-resolution BDA system at 1-km grid spacing showed significant non-Gaussian PDF with every-30-second updates. With a 10240-member ensemble Kalman filter with a global NWP model at 112-km grid spacing, we found roughly 1000 members satisfactory to capture the non-Gaussian error structures. With these in mind, we explore how the density of observations in space and time affects the non-Gaussianity in an ensemble Kalman filter with a simple toy model. In this presentation, we will present the most up-to-date results of the BDA research, as well as the investigation with the toy model on the non-Gaussianity with dense and frequent observations.
Experimental study of the focusing properties of a Gaussian Schell-model vortex beam
NASA Astrophysics Data System (ADS)
Wang, Fei; Zhu, Shijun; Cai, Yangjian
2011-08-01
We carry out an experimental and theoretical study of the focusing properties of a Gaussian Schell-model (GSM) vortex beam. It is found that we can shape the beam profile of the focused GSM vortex beam by varying its initial spatial coherence width. Focused dark hollow, flat-topped, and Gaussian beam spots can be obtained in our experiment, which will be useful for trapping particles. The experimental results agree well with the theoretical results.
Metin, Baris; Wiersema, Jan R; Verguts, Tom; Gasthuys, Roos; van Der Meere, Jacob J; Roeyers, Herbert; Sonuga-Barke, Edmund
2016-01-01
According to the state regulation deficit (SRD) account, ADHD is associated with a problem using effort to maintain an optimal activation state under demanding task settings such as very fast or very slow event rates. This leads to a prediction of disrupted performance at event rate extremes reflected in higher Gaussian response variability that is a putative marker of activation during motor preparation. In the current study, we tested this hypothesis using ex-Gaussian modeling, which distinguishes Gaussian from non-Gaussian variability. Twenty-five children with ADHD and 29 typically developing controls performed a simple Go/No-Go task under four different event-rate conditions. There was an accentuated quadratic relationship between event rate and Gaussian variability in the ADHD group compared to the controls. The children with ADHD had greater Gaussian variability at very fast and very slow event rates but not at moderate event rates. The results provide evidence for the SRD account of ADHD. However, given that this effect did not explain all group differences (some of which were independent of event rate) other cognitive and/or motivational processes are also likely implicated in ADHD performance deficits.
ESPVI 4.0 ELECTROSTATIS PRECIPITATOR V-1 AND PERFORMANCE MODEL: USER'S MANUAL
The manual is the companion document for the microcomputer program ESPVI 4.0, Electrostatic Precipitation VI and Performance Model. The program was developed to provide a user- friendly interface to an advanced model of electrostatic precipitation (ESP) performance. The program i...
INPUFF: A SINGLE SOURCE GAUSSIAN PUFF DISPERSION ALGORITHM. USER'S GUIDE
INPUFF is a Gaussian INtegrated PUFF model. The Gaussian puff diffusion equation is used to compute the contribution to the concentration at each receptor from each puff every time step. Computations in INPUFF can be made for a single point source at up to 25 receptor locations. ...
Sparse covariance estimation in heterogeneous samples*
Rodríguez, Abel; Lenkoski, Alex; Dobra, Adrian
2015-01-01
Standard Gaussian graphical models implicitly assume that the conditional independence among variables is common to all observations in the sample. However, in practice, observations are usually collected from heterogeneous populations where such an assumption is not satisfied, leading in turn to nonlinear relationships among variables. To address such situations we explore mixtures of Gaussian graphical models; in particular, we consider both infinite mixtures and infinite hidden Markov models where the emission distributions correspond to Gaussian graphical models. Such models allow us to divide a heterogeneous population into homogenous groups, with each cluster having its own conditional independence structure. As an illustration, we study the trends in foreign exchange rate fluctuations in the pre-Euro era. PMID:26925189
Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices
Zhang, Wen-Ming; Meng, Guang; Chen, Di
2007-01-01
Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Hsi, W; Zhao, J
2016-06-15
Purpose: The Gaussian model for the lateral profiles in air is crucial for an accurate treatment planning system. The field size dependence of dose and the lateral beam profiles of scanning proton and carbon ion beams are due mainly to particles undergoing multiple Coulomb scattering in the beam line components and secondary particles produced by nuclear interactions in the target, both of which depend upon the energy and species of the beam. In this work, lateral profile shape parameters were fitted to measurements of field size dependence dose at the center of field size in air. Methods: Previous studies havemore » employed empirical fits to measured profile data to significantly reduce the QA time required for measurements. From this approach to derive the weight and sigma of lateral profiles in air, empirical model formulations were simulated for three selected energies for both proton and carbon beams. Results: The 20%–80% lateral penumbras predicted by the double model for proton and single model for carbon with the error functions agreed with the measurements within 1 mm. The standard deviation between measured and fitted field size dependence of dose for empirical model in air has a maximum accuracy of 0.74% for proton with double Gaussian, and of 0.57% for carbon with single Gaussian. Conclusion: We have demonstrated that the double Gaussian model of lateral beam profiles is significantly better than the single Gaussian model for proton while a single Gaussian model is sufficient for carbon. The empirical equation may be used to double check the separately obtained model that is currently used by the planning system. The empirical model in air for dose of spot scanning proton and carbon ion beams cannot be directly used for irregular shaped patient fields, but can be to provide reference values for clinical use and quality assurance.« less
Imaging latex–carbon nanotube composites by subsurface electrostatic force microscopy
Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee; ...
2016-09-08
Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface.more » Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.« less
On the numbers of images of two stochastic gravitational lensing models
NASA Astrophysics Data System (ADS)
Wei, Ang
2017-02-01
We study two gravitational lensing models with Gaussian randomness: the continuous mass fluctuation model and the floating black hole model. The lens equations of these models are related to certain random harmonic functions. Using Rice's formula and Gaussian techniques, we obtain the expected numbers of zeros of these functions, which indicate the amounts of images in the corresponding lens systems.
The report describes a version of EPA's electrostatic precipitator (ESP) model suitable for use on a Texas Instruments Programmable 59 (TI-59) hand-held calculator. This version of the model allows the calculation of ESP collection efficiency, including corrections for non-ideal ...
NASA Astrophysics Data System (ADS)
Libera, A.; de Barros, F.; Riva, M.; Guadagnini, A.
2016-12-01
Managing contaminated groundwater systems is an arduous task for multiple reasons. First, subsurface hydraulic properties are heterogeneous and the high costs associated with site characterization leads to data scarcity (therefore, model predictions are uncertain). Second, it is common for water agencies to schedule groundwater extraction through a temporal sequence of pumping rates to maximize the benefits to anthropogenic activities and minimize the environmental footprint of the withdrawal operations. The temporal variability in pumping rates and aquifer heterogeneity affect dilution rates of contaminant plumes and chemical concentration breakthrough curves (BTCs) at the well. While contaminant transport under steady-state pumping is widely studied, the manner in which a given time-varying pumping schedule affects contaminant plume behavior is tackled only marginally. At the same time, most studies focus on the impact of Gaussian random hydraulic conductivity (K) fields on transport. Here, we systematically analyze the significance of the random space function (RSF) model characterizing K in the presence of distinct pumping operations on the uncertainty of the concentration BTC at the operating well. We juxtapose Monte Carlo based numerical results associated with two models: (a) a recently proposed Generalized Sub-Gaussian model which allows capturing non-Gaussian statistical scaling features of RSFs such as hydraulic conductivity, and (b) the commonly used Gaussian field approximation. Our novel results include an appraisal of the coupled effect of (a) the model employed to depict the random spatial variability of K and (b) transient flow regime, as induced by a temporally varying pumping schedule, on the concentration BTC at the operating well. We systematically quantify the sensitivity of the uncertainty in the contaminant BTC to the RSF model adopted for K (non-Gaussian or Gaussian) in the presence of diverse well pumping schedules. Results contribute to determine conditions under which any of these two key factors prevails on the other.
NASA Astrophysics Data System (ADS)
Huang, Xingguo; Sun, Hui
2018-05-01
Gaussian beam is an important complex geometrical optical technology for modeling seismic wave propagation and diffraction in the subsurface with complex geological structure. Current methods for Gaussian beam modeling rely on the dynamic ray tracing and the evanescent wave tracking. However, the dynamic ray tracing method is based on the paraxial ray approximation and the evanescent wave tracking method cannot describe strongly evanescent fields. This leads to inaccuracy of the computed wave fields in the region with a strong inhomogeneous medium. To address this problem, we compute Gaussian beam wave fields using the complex phase by directly solving the complex eikonal equation. In this method, the fast marching method, which is widely used for phase calculation, is combined with Gauss-Newton optimization algorithm to obtain the complex phase at the regular grid points. The main theoretical challenge in combination of this method with Gaussian beam modeling is to address the irregular boundary near the curved central ray. To cope with this challenge, we present the non-uniform finite difference operator and a modified fast marching method. The numerical results confirm the proposed approach.
Stochastic inflation lattice simulations - Ultra-large scale structure of the universe
NASA Technical Reports Server (NTRS)
Salopek, D. S.
1991-01-01
Non-Gaussian fluctuations for structure formation may arise in inflation from the nonlinear interaction of long wavelength gravitational and scalar fields. Long wavelength fields have spatial gradients, a (exp -1), small compared to the Hubble radius, and they are described in terms of classical random fields that are fed by short wavelength quantum noise. Lattice Langevin calculations are given for a toy model with a scalar field interacting with an exponential potential where one can obtain exact analytic solutions of the Fokker-Planck equation. For single scalar field models that are consistent with current microwave background fluctuations, the fluctuations are Gaussian. However, for scales much larger than our observable Universe, one expects large metric fluctuations that are non-Gaussian. This example illuminates non-Gaussian models involving multiple scalar fields which are consistent with current microwave background limits.
Fast Low-Rank Bayesian Matrix Completion With Hierarchical Gaussian Prior Models
NASA Astrophysics Data System (ADS)
Yang, Linxiao; Fang, Jun; Duan, Huiping; Li, Hongbin; Zeng, Bing
2018-06-01
The problem of low rank matrix completion is considered in this paper. To exploit the underlying low-rank structure of the data matrix, we propose a hierarchical Gaussian prior model, where columns of the low-rank matrix are assumed to follow a Gaussian distribution with zero mean and a common precision matrix, and a Wishart distribution is specified as a hyperprior over the precision matrix. We show that such a hierarchical Gaussian prior has the potential to encourage a low-rank solution. Based on the proposed hierarchical prior model, a variational Bayesian method is developed for matrix completion, where the generalized approximate massage passing (GAMP) technique is embedded into the variational Bayesian inference in order to circumvent cumbersome matrix inverse operations. Simulation results show that our proposed method demonstrates superiority over existing state-of-the-art matrix completion methods.
EM in high-dimensional spaces.
Draper, Bruce A; Elliott, Daniel L; Hayes, Jeremy; Baek, Kyungim
2005-06-01
This paper considers fitting a mixture of Gaussians model to high-dimensional data in scenarios where there are fewer data samples than feature dimensions. Issues that arise when using principal component analysis (PCA) to represent Gaussian distributions inside Expectation-Maximization (EM) are addressed, and a practical algorithm results. Unlike other algorithms that have been proposed, this algorithm does not try to compress the data to fit low-dimensional models. Instead, it models Gaussian distributions in the (N - 1)-dimensional space spanned by the N data samples. We are able to show that this algorithm converges on data sets where low-dimensional techniques do not.
Experimental study of the focusing properties of a Gaussian Schell-model vortex beam.
Wang, Fei; Zhu, Shijun; Cai, Yangjian
2011-08-15
We carry out an experimental and theoretical study of the focusing properties of a Gaussian Schell-model (GSM) vortex beam. It is found that we can shape the beam profile of the focused GSM vortex beam by varying its initial spatial coherence width. Focused dark hollow, flat-topped, and Gaussian beam spots can be obtained in our experiment, which will be useful for trapping particles. The experimental results agree well with the theoretical results. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Kumari, Vandana; Kumar, Ayush; Saxena, Manoj; Gupta, Mridula
2018-01-01
The sub-threshold model formulation of Gaussian Doped Double Gate JunctionLess (GD-DG-JL) FET including source/drain depletion length is reported in the present work under the assumption that the ungated regions are fully depleted. To provide deeper insight into the device performance, the impact of gaussian straggle, channel length, oxide and channel thickness and high-k gate dielectric has been studied using extensive TCAD device simulation.
2010-06-01
GMKPF represents a better and more flexible alternative to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ...accurate results relative to GML and EML when the network delays are modeled in terms of a single non-Gaussian/non-exponential distribution or as a...to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ) estimators for clock offset estimation in non-Gaussian or non
Signal Partitioning Algorithm for Highly Efficient Gaussian Mixture Modeling in Mass Spectrometry
Polanski, Andrzej; Marczyk, Michal; Pietrowska, Monika; Widlak, Piotr; Polanska, Joanna
2015-01-01
Mixture - modeling of mass spectra is an approach with many potential applications including peak detection and quantification, smoothing, de-noising, feature extraction and spectral signal compression. However, existing algorithms do not allow for automated analyses of whole spectra. Therefore, despite highlighting potential advantages of mixture modeling of mass spectra of peptide/protein mixtures and some preliminary results presented in several papers, the mixture modeling approach was so far not developed to the stage enabling systematic comparisons with existing software packages for proteomic mass spectra analyses. In this paper we present an efficient algorithm for Gaussian mixture modeling of proteomic mass spectra of different types (e.g., MALDI-ToF profiling, MALDI-IMS). The main idea is automated partitioning of protein mass spectral signal into fragments. The obtained fragments are separately decomposed into Gaussian mixture models. The parameters of the mixture models of fragments are then aggregated to form the mixture model of the whole spectrum. We compare the elaborated algorithm to existing algorithms for peak detection and we demonstrate improvements of peak detection efficiency obtained by using Gaussian mixture modeling. We also show applications of the elaborated algorithm to real proteomic datasets of low and high resolution. PMID:26230717
Polarizable atomic multipole X-ray refinement: application to peptide crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnieders, Michael J.; Fenn, Timothy D.; Howard Hughes Medical Institute
2009-09-01
A method to accelerate the computation of structure factors from an electron density described by anisotropic and aspherical atomic form factors via fast Fourier transformation is described for the first time. Recent advances in computational chemistry have produced force fields based on a polarizable atomic multipole description of biomolecular electrostatics. In this work, the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field is applied to restrained refinement of molecular models against X-ray diffraction data from peptide crystals. A new formalism is also developed to compute anisotropic and aspherical structure factors using fast Fourier transformation (FFT) of Cartesian Gaussianmore » multipoles. Relative to direct summation, the FFT approach can give a speedup of more than an order of magnitude for aspherical refinement of ultrahigh-resolution data sets. Use of a sublattice formalism makes the method highly parallelizable. Application of the Cartesian Gaussian multipole scattering model to a series of four peptide crystals using multipole coefficients from the AMOEBA force field demonstrates that AMOEBA systematically underestimates electron density at bond centers. For the trigonal and tetrahedral bonding geometries common in organic chemistry, an atomic multipole expansion through hexadecapole order is required to explain bond electron density. Alternatively, the addition of interatomic scattering (IAS) sites to the AMOEBA-based density captured bonding effects with fewer parameters. For a series of four peptide crystals, the AMOEBA–IAS model lowered R{sub free} by 20–40% relative to the original spherically symmetric scattering model.« less
Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.
Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi
2015-02-01
We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.
Material Science Smart Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinstein, A. I.; Sabirianov, R. F.; Namavar, Fereydoon
2014-07-01
The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics dependsmore » nonmonotonically on the dielectric constant of ceramic, ε C. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate ε C below or about 35 (in particularly ZrO 2 or Ta 2O 5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materials (ε C>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.« less
THE ALLEN TELESCOPE ARRAY SEARCH FOR ELECTROSTATIC DISCHARGES ON MARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Marin M.; Siemion, Andrew P. V.; Bower, Geoffrey C.
The Allen Telescope Array was used to monitor Mars between 2010 March 9 and June 2, over a total of approximately 30 hr, for radio emission indicative of electrostatic discharge. The search was motivated by the report from Ruf et al. of the detection of non-thermal microwave radiation from Mars characterized by peaks in the power spectrum of the kurtosis, or kurtstrum, at 10 Hz, coinciding with a large dust storm event on 2006 June 8. For these observations, we developed a wideband signal processor at the Center for Astronomy Signal Processing and Electronics Research. This 1024 channel spectrometer calculatesmore » the accumulated power and power-squared, from which the spectral kurtosis is calculated post-observation. Variations in the kurtosis are indicative of non-Gaussianity in the signal, which can be used to detect variable cosmic signals as well as radio frequency interference (RFI). During the three-month period of observations, dust activity occurred on Mars in the form of small-scale dust storms; however, no signals indicating lightning discharge were detected. Frequent signals in the kurtstrum that contain spectral peaks with an approximate 10 Hz fundamental were seen at both 3.2 and 8.0 GHz, but were the result of narrowband RFI with harmonics spread over a broad frequency range.« less
Investigation of Electrostatic Accelerometer in HUST for Space Science Missions
NASA Astrophysics Data System (ADS)
Bai, Yanzheng; Hu, Ming; Li, Gui; Liu, Li; Qu, Shaobo; Wu, Shuchao; Zhou, Zebing
2014-05-01
High-precision electrostatic accelerometers are significant payload in CHAMP, GRACE and GOCE gravity missions to measure the non-gravitational forces. In our group, space electrostatic accelerometer and inertial sensor based on the capacitive sensors and electrostatic control technique has been investigated for space science research in China such as testing of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, satellite Earth's field recovery and so on. In our group, a capacitive position sensor with a resolution of 10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are developed. The fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. Meanwhile, high voltage suspension and free fall methods are applied to verify the function of electrostatic accelerometer. Last, the engineering model of electrostatic accelerometer has been developed and tested successfully in space and preliminary results are present.
The formation of cosmic structure in a texture-seeded cold dark matter cosmogony
NASA Technical Reports Server (NTRS)
Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III
1992-01-01
The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.
Non-Gaussian microwave background fluctuations from nonlinear gravitational effects
NASA Technical Reports Server (NTRS)
Salopek, D. S.; Kunstatter, G. (Editor)
1991-01-01
Whether the statistics of primordial fluctuations for structure formation are Gaussian or otherwise may be determined if the Cosmic Background Explorer (COBE) Satellite makes a detection of the cosmic microwave-background temperature anisotropy delta T(sub CMB)/T(sub CMB). Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the resulting Sachs-Wolfe temperature fluctuations at large angular scales (greater than 3 degrees). In the long-wavelength approximation, one can confidently determine the nonlinear evolution of quantum noise with gravity during the inflationary epoch because: (1) different spatial points are no longer in causal contact; and (2) quantum gravity corrections are typically small-- it is sufficient to model the system using classical random fields. If the potential for two scalar fields V(phi sub 1, phi sub 2) possesses a sharp feature, then non-Gaussian fluctuations may arise. An explicit model is given where cold spots in delta T(sub CMB)/T(sub CMB) maps are suppressed as compared to the Gaussian case. The fluctuations are essentially scale-invariant.
NASA Astrophysics Data System (ADS)
Yu, Haoyu S.; Fiedler, Lucas J.; Alecu, I. M.; Truhlar, Donald G.
2017-01-01
We present a Python program, FREQ, for calculating the optimal scale factors for calculating harmonic vibrational frequencies, fundamental vibrational frequencies, and zero-point vibrational energies from electronic structure calculations. The program utilizes a previously published scale factor optimization model (Alecu et al., 2010) to efficiently obtain all three scale factors from a set of computed vibrational harmonic frequencies. In order to obtain the three scale factors, the user only needs to provide zero-point energies of 15 or 6 selected molecules. If the user has access to the Gaussian 09 or Gaussian 03 program, we provide the option for the user to run the program by entering the keywords for a certain method and basis set in the Gaussian 09 or Gaussian 03 program. Four other Python programs, input.py, input6, pbs.py, and pbs6.py, are also provided for generating Gaussian 09 or Gaussian 03 input and PBS files. The program can also be used with data from any other electronic structure package. A manual of how to use this program is included in the code package.
Computational modeling of electrostatic charge and fields produced by hypervelocity impact
Crawford, David A.
2015-05-19
Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poklonski, N. A., E-mail: poklonski@bsu.by; Vyrko, S. A.; Poklonskaya, O. N.
A quasi-classical model of ionization equilibrium in the p-type diamond between hydrogen-like acceptors (boron atoms which substitute carbon atoms in the crystal lattice) and holes in the valence band (v-band) is proposed. The model is applicable on the insulator side of the insulator–metal concentration phase transition (Mott transition) in p-Dia:B crystals. The densities of the spatial distributions of impurity atoms (acceptors and donors) and of holes in the crystal are considered to be Poissonian, and the fluctuations of their electrostatic potential energy are considered to be Gaussian. The model accounts for the decrease in thermal ionization energy of boron atomsmore » with increasing concentration, as well as for electrostatic fluctuations due to the Coulomb interaction limited to two nearest point charges (impurity ions and holes). The mobility edge of holes in the v-band is assumed to be equal to the sum of the threshold energy for diffusion percolation and the exchange energy of the holes. On the basis of the virial theorem, the temperature T{sub j} is determined, in the vicinity of which the dc band-like conductivity of holes in the v-band is approximately equal to the hopping conductivity of holes via the boron atoms. For compensation ratio (hydrogen-like donor to acceptor concentration ratio) K ≈ 0.15 and temperature T{sub j}, the concentration of “free” holes in the v-band and their jumping (turbulent) drift mobility are calculated. Dependence of the differential energy of thermal ionization of boron atoms (at the temperature 3T{sub j}/2) as a function of their concentration N is calculated. The estimates of the extrapolated into the temperature region close to T{sub j} hopping drift mobility of holes hopping from the boron atoms in the charge states (0) to the boron atoms in the charge states (−1) are given. Calculations based on the model show good agreement with electrical conductivity and Hall effect measurements for p-type diamond with boron atom concentrations in the range from 3 × 10{sup 17} to 3 × 10{sup 20 }cm{sup −3}, i.e., up to the Mott transition. The model uses no fitting parameters.« less
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.
Non-Gaussian spatiotemporal simulation of multisite daily precipitation: downscaling framework
NASA Astrophysics Data System (ADS)
Ben Alaya, M. A.; Ouarda, T. B. M. J.; Chebana, F.
2018-01-01
Probabilistic regression approaches for downscaling daily precipitation are very useful. They provide the whole conditional distribution at each forecast step to better represent the temporal variability. The question addressed in this paper is: how to simulate spatiotemporal characteristics of multisite daily precipitation from probabilistic regression models? Recent publications point out the complexity of multisite properties of daily precipitation and highlight the need for using a non-Gaussian flexible tool. This work proposes a reasonable compromise between simplicity and flexibility avoiding model misspecification. A suitable nonparametric bootstrapping (NB) technique is adopted. A downscaling model which merges a vector generalized linear model (VGLM as a probabilistic regression tool) and the proposed bootstrapping technique is introduced to simulate realistic multisite precipitation series. The model is applied to data sets from the southern part of the province of Quebec, Canada. It is shown that the model is capable of reproducing both at-site properties and the spatial structure of daily precipitations. Results indicate the superiority of the proposed NB technique, over a multivariate autoregressive Gaussian framework (i.e. Gaussian copula).
NASA Astrophysics Data System (ADS)
Shangguan, Lei; Ma, Liuhong; Li, Mengke; Peng, Wei; Zhong, Yinghui; Su, Yufeng; Duan, Zhiyong
2018-05-01
An electrostatic field was applied to sintering Ag microwires to achieve a more compact structure and better conductivity. The shrinkage behavior of Ag microwires shows anisotropy, since bigger particle sizes, less micropores and smoother surfaces were observed in the direction of the electrostatic field in comparsion with the direction perpendicular to the electrostatic field, and the shrinkage rate of Ag microwires in the direction of electrostatic field improves about 2.4% with the electrostatic field intensity of 800 V cm‑1. The electrostatic field assisted sintering model of Ag microwires is proposed according to thermal diffuse dynamics analysis and experimental research. Moreover, the grain size of Ag microwres sintered with electrostatic field increases with the electrostatic field intensity and reaches 113 nm when the electrostatic field intensity is 800 V cm‑1, and the resistivity decreases to 2.07 × 10‑8 Ω m as well. This method may overcome the restriction of metal wires which fabricated by the pseudoplastic metal nanoparticle fluid and be used as interconnects in nanoimprint lithography.
Infinite von Mises-Fisher Mixture Modeling of Whole Brain fMRI Data.
Røge, Rasmus E; Madsen, Kristoffer H; Schmidt, Mikkel N; Mørup, Morten
2017-10-01
Cluster analysis of functional magnetic resonance imaging (fMRI) data is often performed using gaussian mixture models, but when the time series are standardized such that the data reside on a hypersphere, this modeling assumption is questionable. The consequences of ignoring the underlying spherical manifold are rarely analyzed, in part due to the computational challenges imposed by directional statistics. In this letter, we discuss a Bayesian von Mises-Fisher (vMF) mixture model for data on the unit hypersphere and present an efficient inference procedure based on collapsed Markov chain Monte Carlo sampling. Comparing the vMF and gaussian mixture models on synthetic data, we demonstrate that the vMF model has a slight advantage inferring the true underlying clustering when compared to gaussian-based models on data generated from both a mixture of vMFs and a mixture of gaussians subsequently normalized. Thus, when performing model selection, the two models are not in agreement. Analyzing multisubject whole brain resting-state fMRI data from healthy adult subjects, we find that the vMF mixture model is considerably more reliable than the gaussian mixture model when comparing solutions across models trained on different groups of subjects, and again we find that the two models disagree on the optimal number of components. The analysis indicates that the fMRI data support more than a thousand clusters, and we confirm this is not a result of overfitting by demonstrating better prediction on data from held-out subjects. Our results highlight the utility of using directional statistics to model standardized fMRI data and demonstrate that whole brain segmentation of fMRI data requires a very large number of functional units in order to adequately account for the discernible statistical patterns in the data.
A theoretical study of heterojunction and graded band gap type solar cells
NASA Technical Reports Server (NTRS)
Sutherland, J. E.; Hauser, J. R.
1977-01-01
A computer program was designed for the analysis of variable composition solar cells and applied to several proposed solar cell structures using appropriate semiconductor materials. The program simulates solar cells made of a ternary alloy of two binary semiconductors with an arbitrary composition profile, and an abrupt or Gaussian doping profile of polarity n-on-p or p-on-n with arbitrary doping levels. Once the device structure is specified, the program numerically solves a complete set of differential equations and calculates electrostatic potential, quasi-Fermi levels, carrier concentrations and current densities, total current density and efficiency as functions of terminal voltage and position within the cell. These results are then recorded by computer in tabulated or plotted form for interpretation by the user.
NASA Astrophysics Data System (ADS)
Mehdian, H.; Nobahar, D.; Hajisharifi, K.
2018-02-01
Ion-acoustic (IA) waves carrying orbital angular momentum (OAM) are investigated in an unmagnetized, uniform, and collisionless electron-positron-ion (e-p-i) plasma system. Employing the hydrodynamic theory, the paraxial equation in term of ion perturbed number density is derived and discussed about its Laguerre-Gaussian (LG) beam solutions. Obtaining an approximate solution for the electrostatic potential, the IA wave characteristics including helical electric field structure, energy density, and OAM density are theoretically studied. Based on the numerical analysis, the effects of positron concentration, radial and angular mode number as well as beam waist on the obtained potential profile are investigated. It is shown that the depth (height) and width of the LG potential profile wells (barriers) are considerably modify by the variation of positron concentration.
NASA Astrophysics Data System (ADS)
Frau, J.; Price, S. L.
1996-04-01
Electrostatic and structural properties of a set of β-lactam, γ-lactam and nonlactam compounds have been analyzed and compared with those of a model of the natural substrate d-alanyl- d-alanine for the carboxy- and transpeptidase enzymes. This first comparison of the electrostatic properties has been based on a distributed multipole analysis of high-quality ab initio wave functions of the substrate and potential antibiotics. The electrostatic similarity of the substrate and active compounds is apparent, and contrasts with the electrostatic properties of the noninhibitors. This has been quantified to give a reasonable correlation with the MIC (Minimum Concentration for Inhibition) and with kinetic data (k2/K) in accordance with the model for interaction of the lactam compounds with dd-peptidase. These correlations provide a better prediction of antibacterial activity than purely structural criteria.
Future constraints on angle-dependent non-Gaussianity from large radio surveys
NASA Astrophysics Data System (ADS)
Raccanelli, Alvise; Shiraishi, Maresuke; Bartolo, Nicola; Bertacca, Daniele; Liguori, Michele; Matarrese, Sabino; Norris, Ray P.; Parkinson, David
2017-03-01
We investigate how well future large-scale radio surveys could measure different shapes of primordial non-Gaussianity; in particular we focus on angle-dependent non-Gaussianity arising from primordial anisotropic sources, whose bispectrum has an angle dependence between the three wavevectors that is characterized by Legendre polynomials PL and expansion coefficients cL. We provide forecasts for measurements of galaxy power spectrum, finding that Large-Scale Structure (LSS) data could allow measurements of primordial non-Gaussianity that would be competitive with, or improve upon, current constraints set by CMB experiments, for all the shapes considered. We argue that the best constraints will come from the possibility to assign redshift information to radio galaxy surveys, and investigate a few possible scenarios for the EMU and SKA surveys. A realistic (futuristic) modeling could provide constraints of fNLloc ≈ 1(0 . 5) for the local shape, fNL of O(10) (O(1)) for the orthogonal, equilateral and folded shapes, and cL=1 ≈ 80(2) , cL=2 ≈ 400(10) for angle-dependent non-Gaussianity showing that only futuristic galaxy surveys will be able to set strong constraints on these models. Nevertheless, the more futuristic forecasts show the potential of LSS analyses to considerably improve current constraints on non-Gaussianity, and so on models of the primordial Universe. Finally, we find the minimum requirements that would be needed to reach σ(cL=1) = 10, which can be considered as a typical (lower) value predicted by some (inflationary) models.
Comparing fixed and variable-width Gaussian networks.
Kůrková, Věra; Kainen, Paul C
2014-09-01
The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of width on functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven that if two Gaussian RBF networks have the same input-output functions, then they must have the same numbers of units with the same centers and widths. Further, it is shown that while sets of input-output functions of Gaussian kernel networks with two different widths are disjoint, each such set is large enough to be a universal approximator. Embedding of RKHSs induced by "flatter" Gaussians into RKHSs induced by "sharper" Gaussians is described and growth of the ratios of norms on these spaces with increasing input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input-output functions of Gaussian RBFs are described. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, R.; Dickerson, M.A.; Peterson, K.R.
Two numerical models for the calculation of air concentration and ground deposition of airborne effluent releases are compared. The Particle-in-Cell (PIC) model and the Straight-Line Airflow Gaussian model were used for the simulation. Two sites were selected for comparison: the Hudson River Valley, New York, and the area around the Savannah River Plant, South Carolina. Input for the models was synthesized from meteorological data gathered in previous studies by various investigators. It was found that the PIC model more closely simulated the three-dimensional effects of the meteorology and topography. Overall, the Gaussian model calculated higher concentrations under stable conditions withmore » better agreement between the two methods during neutral to unstable conditions. In addition, because of its consideration of exposure from the returning plume after flow reversal, the PIC model calculated air concentrations over larger areas than did the Gaussian model.« less
Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center
NASA Astrophysics Data System (ADS)
Hoyos, Jaime H.; Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.
2016-03-01
We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.
NASA Astrophysics Data System (ADS)
Sahu, Jyoti; Juvekar, Vinay A.
2018-05-01
Prediction of the osmotic coefficient of concentrated electrolytes is needed in a wide variety of industrial applications. There is a need to correctly segregate the electrostatic contribution to osmotic coefficient from nonelectrostatic contribution. This is achieved in a rational way in this work. Using the Robinson-Stokes-Glueckauf hydrated ion model to predict non-electrostatic contribution to the osmotic coefficient, it is shown that hydration number should be independent of concentration so that the observed linear dependence of osmotic coefficient on electrolyte concentration in high concentration range could be predicted. The hydration number of several electrolytes (LiCl, NaCl, KCl, MgCl2, and MgSO4) has been estimated by this method. The hydration number predicted by this model shows correct dependence on temperature. It is also shown that the electrostatic contribution to osmotic coefficient is underpredicted by the Debye-Hückel theory at concentration beyond 0.1 m. The Debye-Hückel theory is modified by introducing a concentration dependent hydrated ionic size. Using the present analysis, it is possible to correctly estimate the electrostatic contribution to the osmotic coefficient, beyond the range of validation of the D-H theory. This would allow development of a more fundamental model for electrostatic interaction at high electrolyte concentrations.
Chen, Zhaoxue; Chen, Hao
2014-01-01
A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.
Bayesian spatial transformation models with applications in neuroimaging data
Miranda, Michelle F.; Zhu, Hongtu; Ibrahim, Joseph G.
2013-01-01
Summary The aim of this paper is to develop a class of spatial transformation models (STM) to spatially model the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) and a set of covariates. Our STMs include a varying Box-Cox transformation model for dealing with the issue of non-Gaussian distributed imaging data and a Gaussian Markov Random Field model for incorporating spatial smoothness of the imaging data. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations and real data analysis demonstrate that the STM significantly outperforms the voxel-wise linear model with Gaussian noise in recovering meaningful geometric patterns. Our STM is able to reveal important brain regions with morphological changes in children with attention deficit hyperactivity disorder. PMID:24128143
Gaussian Finite Element Method for Description of Underwater Sound Diffraction
NASA Astrophysics Data System (ADS)
Huang, Dehua
A new method for solving diffraction problems is presented in this dissertation. It is based on the use of Gaussian diffraction theory. The Rayleigh integral is used to prove the core of Gaussian theory: the diffraction field of a Gaussian is described by a Gaussian function. The parabolic approximation used by previous authors is not necessary to this proof. Comparison of the Gaussian beam expansion and Fourier series expansion reveals that the Gaussian expansion is a more general and more powerful technique. The method combines the Gaussian beam superposition technique (Wen and Breazeale, J. Acoust. Soc. Am. 83, 1752-1756 (1988)) and the Finite element solution to the parabolic equation (Huang, J. Acoust. Soc. Am. 84, 1405-1413 (1988)). Computer modeling shows that the new method is capable of solving for the sound field even in an inhomogeneous medium, whether the source is a Gaussian source or a distributed source. It can be used for horizontally layered interfaces or irregular interfaces. Calculated results are compared with experimental results by use of a recently designed and improved Gaussian transducer in a laboratory water tank. In addition, the power of the Gaussian Finite element method is demonstrated by comparing numerical results with experimental results from use of a piston transducer in a water tank.
NASA Astrophysics Data System (ADS)
Sagui, Celeste
2006-03-01
An accurate and numerically efficient treatment of electrostatics is essential for biomolecular simulations, as this stabilizes much of the delicate 3-d structure associated with biomolecules. Currently, force fields such as AMBER and CHARMM assign ``partial charges'' to every atom in a simulation in order to model the interatomic electrostatic forces, so that the calculation of the electrostatics rapidly becomes the computational bottleneck in large-scale simulations. There are two main issues associated with the current treatment of classical electrostatics: (i) how does one eliminate the artifacts associated with the point-charges (e.g., the underdetermined nature of the current RESP fitting procedure for large, flexible molecules) used in the force fields in a physically meaningful way? (ii) how does one efficiently simulate the very costly long-range electrostatic interactions? Recently, we have dealt with both of these challenges as follows. In order to improve the description of the molecular electrostatic potentials (MEPs), a new distributed multipole analysis based on localized functions -- Wannier, Boys, and Edminston-Ruedenberg -- was introduced, which allows for a first principles calculation of the partial charges and multipoles. Through a suitable generalization of the particle mesh Ewald (PME) and multigrid method, one can treat electrostatic multipoles all the way to hexadecapoles all without prohibitive extra costs. The importance of these methods for large-scale simulations will be discussed, and examplified by simulations from polarizable DNA models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurrus, Elizabeth; Engel, Dave; Star, Keith
The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that has provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suitemore » of accompanying software since its release in 2001. In this manuscript, we discuss the models and capabilities that have recently been implemented within the APBS software package including: a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory based algorithm for determining pKa values, and an improved web-based visualization tool for viewing electrostatics.« less
Improvements to the APBS biomolecular solvation software suite.
Jurrus, Elizabeth; Engel, Dave; Star, Keith; Monson, Kyle; Brandi, Juan; Felberg, Lisa E; Brookes, David H; Wilson, Leighton; Chen, Jiahui; Liles, Karina; Chun, Minju; Li, Peter; Gohara, David W; Dolinsky, Todd; Konecny, Robert; Koes, David R; Nielsen, Jens Erik; Head-Gordon, Teresa; Geng, Weihua; Krasny, Robert; Wei, Guo-Wei; Holst, Michael J; McCammon, J Andrew; Baker, Nathan A
2018-01-01
The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that have provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses the three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this article, we discuss the models and capabilities that have recently been implemented within the APBS software package including a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory-based algorithm for determining pK a values, and an improved web-based visualization tool for viewing electrostatics. © 2017 The Protein Society.
Weakly anomalous diffusion with non-Gaussian propagators
NASA Astrophysics Data System (ADS)
Cressoni, J. C.; Viswanathan, G. M.; Ferreira, A. S.; da Silva, M. A. A.
2012-08-01
A poorly understood phenomenon seen in complex systems is diffusion characterized by Hurst exponent H≈1/2 but with non-Gaussian statistics. Motivated by such empirical findings, we report an exact analytical solution for a non-Markovian random walk model that gives rise to weakly anomalous diffusion with H=1/2 but with a non-Gaussian propagator.
Helping Lower Secondary Students Develop Conceptual Understanding of Electrostatic Forces
ERIC Educational Resources Information Center
Moynihan, Richard; van Kampen, Paul; Finlayson, Odilla; McLoughlin, Eilish
2016-01-01
This article describes the development of a lesson sequence that supports secondary-level students to construct an explanatory model for electrostatic attraction using a guided enquiry method. The students examine electrostatic interactions at a macro level and explain the phenomena at the atomic level. Pre-tests, post-tests, homework assignments…
Beard, D A; Schlick, T
2001-01-01
Much progress has been achieved on quantitative assessment of electrostatic interactions on the all-atom level by molecular mechanics and dynamics, as well as on the macroscopic level by models of continuum solvation. Bridging of the two representations-an area of active research-is necessary for studying integrated functions of large systems of biological importance. Following perspectives of both discrete (N-body) interaction and continuum solvation, we present a new algorithm, DiSCO (Discrete Surface Charge Optimization), for economically describing the electrostatic field predicted by Poisson-Boltzmann theory using a discrete set of Debye-Hückel charges distributed on a virtual surface enclosing the macromolecule. The procedure in DiSCO relies on the linear behavior of the Poisson-Boltzmann equation in the far zone; thus contributions from a number of molecules may be superimposed, and the electrostatic potential, or equivalently the electrostatic field, may be quickly and efficiently approximated by the summation of contributions from the set of charges. The desired accuracy of this approximation is achieved by minimizing the difference between the Poisson-Boltzmann electrostatic field and that produced by the linearized Debye-Hückel approximation using our truncated Newton optimization package. DiSCO is applied here to describe the salt-dependent electrostatic environment of the nucleosome core particle in terms of several hundred surface charges. This representation forms the basis for modeling-by dynamic simulations (or Monte Carlo)-the folding of chromatin. DiSCO can be applied more generally to many macromolecular systems whose size and complexity warrant a model resolution between the all-atom and macroscopic levels. Copyright 2000 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Castells, Marina; Konstantinidou, Aikaterini; Cerveró, Josep M.
2016-05-01
Researches on electrostatics' conceptions found that students have ideas and conceptions that disagree with the scientific models and that might explain students' learning difficulties. To favour the change of student's ideas and conceptions, a teaching sequence that relies on a historical study of electrostatics is proposed. It begins with an exploration of electrostatics phenomena that students would do with everyday materials. About these phenomena they must draw their own explanations that will be shared and discussed in the class. The teacher will collect and summarize the ideas and explanations which are nearer the history of science. A brief history of electrostatics is introduced then, and some texts from scientists are used in an activity role-play-debate type in which the "supporters of a single fluid" and "supporters of two fluids" have to present arguments for their model and/or against the other model to explain the phenomena observed in the exploration phase. In the following, students will read texts related to science applications, the main aim of this activity is to relate electrostatics phenomena with current electricity. The first text explains how Franklin understood the nature of the lightning and the lightning rod and the second is a chapter of a roman about one historical episode situated in the Barcelona of the XVIII Century. Students will use the historical models of one and of two fluids to explain these two phenomena, and will compare them with the scientific explanation of the "accepted" science of nowadays introduced by the teacher. With this type of teaching proposal, conceptual aspect of electrostatics will be learnt, but also the students will learn about the nature and history of science and culture, as well as about the practice of argumentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valetov, Eremey Vladimirovich
2017-01-01
While the first particle accelerators were electrostatic machines, and several electrostatic storage rings were subsequently commissioned and operated, electrostatic storage rings pose a number of challenges. Unlike motion in the magnetic field, where particle energy remains constant, particle energy generally changes in electrostatic elements. Conservation of energy in an electrostatic element is, in practice, only approximate, and it requires careful and accurate design, manufacturing, installation, and operational use. Electrostatic deflectors require relatively high electrostatic fields, tend to introduce nonlinear aberrations of all orders, and are more challenging to manufacture than homogeneous magnetic dipoles. Accordingly, magnetic storage rings are overwhelmingly prevalent.more » The search for electric dipole moments (EDMs) of fundamental particles is of key importance in the study of C and CP violations and their sources. C and CP violations are part of the Sakharov conditions that explain the matter–antimatter asymmetry in the universe. Determining the source of CP violations would provide valuable empirical insight for beyond-Standard-Model physics. EDMs of fundamental particles have not to this date been experimentally observed. The search for fundamental particle EDMs has narrowed the target search region; however, an EDM signal is yet to be discovered. In 2008, Brookhaven National Laboratory (BNL) had proposed the frozen spin (FS) concept for the search of a deuteron EDM. The FS concept envisions launching deuterons through a storage ring with combined electrostatic and magnetic fields. The electrostatic and magnetic fields are in a proportion that would, without an EDM, freeze the deuteron’s spin along its momentum as the deuteron moves around the lattice. The radial electrostatic field would result in a torque on the spin vector, proportional to a deuteron EDM, rotating the spin vector out of the midplane.« less
Moving vehicles segmentation based on Gaussian motion model
NASA Astrophysics Data System (ADS)
Zhang, Wei; Fang, Xiang Z.; Lin, Wei Y.
2005-07-01
Moving objects segmentation is a challenge in computer vision. This paper focuses on the segmentation of moving vehicles in dynamic scene. We analyses the psychology of human vision and present a framework for segmenting moving vehicles in the highway. The proposed framework consists of two parts. Firstly, we propose an adaptive background update method in which the background is updated according to the change of illumination conditions and thus can adapt to the change of illumination sensitively. Secondly, we construct a Gaussian motion model to segment moving vehicles, in which the motion vectors of the moving pixels are modeled as a Gaussian model and an on-line EM algorithm is used to update the model. The Gaussian distribution of the adaptive model is elevated to determine which moving vectors result from moving vehicles and which from other moving objects such as waving trees. Finally, the pixels with motion vector result from the moving vehicles are segmented. Experimental results of several typical scenes show that the proposed model can detect the moving vehicles correctly and is immune from influence of the moving objects caused by the waving trees and the vibration of camera.
Diffusion of Super-Gaussian Profiles
ERIC Educational Resources Information Center
Rosenberg, C.-J.; Anderson, D.; Desaix, M.; Johannisson, P.; Lisak, M.
2007-01-01
The present analysis describes an analytically simple and systematic approximation procedure for modelling the free diffusive spreading of initially super-Gaussian profiles. The approach is based on a self-similar ansatz for the evolution of the diffusion profile, and the parameter functions involved in the modelling are determined by suitable…
Chen, Tianju; Zhang, Jinzhi; Wu, Jinhu
2016-07-01
The kinetic and energy productions of pyrolysis of a lignocellulosic biomass were investigated using a three-parallel Gaussian distribution method in this work. The pyrolysis experiment of the pine sawdust was performed using a thermogravimetric-mass spectroscopy (TG-MS) analyzer. A three-parallel Gaussian distributed activation energy model (DAEM)-reaction model was used to describe thermal decomposition behaviors of the three components, hemicellulose, cellulose and lignin. The first, second and third pseudocomponents represent the fractions of hemicellulose, cellulose and lignin, respectively. It was found that the model is capable of predicting the pyrolysis behavior of the pine sawdust. The activation energy distribution peaks for the three pseudo-components were centered at 186.8, 197.5 and 203.9kJmol(-1) for the pine sawdust, respectively. The evolution profiles of H2, CH4, CO, and CO2 were well predicted using the three-parallel Gaussian distribution model. In addition, the chemical composition of bio-oil was also obtained by pyrolysis-gas chromatography/mass spectrometry instrument (Py-GC/MS). Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimation of High-Dimensional Graphical Models Using Regularized Score Matching
Lin, Lina; Drton, Mathias; Shojaie, Ali
2017-01-01
Graphical models are widely used to model stochastic dependences among large collections of variables. We introduce a new method of estimating undirected conditional independence graphs based on the score matching loss, introduced by Hyvärinen (2005), and subsequently extended in Hyvärinen (2007). The regularized score matching method we propose applies to settings with continuous observations and allows for computationally efficient treatment of possibly non-Gaussian exponential family models. In the well-explored Gaussian setting, regularized score matching avoids issues of asymmetry that arise when applying the technique of neighborhood selection, and compared to existing methods that directly yield symmetric estimates, the score matching approach has the advantage that the considered loss is quadratic and gives piecewise linear solution paths under ℓ1 regularization. Under suitable irrepresentability conditions, we show that ℓ1-regularized score matching is consistent for graph estimation in sparse high-dimensional settings. Through numerical experiments and an application to RNAseq data, we confirm that regularized score matching achieves state-of-the-art performance in the Gaussian case and provides a valuable tool for computationally efficient estimation in non-Gaussian graphical models. PMID:28638498
Geographically weighted regression model on poverty indicator
NASA Astrophysics Data System (ADS)
Slamet, I.; Nugroho, N. F. T. A.; Muslich
2017-12-01
In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.
Robust Linear Models for Cis-eQTL Analysis.
Rantalainen, Mattias; Lindgren, Cecilia M; Holmes, Christopher C
2015-01-01
Expression Quantitative Trait Loci (eQTL) analysis enables characterisation of functional genetic variation influencing expression levels of individual genes. In outbread populations, including humans, eQTLs are commonly analysed using the conventional linear model, adjusting for relevant covariates, assuming an allelic dosage model and a Gaussian error term. However, gene expression data generally have noise that induces heavy-tailed errors relative to the Gaussian distribution and often include atypical observations, or outliers. Such departures from modelling assumptions can lead to an increased rate of type II errors (false negatives), and to some extent also type I errors (false positives). Careful model checking can reduce the risk of type-I errors but often not type II errors, since it is generally too time-consuming to carefully check all models with a non-significant effect in large-scale and genome-wide studies. Here we propose the application of a robust linear model for eQTL analysis to reduce adverse effects of deviations from the assumption of Gaussian residuals. We present results from a simulation study as well as results from the analysis of real eQTL data sets. Our findings suggest that in many situations robust models have the potential to provide more reliable eQTL results compared to conventional linear models, particularly in respect to reducing type II errors due to non-Gaussian noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are often noisy and frequently contain atypical observations. Robust statistical models have the potential to provide more reliable results and increased statistical power under non-Gaussian conditions. The results presented here suggest that robust models should be considered routinely alongside other commonly used methodologies for eQTL analysis.
Statistical description of turbulent transport for flux driven toroidal plasmas
NASA Astrophysics Data System (ADS)
Anderson, J.; Imadera, K.; Kishimoto, Y.; Li, J. Q.; Nordman, H.
2017-06-01
A novel methodology to analyze non-Gaussian probability distribution functions (PDFs) of intermittent turbulent transport in global full-f gyrokinetic simulations is presented. In this work, the auto-regressive integrated moving average (ARIMA) model is applied to time series data of intermittent turbulent heat transport to separate noise and oscillatory trends, allowing for the extraction of non-Gaussian features of the PDFs. It was shown that non-Gaussian tails of the PDFs from first principles based gyrokinetic simulations agree with an analytical estimation based on a two fluid model.
Electrostatic Discharge Initiation Experiments using PVDF Pressure Transducers
1991-12-01
ignition sensitivity. The results are discussed within the context of a preliminary model of electrostatic initiation. iii/iv NAVSWC TR 91-666 CONTENTS...Chapter Page 1 INTRODUCTION .......................................... 1-1 TWO PHASE IGNITION MODEL ....................... 1-1 SENSITIZING FACTORS...is necessary to establish effective techniques to reduce the hazards associated with ESD ignition. TWO-PHASE IGNITION MODEL A model has been proposed
Rubinstein, Alexander I; Sabirianov, Renat F; Namavar, Fereydoon
2016-10-14
The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ∼80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.
NASA Astrophysics Data System (ADS)
Rubinstein, Alexander I.; Sabirianov, Renat F.; Namavar, Fereydoon
2016-10-01
The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ˜80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.
Speech Enhancement Using Gaussian Scale Mixture Models
Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.
2011-01-01
This paper presents a novel probabilistic approach to speech enhancement. Instead of a deterministic logarithmic relationship, we assume a probabilistic relationship between the frequency coefficients and the log-spectra. The speech model in the log-spectral domain is a Gaussian mixture model (GMM). The frequency coefficients obey a zero-mean Gaussian whose covariance equals to the exponential of the log-spectra. This results in a Gaussian scale mixture model (GSMM) for the speech signal in the frequency domain, since the log-spectra can be regarded as scaling factors. The probabilistic relation between frequency coefficients and log-spectra allows these to be treated as two random variables, both to be estimated from the noisy signals. Expectation-maximization (EM) was used to train the GSMM and Bayesian inference was used to compute the posterior signal distribution. Because exact inference of this full probabilistic model is computationally intractable, we developed two approaches to enhance the efficiency: the Laplace method and a variational approximation. The proposed methods were applied to enhance speech corrupted by Gaussian noise and speech-shaped noise (SSN). For both approximations, signals reconstructed from the estimated frequency coefficients provided higher signal-to-noise ratio (SNR) and those reconstructed from the estimated log-spectra produced lower word recognition error rate because the log-spectra fit the inputs to the recognizer better. Our algorithms effectively reduced the SSN, which algorithms based on spectral analysis were not able to suppress. PMID:21359139
Theory and generation of conditional, scalable sub-Gaussian random fields
NASA Astrophysics Data System (ADS)
Panzeri, M.; Riva, M.; Guadagnini, A.; Neuman, S. P.
2016-03-01
Many earth and environmental (as well as a host of other) variables, Y, and their spatial (or temporal) increments, ΔY, exhibit non-Gaussian statistical scaling. Previously we were able to capture key aspects of such non-Gaussian scaling by treating Y and/or ΔY as sub-Gaussian random fields (or processes). This however left unaddressed the empirical finding that whereas sample frequency distributions of Y tend to display relatively mild non-Gaussian peaks and tails, those of ΔY often reveal peaks that grow sharper and tails that become heavier with decreasing separation distance or lag. Recently we proposed a generalized sub-Gaussian model (GSG) which resolves this apparent inconsistency between the statistical scaling behaviors of observed variables and their increments. We presented an algorithm to generate unconditional random realizations of statistically isotropic or anisotropic GSG functions and illustrated it in two dimensions. Most importantly, we demonstrated the feasibility of estimating all parameters of a GSG model underlying a single realization of Y by analyzing jointly spatial moments of Y data and corresponding increments, ΔY. Here, we extend our GSG model to account for noisy measurements of Y at a discrete set of points in space (or time), present an algorithm to generate conditional realizations of corresponding isotropic or anisotropic random fields, introduce two approximate versions of this algorithm to reduce CPU time, and explore them on one and two-dimensional synthetic test cases.
Electrostatic Model Applied to ISS Charged Water Droplet Experiment
NASA Technical Reports Server (NTRS)
Stevenson, Daan; Schaub, Hanspeter; Pettit, Donald R.
2015-01-01
The electrostatic force can be used to create novel relative motion between charged bodies if it can be isolated from the stronger gravitational and dissipative forces. Recently, Coulomb orbital motion was demonstrated on the International Space Station by releasing charged water droplets in the vicinity of a charged knitting needle. In this investigation, the Multi-Sphere Method, an electrostatic model developed to study active spacecraft position control by Coulomb charging, is used to simulate the complex orbital motion of the droplets. When atmospheric drag is introduced, the simulated motion closely mimics that seen in the video footage of the experiment. The electrostatic force's inverse dependency on separation distance near the center of the needle lends itself to analytic predictions of the radial motion.
NASA Technical Reports Server (NTRS)
Bell, T. F.; Ngo, H. D.
1990-01-01
This paper presents a theoretical model for electrostatic lower hybrid waves excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and the topside ionosphere, where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. In this model, the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. Results indicate that high-amplitude short-wavelength (5 to 100 m) quasi-electrostatic whistler mode waves can be excited when electromagnetic whistler mode waves scatter from small-scale planar magnetic-field-aligned plasma density irregularities in the topside ionosphere and magnetosphere.
Electrostatic Precipitator (ESP) TRAINING MANUAL
The manual assists engineers in using a computer program, the ESPVI 4.0W, that models all elements of an electrostatic precipitator (ESP). The program is a product of the Electric Power Research Institute and runs in the Windows environment. Once an ESP is accurately modeled, the...
Biomolecular electrostatics and solvation: a computational perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Pengyu; Chun, Jaehun; Thomas, Dennis G.
2012-11-01
An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. Thismore » review discusses the solvation of biomolecules with a computational biophysics view towards describing the phenomenon. While our main focus lies on the computational aspect of the models, we summarize the common characteristics of biomolecular solvation (e.g., solvent structure, polarization, ion binding, and nonpolar behavior) in order to provide reasonable backgrounds to understand the solvation models.« less
Biomolecular electrostatics and solvation: a computational perspective
Ren, Pengyu; Chun, Jaehun; Thomas, Dennis G.; Schnieders, Michael J.; Marucho, Marcelo; Zhang, Jiajing; Baker, Nathan A.
2012-01-01
An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view towards describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g., solvent structure, polarization, ion binding, and nonpolar behavior) in order to provide a background to understand the different types of solvation models. PMID:23217364
Biomolecular electrostatics and solvation: a computational perspective.
Ren, Pengyu; Chun, Jaehun; Thomas, Dennis G; Schnieders, Michael J; Marucho, Marcelo; Zhang, Jiajing; Baker, Nathan A
2012-11-01
An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalaee, Mohammad Javad, E-mail: mjkalaee@ut.ac.ir; Katoh, Yuto, E-mail: yuto@stpp.gp.tohoku.ac.jp
One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma wavesmore » (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.« less
Probing lipid membrane electrostatics
NASA Astrophysics Data System (ADS)
Yang, Yi
The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by <2%. One important application of this technique is to estimate the dipole density of lipid membrane. Electrostatic analysis of DOPC lipid bilayers with the AFM reveals a repulsive force between the negatively charged probe tips and the zwitterionic lipid bilayers. This unexpected interaction has been analyzed quantitatively to reveal that the repulsion is due to a weak external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful probe of membrane electrostatics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, M. L.; Liu, B.; Hu, R. H.
In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with highermore » energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.« less
An unbiased risk estimator for image denoising in the presence of mixed poisson-gaussian noise.
Le Montagner, Yoann; Angelini, Elsa D; Olivo-Marin, Jean-Christophe
2014-03-01
The behavior and performance of denoising algorithms are governed by one or several parameters, whose optimal settings depend on the content of the processed image and the characteristics of the noise, and are generally designed to minimize the mean squared error (MSE) between the denoised image returned by the algorithm and a virtual ground truth. In this paper, we introduce a new Poisson-Gaussian unbiased risk estimator (PG-URE) of the MSE applicable to a mixed Poisson-Gaussian noise model that unifies the widely used Gaussian and Poisson noise models in fluorescence bioimaging applications. We propose a stochastic methodology to evaluate this estimator in the case when little is known about the internal machinery of the considered denoising algorithm, and we analyze both theoretically and empirically the characteristics of the PG-URE estimator. Finally, we evaluate the PG-URE-driven parametrization for three standard denoising algorithms, with and without variance stabilizing transforms, and different characteristics of the Poisson-Gaussian noise mixture.
Leading non-Gaussian corrections for diffusion orientation distribution function.
Jensen, Jens H; Helpern, Joseph A; Tabesh, Ali
2014-02-01
An analytical representation of the leading non-Gaussian corrections for a class of diffusion orientation distribution functions (dODFs) is presented. This formula is constructed from the diffusion and diffusional kurtosis tensors, both of which may be estimated with diffusional kurtosis imaging (DKI). By incorporating model-independent non-Gaussian diffusion effects, it improves on the Gaussian approximation used in diffusion tensor imaging (DTI). This analytical representation therefore provides a natural foundation for DKI-based white matter fiber tractography, which has potential advantages over conventional DTI-based fiber tractography in generating more accurate predictions for the orientations of fiber bundles and in being able to directly resolve intra-voxel fiber crossings. The formula is illustrated with numerical simulations for a two-compartment model of fiber crossings and for human brain data. These results indicate that the inclusion of the leading non-Gaussian corrections can significantly affect fiber tractography in white matter regions, such as the centrum semiovale, where fiber crossings are common. 2013 John Wiley & Sons, Ltd.
Leading Non-Gaussian Corrections for Diffusion Orientation Distribution Function
Jensen, Jens H.; Helpern, Joseph A.; Tabesh, Ali
2014-01-01
An analytical representation of the leading non-Gaussian corrections for a class of diffusion orientation distribution functions (dODFs) is presented. This formula is constructed out of the diffusion and diffusional kurtosis tensors, both of which may be estimated with diffusional kurtosis imaging (DKI). By incorporating model-independent non-Gaussian diffusion effects, it improves upon the Gaussian approximation used in diffusion tensor imaging (DTI). This analytical representation therefore provides a natural foundation for DKI-based white matter fiber tractography, which has potential advantages over conventional DTI-based fiber tractography in generating more accurate predictions for the orientations of fiber bundles and in being able to directly resolve intra-voxel fiber crossings. The formula is illustrated with numerical simulations for a two-compartment model of fiber crossings and for human brain data. These results indicate that the inclusion of the leading non-Gaussian corrections can significantly affect fiber tractography in white matter regions, such as the centrum semiovale, where fiber crossings are common. PMID:24738143
Modeling of dispersion near roadways based on the vehicle-induced turbulence concept
NASA Astrophysics Data System (ADS)
Sahlodin, Ali M.; Sotudeh-Gharebagh, Rahmat; Zhu, Yifang
A mathematical model is developed for dispersion near roadways by incorporating vehicle-induced turbulence (VIT) into Gaussian dispersion modeling using computational fluid dynamics (CFD). The model is based on the Gaussian plume equation in which roadway is regarded as a series of point sources. The Gaussian dispersion parameters are modified by simulation of the roadway using CFD in order to evaluate turbulent kinetic energy (TKE) as a measure of VIT. The model was evaluated against experimental carbon monoxide concentrations downwind of two major freeways reported in the literature. Good agreements were achieved between model results and the literature data. A significant difference was observed between the model results with and without considering VIT. The difference is rather high for data very close to the freeways. This model, after evaluation with additional data, may be used as a framework for predicting dispersion and deposition from any roadway for different traffic (vehicle type and speed) conditions.
NASA Astrophysics Data System (ADS)
Tyagi, Neha; Cherayil, Binny J.
2018-03-01
The increasingly widespread occurrence in complex fluids of particle motion that is both Brownian and non-Gaussian has recently been found to be successfully modeled by a process (frequently referred to as ‘diffusing diffusivity’) in which the white noise that governs Brownian diffusion is itself stochastically modulated by either Ornstein–Uhlenbeck dynamics or by two-state noise. But the model has so far not been able to account for an aspect of non-Gaussian Brownian motion that is also commonly observed: a non-monotonic decay of the parameter that quantifies the extent of deviation from Gaussian behavior. In this paper, we show that the inclusion of memory effects in the model—via a generalized Langevin equation—can rationalise this phenomenon.
Cosmic microwave background power asymmetry from non-Gaussian modulation.
Schmidt, Fabian; Hui, Lam
2013-01-04
Non-Gaussianity in the inflationary perturbations can couple observable scales to modes of much longer wavelength (even superhorizon), leaving as a signature a large-angle modulation of the observed cosmic microwave background power spectrum. This provides an alternative origin for a power asymmetry that is otherwise often ascribed to a breaking of statistical isotropy. The non-Gaussian modulation effect can be significant even for typical ~10(-5) perturbations while respecting current constraints on non-Gaussianity if the squeezed limit of the bispectrum is sufficiently infrared divergent. Just such a strongly infrared-divergent bispectrum has been claimed for inflation models with a non-Bunch-Davies initial state, for instance. Upper limits on the observed cosmic microwave background power asymmetry place stringent constraints on the duration of inflation in such models.
Degeneracy of energy levels of pseudo-Gaussian oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iacob, Theodor-Felix; Iacob, Felix, E-mail: felix@physics.uvt.ro; Lute, Marina
2015-12-07
We study the main features of the isotropic radial pseudo-Gaussian oscillators spectral properties. This study is made upon the energy levels degeneracy with respect to orbital angular momentum quantum number. In a previous work [6] we have shown that the pseudo-Gaussian oscillators belong to the class of quasi-exactly solvable models and an exact solution has been found.
Recent advances in scalable non-Gaussian geostatistics: The generalized sub-Gaussian model
NASA Astrophysics Data System (ADS)
Guadagnini, Alberto; Riva, Monica; Neuman, Shlomo P.
2018-07-01
Geostatistical analysis has been introduced over half a century ago to allow quantifying seemingly random spatial variations in earth quantities such as rock mineral content or permeability. The traditional approach has been to view such quantities as multivariate Gaussian random functions characterized by one or a few well-defined spatial correlation scales. There is, however, mounting evidence that many spatially varying quantities exhibit non-Gaussian behavior over a multiplicity of scales. The purpose of this minireview is not to paint a broad picture of the subject and its treatment in the literature. Instead, we focus on very recent advances in the recognition and analysis of this ubiquitous phenomenon, which transcends hydrology and the Earth sciences, brought about largely by our own work. In particular, we use porosity data from a deep borehole to illustrate typical aspects of such scalable non-Gaussian behavior, describe a very recent theoretical model that (for the first time) captures all these behavioral aspects in a comprehensive manner, show how this allows generating random realizations of the quantity conditional on sampled values, point toward ways of incorporating scalable non-Gaussian behavior in hydrologic analysis, highlight the significance of doing so, and list open questions requiring further research.
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Phillips, James R. III; Mackey, Paul J.; Hogue, Michael D.; Johansen, Michael R.; Cox, Rachel E.; Calle, Carlos I.
2017-01-01
The Electrostatics and Surface Physics Laboratory (ESPL) at NASA Kennedy Space Center has developed a dust mitigation technology that uses electrostatic and dielectrophoretic (DEP) forces to disperse and remove the dust already deposited on surfaces preventing the accumulation of dust particles approaching or already deposited on those surfaces.
Bayesian spatial transformation models with applications in neuroimaging data.
Miranda, Michelle F; Zhu, Hongtu; Ibrahim, Joseph G
2013-12-01
The aim of this article is to develop a class of spatial transformation models (STM) to spatially model the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) and a set of covariates. The proposed STM include a varying Box-Cox transformation model for dealing with the issue of non-Gaussian distributed imaging data and a Gaussian Markov random field model for incorporating spatial smoothness of the imaging data. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations and real data analysis demonstrate that the STM significantly outperforms the voxel-wise linear model with Gaussian noise in recovering meaningful geometric patterns. Our STM is able to reveal important brain regions with morphological changes in children with attention deficit hyperactivity disorder. © 2013, The International Biometric Society.
NASA Technical Reports Server (NTRS)
Luo, Xiaochun; Schramm, David N.
1993-01-01
One of the crucial aspects of density perturbations that are produced by the standard inflation scenario is that they are Gaussian where seeds produced by topological defects tend to be non-Gaussian. The three-point correlation function of the temperature anisotropy of the cosmic microwave background radiation (CBR) provides a sensitive test of this aspect of the primordial density field. In this paper, this function is calculated in the general context of various allowed non-Gaussian models. It is shown that the Cosmic Background Explorer and the forthcoming South Pole and balloon CBR anisotropy data may be able to provide a crucial test of the Gaussian nature of the perturbations.
NASA Astrophysics Data System (ADS)
Simon, E.; Bertino, L.; Samuelsen, A.
2011-12-01
Combined state-parameter estimation in ocean biogeochemical models with ensemble-based Kalman filters is a challenging task due to the non-linearity of the models, the constraints of positiveness that apply to the variables and parameters, and the non-Gaussian distribution of the variables in which they result. Furthermore, these models are sensitive to numerous parameters that are poorly known. Previous works [1] demonstrated that the Gaussian anamorphosis extensions of ensemble-based Kalman filters were relevant tools to perform combined state-parameter estimation in such non-Gaussian framework. In this study, we focus on the estimation of the grazing preferences parameters of zooplankton species. These parameters are introduced to model the diet of zooplankton species among phytoplankton species and detritus. They are positive values and their sum is equal to one. Because the sum-to-one constraint cannot be handled by ensemble-based Kalman filters, a reformulation of the parameterization is proposed. We investigate two types of changes of variables for the estimation of sum-to-one constrained parameters. The first one is based on Gelman [2] and leads to the estimation of normal distributed parameters. The second one is based on the representation of the unit sphere in spherical coordinates and leads to the estimation of parameters with bounded distributions (triangular or uniform). These formulations are illustrated and discussed in the framework of twin experiments realized in the 1D coupled model GOTM-NORWECOM with Gaussian anamorphosis extensions of the deterministic ensemble Kalman filter (DEnKF). [1] Simon E., Bertino L. : Gaussian anamorphosis extension of the DEnKF for combined state and parameter estimation : application to a 1D ocean ecosystem model. Journal of Marine Systems, 2011. doi :10.1016/j.jmarsys.2011.07.007 [2] Gelman A. : Method of Moments Using Monte Carlo Simulation. Journal of Computational and Graphical Statistics, 4, 1, 36-54, 1995.
Yang, Sejung; Lee, Byung-Uk
2015-01-01
In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach. PMID:26352138
The paper discusses the simulation of the effects of changes to particle loading, particle size distribution, and electrostatic precipitator (ESP) operating temperatures using ESP models. It also illustrates the usefulness of modern ESP models for this type of analysis. Increasin...
Li, Jia; Lu, Hongzhou; Xu, Zhenming; Zhou, Yaohe
2008-06-15
Waste printed circuit board (PCB) is increasing worldwide. The corona electrostatic separation (CES) was an effective and environmental protection way to recycle resource from waste PCBs. The aim of this paper is to analyze the main factor (rotational speed) that affects the efficiency of CES from the point of view of electrostatics and mechanics. A quantitative method for analyzing the affection of rotational speed was studied and the model for separating flat nonmetal particles in waste PCBs was established. The conception of "charging critical rotational speed" and "detaching critical rotational speed" were presented. Experiments with the waste PCBs verified the theoretical model, and the experimental results were in good agreement with the theoretical model. The results indicated that the purity and recycle percentage of materials got a good level when the rotational speed was about 70 rpm and the critical rotational speed of small particles was higher than big particles. The model can guide the definition of operator parameter and the design of CES, which are needed for the development of any new application of the electrostatic separation method.
CFD-ACE+: a CAD system for simulation and modeling of MEMS
NASA Astrophysics Data System (ADS)
Stout, Phillip J.; Yang, H. Q.; Dionne, Paul; Leonard, Andy; Tan, Zhiqiang; Przekwas, Andrzej J.; Krishnan, Anantha
1999-03-01
Computer aided design (CAD) systems are a key to designing and manufacturing MEMS with higher performance/reliability, reduced costs, shorter prototyping cycles and improved time- to-market. One such system is CFD-ACE+MEMS, a modeling and simulation environment for MEMS which includes grid generation, data visualization, graphical problem setup, and coupled fluidic, thermal, mechanical, electrostatic, and magnetic physical models. The fluid model is a 3D multi- block, structured/unstructured/hybrid, pressure-based, implicit Navier-Stokes code with capabilities for multi- component diffusion, multi-species transport, multi-step gas phase chemical reactions, surface reactions, and multi-media conjugate heat transfer. The thermal model solves the total enthalpy from of the energy equation. The energy equation includes unsteady, convective, conductive, species energy, viscous dissipation, work, and radiation terms. The electrostatic model solves Poisson's equation. Both the finite volume method and the boundary element method (BEM) are available for solving Poisson's equation. The BEM method is useful for unbounded problems. The magnetic model solves for the vector magnetic potential from Maxwell's equations including eddy currents but neglecting displacement currents. The mechanical model is a finite element stress/deformation solver which has been coupled to the flow, heat, electrostatic, and magnetic calculations to study flow, thermal electrostatically, and magnetically included deformations of structures. The mechanical or structural model can accommodate elastic and plastic materials, can handle large non-linear displacements, and can model isotropic and anisotropic materials. The thermal- mechanical coupling involves the solution of the steady state Navier equation with thermoelastic deformation. The electrostatic-mechanical coupling is a calculation of the pressure force due to surface charge on the mechanical structure. Results of CFD-ACE+MEMS modeling of MEMS such as cantilever beams, accelerometers, and comb drives are discussed.
Non-Gaussian probabilistic MEG source localisation based on kernel density estimation☆
Mohseni, Hamid R.; Kringelbach, Morten L.; Woolrich, Mark W.; Baker, Adam; Aziz, Tipu Z.; Probert-Smith, Penny
2014-01-01
There is strong evidence to suggest that data recorded from magnetoencephalography (MEG) follows a non-Gaussian distribution. However, existing standard methods for source localisation model the data using only second order statistics, and therefore use the inherent assumption of a Gaussian distribution. In this paper, we present a new general method for non-Gaussian source estimation of stationary signals for localising brain activity from MEG data. By providing a Bayesian formulation for MEG source localisation, we show that the source probability density function (pdf), which is not necessarily Gaussian, can be estimated using multivariate kernel density estimators. In the case of Gaussian data, the solution of the method is equivalent to that of widely used linearly constrained minimum variance (LCMV) beamformer. The method is also extended to handle data with highly correlated sources using the marginal distribution of the estimated joint distribution, which, in the case of Gaussian measurements, corresponds to the null-beamformer. The proposed non-Gaussian source localisation approach is shown to give better spatial estimates than the LCMV beamformer, both in simulations incorporating non-Gaussian signals, and in real MEG measurements of auditory and visual evoked responses, where the highly correlated sources are known to be difficult to estimate. PMID:24055702
Fiori, Aldo; Volpi, Elena; Zarlenga, Antonio; Bohling, Geoffrey C
2015-08-01
The impact of the logconductivity (Y=ln K) distribution fY on transport at the MADE site is analyzed. Our principal interest is in non-Gaussian fY characterized by heavier tails than the Gaussian. Both the logconductivity moments and fY itself are inferred, taking advantage of the detailed measurements of Bohling et al. (2012). The resulting logconductivity distribution displays heavier tails than the Gaussian, although the departure from Gaussianity is not significant. The effect of the logconductivity distribution on the breakthrough curve (BTC) is studied through an analytical, physically based model. It is found that the non-Gaussianity of the MADE logconductivity distribution does not strongly affect the BTC. Counterintuitively, assuming heavier tailed distributions for Y, with same variance, leads to BTCs which are more symmetrical than those for the Gaussian fY, with less pronounced preferential flow. Results indicate that the impact of strongly non-Gaussian, heavy tailed distributions on solute transport in heterogeneous porous formations can be significant, especially in the presence of high heterogeneity, resulting in reduced preferential flow and retarded peak arrivals. Copyright © 2015 Elsevier B.V. All rights reserved.
A Non-Gaussian Stock Price Model: Options, Credit and a Multi-Timescale Memory
NASA Astrophysics Data System (ADS)
Borland, L.
We review a recently proposed model of stock prices, based on astatistical feedback model that results in a non-Gaussian distribution of price changes. Applications to option pricing and the pricing of debt is discussed. A generalization to account for feedback effects over multiple timescales is also presented. This model reproduces most of the stylized facts (ie statistical anomalies) observed in real financial markets.
NASA Astrophysics Data System (ADS)
Liu, Chao; Yang, Guigeng; Zhang, Yiqun
2015-01-01
The electrostatically controlled deployable membrane reflector (ECDMR) is a promising scheme to construct large size and high precision space deployable reflector antennas. This paper presents a novel design method for the large size and small F/D ECDMR considering the coupled structure-electrostatic problem. First, the fully coupled structural-electrostatic system is described by a three field formulation, in which the structure and passive electrical field is modeled by finite element method, and the deformation of the electrostatic domain is predicted by a finite element formulation of a fictitious elastic structure. A residual formulation of the structural-electrostatic field finite element model is established and solved by Newton-Raphson method. The coupled structural-electrostatic analysis procedure is summarized. Then, with the aid of this coupled analysis procedure, an integrated optimization method of membrane shape accuracy and stress uniformity is proposed, which is divided into inner and outer iterative loops. The initial state of relatively high shape accuracy and uniform stress distribution is achieved by applying the uniform prestress on the membrane design shape and optimizing the voltages, in which the optimal voltage is computed by a sensitivity analysis. The shape accuracy is further improved by the iterative prestress modification using the reposition balance method. Finally, the results of the uncoupled and coupled methods are compared and the proposed optimization method is applied to design an ECDMR. The results validate the effectiveness of this proposed methods.
NASA Astrophysics Data System (ADS)
Kang, Yan-Mei; Chen, Xi; Lin, Xu-Dong; Tan, Ning
The mean first passage time (MFPT) in a phenomenological gene transcriptional regulatory model with non-Gaussian noise is analytically investigated based on the singular perturbation technique. The effect of the non-Gaussian noise on the phenomenon of stochastic resonance (SR) is then disclosed based on a new combination of adiabatic elimination and linear response approximation. Compared with the results in the Gaussian noise case, it is found that bounded non-Gaussian noise inhibits the transition between different concentrations of protein, while heavy-tailed non-Gaussian noise accelerates the transition. It is also found that the optimal noise intensity for SR in the heavy-tailed noise case is smaller, while the optimal noise intensity in the bounded noise case is larger. These observations can be explained by the heavy-tailed noise easing random transitions.
Counterion-induced swelling of ionic microgels
NASA Astrophysics Data System (ADS)
Denton, Alan R.; Tang, Qiyun
2016-10-01
Ionic microgel particles, when dispersed in a solvent, swell to equilibrium sizes that are governed by a balance between electrostatic and elastic forces. Tuning of particle size by varying external stimuli, such as pH, salt concentration, and temperature, has relevance for drug delivery, microfluidics, and filtration. To model swelling of ionic microgels, we derive a statistical mechanical theorem, which proves exact within the cell model, for the electrostatic contribution to the osmotic pressure inside a permeable colloidal macroion. Applying the theorem, we demonstrate how the distribution of counterions within an ionic microgel determines the internal osmotic pressure. By combining the electrostatic pressure, which we compute via both Poisson-Boltzmann theory and molecular dynamics simulation, with the elastic pressure, modeled via the Flory-Rehner theory of swollen polymer networks, we show how deswelling of ionic microgels with increasing concentration of particles can result from a redistribution of counterions that reduces electrostatic pressure. A linearized approximation for the electrostatic pressure, which proves remarkably accurate, provides physical insight and greatly eases numerical calculations for practical applications. Comparing with experiments, we explain why soft particles in deionized suspensions deswell upon increasing concentration and why this effect may be suppressed at higher ionic strength. The failure of the uniform ideal-gas approximation to adequately account for counterion-induced deswelling below close packing of microgels is attributed to neglect of spatial variation of the counterion density profile and the electrostatic pressure of incompletely neutralized macroions.
Modeling Sea-Level Change using Errors-in-Variables Integrated Gaussian Processes
NASA Astrophysics Data System (ADS)
Cahill, Niamh; Parnell, Andrew; Kemp, Andrew; Horton, Benjamin
2014-05-01
We perform Bayesian inference on historical and late Holocene (last 2000 years) rates of sea-level change. The data that form the input to our model are tide-gauge measurements and proxy reconstructions from cores of coastal sediment. To accurately estimate rates of sea-level change and reliably compare tide-gauge compilations with proxy reconstructions it is necessary to account for the uncertainties that characterize each dataset. Many previous studies used simple linear regression models (most commonly polynomial regression) resulting in overly precise rate estimates. The model we propose uses an integrated Gaussian process approach, where a Gaussian process prior is placed on the rate of sea-level change and the data itself is modeled as the integral of this rate process. The non-parametric Gaussian process model is known to be well suited to modeling time series data. The advantage of using an integrated Gaussian process is that it allows for the direct estimation of the derivative of a one dimensional curve. The derivative at a particular time point will be representative of the rate of sea level change at that time point. The tide gauge and proxy data are complicated by multiple sources of uncertainty, some of which arise as part of the data collection exercise. Most notably, the proxy reconstructions include temporal uncertainty from dating of the sediment core using techniques such as radiocarbon. As a result of this, the integrated Gaussian process model is set in an errors-in-variables (EIV) framework so as to take account of this temporal uncertainty. The data must be corrected for land-level change known as glacio-isostatic adjustment (GIA) as it is important to isolate the climate-related sea-level signal. The correction for GIA introduces covariance between individual age and sea level observations into the model. The proposed integrated Gaussian process model allows for the estimation of instantaneous rates of sea-level change and accounts for all available sources of uncertainty in tide-gauge and proxy-reconstruction data. Our response variable is sea level after correction for GIA. By embedding the integrated process in an errors-in-variables (EIV) framework, and removing the estimate of GIA, we can quantify rates with better estimates of uncertainty than previously possible. The model provides a flexible fit and enables us to estimate rates of change at any given time point, thus observing how rates have been evolving from the past to present day.
Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun
2017-08-01
Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2 = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.
Kreienkamp, Amelia B.; Liu, Lucy Y.; Minkara, Mona S.; Knepley, Matthew G.; Bardhan, Jaydeep P.; Radhakrishnan, Mala L.
2013-01-01
We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins—a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein–protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models’ differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundary-integral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes. PMID:24466561
DNA packaging in viral capsids with peptide arms.
Cao, Qianqian; Bachmann, Michael
2017-01-18
Strong chain rigidity and electrostatic self-repulsion of packed double-stranded DNA in viruses require a molecular motor to pull the DNA into the capsid. However, what is the role of electrostatic interactions between different charged components in the packaging process? Though various theories and computer simulation models were developed for the understanding of viral assembly and packaging dynamics of the genome, long-range electrostatic interactions and capsid structure have typically been neglected or oversimplified. By means of molecular dynamics simulations, we explore the effects of electrostatic interactions on the packaging dynamics of DNA based on a coarse-grained DNA and capsid model by explicitly including peptide arms (PAs), linked to the inner surface of the capsid, and counterions. Our results indicate that the electrostatic interactions between PAs, DNA, and counterions have a significant influence on the packaging dynamics. We also find that the packed DNA conformations are largely affected by the structure of the PA layer, but the packaging rate is insensitive to the layer structure.
The manual describes two microcomputer programs written to estimate the performance of electrostatic precipitators (ESPs): the first, to estimate the electrical conditions for round discharge electrodes in the ESP; and the second, a modification of the EPA/SRI ESP model, to estim...
Most current electrostatic surface complexation models describing ionic binding at the particle/water interface rely on the use of Poisson - Boltzmann (PB) theory for relating diffuse layer charge densities to diffuse layer electrostatic potentials. PB theory is known to contain ...
Back to Normal! Gaussianizing posterior distributions for cosmological probes
NASA Astrophysics Data System (ADS)
Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.
2014-05-01
We present a method to map multivariate non-Gaussian posterior probability densities into Gaussian ones via nonlinear Box-Cox transformations, and generalizations thereof. This is analogous to the search for normal parameters in the CMB, but can in principle be applied to any probability density that is continuous and unimodal. The search for the optimally Gaussianizing transformation amongst the Box-Cox family is performed via a maximum likelihood formalism. We can judge the quality of the found transformation a posteriori: qualitatively via statistical tests of Gaussianity, and more illustratively by how well it reproduces the credible regions. The method permits an analytical reconstruction of the posterior from a sample, e.g. a Markov chain, and simplifies the subsequent joint analysis with other experiments. Furthermore, it permits the characterization of a non-Gaussian posterior in a compact and efficient way. The expression for the non-Gaussian posterior can be employed to find analytic formulae for the Bayesian evidence, and consequently be used for model comparison.
Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion
NASA Astrophysics Data System (ADS)
Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin
2018-02-01
Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.
Multi-variate joint PDF for non-Gaussianities: exact formulation and generic approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verde, Licia; Jimenez, Raul; Alvarez-Gaume, Luis
2013-06-01
We provide an exact expression for the multi-variate joint probability distribution function of non-Gaussian fields primordially arising from local transformations of a Gaussian field. This kind of non-Gaussianity is generated in many models of inflation. We apply our expression to the non-Gaussianity estimation from Cosmic Microwave Background maps and the halo mass function where we obtain analytical expressions. We also provide analytic approximations and their range of validity. For the Cosmic Microwave Background we give a fast way to compute the PDF which is valid up to more than 7σ for f{sub NL} values (both true and sampled) not ruledmore » out by current observations, which consists of expressing the PDF as a combination of bispectrum and trispectrum of the temperature maps. The resulting expression is valid for any kind of non-Gaussianity and is not limited to the local type. The above results may serve as the basis for a fully Bayesian analysis of the non-Gaussianity parameter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee
Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface.more » Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.« less
Gaussian-Beam Laser-Resonator Program
NASA Technical Reports Server (NTRS)
Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman
1989-01-01
Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).
NASA Astrophysics Data System (ADS)
Guadagnini, A.; Riva, M.; Neuman, S. P.
2016-12-01
Environmental quantities such as log hydraulic conductivity (or transmissivity), Y(x) = ln K(x), and their spatial (or temporal) increments, ΔY, are known to be generally non-Gaussian. Documented evidence of such behavior includes symmetry of increment distributions at all separation scales (or lags) between incremental values of Y with sharp peaks and heavy tails that decay asymptotically as lag increases. This statistical scaling occurs in porous as well as fractured media characterized by either one or a hierarchy of spatial correlation scales. In hierarchical media one observes a range of additional statistical ΔY scaling phenomena, all of which are captured comprehensibly by a novel generalized sub-Gaussian (GSG) model. In this model Y forms a mixture Y(x) = U(x) G(x) of single- or multi-scale Gaussian processes G having random variances, U being a non-negative subordinator independent of G. Elsewhere we developed ways to generate unconditional and conditional random realizations of isotropic or anisotropic GSG fields which can be embedded in numerical Monte Carlo flow and transport simulations. Here we present and discuss expressions for probability distribution functions of Y and ΔY as well as their lead statistical moments. We then focus on a simple flow setting of mean uniform steady state flow in an unbounded, two-dimensional domain, exploring ways in which non-Gaussian heterogeneity affects stochastic flow and transport descriptions. Our expressions represent (a) lead order autocovariance and cross-covariance functions of hydraulic head, velocity and advective particle displacement as well as (b) analogues of preasymptotic and asymptotic Fickian dispersion coefficients. We compare them with corresponding expressions developed in the literature for Gaussian Y.
Period Estimation for Sparsely-sampled Quasi-periodic Light Curves Applied to Miras
NASA Astrophysics Data System (ADS)
He, Shiyuan; Yuan, Wenlong; Huang, Jianhua Z.; Long, James; Macri, Lucas M.
2016-12-01
We develop a nonlinear semi-parametric Gaussian process model to estimate periods of Miras with sparsely sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequency parameter space over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms an existing algorithm on this simulated test data set as measured by period recovery rate and quality of the resulting period-luminosity relations.
Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thimmisetty, Charanraj A.; Zhao, Wenju; Chen, Xiao
2017-10-18
Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). Thismore » approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.« less
Modeling and forecasting foreign exchange daily closing prices with normal inverse Gaussian
NASA Astrophysics Data System (ADS)
Teneng, Dean
2013-09-01
We fit the normal inverse Gaussian(NIG) distribution to foreign exchange closing prices using the open software package R and select best models by Käärik and Umbleja (2011) proposed strategy. We observe that daily closing prices (12/04/2008 - 07/08/2012) of CHF/JPY, AUD/JPY, GBP/JPY, NZD/USD, QAR/CHF, QAR/EUR, SAR/CHF, SAR/EUR, TND/CHF and TND/EUR are excellent fits while EGP/EUR and EUR/GBP are good fits with a Kolmogorov-Smirnov test p-value of 0.062 and 0.08 respectively. It was impossible to estimate normal inverse Gaussian parameters (by maximum likelihood; computational problem) for JPY/CHF but CHF/JPY was an excellent fit. Thus, while the stochastic properties of an exchange rate can be completely modeled with a probability distribution in one direction, it may be impossible the other way around. We also demonstrate that foreign exchange closing prices can be forecasted with the normal inverse Gaussian (NIG) Lévy process, both in cases where the daily closing prices can and cannot be modeled by NIG distribution.
Dolgobrodov, S G; Lukashkin, A N; Russell, I J
2000-12-01
This paper is based on our model [Dolgobrodov et al., 2000. Hear. Res., submitted for publication] in which we examine the significance of the polyanionic surface layers of stereocilia for electrostatic interaction between them. We analyse how electrostatic forces modify the mechanical properties of the sensory hair bundle. Different charge distribution profiles within the glycocalyx are considered. When modelling a typical experiment on bundle stiffness measurements, applying an external force to the tallest row of stereocilia shows that the asymptotic stiffness of the hair bundle for negative displacements is always larger than the asymptotic stiffness for positive displacements. This increase in stiffness is monotonic for even charge distribution and shows local minima when the negative charge is concentrated in a thinner layer within the cell coat. The minima can also originate from the co-operative effect of electrostatic repulsion and inter-ciliary links with non-linear mechanical properties. Existing experimental observations are compared with the predictions of the model. We conclude that the forces of electrostatic interaction between stereocilia may influence the mechanical properties of the hair bundle and, being strongly non-linear, contribute to the non-linear phenomena, which have been recorded from the auditory periphery.
Model-independent test for scale-dependent non-Gaussianities in the cosmic microwave background.
Räth, C; Morfill, G E; Rossmanith, G; Banday, A J; Górski, K M
2009-04-03
We present a model-independent method to test for scale-dependent non-Gaussianities in combination with scaling indices as test statistics. Therefore, surrogate data sets are generated, in which the power spectrum of the original data is preserved, while the higher order correlations are partly randomized by applying a scale-dependent shuffling procedure to the Fourier phases. We apply this method to the Wilkinson Microwave Anisotropy Probe data of the cosmic microwave background and find signatures for non-Gaussianities on large scales. Further tests are required to elucidate the origin of the detected anomalies.
Probing the cosmological initial conditions using the CMB
NASA Astrophysics Data System (ADS)
Yadav, Amit P. S.
In the last few decades, advances in observational cosmology have given us a standard model of cosmology. The basic cosmological parameters have been laid out to high precision. Cosmologists have started asking questions about the nature of the cosmological initial conditions. Many ambitious experiments such as Planck satellite, EBEX, ACT, CAPMAP, QUaD, BICEP, SPIDER, QUIET, and GEM are underway. Experiments like these will provide us with a wealth of information about CMB polarization, CMB lensing, and polarization foregrounds. These experiments will be complemented with great observational campaigns to map the 3D structure in the Universe and new particle physics constraints from the Large Hadron Collider. In my graduate work I have made explicit how observations of the CMB temperature and E-polarization anisotropies can be combined to provide optimal constraints on models of the early universe at the highest energies. I have developed new ways of constraining models of the early universe using CMB temperature and polarization data. Inflation is one of the most promising theories of the early universe. Different inflationary models predict different amounts of non-Gaussian perturbations. Although any non-Gaussianity predicted by the canonical inflation model is very small, there exist models which can generate significant amounts of non-Gaussianities. Hence any characterization of non-Gaussianity of the primordial perturbations constrains the models of inflation. The information in the bispectrum (or higher order moments) is completely independent of the power spectrum constraints on the amplitude of primordial power spectrum (A), the scalar spectral index of the primordial power spectrum ns, and the running of the primordial power spectrum. My work has made it possible to extract the bispectrum information from large, high resolution CMB temperature and polarization data. We have demonstrated that the primordial adiabatic perturbations can be reconstructed using CMB temperature and E-polarization information (Yadav and Wandelt 2005). One of the main motivations of reconstructing the primordial perturbations is to study the primordial non-Gaussianities. Since the amplitude of primordial non-Gaussianity is very small, any enhancement in sensitivity to the primordial features is useful because it improves the characterization of the primordial non-Gaussianity. Our reconstruction allows us to be more sensitive to the primordial features, whereas most of the current probes of non-Gaussianity do not specifically select for them. We have also developed a fast cubic (bispectrum) estimator of non-Gaussianity f NL of local type, using combined temperature and E-polarization data (Yadavet al. 2007). The estimator is computationally efficient, scaling as O( N 3/2 ) compared to the O( N 5/2 ) scaling of the brute force bispectrum calculation for sky maps with N pixels. For the Planck satellite, this translates into a speed-up by factors of millions, reducing the required computing time from thousands of years to just hours and thus making f NL estimation feasible. The speed of our estimator allows us to study its statistical properties using Monte Carlo simulations. Our estimator in its original form was optimal for homogeneous noise. In order to apply our estimator to realistic data, the estimator needed to be able to deal with inhomogeneous noise. We have generalized the fast polarized estimator to deal with inhomogeneous noise. The generalized estimator is also computationally efficient, scaling as O( N 3/2 ). Furthermore, we have studied and characterized our estimators in the presence of realistic noise, finite resolution, incomplete sky-coverage, and using non-Gaussian CMB maps (Yadavet al. 2008a). We have also developed a numerical code to generate CMB temperature and polarization non-Gaussian maps starting from a given primordial non-Gaussianity (f NL ) (Liguori et al. 2007). In the process of non-Gaussian CMB map making, the code also generates corresponding non-Gaussian primordial curvature perturbations. We use these curvature perturbations to quantify the quality of the tomographic reconstruction method described in (Yadav and Wandelt 2005). We check whether the tomographic reconstruction method preserves the non-Gaussian features, especially the phase information, in the reconstructed curvature perturbations (Yadav et al. in preparation). Finally, using our estimator we found (Yadav and Wandelt 2008) evidence for primordial non-Gaussianity of the local type (f NL ) in the temperature anisotropy of the Cosmic Microwave Background. Analyzing the bispectrum of the WMAP 3-year data up to l max =750 we find 27< f NL <147 (95% CL). This amounts to a rejection of f NL =0 at 2.8s, disfavoring canonical single field slow-roll inflation. The signal is robust to variations in l max , frequency, and masks. No known foreground, instrument systematic, or secondary anisotropy explains it. We explore the impact of several analysis choices on the quoted significance and find 2.5s to be conservative.
Narrow infrasound pulses from lightning; are they of electrostatic or thermal origin?
NASA Astrophysics Data System (ADS)
CHUM, Jaroslav; Diendorfer, Gerhard; Šindelářová, Tereza; Baše, Jiří; Hruška, František
2014-05-01
Narrow (~1-2 s) infrasound pulses that followed, with ~11 to ~50 s delays, rapid changes of electrostatic field were observed by a microbarometer array in the Czech Republic during thunderstorm activity. The angles of arrival (azimuth and elevation) were analyzed for selected distinct events. Comparisons of distances and azimuths of infrasound sources from the center of microbarometer array with lightning locations determined by EUCLID lightning detection network show that most of the selected events are most likely associated with intra-cloud (IC) discharges. Preceding rapid changes of electrostatic field, potential association of infrasound pulses with IC discharges, and high elevation angles of arrival for near infrasound sources indicate that an electrostatic mechanism is probably responsible for their generation. It is discussed that distinguishing of the relative role of thermal and electrostatic mechanism is difficult, and that none of published models of electrostatic production of infrasound thunder can explain the presented observations precisely. A modification of the current models, based on consideration of at least two charged layers is suggested. Further theoretical and experimental investigations are however needed to get a better description of the generation mechanism of those infrasound pulses.
NASA Astrophysics Data System (ADS)
Piretzidis, Dimitrios; Sideris, Michael G.
2016-04-01
This study investigates the possibilities of local hydrology signal extraction using GRACE data and conventional filtering techniques. The impact of the basin shape has also been studied in order to derive empirical rules for tuning the GRACE filter parameters. GRACE CSR Release 05 monthly solutions were used from April 2002 to August 2015 (161 monthly solutions in total). SLR data were also used to replace the GRACE C2,0 coefficient, and a de-correlation filter with optimal parameters for CSR Release 05 data was applied to attenuate the correlation errors of monthly mass differences. For basins located at higher latitudes, the effect of Glacial Isostatic Adjustment (GIA) was taken into account using the ICE-6G model. The study focuses on three geometric properties, i.e., the area, the convexity and the width in the longitudinal direction, of 100 basins with global distribution. Two experiments have been performed. The first one deals with the determination of the Gaussian smoothing radius that minimizes the gaussianity of GRACE equivalent water height (EWH) over the selected basins. The EWH kurtosis was selected as a metric of gaussianity. The second experiment focuses on the derivation of the Gaussian smoothing radius that minimizes the RMS difference between GRACE data and a hydrology model. The GLDAS 1.0 Noah hydrology model was chosen, which shows good agreement with GRACE data according to previous studies. Early results show that there is an apparent relation between the geometric attributes of the basins examined and the Gaussian radius derived from the two experiments. The kurtosis analysis experiment tends to underestimate the optimal Gaussian radius, which is close to 200-300 km in many cases. Empirical rules for the selection of the Gaussian radius have been also developed for sub-regional scale basins.
Mallon, Dermot H; Bradley, J Andrew; Winn, Peter J; Taylor, Craig J; Kosmoliaptsis, Vasilis
2015-02-01
We have previously shown that qualitative assessment of surface electrostatic potential of HLA class I molecules helps explain serological patterns of alloantibody binding. We have now used a novel computational approach to quantitate differences in surface electrostatic potential of HLA B-cell epitopes and applied this to explain HLA Bw4 and Bw6 antigenicity. Protein structure models of HLA class I alleles expressing either the Bw4 or Bw6 epitope (defined by sequence motifs at positions 77 to 83) were generated using comparative structure prediction. The electrostatic potential in 3-dimensional space encompassing the Bw4/Bw6 epitope was computed by solving the Poisson-Boltzmann equation and quantitatively compared in a pairwise, all-versus-all fashion to produce distance matrices that cluster epitopes with similar electrostatics properties. Quantitative comparison of surface electrostatic potential at the carboxyl terminal of the α1-helix of HLA class I alleles, corresponding to amino acid sequence motif 77 to 83, produced clustering of HLA molecules in 3 principal groups according to Bw4 or Bw6 epitope expression. Remarkably, quantitative differences in electrostatic potential reflected known patterns of serological reactivity better than Bw4/Bw6 amino acid sequence motifs. Quantitative assessment of epitope electrostatic potential allowed the impact of known amino acid substitutions (HLA-B*07:02 R79G, R82L, G83R) that are critical for antibody binding to be predicted. We describe a novel approach for quantitating differences in HLA B-cell epitope electrostatic potential. Proof of principle is provided that this approach enables better assessment of HLA epitope antigenicity than amino acid sequence data alone, and it may allow prediction of HLA immunogenicity.
Gaussian solitary waves and compactons in Fermi–Pasta–Ulam lattices with Hertzian potentials
James, Guillaume; Pelinovsky, Dmitry
2014-01-01
We consider a class of fully nonlinear Fermi–Pasta–Ulam (FPU) lattices, consisting of a chain of particles coupled by fractional power nonlinearities of order α>1. This class of systems incorporates a classical Hertzian model describing acoustic wave propagation in chains of touching beads in the absence of precompression. We analyse the propagation of localized waves when α is close to unity. Solutions varying slowly in space and time are searched with an appropriate scaling, and two asymptotic models of the chain of particles are derived consistently. The first one is a logarithmic Korteweg–de Vries (KdV) equation and possesses linearly orbitally stable Gaussian solitary wave solutions. The second model consists of a generalized KdV equation with Hölder-continuous fractional power nonlinearity and admits compacton solutions, i.e. solitary waves with compact support. When , we numerically establish the asymptotically Gaussian shape of exact FPU solitary waves with near-sonic speed and analytically check the pointwise convergence of compactons towards the limiting Gaussian profile. PMID:24808748
Noise effects in nonlinear biochemical signaling
NASA Astrophysics Data System (ADS)
Bostani, Neda; Kessler, David A.; Shnerb, Nadav M.; Rappel, Wouter-Jan; Levine, Herbert
2012-01-01
It has been generally recognized that stochasticity can play an important role in the information processing accomplished by reaction networks in biological cells. Most treatments of that stochasticity employ Gaussian noise even though it is a priori obvious that this approximation can violate physical constraints, such as the positivity of chemical concentrations. Here, we show that even when such nonphysical fluctuations are rare, an exact solution of the Gaussian model shows that the model can yield unphysical results. This is done in the context of a simple incoherent-feedforward model which exhibits perfect adaptation in the deterministic limit. We show how one can use the natural separation of time scales in this model to yield an approximate model, that is analytically solvable, including its dynamical response to an environmental change. Alternatively, one can employ a cutoff procedure to regularize the Gaussian result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passos de Figueiredo, Leandro, E-mail: leandrop.fgr@gmail.com; Grana, Dario; Santos, Marcio
We propose a Bayesian approach for seismic inversion to estimate acoustic impedance, porosity and lithofacies within the reservoir conditioned to post-stack seismic and well data. The link between elastic and petrophysical properties is given by a joint prior distribution for the logarithm of impedance and porosity, based on a rock-physics model. The well conditioning is performed through a background model obtained by well log interpolation. Two different approaches are presented: in the first approach, the prior is defined by a single Gaussian distribution, whereas in the second approach it is defined by a Gaussian mixture to represent the well datamore » multimodal distribution and link the Gaussian components to different geological lithofacies. The forward model is based on a linearized convolutional model. For the single Gaussian case, we obtain an analytical expression for the posterior distribution, resulting in a fast algorithm to compute the solution of the inverse problem, i.e. the posterior distribution of acoustic impedance and porosity as well as the facies probability given the observed data. For the Gaussian mixture prior, it is not possible to obtain the distributions analytically, hence we propose a Gibbs algorithm to perform the posterior sampling and obtain several reservoir model realizations, allowing an uncertainty analysis of the estimated properties and lithofacies. Both methodologies are applied to a real seismic dataset with three wells to obtain 3D models of acoustic impedance, porosity and lithofacies. The methodologies are validated through a blind well test and compared to a standard Bayesian inversion approach. Using the probability of the reservoir lithofacies, we also compute a 3D isosurface probability model of the main oil reservoir in the studied field.« less
The Gaussian Laser Angular Distribution in HYDRA's 3D Laser Ray Trace Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sepke, Scott M.
In this note, the angular distribution of rays launched by the 3D LZR ray trace package is derived for Gaussian beams (npower==2) with bm model=3±. Beams with bm model=+3 have a nearly at distribution, and beams with bm model=-3 have a nearly linear distribution when the spot size is large compared to the wavelength.
Robust Gaussian Graphical Modeling via l1 Penalization
Sun, Hokeun; Li, Hongzhe
2012-01-01
Summary Gaussian graphical models have been widely used as an effective method for studying the conditional independency structure among genes and for constructing genetic networks. However, gene expression data typically have heavier tails or more outlying observations than the standard Gaussian distribution. Such outliers in gene expression data can lead to wrong inference on the dependency structure among the genes. We propose a l1 penalized estimation procedure for the sparse Gaussian graphical models that is robustified against possible outliers. The likelihood function is weighted according to how the observation is deviated, where the deviation of the observation is measured based on its own likelihood. An efficient computational algorithm based on the coordinate gradient descent method is developed to obtain the minimizer of the negative penalized robustified-likelihood, where nonzero elements of the concentration matrix represents the graphical links among the genes. After the graphical structure is obtained, we re-estimate the positive definite concentration matrix using an iterative proportional fitting algorithm. Through simulations, we demonstrate that the proposed robust method performs much better than the graphical Lasso for the Gaussian graphical models in terms of both graph structure selection and estimation when outliers are present. We apply the robust estimation procedure to an analysis of yeast gene expression data and show that the resulting graph has better biological interpretation than that obtained from the graphical Lasso. PMID:23020775
Phase behavior of charged colloids at a fluid interface
NASA Astrophysics Data System (ADS)
Kelleher, Colm P.; Guerra, Rodrigo E.; Hollingsworth, Andrew D.; Chaikin, Paul M.
2017-02-01
We study the phase behavior of a system of charged colloidal particles that are electrostatically bound to an almost flat interface between two fluids. We show that, despite the fact that our experimental system consists of only 103-104 particles, the phase behavior is consistent with the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson, and Young. Using spatial and temporal correlations of the bond-orientational order parameter, we classify our samples into solid, isotropic fluid, and hexatic phases. We demonstrate that the topological defect structure we observe in each phase corresponds to the predictions of Kosterlitz-Thouless-Halperin-Nelson-Young theory. By measuring the dynamic Lindemann parameter γL(τ ) and the non-Gaussian parameter α2(τ ) of the displacements of the particles relative to their neighbors, we show that each of the phases displays distinctive dynamical behavior.
Osypov, Alexander A; Krutinin, Gleb G; Krutinina, Eugenia A; Kamzolova, Svetlana G
2012-04-01
Electrostatic properties of genome DNA are important to its interactions with different proteins, in particular, related to transcription. DEPPDB - DNA Electrostatic Potential (and other Physical) Properties Database - provides information on the electrostatic and other physical properties of genome DNA combined with its sequence and annotation of biological and structural properties of genomes and their elements. Genomes are organized on taxonomical basis, supporting comparative and evolutionary studies. Currently, DEPPDB contains all completely sequenced bacterial, viral, mitochondrial, and plastids genomes according to the NCBI RefSeq, and some model eukaryotic genomes. Data for promoters, regulation sites, binding proteins, etc., are incorporated from established DBs and literature. The database is complemented by analytical tools. User sequences calculations are available. Case studies discovered electrostatics complementing DNA bending in E.coli plasmid BNT2 promoter functioning, possibly affecting host-environment metabolic switch. Transcription factors binding sites gravitate to high potential regions, confirming the electrostatics universal importance in protein-DNA interactions beyond the classical promoter-RNA polymerase recognition and regulation. Other genome elements, such as terminators, also show electrostatic peculiarities. Most intriguing are gene starts, exhibiting taxonomic correlations. The necessity of the genome electrostatic properties studies is discussed.
Wang, Shijun; Liu, Peter; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Summers, Ronald M
2012-01-01
In this paper, we propose a new pharmacokinetic model for parameter estimation of dynamic contrast-enhanced (DCE) MRI by using Gaussian process inference. Our model is based on the Tofts dual-compartment model for the description of tracer kinetics and the observed time series from DCE-MRI is treated as a Gaussian stochastic process. The parameter estimation is done through a maximum likelihood approach and we propose a variant of the coordinate descent method to solve this likelihood maximization problem. The new model was shown to outperform a baseline method on simulated data. Parametric maps generated on prostate DCE data with the new model also provided better enhancement of tumors, lower intensity on false positives, and better boundary delineation when compared with the baseline method. New statistical parameter maps from the process model were also found to be informative, particularly when paired with the PK parameter maps.
Tests for Gaussianity of the MAXIMA-1 cosmic microwave background map.
Wu, J H; Balbi, A; Borrill, J; Ferreira, P G; Hanany, S; Jaffe, A H; Lee, A T; Rabii, B; Richards, P L; Smoot, G F; Stompor, R; Winant, C D
2001-12-17
Gaussianity of the cosmological perturbations is one of the key predictions of standard inflation, but it is violated by other models of structure formation such as cosmic defects. We present the first test of the Gaussianity of the cosmic microwave background (CMB) on subdegree angular scales, where deviations from Gaussianity are most likely to occur. We apply the methods of moments, cumulants, the Kolmogorov test, the chi(2) test, and Minkowski functionals in eigen, real, Wiener-filtered, and signal-whitened spaces, to the MAXIMA-1 CMB anisotropy data. We find that the data, which probe angular scales between 10 arcmin and 5 deg, are consistent with Gaussianity. These results show consistency with the standard inflation and place constraints on the existence of cosmic defects.
Genomic Prediction of Genotype × Environment Interaction Kernel Regression Models.
Cuevas, Jaime; Crossa, José; Soberanis, Víctor; Pérez-Elizalde, Sergio; Pérez-Rodríguez, Paulino; Campos, Gustavo de Los; Montesinos-López, O A; Burgueño, Juan
2016-11-01
In genomic selection (GS), genotype × environment interaction (G × E) can be modeled by a marker × environment interaction (M × E). The G × E may be modeled through a linear kernel or a nonlinear (Gaussian) kernel. In this study, we propose using two nonlinear Gaussian kernels: the reproducing kernel Hilbert space with kernel averaging (RKHS KA) and the Gaussian kernel with the bandwidth estimated through an empirical Bayesian method (RKHS EB). We performed single-environment analyses and extended to account for G × E interaction (GBLUP-G × E, RKHS KA-G × E and RKHS EB-G × E) in wheat ( L.) and maize ( L.) data sets. For single-environment analyses of wheat and maize data sets, RKHS EB and RKHS KA had higher prediction accuracy than GBLUP for all environments. For the wheat data, the RKHS KA-G × E and RKHS EB-G × E models did show up to 60 to 68% superiority over the corresponding single environment for pairs of environments with positive correlations. For the wheat data set, the models with Gaussian kernels had accuracies up to 17% higher than that of GBLUP-G × E. For the maize data set, the prediction accuracy of RKHS EB-G × E and RKHS KA-G × E was, on average, 5 to 6% higher than that of GBLUP-G × E. The superiority of the Gaussian kernel models over the linear kernel is due to more flexible kernels that accounts for small, more complex marker main effects and marker-specific interaction effects. Copyright © 2016 Crop Science Society of America.
Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels
NASA Astrophysics Data System (ADS)
De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio
2017-04-01
We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p →q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.
Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels.
De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio
2017-04-21
We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p→q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.
Flexible link functions in nonparametric binary regression with Gaussian process priors.
Li, Dan; Wang, Xia; Lin, Lizhen; Dey, Dipak K
2016-09-01
In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. © 2015, The International Biometric Society.
Flexible Link Functions in Nonparametric Binary Regression with Gaussian Process Priors
Li, Dan; Lin, Lizhen; Dey, Dipak K.
2015-01-01
Summary In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. PMID:26686333
Loop corrections to primordial non-Gaussianity
NASA Astrophysics Data System (ADS)
Boran, Sibel; Kahya, E. O.
2018-02-01
We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.
Conformational study of glyoxal bis(amidinohydrazone) by ab initio methods
NASA Astrophysics Data System (ADS)
Mannfors, B.; Koskinen, J. T.; Pietilä, L.-O.
1997-08-01
We report the first ab initio molecular orbital study on the ground state of the endiamine tautomer of glyoxal bis(amidinohydrazone) (or glyoxal bis(guanylhydrazone), GBG) free base. The calculations were performed at the following levels of theory: Hartree-Fock, second-order Møller-Plesset perturbation theory and density functional theory (B-LYP and B3-LYP) as implemented in the Gaussian 94 software. The standard basis set 6-31G(d) was found to be sufficient. The default fine grid of Gaussian 94 was used in the density functional calculations. Molecular properties, such as optimized structures, total energies and the electrostatic potential derived (CHELPG) atomic charges, were studied as functions of C-C and N-N conformations. The lowest energy conformation was found to be all- trans, in agreement with the experimental solid-state structure. The second conformer with respect to rotation around the central C-C bond was found to be the cis conformer with an MP2//HF energy of 4.67 kcal mol -1. For rotation around the N-N bond the energy increased monotonically from the trans conformation to the cis conformation, the cis energy being very high, 22.01 kcal mol -1 (MP2//HF). The atomic charges were shown to be conformation dependent, and the bond charge increments and especially the conformational changes of the bond charge increments were found to be easily transferable between structurally related systems.
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Sathian, K
2018-02-01
In a recent study, Eklund et al. employed resting-state functional magnetic resonance imaging data as a surrogate for null functional magnetic resonance imaging (fMRI) datasets and posited that cluster-wise family-wise error (FWE) rate-corrected inferences made by using parametric statistical methods in fMRI studies over the past two decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; this was principally because the spatial autocorrelation functions (sACF) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggested otherwise. Here, we show that accounting for non-Gaussian signal components such as those arising from resting-state neural activity as well as physiological responses and motion artifacts in the null fMRI datasets yields first- and second-level general linear model analysis residuals with nearly uniform and Gaussian sACF. Further comparison with nonparametric permutation tests indicates that cluster-based FWE corrected inferences made with Gaussian spatial noise approximations are valid.
Blended particle filters for large-dimensional chaotic dynamical systems
Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.
2014-01-01
A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886
A 2D Gaussian-Beam-Based Method for Modeling the Dichroic Surfaces of Quasi-Optical Systems
NASA Astrophysics Data System (ADS)
Elis, Kevin; Chabory, Alexandre; Sokoloff, Jérôme; Bolioli, Sylvain
2016-08-01
In this article, we propose an approach in the spectral domain to treat the interaction of a field with a dichroic surface in two dimensions. For a Gaussian beam illumination of the surface, the reflected and transmitted fields are approximated by one reflected and one transmitted Gaussian beams. Their characteristics are determined by means of a matching in the spectral domain, which requires a second-order approximation of the dichroic surface response when excited by plane waves. This approximation is of the same order as the one used in Gaussian beam shooting algorithm to model curved interfaces associated with lenses, reflector, etc. The method uses general analytical formulations for the GBs that depend either on a paraxial or far-field approximation. Numerical experiments are led to test the efficiency of the method in terms of accuracy and computation time. They include a parametric study and a case for which the illumination is provided by a horn antenna. For the latter, the incident field is firstly expressed as a sum of Gaussian beams by means of Gabor frames.
Time-domain least-squares migration using the Gaussian beam summation method
NASA Astrophysics Data System (ADS)
Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo
2018-04-01
With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.
Time-domain least-squares migration using the Gaussian beam summation method
NASA Astrophysics Data System (ADS)
Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo
2018-07-01
With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modelling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modelling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a pre-conditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.
Direct Importance Estimation with Gaussian Mixture Models
NASA Astrophysics Data System (ADS)
Yamada, Makoto; Sugiyama, Masashi
The ratio of two probability densities is called the importance and its estimation has gathered a great deal of attention these days since the importance can be used for various data processing purposes. In this paper, we propose a new importance estimation method using Gaussian mixture models (GMMs). Our method is an extention of the Kullback-Leibler importance estimation procedure (KLIEP), an importance estimation method using linear or kernel models. An advantage of GMMs is that covariance matrices can also be learned through an expectation-maximization procedure, so the proposed method — which we call the Gaussian mixture KLIEP (GM-KLIEP) — is expected to work well when the true importance function has high correlation. Through experiments, we show the validity of the proposed approach.
Electrostatic channeling in P. falciparum DHFR-TS: Brownian dynamics and Smoluchowski modeling.
Metzger, Vincent T; Eun, Changsun; Kekenes-Huskey, Peter M; Huber, Gary; McCammon, J Andrew
2014-11-18
We perform Brownian dynamics simulations and Smoluchowski continuum modeling of the bifunctional Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (P. falciparum DHFR-TS) with the objective of understanding the electrostatic channeling of dihydrofolate generated at the TS active site to the DHFR active site. The results of Brownian dynamics simulations and Smoluchowski continuum modeling suggest that compared to Leishmania major DHFR-TS, P. falciparum DHFR-TS has a lower but significant electrostatic-mediated channeling efficiency (?15-25%) at physiological pH (7.0) and ionic strength (150 mM). We also find that removing the electric charges from key basic residues located between the DHFR and TS active sites significantly reduces the channeling efficiency of P. falciparum DHFR-TS. Although several protozoan DHFR-TS enzymes are known to have similar tertiary and quaternary structure, subtle differences in structure, active-site geometry, and charge distribution appear to influence both electrostatic-mediated and proximity-based substrate channeling.
Effect of Base Sequence "Defects" on the Electrostatic Potential of Dissolved DNA
NASA Astrophysics Data System (ADS)
Adams, Scott V.; Wagner, Katrina; Kephart, Thomas S.; Edwards, Glenn
1997-11-01
An analytical model of the electrostatic potential surrounding dissolved DNA has been developed. The model consists of an all-atom, mathematically helical structure for DNA, in which the atoms are arranged in infinite lines of discrete point charges on concentric cylindrical surfaces. The surrounding solvent and counterions are treated with the Debye-Huckel approximation (Wagner et al., Biophysical Journal 73, 21-30, 1997). Variation in the electrostatic potential due to structural differences between A, B, and Z conformations and homopolymer base sequence is apparent. The most recent modification to the model exploits the principle of superposition to calculate the potential of DNA with a base sequence containing `defects.' That is, the base sequence is no longer uniform along the polymer. Differences between the potential of homopolymer DNA and the potential of DNA containing base `defects' are immediately obvious. These results may aid in understanding the role of electrostatics in base-sequence specificity exhibited by DNA-binding proteins.
Biktashev, Vadim N
2014-04-01
We consider a simple mathematical model of gradual Darwinian evolution in continuous time and continuous trait space, due to intraspecific competition for common resource in an asexually reproducing population in constant environment, while far from evolutionary stable equilibrium. The model admits exact analytical solution. In particular, Gaussian distribution of the trait emerges from generic initial conditions.
NASA Technical Reports Server (NTRS)
Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.
1980-01-01
Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.
Coarse-graining, Electrostatics and pH effects in phospholipid systems
NASA Astrophysics Data System (ADS)
Travesset, Alex; Vangaveti, Sweta
2010-03-01
We introduce a minimal free energy describing the interaction of charged groups and counterions including both classical electrostatic and specific interactions. The predictions of the model are compared against the standard model for describing ions next to charged interfaces, consisting of Poisson-Boltzmann theory with additional constants describing ion binding, which are specific to the counterion and the interfacial charge (``chemical binding''). It is shown that the ``chemical'' model can be appropriately described by an underlying ``physical'' model over several decades in concentration, but the extracted binding constants are not uniquely defined, as they differ depending on the particular observable quantity being studied. It is also shown that electrostatic correlations for divalent (or higher valence) ions enhance the surface charge by increasing deprotonation, an effect not properly accounted within chemical models. The model is applied to the charged phospholipids phosphatidylserine, Phosphatidc acid and Phosphoinositides and implications for different biological processes are discussed.
NASA Astrophysics Data System (ADS)
Rychlik, Igor; Mao, Wengang
2018-02-01
The wind speed variability in the North Atlantic has been successfully modelled using a spatio-temporal transformed Gaussian field. However, this type of model does not correctly describe the extreme wind speeds attributed to tropical storms and hurricanes. In this study, the transformed Gaussian model is further developed to include the occurrence of severe storms. In this new model, random components are added to the transformed Gaussian field to model rare events with extreme wind speeds. The resulting random field is locally stationary and homogeneous. The localized dependence structure is described by time- and space-dependent parameters. The parameters have a natural physical interpretation. To exemplify its application, the model is fitted to the ECMWF ERA-Interim reanalysis data set. The model is applied to compute long-term wind speed distributions and return values, e.g., 100- or 1000-year extreme wind speeds, and to simulate random wind speed time series at a fixed location or spatio-temporal wind fields around that location.
NASA Astrophysics Data System (ADS)
Pires, Carlos; Ribeiro, Andreia
2016-04-01
An efficient nonlinear method of statistical source separation of space-distributed non-Gaussian distributed data is proposed. The method relies in the so called Independent Subspace Analysis (ISA), being tested on a long time-series of the stream-function field of an atmospheric quasi-geostrophic 3-level model (QG3) simulating the winter's monthly variability of the Northern Hemisphere. ISA generalizes the Independent Component Analysis (ICA) by looking for multidimensional and minimally dependent, uncorrelated and non-Gaussian distributed statistical sources among the rotated projections or subspaces of the multivariate probability distribution of the leading principal components of the working field whereas ICA restrict to scalar sources. The rationale of that technique relies upon the projection pursuit technique, looking for data projections of enhanced interest. In order to accomplish the decomposition, we maximize measures of the sources' non-Gaussianity by contrast functions which are given by squares of nonlinear, cross-cumulant-based correlations involving the variables spanning the sources. Therefore sources are sought matching certain nonlinear data structures. The maximized contrast function is built in such a way that it provides the minimization of the mean square of the residuals of certain nonlinear regressions. The issuing residuals, followed by spherization, provide a new set of nonlinear variable changes that are at once uncorrelated, quasi-independent and quasi-Gaussian, representing an advantage with respect to the Independent Components (scalar sources) obtained by ICA where the non-Gaussianity is concentrated into the non-Gaussian scalar sources. The new scalar sources obtained by the above process encompass the attractor's curvature thus providing improved nonlinear model indices of the low-frequency atmospheric variability which is useful since large circulation indices are nonlinearly correlated. The non-Gaussian tested sources (dyads and triads, respectively of two and three dimensions) lead to a dense data concentration along certain curves or surfaces, nearby which the clusters' centroids of the joint probability density function tend to be located. That favors a better splitting of the QG3 atmospheric model's weather regimes: the positive and negative phases of the Arctic Oscillation and positive and negative phases of the North Atlantic Oscillation. The leading model's non-Gaussian dyad is associated to a positive correlation between: 1) the squared anomaly of the extratropical jet-stream and 2) the meridional jet-stream meandering. Triadic sources coming from maximized third-order cross cumulants between pairwise uncorrelated components reveal situations of triadic wave resonance and nonlinear triadic teleconnections, only possible thanks to joint non-Gaussianity. That kind of triadic synergies are accounted for an Information-Theoretic measure: the Interaction Information. The dominant model's triad occurs between anomalies of: 1) the North Pole anomaly pressure 2) the jet-stream intensity at the Eastern North-American boundary and 3) the jet-stream intensity at the Eastern Asian boundary. Publication supported by project FCT UID/GEO/50019/2013 - Instituto Dom Luiz.
Gay-Berne and electrostatic multipole based coarse-grain potential in implicit solvent
NASA Astrophysics Data System (ADS)
Wu, Johnny; Zhen, Xia; Shen, Hujun; Li, Guohui; Ren, Pengyu
2011-10-01
A general, transferable coarse-grain (CG) framework based on the Gay-Berne potential and electrostatic point multipole expansion is presented for polypeptide simulations. The solvent effect is described by the Generalized Kirkwood theory. The CG model is calibrated using the results of all-atom simulations of model compounds in solution. Instead of matching the overall effective forces produced by atomic models, the fundamental intermolecular forces such as electrostatic, repulsion-dispersion, and solvation are represented explicitly at a CG level. We demonstrate that the CG alanine dipeptide model is able to reproduce quantitatively the conformational energy of all-atom force fields in both gas and solution phases, including the electrostatic and solvation components. Replica exchange molecular dynamics and microsecond dynamic simulations of polyalanine of 5 and 12 residues reveal that the CG polyalanines fold into "alpha helix" and "beta sheet" structures. The 5-residue polyalanine displays a substantial increase in the "beta strand" fraction relative to the 12-residue polyalanine. The detailed conformational distribution is compared with those reported from recent all-atom simulations and experiments. The results suggest that the new coarse-graining approach presented in this study has the potential to offer both accuracy and efficiency for biomolecular modeling.
Messaoudi, Noureddine; Bekka, Raïs El'hadi; Ravier, Philippe; Harba, Rachid
2017-02-01
The purpose of this paper was to evaluate the effects of the longitudinal single differential (LSD), the longitudinal double differential (LDD) and the normal double differential (NDD) spatial filters, the electrode shape, the inter-electrode distance (IED) on non-Gaussianity and non-linearity levels of simulated surface EMG (sEMG) signals when the maximum voluntary contraction (MVC) varied from 10% to 100% by a step of 10%. The effects of recruitment range thresholds (RR), the firing rate (FR) strategy and the peak firing rate (PFR) of motor units were also considered. A cylindrical multilayer model of the volume conductor and a model of motor unit (MU) recruitment and firing rate were used to simulate sEMG signals in a pool of 120 MUs for 5s. Firstly, the stationarity of sEMG signals was tested by the runs, the reverse arrangements (RA) and the modified reverse arrangements (MRA) tests. Then the non-Gaussianity was characterised with bicoherence and kurtosis, and non-linearity levels was evaluated with linearity test. The kurtosis analysis showed that the sEMG signals detected by the LSD filter were the most Gaussian and those detected by the NDD filter were the least Gaussian. In addition, the sEMG signals detected by the LSD filter were the most linear. For a given filter, the sEMG signals detected by using rectangular electrodes were more Gaussian and more linear than that detected with circular electrodes. Moreover, the sEMG signals are less non-Gaussian and more linear with reverse onion-skin firing rate strategy than those with onion-skin strategy. The levels of sEMG signal Gaussianity and linearity increased with the increase of the IED, RR and PFR. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electrostatics at the nanoscale.
Walker, David A; Kowalczyk, Bartlomiej; de la Cruz, Monica Olvera; Grzybowski, Bartosz A
2011-04-01
Electrostatic forces are amongst the most versatile interactions to mediate the assembly of nanostructured materials. Depending on experimental conditions, these forces can be long- or short-ranged, can be either attractive or repulsive, and their directionality can be controlled by the shapes of the charged nano-objects. This Review is intended to serve as a primer for experimentalists curious about the fundamentals of nanoscale electrostatics and for theorists wishing to learn about recent experimental advances in the field. Accordingly, the first portion introduces the theoretical models of electrostatic double layers and derives electrostatic interaction potentials applicable to particles of different sizes and/or shapes and under different experimental conditions. This discussion is followed by the review of the key experimental systems in which electrostatic interactions are operative. Examples include electroactive and "switchable" nanoparticles, mixtures of charged nanoparticles, nanoparticle chains, sheets, coatings, crystals, and crystals-within-crystals. Applications of these and other structures in chemical sensing and amplification are also illustrated.
NASA Astrophysics Data System (ADS)
Gu, Yongzhen; Duan, Baoyan; Du, Jingli
2018-05-01
The electrostatically controlled deployable membrane antenna (ECDMA) is a promising space structure due to its low weight, large aperture and high precision characteristics. However, it is an extreme challenge to describe the coupled field between electrostatic and membrane structure accurately. A direct coupled method is applied to solve the coupled problem in this paper. Firstly, the membrane structure and electrostatic field are uniformly described by energy, considering the coupled problem is an energy conservation phenomenon. Then the direct coupled electrostatic-structural field governing equilibrium equations are obtained by energy variation approach. Numerical results show that the direct coupled method improves the computing efficiency by 36% compared with the traditional indirect coupled method with the same level accuracy. Finally, the prototype has been manufactured and tested and the ECDMA finite element simulations show good agreement with the experiment results as the maximum surface error difference is 6%.
On an Additive Semigraphoid Model for Statistical Networks With Application to Pathway Analysis.
Li, Bing; Chun, Hyonho; Zhao, Hongyu
2014-09-01
We introduce a nonparametric method for estimating non-gaussian graphical models based on a new statistical relation called additive conditional independence, which is a three-way relation among random vectors that resembles the logical structure of conditional independence. Additive conditional independence allows us to use one-dimensional kernel regardless of the dimension of the graph, which not only avoids the curse of dimensionality but also simplifies computation. It also gives rise to a parallel structure to the gaussian graphical model that replaces the precision matrix by an additive precision operator. The estimators derived from additive conditional independence cover the recently introduced nonparanormal graphical model as a special case, but outperform it when the gaussian copula assumption is violated. We compare the new method with existing ones by simulations and in genetic pathway analysis.
Chialvo, Ariel A.; Moucka, Filip; Vlcek, Lukas; ...
2015-03-24
Here we implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. Moreover, for that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We also assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve againstmore » the corresponding quantities from the actual GCP water model.« less
Nuclear DNA contents of Echinchloa crus-galli and its Gaussian relationships with environments
NASA Astrophysics Data System (ADS)
Li, Dan-Dan; Lu, Yong-Liang; Guo, Shui-Liang; Yin, Li-Ping; Zhou, Ping; Lou, Yu-Xia
2017-02-01
Previous studies on plant nuclear DNA content variation and its relationships with environmental gradients produced conflicting results. We speculated that the relationships between nuclear DNA content of a widely-distributed species and its environmental gradients might be non-linear if it was sampled in a large geographical gradient. Echinochloa crus-galli (L.) P. Beauv. is a worldwide species, but without documents on its intraspecific variation of nuclear DNA content. Our objectives are: 1) to detect intraspecific variation scope of E. crus-galli in its nuclear DNA content, and 2) to testify whether nuclear DNA content of the species changes with environmental gradients following Gaussian models if its populations were sampled in a large geographical gradient. We collected seeds of 36 Chinese populations of E. crus-galli across a wide geographical gradient, and sowed them in a homogeneous field to get their offspring to determine their nuclear DNA content. We analyzed the relationships of nuclear DNA content of these populations with latitude, longitude, and nineteen bioclimatic variables by using Gaussian and linear models. (1) Nuclear DNA content varied from 2.113 to 2.410 pg among 36 Chinese populations of E. crus-galli, with a mean value of 2.256 pg. (2) Gaussian correlations of nuclear DNA content (y) with geographical gradients were detected, with latitude (x) following y = 2.2923*e -(x - 24.9360)2/2*63.79452 (r = 0.546, P < 0.001), and with longitude (x) following y = 2.2933*e -(x - 116.1801)2/2*44.74502 (r = 0.672, P < 0.001). (3) Among the nineteen bioclimatic variables, except temperature isothermality, precipitations of the wettest month, the wettest quarter and the warmest quarter, the others could be better fit with nuclear DNA content by using Gaussian models than by linear models. There exists intra-specific variation among 36 Chinese populations of E. crus-galli, Gaussian models could be applied to fit the correlations of its Nuclear DNA content with geographical and most bioclimatic gradients.
Turbulent particulate transportation during electrostatic precipitation
NASA Astrophysics Data System (ADS)
Choi, Bum Seog
The generation of secondary flows and turbulence by a corona discharge influences particle transport in an electrostatic precipitator (ESP), and is known to play an important role in the particle collection process. However, it is difficult to characterise theoretically and experimentally the ``turbulent'' fluctuations of the gas flow produced by negative tuft corona. Because of this difficulty, only limited studies have been undertaken previously to understand the structure of corona-induced turbulence and its influence on particle transport in ESPs. The present study is aimed at modelling electrohydrodynamic turbulent flows and particle transport, and at establishing an unproved understanding of them. For a multiply interactive coupling of electrostatics, fluid dynamics and particle dynamics, a strongly coupled system of the governing equations has been solved. The present computer model has considered the most important interaction mechanisms including an ionic wind, corona- induced turbulence and the particle space charge effect. Numerical simulations have been performed for the extensive validation of the numerical and physical models. To account for electrically excited turbulence associated with the inhomogeneous and unsteady characteristics of negative corona discharges, a new turbulence model (called the electrostatic turbulence model) has been developed. In this, an additional production or destruction term is included into the turbulent kinetic energy and dissipation rate equations. It employs a gradient type model of the current density and an electrostatic diffusivity concept. The results of the computation show that the electrostatic turbulence model gives much better agreement with the experimental data than the conventional RNG k-ɛ turbulence model when predicting turbulent gas flows and particle distributions in an ESP. Computations of turbulent particulate two-phase flows for both mono-dispersed and poly-dispersed particles have been performed. The effects of coriona-induced turbulence and the particle space charge on particle transport and the collection process have been investigated. The calculated results for the poly-dispersed particulate flow were compared with those of the mono-dispersed particulate flow, and significant differences were demonstrated. It is established that effective particle- particle interaction occurs, due to the influence of the particle space charge, even for dilute gas-particle flows that occur in ESPs.
Infrasound pulses from lightning and electrostatic field changes: Observation and discussion
NASA Astrophysics Data System (ADS)
Chum, J.; Diendorfer, G.; Å indelářová, T.; Baše, J.; Hruška, F.
2013-10-01
Narrow (~1-2 s) infrasound pulses that followed, with ~11 to ~50 s delays, rapid changes of electrostatic field were observed by a microbarometer array in the Czech Republic during thunderstorm activity. A positive pressure fluctuation (compression phase) always preceded decompression; the compression was usually higher than the decompression. The angles of arrival (azimuth and elevation) were analyzed for selected distinct events. Comparisons of distances and azimuths of infrasound sources from the center of microbarometer array with lightning locations determined by the European Cooperation for Lighting Detection lightning detection network show that most of the selected events can be very likely associated with intracloud (IC) discharges. The preceding rapid changes of electrostatic field, their potential association with IC discharges, and high-elevation angles of arrival for near infrasound sources indicate that an electrostatic mechanism is probably responsible for their generation. It is discussed that distinguishing the relative role of thermal and electrostatic mechanism is difficult and that none of the published models of electrostatic production of infrasound thunder can explain the presented observations precisely. A modification of the current models, based on consideration of at least two charged layers, is suggested. Further theoretical and experimental investigations are however needed to get a better description of the generation mechanism.
Shi, J Q; Wang, B; Will, E J; West, R M
2012-11-20
We propose a new semiparametric model for functional regression analysis, combining a parametric mixed-effects model with a nonparametric Gaussian process regression model, namely a mixed-effects Gaussian process functional regression model. The parametric component can provide explanatory information between the response and the covariates, whereas the nonparametric component can add nonlinearity. We can model the mean and covariance structures simultaneously, combining the information borrowed from other subjects with the information collected from each individual subject. We apply the model to dose-response curves that describe changes in the responses of subjects for differing levels of the dose of a drug or agent and have a wide application in many areas. We illustrate the method for the management of renal anaemia. An individual dose-response curve is improved when more information is included by this mechanism from the subject/patient over time, enabling a patient-specific treatment regime. Copyright © 2012 John Wiley & Sons, Ltd.
2016-01-01
Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups. PMID:27003358
NASA Astrophysics Data System (ADS)
Snow, Michael G.; Bajaj, Anil K.
2015-08-01
This work presents an uncertainty quantification (UQ) analysis of a comprehensive model for an electrostatically actuated microelectromechanical system (MEMS) switch. The goal is to elucidate the effects of parameter variations on certain key performance characteristics of the switch. A sufficiently detailed model of the electrostatically actuated switch in the basic configuration of a clamped-clamped beam is developed. This multi-physics model accounts for various physical effects, including the electrostatic fringing field, finite length of electrodes, squeeze film damping, and contact between the beam and the dielectric layer. The performance characteristics of immediate interest are the static and dynamic pull-in voltages for the switch. Numerical approaches for evaluating these characteristics are developed and described. Using Latin Hypercube Sampling and other sampling methods, the model is evaluated to find these performance characteristics when variability in the model's geometric and physical parameters is specified. Response surfaces of these results are constructed via a Multivariate Adaptive Regression Splines (MARS) technique. Using a Direct Simulation Monte Carlo (DSMC) technique on these response surfaces gives smooth probability density functions (PDFs) of the outputs characteristics when input probability characteristics are specified. The relative variation in the two pull-in voltages due to each of the input parameters is used to determine the critical parameters.
Bayesian Analysis of Non-Gaussian Long-Range Dependent Processes
NASA Astrophysics Data System (ADS)
Graves, T.; Franzke, C.; Gramacy, R. B.; Watkins, N. W.
2012-12-01
Recent studies have strongly suggested that surface temperatures exhibit long-range dependence (LRD). The presence of LRD would hamper the identification of deterministic trends and the quantification of their significance. It is well established that LRD processes exhibit stochastic trends over rather long periods of time. Thus, accurate methods for discriminating between physical processes that possess long memory and those that do not are an important adjunct to climate modeling. We have used Markov Chain Monte Carlo algorithms to perform a Bayesian analysis of Auto-Regressive Fractionally-Integrated Moving-Average (ARFIMA) processes, which are capable of modeling LRD. Our principal aim is to obtain inference about the long memory parameter, d,with secondary interest in the scale and location parameters. We have developed a reversible-jump method enabling us to integrate over different model forms for the short memory component. We initially assume Gaussianity, and have tested the method on both synthetic and physical time series such as the Central England Temperature. Many physical processes, for example the Faraday time series from Antarctica, are highly non-Gaussian. We have therefore extended this work by weakening the Gaussianity assumption. Specifically, we assume a symmetric α -stable distribution for the innovations. Such processes provide good, flexible, initial models for non-Gaussian processes with long memory. We will present a study of the dependence of the posterior variance σ d of the memory parameter d on the length of the time series considered. This will be compared with equivalent error diagnostics for other measures of d.
PERIOD ESTIMATION FOR SPARSELY SAMPLED QUASI-PERIODIC LIGHT CURVES APPLIED TO MIRAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Shiyuan; Huang, Jianhua Z.; Long, James
2016-12-01
We develop a nonlinear semi-parametric Gaussian process model to estimate periods of Miras with sparsely sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequencymore » parameter space over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms an existing algorithm on this simulated test data set as measured by period recovery rate and quality of the resulting period–luminosity relations.« less
Accretion rates of protoplanets. II - Gaussian distributions of planetesimal velocities
NASA Technical Reports Server (NTRS)
Greenzweig, Yuval; Lissauer, Jack J.
1992-01-01
In the present growth-rate calculations for a protoplanet that is embedded in a disk of planetesimals with triaxial Gaussian velocity dispersion and uniform surface density, the protoplanet is on a circular orbit. The accretion rate in the two-body approximation is found to be enhanced by a factor of about 3 relative to the case where all planetesimals' eccentricities and inclinations are equal to the rms values of those disk variables having locally Gaussian velocity dispersion. This accretion-rate enhancement should be incorporated by all models that assume a single random velocity for all planetesimals in lieu of a Gaussian distribution.
A fast elitism Gaussian estimation of distribution algorithm and application for PID optimization.
Xu, Qingyang; Zhang, Chengjin; Zhang, Li
2014-01-01
Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA.
A Fast Elitism Gaussian Estimation of Distribution Algorithm and Application for PID Optimization
Xu, Qingyang; Zhang, Chengjin; Zhang, Li
2014-01-01
Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA. PMID:24892059
Following a trend with an exponential moving average: Analytical results for a Gaussian model
NASA Astrophysics Data System (ADS)
Grebenkov, Denis S.; Serror, Jeremy
2014-01-01
We investigate how price variations of a stock are transformed into profits and losses (P&Ls) of a trend following strategy. In the frame of a Gaussian model, we derive the probability distribution of P&Ls and analyze its moments (mean, variance, skewness and kurtosis) and asymptotic behavior (quantiles). We show that the asymmetry of the distribution (with often small losses and less frequent but significant profits) is reminiscent to trend following strategies and less dependent on peculiarities of price variations. At short times, trend following strategies admit larger losses than one may anticipate from standard Gaussian estimates, while smaller losses are ensured at longer times. Simple explicit formulas characterizing the distribution of P&Ls illustrate the basic mechanisms of momentum trading, while general matrix representations can be applied to arbitrary Gaussian models. We also compute explicitly annualized risk adjusted P&L and strategy turnover to account for transaction costs. We deduce the trend following optimal timescale and its dependence on both auto-correlation level and transaction costs. Theoretical results are illustrated on the Dow Jones index.
A Gaussian Mixture Model Representation of Endmember Variability in Hyperspectral Unmixing
NASA Astrophysics Data System (ADS)
Zhou, Yuan; Rangarajan, Anand; Gader, Paul D.
2018-05-01
Hyperspectral unmixing while considering endmember variability is usually performed by the normal compositional model (NCM), where the endmembers for each pixel are assumed to be sampled from unimodal Gaussian distributions. However, in real applications, the distribution of a material is often not Gaussian. In this paper, we use Gaussian mixture models (GMM) to represent the endmember variability. We show, given the GMM starting premise, that the distribution of the mixed pixel (under the linear mixing model) is also a GMM (and this is shown from two perspectives). The first perspective originates from the random variable transformation and gives a conditional density function of the pixels given the abundances and GMM parameters. With proper smoothness and sparsity prior constraints on the abundances, the conditional density function leads to a standard maximum a posteriori (MAP) problem which can be solved using generalized expectation maximization. The second perspective originates from marginalizing over the endmembers in the GMM, which provides us with a foundation to solve for the endmembers at each pixel. Hence, our model can not only estimate the abundances and distribution parameters, but also the distinct endmember set for each pixel. We tested the proposed GMM on several synthetic and real datasets, and showed its potential by comparing it to current popular methods.
The Electrocardiogram as an Example of Electrostatics
ERIC Educational Resources Information Center
Hobbie, Russell K.
1973-01-01
Develops a simplified electrostatic model of the heart with conduction within the torso neglected to relate electrocardiogram patterns to the charge distribution within the myocardium. Suggests its application to explanation of Coulomb's law in general physics. (CC)
Progress in developing Poisson-Boltzmann equation solvers
Li, Chuan; Li, Lin; Petukh, Marharyta; Alexov, Emil
2013-01-01
This review outlines the recent progress made in developing more accurate and efficient solutions to model electrostatics in systems comprised of bio-macromolecules and nano-objects, the last one referring to objects that do not have biological function themselves but nowadays are frequently used in biophysical and medical approaches in conjunction with bio-macromolecules. The problem of modeling macromolecular electrostatics is reviewed from two different angles: as a mathematical task provided the specific definition of the system to be modeled and as a physical problem aiming to better capture the phenomena occurring in the real experiments. In addition, specific attention is paid to methods to extend the capabilities of the existing solvers to model large systems toward applications of calculations of the electrostatic potential and energies in molecular motors, mitochondria complex, photosynthetic machinery and systems involving large nano-objects. PMID:24199185
NASA Astrophysics Data System (ADS)
Cosgrove, R. B.; Schultz, A.; Imamura, N.
2016-12-01
Although electrostatic equilibrium is always assumed in the ionosphere, there is no good theoretical or experimental justification for the assumption. In fact, recent theoretical investigations suggest that the electrostatic assumption may be grossly in error. If true, many commonly used modeling methods are placed in doubt. For example, the accepted method for calculating ionospheric conductance??field line integration??may be invalid. In this talk we briefly outline the theoretical research that places the electrostatic assumption in doubt, and then describe how comparison of ground magnetic field data with incoherent scatter radar (ISR) data can be used to test the electrostatic assumption in the ionosphere. We describe a recent experiment conducted for the purpose, where an array of magnetometers was temporalily installed under the Poker Flat AMISR.
Explosion safety in industrial electrostatics
NASA Astrophysics Data System (ADS)
Szabó, S. V.; Kiss, I.; Berta, I.
2011-01-01
Complicated industrial systems are often endangered by electrostatic hazards, both from atmospheric (lightning phenomenon, primary and secondary lightning protection) and industrial (technological problems caused by static charging and fire and explosion hazards.) According to the classical approach protective methods have to be used in order to remove electrostatic charging and to avoid damages, however no attempt to compute the risk before and after applying the protective method is made, relying instead on well-educated and practiced expertise. The Budapest School of Electrostatics - in close cooperation with industrial partners - develops new suitable solutions for probability based decision support (Static Control Up-to-date Technology, SCOUT) using soft computing methods. This new approach can be used to assess and audit existing systems and - using the predictive power of the models - to design and plan activities in industrial electrostatics.
Briët, Olivier J T; Amerasinghe, Priyanie H; Vounatsou, Penelope
2013-01-01
With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions' impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during "consolidation" and "pre-elimination" phases. Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low.
Briët, Olivier J. T.; Amerasinghe, Priyanie H.; Vounatsou, Penelope
2013-01-01
Introduction With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions’ impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during “consolidation” and “pre-elimination” phases. Methods Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. Results The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. Conclusions G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low. PMID:23785448
NASA Astrophysics Data System (ADS)
Uhlemann, C.; Pajer, E.; Pichon, C.; Nishimichi, T.; Codis, S.; Bernardeau, F.
2018-03-01
Non-Gaussianities of dynamical origin are disentangled from primordial ones using the formalism of large deviation statistics with spherical collapse dynamics. This is achieved by relying on accurate analytical predictions for the one-point probability distribution function and the two-point clustering of spherically averaged cosmic densities (sphere bias). Sphere bias extends the idea of halo bias to intermediate density environments and voids as underdense regions. In the presence of primordial non-Gaussianity, sphere bias displays a strong scale dependence relevant for both high- and low-density regions, which is predicted analytically. The statistics of densities in spheres are built to model primordial non-Gaussianity via an initial skewness with a scale dependence that depends on the bispectrum of the underlying model. The analytical formulas with the measured non-linear dark matter variance as input are successfully tested against numerical simulations. For local non-Gaussianity with a range from fNL = -100 to +100, they are found to agree within 2 per cent or better for densities ρ ∈ [0.5, 3] in spheres of radius 15 Mpc h-1 down to z = 0.35. The validity of the large deviation statistics formalism is thereby established for all observationally relevant local-type departures from perfectly Gaussian initial conditions. The corresponding estimators for the amplitude of the non-linear variance σ8 and primordial skewness fNL are validated using a fiducial joint maximum likelihood experiment. The influence of observational effects and the prospects for a future detection of primordial non-Gaussianity from joint one- and two-point densities-in-spheres statistics are discussed.
Albin, Thomas J; Vink, Peter
2015-01-01
Anthropometric data are assumed to have a Gaussian (Normal) distribution, but if non-Gaussian, accommodation estimates are affected. When data are limited, users may choose to combine anthropometric elements by Combining Percentiles (CP) (adding or subtracting), despite known adverse effects. This study examined whether global anthropometric data are Gaussian distributed. It compared the Median Correlation Method (MCM) of combining anthropometric elements with unknown correlations to CP to determine if MCM provides better estimates of percentile values and accommodation. Percentile values of 604 male and female anthropometric data drawn from seven countries worldwide were expressed as standard scores. The standard scores were tested to determine if they were consistent with a Gaussian distribution. Empirical multipliers for determining percentile values were developed.In a test case, five anthropometric elements descriptive of seating were combined in addition and subtraction models. Percentile values were estimated for each model by CP, MCM with Gaussian distributed data, or MCM with empirically distributed data. The 5th and 95th percentile values of a dataset of global anthropometric data are shown to be asymmetrically distributed. MCM with empirical multipliers gave more accurate estimates of 5th and 95th percentiles values. Anthropometric data are not Gaussian distributed. The MCM method is more accurate than adding or subtracting percentiles.
Gaussianization for fast and accurate inference from cosmological data
NASA Astrophysics Data System (ADS)
Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.
2016-06-01
We present a method to transform multivariate unimodal non-Gaussian posterior probability densities into approximately Gaussian ones via non-linear mappings, such as Box-Cox transformations and generalizations thereof. This permits an analytical reconstruction of the posterior from a point sample, like a Markov chain, and simplifies the subsequent joint analysis with other experiments. This way, a multivariate posterior density can be reported efficiently, by compressing the information contained in Markov Chain Monte Carlo samples. Further, the model evidence integral (I.e. the marginal likelihood) can be computed analytically. This method is analogous to the search for normal parameters in the cosmic microwave background, but is more general. The search for the optimally Gaussianizing transformation is performed computationally through a maximum-likelihood formalism; its quality can be judged by how well the credible regions of the posterior are reproduced. We demonstrate that our method outperforms kernel density estimates in this objective. Further, we select marginal posterior samples from Planck data with several distinct strongly non-Gaussian features, and verify the reproduction of the marginal contours. To demonstrate evidence computation, we Gaussianize the joint distribution of data from weak lensing and baryon acoustic oscillations, for different cosmological models, and find a preference for flat Λcold dark matter. Comparing to values computed with the Savage-Dickey density ratio, and Population Monte Carlo, we find good agreement of our method within the spread of the other two.
A Gaussian Model-Based Probabilistic Approach for Pulse Transit Time Estimation.
Jang, Dae-Geun; Park, Seung-Hun; Hahn, Minsoo
2016-01-01
In this paper, we propose a new probabilistic approach to pulse transit time (PTT) estimation using a Gaussian distribution model. It is motivated basically by the hypothesis that PTTs normalized by RR intervals follow the Gaussian distribution. To verify the hypothesis, we demonstrate the effects of arterial compliance on the normalized PTTs using the Moens-Korteweg equation. Furthermore, we observe a Gaussian distribution of the normalized PTTs on real data. In order to estimate the PTT using the hypothesis, we first assumed that R-waves in the electrocardiogram (ECG) can be correctly identified. The R-waves limit searching ranges to detect pulse peaks in the photoplethysmogram (PPG) and to synchronize the results with cardiac beats--i.e., the peaks of the PPG are extracted within the corresponding RR interval of the ECG as pulse peak candidates. Their probabilities of being the actual pulse peak are then calculated using a Gaussian probability function. The parameters of the Gaussian function are automatically updated when a new pulse peak is identified. This update makes the probability function adaptive to variations of cardiac cycles. Finally, the pulse peak is identified as the candidate with the highest probability. The proposed approach is tested on a database where ECG and PPG waveforms are collected simultaneously during the submaximal bicycle ergometer exercise test. The results are promising, suggesting that the method provides a simple but more accurate PTT estimation in real applications.
Improved Scheme of Modified Gaussian Deconvolution for Reflectance Spectra of Lunar Soils
NASA Technical Reports Server (NTRS)
Hiroi, T.; Pieters, C. M.; Noble, S. K.
2000-01-01
In our continuing effort for deconvolving reflectance spectra of lunar soils using the modified Gaussian model, a new scheme has been developed, including a new form of continuum. All the parameters are optimized with certain constraints.
Anomalous Ground State of the Electrons in Nano-confined Water
2016-06-13
confined water system, Nafion, is so different from that of bulk water that the weakly electrostatically interacting molecule model of water is clearly...assume that water is made up molecules weakly interacting(on the scale of the zero point bond energy~.2eV) electrostatically with its neighbors2-3. In an...not possible for a collection of molecules interacting weakly electrostatically . These changes in the spatial distribution of valence electrons in
The Electromechanical Behavior of a Micro-Ring Driven by Traveling Electrostatic Force
Ye, Xiuqian; Chen, Yibao; Chen, Da-Chih; Huang, Kuo-Yi; Hu, Yuh-Chung
2012-01-01
There is no literature mentioning the electromechanical behavior of micro structures driven by traveling electrostatic forces. This article is thus the first to present the dynamics and stabilities of a micro-ring subjected to a traveling electrostatic force. The traveling electrostatic force may be induced by sequentially actuated electrodes which are arranged around the flexible micro-ring. The analysis is based on a linearized distributed model considering the electromechanical coupling effects between electrostatic force and structure. The micro-ring will resonate when the traveling speeds of the electrostatic force approach some critical speeds. The critical speeds are equal to the ratio of the natural frequencies to the wave number of the correlative natural mode of the ring. Apart from resonance, the ring may be unstable at some unstable traveling speeds. The unstable regions appear not only near the critical speeds, but also near some fractions of some critical speeds differences. Furthermore the unstable regions expand with increasing driving voltage. This article may lead to a new research branch on electrostatic-driven micro devices. PMID:22438705
Ionic strength independence of charge distributions in solvation of biomolecules
NASA Astrophysics Data System (ADS)
Virtanen, J. J.; Sosnick, T. R.; Freed, K. F.
2014-12-01
Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.
On the robustness of the q-Gaussian family
NASA Astrophysics Data System (ADS)
Sicuro, Gabriele; Tempesta, Piergiulio; Rodríguez, Antonio; Tsallis, Constantino
2015-12-01
We introduce three deformations, called α-, β- and γ-deformation respectively, of a N-body probabilistic model, first proposed by Rodríguez et al. (2008), having q-Gaussians as N → ∞ limiting probability distributions. The proposed α- and β-deformations are asymptotically scale-invariant, whereas the γ-deformation is not. We prove that, for both α- and β-deformations, the resulting deformed triangles still have q-Gaussians as limiting distributions, with a value of q independent (dependent) on the deformation parameter in the α-case (β-case). In contrast, the γ-case, where we have used the celebrated Q-numbers and the Gauss binomial coefficients, yields other limiting probability distribution functions, outside the q-Gaussian family. These results suggest that scale-invariance might play an important role regarding the robustness of the q-Gaussian family.
Kinect Posture Reconstruction Based on a Local Mixture of Gaussian Process Models.
Liu, Zhiguang; Zhou, Liuyang; Leung, Howard; Shum, Hubert P H
2016-11-01
Depth sensor based 3D human motion estimation hardware such as Kinect has made interactive applications more popular recently. However, it is still challenging to accurately recognize postures from a single depth camera due to the inherently noisy data derived from depth images and self-occluding action performed by the user. In this paper, we propose a new real-time probabilistic framework to enhance the accuracy of live captured postures that belong to one of the action classes in the database. We adopt the Gaussian Process model as a prior to leverage the position data obtained from Kinect and marker-based motion capture system. We also incorporate a temporal consistency term into the optimization framework to constrain the velocity variations between successive frames. To ensure that the reconstructed posture resembles the accurate parts of the observed posture, we embed a set of joint reliability measurements into the optimization framework. A major drawback of Gaussian Process is its cubic learning complexity when dealing with a large database due to the inverse of a covariance matrix. To solve the problem, we propose a new method based on a local mixture of Gaussian Processes, in which Gaussian Processes are defined in local regions of the state space. Due to the significantly decreased sample size in each local Gaussian Process, the learning time is greatly reduced. At the same time, the prediction speed is enhanced as the weighted mean prediction for a given sample is determined by the nearby local models only. Our system also allows incrementally updating a specific local Gaussian Process in real time, which enhances the likelihood of adapting to run-time postures that are different from those in the database. Experimental results demonstrate that our system can generate high quality postures even under severe self-occlusion situations, which is beneficial for real-time applications such as motion-based gaming and sport training.
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Lacey, Simon; Sathian, K
2018-02-01
In a recent study Eklund et al. have shown that cluster-wise family-wise error (FWE) rate-corrected inferences made in parametric statistical method-based functional magnetic resonance imaging (fMRI) studies over the past couple of decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; principally because the spatial autocorrelation functions (sACFs) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggest otherwise. Hence, the residuals from general linear model (GLM)-based fMRI activation estimates in these studies may not have possessed a homogenously Gaussian sACF. Here we propose a method based on the assumption that heterogeneity and non-Gaussianity of the sACF of the first-level GLM analysis residuals, as well as temporal autocorrelations in the first-level voxel residual time-series, are caused by unmodeled MRI signal from neuronal and physiological processes as well as motion and other artifacts, which can be approximated by appropriate decompositions of the first-level residuals with principal component analysis (PCA), and removed. We show that application of this method yields GLM residuals with significantly reduced spatial correlation, nearly Gaussian sACF and uniform spatial smoothness across the brain, thereby allowing valid cluster-based FWE-corrected inferences based on assumption of Gaussian spatial noise. We further show that application of this method renders the voxel time-series of first-level GLM residuals independent, and identically distributed across time (which is a necessary condition for appropriate voxel-level GLM inference), without having to fit ad hoc stochastic colored noise models. Furthermore, the detection power of individual subject brain activation analysis is enhanced. This method will be especially useful for case studies, which rely on first-level GLM analysis inferences.
Semisupervised Gaussian Process for Automated Enzyme Search.
Mellor, Joseph; Grigoras, Ioana; Carbonell, Pablo; Faulon, Jean-Loup
2016-06-17
Synthetic biology is today harnessing the design of novel and greener biosynthesis routes for the production of added-value chemicals and natural products. The design of novel pathways often requires a detailed selection of enzyme sequences to import into the chassis at each of the reaction steps. To address such design requirements in an automated way, we present here a tool for exploring the space of enzymatic reactions. Given a reaction and an enzyme the tool provides a probability estimate that the enzyme catalyzes the reaction. Our tool first considers the similarity of a reaction to known biochemical reactions with respect to signatures around their reaction centers. Signatures are defined based on chemical transformation rules by using extended connectivity fingerprint descriptors. A semisupervised Gaussian process model associated with the similar known reactions then provides the probability estimate. The Gaussian process model uses information about both the reaction and the enzyme in providing the estimate. These estimates were validated experimentally by the application of the Gaussian process model to a newly identified metabolite in Escherichia coli in order to search for the enzymes catalyzing its associated reactions. Furthermore, we show with several pathway design examples how such ability to assign probability estimates to enzymatic reactions provides the potential to assist in bioengineering applications, providing experimental validation to our proposed approach. To the best of our knowledge, the proposed approach is the first application of Gaussian processes dealing with biological sequences and chemicals, the use of a semisupervised Gaussian process framework is also novel in the context of machine learning applied to bioinformatics. However, the ability of an enzyme to catalyze a reaction depends on the affinity between the substrates of the reaction and the enzyme. This affinity is generally quantified by the Michaelis constant KM. Therefore, we also demonstrate using Gaussian process regression to predict KM given a substrate-enzyme pair.
The “Electrostatic-Switch” Mechanism: Monte Carlo Study of MARCKS-Membrane Interaction
Tzlil, Shelly; Murray, Diana; Ben-Shaul, Avinoam
2008-01-01
The binding of the myristoylated alanine-rich C kinase substrate (MARCKS) to mixed, fluid, phospholipid membranes is modeled with a recently developed Monte Carlo simulation scheme. The central domain of MARCKS is both basic (ζ = +13) and hydrophobic (five Phe residues), and is flanked with two long chains, one ending with the myristoylated N-terminus. This natively unfolded protein is modeled as a flexible chain of “beads” representing the amino acid residues. The membranes contain neutral (ζ = 0), monovalent (ζ = −1), and tetravalent (ζ = −4) lipids, all of which are laterally mobile. MARCKS-membrane interaction is modeled by Debye-Hückel electrostatic potentials and semiempirical hydrophobic energies. In agreement with experiment, we find that membrane binding is mediated by electrostatic attraction of the basic domain to acidic lipids and membrane penetration of its hydrophobic moieties. The binding is opposed by configurational entropy losses and electrostatic membrane repulsion of the two long chains, and by lipid demixing upon adsorption. The simulations provide a physical model for how membrane-adsorbed MARCKS attracts several PIP2 lipids (ζ = −4) to its vicinity, and how phosphorylation of the central domain (ζ = +13 to ζ = +7) triggers an “electrostatic switch”, which weakens both the membrane interaction and PIP2 sequestration. This scheme captures the essence of “discreteness of charge” at membrane surfaces and can examine the formation of membrane-mediated multicomponent macromolecular complexes that function in many cellular processes. PMID:18502797
Modeling the mechanical properties of DNA nanostructures.
Arbona, Jean Michel; Aimé, Jean-Pierre; Elezgaray, Juan
2012-11-01
We discuss generalizations of a previously published coarse-grained description [Mergell et al., Phys. Rev. E 68, 021911 (2003)] of double stranded DNA (dsDNA). The model is defined at the base-pair level and includes the electrostatic repulsion between neighbor helices. We show that the model reproduces mechanical and elastic properties of several DNA nanostructures (DNA origamis). We also show that electrostatic interactions are necessary to reproduce atomic force microscopy measurements on planar DNA origamis.
Efficient minimization of multipole electrostatic potentials in torsion space
Bodmer, Nicholas K.
2018-01-01
The development of models of macromolecular electrostatics capable of delivering improved fidelity to quantum mechanical calculations is an active field of research in computational chemistry. Most molecular force field development takes place in the context of models with full Cartesian coordinate degrees of freedom. Nevertheless, a number of macromolecular modeling programs use a reduced set of conformational variables limited to rotatable bonds. Efficient algorithms for minimizing the energies of macromolecular systems with torsional degrees of freedom have been developed with the assumption that all atom-atom interaction potentials are isotropic. We describe novel modifications to address the anisotropy of higher order multipole terms while retaining the efficiency of these approaches. In addition, we present a treatment for obtaining derivatives of atom-centered tensors with respect to torsional degrees of freedom. We apply these results to enable minimization of the Amoeba multipole electrostatics potential in a system with torsional degrees of freedom, and validate the correctness of the gradients by comparison to finite difference approximations. In the interest of enabling a complete model of electrostatics with implicit treatment of solvent-mediated effects, we also derive expressions for the derivative of solvent accessible surface area with respect to torsional degrees of freedom. PMID:29641557
Continuum electromechanical modeling of protein-membrane interactions
NASA Astrophysics Data System (ADS)
Zhou, Y. C.; Lu, Benzhuo; Gorfe, Alemayehu A.
2010-10-01
A continuum electromechanical model is proposed to describe the membrane curvature induced by electrostatic interactions in a solvated protein-membrane system. The model couples the macroscopic strain energy of membrane and the electrostatic solvation energy of the system, and equilibrium membrane deformation is obtained by minimizing the electroelastic energy functional with respect to the dielectric interface. The model is illustrated with the systems with increasing geometry complexity and captures the sensitivity of membrane curvature to the permanent and mobile charge distributions.
Gaussian noise and time-reversal symmetry in nonequilibrium Langevin models.
Vainstein, M H; Rubí, J M
2007-03-01
We show that in driven systems the Gaussian nature of the fluctuating force and time reversibility are equivalent properties. This result together with the potential condition of the external force drastically restricts the form of the probability distribution function, which can be shown to satisfy time-independent relations. We have corroborated this feature by explicitly analyzing a model for the stretching of a polymer and a model for a suspension of noninteracting Brownian particles in steady flow.
NASA Technical Reports Server (NTRS)
Reeves, P. M.; Campbell, G. S.; Ganzer, V. M.; Joppa, R. G.
1974-01-01
A method is described for generating time histories which model the frequency content and certain non-Gaussian probability characteristics of atmospheric turbulence including the large gusts and patchy nature of turbulence. Methods for time histories using either analog or digital computation are described. A STOL airplane was programmed into a 6-degree-of-freedom flight simulator, and turbulence time histories from several atmospheric turbulence models were introduced. The pilots' reactions are described.
Fitted Hanbury-Brown Twiss radii versus space-time variances in flow-dominated models
NASA Astrophysics Data System (ADS)
Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan
2006-04-01
The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.
Fitted Hanbury-Brown-Twiss radii versus space-time variances in flow-dominated models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan
2006-04-15
The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown-Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simplemore » Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.« less
A Gaussian beam method for ultrasonic non-destructive evaluation modeling
NASA Astrophysics Data System (ADS)
Jacquet, O.; Leymarie, N.; Cassereau, D.
2018-05-01
The propagation of high-frequency ultrasonic body waves can be efficiently estimated with a semi-analytic Dynamic Ray Tracing approach using paraxial approximation. Although this asymptotic field estimation avoids the computational cost of numerical methods, it may encounter several limitations in reproducing identified highly interferential features. Nevertheless, some can be managed by allowing paraxial quantities to be complex-valued. This gives rise to localized solutions, known as paraxial Gaussian beams. Whereas their propagation and transmission/reflection laws are well-defined, the fact remains that the adopted complexification introduces additional initial conditions. While their choice is usually performed according to strategies specifically tailored to limited applications, a Gabor frame method has been implemented to indiscriminately initialize a reasonable number of paraxial Gaussian beams. Since this method can be applied for an usefully wide range of ultrasonic transducers, the typical case of the time-harmonic piston radiator is investigated. Compared to the commonly used Multi-Gaussian Beam model [1], a better agreement is obtained throughout the radiated field between the results of numerical integration (or analytical on-axis solution) and the resulting Gaussian beam superposition. Sparsity of the proposed solution is also discussed.
NASA Astrophysics Data System (ADS)
Jeyaseelan, S. Christopher; Hussain, Shamima; Premkumar, R.; Rekha, T. N.; Benial, A. Milton Franklin
2018-04-01
Indole and its derivatives are considered as good ligands for various disease causing proteins in human because of presence of the single nitrogen atom. In the present study, the potential energy surface scan was performed for the most stable molecular structure of the 5-Methoxyindole-3-carboxaldehyde (MICA) molecule. The most stable molecular structure was optimized by DFT/B3LYP method with 6-311G++ (d, p) basis set using Gaussian 09 program package. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculations using VEDA 4.0 program. The Frontier molecular orbitals analysis was performed and related molecular propertieswere calculated. The possible electrophilic and nucleophilic reactive sites of the molecule were studied using molecular electrostatic potential analysis, which confirms the bioactivity of the molecule. The natural bond orbital analysis was also performed to confirm the bioactivity of the title molecule.
2017-01-01
The high charge density of nucleic acids and resulting ion atmosphere profoundly influence the conformational landscape of RNA and DNA and their association with small molecules and proteins. Electrostatic theories have been applied to quantitatively model the electrostatic potential surrounding nucleic acids and the effects of the surrounding ion atmosphere, but experimental measures of the potential and tests of these models have often been complicated by conformational changes and multisite binding equilibria, among other factors. We sought a simple system to further test the basic predictions from electrostatics theory and to measure the energetic consequences of the nucleic acid electrostatic field. We turned to a DNA system developed by Bevilacqua and co-workers that involves a proton as a ligand whose binding is accompanied by formation of an internal AH+·C wobble pair [Siegfried, N. A., et al. Biochemistry, 2010, 49, 3225]. Consistent with predictions from polyelectrolyte models, we observed logarithmic dependences of proton affinity versus salt concentration of −0.96 ± 0.03 and −0.52 ± 0.01 with monovalent and divalent cations, respectively, and these results help clarify prior results that appeared to conflict with these fundamental models. Strikingly, quantitation of the ion atmosphere content indicates that divalent cations are preferentially lost over monovalent cations upon A·C protonation, providing experimental indication of the preferential localization of more highly charged cations to the inner shell of the ion atmosphere. The internal AH+·C wobble system further allowed us to parse energetic contributions and extract estimates for the electrostatic potential at the position of protonation. The results give a potential near the DNA surface at 20 mM Mg2+ that is much less substantial than at 20 mM K+ (−120 mV vs −210 mV). These values and difference are similar to predictions from theory, and the potential is substantially reduced at higher salt, also as predicted; however, even at 1 M K+ the potential remains substantial, counter to common assumptions. The A·C protonation module allows extraction of new properties of the ion atmosphere and provides an electrostatic meter that will allow local electrostatic potential and energetics to be measured within nucleic acids and their complexes with proteins. PMID:28489947
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi; Xue, Wei, E-mail: yw366@cam.ac.uk, E-mail: wei.xue@sissa.it
We study the tilt of the primordial gravitational waves spectrum. A hint of blue tilt is shown from analyzing the BICEP2 and POLARBEAR data. Motivated by this, we explore the possibilities of blue tensor spectra from the very early universe cosmology models, including null energy condition violating inflation, inflation with general initial conditions, and string gas cosmology, etc. For the simplest G-inflation, blue tensor spectrum also implies blue scalar spectrum. In general, the inflation models with blue tensor spectra indicate large non-Gaussianities. On the other hand, string gas cosmology predicts blue tensor spectrum with highly Gaussian fluctuations. If further experimentsmore » do confirm the blue tensor spectrum, non-Gaussianity becomes a distinguishing test between inflation and alternatives.« less
NASA Technical Reports Server (NTRS)
Curtis, S. A.; Wu, C. S.
1979-01-01
The paper derives the growth rates and growth lengths of the electrostatic emission for spatially homogeneous and inhomogeneous energetic electrons, and numerically evaluates the growth rate and growth length spectra for several parameter sets representative of magnetospheric plasmas. In addition, the growth rates are derived for the case of electromagnetic emission modeled by the ordinary mode. The numerical results of the electromagnetic and electrostatic cases are compared with observations made by satellites in the earth's magnetosphere. It is concluded that the electrostatic gyroharmonic excitation is possible without the cold composition of plasma which is often postulated in the existing literature.
Nonlinear Poisson Equation for Heterogeneous Media
Hu, Langhua; Wei, Guo-Wei
2012-01-01
The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. PMID:22947937
Gay-Berne and electrostatic multipole based coarse-grain potential in implicit solvent
Wu, Johnny; Zhen, Xia; Shen, Hujun; Li, Guohui; Ren, Pengyu
2011-01-01
A general, transferable coarse-grain (CG) framework based on the Gay-Berne potential and electrostatic point multipole expansion is presented for polypeptide simulations. The solvent effect is described by the Generalized Kirkwood theory. The CG model is calibrated using the results of all-atom simulations of model compounds in solution. Instead of matching the overall effective forces produced by atomic models, the fundamental intermolecular forces such as electrostatic, repulsion-dispersion, and solvation are represented explicitly at a CG level. We demonstrate that the CG alanine dipeptide model is able to reproduce quantitatively the conformational energy of all-atom force fields in both gas and solution phases, including the electrostatic and solvation components. Replica exchange molecular dynamics and microsecond dynamic simulations of polyalanine of 5 and 12 residues reveal that the CG polyalanines fold into “alpha helix” and “beta sheet” structures. The 5-residue polyalanine displays a substantial increase in the “beta strand” fraction relative to the 12-residue polyalanine. The detailed conformational distribution is compared with those reported from recent all-atom simulations and experiments. The results suggest that the new coarse-graining approach presented in this study has the potential to offer both accuracy and efficiency for biomolecular modeling. PMID:22029338
Errors associated with fitting Gaussian profiles to noisy emission-line spectra
NASA Technical Reports Server (NTRS)
Lenz, Dawn D.; Ayres, Thomas R.
1992-01-01
Landman et al. (1982) developed prescriptions to predict profile fitting errors for Gaussian emission lines perturbed by white noise. We show that their scaling laws can be generalized to more complicated signal-dependent 'noise models' of common astronomical detector systems.
NASA Astrophysics Data System (ADS)
Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne
2017-10-01
Dispersion of road transport emissions in urban metropolitan areas is typically simulated using Gaussian models that ignore the turbulence and drag induced by buildings, which are especially relevant for areas with dense downtown cores. To consider the effect of buildings, street canyon models are used but often at the level of single urban corridors and small road networks. In this paper, we compare and validate two dispersion models with widely varying algorithms, across a modelling domain consisting of the City of Montreal, Canada accounting for emissions of more 40,000 roads. The first dispersion model is based on flow decomposition into the urban canopy sub-flow as well as overlying airflow. It takes into account the specific height and geometry of buildings along each road. The second model is a Gaussian puff dispersion model, which handles complex terrain and incorporates three-dimensional meteorology, but accounts for buildings only through variations in the initial vertical mixing coefficient. Validation against surface observations indicated that both models under-predicted measured concentrations. Average weekly exposure surfaces derived from both models were found to be reasonably correlated (r = 0.8) although the Gaussian dispersion model tended to underestimate concentrations around the roadways compared to the street canyon model. In addition, both models were used to estimate exposures of a representative sample of the Montreal population composed of 1319 individuals. Large differences were noted whereby exposures derived from the Gaussian puff model were significantly lower than exposures derived from the street canyon model, an expected result considering the concentration of population around roadways. These differences have large implications for the analyses of health effects associated with NO2 exposure.
Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katahara, John K.; Hillhouse, Hugh W., E-mail: h2@uw.edu
A unified model for the direct gap absorption coefficient (band-edge and sub-bandgap) is developed that encompasses the functional forms of the Urbach, Thomas-Fermi, screened Thomas-Fermi, and Franz-Keldysh models of sub-bandgap absorption as specific cases. We combine this model of absorption with an occupation-corrected non-equilibrium Planck law for the spontaneous emission of photons to yield a model of photoluminescence (PL) with broad applicability to band-band photoluminescence from intrinsic, heavily doped, and strongly compensated semiconductors. The utility of the model is that it is amenable to full-spectrum fitting of absolute intensity PL data and yields: (1) the quasi-Fermi level splitting, (2) themore » local lattice temperature, (3) the direct bandgap, (4) the functional form of the sub-bandgap absorption, and (5) the energy broadening parameter (Urbach energy, magnitude of potential fluctuations, etc.). The accuracy of the model is demonstrated by fitting the room temperature PL spectrum of GaAs. It is then applied to Cu(In,Ga)(S,Se){sub 2} (CIGSSe) and Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) to reveal the nature of their tail states. For GaAs, the model fit is excellent, and fitted parameters match literature values for the bandgap (1.42 eV), functional form of the sub-bandgap states (purely Urbach in nature), and energy broadening parameter (Urbach energy of 9.4 meV). For CIGSSe and CZTSSe, the model fits yield quasi-Fermi leveling splittings that match well with the open circuit voltages measured on devices made from the same materials and bandgaps that match well with those extracted from EQE measurements on the devices. The power of the exponential decay of the absorption coefficient into the bandgap is found to be in the range of 1.2 to 1.6, suggesting that tunneling in the presence of local electrostatic potential fluctuations is a dominant factor contributing to the sub-bandgap absorption by either purely electrostatic (screened Thomas-Fermi) or a photon-assisted tunneling mechanism (Franz-Keldysh). A Gaussian distribution of bandgaps (local E{sub g} fluctuation) is found to be inconsistent with the data. The sub-bandgap absorption of the CZTSSe absorber is found to be larger than that for CIGSSe for materials that yield roughly equivalent photovoltaic devices (8% efficient). Further, it is shown that fitting only portions of the PL spectrum (e.g., low energy for energy broadening parameter and high energy for quasi-Fermi level splitting) may lead to significant errors for materials with substantial sub-bandgap absorption and emission.« less
NASA Astrophysics Data System (ADS)
Abedi, M.; Farrokhpour, H.; Farnia, S.; Chermahini, A. Najafi
2015-08-01
In this work, a systematic theoretical study was performed on the dissociation, absorption and ionization of several important sulfur oxoanions (S2On2- (n = 2, 3, 4, 6, 7 and 8)). ΔEelec (thermal corrected energy), ΔH° and ΔG° of the dissociation reactions of the oxoanions to their radical monoanions were calculated using combined computational levels of theories such as Gaussian-3 (G3) and a new version of complete basis set method (CBS-4M) in different environments including gas phase, microhydrated in gas phase and different solvents. Calculations showed S2O72- is the most stable anion against the dissociation to its radical monoanions (SO4-rad + SO3-rad). It was also found that S2O42- has more tendency to dissociate to its radical anions (SO2-rad + SO2-rad) compared to the other anions. The absorption spectra of the anions were also calculated using the time-dependent density functional theory (TD-DFT) employing M062X functional. The effect of microhydration and electrostatic field of solvent on the different aspects (intensity, energy shift and assignment) of the absorption spectra of these anions were also discussed. It was observed that both hydrogen bonding and electrostatic effect of water increases the intensity of the absorption spectrum compared to the gas phase. Effect of microhydration in shifting the spectra to the shorter wavelength is considerably higher than the effect of electrostatic field of water. Finally, several gas phase ionization energies of the anions were calculated using the symmetry-adapted cluster-configuration interaction methodology (SAC-CI) and found that the first electron detachment energies of S2O22-, S2O32- and S2O42- are negative. Natural bonding orbital (NBO) calculations were also performed to assign the electron detachment bands of the anions.
NASA Astrophysics Data System (ADS)
Simon, P.; Semboloni, E.; van Waerbeke, L.; Hoekstra, H.; Erben, T.; Fu, L.; Harnois-Déraps, J.; Heymans, C.; Hildebrandt, H.; Kilbinger, M.; Kitching, T. D.; Miller, L.; Schrabback, T.
2015-05-01
We study the correlations of the shear signal between triplets of sources in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) to probe cosmological parameters via the matter bispectrum. In contrast to previous studies, we adopt a non-Gaussian model of the data likelihood which is supported by our simulations of the survey. We find that for state-of-the-art surveys, similar to CFHTLenS, a Gaussian likelihood analysis is a reasonable approximation, albeit small differences in the parameter constraints are already visible. For future surveys we expect that a Gaussian model becomes inaccurate. Our algorithm for a refined non-Gaussian analysis and data compression is then of great utility especially because it is not much more elaborate if simulated data are available. Applying this algorithm to the third-order correlations of shear alone in a blind analysis, we find a good agreement with the standard cosmological model: Σ _8=σ _8(Ω _m/0.27)^{0.64}=0.79^{+0.08}_{-0.11} for a flat Λ cold dark matter cosmology with h = 0.7 ± 0.04 (68 per cent credible interval). Nevertheless our models provide only moderately good fits as indicated by χ2/dof = 2.9, including a 20 per cent rms uncertainty in the predicted signal amplitude. The models cannot explain a signal drop on scales around 15 arcmin, which may be caused by systematics. It is unclear whether the discrepancy can be fully explained by residual point spread function systematics of which we find evidence at least on scales of a few arcmin. Therefore we need a better understanding of higher order correlations of cosmic shear and their systematics to confidently apply them as cosmological probes.
2013-01-01
Background Arguably, genotypes and phenotypes may be linked in functional forms that are not well addressed by the linear additive models that are standard in quantitative genetics. Therefore, developing statistical learning models for predicting phenotypic values from all available molecular information that are capable of capturing complex genetic network architectures is of great importance. Bayesian kernel ridge regression is a non-parametric prediction model proposed for this purpose. Its essence is to create a spatial distance-based relationship matrix called a kernel. Although the set of all single nucleotide polymorphism genotype configurations on which a model is built is finite, past research has mainly used a Gaussian kernel. Results We sought to investigate the performance of a diffusion kernel, which was specifically developed to model discrete marker inputs, using Holstein cattle and wheat data. This kernel can be viewed as a discretization of the Gaussian kernel. The predictive ability of the diffusion kernel was similar to that of non-spatial distance-based additive genomic relationship kernels in the Holstein data, but outperformed the latter in the wheat data. However, the difference in performance between the diffusion and Gaussian kernels was negligible. Conclusions It is concluded that the ability of a diffusion kernel to capture the total genetic variance is not better than that of a Gaussian kernel, at least for these data. Although the diffusion kernel as a choice of basis function may have potential for use in whole-genome prediction, our results imply that embedding genetic markers into a non-Euclidean metric space has very small impact on prediction. Our results suggest that use of the black box Gaussian kernel is justified, given its connection to the diffusion kernel and its similar predictive performance. PMID:23763755
ENSO's non-stationary and non-Gaussian character: the role of climate shifts
NASA Astrophysics Data System (ADS)
Boucharel, J.; Dewitte, B.; Garel, B.; Du Penhoat, Y.
2009-07-01
El Niño Southern Oscillation (ENSO) is the dominant mode of climate variability in the Pacific, having socio-economic impacts on surrounding regions. ENSO exhibits significant modulation on decadal to inter-decadal time scales which is related to changes in its characteristics (onset, amplitude, frequency, propagation, and predictability). Some of these characteristics tend to be overlooked in ENSO studies, such as its asymmetry (the number and amplitude of warm and cold events are not equal) and the deviation of its statistics from those of the Gaussian distribution. These properties could be related to the ability of the current generation of coupled models to predict ENSO and its modulation. Here, ENSO's non-Gaussian nature and asymmetry are diagnosed from in situ data and a variety of models (from intermediate complexity models to full-physics coupled general circulation models (CGCMs)) using robust statistical tools initially designed for financial mathematics studies. In particular α-stable laws are used as theoretical background material to measure (and quantify) the non-Gaussian character of ENSO time series and to estimate the skill of ``naïve'' statistical models in producing deviation from Gaussian laws and asymmetry. The former are based on non-stationary processes dominated by abrupt changes in mean state and empirical variance. It is shown that the α-stable character of ENSO may result from the presence of climate shifts in the time series. Also, cool (warm) periods are associated with ENSO statistics having a stronger (weaker) tendency towards Gaussianity and lower (greater) asymmetry. This supports the hypothesis of ENSO being rectified by changes in mean state through nonlinear processes. The relationship between changes in mean state and nonlinearity (skewness) is further investigated both in the Zebiak and Cane (1987)'s model and the models of the Intergovernmental Panel for Climate Change (IPCC). Whereas there is a clear relationship in all models between ENSO asymmetry (as measured by skewness or nonlinear advection) and changes in mean state, they exhibit a variety of behaviour with regard to α-stability. This suggests that the dynamics associated with climate shifts and the occurrence of extreme events involve higher-order statistical moments that cannot be accounted for solely by nonlinear advection.
Kato, Mitsunori; Pisliakov, Andrei V; Warshel, Arieh
2006-09-01
The origin of the barrier for proton transport through the aquaporin channel is a problem of general interest. It is becoming increasingly clear that this barrier is not attributable to the orientation of the water molecules across the channel but rather to the electrostatic penalty for moving the proton charge to the center of the channel. However, the reason for the high electrostatic barrier is still rather controversial. It has been argued by some workers that the barrier is due to the so-called NPA motif and/or to the helix macrodipole or to other specific elements. However, our works indicated that the main reason for the high barrier is the loss of the generalized solvation upon moving the proton charge from the bulk to the center of the channel and that this does not reflect a specific repulsive electrostatic interaction but the absence of sufficient electrostatic stabilization. At this stage it seems that the elucidation and clarification of the origin of the electrostatic barrier can serve as an instructive test case for electrostatic models. Thus, we reexamine the free-energy surface for proton transport in aquaporins using the microscopic free-energy perturbation/umbrella sampling (FEP/US) and the empirical valence bond/umbrella sampling (EVB/US) methods as well as the semimacroscopic protein dipole Langevin dipole model in its linear response approximation version (the PDLD/S-LRA). These extensive studies help to clarify the nature of the barrier and to establish the "reduced solvation effect" as the primary source of this barrier. That is, it is found that the barrier is associated with the loss of the generalized solvation energy (which includes of course all electrostatic effects) upon moving the proton charge from the bulk solvent to the center of the channel. It is also demonstrated that the residues in the NPA region and the helix dipole cannot be considered as the main reasons for the electrostatic barrier. Furthermore, our microscopic and semimacroscopic studies clarify the problems with incomplete alternative calculations, illustrating that the effects of various electrostatic elements are drastically overestimated by macroscopic calculations that use a low dielectric constant and do not consider the protein reorganization. Similarly, it is pointed out that microscopic potential of mean force calculations that do not evaluate the electrostatic barrier relative to the bulk water cannot be used to establish the origin of the electrostatic barrier. The relationship between the present study and calculations of pK(a)s in protein interiors is clarified, pointing out that approaches that are applied to study the aquaporin barrier should be validated by pK(a)s calculations. Such calculations also help to clarify the crucial role of solvation energies in establishing the barrier in aquaporins. (c) 2006 Wiley-Liss, Inc.
Wu, Jiang; Li, Jia; Xu, Zhenming
2009-08-15
Electrostatic separation presents an effective and environmentally friendly way for recycling metals and nonmetals from ground waste electrical and electronic equipment (WEEE). For this process, the trajectory of conductive particle is significant and some models have been established. However, the results of previous researches are limited by some simplifying assumptions and lead to a notable discrepancy between the model prediction and the experimental results. In the present research, a roll-type corona-electrostatic separator and ground printed circuit board (PCB) wastes were used to investigate the trajectory of the conductive particle. Two factors, the air drag force and the different charging situation, were introduced into the improved model. Their effects were analyzed and an improved model for the theoretical trajectory of conductive particle was established. Compared with the previous one, the improved model shows a good agreement with the experimental results. It provides a positive guidance for designing of separator and makes a progress for recycling the metals and nonmetals from WEEE.
Electrostatic effects on hyaluronic acid configuration
NASA Astrophysics Data System (ADS)
Berezney, John; Saleh, Omar
2015-03-01
In systems of polyelectrolytes, such as solutions of charged biopolymers, the electrostatic repulsion between charged monomers plays a dominant role in determining the molecular conformation. Altering the ionic strength of the solvent thus affects the structure of such a polymer. Capturing this electrostatically-driven structural dependence is important for understanding many biological systems. Here, we use single molecule manipulation experiments to collect force-extension behavior on hyaluronic acid (HA), a polyanion which is a major component of the extracellular matrix in all vertebrates. By measuring HA elasticity in a variety of salt conditions, we are able to directly assess the contribution of electrostatics to the chain's self-avoidance and local stiffness. Similar to recent results from our group on single-stranded nucleic acids, our data indicate that HA behaves as a swollen chain of electrostatic blobs, with blob size proportional to the solution Debye length. Our data indicate that the chain structure within the blob is not worm-like, likely due to long-range electrostatic interactions. We discuss potential models of this effect.
Bardhan, Jaydeep P; Altman, Michael D; Tidor, B; White, Jacob K
2009-01-01
We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule's electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts-in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method.
Bardhan, Jaydeep P.; Altman, Michael D.
2009-01-01
We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule’s electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts–in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method. PMID:23055839
Efficiency determination of an electrostatic lunar dust collector by discrete element method
NASA Astrophysics Data System (ADS)
Afshar-Mohajer, Nima; Wu, Chang-Yu; Sorloaica-Hickman, Nicoleta
2012-07-01
Lunar grains become charged by the sun's radiation in the tenuous atmosphere of the moon. This leads to lunar dust levitation and particle deposition which often create serious problems in the costly system deployed in lunar exploration. In this study, an electrostatic lunar dust collector (ELDC) is proposed to address the issue and the discrete element method (DEM) is used to investigate the effects of electrical particle-particle interactions, non-uniformity of the electrostatic field, and characteristics of the ELDC. The simulations on 20-μm-sized lunar particles reveal the electrical particle-particle interactions of the dust particles within the ELDC plates require 29% higher electrostatic field strength than that without the interactions for 100% collection efficiency. For the given ELDC geometry, consideration of non-uniformity of the electrostatic field along with electrical interactions between particles on the same ELDC geometry leads to a higher requirement of ˜3.5 kV/m to ensure 100% particle collection. Notably, such an electrostatic field is about 103 times less than required for electrodynamic self-cleaning methods. Finally, it is shown for a "half-size" system that the DEM model predicts greater collection efficiency than the Eulerian-based model at all voltages less than required for 100% efficiency. Halving the ELDC dimensions boosts the particle concentration inside the ELDC, as well as the resulting field strength for a given voltage. Though a lunar photovoltaic system was the subject, the results of this study are useful for evaluation of any system for collecting charged particles in other high vacuum environment using an electrostatic field.
Model-independent analyses of non-Gaussianity in Planck CMB maps using Minkowski functionals
NASA Astrophysics Data System (ADS)
Buchert, Thomas; France, Martin J.; Steiner, Frank
2017-05-01
Despite the wealth of Planck results, there are difficulties in disentangling the primordial non-Gaussianity of the Cosmic Microwave Background (CMB) from the secondary and the foreground non-Gaussianity (NG). For each of these forms of NG the lack of complete data introduces model-dependences. Aiming at detecting the NGs of the CMB temperature anisotropy δ T , while paying particular attention to a model-independent quantification of NGs, our analysis is based upon statistical and morphological univariate descriptors, respectively: the probability density function P(δ T) , related to v0, the first Minkowski Functional (MF), and the two other MFs, v1 and v2. From their analytical Gaussian predictions we build the discrepancy functions {{ Δ }k} (k = P, 0, 1, 2) which are applied to an ensemble of 105 CMB realization maps of the Λ CDM model and to the Planck CMB maps. In our analysis we use general Hermite expansions of the {{ Δ }k} up to the 12th order, where the coefficients are explicitly given in terms of cumulants. Assuming hierarchical ordering of the cumulants, we obtain the perturbative expansions generalizing the second order expansions of Matsubara to arbitrary order in the standard deviation {σ0} for P(δ T) and v0, where the perturbative expansion coefficients are explicitly given in terms of complete Bell polynomials. The comparison of the Hermite expansions and the perturbative expansions is performed for the Λ CDM map sample and the Planck data. We confirm the weak level of non-Gaussianity (1-2)σ of the foreground corrected masked Planck 2015 maps.
Electrostatic atomization--Experiment, theory and industrial applications
NASA Astrophysics Data System (ADS)
Okuda, H.; Kelly, Arnold J.
1996-05-01
Experimental and theoretical research has been initiated at the Princeton Plasma Physics Laboratory on the electrostatic atomization process in collaboration with Charged Injection Corporation. The goal of this collaboration is to set up a comprehensive research and development program on the electrostatic atomization at the Princeton Plasma Physics Laboratory so that both institutions can benefit from the collaboration. Experimental, theoretical and numerical simulation approaches are used for this purpose. An experiment consisting of a capillary sprayer combined with a quadrupole mass filter and a charge detector was installed at the Electrostatic Atomization Laboratory to study fundamental properties of the charged droplets such as the distribution of charges with respect to the droplet radius. In addition, a numerical simulation model is used to study interaction of beam electrons with atmospheric pressure water vapor, supporting an effort to develop an electrostatic water mist fire-fighting nozzle.
The Topology of Large-Scale Structure in the 1.2 Jy IRAS Redshift Survey
NASA Astrophysics Data System (ADS)
Protogeros, Zacharias A. M.; Weinberg, David H.
1997-11-01
We measure the topology (genus) of isodensity contour surfaces in volume-limited subsets of the 1.2 Jy IRAS redshift survey, for smoothing scales λ = 4, 7, and 12 h-1 Mpc. At 12 h-1 Mpc, the observed genus curve has a symmetric form similar to that predicted for a Gaussian random field. At the shorter smoothing lengths, the observed genus curve shows a modest shift in the direction of an isolated cluster or ``meatball'' topology. We use mock catalogs drawn from cosmological N-body simulations to investigate the systematic biases that affect topology measurements in samples of this size and to determine the full covariance matrix of the expected random errors. We incorporate the error correlations into our evaluations of theoretical models, obtaining both frequentist assessments of absolute goodness of fit and Bayesian assessments of models' relative likelihoods. We compare the observed topology of the 1.2 Jy survey to the predictions of dynamically evolved, unbiased, gravitational instability models that have Gaussian initial conditions. The model with an n = -1 power-law initial power spectrum achieves the best overall agreement with the data, though models with a low-density cold dark matter power spectrum and an n = 0 power-law spectrum are also consistent. The observed topology is inconsistent with an initially Gaussian model that has n = -2, and it is strongly inconsistent with a Voronoi foam model, which has a non-Gaussian, bubble topology.
Action detection by double hierarchical multi-structure space-time statistical matching model
NASA Astrophysics Data System (ADS)
Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang
2018-03-01
Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.
Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model.
Tang, Jiechen; Zhou, Chao; Yuan, Xinyu; Sriboonchitta, Songsak
2015-01-01
This paper concentrates on estimating the risk of Title Transfer Facility (TTF) Hub natural gas portfolios by using the GARCH-EVT-copula model. We first use the univariate ARMA-GARCH model to model each natural gas return series. Second, the extreme value distribution (EVT) is fitted to the tails of the residuals to model marginal residual distributions. Third, multivariate Gaussian copula and Student t-copula are employed to describe the natural gas portfolio risk dependence structure. Finally, we simulate N portfolios and estimate value at risk (VaR) and conditional value at risk (CVaR). Our empirical results show that, for an equally weighted portfolio of five natural gases, the VaR and CVaR values obtained from the Student t-copula are larger than those obtained from the Gaussian copula. Moreover, when minimizing the portfolio risk, the optimal natural gas portfolio weights are found to be similar across the multivariate Gaussian copula and Student t-copula and different confidence levels.
Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets.
Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O; Gelfand, Alan E
2016-01-01
Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online.
Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets
Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O.; Gelfand, Alan E.
2018-01-01
Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online. PMID:29720777
Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model
Tang, Jiechen; Zhou, Chao; Yuan, Xinyu; Sriboonchitta, Songsak
2015-01-01
This paper concentrates on estimating the risk of Title Transfer Facility (TTF) Hub natural gas portfolios by using the GARCH-EVT-copula model. We first use the univariate ARMA-GARCH model to model each natural gas return series. Second, the extreme value distribution (EVT) is fitted to the tails of the residuals to model marginal residual distributions. Third, multivariate Gaussian copula and Student t-copula are employed to describe the natural gas portfolio risk dependence structure. Finally, we simulate N portfolios and estimate value at risk (VaR) and conditional value at risk (CVaR). Our empirical results show that, for an equally weighted portfolio of five natural gases, the VaR and CVaR values obtained from the Student t-copula are larger than those obtained from the Gaussian copula. Moreover, when minimizing the portfolio risk, the optimal natural gas portfolio weights are found to be similar across the multivariate Gaussian copula and Student t-copula and different confidence levels. PMID:26351652
Action detection by double hierarchical multi-structure space–time statistical matching model
NASA Astrophysics Data System (ADS)
Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang
2018-06-01
Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.
VHDL-AMS modelling and simulation of a planar electrostatic micromotor
NASA Astrophysics Data System (ADS)
Endemaño, A.; Fourniols, J. Y.; Camon, H.; Marchese, A.; Muratet, S.; Bony, F.; Dunnigan, M.; Desmulliez, M. P. Y.; Overton, G.
2003-09-01
System level simulation results of a planar electrostatic micromotor, based on analytical models of the static and dynamic torque behaviours, are presented. A planar variable capacitance (VC) electrostatic micromotor designed, fabricated and tested at LAAS (Toulouse) in 1995 is simulated using the high level language VHDL-AMS (VHSIC (very high speed integrated circuits) hardware description language-analog mixed signal). The analytical torque model is obtained by first calculating the overlaps and capacitances between different electrodes based on a conformal mapping transformation. Capacitance values in the order of 10-16 F and torque values in the order of 10-11 N m have been calculated in agreement with previous measurements and simulations from this type of motor. A dynamic model has been developed for the motor by calculating the inertia coefficient and estimating the friction-coefficient-based values calculated previously for other similar devices. Starting voltage results obtained from experimental measurement are in good agreement with our proposed simulation model. Simulation results of starting voltage values, step response, switching response and continuous operation of the micromotor, based on the dynamic model of the torque, are also presented. Four VHDL-AMS blocks were created, validated and simulated for power supply, excitation control, micromotor torque creation and micromotor dynamics. These blocks can be considered as the initial phase towards the creation of intellectual property (IP) blocks for microsystems in general and electrostatic micromotors in particular.
NASA Astrophysics Data System (ADS)
Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne
2017-03-01
The development and use of dispersion models that simulate traffic-related air pollution in urban areas has risen significantly in support of air pollution exposure research. In order to accurately estimate population exposure, it is important to generate concentration surfaces that take into account near-road concentrations as well as the transport of pollutants throughout an urban region. In this paper, an integrated modelling chain was developed to simulate ambient Nitrogen Dioxide (NO2) in a dense urban neighbourhood while taking into account traffic emissions, the regional background, and the transport of pollutants within the urban canopy. For this purpose, we developed a hybrid configuration including 1) a street canyon model, which simulates pollutant transfer along streets and intersections, taking into account the geometry of buildings and other obstacles, and 2) a Gaussian puff model, which resolves the transport of contaminants at the top of the urban canopy and accounts for regional meteorology. Each dispersion model was validated against measured concentrations and compared against the hybrid configuration. Our results demonstrate that the hybrid approach significantly improves the output of each model on its own. An underestimation appears clearly for the Gaussian model and street-canyon model compared to observed data. This is due to ignoring the building effect by the Gaussian model and undermining the contribution of other roads by the canyon model. The hybrid approach reduced the RMSE (of observed vs. predicted concentrations) by 16%-25% compared to each model on its own, and increased FAC2 (fraction of predictions within a factor of two of the observations) by 10%-34%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruban, V. P., E-mail: ruban@itp.ac.ru
2015-05-15
The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of roguemore » wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.« less
Cardamone, Salvatore; Hughes, Timothy J; Popelier, Paul L A
2014-06-14
Atomistic simulation of chemical systems is currently limited by the elementary description of electrostatics that atomic point-charges offer. Unfortunately, a model of one point-charge for each atom fails to capture the anisotropic nature of electronic features such as lone pairs or π-systems. Higher order electrostatic terms, such as those offered by a multipole moment expansion, naturally recover these important electronic features. The question remains as to why such a description has not yet been widely adopted by popular molecular mechanics force fields. There are two widely-held misconceptions about the more rigorous formalism of multipolar electrostatics: (1) Accuracy: the implementation of multipole moments, compared to point-charges, offers little to no advantage in terms of an accurate representation of a system's energetics, structure and dynamics. (2) Efficiency: atomistic simulation using multipole moments is computationally prohibitive compared to simulation using point-charges. Whilst the second of these may have found some basis when computational power was a limiting factor, the first has no theoretical grounding. In the current work, we disprove the two statements above and systematically demonstrate that multipole moments are not discredited by either. We hope that this perspective will help in catalysing the transition to more realistic electrostatic modelling, to be adopted by popular molecular simulation software.
Sum rules for the uniform-background model of an atomic-sharp metal corner
NASA Astrophysics Data System (ADS)
Streitenberger, P.
1994-04-01
Analytical results are derived for the electrostatic potential of an atomic-sharp 90° metal corner in the uniform-background model. The electrostatic potential at a free jellium edge and the jellium corner, respectively, is determined exactly in terms of the energy per electron of the uniform electron gas integrated over the background density. The surface energy, the edge formation energy and the derivative of the corner formation energy with respect to the background density are given as integrals over the electrostatic potential. The present approach represents a novel approach to such sum rules, inclusive of the Budd-Vannimenus sum rules for a free jellium surface, based on general properties of linear response functions.
Optimal modeling of 1D azimuth correlations in the context of Bayesian inference
NASA Astrophysics Data System (ADS)
De Kock, Michiel B.; Eggers, Hans C.; Trainor, Thomas A.
2015-09-01
Analysis and interpretation of spectrum and correlation data from high-energy nuclear collisions is currently controversial because two opposing physics narratives derive contradictory implications from the same data, one narrative claiming collision dynamics is dominated by dijet production and projectile-nucleon fragmentation, the other claiming collision dynamics is dominated by a dense, flowing QCD medium. Opposing interpretations seem to be supported by alternative data models, and current model-comparison schemes are unable to distinguish between them. There is clearly need for a convincing new methodology to break the deadlock. In this study we introduce Bayesian inference (BI) methods applied to angular correlation data as a basis to evaluate competing data models. For simplicity the data considered are projections of two-dimensional (2D) angular correlations onto a 1D azimuth from three centrality classes of 200-GeV Au-Au collisions. We consider several data models typical of current model choices, including Fourier series (FS) and a Gaussian plus various combinations of individual cosine components. We evaluate model performance with BI methods and with power-spectrum analysis. We find that FS-only models are rejected in all cases by Bayesian analysis, which always prefers a Gaussian. A cylindrical quadrupole cos(2 ϕ ) is required in some cases but rejected for 0%-5%-central Au-Au collisions. Given a Gaussian centered at the azimuth origin, "higher harmonics" cos(m ϕ ) for m >2 are rejected. A model consisting of Gaussian +dipole cos(ϕ )+quadrupole cos(2 ϕ ) provides good 1D data descriptions in all cases.
The Mass-dependent Star Formation Histories of Disk Galaxies: Infall Model Versus Observations
NASA Astrophysics Data System (ADS)
Chang, R. X.; Hou, J. L.; Shen, S. Y.; Shu, C. G.
2010-10-01
We introduce a simple model to explore the star formation histories of disk galaxies. We assume that the disk originate and grows by continuous gas infall. The gas infall rate is parameterized by the Gaussian formula with one free parameter: the infall-peak time tp . The Kennicutt star formation law is adopted to describe how much cold gas turns into stars. The gas outflow process is also considered in our model. We find that, at a given galactic stellar mass M *, the model adopting a late infall-peak time tp results in blue colors, low-metallicity, high specific star formation rate (SFR), and high gas fraction, while the gas outflow rate mainly influences the gas-phase metallicity and star formation efficiency mainly influences the gas fraction. Motivated by the local observed scaling relations, we "construct" a mass-dependent model by assuming that the low-mass galaxy has a later infall-peak time tp and a larger gas outflow rate than massive systems. It is shown that this model can be in agreement with not only the local observations, but also with the observed correlations between specific SFR and galactic stellar mass SFR/M * ~ M * at intermediate redshifts z < 1. Comparison between the Gaussian-infall model and the exponential-infall model is also presented. It shows that the exponential-infall model predicts a higher SFR at early stage and a lower SFR later than that of Gaussian infall. Our results suggest that the Gaussian infall rate may be more reasonable in describing the gas cooling process than the exponential infall rate, especially for low-mass systems.
XDGMM: eXtreme Deconvolution Gaussian Mixture Modeling
NASA Astrophysics Data System (ADS)
Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.
2017-08-01
XDGMM uses Gaussian mixtures to do density estimation of noisy, heterogenous, and incomplete data using extreme deconvolution (XD) algorithms which is compatible with the scikit-learn machine learning methods. It implements both the astroML and Bovy et al. (2011) algorithms, and extends the BaseEstimator class from scikit-learn so that cross-validation methods work. It allows the user to produce a conditioned model if values of some parameters are known.
A non-Gaussian option pricing model based on Kaniadakis exponential deformation
NASA Astrophysics Data System (ADS)
Moretto, Enrico; Pasquali, Sara; Trivellato, Barbara
2017-09-01
A way to make financial models effective is by letting them to represent the so called "fat tails", i.e., extreme changes in stock prices that are regarded as almost impossible by the standard Gaussian distribution. In this article, the Kaniadakis deformation of the usual exponential function is used to define a random noise source in the dynamics of price processes capable of capturing such real market phenomena.
NASA Astrophysics Data System (ADS)
Nguyen, Ngoc Minh; Corff, Sylvain Le; Moulines, Éric
2017-12-01
This paper focuses on sequential Monte Carlo approximations of smoothing distributions in conditionally linear and Gaussian state spaces. To reduce Monte Carlo variance of smoothers, it is typical in these models to use Rao-Blackwellization: particle approximation is used to sample sequences of hidden regimes while the Gaussian states are explicitly integrated conditional on the sequence of regimes and observations, using variants of the Kalman filter/smoother. The first successful attempt to use Rao-Blackwellization for smoothing extends the Bryson-Frazier smoother for Gaussian linear state space models using the generalized two-filter formula together with Kalman filters/smoothers. More recently, a forward-backward decomposition of smoothing distributions mimicking the Rauch-Tung-Striebel smoother for the regimes combined with backward Kalman updates has been introduced. This paper investigates the benefit of introducing additional rejuvenation steps in all these algorithms to sample at each time instant new regimes conditional on the forward and backward particles. This defines particle-based approximations of the smoothing distributions whose support is not restricted to the set of particles sampled in the forward or backward filter. These procedures are applied to commodity markets which are described using a two-factor model based on the spot price and a convenience yield for crude oil data.
Rabbani, Hossein; Sonka, Milan; Abramoff, Michael D
2013-01-01
In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR.
Cheng, Mingjian; Guo, Ya; Li, Jiangting; Zheng, Xiaotong; Guo, Lixin
2018-04-20
We introduce an alternative distribution to the gamma-gamma (GG) distribution, called inverse Gaussian gamma (IGG) distribution, which can efficiently describe moderate-to-strong irradiance fluctuations. The proposed stochastic model is based on a modulation process between small- and large-scale irradiance fluctuations, which are modeled by gamma and inverse Gaussian distributions, respectively. The model parameters of the IGG distribution are directly related to atmospheric parameters. The accuracy of the fit among the IGG, log-normal, and GG distributions with the experimental probability density functions in moderate-to-strong turbulence are compared, and results indicate that the newly proposed IGG model provides an excellent fit to the experimental data. As the receiving diameter is comparable with the atmospheric coherence radius, the proposed IGG model can reproduce the shape of the experimental data, whereas the GG and LN models fail to match the experimental data. The fundamental channel statistics of a free-space optical communication system are also investigated in an IGG-distributed turbulent atmosphere, and a closed-form expression for the outage probability of the system is derived with Meijer's G-function.
Revisiting Gaussian Process Regression Modeling for Localization in Wireless Sensor Networks
Richter, Philipp; Toledano-Ayala, Manuel
2015-01-01
Signal strength-based positioning in wireless sensor networks is a key technology for seamless, ubiquitous localization, especially in areas where Global Navigation Satellite System (GNSS) signals propagate poorly. To enable wireless local area network (WLAN) location fingerprinting in larger areas while maintaining accuracy, methods to reduce the effort of radio map creation must be consolidated and automatized. Gaussian process regression has been applied to overcome this issue, also with auspicious results, but the fit of the model was never thoroughly assessed. Instead, most studies trained a readily available model, relying on the zero mean and squared exponential covariance function, without further scrutinization. This paper studies the Gaussian process regression model selection for WLAN fingerprinting in indoor and outdoor environments. We train several models for indoor/outdoor- and combined areas; we evaluate them quantitatively and compare them by means of adequate model measures, hence assessing the fit of these models directly. To illuminate the quality of the model fit, the residuals of the proposed model are investigated, as well. Comparative experiments on the positioning performance verify and conclude the model selection. In this way, we show that the standard model is not the most appropriate, discuss alternatives and present our best candidate. PMID:26370996
Chen, Nan; Majda, Andrew J
2017-12-05
Solving the Fokker-Planck equation for high-dimensional complex dynamical systems is an important issue. Recently, the authors developed efficient statistically accurate algorithms for solving the Fokker-Planck equations associated with high-dimensional nonlinear turbulent dynamical systems with conditional Gaussian structures, which contain many strong non-Gaussian features such as intermittency and fat-tailed probability density functions (PDFs). The algorithms involve a hybrid strategy with a small number of samples [Formula: see text], where a conditional Gaussian mixture in a high-dimensional subspace via an extremely efficient parametric method is combined with a judicious Gaussian kernel density estimation in the remaining low-dimensional subspace. In this article, two effective strategies are developed and incorporated into these algorithms. The first strategy involves a judicious block decomposition of the conditional covariance matrix such that the evolutions of different blocks have no interactions, which allows an extremely efficient parallel computation due to the small size of each individual block. The second strategy exploits statistical symmetry for a further reduction of [Formula: see text] The resulting algorithms can efficiently solve the Fokker-Planck equation with strongly non-Gaussian PDFs in much higher dimensions even with orders in the millions and thus beat the curse of dimension. The algorithms are applied to a [Formula: see text]-dimensional stochastic coupled FitzHugh-Nagumo model for excitable media. An accurate recovery of both the transient and equilibrium non-Gaussian PDFs requires only [Formula: see text] samples! In addition, the block decomposition facilitates the algorithms to efficiently capture the distinct non-Gaussian features at different locations in a [Formula: see text]-dimensional two-layer inhomogeneous Lorenz 96 model, using only [Formula: see text] samples. Copyright © 2017 the Author(s). Published by PNAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harlim, John, E-mail: jharlim@psu.edu; Mahdi, Adam, E-mail: amahdi@ncsu.edu; Majda, Andrew J., E-mail: jonjon@cims.nyu.edu
2014-01-15
A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partialmore » noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.« less
A continuous mixing model for pdf simulations and its applications to combusting shear flows
NASA Technical Reports Server (NTRS)
Hsu, A. T.; Chen, J.-Y.
1991-01-01
The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in this work. A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models.
Non-Gaussian bias: insights from discrete density peaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desjacques, Vincent; Riotto, Antonio; Gong, Jinn-Ouk, E-mail: Vincent.Desjacques@unige.ch, E-mail: jinn-ouk.gong@apctp.org, E-mail: Antonio.Riotto@unige.ch
2013-09-01
Corrections induced by primordial non-Gaussianity to the linear halo bias can be computed from a peak-background split or the widespread local bias model. However, numerical simulations clearly support the prediction of the former, in which the non-Gaussian amplitude is proportional to the linear halo bias. To understand better the reasons behind the failure of standard Lagrangian local bias, in which the halo overdensity is a function of the local mass overdensity only, we explore the effect of a primordial bispectrum on the 2-point correlation of discrete density peaks. We show that the effective local bias expansion to peak clustering vastlymore » simplifies the calculation. We generalize this approach to excursion set peaks and demonstrate that the resulting non-Gaussian amplitude, which is a weighted sum of quadratic bias factors, precisely agrees with the peak-background split expectation, which is a logarithmic derivative of the halo mass function with respect to the normalisation amplitude. We point out that statistics of thresholded regions can be computed using the same formalism. Our results suggest that halo clustering statistics can be modelled consistently (in the sense that the Gaussian and non-Gaussian bias factors agree with peak-background split expectations) from a Lagrangian bias relation only if the latter is specified as a set of constraints imposed on the linear density field. This is clearly not the case of standard Lagrangian local bias. Therefore, one is led to consider additional variables beyond the local mass overdensity.« less
NASA Astrophysics Data System (ADS)
Ortiz-Jaramillo, B.; Fandiño Toro, H. A.; Benitez-Restrepo, H. D.; Orjuela-Vargas, S. A.; Castellanos-Domínguez, G.; Philips, W.
2012-03-01
Infrared Non-Destructive Testing (INDT) is known as an effective and rapid method for nondestructive inspection. It can detect a broad range of near-surface structuring flaws in metallic and composite components. Those flaws are modeled as a smooth contour centered at peaks of stored thermal energy, termed Regions of Interest (ROI). Dedicated methodologies must detect the presence of those ROIs. In this paper, we present a methodology for ROI extraction in INDT tasks. The methodology deals with the difficulties due to the non-uniform heating. The non-uniform heating affects low spatial/frequencies and hinders the detection of relevant points in the image. In this paper, a methodology for ROI extraction in INDT using multi-resolution analysis is proposed, which is robust to ROI low contrast and non-uniform heating. The former methodology includes local correlation, Gaussian scale analysis and local edge detection. In this methodology local correlation between image and Gaussian window provides interest points related to ROIs. We use a Gaussian window because thermal behavior is well modeled by Gaussian smooth contours. Also, the Gaussian scale is used to analyze details in the image using multi-resolution analysis avoiding low contrast, non-uniform heating and selection of the Gaussian window size. Finally, local edge detection is used to provide a good estimation of the boundaries in the ROI. Thus, we provide a methodology for ROI extraction based on multi-resolution analysis that is better or equal compared with the other dedicate algorithms proposed in the state of art.
NASA Astrophysics Data System (ADS)
Deng, Mingge; Li, Zhen; Borodin, Oleg; Karniadakis, George Em
2016-10-01
We develop a "charged" dissipative particle dynamics (cDPD) model for simulating mesoscopic electrokinetic phenomena governed by the stochastic Poisson-Nernst-Planck and the Navier-Stokes equations. Specifically, the transport equations of ionic species are incorporated into the DPD framework by introducing extra degrees of freedom and corresponding evolution equations associated with each DPD particle. Diffusion of ionic species driven by the ionic concentration gradient, electrostatic potential gradient, and thermal fluctuations is captured accurately via pairwise fluxes between DPD particles. The electrostatic potential is obtained by solving the Poisson equation on the moving DPD particles iteratively at each time step. For charged surfaces in bounded systems, an effective boundary treatment methodology is developed for imposing both the correct hydrodynamic and electrokinetics boundary conditions in cDPD simulations. To validate the proposed cDPD model and the corresponding boundary conditions, we first study the electrostatic structure in the vicinity of a charged solid surface, i.e., we perform cDPD simulations of the electrostatic double layer and show that our results are in good agreement with the well-known mean-field theoretical solutions. We also simulate the electrostatic structure and capacity densities between charged parallel plates in salt solutions with different salt concentrations. Moreover, we employ the proposed methodology to study the electro-osmotic and electro-osmotic/pressure-driven flows in a micro-channel. In the latter case, we simulate the dilute poly-electrolyte solution drifting by electro-osmotic flow in a micro-channel, hence demonstrating the flexibility and capability of this method in studying complex fluids with electrostatic interactions at the micro- and nano-scales.
On the cause of the non-Gaussian distribution of residuals in geomagnetism
NASA Astrophysics Data System (ADS)
Hulot, G.; Khokhlov, A.
2017-12-01
To describe errors in the data, Gaussian distributions naturally come to mind. In many practical instances, indeed, Gaussian distributions are appropriate. In the broad field of geomagnetism, however, it has repeatedly been noted that residuals between data and models often display much sharper distributions, sometimes better described by a Laplace distribution. In the present study, we make the case that such non-Gaussian behaviors are very likely the result of what is known as mixture of distributions in the statistical literature. Mixtures arise as soon as the data do not follow a common distribution or are not properly normalized, the resulting global distribution being a mix of the various distributions followed by subsets of the data, or even individual datum. We provide examples of the way such mixtures can lead to distributions that are much sharper than Gaussian distributions and discuss the reasons why such mixtures are likely the cause of the non-Gaussian distributions observed in geomagnetism. We also show that when properly selecting sub-datasets based on geophysical criteria, statistical mixture can sometimes be avoided and much more Gaussian behaviors recovered. We conclude with some general recommendations and point out that although statistical mixture always tends to sharpen the resulting distribution, it does not necessarily lead to a Laplacian distribution. This needs to be taken into account when dealing with such non-Gaussian distributions.
Theoretical analysis of non-Gaussian heterogeneity effects on subsurface flow and transport
NASA Astrophysics Data System (ADS)
Riva, Monica; Guadagnini, Alberto; Neuman, Shlomo P.
2017-04-01
Much of the stochastic groundwater literature is devoted to the analysis of flow and transport in Gaussian or multi-Gaussian log hydraulic conductivity (or transmissivity) fields, Y(x)=ln\\func K(x) (x being a position vector), characterized by one or (less frequently) a multiplicity of spatial correlation scales. Yet Y and many other variables and their (spatial or temporal) increments, ΔY, are known to be generally non-Gaussian. One common manifestation of non-Gaussianity is that whereas frequency distributions of Y often exhibit mild peaks and light tails, those of increments ΔY are generally symmetric with peaks that grow sharper, and tails that become heavier, as separation scale or lag between pairs of Y values decreases. A statistical model that captures these disparate, scale-dependent distributions of Y and ΔY in a unified and consistent manner has been recently proposed by us. This new "generalized sub-Gaussian (GSG)" model has the form Y(x)=U(x)G(x) where G(x) is (generally, but not necessarily) a multiscale Gaussian random field and U(x) is a nonnegative subordinator independent of G. The purpose of this paper is to explore analytically, in an elementary manner, lead-order effects that non-Gaussian heterogeneity described by the GSG model have on the stochastic description of flow and transport. Recognizing that perturbation expansion of hydraulic conductivity K=eY diverges when Y is sub-Gaussian, we render the expansion convergent by truncating Y's domain of definition. We then demonstrate theoretically and illustrate by way of numerical examples that, as the domain of truncation expands, (a) the variance of truncated Y (denoted by Yt) approaches that of Y and (b) the pdf (and thereby moments) of Yt increments approach those of Y increments and, as a consequence, the variogram of Yt approaches that of Y. This in turn guarantees that perturbing Kt=etY to second order in σYt (the standard deviation of Yt) yields results which approach those we obtain upon perturbing K=eY to second order in σY even as the corresponding series diverges. Our analysis is rendered mathematically tractable by considering mean-uniform steady state flow in an unbounded, two-dimensional domain of mildly heterogeneous Y with a single-scale function G having an isotropic exponential covariance. Results consist of expressions for (a) lead-order autocovariance and cross-covariance functions of hydraulic head, velocity, and advective particle displacement and (b) analogues of preasymptotic as well as asymptotic Fickian dispersion coefficients. We compare these theoretically and graphically with corresponding expressions developed in the literature for Gaussian Y. We find the former to differ from the latter by a factor k =
Random Process Simulation for stochastic fatigue analysis. Ph.D. Thesis - Rice Univ., Houston, Tex.
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.
1988-01-01
A simulation technique is described which directly synthesizes the extrema of a random process and is more efficient than the Gaussian simulation method. Such a technique is particularly useful in stochastic fatigue analysis because the required stress range moment E(R sup m), is a function only of the extrema of the random stress process. The family of autoregressive moving average (ARMA) models is reviewed and an autoregressive model is presented for modeling the extrema of any random process which has a unimodal power spectral density (psd). The proposed autoregressive technique is found to produce rainflow stress range moments which compare favorably with those computed by the Gaussian technique and to average 11.7 times faster than the Gaussian technique. The autoregressive technique is also adapted for processes having bimodal psd's. The adaptation involves using two autoregressive processes to simulate the extrema due to each mode and the superposition of these two extrema sequences. The proposed autoregressive superposition technique is 9 to 13 times faster than the Gaussian technique and produces comparable values for E(R sup m) for bimodal psd's having the frequency of one mode at least 2.5 times that of the other mode.
Consistency relation and non-Gaussianity in a Galileon inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asadi, Kosar; Nozari, Kourosh, E-mail: k.asadi@stu.umz.ac.ir, E-mail: knozari@umz.ac.ir
2016-12-01
We study a particular Galileon inflation in the light of Planck2015 observational data in order to constraint the model parameter space. We study the spectrum of the primordial modes of the density perturbations by expanding the action up to the second order in perturbations. Then we pursue by expanding the action up to the third order and find the three point correlation functions to find the amplitude of the non-Gaussianity of the primordial perturbations in this setup. We study the amplitude of the non-Gaussianity both in equilateral and orthogonal configurations and test the model with recent observational data. Our analysismore » shows that for some ranges of the non-minimal coupling parameter, the model is consistent with observation and it is also possible to have large non-Gaussianity which would be observable by future improvements in experiments. Moreover, we obtain the tilt of the tensor power spectrum and test the standard inflationary consistency relation ( r = −8 n {sub T} ) against the latest bounds from the Planck2015 dataset. We find a slight deviation from the standard consistency relation in this setup. Nevertheless, such a deviation seems not to be sufficiently remarkable to be detected confidently.« less
A relativistic signature in large-scale structure
NASA Astrophysics Data System (ADS)
Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David
2016-09-01
In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.
Ionospheric scintillation studies
NASA Technical Reports Server (NTRS)
Rino, C. L.; Freemouw, E. J.
1973-01-01
The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.
NASA Astrophysics Data System (ADS)
Aygun, M.; Kucuk, Y.; Boztosun, I.; Ibraheem, Awad A.
2010-12-01
The elastic scattering angular distributions of 6He projectile on different medium and heavy mass target nuclei including 12C, 27Al, 58Ni, 64Zn, 65Cu, 197Au, 208Pb and 209Bi have been examined by using the few-body and Gaussian-shaped density distributions at various energies. The microscopic real parts of the complex nuclear optical potential have been obtained by using the double-folding model for each of the density distributions and the phenomenological imaginary potentials have been taken as the Woods-Saxon type. Comparative results of the few-body and Gaussian-shaped density distributions together with the experimental data are presented within the framework of the optical model.
Preliminary Results of a Microgravity Investigation to Measure Net Charge on Granular Materials
NASA Technical Reports Server (NTRS)
Green, Robert D.; Myers, Jerry G.; Hansen, Bonnie L.
2003-01-01
Accurate characterization of the electrostatic charge on granular materials has typically been limited to materials with diameters on the order of 10 microns and below due to high settling velocities of larger particles. High settling velocities limit both the time and the acceptable uncertainty with which a measurement can be made. A prototype device has been developed at NASA Glenn Research Center (GRC) to measure coulombic charge on individual particles of granular materials that are 50 to 500 microns in diameter. This device, a novel extension of Millikan's classic oil drop experiment, utilizes the NASA GRC 2.2 second drop tower to extend the range of electrostatic charge measurements to accommodate moderate size granular materials. A dielectric material with a nominal grain diameter between 1.06 and 250 microns was tribocharged using a dry gas jet, suspended in a 5x10x10 cm enclosure during a 2.2 second period of microgravity and exposed to a known electric field. The response was recorded on video and post processed to allow tracking of individual particles. By determining the particle trajectory and velocity, estimates of the coulombic charge were made. Over 30 drops were performed using this technique and the analysis showed that first order approximations of coulombic charge could successfully be obtained, with the mean charge of 3.4E-14 coulombs measured for F-75 Ottawa quartz sand. Additionally, the measured charge showed a near-Gaussian distribution, with a standard deviation of 2.14E -14 coulombs.
Effect of lensing non-Gaussianity on the CMB power spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Antony; Pratten, Geraint, E-mail: antony@cosmologist.info, E-mail: geraint.pratten@gmail.com
2016-12-01
Observed CMB anisotropies are lensed, and the lensed power spectra can be calculated accurately assuming the lensing deflections are Gaussian. However, the lensing deflections are actually slightly non-Gaussian due to both non-linear large-scale structure growth and post-Born corrections. We calculate the leading correction to the lensed CMB power spectra from the non-Gaussianity, which is determined by the lensing bispectrum. Assuming no primordial non-Gaussianity, the lowest-order result gives ∼ 0.3% corrections to the BB and EE polarization spectra on small-scales. However we show that the effect on EE is reduced by about a factor of two by higher-order Gaussian lensing smoothing,more » rendering the total effect safely negligible for the foreseeable future. We give a simple analytic model for the signal expected from skewness of the large-scale lensing field; the effect is similar to a net demagnification and hence a small change in acoustic scale (and therefore out of phase with the dominant lensing smoothing that predominantly affects the peaks and troughs of the power spectrum).« less
Non-Gaussian Methods for Causal Structure Learning.
Shimizu, Shohei
2018-05-22
Causal structure learning is one of the most exciting new topics in the fields of machine learning and statistics. In many empirical sciences including prevention science, the causal mechanisms underlying various phenomena need to be studied. Nevertheless, in many cases, classical methods for causal structure learning are not capable of estimating the causal structure of variables. This is because it explicitly or implicitly assumes Gaussianity of data and typically utilizes only the covariance structure. In many applications, however, non-Gaussian data are often obtained, which means that more information may be contained in the data distribution than the covariance matrix is capable of containing. Thus, many new methods have recently been proposed for using the non-Gaussian structure of data and inferring the causal structure of variables. This paper introduces prevention scientists to such causal structure learning methods, particularly those based on the linear, non-Gaussian, acyclic model known as LiNGAM. These non-Gaussian data analysis tools can fully estimate the underlying causal structures of variables under assumptions even in the presence of unobserved common causes. This feature is in contrast to other approaches. A simulated example is also provided.
Biasing and the search for primordial non-Gaussianity beyond the local type
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleyzes, Jérôme; De Putter, Roland; Doré, Olivier
Primordial non-Gaussianity encodes valuable information about the physics of inflation, including the spectrum of particles and interactions. Significant improvements in our understanding of non-Gaussanity beyond Planck require information from large-scale structure. The most promising approach to utilize this information comes from the scale-dependent bias of halos. For local non-Gaussanity, the improvements available are well studied but the potential for non-Gaussianity beyond the local type, including equilateral and quasi-single field inflation, is much less well understood. In this paper, we forecast the capabilities of large-scale structure surveys to detect general non-Gaussianity through galaxy/halo power spectra. We study how non-Gaussanity can bemore » distinguished from a general biasing model and where the information is encoded. For quasi-single field inflation, significant improvements over Planck are possible in some regions of parameter space. We also show that the multi-tracer technique can significantly improve the sensitivity for all non-Gaussianity types, providing up to an order of magnitude improvement for equilateral non-Gaussianity over the single-tracer measurement.« less
Kurtosis, skewness, and non-Gaussian cosmological density perturbations
NASA Technical Reports Server (NTRS)
Luo, Xiaochun; Schramm, David N.
1993-01-01
Cosmological topological defects as well as some nonstandard inflation models can give rise to non-Gaussian density perturbations. Skewness and kurtosis are the third and fourth moments that measure the deviation of a distribution from a Gaussian. Measurement of these moments for the cosmological density field and for the microwave background temperature anisotropy can provide a test of the Gaussian nature of the primordial fluctuation spectrum. In the case of the density field, the importance of measuring the kurtosis is stressed since it will be preserved through the weakly nonlinear gravitational evolution epoch. Current constraints on skewness and kurtosis of primeval perturbations are obtained from the observed density contrast on small scales and from recent COBE observations of temperature anisotropies on large scales. It is also shown how, in principle, future microwave anisotropy experiments might be able to reveal the initial skewness and kurtosis. It is shown that present data argue that if the initial spectrum is adiabatic, then it is probably Gaussian, but non-Gaussian isocurvature fluctuations are still allowed, and these are what topological defects provide.
Separation of components from a scale mixture of Gaussian white noises
NASA Astrophysics Data System (ADS)
Vamoş, Călin; Crăciun, Maria
2010-05-01
The time evolution of a physical quantity associated with a thermodynamic system whose equilibrium fluctuations are modulated in amplitude by a slowly varying phenomenon can be modeled as the product of a Gaussian white noise {Zt} and a stochastic process with strictly positive values {Vt} referred to as volatility. The probability density function (pdf) of the process Xt=VtZt is a scale mixture of Gaussian white noises expressed as a time average of Gaussian distributions weighted by the pdf of the volatility. The separation of the two components of {Xt} can be achieved by imposing the condition that the absolute values of the estimated white noise be uncorrelated. We apply this method to the time series of the returns of the daily S&P500 index, which has also been analyzed by means of the superstatistics method that imposes the condition that the estimated white noise be Gaussian. The advantage of our method is that this financial time series is processed without partitioning or removal of the extreme events and the estimated white noise becomes almost Gaussian only as result of the uncorrelation condition.
Design and Optimisation of Electrostatic Precipitator for Diesel Exhaust
NASA Astrophysics Data System (ADS)
Srinivaas, A.; Sathian, Samanyu; Ramesh, Arjun
2018-02-01
The principle of an industrially used emission reduction technique is employed in automotive diesel exhaust to reduce the diesel particulate emission. As the Emission regulation are becoming more stringent legislations have been formulated, due to the hazardous increase in the air quality index in major cities. Initially electrostatic precipitation principle and working was investigated. The High voltage requirement in an Electrostatic precipitator is obtained by designing an appropriate circuit in MATLAB -SIMULINK. Mechanical structural design of the new model after treatment device for the specific diesel exhaust was done. Fluid flow analysis of the ESP model was carried out using ANSYS CFX for optimized fluid with a reduced back pressure. Design reconsideration was done in accordance with fluid flow analysis. Accordingly, a new design is developed by considering diesel particulate filter and catalytic converter design to ESP model.
LEO high voltage solar array arcing response model, continuation 5
NASA Technical Reports Server (NTRS)
Metz, Roger N.
1989-01-01
The modeling of the Debye Approximation electron sheaths in the edge and strip geometries was completed. Electrostatic potentials in these sheaths were compared to NASCAP/LEO solutions for similar geometries. Velocity fields, charge densities and particle fluxes to the biased surfaces were calculated for all cases. The major conclusion to be drawn from the comparisons of our Debye Approximation calculations with NASCAP-LEO output is that, where comparable biased structures can be defined and sufficient resolution obtained, these results are in general agreement. Numerical models for the Child-Langmuir, high-voltage electron sheaths in the edge and strip geometries were constructed. Electrostatic potentials were calculated for several cases in each of both geometries. Velocity fields and particle fluxes were calculated. The self-consistent solution process was carried through one cycle and output electrostatic potentials compared to NASCAP-type input potentials.
Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.
Sahin, Buyukdagli; Ralf, Blossey
2014-07-16
We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.
Statistical Modeling of Retinal Optical Coherence Tomography.
Amini, Zahra; Rabbani, Hossein
2016-06-01
In this paper, a new model for retinal Optical Coherence Tomography (OCT) images is proposed. This statistical model is based on introducing a nonlinear Gaussianization transform to convert the probability distribution function (pdf) of each OCT intra-retinal layer to a Gaussian distribution. The retina is a layered structure and in OCT each of these layers has a specific pdf which is corrupted by speckle noise, therefore a mixture model for statistical modeling of OCT images is proposed. A Normal-Laplace distribution, which is a convolution of a Laplace pdf and Gaussian noise, is proposed as the distribution of each component of this model. The reason for choosing Laplace pdf is the monotonically decaying behavior of OCT intensities in each layer for healthy cases. After fitting a mixture model to the data, each component is gaussianized and all of them are combined by Averaged Maximum A Posterior (AMAP) method. To demonstrate the ability of this method, a new contrast enhancement method based on this statistical model is proposed and tested on thirteen healthy 3D OCTs taken by the Topcon 3D OCT and five 3D OCTs from Age-related Macular Degeneration (AMD) patients, taken by Zeiss Cirrus HD-OCT. Comparing the results with two contending techniques, the prominence of the proposed method is demonstrated both visually and numerically. Furthermore, to prove the efficacy of the proposed method for a more direct and specific purpose, an improvement in the segmentation of intra-retinal layers using the proposed contrast enhancement method as a preprocessing step, is demonstrated.
The article reports the development of a new method of calculating electrical conditions in wire-duct electrostatic precipitation devices. The method, based on a numerical solution to the governing differential equations under a suitable choice of boundary conditions, accounts fo...
REDUCING ENERGY AND SPACE REQUIREMENTS BY ELECTROSTATIC AUGMENTATION OF A PULSE-JET FABRIC FILTER
In work performed several years ago by EPA's research lab then known as Air and Energy Engineering Research Laboratory (EPA/AEERL), small-scale testing and modeling of electrostatically stimulated fabric filtration (ESFF) has indicated than substantial performance benefits could ...
Fletcher, Timothy L; Popelier, Paul L A
2016-06-14
A machine learning method called kriging is applied to the set of all 20 naturally occurring amino acids. Kriging models are built that predict electrostatic multipole moments for all topological atoms in any amino acid based on molecular geometry only. These models then predict molecular electrostatic interaction energies. On the basis of 200 unseen test geometries for each amino acid, no amino acid shows a mean prediction error above 5.3 kJ mol(-1), while the lowest error observed is 2.8 kJ mol(-1). The mean error across the entire set is only 4.2 kJ mol(-1) (or 1 kcal mol(-1)). Charged systems are created by protonating or deprotonating selected amino acids, and these show no significant deviation in prediction error over their neutral counterparts. Similarly, the proposed methodology can also handle amino acids with aromatic side chains, without the need for modification. Thus, we present a generic method capable of accurately capturing multipolar polarizable electrostatics in amino acids.
Protein-membrane electrostatic interactions: Application of the Lekner summation technique
NASA Astrophysics Data System (ADS)
Juffer, André H.; Shepherd, Craig M.; Vogel, Hans J.
2001-01-01
A model has been developed to calculate the electrostatic interaction between biomolecules and lipid bilayers. The effect of ionic strength is included by means of explicit ions, while water is described as a background continuum. The bilayer is considered at the atomic level. The Lekner summation technique is employed to calculate the long-range electrostatic interactions. The new method is employed to estimate the electrostatic contribution to the free energy of binding of sandostatin, a cyclic eight-residue analogue of the peptide hormone somatostatin, to lipid bilayers with thermodynamic integration. Monte Carlo simulation techniques were employed to determine ion distributions and peptide orientations. Both neutral as well as negatively charged lipid bilayers were used. An error analysis to judge the quality of the computation is also presented. The applicability of the Lekner summation technique to combine it with computer simulation models that simulate the adsorption of peptides (and proteins) into the interfacial region of lipid bilayers is discussed.
State estimation and prediction using clustered particle filters.
Lee, Yoonsang; Majda, Andrew J
2016-12-20
Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors.
State estimation and prediction using clustered particle filters
Lee, Yoonsang; Majda, Andrew J.
2016-01-01
Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors. PMID:27930332
Gaussian Process Interpolation for Uncertainty Estimation in Image Registration
Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William
2014-01-01
Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127
DelPhiForce web server: electrostatic forces and energy calculations and visualization.
Li, Lin; Jia, Zhe; Peng, Yunhui; Chakravorty, Arghya; Sun, Lexuan; Alexov, Emil
2017-11-15
Electrostatic force is an essential component of the total force acting between atoms and macromolecules. Therefore, accurate calculations of electrostatic forces are crucial for revealing the mechanisms of many biological processes. We developed a DelPhiForce web server to calculate and visualize the electrostatic forces at molecular level. DelPhiForce web server enables modeling of electrostatic forces on individual atoms, residues, domains and molecules, and generates an output that can be visualized by VMD software. Here we demonstrate the usage of the server for various biological problems including protein-cofactor, domain-domain, protein-protein, protein-DNA and protein-RNA interactions. The DelPhiForce web server is available at: http://compbio.clemson.edu/delphi-force. delphi@clemson.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Lomize, Andrei L; Pogozheva, Irina D; Mosberg, Henry I
2011-04-25
A new implicit solvation model was developed for calculating free energies of transfer of molecules from water to any solvent with defined bulk properties. The transfer energy was calculated as a sum of the first solvation shell energy and the long-range electrostatic contribution. The first term was proportional to solvent accessible surface area and solvation parameters (σ(i)) for different atom types. The electrostatic term was computed as a product of group dipole moments and dipolar solvation parameter (η) for neutral molecules or using a modified Born equation for ions. The regression coefficients in linear dependencies of solvation parameters σ(i) and η on dielectric constant, solvatochromic polarizability parameter π*, and hydrogen-bonding donor and acceptor capacities of solvents were optimized using 1269 experimental transfer energies from 19 organic solvents to water. The root-mean-square errors for neutral compounds and ions were 0.82 and 1.61 kcal/mol, respectively. Quantification of energy components demonstrates the dominant roles of hydrophobic effect for nonpolar atoms and of hydrogen-bonding for polar atoms. The estimated first solvation shell energy outweighs the long-range electrostatics for most compounds including ions. The simplicity and computational efficiency of the model allows its application for modeling of macromolecules in anisotropic environments, such as biological membranes.
Non-local bias in the halo bispectrum with primordial non-Gaussianity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tellarini, Matteo; Ross, Ashley J.; Wands, David
2015-07-01
Primordial non-Gaussianity can lead to a scale-dependent bias in the density of collapsed halos relative to the underlying matter density. The galaxy power spectrum already provides constraints on local-type primordial non-Gaussianity complementary those from the cosmic microwave background (CMB), while the bispectrum contains additional shape information and has the potential to outperform CMB constraints in future. We develop the bias model for the halo density contrast in the presence of local-type primordial non-Gaussianity, deriving a bivariate expansion up to second order in terms of the local linear matter density contrast and the local gravitational potential in Lagrangian coordinates. Nonlinear evolutionmore » of the matter density introduces a non-local tidal term in the halo model. Furthermore, the presence of local-type non-Gaussianity in the Lagrangian frame leads to a novel non-local convective term in the Eulerian frame, that is proportional to the displacement field when going beyond the spherical collapse approximation. We use an extended Press-Schechter approach to evaluate the halo mass function and thus the halo bispectrum. We show that including these non-local terms in the halo bispectra can lead to corrections of up to 25% for some configurations, on large scales or at high redshift.« less
Ship Detection in SAR Image Based on the Alpha-stable Distribution
Wang, Changcheng; Liao, Mingsheng; Li, Xiaofeng
2008-01-01
This paper describes an improved Constant False Alarm Rate (CFAR) ship detection algorithm in spaceborne synthetic aperture radar (SAR) image based on Alpha-stable distribution model. Typically, the CFAR algorithm uses the Gaussian distribution model to describe statistical characteristics of a SAR image background clutter. However, the Gaussian distribution is only valid for multilook SAR images when several radar looks are averaged. As sea clutter in SAR images shows spiky or heavy-tailed characteristics, the Gaussian distribution often fails to describe background sea clutter. In this study, we replace the Gaussian distribution with the Alpha-stable distribution, which is widely used in impulsive or spiky signal processing, to describe the background sea clutter in SAR images. In our proposed algorithm, an initial step for detecting possible ship targets is employed. Then, similar to the typical two-parameter CFAR algorithm, a local process is applied to the pixel identified as possible target. A RADARSAT-1 image is used to validate this Alpha-stable distribution based algorithm. Meanwhile, known ship location data during the time of RADARSAT-1 SAR image acquisition is used to validate ship detection results. Validation results show improvements of the new CFAR algorithm based on the Alpha-stable distribution over the CFAR algorithm based on the Gaussian distribution. PMID:27873794
Discrimination of numerical proportions: A comparison of binomial and Gaussian models.
Raidvee, Aire; Lember, Jüri; Allik, Jüri
2017-01-01
Observers discriminated the numerical proportion of two sets of elements (N = 9, 13, 33, and 65) that differed either by color or orientation. According to the standard Thurstonian approach, the accuracy of proportion discrimination is determined by irreducible noise in the nervous system that stochastically transforms the number of presented visual elements onto a continuum of psychological states representing numerosity. As an alternative to this customary approach, we propose a Thurstonian-binomial model, which assumes discrete perceptual states, each of which is associated with a certain visual element. It is shown that the probability β with which each visual element can be noticed and registered by the perceptual system can explain data of numerical proportion discrimination at least as well as the continuous Thurstonian-Gaussian model, and better, if the greater parsimony of the Thurstonian-binomial model is taken into account using AIC model selection. We conclude that Gaussian and binomial models represent two different fundamental principles-internal noise vs. using only a fraction of available information-which are both plausible descriptions of visual perception.
Review and developments of dissemination models for airborne carbon fibers
NASA Technical Reports Server (NTRS)
Elber, W.
1980-01-01
Dissemination prediction models were reviewed to determine their applicability to a risk assessment for airborne carbon fibers. The review showed that the Gaussian prediction models using partial reflection at the ground agreed very closely with a more elaborate diffusion analysis developed for the study. For distances beyond 10,000 m the Gaussian models predicted a slower fall-off in exposure levels than the diffusion models. This resulting level of conservatism was preferred for the carbon fiber risk assessment. The results also showed that the perfect vertical-mixing models developed herein agreed very closely with the diffusion analysis for all except the most stable atmospheric conditions.
NASA Astrophysics Data System (ADS)
Mitchell, Noah; Koning, Vinzenz; Vitelli, Vincenzo; Irvine, William T. M.
2014-03-01
When an elastic film conforms to a surface with Gaussian curvature, stresses arise in the film. As a result, cracks--typically studied in flat materials--interact with curvature when propagating through the system. Using silicone elastomer sheets that conform to the surface of a Gaussian bump, we find experimental evidence for the deflection of a crack propagating through the material. We interpret our experiments with reference to analytical modeling and simulations of a simplified model system.
Autonomous detection of crowd anomalies in multiple-camera surveillance feeds
NASA Astrophysics Data System (ADS)
Nordlöf, Jonas; Andersson, Maria
2016-10-01
A novel approach for autonomous detection of anomalies in crowded environments is presented in this paper. The proposed models uses a Gaussian mixture probability hypothesis density (GM-PHD) filter as feature extractor in conjunction with different Gaussian mixture hidden Markov models (GM-HMMs). Results, based on both simulated and recorded data, indicate that this method can track and detect anomalies on-line in individual crowds through multiple camera feeds in a crowded environment.
Steve P. Verrill; James W. Evans; David E. Kretschmann; Cherilyn A. Hatfield
2014-01-01
Two important wood properties are the modulus of elasticity (MOE) and the modulus of rupture (MOR). In the past, the statistical distribution of the MOE has often been modeled as Gaussian, and that of the MOR as lognormal or as a two- or three-parameter Weibull distribution. It is well known that MOE and MOR are positively correlated. To model the simultaneous behavior...
Steve P. Verrill; David E. Kretschmann; James W. Evans
2016-01-01
Two important wood properties are stiffness (modulus of elasticity, MOE) and bending strength (modulus of rupture, MOR). In the past, MOE has often been modeled as a Gaussian and MOR as a lognormal or a two- or threeparameter Weibull. It is well known that MOE and MOR are positively correlated. To model the simultaneous behavior of MOE and MOR for the purposes of wood...
Bayesian Computation for Log-Gaussian Cox Processes: A Comparative Analysis of Methods
Teng, Ming; Nathoo, Farouk S.; Johnson, Timothy D.
2017-01-01
The Log-Gaussian Cox Process is a commonly used model for the analysis of spatial point pattern data. Fitting this model is difficult because of its doubly-stochastic property, i.e., it is an hierarchical combination of a Poisson process at the first level and a Gaussian Process at the second level. Various methods have been proposed to estimate such a process, including traditional likelihood-based approaches as well as Bayesian methods. We focus here on Bayesian methods and several approaches that have been considered for model fitting within this framework, including Hamiltonian Monte Carlo, the Integrated nested Laplace approximation, and Variational Bayes. We consider these approaches and make comparisons with respect to statistical and computational efficiency. These comparisons are made through several simulation studies as well as through two applications, the first examining ecological data and the second involving neuroimaging data. PMID:29200537
Model for non-Gaussian intraday stock returns
NASA Astrophysics Data System (ADS)
Gerig, Austin; Vicente, Javier; Fuentes, Miguel A.
2009-12-01
Stock prices are known to exhibit non-Gaussian dynamics, and there is much interest in understanding the origin of this behavior. Here, we present a model that explains the shape and scaling of the distribution of intraday stock price fluctuations (called intraday returns) and verify the model using a large database for several stocks traded on the London Stock Exchange. We provide evidence that the return distribution for these stocks is non-Gaussian and similar in shape and that the distribution appears stable over intraday time scales. We explain these results by assuming the volatility of returns is constant intraday but varies over longer periods such that its inverse square follows a gamma distribution. This produces returns that are Student distributed for intraday time scales. The predicted results show excellent agreement with the data for all stocks in our study and over all regions of the return distribution.
Research on Bayes matting algorithm based on Gaussian mixture model
NASA Astrophysics Data System (ADS)
Quan, Wei; Jiang, Shan; Han, Cheng; Zhang, Chao; Jiang, Zhengang
2015-12-01
The digital matting problem is a classical problem of imaging. It aims at separating non-rectangular foreground objects from a background image, and compositing with a new background image. Accurate matting determines the quality of the compositing image. A Bayesian matting Algorithm Based on Gaussian Mixture Model is proposed to solve this matting problem. Firstly, the traditional Bayesian framework is improved by introducing Gaussian mixture model. Then, a weighting factor is added in order to suppress the noises of the compositing images. Finally, the effect is further improved by regulating the user's input. This algorithm is applied to matting jobs of classical images. The results are compared to the traditional Bayesian method. It is shown that our algorithm has better performance in detail such as hair. Our algorithm eliminates the noise well. And it is very effectively in dealing with the kind of work, such as interested objects with intricate boundaries.
Sparkle model for AM1 calculation of lanthanide complexes: improved parameters for europium.
Rocha, Gerd B; Freire, Ricardo O; Da Costa, Nivan B; De Sá, Gilberto F; Simas, Alfredo M
2004-04-05
In the present work, we sought to improve our sparkle model for the calculation of lanthanide complexes, SMLC,in various ways: (i) inclusion of the europium atomic mass, (ii) reparametrization of the model within AM1 from a new response function including all distances of the coordination polyhedron for tris(acetylacetonate)(1,10-phenanthroline) europium(III), (iii) implementation of the model in the software package MOPAC93r2, and (iv) inclusion of spherical Gaussian functions in the expression which computes the core-core repulsion energy. The parametrization results indicate that SMLC II is superior to the previous version of the model because Gaussian functions proved essential if one requires a better description of the geometries of the complexes. In order to validate our parametrization, we carried out calculations on 96 europium(III) complexes, selected from Cambridge Structural Database 2003, and compared our predicted ground state geometries with the experimental ones. Our results show that this new parametrization of the SMLC model, with the inclusion of spherical Gaussian functions in the core-core repulsion energy, is better capable of predicting the Eu-ligand distances than the previous version. The unsigned mean error for all interatomic distances Eu-L, in all 96 complexes, which, for the original SMLC is 0.3564 A, is lowered to 0.1993 A when the model was parametrized with the inclusion of two Gaussian functions. Our results also indicate that this model is more applicable to europium complexes with beta-diketone ligands. As such, we conclude that this improved model can be considered a powerful tool for the study of lanthanide complexes and their applications, such as the modeling of light conversion molecular devices.
A new quasi-thermal trap model for solar flare hard X-ray bursts - An electrostatic trap model
NASA Technical Reports Server (NTRS)
Spicer, D. S.; Emslie, A. G.
1988-01-01
A new quasi-thermal trap model of solar flare hard X-ray bursts is presented. The new model utilizes the trapping ability of a magnetic mirror and a magnetic field-aligned electrostatic potential produced by differences in anisotropies of the electron and ion distribution function. It is demonstrated that this potential can, together with the magnetic mirror itself, effectively confine electrons in a trap, thereby enhancing their bremsstrahlung yield per electron. This analysis makes even more untenable models involving precipitation of the bremsstrahlung-producing electrons onto a cold target.
Nonlinear Poisson equation for heterogeneous media.
Hu, Langhua; Wei, Guo-Wei
2012-08-22
The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Cosine-Gaussian Schell-model sources.
Mei, Zhangrong; Korotkova, Olga
2013-07-15
We introduce a new class of partially coherent sources of Schell type with cosine-Gaussian spectral degree of coherence and confirm that such sources are physically genuine. Further, we derive the expression for the cross-spectral density function of a beam generated by the novel source propagating in free space and analyze the evolution of the spectral density and the spectral degree of coherence. It is shown that at sufficiently large distances from the source the degree of coherence of the propagating beam assumes Gaussian shape while the spectral density takes on the dark-hollow profile.
Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution.
García-Patrón, Raúl; Cerf, Nicolas J
2006-11-10
A fully general approach to the security analysis of continuous-variable quantum key distribution (CV-QKD) is presented. Provided that the quantum channel is estimated via the covariance matrix of the quadratures, Gaussian attacks are shown to be optimal against all collective eavesdropping strategies. The proof is made strikingly simple by combining a physical model of measurement, an entanglement-based description of CV-QKD, and a recent powerful result on the extremality of Gaussian states [M. M. Wolf, Phys. Rev. Lett. 96, 080502 (2006)10.1103/PhysRevLett.96.080502].
NASA Astrophysics Data System (ADS)
Selim, M. M.; Bezák, V.
2003-06-01
The one-dimensional version of the radiative transfer problem (i.e. the so-called rod model) is analysed with a Gaussian random extinction function (x). Then the optical length X = 0 Ldx(x) is a Gaussian random variable. The transmission and reflection coefficients, T(X) and R(X), are taken as infinite series. When these series (and also when the series representing T 2(X), T 2(X), R(X)T(X), etc.) are averaged, term by term, according to the Gaussian statistics, the series become divergent after averaging. As it was shown in a former paper by the authors (in Acta Physica Slovaca (2003)), a rectification can be managed when a `modified' Gaussian probability density function is used, equal to zero for X > 0 and proportional to the standard Gaussian probability density for X > 0. In the present paper, the authors put forward an alternative, showing that if the m.s.r. of X is sufficiently small in comparison with & $bar X$ ; , the standard Gaussian averaging is well functional provided that the summation in the series representing the variable T m-j (X)R j (X) (m = 1,2,..., j = 1,...,m) is truncated at a well-chosen finite term. The authors exemplify their analysis by some numerical calculations.
Aberration analysis and calculation in system of Gaussian beam illuminates lenslet array
NASA Astrophysics Data System (ADS)
Zhao, Zhu; Hui, Mei; Zhou, Ping; Su, Tianquan; Feng, Yun; Zhao, Yuejin
2014-09-01
Low order aberration was founded when focused Gaussian beam imaging at Kodak KAI -16000 image detector, which is integrated with lenslet array. Effect of focused Gaussian beam and numerical simulation calculation of the aberration were presented in this paper. First, we set up a model of optical imaging system based on previous experiment. Focused Gaussian beam passed through a pinhole and was received by Kodak KAI -16000 image detector whose microlenses of lenslet array were exactly focused on sensor surface. Then, we illustrated the characteristics of focused Gaussian beam and the effect of relative space position relations between waist of Gaussian beam and front spherical surface of microlenses to the aberration. Finally, we analyzed the main element of low order aberration and calculated the spherical aberration caused by lenslet array according to the results of above two steps. Our theoretical calculations shown that , the numerical simulation had a good agreement with the experimental result. Our research results proved that spherical aberration was the main element and made up about 93.44% of the 48 nm error, which was demonstrated in previous experiment. The spherical aberration is inversely proportional to the value of divergence distance between microlens and waist, and directly proportional to the value of the Gaussian beam waist radius.
Mabrouk, Rostom; Dubeau, François; Bentabet, Layachi
2013-01-01
Kinetic modeling of metabolic and physiologic cardiac processes in small animals requires an input function (IF) and a tissue time-activity curves (TACs). In this paper, we present a mathematical method based on independent component analysis (ICA) to extract the IF and the myocardium's TACs directly from dynamic positron emission tomography (PET) images. The method assumes a super-Gaussian distribution model for the blood activity, and a sub-Gaussian distribution model for the tissue activity. Our appreach was applied on 22 PET measurement sets of small animals, which were obtained from the three most frequently used cardiac radiotracers, namely: desoxy-fluoro-glucose ((18)F-FDG), [(13)N]-ammonia, and [(11)C]-acetate. Our study was extended to PET human measurements obtained with the Rubidium-82 ((82) Rb) radiotracer. The resolved mathematical IF values compare favorably to those derived from curves extracted from regions of interest (ROI), suggesting that the procedure presents a reliable alternative to serial blood sampling for small-animal cardiac PET studies.
Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture
Li, Lingling; Wang, Pengchong; Chao, Kuei-Hsiang; Zhou, Yatong; Xie, Yang
2016-01-01
The remaining useful life (RUL) prediction of Lithium-ion batteries is closely related to the capacity degeneration trajectories. Due to the self-charging and the capacity regeneration, the trajectories have the property of multimodality. Traditional prediction models such as the support vector machines (SVM) or the Gaussian Process regression (GPR) cannot accurately characterize this multimodality. This paper proposes a novel RUL prediction method based on the Gaussian Process Mixture (GPM). It can process multimodality by fitting different segments of trajectories with different GPR models separately, such that the tiny differences among these segments can be revealed. The method is demonstrated to be effective for prediction by the excellent predictive result of the experiments on the two commercial and chargeable Type 1850 Lithium-ion batteries, provided by NASA. The performance comparison among the models illustrates that the GPM is more accurate than the SVM and the GPR. In addition, GPM can yield the predictive confidence interval, which makes the prediction more reliable than that of traditional models. PMID:27632176
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Yu, D; Beitler, J
Purpose: Xerostomia (dry mouth), secondary to parotid-gland injury, is a distressing side-effect in head-and-neck radiotherapy (RT). This study's purpose is to develop a novel ultrasound technique to quantitatively evaluate post-RT parotid-gland injury. Methods: Recent ultrasound studies have shown that healthy parotid glands exhibit homogeneous echotexture, whereas post-RT parotid glands are often heterogeneous, with multiple hypoechoic (inflammation) or hyperechoic (fibrosis) regions. We propose to use a Gaussian mixture model to analyze the ultrasonic echo-histogram of the parotid glands. An IRB-approved clinical study was conducted: (1) control-group: 13 healthy-volunteers, served as the control; (2) acutetoxicity group − 20 patients (mean age: 62.5more » ± 8.9 years, follow-up: 2.0±0.8 months); and (3) late-toxicity group − 18 patients (mean age: 60.7 ± 7.3 years, follow-up: 20.1±10.4 months). All patients experienced RTOG grade 1 or 2 salivary-gland toxicity. Each participant underwent an ultrasound scan (10 MHz) of the bilateral parotid glands. An echo-intensity histogram was derived for each parotid and a Gaussian mixture model was used to fit the histogram using expectation maximization (EM) algorithm. The quality of the fitting was evaluated with the R-squared value. Results: (1) Controlgroup: all parotid glands fitted well with one Gaussian component, with a mean intensity of 79.8±4.9 (R-squared>0.96). (2) Acute-toxicity group: 37 of the 40 post-RT parotid glands fitted well with two Gaussian components, with a mean intensity of 42.9±7.4, 73.3±12.2 (R-squared>0.95). (3) Latetoxicity group: 32 of the 36 post-RT parotid fitted well with 3 Gaussian components, with mean intensities of 49.7±7.6, 77.2±8.7, and 118.6±11.8 (R-squared>0.98). Conclusion: RT-associated parotid-gland injury is common in head-and-neck RT, but challenging to assess. This work has demonstrated that the Gaussian mixture model of the echo-histogram could quantify acute and late toxicity of the parotid glands. This study provides meaningful preliminary data from future observational and interventional clinical research.« less
Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Wei
Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equationsmore » such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.« less
Chromatin ionic atmosphere analyzed by a mesoscale electrostatic approach.
Gan, Hin Hark; Schlick, Tamar
2010-10-20
Characterizing the ionic distribution around chromatin is important for understanding the electrostatic forces governing chromatin structure and function. Here we develop an electrostatic model to handle multivalent ions and compute the ionic distribution around a mesoscale chromatin model as a function of conformation, number of nucleosome cores, and ionic strength and species using Poisson-Boltzmann theory. This approach enables us to visualize and measure the complex patterns of counterion condensation around chromatin by examining ionic densities, free energies, shielding charges, and correlations of shielding charges around the nucleosome core and various oligonucleosome conformations. We show that: counterions, especially divalent cations, predominantly condense around the nucleosomal and linker DNA, unburied regions of histone tails, and exposed chromatin surfaces; ionic screening is sensitively influenced by local and global conformations, with a wide ranging net nucleosome core screening charge (56-100e); and screening charge correlations reveal conformational flexibility and interactions among chromatin subunits, especially between the histone tails and parental nucleosome cores. These results provide complementary and detailed views of ionic effects on chromatin structure for modest computational resources. The electrostatic model developed here is applicable to other coarse-grained macromolecular complexes. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P
2017-06-13
We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.
Hollow Gaussian Schell-model beam and its propagation
NASA Astrophysics Data System (ADS)
Wang, Li-Gang; Wang, Li-Qin
2008-03-01
In this paper, we present a new model, hollow Gaussian Schell-model beams (HGSMBs), to describe the practical dark hollow beams. An analytical propagation formula for HGSMBs passing through a paraxial first-order optical system is derived based on the theory of coherence. Based on the derived formula, an application example showing the influence of spatial coherence on the propagation of beams is illustrated. It is found that the beam propagating properties of HGSMBs will be greatly affected by their spatial coherence. Our model provides a very convenient way for analyzing the propagation properties of partially coherent dark hollow beams.
Predicting Error Bars for QSAR Models
NASA Astrophysics Data System (ADS)
Schroeter, Timon; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert
2007-09-01
Unfavorable physicochemical properties often cause drug failures. It is therefore important to take lipophilicity and water solubility into account early on in lead discovery. This study presents log D7 models built using Gaussian Process regression, Support Vector Machines, decision trees and ridge regression algorithms based on 14556 drug discovery compounds of Bayer Schering Pharma. A blind test was conducted using 7013 new measurements from the last months. We also present independent evaluations using public data. Apart from accuracy, we discuss the quality of error bars that can be computed by Gaussian Process models, and ensemble and distance based techniques for the other modelling approaches.
Electrostatic correlations at the Stern layer: Physics or chemistry?
NASA Astrophysics Data System (ADS)
Travesset, A.; Vangaveti, S.
2009-11-01
We introduce a minimal free energy describing the interaction of charged groups and counterions including both classical electrostatic and specific interactions. The predictions of the model are compared against the standard model for describing ions next to charged interfaces, consisting of Poisson-Boltzmann theory with additional constants describing ion binding, which are specific to the counterion and the interfacial charge ("chemical binding"). It is shown that the "chemical" model can be appropriately described by an underlying "physical" model over several decades in concentration, but the extracted binding constants are not uniquely defined, as they differ depending on the particular observable quantity being studied. It is also shown that electrostatic correlations for divalent (or higher valence) ions enhance the surface charge by increasing deprotonation, an effect not properly accounted within chemical models. The charged phospholipid phosphatidylserine is analyzed as a concrete example with good agreement with experimental results. We conclude with a detailed discussion on the limitations of chemical or physical models for describing the rich phenomenology of charged interfaces in aqueous media and its relevance to different systems with a particular emphasis on phospholipids.
Working covariance model selection for generalized estimating equations.
Carey, Vincent J; Wang, You-Gan
2011-11-20
We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
M, H. Moghtader Dindarlu; M Kavosh, Tehrani; H, Saghafifar; A, Maleki
2015-12-01
In this paper, according to the temperature and strain distribution obtained by considering the Gaussian pump profile and dependence of physical properties on temperature, we derive an analytical model for refractive index variations of the diode side-pumped Nd:YAG laser rod. Then we evaluate this model by numerical solution and our maximum relative errors are 5% and 10% for variations caused by thermo-optical and thermo-mechanical effects; respectively. Finally, we present an analytical model for calculating the focal length of the thermal lens and spherical aberration. This model is evaluated by experimental results.
Electrostatic forces in the Poisson-Boltzmann systems
NASA Astrophysics Data System (ADS)
Xiao, Li; Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray
2013-09-01
Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A limitation of the numerical strategies is that it is conceptually difficult to incorporate these types of models into molecular mechanics simulations, mainly because of the issue in assigning atomic forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analytical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formulations with those published in the literature. We showed that the formulations derived from the Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-Boltzmann systems with a finite number of singularities such as atomic point charges and the existence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models.
Accurate, robust and reliable calculations of Poisson-Boltzmann binding energies
Nguyen, Duc D.; Wang, Bao
2017-01-01
Poisson-Boltzmann (PB) model is one of the most popular implicit solvent models in biophysical modeling and computation. The ability of providing accurate and reliable PB estimation of electrostatic solvation free energy, ΔGel, and binding free energy, ΔΔGel, is important to computational biophysics and biochemistry. In this work, we investigate the grid dependence of our PB solver (MIBPB) with SESs for estimating both electrostatic solvation free energies and electrostatic binding free energies. It is found that the relative absolute error of ΔGel obtained at the grid spacing of 1.0 Å compared to ΔGel at 0.2 Å averaged over 153 molecules is less than 0.2%. Our results indicate that the use of grid spacing 0.6 Å ensures accuracy and reliability in ΔΔGel calculation. In fact, the grid spacing of 1.1 Å appears to deliver adequate accuracy for high throughput screening. PMID:28211071
NASA Astrophysics Data System (ADS)
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-06-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
NASA Astrophysics Data System (ADS)
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-03-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
Propagation of flat-topped multi-Gaussian beams through a double-lens system with apertures.
Gao, Yanqi; Zhu, Baoqiang; Liu, Daizhong; Lin, Zunqi
2009-07-20
A general model for different apertures and flat-topped laser beams based on the multi-Gaussian function is developed. The general analytical expression for the propagation of a flat-topped beam through a general double-lens system with apertures is derived using the above model. Then, the propagation characteristics of the flat-topped beam through a spatial filter are investigated by using a simplified analytical expression. Based on the Fluence beam contrast and the Fill factor, the influences of a pinhole size on the propagation of the flat-topped multi-Gaussian beam (FMGB) through the spatial filter are illustrated. An analytical expression for the propagation of the FMGB through the spatial filter with a misaligned pinhole is presented, and the influences of the pinhole offset are evaluated.
NASA Astrophysics Data System (ADS)
Weitzen, J. A.; Bourque, S.; Ostergaard, J. C.; Bench, P. M.; Baily, A. D.
1991-04-01
Analysis of data from recent experiments leads to the observation that distributions of underdense meteor trail peak signal amplitudes differ from classic predictions. In this paper the distribution of trail amplitudes in decibels relative 1 W (dBw) is considered, and it is shown that Lindberg's theorem can be used to apply central limit arguments to this problem. It is illustrated that a Gaussian model for the distribution of the logarithm of the peak received signal level of underdense trails provides a better fit to data than classic approaches. Distributions of underdense meteor trail amplitudes at five frequencies are compared to a Gaussian distribution and the classic model. Implications of the Gaussian assumption on the design of communication systems are discussed.
The report explains the basic concepts of in-stack opacity as measured by in-stack opacity monitors. Also included are calculator programs that model the performance of venturi scrubbers and electrostatic precipitators. The effect of particulate control devices on in-stack opacit...
NASA Astrophysics Data System (ADS)
Makarewicz, H. D.; Parente, M.; Perry, K. A.; McKeown, N. K.; Bishop, J. L.
2009-12-01
Aqueous processes have been inferred at the Libya Montes rim/terrace complex of the southern Isidis Basin due to the dense concentration of valley networks [1]. Coordinated CRISM-HiRISE investigations of this region characterized discrete units of ancient phyllosilicate deposits covered by an olivine-rich material and a pyroxene caprock [2]. CRISM mapping data show minor phyllosilicate abundances widespread throughout the Southern Highlands [3], which are dominated by low-Ca pyroxene bearing material [4,5]. The carbonate magnesite has also been located throughout this area [6] and at Libya Montes [7]. Our current study involves detailed characterization of the minerals present at Libya Montes through implementation of improved automated Gaussian modeling methods. We have developed an automated procedure for modeling spectral features using Gaussians that has been successfully applied to laboratory studies and hyperspectral analyses of Mars [8,9,10,11]. Several studies are being conducted to improve and validate these models. These include a comparison of initialization methods, continuum methods, optimization algorithms, and modeled functions. The modeled functions compared include Gaussians, saturated Gaussians, and Lorentzians. This algorithm and the modeling studies are currently being applied towards analyses of CRISM hyperspectral images of Libya Montes and laboratory spectra of mineral mixtures. Specifically, olivine, pyroxene, phyllosilicate, and carbonate deposits are being modeled and classified by composition in CRISM images. References [1]Crumpler, L. S., and K. L. Tanaka (2003) J. Geophys. Res., 108, DOI: 8010.1029/2002JE002040. [2]Bishop, J. L., et al. (2007) 7th Int'l Mars Conf. [3]Mustard, J. F., et al. (2008) Nature, 454, 07305. [4]Bibring, J.-P., et al. (2005) Science, 307,1576. [5]Mustard, J. F., et al.(2005) Science, 307, 1594. [6]Ehlmann, B. L., et al. (2008) Science, 322, 1828. [7]Perry, K., et al. (2009) AGU Fall Mtng. [8]Makarewicz, H. D., et al. (2009) IEEE Whispers Wkshp. [9]Makarewicz, H. D., et al. (2008) AGU Fall Mtng. [10]Makarewicz, H. D., et al. (2009) LPSC. [11]Makarewicz, H. D., et al. (2009) Lunar Sci Forum.
NASA Astrophysics Data System (ADS)
Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.
2015-12-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the output measurement of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the two Flight Models was done on July 2015. The tests will be achieved from July to November 2015. The results of the Engineering Model and Flight Models tests will be presented.
NASA Astrophysics Data System (ADS)
Waubke, Holger; Kasess, Christian H.
2016-11-01
Devices that emit structure-borne sound are commonly decoupled by elastic components to shield the environment from acoustical noise and vibrations. The elastic elements often have a hysteretic behavior that is typically neglected. In order to take hysteretic behavior into account, Bouc developed a differential equation for such materials, especially joints made of rubber or equipped with dampers. In this work, the Bouc model is solved by means of the Gaussian closure technique based on the Kolmogorov equation. Kolmogorov developed a method to derive probability density functions for arbitrary explicit first-order vector differential equations under white noise excitation using a partial differential equation of a multivariate conditional probability distribution. Up to now no analytical solution of the Kolmogorov equation in conjunction with the Bouc model exists. Therefore a wide range of approximate solutions, especially the statistical linearization, were developed. Using the Gaussian closure technique that is an approximation to the Kolmogorov equation assuming a multivariate Gaussian distribution an analytic solution is derived in this paper for the Bouc model. For the stationary case the two methods yield equivalent results, however, in contrast to statistical linearization the presented solution allows to calculate the transient behavior explicitly. Further, stationary case leads to an implicit set of equations that can be solved iteratively with a small number of iterations and without instabilities for specific parameter sets.
Sonka, Milan; Abramoff, Michael D.
2013-01-01
In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR. PMID:24222760
GAUSSIAN BEAM LASER RESONATOR PROGRAM
NASA Technical Reports Server (NTRS)
Cross, P. L.
1994-01-01
In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.
Near grazing scattering from non-Gaussian ocean surfaces
NASA Technical Reports Server (NTRS)
Kim, Yunjin; Rodriguez, Ernesto
1993-01-01
We investigate the behavior of the scattered electromagnetic waves from non-Gaussian ocean surfaces at near grazing incidence. Even though the scattering mechanisms at moderate incidence angles are relatively well understood, the same is not true for near grazing rough surface scattering. However, from the experimental ocean scattering data, it has been observed that the backscattering cross section of a horizontally polarized wave can be as large as the vertical counterpart at near grazing incidence. In addition, these returns are highly intermittent in time. There have been some suggestions that these unexpected effects may come from shadowing or feature scattering. Using numerical scattering simulations, it can be shown that the horizontal backscattering cannot be larger than the vertical one for the Gaussian surfaces. Our main objective of this study is to gain a clear understanding of scattering mechanisms underlying the near grazing ocean scattering. In order to evaluate the backscattering cross section from ocean surfaces at near grazing incidence, both the hydrodynamic modeling of ocean surfaces and an accurate near grazing scattering theory are required. For the surface modeling, we generate Gaussian surfaces from the ocean surface power spectrum which is derived using several experimental data. Then, weakly nonlinear large scale ocean surfaces are generated following Longuet-Higgins. In addition, the modulation of small waves by large waves is included using the conservation of wave action. For surface scattering, we use MOM (Method of Moments) to calculate the backscattering from scattering patches with the two scale shadowing approximation. The differences between Gaussian and non-Gaussian surface scattering at near grazing incidence are presented.
A stochastic-geometric model of soil variation in Pleistocene patterned ground
NASA Astrophysics Data System (ADS)
Lark, Murray; Meerschman, Eef; Van Meirvenne, Marc
2013-04-01
In this paper we examine the spatial variability of soil in parent material with complex spatial structure which arises from complex non-linear geomorphic processes. We show that this variability can be better-modelled by a stochastic-geometric model than by a standard Gaussian random field. The benefits of the new model are seen in the reproduction of features of the target variable which influence processes like water movement and pollutant dispersal. Complex non-linear processes in the soil give rise to properties with non-Gaussian distributions. Even under a transformation to approximate marginal normality, such variables may have a more complex spatial structure than the Gaussian random field model of geostatistics can accommodate. In particular the extent to which extreme values of the variable are connected in spatially coherent regions may be misrepresented. As a result, for example, geostatistical simulation generally fails to reproduce the pathways for preferential flow in an environment where coarse infill of former fluvial channels or coarse alluvium of braided streams creates pathways for rapid movement of water. Multiple point geostatistics has been developed to deal with this problem. Multiple point methods proceed by sampling from a set of training images which can be assumed to reproduce the non-Gaussian behaviour of the target variable. The challenge is to identify appropriate sources of such images. In this paper we consider a mode of soil variation in which the soil varies continuously, exhibiting short-range lateral trends induced by local effects of the factors of soil formation which vary across the region of interest in an unpredictable way. The trends in soil variation are therefore only apparent locally, and the soil variation at regional scale appears random. We propose a stochastic-geometric model for this mode of soil variation called the Continuous Local Trend (CLT) model. We consider a case study of soil formed in relict patterned ground with pronounced lateral textural variations arising from the presence of infilled ice-wedges of Pleistocene origin. We show how knowledge of the pedogenetic processes in this environment, along with some simple descriptive statistics, can be used to select and fit a CLT model for the apparent electrical conductivity (ECa) of the soil. We use the model to simulate realizations of the CLT process, and compare these with realizations of a fitted Gaussian random field. We show how statistics that summarize the spatial coherence of regions with small values of ECa, which are expected to have coarse texture and so larger saturated hydraulic conductivity, are better reproduced by the CLT model than by the Gaussian random field. This suggests that the CLT model could be used to generate an unlimited supply of training images to allow multiple point geostatistical simulation or prediction of this or similar variables.