Comparing fixed and variable-width Gaussian networks.
Kůrková, Věra; Kainen, Paul C
2014-09-01
The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of width on functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven that if two Gaussian RBF networks have the same input-output functions, then they must have the same numbers of units with the same centers and widths. Further, it is shown that while sets of input-output functions of Gaussian kernel networks with two different widths are disjoint, each such set is large enough to be a universal approximator. Embedding of RKHSs induced by "flatter" Gaussians into RKHSs induced by "sharper" Gaussians is described and growth of the ratios of norms on these spaces with increasing input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input-output functions of Gaussian RBFs are described. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lin, Chuan-Kai; Wang, Sheng-De
2004-11-01
A new autopilot design for bank-to-turn (BTT) missiles is presented. In the design of autopilot, a ridge Gaussian neural network with local learning capability and fewer tuning parameters than Gaussian neural networks is proposed to model the controlled nonlinear systems. We prove that the proposed ridge Gaussian neural network, which can be a universal approximator, equals the expansions of rotated and scaled Gaussian functions. Although ridge Gaussian neural networks can approximate the nonlinear and complex systems accurately, the small approximation errors may affect the tracking performance significantly. Therefore, by employing the Hinfinity control theory, it is easy to attenuate the effects of the approximation errors of the ridge Gaussian neural networks to a prescribed level. Computer simulation results confirm the effectiveness of the proposed ridge Gaussian neural networks-based autopilot with Hinfinity stabilization.
Multi-variate joint PDF for non-Gaussianities: exact formulation and generic approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verde, Licia; Jimenez, Raul; Alvarez-Gaume, Luis
2013-06-01
We provide an exact expression for the multi-variate joint probability distribution function of non-Gaussian fields primordially arising from local transformations of a Gaussian field. This kind of non-Gaussianity is generated in many models of inflation. We apply our expression to the non-Gaussianity estimation from Cosmic Microwave Background maps and the halo mass function where we obtain analytical expressions. We also provide analytic approximations and their range of validity. For the Cosmic Microwave Background we give a fast way to compute the PDF which is valid up to more than 7σ for f{sub NL} values (both true and sampled) not ruledmore » out by current observations, which consists of expressing the PDF as a combination of bispectrum and trispectrum of the temperature maps. The resulting expression is valid for any kind of non-Gaussianity and is not limited to the local type. The above results may serve as the basis for a fully Bayesian analysis of the non-Gaussianity parameter.« less
Wigner distribution function of Hermite-cosine-Gaussian beams through an apertured optical system.
Sun, Dong; Zhao, Daomu
2005-08-01
By introducing the hard-aperture function into a finite sum of complex Gaussian functions, the approximate analytical expressions of the Wigner distribution function for Hermite-cosine-Gaussian beams passing through an apertured paraxial ABCD optical system are obtained. The analytical results are compared with the numerically integrated ones, and the absolute errors are also given. It is shown that the analytical results are proper and that the calculation speed for them is much faster than for the numerical results.
Variational Gaussian approximation for Poisson data
NASA Astrophysics Data System (ADS)
Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen
2018-02-01
The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.
Probability density and exceedance rate functions of locally Gaussian turbulence
NASA Technical Reports Server (NTRS)
Mark, W. D.
1989-01-01
A locally Gaussian model of turbulence velocities is postulated which consists of the superposition of a slowly varying strictly Gaussian component representing slow temporal changes in the mean wind speed and a more rapidly varying locally Gaussian turbulence component possessing a temporally fluctuating local variance. Series expansions of the probability density and exceedance rate functions of the turbulence velocity model, based on Taylor's series, are derived. Comparisons of the resulting two-term approximations with measured probability density and exceedance rate functions of atmospheric turbulence velocity records show encouraging agreement, thereby confirming the consistency of the measured records with the locally Gaussian model. Explicit formulas are derived for computing all required expansion coefficients from measured turbulence records.
Wear, Keith A
2002-11-01
For a wide range of applications in medical ultrasound, power spectra of received signals are approximately Gaussian. It has been established previously that an ultrasound beam with a Gaussian spectrum propagating through a medium with linear attenuation remains Gaussian. In this paper, Gaussian transformations are derived to model the effects of scattering (according to a power law, as is commonly applicable in soft tissues, especially over limited frequency ranges) and gating (with a Hamming window, a commonly used gate function). These approximations are shown to be quite accurate even for relatively broad band systems with fractional bandwidths approaching 100%. The theory is validated by experiments in phantoms consisting of glass particles suspended in agar.
Tang, Bin; Jiang, Chun; Zhu, Haibin
2012-08-01
Based on the scalar diffraction theory and the fact that a hard-edged aperture function can be expanded into a finite sum of complex Gaussian functions, an approximate analytical solution for Bessel-Gaussian (BG) beams propagating through a double-apertured fractional Fourier transform (FrFT) system is derived in the cylindrical coordinate. By using the approximate analytical formulas, the propagation properties of BG beams passing through a double-apertured FrFT optical system have been studied in detail by some typical numerical examples. The results indicate that the double-apertured FrFT optical system provides a convenient way for controlling the properties of the BG beams by properly choosing the optical parameters.
ERIC Educational Resources Information Center
Kistner, Emily O.; Muller, Keith E.
2004-01-01
Intraclass correlation and Cronbach's alpha are widely used to describe reliability of tests and measurements. Even with Gaussian data, exact distributions are known only for compound symmetric covariance (equal variances and equal correlations). Recently, large sample Gaussian approximations were derived for the distribution functions. New exact…
Fractional Fourier transform of truncated elliptical Gaussian beams.
Du, Xinyue; Zhao, Daomu
2006-12-20
Based on the fact that a hard-edged elliptical aperture can be expanded approximately as a finite sum of complex Gaussian functions in tensor form, an analytical expression for an elliptical Gaussian beam (EGB) truncated by an elliptical aperture and passing through a fractional Fourier transform system is derived by use of vector integration. The approximate analytical results provide more convenience for studying the propagation and transformation of truncated EGBs than the usual way by using the integral formula directly, and the efficiency of numerical calculation is significantly improved.
NASA Technical Reports Server (NTRS)
Reimers, J. R.; Heller, E. J.
1985-01-01
Exact eigenfunctions for a two-dimensional rigid rotor are obtained using Gaussian wave packet dynamics. The wave functions are obtained by propagating, without approximation, an infinite set of Gaussian wave packets that collectively have the correct periodicity, being coherent states appropriate to this rotational problem. This result leads to a numerical method for the semiclassical calculation of rovibrational, molecular eigenstates. Also, a simple, almost classical, approximation to full wave packet dynamics is shown to give exact results: this leads to an a posteriori justification of the De Leon-Heller spectral quantization method.
Kistner, Emily O; Muller, Keith E
2004-09-01
Intraclass correlation and Cronbach's alpha are widely used to describe reliability of tests and measurements. Even with Gaussian data, exact distributions are known only for compound symmetric covariance (equal variances and equal correlations). Recently, large sample Gaussian approximations were derived for the distribution functions. New exact results allow calculating the exact distribution function and other properties of intraclass correlation and Cronbach's alpha, for Gaussian data with any covariance pattern, not just compound symmetry. Probabilities are computed in terms of the distribution function of a weighted sum of independent chi-square random variables. New F approximations for the distribution functions of intraclass correlation and Cronbach's alpha are much simpler and faster to compute than the exact forms. Assuming the covariance matrix is known, the approximations typically provide sufficient accuracy, even with as few as ten observations. Either the exact or approximate distributions may be used to create confidence intervals around an estimate of reliability. Monte Carlo simulations led to a number of conclusions. Correctly assuming that the covariance matrix is compound symmetric leads to accurate confidence intervals, as was expected from previously known results. However, assuming and estimating a general covariance matrix produces somewhat optimistically narrow confidence intervals with 10 observations. Increasing sample size to 100 gives essentially unbiased coverage. Incorrectly assuming compound symmetry leads to pessimistically large confidence intervals, with pessimism increasing with sample size. In contrast, incorrectly assuming general covariance introduces only a modest optimistic bias in small samples. Hence the new methods seem preferable for creating confidence intervals, except when compound symmetry definitely holds.
On the distribution of a product of N Gaussian random variables
NASA Astrophysics Data System (ADS)
Stojanac, Željka; Suess, Daniel; Kliesch, Martin
2017-08-01
The product of Gaussian random variables appears naturally in many applications in probability theory and statistics. It has been known that the distribution of a product of N such variables can be expressed in terms of a Meijer G-function. Here, we compute a similar representation for the corresponding cumulative distribution function (CDF) and provide a power-log series expansion of the CDF based on the theory of the more general Fox H-functions. Numerical computations show that for small values of the argument the CDF of products of Gaussians is well approximated by the lowest orders of this expansion. Analogous results are also shown for the absolute value as well as the square of such products of N Gaussian random variables. For the latter two settings, we also compute the moment generating functions in terms of Meijer G-functions.
A Gaussian Approximation Potential for Silicon
NASA Astrophysics Data System (ADS)
Bernstein, Noam; Bartók, Albert; Kermode, James; Csányi, Gábor
We present an interatomic potential for silicon using the Gaussian Approximation Potential (GAP) approach, which uses the Gaussian process regression method to approximate the reference potential energy surface as a sum of atomic energies. Each atomic energy is approximated as a function of the local environment around the atom, which is described with the smooth overlap of atomic environments (SOAP) descriptor. The potential is fit to a database of energies, forces, and stresses calculated using density functional theory (DFT) on a wide range of configurations from zero and finite temperature simulations. These include crystalline phases, liquid, amorphous, and low coordination structures, and diamond-structure point defects, dislocations, surfaces, and cracks. We compare the results of the potential to DFT calculations, as well as to previously published models including Stillinger-Weber, Tersoff, modified embedded atom method (MEAM), and ReaxFF. We show that it is very accurate as compared to the DFT reference results for a wide range of properties, including low energy bulk phases, liquid structure, as well as point, line, and plane defects in the diamond structure.
Evolution of CMB spectral distortion anisotropies and tests of primordial non-Gaussianity
NASA Astrophysics Data System (ADS)
Chluba, Jens; Dimastrogiovanni, Emanuela; Amin, Mustafa A.; Kamionkowski, Marc
2017-04-01
Anisotropies in distortions to the frequency spectrum of the cosmic microwave background (CMB) can be created through spatially varying heating processes in the early Universe. For instance, the dissipation of small-scale acoustic modes does create distortion anisotropies, in particular for non-Gaussian primordial perturbations. In this work, we derive approximations that allow describing the associated distortion field. We provide a systematic formulation of the problem using Fourier-space window functions, clarifying and generalizing previous approximations. Our expressions highlight the fact that the amplitudes of the spectral-distortion fluctuations induced by non-Gaussianity depend also on the homogeneous value of those distortions. Absolute measurements are thus required to obtain model-independent distortion constraints on primordial non-Gaussianity. We also include a simple description for the evolution of distortions through photon diffusion, showing that these corrections can usually be neglected. Our formulation provides a systematic framework for computing higher order correlation functions of distortions with CMB temperature anisotropies and can be extended to describe correlations with polarization anisotropies.
Liu, Jian; Miller, William H
2006-12-14
The thermal Gaussian approximation (TGA) recently developed by Frantsuzov et al. [Chem. Phys. Lett. 381, 117 (2003)] has been demonstrated to be a practical way for approximating the Boltzmann operator exp(-betaH) for multidimensional systems. In this paper the TGA is combined with semiclassical (SC) initial value representations (IVRs) for thermal time correlation functions. Specifically, it is used with the linearized SC-IVR (LSC-IVR, equivalent to the classical Wigner model), and the "forward-backward semiclassical dynamics" approximation developed by Shao and Makri [J. Phys. Chem. A 103, 7753 (1999); 103, 9749 (1999)]. Use of the TGA with both of these approximate SC-IVRs allows the oscillatory part of the IVR to be integrated out explicitly, providing an extremely simple result that is readily applicable to large molecular systems. Calculation of the force-force autocorrelation for a strongly anharmonic oscillator demonstrates its accuracy, and calculation of the velocity autocorrelation function (and thus the diffusion coefficient) of liquid neon demonstrates its applicability.
NASA Astrophysics Data System (ADS)
Jain, Varun; Biesinger, Mark C.; Linford, Matthew R.
2018-07-01
X-ray photoelectron spectroscopy (XPS) is arguably the most important vacuum technique for surface chemical analysis, and peak fitting is an indispensable part of XPS data analysis. Functions that have been widely explored and used in XPS peak fitting include the Gaussian, Lorentzian, Gaussian-Lorentzian sum (GLS), Gaussian-Lorentzian product (GLP), and Voigt functions, where the Voigt function is a convolution of a Gaussian and a Lorentzian function. In this article we discuss these functions from a graphical perspective. Arguments based on convolution and the Central Limit Theorem are made to justify the use of functions that are intermediate between pure Gaussians and pure Lorentzians in XPS peak fitting. Mathematical forms for the GLS and GLP functions are presented with a mixing parameter m. Plots are shown for GLS and GLP functions with mixing parameters ranging from 0 to 1. There are fundamental differences between the GLS and GLP functions. The GLS function better follows the 'wings' of the Lorentzian, while these 'wings' are suppressed in the GLP. That is, these two functions are not interchangeable. The GLS and GLP functions are compared to the Voigt function, where the GLS is shown to be a decent approximation of it. Practically, both the GLS and the GLP functions can be useful for XPS peak fitting. Examples of the uses of these functions are provided herein.
Diffusion of Super-Gaussian Profiles
ERIC Educational Resources Information Center
Rosenberg, C.-J.; Anderson, D.; Desaix, M.; Johannisson, P.; Lisak, M.
2007-01-01
The present analysis describes an analytically simple and systematic approximation procedure for modelling the free diffusive spreading of initially super-Gaussian profiles. The approach is based on a self-similar ansatz for the evolution of the diffusion profile, and the parameter functions involved in the modelling are determined by suitable…
Non-Gaussian Analysis of Turbulent Boundary Layer Fluctuating Pressure on Aircraft Skin Panels
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Steinwolf, Alexander
2005-01-01
The purpose of the study is to investigate the probability density function (PDF) of turbulent boundary layer fluctuating pressures measured on the outer sidewall of a supersonic transport aircraft and to approximate these PDFs by analytical models. Experimental flight results show that the fluctuating pressure PDFs differ from the Gaussian distribution even for standard smooth surface conditions. The PDF tails are wider and longer than those of the Gaussian model. For pressure fluctuations in front of forward-facing step discontinuities, deviations from the Gaussian model are more significant and the PDFs become asymmetrical. There is a certain spatial pattern of the skewness and kurtosis behavior depending on the distance upstream from the step. All characteristics related to non-Gaussian behavior are highly dependent upon the distance from the step and the step height, less dependent on aircraft speed, and not dependent on the fuselage location. A Hermite polynomial transform model and a piecewise-Gaussian model fit the flight data well both for the smooth and stepped conditions. The piecewise-Gaussian approximation can be additionally regarded for convenience in usage after the model is constructed.
Novel transform for image description and compression with implementation by neural architectures
NASA Astrophysics Data System (ADS)
Ben-Arie, Jezekiel; Rao, Raghunath K.
1991-10-01
A general method for signal representation using nonorthogonal basis functions that are composed of Gaussians are described. The Gaussians can be combined into groups with predetermined configuration that can approximate any desired basis function. The same configuration at different scales forms a set of self-similar wavelets. The general scheme is demonstrated by representing a natural signal employing an arbitrary basis function. The basic methodology is demonstrated by two novel schemes for efficient representation of 1-D and 2- D signals using Gaussian basis functions (BFs). Special methods are required here since the Gaussian functions are nonorthogonal. The first method employs a paradigm of maximum energy reduction interlaced with the A* heuristic search. The second method uses an adaptive lattice system to find the minimum-squared error of the BFs onto the signal, and a lateral-vertical suppression network to select the most efficient representation in terms of data compression.
Real-time dynamics of matrix quantum mechanics beyond the classical approximation
NASA Astrophysics Data System (ADS)
Buividovich, Pavel; Hanada, Masanori; Schäfer, Andreas
2018-03-01
We describe a numerical method which allows to go beyond the classical approximation for the real-time dynamics of many-body systems by approximating the many-body Wigner function by the most general Gaussian function with time-dependent mean and dispersion. On a simple example of a classically chaotic system with two degrees of freedom we demonstrate that this Gaussian state approximation is accurate for significantly smaller field strengths and longer times than the classical one. Applying this approximation to matrix quantum mechanics, we demonstrate that the quantum Lyapunov exponents are in general smaller than their classical counterparts, and even seem to vanish below some temperature. This behavior resembles the finite-temperature phase transition which was found for this system in Monte-Carlo simulations, and ensures that the system does not violate the Maldacena-Shenker-Stanford bound λL < 2πT, which inevitably happens for classical dynamics at sufficiently small temperatures.
NASA Astrophysics Data System (ADS)
Guo, Yongfeng; Shen, Yajun; Tan, Jianguo
2016-09-01
The phenomenon of stochastic resonance (SR) in a piecewise nonlinear model driven by a periodic signal and correlated noises for the cases of a multiplicative non-Gaussian noise and an additive Gaussian white noise is investigated. Applying the path integral approach, the unified colored noise approximation and the two-state model theory, the analytical expression of the signal-to-noise ratio (SNR) is derived. It is found that conventional stochastic resonance exists in this system. From numerical computations we obtain that: (i) As a function of the non-Gaussian noise intensity, the SNR is increased when the non-Gaussian noise deviation parameter q is increased. (ii) As a function of the Gaussian noise intensity, the SNR is decreased when q is increased. This demonstrates that the effect of the non-Gaussian noise on SNR is different from that of the Gaussian noise in this system. Moreover, we further discuss the effect of the correlation time of the non-Gaussian noise, cross-correlation strength, the amplitude and frequency of the periodic signal on SR.
Generating functionals and Gaussian approximations for interruptible delay reactions
NASA Astrophysics Data System (ADS)
Brett, Tobias; Galla, Tobias
2015-10-01
We develop a generating functional description of the dynamics of non-Markovian individual-based systems in which delay reactions can be terminated before completion. This generalizes previous work in which a path-integral approach was applied to dynamics in which delay reactions complete with certainty. We construct a more widely applicable theory, and from it we derive Gaussian approximations of the dynamics, valid in the limit of large, but finite, population sizes. As an application of our theory we study predator-prey models with delay dynamics due to gestation or lag periods to reach the reproductive age. In particular, we focus on the effects of delay on noise-induced cycles.
The effect of halo nuclear density on reaction cross-section for light ion collision
NASA Astrophysics Data System (ADS)
Hassan, M. A. M.; Nour El-Din, M. S. M.; Ellithi, A.; Ismail, E.; Hosny, H.
2015-08-01
In the framework of the optical limit approximation (OLA), the reaction cross-section for halo nucleus — stable nucleus collision at intermediate energy, has been studied. The projectile nuclei are taken to be one-neutron halo (1NHP) and two-neutron halo (2NHP). The calculations are carried out for Gaussian-Gaussian (GG), Gaussian-Oscillator (GO), and Gaussian-2S (G2S) densities for each considered projectile. As a target, the stable nuclei in the range 4-28 of the mass number are used. An analytic expression of the phase shift function has been derived. The zero range approximation is considered in the calculations. Also, the in-medium effect is studied. The obtained results are analyzed and compared with the geometrical reaction cross-section and the available experimental data.
Shotorban, Babak
2010-04-01
The dynamic least-squares kernel density (LSQKD) model [C. Pantano and B. Shotorban, Phys. Rev. E 76, 066705 (2007)] is used to solve the Fokker-Planck equations. In this model the probability density function (PDF) is approximated by a linear combination of basis functions with unknown parameters whose governing equations are determined by a global least-squares approximation of the PDF in the phase space. In this work basis functions are set to be Gaussian for which the mean, variance, and covariances are governed by a set of partial differential equations (PDEs) or ordinary differential equations (ODEs) depending on what phase-space variables are approximated by Gaussian functions. Three sample problems of univariate double-well potential, bivariate bistable neurodynamical system [G. Deco and D. Martí, Phys. Rev. E 75, 031913 (2007)], and bivariate Brownian particles in a nonuniform gas are studied. The LSQKD is verified for these problems as its results are compared against the results of the method of characteristics in nondiffusive cases and the stochastic particle method in diffusive cases. For the double-well potential problem it is observed that for low to moderate diffusivity the dynamic LSQKD well predicts the stationary PDF for which there is an exact solution. A similar observation is made for the bistable neurodynamical system. In both these problems least-squares approximation is made on all phase-space variables resulting in a set of ODEs with time as the independent variable for the Gaussian function parameters. In the problem of Brownian particles in a nonuniform gas, this approximation is made only for the particle velocity variable leading to a set of PDEs with time and particle position as independent variables. Solving these PDEs, a very good performance by LSQKD is observed for a wide range of diffusivities.
Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.
García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G
2017-08-01
The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Sathian, K
2018-02-01
In a recent study, Eklund et al. employed resting-state functional magnetic resonance imaging data as a surrogate for null functional magnetic resonance imaging (fMRI) datasets and posited that cluster-wise family-wise error (FWE) rate-corrected inferences made by using parametric statistical methods in fMRI studies over the past two decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; this was principally because the spatial autocorrelation functions (sACF) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggested otherwise. Here, we show that accounting for non-Gaussian signal components such as those arising from resting-state neural activity as well as physiological responses and motion artifacts in the null fMRI datasets yields first- and second-level general linear model analysis residuals with nearly uniform and Gaussian sACF. Further comparison with nonparametric permutation tests indicates that cluster-based FWE corrected inferences made with Gaussian spatial noise approximations are valid.
Adzhemyan, L Ts; Antonov, N V; Honkonen, J; Kim, T L
2005-01-01
The field theoretic renormalization group and operator-product expansion are applied to the model of a passive scalar quantity advected by a non-Gaussian velocity field with finite correlation time. The velocity is governed by the Navier-Stokes equation, subject to an external random stirring force with the correlation function proportional to delta(t- t')k(4-d-2epsilon). It is shown that the scalar field is intermittent already for small epsilon, its structure functions display anomalous scaling behavior, and the corresponding exponents can be systematically calculated as series in epsilon. The practical calculation is accomplished to order epsilon2 (two-loop approximation), including anisotropic sectors. As for the well-known Kraichnan rapid-change model, the anomalous scaling results from the existence in the model of composite fields (operators) with negative scaling dimensions, identified with the anomalous exponents. Thus the mechanism of the origin of anomalous scaling appears similar for the Gaussian model with zero correlation time and the non-Gaussian model with finite correlation time. It should be emphasized that, in contrast to Gaussian velocity ensembles with finite correlation time, the model and the perturbation theory discussed here are manifestly Galilean covariant. The relevance of these results for real passive advection and comparison with the Gaussian models and experiments are briefly discussed.
NASA Astrophysics Data System (ADS)
Sallah, M.
2014-03-01
The problem of monoenergetic radiative transfer in a finite planar stochastic atmospheric medium with polarized (vector) Rayleigh scattering is proposed. The solution is presented for an arbitrary absorption and scattering cross sections. The extinction function of the medium is assumed to be a continuous random function of position, with fluctuations about the mean taken as Gaussian distributed. The joint probability distribution function of these Gaussian random variables is used to calculate the ensemble-averaged quantities, such as reflectivity and transmissivity, for an arbitrary correlation function. A modified Gaussian probability distribution function is also used to average the solution in order to exclude the probable negative values of the optical variable. Pomraning-Eddington approximation is used, at first, to obtain the deterministic analytical solution for both the total intensity and the difference function used to describe the polarized radiation. The problem is treated with specular reflecting boundaries and angular-dependent externally incident flux upon the medium from one side and with no flux from the other side. For the sake of comparison, two different forms of the weight function, which introduced to force the boundary conditions to be fulfilled, are used. Numerical results of the average reflectivity and average transmissivity are obtained for both Gaussian and modified Gaussian probability density functions at the different degrees of polarization.
Probabilistic inference using linear Gaussian importance sampling for hybrid Bayesian networks
NASA Astrophysics Data System (ADS)
Sun, Wei; Chang, K. C.
2005-05-01
Probabilistic inference for Bayesian networks is in general NP-hard using either exact algorithms or approximate methods. However, for very complex networks, only the approximate methods such as stochastic sampling could be used to provide a solution given any time constraint. There are several simulation methods currently available. They include logic sampling (the first proposed stochastic method for Bayesian networks, the likelihood weighting algorithm) the most commonly used simulation method because of its simplicity and efficiency, the Markov blanket scoring method, and the importance sampling algorithm. In this paper, we first briefly review and compare these available simulation methods, then we propose an improved importance sampling algorithm called linear Gaussian importance sampling algorithm for general hybrid model (LGIS). LGIS is aimed for hybrid Bayesian networks consisting of both discrete and continuous random variables with arbitrary distributions. It uses linear function and Gaussian additive noise to approximate the true conditional probability distribution for continuous variable given both its parents and evidence in a Bayesian network. One of the most important features of the newly developed method is that it can adaptively learn the optimal important function from the previous samples. We test the inference performance of LGIS using a 16-node linear Gaussian model and a 6-node general hybrid model. The performance comparison with other well-known methods such as Junction tree (JT) and likelihood weighting (LW) shows that LGIS-GHM is very promising.
Kang; Ih; Kim; Kim
2000-03-01
In this study, a new prediction method is suggested for sound transmission loss (STL) of multilayered panels of infinite extent. Conventional methods such as random or field incidence approach often given significant discrepancies in predicting STL of multilayered panels when compared with the experiments. In this paper, appropriate directional distributions of incident energy to predict the STL of multilayered panels are proposed. In order to find a weighting function to represent the directional distribution of incident energy on the wall in a reverberation chamber, numerical simulations by using a ray-tracing technique are carried out. Simulation results reveal that the directional distribution can be approximately expressed by the Gaussian distribution function in terms of the angle of incidence. The Gaussian function is applied to predict the STL of various multilayered panel configurations as well as single panels. The compared results between the measurement and the prediction show good agreements, which validate the proposed Gaussian function approach.
Time-domain least-squares migration using the Gaussian beam summation method
NASA Astrophysics Data System (ADS)
Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo
2018-04-01
With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.
Time-domain least-squares migration using the Gaussian beam summation method
NASA Astrophysics Data System (ADS)
Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo
2018-07-01
With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modelling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modelling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a pre-conditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.
Inference with minimal Gibbs free energy in information field theory.
Ensslin, Torsten A; Weig, Cornelius
2010-11-01
Non-linear and non-gaussian signal inference problems are difficult to tackle. Renormalization techniques permit us to construct good estimators for the posterior signal mean within information field theory (IFT), but the approximations and assumptions made are not very obvious. Here we introduce the simple concept of minimal Gibbs free energy to IFT, and show that previous renormalization results emerge naturally. They can be understood as being the gaussian approximation to the full posterior probability, which has maximal cross information with it. We derive optimized estimators for three applications, to illustrate the usage of the framework: (i) reconstruction of a log-normal signal from poissonian data with background counts and point spread function, as it is needed for gamma ray astronomy and for cosmography using photometric galaxy redshifts, (ii) inference of a gaussian signal with unknown spectrum, and (iii) inference of a poissonian log-normal signal with unknown spectrum, the combination of (i) and (ii). Finally we explain how gaussian knowledge states constructed by the minimal Gibbs free energy principle at different temperatures can be combined into a more accurate surrogate of the non-gaussian posterior.
Non-Gaussian noise-weakened stability in a foraging colony system with time delay
NASA Astrophysics Data System (ADS)
Dong, Xiaohui; Zeng, Chunhua; Yang, Fengzao; Guan, Lin; Xie, Qingshuang; Duan, Weilong
2018-02-01
In this paper, the dynamical properties in a foraging colony system with time delay and non-Gaussian noise were investigated. Using delay Fokker-Planck approach, the stationary probability distribution (SPD), the associated relaxation time (ART) and normalization correlation function (NCF) are obtained, respectively. The results show that: (i) the time delay and non-Gaussian noise can induce transition from a single peak to double peaks in the SPD, i.e., a type of bistability occurring in a foraging colony system where time delay and non-Gaussian noise not only cause transitions between stable states, but also construct the states themselves. Numerical simulations are presented and are in good agreement with the approximate theoretical results; (ii) there exists a maximum in the ART as a function of the noise intensity, this maximum for ART is identified as the characteristic of the non-Gaussian noise-weakened stability of the foraging colonies in the steady state; (iii) the ART as a function of the noise correlation time exhibits a maximum and a minimum, where the minimum for ART is identified as the signature of the non-Gaussian noise-enhanced stability of the foraging colonies; and (iv) the time delay can enhance the stability of the foraging colonies in the steady state, while the departure from Gaussian noise can weaken it, namely, the time delay and departure from Gaussian noise play opposite roles in ART or NCF.
Additivity of nonsimultaneous masking for short Gaussian-shaped sinusoids.
Laback, Bernhard; Balazs, Peter; Necciari, Thibaud; Savel, Sophie; Ystad, Solvi; Meunier, Sabine; Kronland-Martinet, Richard
2011-02-01
The additivity of nonsimultaneous masking was studied using Gaussian-shaped tone pulses (referred to as Gaussians) as masker and target stimuli. Combinations of up to four temporally separated Gaussian maskers with an equivalent rectangular bandwidth of 600 Hz and an equivalent rectangular duration of 1.7 ms were tested. Each masker was level-adjusted to produce approximately 8 dB of masking. Excess masking (exceeding linear additivity) was generally stronger than reported in the literature for longer maskers and comparable target levels. A model incorporating a compressive input/output function, followed by a linear summation stage, underestimated excess masking when using an input/output function derived from literature data for longer maskers and comparable target levels. The data could be predicted with a more compressive input/output function. Stronger compression may be explained by assuming that the Gaussian stimuli were too short to evoke the medial olivocochlear reflex (MOCR), whereas for longer maskers tested previously the MOCR caused reduced compression. Overall, the interpretation of the data suggests strong basilar membrane compression for very short stimuli.
Two-time correlation function of an open quantum system in contact with a Gaussian reservoir
NASA Astrophysics Data System (ADS)
Ban, Masashi; Kitajima, Sachiko; Shibata, Fumiaki
2018-05-01
An exact formula of a two-time correlation function is derived for an open quantum system which interacts with a Gaussian thermal reservoir. It is provided in terms of functional derivative with respect to fictitious fields. A perturbative expansion and its diagrammatic representation are developed, where the small expansion parameter is related to a correlation time of the Gaussian thermal reservoir. The two-time correlation function of the lowest order is equivalent to that calculated by means of the quantum regression theorem. The result clearly shows that the violation of the quantum regression theorem is caused by a finiteness of the reservoir correlation time. By making use of an exactly solvable model consisting of a two-level system and a set of harmonic oscillators, it is shown that the two-time correlation function up to the first order is a good approximation to the exact one.
Multidimensional Hermite-Gaussian quadrature formulae and their application to nonlinear estimation
NASA Technical Reports Server (NTRS)
Mcreynolds, S. R.
1975-01-01
A simplified technique is proposed for calculating multidimensional Hermite-Gaussian quadratures that involves taking the square root of a matrix by the Cholesky algorithm rather than computation of the eigenvectors of the matrix. Ways of reducing the dimension, number, and order of the quadratures are set forth. If the function f(x) under the integral sign is not well approximated by a low-order algebraic expression, the order of the quadrature may be reduced by factoring f(x) into an expression that is nearly algebraic and one that is Gaussian.
Leading non-Gaussian corrections for diffusion orientation distribution function.
Jensen, Jens H; Helpern, Joseph A; Tabesh, Ali
2014-02-01
An analytical representation of the leading non-Gaussian corrections for a class of diffusion orientation distribution functions (dODFs) is presented. This formula is constructed from the diffusion and diffusional kurtosis tensors, both of which may be estimated with diffusional kurtosis imaging (DKI). By incorporating model-independent non-Gaussian diffusion effects, it improves on the Gaussian approximation used in diffusion tensor imaging (DTI). This analytical representation therefore provides a natural foundation for DKI-based white matter fiber tractography, which has potential advantages over conventional DTI-based fiber tractography in generating more accurate predictions for the orientations of fiber bundles and in being able to directly resolve intra-voxel fiber crossings. The formula is illustrated with numerical simulations for a two-compartment model of fiber crossings and for human brain data. These results indicate that the inclusion of the leading non-Gaussian corrections can significantly affect fiber tractography in white matter regions, such as the centrum semiovale, where fiber crossings are common. 2013 John Wiley & Sons, Ltd.
Leading Non-Gaussian Corrections for Diffusion Orientation Distribution Function
Jensen, Jens H.; Helpern, Joseph A.; Tabesh, Ali
2014-01-01
An analytical representation of the leading non-Gaussian corrections for a class of diffusion orientation distribution functions (dODFs) is presented. This formula is constructed out of the diffusion and diffusional kurtosis tensors, both of which may be estimated with diffusional kurtosis imaging (DKI). By incorporating model-independent non-Gaussian diffusion effects, it improves upon the Gaussian approximation used in diffusion tensor imaging (DTI). This analytical representation therefore provides a natural foundation for DKI-based white matter fiber tractography, which has potential advantages over conventional DTI-based fiber tractography in generating more accurate predictions for the orientations of fiber bundles and in being able to directly resolve intra-voxel fiber crossings. The formula is illustrated with numerical simulations for a two-compartment model of fiber crossings and for human brain data. These results indicate that the inclusion of the leading non-Gaussian corrections can significantly affect fiber tractography in white matter regions, such as the centrum semiovale, where fiber crossings are common. PMID:24738143
NASA Astrophysics Data System (ADS)
Han, Qun; Xu, Wei; Sun, Jian-Qiao
2016-09-01
The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.
Exact exchange-correlation potentials of singlet two-electron systems
NASA Astrophysics Data System (ADS)
Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.
2017-10-01
We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.
Čársky, Petr; Čurík, Roman; Varga, Štefan
2012-03-21
The objective of this paper is to show that the density fitting (resolution of the identity approximation) can also be applied to Coulomb integrals of the type (k(1)(1)k(2)(1)|g(1)(2)g(2)(2)), where k and g symbols refer to plane-wave functions and gaussians, respectively. We have shown how to achieve the accuracy of these integrals that is needed in wave-function MO and density functional theory-type calculations using mixed Gaussian and plane-wave basis sets. The crucial issues for achieving such a high accuracy are application of constraints for conservation of the number electrons and components of the dipole moment, optimization of the auxiliary basis set, and elimination of round-off errors in the matrix inversion. © 2012 American Institute of Physics
Schearer, Eric M.; Liao, Yu-Wei; Perreault, Eric J.; Tresch, Matthew C.; Memberg, William D.; Kirsch, Robert F.; Lynch, Kevin M.
2016-01-01
We present a method to identify the dynamics of a human arm controlled by an implanted functional electrical stimulation neuroprosthesis. The method uses Gaussian process regression to predict shoulder and elbow torques given the shoulder and elbow joint positions and velocities and the electrical stimulation inputs to muscles. We compare the accuracy of torque predictions of nonparametric, semiparametric, and parametric model types. The most accurate of the three model types is a semiparametric Gaussian process model that combines the flexibility of a black box function approximator with the generalization power of a parameterized model. The semiparametric model predicted torques during stimulation of multiple muscles with errors less than 20% of the total muscle torque and passive torque needed to drive the arm. The identified model allows us to define an arbitrary reaching trajectory and approximately determine the muscle stimulations required to drive the arm along that trajectory. PMID:26955041
Modular design and implementation of field-programmable-gate-array-based Gaussian noise generator
NASA Astrophysics Data System (ADS)
Li, Yuan-Ping; Lee, Ta-Sung; Hwang, Jeng-Kuang
2016-05-01
The modular design of a Gaussian noise generator (GNG) based on field-programmable gate array (FPGA) technology was studied. A new range reduction architecture was included in a series of elementary function evaluation modules and was integrated into the GNG system. The approximation and quantisation errors for the square root module with a first polynomial approximation were high; therefore, we used the central limit theorem (CLT) to improve the noise quality. This resulted in an output rate of one sample per clock cycle. We subsequently applied Newton's method for the square root module, thus eliminating the need for the use of the CLT because applying the CLT resulted in an output rate of two samples per clock cycle (>200 million samples per second). Two statistical tests confirmed that our GNG is of high quality. Furthermore, the range reduction, which is used to solve a limited interval of the function approximation algorithms of the System Generator platform using Xilinx FPGAs, appeared to have a higher numerical accuracy, was operated at >350 MHz, and can be suitably applied for any function evaluation.
Rao-Blackwellization for Adaptive Gaussian Sum Nonlinear Model Propagation
NASA Technical Reports Server (NTRS)
Semper, Sean R.; Crassidis, John L.; George, Jemin; Mukherjee, Siddharth; Singla, Puneet
2015-01-01
When dealing with imperfect data and general models of dynamic systems, the best estimate is always sought in the presence of uncertainty or unknown parameters. In many cases, as the first attempt, the Extended Kalman filter (EKF) provides sufficient solutions to handling issues arising from nonlinear and non-Gaussian estimation problems. But these issues may lead unacceptable performance and even divergence. In order to accurately capture the nonlinearities of most real-world dynamic systems, advanced filtering methods have been created to reduce filter divergence while enhancing performance. Approaches, such as Gaussian sum filtering, grid based Bayesian methods and particle filters are well-known examples of advanced methods used to represent and recursively reproduce an approximation to the state probability density function (pdf). Some of these filtering methods were conceptually developed years before their widespread uses were realized. Advanced nonlinear filtering methods currently benefit from the computing advancements in computational speeds, memory, and parallel processing. Grid based methods, multiple-model approaches and Gaussian sum filtering are numerical solutions that take advantage of different state coordinates or multiple-model methods that reduced the amount of approximations used. Choosing an efficient grid is very difficult for multi-dimensional state spaces, and oftentimes expensive computations must be done at each point. For the original Gaussian sum filter, a weighted sum of Gaussian density functions approximates the pdf but suffers at the update step for the individual component weight selections. In order to improve upon the original Gaussian sum filter, Ref. [2] introduces a weight update approach at the filter propagation stage instead of the measurement update stage. This weight update is performed by minimizing the integral square difference between the true forecast pdf and its Gaussian sum approximation. By adaptively updating each component weight during the nonlinear propagation stage an approximation of the true pdf can be successfully reconstructed. Particle filtering (PF) methods have gained popularity recently for solving nonlinear estimation problems due to their straightforward approach and the processing capabilities mentioned above. The basic concept behind PF is to represent any pdf as a set of random samples. As the number of samples increases, they will theoretically converge to the exact, equivalent representation of the desired pdf. When the estimated qth moment is needed, the samples are used for its construction allowing further analysis of the pdf characteristics. However, filter performance deteriorates as the dimension of the state vector increases. To overcome this problem Ref. [5] applies a marginalization technique for PF methods, decreasing complexity of the system to one linear and another nonlinear state estimation problem. The marginalization theory was originally developed by Rao and Blackwell independently. According to Ref. [6] it improves any given estimator under every convex loss function. The improvement comes from calculating a conditional expected value, often involving integrating out a supportive statistic. In other words, Rao-Blackwellization allows for smaller but separate computations to be carried out while reaching the main objective of the estimator. In the case of improving an estimator's variance, any supporting statistic can be removed and its variance determined. Next, any other information that dependents on the supporting statistic is found along with its respective variance. A new approach is developed here by utilizing the strengths of the adaptive Gaussian sum propagation in Ref. [2] and a marginalization approach used for PF methods found in Ref. [7]. In the following sections a modified filtering approach is presented based on a special state-space model within nonlinear systems to reduce the dimensionality of the optimization problem in Ref. [2]. First, the adaptive Gaussian sum propagation is explained and then the new marginalized adaptive Gaussian sum propagation is derived. Finally, an example simulation is presented.
A Gaussian-based rank approximation for subspace clustering
NASA Astrophysics Data System (ADS)
Xu, Fei; Peng, Chong; Hu, Yunhong; He, Guoping
2018-04-01
Low-rank representation (LRR) has been shown successful in seeking low-rank structures of data relationships in a union of subspaces. Generally, LRR and LRR-based variants need to solve the nuclear norm-based minimization problems. Beyond the success of such methods, it has been widely noted that the nuclear norm may not be a good rank approximation because it simply adds all singular values of a matrix together and thus large singular values may dominant the weight. This results in far from satisfactory rank approximation and may degrade the performance of lowrank models based on the nuclear norm. In this paper, we propose a novel nonconvex rank approximation based on the Gaussian distribution function, which has demanding properties to be a better rank approximation than the nuclear norm. Then a low-rank model is proposed based on the new rank approximation with application to motion segmentation. Experimental results have shown significant improvements and verified the effectiveness of our method.
Gaussian Process Interpolation for Uncertainty Estimation in Image Registration
Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William
2014-01-01
Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127
Exciton States in a Gaussian Confining Potential Well
NASA Astrophysics Data System (ADS)
Xie, Wen-Fang; Gu, Juan
2003-11-01
We consider the problem of an electron-hole pair in a Gaussian confining potential well. This problem is treated within the effective-mass approximation framework using the method of numerical matrix diagonalization. The energy levels of the low-lying states are calculated as a function of the electron-hole effective mass ratio and the size of the confining potential. The project supported by National Natural Science Foundation of China under Grant No. 10275014
Novel palmprint representations for palmprint recognition
NASA Astrophysics Data System (ADS)
Li, Hengjian; Dong, Jiwen; Li, Jinping; Wang, Lei
2015-02-01
In this paper, we propose a novel palmprint recognition algorithm. Firstly, the palmprint images are represented by the anisotropic filter. The filters are built on Gaussian functions along one direction, and on second derivative of Gaussian functions in the orthogonal direction. Also, this choice is motivated by the optimal joint spatial and frequency localization of the Gaussian kernel. Therefore,they can better approximate the edge or line of palmprint images. A palmprint image is processed with a bank of anisotropic filters at different scales and rotations for robust palmprint features extraction. Once these features are extracted, subspace analysis is then applied to the feature vectors for dimension reduction as well as class separability. Experimental results on a public palmprint database show that the accuracy could be improved by the proposed novel representations, compared with Gabor.
Polynomial approximation of non-Gaussian unitaries by counting one photon at a time
NASA Astrophysics Data System (ADS)
Arzani, Francesco; Treps, Nicolas; Ferrini, Giulia
2017-05-01
In quantum computation with continuous-variable systems, quantum advantage can only be achieved if some non-Gaussian resource is available. Yet, non-Gaussian unitary evolutions and measurements suited for computation are challenging to realize in the laboratory. We propose and analyze two methods to apply a polynomial approximation of any unitary operator diagonal in the amplitude quadrature representation, including non-Gaussian operators, to an unknown input state. Our protocols use as a primary non-Gaussian resource a single-photon counter. We use the fidelity of the transformation with the target one on Fock and coherent states to assess the quality of the approximate gate.
Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.
Dennis, Mark R; Ring, James D
2013-09-01
We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.
Time-Harmonic Gaussian Beams: Exact Solutions of the Helmhotz Equation in Free Space
NASA Astrophysics Data System (ADS)
Kiselev, A. P.
2017-12-01
An exact solution of the Helmholtz equation u xx + u yy + u zz + k 2 u = 0 is presented, which describes propagation of monochromatic waves in the free space. The solution has the form of a superposition of plane waves with a specific weight function dependent on a certain free parameter a. If ka→∞, the solution is localized in the Gaussian manner in a vicinity of a certain straight line and asymptotically coincides with the famous approximate solution known as the fundamental mode of a paraxial Gaussian beam. The asymptotics of the aforementioned exact solution does not include a backward wave.
Ionospheric scintillation by a random phase screen Spectral approach
NASA Technical Reports Server (NTRS)
Rufenach, C. L.
1975-01-01
The theory developed by Briggs and Parkin, given in terms of an anisotropic gaussian correlation function, is extended to a spectral description specified as a continuous function of spatial wavenumber with an intrinsic outer scale as would be expected from a turbulent medium. Two spectral forms were selected for comparison: (1) a power-law variation in wavenumber with a constant three-dimensional index equal to 4, and (2) Gaussian spectral variation. The results are applied to the F-region ionosphere with an outer-scale wavenumber of 2 per km (approximately equal to the Fresnel wavenumber) for the power-law variation, and 0.2 per km for the Gaussian spectral variation. The power-law form with a small outer-scale wavenumber is consistent with recent F-region in-situ measurements, whereas the gaussian form is mathematically convenient and, hence, mostly used in the previous developments before the recent in-situ measurements. Some comparison with microwave scintillation in equatorial areas is made.
Gaussian Finite Element Method for Description of Underwater Sound Diffraction
NASA Astrophysics Data System (ADS)
Huang, Dehua
A new method for solving diffraction problems is presented in this dissertation. It is based on the use of Gaussian diffraction theory. The Rayleigh integral is used to prove the core of Gaussian theory: the diffraction field of a Gaussian is described by a Gaussian function. The parabolic approximation used by previous authors is not necessary to this proof. Comparison of the Gaussian beam expansion and Fourier series expansion reveals that the Gaussian expansion is a more general and more powerful technique. The method combines the Gaussian beam superposition technique (Wen and Breazeale, J. Acoust. Soc. Am. 83, 1752-1756 (1988)) and the Finite element solution to the parabolic equation (Huang, J. Acoust. Soc. Am. 84, 1405-1413 (1988)). Computer modeling shows that the new method is capable of solving for the sound field even in an inhomogeneous medium, whether the source is a Gaussian source or a distributed source. It can be used for horizontally layered interfaces or irregular interfaces. Calculated results are compared with experimental results by use of a recently designed and improved Gaussian transducer in a laboratory water tank. In addition, the power of the Gaussian Finite element method is demonstrated by comparing numerical results with experimental results from use of a piston transducer in a water tank.
NASA Astrophysics Data System (ADS)
Tang, Bin; Jiang, ShengBao; Jiang, Chun; Zhu, Haibin
2014-07-01
A hollow sinh-Gaussian beam (HsG) is an appropriate model to describe the dark-hollow beam. Based on Collins integral formula and the fact that a hard-edged-aperture function can be expanded into a finite sum of complex Gaussian functions, the propagation properties of a HsG beam passing through fractional Fourier transform (FRFT) optical systems with and without apertures have been studied in detail by some typical numerical examples. The results obtained using the approximate analytical formula are in good agreement with those obtained using numerical integral calculation. Further, the studies indicate that the normalized intensity distribution of the HsG beam in FRFT plane is closely related with not only the fractional order but also the beam order and the truncation parameter. The FRFT optical systems provide a convenient way for laser beam shaping.
A sharp interpolation between the Hölder and Gaussian Young inequalities
NASA Astrophysics Data System (ADS)
da Pelo, Paolo; Lanconelli, Alberto; Stan, Aurel I.
2016-03-01
We prove a very general sharp inequality of the Hölder-Young-type for functions defined on infinite dimensional Gaussian spaces. We begin by considering a family of commutative products for functions which interpolates between the pointwise and Wick products; this family arises naturally in the context of stochastic differential equations, through Wong-Zakai-type approximation theorems, and plays a key role in some generalizations of the Beckner-type Poincaré inequality. We then obtain a crucial integral representation for that family of products which is employed, together with a generalization of the classic Young inequality due to Lieb, to prove our main theorem. We stress that our main inequality contains as particular cases the Hölder inequality and Nelson’s hyper-contractive estimate, thus providing a unified framework for two fundamental results of the Gaussian analysis.
Detailed noise statistics for an optically preamplified direct detection receiver
NASA Astrophysics Data System (ADS)
Danielsen, Soeren Lykke; Mikkelsen, Benny; Durhuus, Terji; Joergensen, Carsten; Stubkjaer, Kristian E.
We describe the exact statistics of an optically preamplified direct detection receiver by means of the moment generating function. The theory allows an arbitrary shaped electrical filter in the receiver circuit. The moment generating function (MGF) allows for a precise calculation of the error rate by using the inverse Fast Fourier transform (FFT). The exact results are compared with the usual Gaussian approximation (GA), the saddlepoint approximation (SAP) and the modified Chernoff bound (MCB). This comparison shows that the noise is not Gaussian distributed for all values of the optical amplifier gain. In the region from 20-30 dB gain, calculations shows that the GA underestimates the receiver sensitivity while the SAP is very close to the results of our exact model. Using the MGF derived in the article we then find the optimal bandwidth of the electrical filter in the receiver circuit and calculate the sensitivity degradation due to inter symbol interference (ISI).
Quadriphase DS-CDMA wireless communication systems employing the generalized detector
NASA Astrophysics Data System (ADS)
Tuzlukov, Vyacheslav
2012-05-01
Probability of bit-error Per performance of asynchronous direct-sequence code-division multiple-access (DS-CDMA) wireless communication systems employing the generalized detector (GD) constructed based on the generalized approach to signal processing in noise is analyzed. The effects of pulse shaping, quadriphase or direct sequence quadriphase shift keying (DS-QPSK) spreading, aperiodic spreading sequences are considered in DS-CDMA based on GD and compared with the coherent Neyman-Pearson receiver. An exact Per expression and several approximations: one using the characterristic function method, a simplified expression for the improved Gaussian approximation (IGA) and the simplified improved Gaussian approximation are derived. Under conditions typically satisfied in practice and even with a small number of interferers, the standard Gaussian approximation (SGA) for the multiple-access interference component of the GD statistic and Per performance is shown to be accurate. Moreover, the IGA is shown to reduce to the SGA for pulses with zero excess bandwidth. Second, the GD Per performance of quadriphase DS-CDMA is shown to be superior to that of bi-phase DS-CDMA. Numerical examples by Monte Carlo simulation are presented to illustrate the GD Per performance for square-root raised-cosine pulses and spreading factors of moderate to large values. Also, a superiority of GD employment in CDMA systems over the Neyman-Pearson receiver is demonstrated
Short-term prediction of chaotic time series by using RBF network with regression weights.
Rojas, I; Gonzalez, J; Cañas, A; Diaz, A F; Rojas, F J; Rodriguez, M
2000-10-01
We propose a framework for constructing and training a radial basis function (RBF) neural network. The structure of the gaussian functions is modified using a pseudo-gaussian function (PG) in which two scaling parameters sigma are introduced, which eliminates the symmetry restriction and provides the neurons in the hidden layer with greater flexibility with respect to function approximation. We propose a modified PG-BF (pseudo-gaussian basis function) network in which the regression weights are used to replace the constant weights in the output layer. For this purpose, a sequential learning algorithm is presented to adapt the structure of the network, in which it is possible to create a new hidden unit and also to detect and remove inactive units. A salient feature of the network systems is that the method used for calculating the overall output is the weighted average of the output associated with each receptive field. The superior performance of the proposed PG-BF system over the standard RBF are illustrated using the problem of short-term prediction of chaotic time series.
NASA Technical Reports Server (NTRS)
Mashiku, Alinda; Garrison, James L.; Carpenter, J. Russell
2012-01-01
The tracking of space objects requires frequent and accurate monitoring for collision avoidance. As even collision events with very low probability are important, accurate prediction of collisions require the representation of the full probability density function (PDF) of the random orbit state. Through representing the full PDF of the orbit state for orbit maintenance and collision avoidance, we can take advantage of the statistical information present in the heavy tailed distributions, more accurately representing the orbit states with low probability. The classical methods of orbit determination (i.e. Kalman Filter and its derivatives) provide state estimates based on only the second moments of the state and measurement errors that are captured by assuming a Gaussian distribution. Although the measurement errors can be accurately assumed to have a Gaussian distribution, errors with a non-Gaussian distribution could arise during propagation between observations. Moreover, unmodeled dynamics in the orbit model could introduce non-Gaussian errors into the process noise. A Particle Filter (PF) is proposed as a nonlinear filtering technique that is capable of propagating and estimating a more complete representation of the state distribution as an accurate approximation of a full PDF. The PF uses Monte Carlo runs to generate particles that approximate the full PDF representation. The PF is applied in the estimation and propagation of a highly eccentric orbit and the results are compared to the Extended Kalman Filter and Splitting Gaussian Mixture algorithms to demonstrate its proficiency.
Generalized elimination of the global translation from explicitly correlated Gaussian functions
NASA Astrophysics Data System (ADS)
Muolo, Andrea; Mátyus, Edit; Reiher, Markus
2018-02-01
This paper presents the multi-channel generalization of the center-of-mass kinetic energy elimination approach [B. Simmen et al., Mol. Phys. 111, 2086 (2013)] when the Schrödinger equation is solved variationally with explicitly correlated Gaussian functions. The approach has immediate relevance in many-particle systems which are handled without the Born-Oppenheimer approximation and can be employed also for Dirac-type Hamiltonians. The practical realization and numerical properties of solving the Schrödinger equation in laboratory-frame Cartesian coordinates are demonstrated for the ground rovibronic state of the H2+={p+,p+,e- } ion and the H2 = {p+, p+, e-, e-} molecule.
Generalized elimination of the global translation from explicitly correlated Gaussian functions.
Muolo, Andrea; Mátyus, Edit; Reiher, Markus
2018-02-28
This paper presents the multi-channel generalization of the center-of-mass kinetic energy elimination approach [B. Simmen et al., Mol. Phys. 111, 2086 (2013)] when the Schrödinger equation is solved variationally with explicitly correlated Gaussian functions. The approach has immediate relevance in many-particle systems which are handled without the Born-Oppenheimer approximation and can be employed also for Dirac-type Hamiltonians. The practical realization and numerical properties of solving the Schrödinger equation in laboratory-frame Cartesian coordinates are demonstrated for the ground rovibronic state of the H 2 + ={p + ,p + ,e - } ion and the H 2 = {p + , p + , e - , e - } molecule.
Eulerian Mapping Closure Approach for Probability Density Function of Concentration in Shear Flows
NASA Technical Reports Server (NTRS)
He, Guowei; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The Eulerian mapping closure approach is developed for uncertainty propagation in computational fluid mechanics. The approach is used to study the Probability Density Function (PDF) for the concentration of species advected by a random shear flow. An analytical argument shows that fluctuation of the concentration field at one point in space is non-Gaussian and exhibits stretched exponential form. An Eulerian mapping approach provides an appropriate approximation to both convection and diffusion terms and leads to a closed mapping equation. The results obtained describe the evolution of the initial Gaussian field, which is in agreement with direct numerical simulations.
NASA Astrophysics Data System (ADS)
Gaztanaga, Enrique; Fosalba, Pablo
1998-12-01
In Paper I of this series, we introduced the spherical collapse (SC) approximation in Lagrangian space as a way of estimating the cumulants xi_J of density fluctuations in cosmological perturbation theory (PT). Within this approximation, the dynamics is decoupled from the statistics of the initial conditions, so we are able to present here the cumulants for generic non-Gaussian initial conditions, which can be estimated to arbitrary order including the smoothing effects. The SC model turns out to recover the exact leading-order non-linear contributions up to terms involving non-local integrals of the J-point functions. We argue that for the hierarchical ratios S_J, these non-local terms are subdominant and tend to compensate each other. The resulting predictions show a non-trivial time evolution that can be used to discriminate between models of structure formation. We compare these analytic results with non-Gaussian N-body simulations, which turn out to be in very good agreement up to scales where sigma<~1.
Generation of dark hollow beams by using a fractional radial Hilbert transform system
NASA Astrophysics Data System (ADS)
Xie, Qiansen; Zhao, Daomu
2007-07-01
The radial Hilbert transform has been extend to the fractional field, which could be called the fractional radial Hilbert transform (FRHT). Using edge-enhancement characteristics of this transform, we convert a Gaussian light beam into a variety of dark hollow beams (DHBs). Based on the fact that a hard-edged aperture can be expanded approximately as a finite sum of complex Gaussian functions, the analytical expression of a Gaussian beam passing through a FRHT system has been derived. As a numerical example, the properties of the DHBs with different fractional orders are illustrated graphically. The calculation results obtained by use of the analytical method and the integral method are also compared.
NASA Astrophysics Data System (ADS)
Valkunde, Amol T.; Vhanmore, Bandopant D.; Urunkar, Trupti U.; Gavade, Kusum M.; Patil, Sandip D.; Takale, Mansing V.
2018-05-01
In this work, nonlinear aspects of a high intensity q-Gaussian laser beam propagating in collisionless plasma having upward density ramp of exponential profiles is studied. We have employed the nonlinearity in dielectric function of plasma by considering ponderomotive nonlinearity. The differential equation governing the dimensionless beam width parameter is achieved by using Wentzel-Kramers-Brillouin (WKB) and paraxial approximations and solved it numerically by using Runge-Kutta fourth order method. Effect of exponential density ramp profile on self-focusing of q-Gaussian laser beam for various values of q is systematically carried out and compared with results Gaussian laser beam propagating in collisionless plasma having uniform density. It is found that exponential plasma density ramp causes the laser beam to become more focused and gives reasonably interesting results.
Dispersion in Rectangular Networks: Effective Diffusivity and Large-Deviation Rate Function
NASA Astrophysics Data System (ADS)
Tzella, Alexandra; Vanneste, Jacques
2016-09-01
The dispersion of a diffusive scalar in a fluid flowing through a network has many applications including to biological flows, porous media, water supply, and urban pollution. Motivated by this, we develop a large-deviation theory that predicts the evolution of the concentration of a scalar released in a rectangular network in the limit of large time t ≫1 . This theory provides an approximation for the concentration that remains valid for large distances from the center of mass, specifically for distances up to O (t ) and thus much beyond the O (t1 /2) range where a standard Gaussian approximation holds. A byproduct of the approach is a closed-form expression for the effective diffusivity tensor that governs this Gaussian approximation. Monte Carlo simulations of Brownian particles confirm the large-deviation results and demonstrate their effectiveness in describing the scalar distribution when t is only moderately large.
Strength functions, entropies, and duality in weakly to strongly interacting fermionic systems.
Angom, D; Ghosh, S; Kota, V K B
2004-01-01
We revisit statistical wave function properties of finite systems of interacting fermions in the light of strength functions and their participation ratio and information entropy. For weakly interacting fermions in a mean-field with random two-body interactions of increasing strength lambda, the strength functions F(k) (E) are well known to change, in the regime where level fluctuations follow Wigner's surmise, from Breit-Wigner to Gaussian form. We propose an ansatz for the function describing this transition which we use to investigate the participation ratio xi(2) and the information entropy S(info) during this crossover, thereby extending the known behavior valid in the Gaussian domain into much of the Breit-Wigner domain. Our method also allows us to derive the scaling law lambda(d) approximately 1/sqrt[m] ( m is number of fermions) for the duality point lambda= lambda(d), where F(k) (E), xi(2), and S(info) in both the weak ( lambda=0 ) and strong mixing ( lambda= infinity ) basis coincide. As an application, the ansatz function for strength functions is used in describing the Breit-Wigner to Gaussian transition seen in neutral atoms CeI to SmI with valence electrons changing from 4 to 8.
Feinauer, Christoph; Procaccini, Andrea; Zecchina, Riccardo; Weigt, Martin; Pagnani, Andrea
2014-01-01
In the course of evolution, proteins show a remarkable conservation of their three-dimensional structure and their biological function, leading to strong evolutionary constraints on the sequence variability between homologous proteins. Our method aims at extracting such constraints from rapidly accumulating sequence data, and thereby at inferring protein structure and function from sequence information alone. Recently, global statistical inference methods (e.g. direct-coupling analysis, sparse inverse covariance estimation) have achieved a breakthrough towards this aim, and their predictions have been successfully implemented into tertiary and quaternary protein structure prediction methods. However, due to the discrete nature of the underlying variable (amino-acids), exact inference requires exponential time in the protein length, and efficient approximations are needed for practical applicability. Here we propose a very efficient multivariate Gaussian modeling approach as a variant of direct-coupling analysis: the discrete amino-acid variables are replaced by continuous Gaussian random variables. The resulting statistical inference problem is efficiently and exactly solvable. We show that the quality of inference is comparable or superior to the one achieved by mean-field approximations to inference with discrete variables, as done by direct-coupling analysis. This is true for (i) the prediction of residue-residue contacts in proteins, and (ii) the identification of protein-protein interaction partner in bacterial signal transduction. An implementation of our multivariate Gaussian approach is available at the website http://areeweb.polito.it/ricerca/cmp/code. PMID:24663061
NASA Astrophysics Data System (ADS)
Chang, Anteng; Li, Huajun; Wang, Shuqing; Du, Junfeng
2017-08-01
Both wave-frequency (WF) and low-frequency (LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system. This paper conducts a comprehensive investigation of applicable probability density functions (PDFs) of mooring tension amplitudes used to assess mooring-line fatigue damage via the spectral method. Short-term statistical characteristics of mooring-line tension responses are firstly investigated, in which the discrepancy arising from Gaussian approximation is revealed by comparing kurtosis and skewness coefficients. Several distribution functions based on present analytical spectral methods are selected to express the statistical distribution of the mooring-line tension amplitudes. Results indicate that the Gamma-type distribution and a linear combination of Dirlik and Tovo-Benasciutti formulas are suitable for separate WF and LF mooring tension components. A novel parametric method based on nonlinear transformations and stochastic optimization is then proposed to increase the effectiveness of mooring-line fatigue assessment due to non-Gaussian bimodal tension responses. Using time domain simulation as a benchmark, its accuracy is further validated using a numerical case study of a moored semi-submersible platform.
Extinction time of a stochastic predator-prey model by the generalized cell mapping method
NASA Astrophysics Data System (ADS)
Han, Qun; Xu, Wei; Hu, Bing; Huang, Dongmei; Sun, Jian-Qiao
2018-03-01
The stochastic response and extinction time of a predator-prey model with Gaussian white noise excitations are studied by the generalized cell mapping (GCM) method based on the short-time Gaussian approximation (STGA). The methods for stochastic response probability density functions (PDFs) and extinction time statistics are developed. The Taylor expansion is used to deal with non-polynomial nonlinear terms of the model for deriving the moment equations with Gaussian closure, which are needed for the STGA in order to compute the one-step transition probabilities. The work is validated with direct Monte Carlo simulations. We have presented the transient responses showing the evolution from a Gaussian initial distribution to a non-Gaussian steady-state one. The effects of the model parameter and noise intensities on the steady-state PDFs are discussed. It is also found that the effects of noise intensities on the extinction time statistics are opposite to the effects on the limit probability distributions of the survival species.
Design of a Linear Gaussian Control Law for an Adaptive Optics System
1990-12-01
3-7 3.4. X-Axis Slice of Actuator :#49 Influence Function .. .. .... ...... ...... 3-9 3.5. Approximate Influence Function for Actuator #49... influence function is a mathematical representation of the effect of a single ac- tuator voltage on the local mirror shape. Usually, the influence ... function is nonzero only in the vicinity of the actuator: the influence function of an actualor has a limited spa- tial domain. Several factors affect the
Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation
NASA Astrophysics Data System (ADS)
Milovanovic, Gradimir V.
2001-01-01
Quadrature formulas with multiple nodes, power orthogonality, and some applications of such quadratures to moment-preserving approximation by defective splines are considered. An account on power orthogonality (s- and [sigma]-orthogonal polynomials) and generalized Gaussian quadratures with multiple nodes, including stable algorithms for numerical construction of the corresponding polynomials and Cotes numbers, are given. In particular, the important case of Chebyshev weight is analyzed. Finally, some applications in moment-preserving approximation of functions by defective splines are discussed.
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Lacey, Simon; Sathian, K
2018-02-01
In a recent study Eklund et al. have shown that cluster-wise family-wise error (FWE) rate-corrected inferences made in parametric statistical method-based functional magnetic resonance imaging (fMRI) studies over the past couple of decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; principally because the spatial autocorrelation functions (sACFs) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggest otherwise. Hence, the residuals from general linear model (GLM)-based fMRI activation estimates in these studies may not have possessed a homogenously Gaussian sACF. Here we propose a method based on the assumption that heterogeneity and non-Gaussianity of the sACF of the first-level GLM analysis residuals, as well as temporal autocorrelations in the first-level voxel residual time-series, are caused by unmodeled MRI signal from neuronal and physiological processes as well as motion and other artifacts, which can be approximated by appropriate decompositions of the first-level residuals with principal component analysis (PCA), and removed. We show that application of this method yields GLM residuals with significantly reduced spatial correlation, nearly Gaussian sACF and uniform spatial smoothness across the brain, thereby allowing valid cluster-based FWE-corrected inferences based on assumption of Gaussian spatial noise. We further show that application of this method renders the voxel time-series of first-level GLM residuals independent, and identically distributed across time (which is a necessary condition for appropriate voxel-level GLM inference), without having to fit ad hoc stochastic colored noise models. Furthermore, the detection power of individual subject brain activation analysis is enhanced. This method will be especially useful for case studies, which rely on first-level GLM analysis inferences.
Gaussian functional regression for output prediction: Model assimilation and experimental design
NASA Astrophysics Data System (ADS)
Nguyen, N. C.; Peraire, J.
2016-03-01
In this paper, we introduce a Gaussian functional regression (GFR) technique that integrates multi-fidelity models with model reduction to efficiently predict the input-output relationship of a high-fidelity model. The GFR method combines the high-fidelity model with a low-fidelity model to provide an estimate of the output of the high-fidelity model in the form of a posterior distribution that can characterize uncertainty in the prediction. A reduced basis approximation is constructed upon the low-fidelity model and incorporated into the GFR method to yield an inexpensive posterior distribution of the output estimate. As this posterior distribution depends crucially on a set of training inputs at which the high-fidelity models are simulated, we develop a greedy sampling algorithm to select the training inputs. Our approach results in an output prediction model that inherits the fidelity of the high-fidelity model and has the computational complexity of the reduced basis approximation. Numerical results are presented to demonstrate the proposed approach.
Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method.
Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko
2010-06-28
We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.
A 2D Gaussian-Beam-Based Method for Modeling the Dichroic Surfaces of Quasi-Optical Systems
NASA Astrophysics Data System (ADS)
Elis, Kevin; Chabory, Alexandre; Sokoloff, Jérôme; Bolioli, Sylvain
2016-08-01
In this article, we propose an approach in the spectral domain to treat the interaction of a field with a dichroic surface in two dimensions. For a Gaussian beam illumination of the surface, the reflected and transmitted fields are approximated by one reflected and one transmitted Gaussian beams. Their characteristics are determined by means of a matching in the spectral domain, which requires a second-order approximation of the dichroic surface response when excited by plane waves. This approximation is of the same order as the one used in Gaussian beam shooting algorithm to model curved interfaces associated with lenses, reflector, etc. The method uses general analytical formulations for the GBs that depend either on a paraxial or far-field approximation. Numerical experiments are led to test the efficiency of the method in terms of accuracy and computation time. They include a parametric study and a case for which the illumination is provided by a horn antenna. For the latter, the incident field is firstly expressed as a sum of Gaussian beams by means of Gabor frames.
Balance of baryon number in the quark coalescence model
NASA Astrophysics Data System (ADS)
Bialas, A.; Rafelski, J.
2006-02-01
The charge and baryon balance functions are studied in the coalescence hadronization mechanism of quark-gluon plasma. Assuming that in the plasma phase the qqbar pairs form uncorrelated clusters whose decay is also uncorrelated, one can understand the observed small width of the charge balance function in the Gaussian approximation. The coalescence model predicts even smaller width of the baryon-antibaryon balance function: σBBbar /σ+ - =√{ 2 / 3 }.
Monte Carlo sampling of Wigner functions and surface hopping quantum dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kube, Susanna; Lasser, Caroline; Weber, Marcus
2009-04-01
The article addresses the achievable accuracy for a Monte Carlo sampling of Wigner functions in combination with a surface hopping algorithm for non-adiabatic quantum dynamics. The approximation of Wigner functions is realized by an adaption of the Metropolis algorithm for real-valued functions with disconnected support. The integration, which is necessary for computing values of the Wigner function, uses importance sampling with a Gaussian weight function. The numerical experiments agree with theoretical considerations and show an error of 2-3%.
Gaussian Decomposition of Laser Altimeter Waveforms
NASA Technical Reports Server (NTRS)
Hofton, Michelle A.; Minster, J. Bernard; Blair, J. Bryan
1999-01-01
We develop a method to decompose a laser altimeter return waveform into its Gaussian components assuming that the position of each Gaussian within the waveform can be used to calculate the mean elevation of a specific reflecting surface within the laser footprint. We estimate the number of Gaussian components from the number of inflection points of a smoothed copy of the laser waveform, and obtain initial estimates of the Gaussian half-widths and positions from the positions of its consecutive inflection points. Initial amplitude estimates are obtained using a non-negative least-squares method. To reduce the likelihood of fitting the background noise within the waveform and to minimize the number of Gaussians needed in the approximation, we rank the "importance" of each Gaussian in the decomposition using its initial half-width and amplitude estimates. The initial parameter estimates of all Gaussians ranked "important" are optimized using the Levenburg-Marquardt method. If the sum of the Gaussians does not approximate the return waveform to a prescribed accuracy, then additional Gaussians are included in the optimization procedure. The Gaussian decomposition method is demonstrated on data collected by the airborne Laser Vegetation Imaging Sensor (LVIS) in October 1997 over the Sequoia National Forest, California.
Recent HBT results in Au+Au and p+p collisions from PHENIX
NASA Astrophysics Data System (ADS)
PHENIX Collaboration; Glenn, Andrew; PHENIX Collaboration
2009-11-01
We present Hanbury-Brown Twiss measurements from the PHENIX experiment at RHIC for final results for charged kaon pairs from s=200 GeV Au+Au collisions and preliminary results for charged pion pairs from s=200 GeVp+p collisions. We find that for kaon pairs from Au+Au, each traditional 3D Gaussian radius shows approximately the same linear increase as a function of Npart1/3. An imaging analysis reveals a significant non-Gaussian tail for r≳10 fm. The presence of a tail for kaon pairs demonstrates that similar non-Gaussian tails observed in earlier pion measurements cannot be fully explained by decays of long-lived resonances. The preliminary analysis of pions from s=200 GeV p+p minimum biased collisions show correlations which are well suited to traditional 3D HBT radii extraction via the Bowler-Sinyukov method, and we present R, R, and R as a function of mean transverse pair mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takashima, Kengo; Yamamoto, Takahiro, E-mail: takahiro@rs.tus.ac.jp; Department of Liberal Arts
Conductance fluctuation of edge-disordered graphene nanoribbons (ED-GNRs) is examined using the non-equilibrium Green's function technique combined with the extended Hückel approximation. The mean free path λ and the localization length ξ of the ED-GNRs are determined to classify the quantum transport regimes. In the diffusive regime where the length L{sub c} of the ED-GNRs is much longer than λ and much shorter than ξ, the conductance histogram is given by a Gaussian distribution function with universal conductance fluctuation. In the localization regime where L{sub c}≫ξ, the histogram is no longer the universal Gaussian distribution but a lognormal distribution that characterizesmore » Anderson localization.« less
NASA Astrophysics Data System (ADS)
Bubin, Sergiy; Adamowicz, Ludwik
2006-06-01
In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.
Bubin, Sergiy; Adamowicz, Ludwik
2006-06-14
In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programmed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.
NASA Technical Reports Server (NTRS)
Reimers, J. R.; Heller, E. J.
1985-01-01
The exact thermal rotational spectrum of a two-dimensional rigid rotor is obtained using Gaussian wave packet dynamics. The spectrum is obtained by propagating, without approximation, infinite sets of Gaussian wave packets. These sets are constructed so that collectively they have the correct periodicity, and indeed, are coherent states appropriate to this problem. Also, simple, almost classical, approximations to full wave packet dynamics are shown to give results which are either exact or very nearly exact. Advantages of the use of Gaussian wave packet dynamics over conventional linear response theory are discussed.
Bourlier, Christophe
2005-07-10
The emissivity of two-dimensional anisotropic rough sea surfaces with non-Gaussian statistics is investigated. The emissivity derivation is of importance for retrieval of the sea-surface temperature or equivalent temperature of a rough sea surface by infrared thermal imaging. The well-known Cox-Munk slope probability-density function, considered non-Gaussian, is used for the emissivity derivation, in which the skewness and the kurtosis (related to the third- and fourth-order statistics, respectively) are included. The shadowing effect, which is significant for grazing angles, is also taken into account. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In addition, multiple reflections are ignored. Numerical results of the emissivity are presented for Gaussian and non-Gaussian statistics, for moderate wind speeds, for near-infrared wavelengths, for emission angles ranging from 0 degrees (nadir) to 90 degrees (horizon), and according to the wind direction. In addition, the emissivity is compared with both measurements and a Monte Carlo ray-tracing method.
FROM FINANCE TO COSMOLOGY: THE COPULA OF LARGE-SCALE STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherrer, Robert J.; Berlind, Andreas A.; Mao, Qingqing
2010-01-01
Any multivariate distribution can be uniquely decomposed into marginal (one-point) distributions, and a function called the copula, which contains all of the information on correlations between the distributions. The copula provides an important new methodology for analyzing the density field in large-scale structure. We derive the empirical two-point copula for the evolved dark matter density field. We find that this empirical copula is well approximated by a Gaussian copula. We consider the possibility that the full n-point copula is also Gaussian and describe some of the consequences of this hypothesis. Future directions for investigation are discussed.
Effect of turbulent atmosphere on the on-axis average intensity of Pearcey-Gaussian beam
NASA Astrophysics Data System (ADS)
F, Boufalah; L, Dalil-Essakali; H, Nebdi; A, Belafhal
2016-06-01
The propagation characteristics of the Pearcey-Gaussian (PG) beam in turbulent atmosphere are investigated in this paper. The Pearcey beam is a new kind of paraxial beam, based on the Pearcey function of catastrophe theory, which describes diffraction about a cusp caustic. By using the extended Huygens-Fresnel integral formula in the paraxial approximation and the Rytov theory, an analytical expression of axial intensity for the considered beam family is derived. Some numerical results for PG beam propagating in atmospheric turbulence are given by studying the influences of some factors, including incident beam parameters and turbulence strengths.
NASA Technical Reports Server (NTRS)
Canright, R. B., Jr.; Semler, T. T.
1972-01-01
Several approximations to the Doppler broadening functions psi(x, theta) and chi(x, theta) are compared with respect to accuracy and speed of evaluation. A technique, due to A. M. Turning (1943), is shown to be at least as accurate as direct numerical quadrature and somewhat faster than Gaussian quadrature. FORTRAN 4 listings are included.
Yang, Jingjing; Cox, Dennis D; Lee, Jong Soo; Ren, Peng; Choi, Taeryon
2017-12-01
Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes. © 2017, The International Biometric Society.
Frozen Gaussian approximation for 3D seismic tomography
NASA Astrophysics Data System (ADS)
Chai, Lihui; Tong, Ping; Yang, Xu
2018-05-01
Three-dimensional (3D) wave-equation-based seismic tomography is computationally challenging in large scales and high-frequency regime. In this paper, we apply the frozen Gaussian approximation (FGA) method to compute 3D sensitivity kernels and seismic tomography of high-frequency. Rather than standard ray theory used in seismic inversion (e.g. Kirchhoff migration and Gaussian beam migration), FGA is used to compute the 3D high-frequency sensitivity kernels for travel-time or full waveform inversions. Specifically, we reformulate the equations of the forward and adjoint wavefields for the purpose of convenience to apply FGA, and with this reformulation, one can efficiently compute the Green’s functions whose convolutions with source time function produce wavefields needed for the construction of 3D kernels. Moreover, a fast summation method is proposed based on local fast Fourier transform which greatly improves the speed of reconstruction as the last step of FGA algorithm. We apply FGA to both the travel-time adjoint tomography and full waveform inversion (FWI) on synthetic crosswell seismic data with dominant frequencies as high as those of real crosswell data, and confirm again that FWI requires a more sophisticated initial velocity model for the convergence than travel-time adjoint tomography. We also numerically test the accuracy of applying FGA to local earthquake tomography. This study paves the way to directly apply wave-equation-based seismic tomography methods into real data around their dominant frequencies.
Przybytek, Michal; Helgaker, Trygve
2013-08-07
We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems; however, this scaling can be reduced to linear by introducing more effective techniques for recognizing significant three-center overlap distributions.
Charged particle dynamics in the presence of non-Gaussian Lévy electrostatic fluctuations
Del-Castillo-Negrete, Diego B.; Moradi, Sara; Anderson, Johan
2016-09-01
Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of -stable Levy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Levy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Levy fluctuations. The absolute value ofmore » the power law decay exponents are linearly proportional to the Levy index. Furthermore, the observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Levy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.« less
Charged particle dynamics in the presence of non-Gaussian Lévy electrostatic fluctuations
NASA Astrophysics Data System (ADS)
Moradi, Sara; del-Castillo-Negrete, Diego; Anderson, Johan
2016-09-01
Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of α-stable Lévy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Lévy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Lévy fluctuations. The absolute value of the power law decay exponents is linearly proportional to the Lévy index α. The observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Lévy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.
NASA Astrophysics Data System (ADS)
Waubke, Holger; Kasess, Christian H.
2016-11-01
Devices that emit structure-borne sound are commonly decoupled by elastic components to shield the environment from acoustical noise and vibrations. The elastic elements often have a hysteretic behavior that is typically neglected. In order to take hysteretic behavior into account, Bouc developed a differential equation for such materials, especially joints made of rubber or equipped with dampers. In this work, the Bouc model is solved by means of the Gaussian closure technique based on the Kolmogorov equation. Kolmogorov developed a method to derive probability density functions for arbitrary explicit first-order vector differential equations under white noise excitation using a partial differential equation of a multivariate conditional probability distribution. Up to now no analytical solution of the Kolmogorov equation in conjunction with the Bouc model exists. Therefore a wide range of approximate solutions, especially the statistical linearization, were developed. Using the Gaussian closure technique that is an approximation to the Kolmogorov equation assuming a multivariate Gaussian distribution an analytic solution is derived in this paper for the Bouc model. For the stationary case the two methods yield equivalent results, however, in contrast to statistical linearization the presented solution allows to calculate the transient behavior explicitly. Further, stationary case leads to an implicit set of equations that can be solved iteratively with a small number of iterations and without instabilities for specific parameter sets.
Generation of low-divergence laser beams
Kronberg, James W.
1993-01-01
Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.
Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Adamian, A.
1988-01-01
An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.
Electrostatic twisted modes in multi-component dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayub, M. K.; National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000; Pohang University of Sciences and Technology, Pohang, Gyeongbuk 790-784
Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular modemore » numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas.« less
Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures
NASA Astrophysics Data System (ADS)
Fujikake, So; Deringer, Volker L.; Lee, Tae Hoon; Krynski, Marcin; Elliott, Stephen R.; Csányi, Gábor
2018-06-01
We demonstrate how machine-learning based interatomic potentials can be used to model guest atoms in host structures. Specifically, we generate Gaussian approximation potential (GAP) models for the interaction of lithium atoms with graphene, graphite, and disordered carbon nanostructures, based on reference density functional theory data. Rather than treating the full Li-C system, we demonstrate how the energy and force differences arising from Li intercalation can be modeled and then added to a (prexisting and unmodified) GAP model of pure elemental carbon. Furthermore, we show the benefit of using an explicit pair potential fit to capture "effective" Li-Li interactions and to improve the performance of the GAP model. This provides proof-of-concept for modeling guest atoms in host frameworks with machine-learning based potentials and in the longer run is promising for carrying out detailed atomistic studies of battery materials.
Reddy, Ch Sridhar; Prasad, M Durga
2016-04-28
An effective time dependent approach based on a method that is similar to the Gaussian wave packet propagation (GWP) technique of Heller is developed for the computation of vibrationally resolved electronic spectra at finite temperatures in the harmonic, Franck-Condon/Hertzberg-Teller approximations. Since the vibrational thermal density matrix of the ground electronic surface and the time evolution operator on that surface commute, it is possible to write the spectrum generating correlation function as a trace of the time evolved doorway state. In the stated approximations, the doorway state is a superposition of the harmonic oscillator zero and one quantum eigenfunctions and thus can be propagated by the GWP. The algorithm has an O(N(3)) dependence on the number of vibrational modes. An application to pyrene absorption spectrum at two temperatures is presented as a proof of the concept.
NASA Technical Reports Server (NTRS)
Selle, L. C.; Bellan, Josette
2006-01-01
Transitional databases from Direct Numerical Simulation (DNS) of three-dimensional mixing layers for single-phase flows and two-phase flows with evaporation are analyzed and used to examine the typical hypothesis that the scalar dissipation Probability Distribution Function (PDF) may be modeled as a Gaussian. The databases encompass a single-component fuel and four multicomponent fuels, two initial Reynolds numbers (Re), two mass loadings for two-phase flows and two free-stream gas temperatures. Using the DNS calculated moments of the scalar-dissipation PDF, it is shown, consistent with existing experimental information on single-phase flows, that the Gaussian is a modest approximation of the DNS-extracted PDF, particularly poor in the range of the high scalar-dissipation values, which are significant for turbulent reaction rate modeling in non-premixed flows using flamelet models. With the same DNS calculated moments of the scalar-dissipation PDF and making a change of variables, a model of this PDF is proposed in the form of the (beta)-PDF which is shown to approximate much better the DNS-extracted PDF, particularly in the regime of the high scalar-dissipation values. Several types of statistical measures are calculated over the ensemble of the fourteen databases. For each statistical measure, the proposed (beta)-PDF model is shown to be much superior to the Gaussian in approximating the DNS-extracted PDF. Additionally, the agreement between the DNS-extracted PDF and the (beta)-PDF even improves when the comparison is performed for higher initial Re layers, whereas the comparison with the Gaussian is independent of the initial Re values. For two-phase flows, the comparison between the DNS-extracted PDF and the (beta)-PDF also improves with increasing free-stream gas temperature and mass loading. The higher fidelity approximation of the DNS-extracted PDF by the (beta)-PDF with increasing Re, gas temperature and mass loading bodes well for turbulent reaction rate modeling.
NASA Astrophysics Data System (ADS)
Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui; Liang, Zhi-Chao
2012-08-01
The solar acoustic waves around a sunspot are modified because of the interaction with the sunspot. The interaction can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave around the sunspot. We define an interaction parameter, which could be complex, describing the interaction between the acoustic waves and the sunspot. The scattered wavefunction on the surface can be expressed as a two-dimensional integral of the product of the Green's function, the wavefunction, and the two-dimensional interaction parameter over the sunspot area for the Born approximation of different orders. We assume a simple model for the two-dimensional interaction parameter distribution: its absolute value is axisymmetric with a Gaussian distribution and its phase is a constant. The measured scattered wavefunctions of various modes for NOAAs 11084 and 11092 are fitted to the theoretical scattered wavefunctions to determine the three model parameters, magnitude, Gaussian radius, and phase, for the Born approximation of different orders. The three model parameters converge to some values at high-order Born approximations. The result of the first-order Born approximation is significantly different from the convergent value in some cases. The rate of convergence depends on the sunspot size and wavelength. It converges more rapidly for the smaller sunspot and longer wavelength. The magnitude increases with mode frequency and degree for each radial order. The Gaussian radius is insensitive to frequency and degree. The spatial range of the interaction parameter is greater than that of the continuum intensity deficit, but smaller than that of the acoustic power deficit of the sunspot. The phase versus phase speed falls into a small range. This suggests that the phase could be a function phase speed. NOAAs 11084 and 11092 have a similar magnitude and phase, although the ratio of their sizes is 0.75.
NASA Astrophysics Data System (ADS)
Yeung, Chuck
2018-06-01
The assumption that the local order parameter is related to an underlying spatially smooth auxiliary field, u (r ⃗,t ) , is a common feature in theoretical approaches to non-conserved order parameter phase separation dynamics. In particular, the ansatz that u (r ⃗,t ) is a Gaussian random field leads to predictions for the decay of the autocorrelation function which are consistent with observations, but distinct from predictions using alternative theoretical approaches. In this paper, the auxiliary field is obtained directly from simulations of the time-dependent Ginzburg-Landau equation in two and three dimensions. The results show that u (r ⃗,t ) is equivalent to the distance to the nearest interface. In two dimensions, the probability distribution, P (u ) , is well approximated as Gaussian except for small values of u /L (t ) , where L (t ) is the characteristic length-scale of the patterns. The behavior of P (u ) in three dimensions is more complicated; the non-Gaussian region for small u /L (t ) is much larger than that in two dimensions but the tails of P (u ) begin to approach a Gaussian form at intermediate times. However, at later times, the tails of the probability distribution appear to decay faster than a Gaussian distribution.
A Variational Approach to Simultaneous Image Segmentation and Bias Correction.
Zhang, Kaihua; Liu, Qingshan; Song, Huihui; Li, Xuelong
2015-08-01
This paper presents a novel variational approach for simultaneous estimation of bias field and segmentation of images with intensity inhomogeneity. We model intensity of inhomogeneous objects to be Gaussian distributed with different means and variances, and then introduce a sliding window to map the original image intensity onto another domain, where the intensity distribution of each object is still Gaussian but can be better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying the bias field with a piecewise constant signal within the sliding window. A maximum likelihood energy functional is then defined on each local region, which combines the bias field, the membership function of the object region, and the constant approximating the true signal from its corresponding object. The energy functional is then extended to the whole image domain by the Bayesian learning approach. An efficient iterative algorithm is proposed for energy minimization, via which the image segmentation and bias field correction are simultaneously achieved. Furthermore, the smoothness of the obtained optimal bias field is ensured by the normalized convolutions without extra cost. Experiments on real images demonstrated the superiority of the proposed algorithm to other state-of-the-art representative methods.
Spatio-Temporal Data Analysis at Scale Using Models Based on Gaussian Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Michael
Gaussian processes are the most commonly used statistical model for spatial and spatio-temporal processes that vary continuously. They are broadly applicable in the physical sciences and engineering and are also frequently used to approximate the output of complex computer models, deterministic or stochastic. We undertook research related to theory, computation, and applications of Gaussian processes as well as some work on estimating extremes of distributions for which a Gaussian process assumption might be inappropriate. Our theoretical contributions include the development of new classes of spatial-temporal covariance functions with desirable properties and new results showing that certain covariance models lead tomore » predictions with undesirable properties. To understand how Gaussian process models behave when applied to deterministic computer models, we derived what we believe to be the first significant results on the large sample properties of estimators of parameters of Gaussian processes when the actual process is a simple deterministic function. Finally, we investigated some theoretical issues related to maxima of observations with varying upper bounds and found that, depending on the circumstances, standard large sample results for maxima may or may not hold. Our computational innovations include methods for analyzing large spatial datasets when observations fall on a partially observed grid and methods for estimating parameters of a Gaussian process model from observations taken by a polar-orbiting satellite. In our application of Gaussian process models to deterministic computer experiments, we carried out some matrix computations that would have been infeasible using even extended precision arithmetic by focusing on special cases in which all elements of the matrices under study are rational and using exact arithmetic. The applications we studied include total column ozone as measured from a polar-orbiting satellite, sea surface temperatures over the Pacific Ocean, and annual temperature extremes at a site in New York City. In each of these applications, our theoretical and computational innovations were directly motivated by the challenges posed by analyzing these and similar types of data.« less
Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery.
Altmann, Yoann; Halimi, Abderrahim; Dobigeon, Nicolas; Tourneret, Jean-Yves
2012-06-01
This paper presents a nonlinear mixing model for hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated using polynomial functions leading to a polynomial postnonlinear mixing model. A Bayesian algorithm and optimization methods are proposed to estimate the parameters involved in the model. The performance of the unmixing strategies is evaluated by simulations conducted on synthetic and real data.
Statistical properties and correlation functions for drift waves
NASA Technical Reports Server (NTRS)
Horton, W.
1986-01-01
The dissipative one-field drift wave equation is solved using the pseudospectral method to generate steady-state fluctuations. The fluctuations are analyzed in terms of space-time correlation functions and modal probability distributions. Nearly Gaussian statistics and exponential decay of the two-time correlation functions occur in the presence of electron dissipation, while in the absence of electron dissipation long-lived vortical structures occur. Formulas from renormalized, Markovianized statistical turbulence theory are given in a local approximation to interpret the dissipative turbulence.
Brownian systems with spatially inhomogeneous activity
NASA Astrophysics Data System (ADS)
Sharma, A.; Brader, J. M.
2017-09-01
We generalize the Green-Kubo approach, previously applied to bulk systems of spherically symmetric active particles [J. Chem. Phys. 145, 161101 (2016), 10.1063/1.4966153], to include spatially inhomogeneous activity. The method is applied to predict the spatial dependence of the average orientation per particle and the density. The average orientation is given by an integral over the self part of the Van Hove function and a simple Gaussian approximation to this quantity yields an accurate analytical expression. Taking this analytical result as input to a dynamic density functional theory approximates the spatial dependence of the density in good agreement with simulation data. All theoretical predictions are validated using Brownian dynamics simulations.
A new probability distribution model of turbulent irradiance based on Born perturbation theory
NASA Astrophysics Data System (ADS)
Wang, Hongxing; Liu, Min; Hu, Hao; Wang, Qian; Liu, Xiguo
2010-10-01
The subject of the PDF (Probability Density Function) of the irradiance fluctuations in a turbulent atmosphere is still unsettled. Theory reliably describes the behavior in the weak turbulence regime, but theoretical description in the strong and whole turbulence regimes are still controversial. Based on Born perturbation theory, the physical manifestations and correlations of three typical PDF models (Rice-Nakagami, exponential-Bessel and negative-exponential distribution) were theoretically analyzed. It is shown that these models can be derived by separately making circular-Gaussian, strong-turbulence and strong-turbulence-circular-Gaussian approximations in Born perturbation theory, which denies the viewpoint that the Rice-Nakagami model is only applicable in the extremely weak turbulence regime and provides theoretical arguments for choosing rational models in practical applications. In addition, a common shortcoming of the three models is that they are all approximations. A new model, called the Maclaurin-spread distribution, is proposed without any approximation except for assuming the correlation coefficient to be zero. So, it is considered that the new model can exactly reflect the Born perturbation theory. Simulated results prove the accuracy of this new model.
Discretisation Schemes for Level Sets of Planar Gaussian Fields
NASA Astrophysics Data System (ADS)
Beliaev, D.; Muirhead, S.
2018-01-01
Smooth random Gaussian functions play an important role in mathematical physics, a main example being the random plane wave model conjectured by Berry to give a universal description of high-energy eigenfunctions of the Laplacian on generic compact manifolds. Our work is motivated by questions about the geometry of such random functions, in particular relating to the structure of their nodal and level sets. We study four discretisation schemes that extract information about level sets of planar Gaussian fields. Each scheme recovers information up to a different level of precision, and each requires a maximum mesh-size in order to be valid with high probability. The first two schemes are generalisations and enhancements of similar schemes that have appeared in the literature (Beffara and Gayet in Publ Math IHES, 2017. https://doi.org/10.1007/s10240-017-0093-0; Mischaikow and Wanner in Ann Appl Probab 17:980-1018, 2007); these give complete topological information about the level sets on either a local or global scale. As an application, we improve the results in Beffara and Gayet (2017) on Russo-Seymour-Welsh estimates for the nodal set of positively-correlated planar Gaussian fields. The third and fourth schemes are, to the best of our knowledge, completely new. The third scheme is specific to the nodal set of the random plane wave, and provides global topological information about the nodal set up to `visible ambiguities'. The fourth scheme gives a way to approximate the mean number of excursion domains of planar Gaussian fields.
Park, Subok; Gallas, Bradon D; Badano, Aldo; Petrick, Nicholas A; Myers, Kyle J
2007-04-01
A previous study [J. Opt. Soc. Am. A22, 3 (2005)] has shown that human efficiency for detecting a Gaussian signal at a known location in non-Gaussian distributed lumpy backgrounds is approximately 4%. This human efficiency is much less than the reported 40% efficiency that has been documented for Gaussian-distributed lumpy backgrounds [J. Opt. Soc. Am. A16, 694 (1999) and J. Opt. Soc. Am. A18, 473 (2001)]. We conducted a psychophysical study with a number of changes, specifically in display-device calibration and data scaling, from the design of the aforementioned study. Human efficiency relative to the ideal observer was found again to be approximately 5%. Our variance analysis indicates that neither scaling nor display made a statistically significant difference in human performance for the task. We conclude that the non-Gaussian distributed lumpy background is a major factor in our low human-efficiency results.
Second harmonic sound field after insertion of a biological tissue sample
NASA Astrophysics Data System (ADS)
Zhang, Dong; Gong, Xiu-Fen; Zhang, Bo
2002-01-01
Second harmonic sound field after inserting a biological tissue sample is investigated by theory and experiment. The sample is inserted perpendicular to the sound axis, whose acoustical properties are different from those of surrounding medium (distilled water). By using the superposition of Gaussian beams and the KZK equation in quasilinear and parabolic approximations, the second harmonic field after insertion of the sample can be derived analytically and expressed as a linear combination of self- and cross-interaction of the Gaussian beams. Egg white, egg yolk, porcine liver, and porcine fat are used as the samples and inserted in the sound field radiated from a 2 MHz uniformly excited focusing source. Axial normalized sound pressure curves of the second harmonic wave before and after inserting the sample are measured and compared with the theoretical results calculated with 10 items of Gaussian beam functions.
Image denoising in mixed Poisson-Gaussian noise.
Luisier, Florian; Blu, Thierry; Unser, Michael
2011-03-01
We propose a general methodology (PURE-LET) to design and optimize a wide class of transform-domain thresholding algorithms for denoising images corrupted by mixed Poisson-Gaussian noise. We express the denoising process as a linear expansion of thresholds (LET) that we optimize by relying on a purely data-adaptive unbiased estimate of the mean-squared error (MSE), derived in a non-Bayesian framework (PURE: Poisson-Gaussian unbiased risk estimate). We provide a practical approximation of this theoretical MSE estimate for the tractable optimization of arbitrary transform-domain thresholding. We then propose a pointwise estimator for undecimated filterbank transforms, which consists of subband-adaptive thresholding functions with signal-dependent thresholds that are globally optimized in the image domain. We finally demonstrate the potential of the proposed approach through extensive comparisons with state-of-the-art techniques that are specifically tailored to the estimation of Poisson intensities. We also present denoising results obtained on real images of low-count fluorescence microscopy.
Gaussian impurity moving through a Bose-Einstein superfluid
NASA Astrophysics Data System (ADS)
Pinsker, Florian
2017-09-01
In this paper a finite Gaussian impurity moving through an equilibrium Bose-Einstein condensate at T = 0 is studied. The problem can be described by a Gross-Pitaevskii equation, which is solved perturbatively. The analysis is done for systems of 2 and 3 spatial dimensions. The Bogoliubov equation solutions for the condensate perturbed by a finite impurity are calculated in the co-moving frame. From these solutions the total energy of the perturbed system is determined as a function of the width and the amplitude of the moving Gaussian impurity and its velocity. In addition we derive the drag force the finite sized impurity approximately experiences as it moves through the superfluid, which proves the existence of a superfluid phase for finite extensions of the impurities below the speed of sound. Finally we find that the force increases with velocity until an inflection point from which it decreases again in 2 and 3d.
Geometrical Description of fractional quantum Hall quasiparticles
NASA Astrophysics Data System (ADS)
Park, Yeje; Yang, Bo; Haldane, F. D. M.
2012-02-01
We examine a description of fractional quantum Hall quasiparticles and quasiholes suggested by a recent geometrical approach (F. D. M. Haldane, Phys. Rev. Lett. 108, 116801 (2011)) to FQH systems, where the local excess electric charge density in the incompressible state is given by a topologically-quantized ``guiding-center spin'' times the Gaussian curvature of a ``guiding-center metric tensor'' that characterizes the local shape of the correlation hole around electrons in the fluid. We use a phenomenological energy function with two ingredients: the shear distortion energy of area-preserving distortions of the fluid, and a local (short-range) approximation to the Coulomb energy of the fluctuation of charge density associated with the Gaussian curvature. Quasiparticles and quasiholes of the 1/3 Laughlin state are modeled as ``punctures'' in the incompressible fluid which then relax by geometric distortion which generates Gaussian curvature, giving rise to the charge-density profile around the topological excitation.
NASA Astrophysics Data System (ADS)
Simon, P.; Semboloni, E.; van Waerbeke, L.; Hoekstra, H.; Erben, T.; Fu, L.; Harnois-Déraps, J.; Heymans, C.; Hildebrandt, H.; Kilbinger, M.; Kitching, T. D.; Miller, L.; Schrabback, T.
2015-05-01
We study the correlations of the shear signal between triplets of sources in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) to probe cosmological parameters via the matter bispectrum. In contrast to previous studies, we adopt a non-Gaussian model of the data likelihood which is supported by our simulations of the survey. We find that for state-of-the-art surveys, similar to CFHTLenS, a Gaussian likelihood analysis is a reasonable approximation, albeit small differences in the parameter constraints are already visible. For future surveys we expect that a Gaussian model becomes inaccurate. Our algorithm for a refined non-Gaussian analysis and data compression is then of great utility especially because it is not much more elaborate if simulated data are available. Applying this algorithm to the third-order correlations of shear alone in a blind analysis, we find a good agreement with the standard cosmological model: Σ _8=σ _8(Ω _m/0.27)^{0.64}=0.79^{+0.08}_{-0.11} for a flat Λ cold dark matter cosmology with h = 0.7 ± 0.04 (68 per cent credible interval). Nevertheless our models provide only moderately good fits as indicated by χ2/dof = 2.9, including a 20 per cent rms uncertainty in the predicted signal amplitude. The models cannot explain a signal drop on scales around 15 arcmin, which may be caused by systematics. It is unclear whether the discrepancy can be fully explained by residual point spread function systematics of which we find evidence at least on scales of a few arcmin. Therefore we need a better understanding of higher order correlations of cosmic shear and their systematics to confidently apply them as cosmological probes.
Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen
2014-09-01
For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Generation of low-divergence laser beams
Kronberg, J.W.
1993-09-14
Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schäfer, Joachim; Karpov, Evgueni; Cerf, Nicolas J.
2014-12-04
We seek for a realistic implementation of multimode Gaussian entangled states that can realize the optimal encoding for quantum bosonic Gaussian channels with memory. For a Gaussian channel with classical additive Markovian correlated noise and a lossy channel with non-Markovian correlated noise, we demonstrate the usefulness using Gaussian matrix-product states (GMPS). These states can be generated sequentially, and may, in principle, approximate well any Gaussian state. We show that we can achieve up to 99.9% of the classical Gaussian capacity with GMPS requiring squeezing parameters that are reachable with current technology. This may offer a way towards an experimental realization.
Xu, Feng; Ren, Kuan Fang; Cai, Xiaoshu
2006-07-10
The geometrical-optics approximation of light scattering by a transparent or absorbing spherical particle is extended from plane wave to Gaussian beam incidence. The formulas for the calculation of the phase of each ray and the divergence factor are revised, and the interference of all the emerging rays is taken into account. The extended geometrical-optics approximation (EGOA) permits one to calculate the scattering diagram in all directions from 0 degrees to 180 degrees. The intensities of the scattered field calculated by the EGOA are compared with those calculated by the generalized Lorenz-Mie theory, and good agreement is found. The surface wave effect in Gaussian beam scattering is also qualitatively analyzed by introducing a flux ratio factor. The approach proposed is particularly important to the further extension of the geometrical-optics approximation to the scattering of large spheroidal particles.
Reformulation of time-convolutionless mode-coupling theory near the glass transition
NASA Astrophysics Data System (ADS)
Tokuyama, Michio
2017-10-01
The time-convolutionless mode-coupling theory (TMCT) recently proposed is reformulated under the condition that one of two approximations, which have been used to formulate the original TMCT in addition to the MCT approximations done on a derivation of nonlinear memory function in terms of the intermediate-scattering function, is not employed because it causes unphysical results for intermediate times. The improved TMCT equation is then derived consistently under another approximation. It is first checked that the ergodic to non-ergodic transition obtained by a new equation is exactly the same as that obtained by an old one because the long-time dynamics of both equations coincides with each other. However, it is emphasized that a difference between them appears in the intermediate-time dynamics of physical quantities. Such a difference is explored numerically in the dynamics of a non-Gaussian parameter by employing the Percus-Yevick static structure factor to calculate the nonlinear memory function.
Approximate Bayesian computation in large-scale structure: constraining the galaxy-halo connection
NASA Astrophysics Data System (ADS)
Hahn, ChangHoon; Vakili, Mohammadjavad; Walsh, Kilian; Hearin, Andrew P.; Hogg, David W.; Campbell, Duncan
2017-08-01
Standard approaches to Bayesian parameter inference in large-scale structure assume a Gaussian functional form (chi-squared form) for the likelihood. This assumption, in detail, cannot be correct. Likelihood free inferences such as approximate Bayesian computation (ABC) relax these restrictions and make inference possible without making any assumptions on the likelihood. Instead ABC relies on a forward generative model of the data and a metric for measuring the distance between the model and data. In this work, we demonstrate that ABC is feasible for LSS parameter inference by using it to constrain parameters of the halo occupation distribution (HOD) model for populating dark matter haloes with galaxies. Using specific implementation of ABC supplemented with population Monte Carlo importance sampling, a generative forward model using HOD and a distance metric based on galaxy number density, two-point correlation function and galaxy group multiplicity function, we constrain the HOD parameters of mock observation generated from selected 'true' HOD parameters. The parameter constraints we obtain from ABC are consistent with the 'true' HOD parameters, demonstrating that ABC can be reliably used for parameter inference in LSS. Furthermore, we compare our ABC constraints to constraints we obtain using a pseudo-likelihood function of Gaussian form with MCMC and find consistent HOD parameter constraints. Ultimately, our results suggest that ABC can and should be applied in parameter inference for LSS analyses.
Foster, Tobias
2011-09-01
A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society
The ground state magnetic moment and susceptibility of a two electron Gaussian quantum dot
NASA Astrophysics Data System (ADS)
Boda, Aalu; Chatterjee, Ashok
2018-04-01
The problem of two interacting electrons moving in a two-dimensional semiconductor quantum dot with Gaussian confinement under the influence of an external magnetic field is studied by using a method of numerical diagonalization of the Hamiltonian matrix with in the effective-mass approximation. The energy spectrum is calculated as a function of the magnetic field. We find the ground state magnetic moment and the magnetic susceptibility show zero temperature diamagnetic peaks due to exchange induced singlet-triplet oscillations. The position and the number of these peaks depend on the size of the quantum dot and also strength of the electro-electron interaction. The theory is applied to a GaAs quantum dot.
Color Histogram Diffusion for Image Enhancement
NASA Technical Reports Server (NTRS)
Kim, Taemin
2011-01-01
Various color histogram equalization (CHE) methods have been proposed to extend grayscale histogram equalization (GHE) for color images. In this paper a new method called histogram diffusion that extends the GHE method to arbitrary dimensions is proposed. Ranges in a histogram are specified as overlapping bars of uniform heights and variable widths which are proportional to their frequencies. This diagram is called the vistogram. As an alternative approach to GHE, the squared error of the vistogram from the uniform distribution is minimized. Each bar in the vistogram is approximated by a Gaussian function. Gaussian particles in the vistoram diffuse as a nonlinear autonomous system of ordinary differential equations. CHE results of color images showed that the approach is effective.
Theory and generation of conditional, scalable sub-Gaussian random fields
NASA Astrophysics Data System (ADS)
Panzeri, M.; Riva, M.; Guadagnini, A.; Neuman, S. P.
2016-03-01
Many earth and environmental (as well as a host of other) variables, Y, and their spatial (or temporal) increments, ΔY, exhibit non-Gaussian statistical scaling. Previously we were able to capture key aspects of such non-Gaussian scaling by treating Y and/or ΔY as sub-Gaussian random fields (or processes). This however left unaddressed the empirical finding that whereas sample frequency distributions of Y tend to display relatively mild non-Gaussian peaks and tails, those of ΔY often reveal peaks that grow sharper and tails that become heavier with decreasing separation distance or lag. Recently we proposed a generalized sub-Gaussian model (GSG) which resolves this apparent inconsistency between the statistical scaling behaviors of observed variables and their increments. We presented an algorithm to generate unconditional random realizations of statistically isotropic or anisotropic GSG functions and illustrated it in two dimensions. Most importantly, we demonstrated the feasibility of estimating all parameters of a GSG model underlying a single realization of Y by analyzing jointly spatial moments of Y data and corresponding increments, ΔY. Here, we extend our GSG model to account for noisy measurements of Y at a discrete set of points in space (or time), present an algorithm to generate conditional realizations of corresponding isotropic or anisotropic random fields, introduce two approximate versions of this algorithm to reduce CPU time, and explore them on one and two-dimensional synthetic test cases.
Computer routines for probability distributions, random numbers, and related functions
Kirby, W.
1983-01-01
Use of previously coded and tested subroutines simplifies and speeds up program development and testing. This report presents routines that can be used to calculate various probability distributions and other functions of importance in statistical hydrology. The routines are designed as general-purpose Fortran subroutines and functions to be called from user-written main progress. The probability distributions provided include the beta, chi-square, gamma, Gaussian (normal), Pearson Type III (tables and approximation), and Weibull. Also provided are the distributions of the Grubbs-Beck outlier test, Kolmogorov 's and Smirnov 's D, Student 's t, noncentral t (approximate), and Snedecor F. Other mathematical functions include the Bessel function, I sub o, gamma and log-gamma functions, error functions, and exponential integral. Auxiliary services include sorting and printer-plotting. Random number generators for uniform and normal numbers are provided and may be used with some of the above routines to generate numbers from other distributions. (USGS)
Computer routines for probability distributions, random numbers, and related functions
Kirby, W.H.
1980-01-01
Use of previously codes and tested subroutines simplifies and speeds up program development and testing. This report presents routines that can be used to calculate various probability distributions and other functions of importance in statistical hydrology. The routines are designed as general-purpose Fortran subroutines and functions to be called from user-written main programs. The probability distributions provided include the beta, chisquare, gamma, Gaussian (normal), Pearson Type III (tables and approximation), and Weibull. Also provided are the distributions of the Grubbs-Beck outlier test, Kolmogorov 's and Smirnov 's D, Student 's t, noncentral t (approximate), and Snedecor F tests. Other mathematical functions include the Bessel function I (subzero), gamma and log-gamma functions, error functions and exponential integral. Auxiliary services include sorting and printer plotting. Random number generators for uniform and normal numbers are provided and may be used with some of the above routines to generate numbers from other distributions. (USGS)
A New Closed Form Approximation for BER for Optical Wireless Systems in Weak Atmospheric Turbulence
NASA Astrophysics Data System (ADS)
Kaushik, Rahul; Khandelwal, Vineet; Jain, R. C.
2018-04-01
Weak atmospheric turbulence condition in an optical wireless communication (OWC) is captured by log-normal distribution. The analytical evaluation of average bit error rate (BER) of an OWC system under weak turbulence is intractable as it involves the statistical averaging of Gaussian Q-function over log-normal distribution. In this paper, a simple closed form approximation for BER of OWC system under weak turbulence is given. Computation of BER for various modulation schemes is carried out using proposed expression. The results obtained using proposed expression compare favorably with those obtained using Gauss-Hermite quadrature approximation and Monte Carlo Simulations.
Capacity of PPM on Gaussian and Webb Channels
NASA Technical Reports Server (NTRS)
Divsalar, D.; Dolinar, S.; Pollara, F.; Hamkins, J.
2000-01-01
This paper computes and compares the capacities of M-ary PPM on various idealized channels that approximate the optical communication channel: (1) the standard additive white Gaussian noise (AWGN) channel;(2) a more general AWGN channel (AWGN2) allowing different variances in signal and noise slots;(3) a Webb-distributed channel (Webb2);(4) a Webb+Gaussian channel, modeling Gaussian thermal noise added to Webb-distributed channel outputs.
2012-08-01
small data noise and model error, the discrete Hessian can be approximated by a low-rank matrix. This in turn enables fast solution of an appropriately...implication of the compactness of the Hessian is that for small data noise and model error, the discrete Hessian can be approximated by a low-rank matrix. This...probability distribution is given by the inverse of the Hessian of the negative log likelihood function. For Gaussian data noise and model error, this
Stochastic Analysis for Navigation of Autonomous Platforms Using Range Finders.
1987-08-01
34) where T oi2 = E[vivi] ( 35 ) and T _j2 = E[ujuj] (36) Choice of An Approximating Function In this report, we are interested in obtaining smoothed...1. Gaussian curvature: The mean curvature of a surface at (tq) is defined as: (0.5) ZsM (Sn) (45) Noting in Euler’s theorem that the sum of two
Luber, Sandra
2017-03-14
We describe the calculation of Raman optical activity (ROA) tensors from density functional perturbation theory, which has been implemented into the CP2K software package. Using the mixed Gaussian and plane waves method, ROA spectra are evaluated in the double-harmonic approximation. Moreover, an approach for the calculation of ROA spectra by means of density functional theory-based molecular dynamics is derived and used to obtain an ROA spectrum via time correlation functions, which paves the way for the calculation of ROA spectra taking into account anharmonicities and dynamic effects at ambient conditions.
NASA Astrophysics Data System (ADS)
Bauer, Sebastian; Mathias, Gerald; Tavan, Paul
2014-03-01
We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ɛ(r) is close to one everywhere inside the protein. The Gaussian widths σi of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σi. A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by comparison with so-called generalized Born methods. A follow-up paper describes how the method enables Hamiltonian, efficient, and accurate MM molecular dynamics simulations of proteins in dielectric solvent continua.
Bauer, Sebastian; Mathias, Gerald; Tavan, Paul
2014-03-14
We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ε(r) is close to one everywhere inside the protein. The Gaussian widths σ(i) of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σ(i). A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by comparison with so-called generalized Born methods. A follow-up paper describes how the method enables Hamiltonian, efficient, and accurate MM molecular dynamics simulations of proteins in dielectric solvent continua.
Accretion rates of protoplanets 2: Gaussian distribution of planestesimal velocities
NASA Technical Reports Server (NTRS)
Greenzweig, Yuval; Lissauer, Jack J.
1991-01-01
The growth rate of a protoplanet embedded in a uniform surface density disk of planetesimals having a triaxial Gaussian velocity distribution was calculated. The longitudes of the aspses and nodes of the planetesimals are uniformly distributed, and the protoplanet is on a circular orbit. The accretion rate in the two body approximation is enhanced by a factor of approximately 3, compared to the case where all planetesimals have eccentricity and inclination equal to the root mean square (RMS) values of those variables in the Gaussian distribution disk. Numerical three body integrations show comparable enhancements, except when the RMS initial planetesimal eccentricities are extremely small. This enhancement in accretion rate should be incorporated by all models, analytical or numerical, which assume a single random velocity for all planetesimals, in lieu of a Gaussian distribution.
Non-local bias in the halo bispectrum with primordial non-Gaussianity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tellarini, Matteo; Ross, Ashley J.; Wands, David
2015-07-01
Primordial non-Gaussianity can lead to a scale-dependent bias in the density of collapsed halos relative to the underlying matter density. The galaxy power spectrum already provides constraints on local-type primordial non-Gaussianity complementary those from the cosmic microwave background (CMB), while the bispectrum contains additional shape information and has the potential to outperform CMB constraints in future. We develop the bias model for the halo density contrast in the presence of local-type primordial non-Gaussianity, deriving a bivariate expansion up to second order in terms of the local linear matter density contrast and the local gravitational potential in Lagrangian coordinates. Nonlinear evolutionmore » of the matter density introduces a non-local tidal term in the halo model. Furthermore, the presence of local-type non-Gaussianity in the Lagrangian frame leads to a novel non-local convective term in the Eulerian frame, that is proportional to the displacement field when going beyond the spherical collapse approximation. We use an extended Press-Schechter approach to evaluate the halo mass function and thus the halo bispectrum. We show that including these non-local terms in the halo bispectra can lead to corrections of up to 25% for some configurations, on large scales or at high redshift.« less
Occupancy mapping and surface reconstruction using local Gaussian processes with Kinect sensors.
Kim, Soohwan; Kim, Jonghyuk
2013-10-01
Although RGB-D sensors have been successfully applied to visual SLAM and surface reconstruction, most of the applications aim at visualization. In this paper, we propose a noble method of building continuous occupancy maps and reconstructing surfaces in a single framework for both navigation and visualization. Particularly, we apply a Bayesian nonparametric approach, Gaussian process classification, to occupancy mapping. However, it suffers from high-computational complexity of O(n(3))+O(n(2)m), where n and m are the numbers of training and test data, respectively, limiting its use for large-scale mapping with huge training data, which is common with high-resolution RGB-D sensors. Therefore, we partition both training and test data with a coarse-to-fine clustering method and apply Gaussian processes to each local clusters. In addition, we consider Gaussian processes as implicit functions, and thus extract iso-surfaces from the scalar fields, continuous occupancy maps, using marching cubes. By doing that, we are able to build two types of map representations within a single framework of Gaussian processes. Experimental results with 2-D simulated data show that the accuracy of our approximated method is comparable to previous work, while the computational time is dramatically reduced. We also demonstrate our method with 3-D real data to show its feasibility in large-scale environments.
Non-Gaussian structure of B-mode polarization after delensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Namikawa, Toshiya; Nagata, Ryo, E-mail: namikawa@slac.stanford.edu, E-mail: rnagata@post.kek.jp
2015-10-01
The B-mode polarization of the cosmic microwave background on large scales has been considered as a probe of gravitational waves from the cosmic inflation. Ongoing and future experiments will, however, suffer from contamination due to the B-modes of non-primordial origins, one of which is the lensing induced B-mode polarization. Subtraction of the lensing B-modes, usually referred to as delensing, will be required for further improvement of detection sensitivity of the gravitational waves. In such experiments, knowledge of statistical properties of the B-modes after delensing is indispensable to likelihood analysis particularly because the lensing B-modes are known to be non-Gaussian. Inmore » this paper, we study non-Gaussian structure of the delensed B-modes on large scales, comparing it with that of the lensing B-modes. In particular, we investigate the power spectrum correlation matrix and the probability distribution function (PDF) of the power spectrum amplitude. Assuming an experiment in which the quadratic delensing is an almost optimal method, we find that delensing reduces correlations of the lensing B-mode power spectra between different multipoles, and that the PDF of the power spectrum amplitude is well described as a normal distribution function with a variance larger than that in the case of a Gaussian field. These features are well captured by an analytic model based on the 4th order Edgeworth expansion. As a consequence of the non-Gaussianity, the constraint on the tensor-to-scalar ratio after delensing is degraded within approximately a few percent, which depends on the multipole range included in the analysis.« less
Non-Gaussian structure of B-mode polarization after delensing
NASA Astrophysics Data System (ADS)
Namikawa, Toshiya; Nagata, Ryo
2015-10-01
The B-mode polarization of the cosmic microwave background on large scales has been considered as a probe of gravitational waves from the cosmic inflation. Ongoing and future experiments will, however, suffer from contamination due to the B-modes of non-primordial origins, one of which is the lensing induced B-mode polarization. Subtraction of the lensing B-modes, usually referred to as delensing, will be required for further improvement of detection sensitivity of the gravitational waves. In such experiments, knowledge of statistical properties of the B-modes after delensing is indispensable to likelihood analysis particularly because the lensing B-modes are known to be non-Gaussian. In this paper, we study non-Gaussian structure of the delensed B-modes on large scales, comparing it with that of the lensing B-modes. In particular, we investigate the power spectrum correlation matrix and the probability distribution function (PDF) of the power spectrum amplitude. Assuming an experiment in which the quadratic delensing is an almost optimal method, we find that delensing reduces correlations of the lensing B-mode power spectra between different multipoles, and that the PDF of the power spectrum amplitude is well described as a normal distribution function with a variance larger than that in the case of a Gaussian field. These features are well captured by an analytic model based on the 4th order Edgeworth expansion. As a consequence of the non-Gaussianity, the constraint on the tensor-to-scalar ratio after delensing is degraded within approximately a few percent, which depends on the multipole range included in the analysis.
Non-Gaussian structure of B-mode polarization after delensing
Namikawa, Toshiya; Nagata, Ryo
2015-10-01
The B-mode polarization of the cosmic microwave background on large scales has been considered as a probe of gravitational waves from the cosmic inflation. Ongoing and future experiments will, however, suffer from contamination due to the B-modes of non-primordial origins, one of which is the lensing induced B-mode polarization. Subtraction of the lensing B-modes, usually referred to as delensing, will be required for further improvement of detection sensitivity of the gravitational waves. In such experiments, knowledge of statistical properties of the B-modes after delensing is indispensable to likelihood analysis particularly because the lensing B-modes are known to be non-Gaussian. Inmore » this paper, we study non-Gaussian structure of the delensed B-modes on large scales, comparing it with that of the lensing B-modes. In particular, we investigate the power spectrum correlation matrix and the probability distribution function (PDF) of the power spectrum amplitude. Assuming an experiment in which the quadratic delensing is an almost optimal method, we find that delensing reduces correlations of the lensing B-mode power spectra between different multipoles, and that the PDF of the power spectrum amplitude is well described as a normal distribution function with a variance larger than that in the case of a Gaussian field. These features are well captured by an analytic model based on the 4th order Edgeworth expansion. Furthermore, as a consequence of the non-Gaussianity, the constraint on the tensor-to-scalar ratio after delensing is degraded within approximately a few percent, which depends on the multipole range included in the analysis.« less
Weiss, M; Stedtler, C; Roberts, M S
1997-09-01
The dispersion model with mixed boundary conditions uses a single parameter, the dispersion number, to describe the hepatic elimination of xenobiotics and endogenous substances. An implicit a priori assumption of the model is that the transit time density of intravascular indicators is approximately by an inverse Gaussian distribution. This approximation is limited in that the model poorly describes the tail part of the hepatic outflow curves of vascular indicators. A sum of two inverse Gaussian functions is proposed as an alternative, more flexible empirical model for transit time densities of vascular references. This model suggests that a more accurate description of the tail portion of vascular reference curves yields an elimination rate constant (or intrinsic clearance) which is 40% less than predicted by the dispersion model with mixed boundary conditions. The results emphasize the need to accurately describe outflow curves in using them as a basis for determining pharmacokinetic parameters using hepatic elimination models.
NGMIX: Gaussian mixture models for 2D images
NASA Astrophysics Data System (ADS)
Sheldon, Erin
2015-08-01
NGMIX implements Gaussian mixture models for 2D images. Both the PSF profile and the galaxy are modeled using mixtures of Gaussians. Convolutions are thus performed analytically, resulting in fast model generation as compared to methods that perform the convolution in Fourier space. For the galaxy model, NGMIX supports exponential disks and de Vaucouleurs and Sérsic profiles; these are implemented approximately as a sum of Gaussians using the fits from Hogg & Lang (2013). Additionally, any number of Gaussians can be fit, either completely free or constrained to be cocentric and co-elliptical.
Modified Gaussian influence function of deformable mirror actuators.
Huang, Linhai; Rao, Changhui; Jiang, Wenhan
2008-01-07
A new deformable mirror influence function based on a Gaussian function is introduced to analyze the fitting capability of a deformable mirror. The modified expressions for both azimuthal and radial directions are presented based on the analysis of the residual error between a measured influence function and a Gaussian influence function. With a simplex search method, we further compare the fitting capability of our proposed influence function to fit the data produced by a Zygo interferometer with that of a Gaussian influence function. The result indicates that the modified Gaussian influence function provides much better performance in data fitting.
Why noise is useful in functional and neural mechanisms of interval timing?
2013-01-01
Background The ability to estimate durations in the seconds-to-minutes range - interval timing - is essential for survival, adaptation and its impairment leads to severe cognitive and/or motor dysfunctions. The response rate near a memorized duration has a Gaussian shape centered on the to-be-timed interval (criterion time). The width of the Gaussian-like distribution of responses increases linearly with the criterion time, i.e., interval timing obeys the scalar property. Results We presented analytical and numerical results based on the striatal beat frequency (SBF) model showing that parameter variability (noise) mimics behavioral data. A key functional block of the SBF model is the set of oscillators that provide the time base for the entire timing network. The implementation of the oscillators block as simplified phase (cosine) oscillators has the additional advantage that is analytically tractable. We also checked numerically that the scalar property emerges in the presence of memory variability by using biophysically realistic Morris-Lecar oscillators. First, we predicted analytically and tested numerically that in a noise-free SBF model the output function could be approximated by a Gaussian. However, in a noise-free SBF model the width of the Gaussian envelope is independent of the criterion time, which violates the scalar property. We showed analytically and verified numerically that small fluctuations of the memorized criterion time leads to scalar property of interval timing. Conclusions Noise is ubiquitous in the form of small fluctuations of intrinsic frequencies of the neural oscillators, the errors in recording/retrieving stored information related to criterion time, fluctuation in neurotransmitters’ concentration, etc. Our model suggests that the biological noise plays an essential functional role in the SBF interval timing. PMID:23924391
Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization
NASA Technical Reports Server (NTRS)
Simpson, Timothy W.; Korte, John J.; Mauery, Timothy M.; Mistree, Farrokh
1998-01-01
In this paper, we compare and contrast the use of second-order response surface models and kriging models for approximating non-random, deterministic computer analyses. After reviewing the response surface method for constructing polynomial approximations, kriging is presented as an alternative approximation method for the design and analysis of computer experiments. Both methods are applied to the multidisciplinary design of an aerospike nozzle which consists of a computational fluid dynamics model and a finite-element model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations, and four optimization problems m formulated and solved using both sets of approximation models. The second-order response surface models and kriging models-using a constant underlying global model and a Gaussian correlation function-yield comparable results.
Propagation of various dark hollow beams through an apertured paraxial ABCD optical system
NASA Astrophysics Data System (ADS)
Cai, Yangjian; Ge, Di
2006-08-01
Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry through an apertured paraxial ABCD optical system is investigated. Approximate analytical formulas for various DHBs propagating through an apertured paraxial optical system are derived by expanding the hard-aperture function into a finite sum of complex Gaussian functions in terms of a tensor method. Some numerical results are given. Our formulas provide a convenient way for studying the propagation of various DHBs through an apertured paraxial optical system.
NASA Technical Reports Server (NTRS)
Huang, N. E.; Long, S. R.
1980-01-01
Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.
NASA Technical Reports Server (NTRS)
Freilich, M. H.; Pawka, S. S.
1987-01-01
The statistics of Sxy estimates derived from orthogonal-component measurements are examined. Based on results of Goodman (1957), the probability density function (pdf) for Sxy(f) estimates is derived, and a closed-form solution for arbitrary moments of the distribution is obtained. Characteristic functions are used to derive the exact pdf of Sxy(tot). In practice, a simple Gaussian approximation is found to be highly accurate even for relatively few degrees of freedom. Implications for experiment design are discussed, and a maximum-likelihood estimator for a posterior estimation is outlined.
Nested polynomial trends for the improvement of Gaussian process-based predictors
NASA Astrophysics Data System (ADS)
Perrin, G.; Soize, C.; Marque-Pucheu, S.; Garnier, J.
2017-10-01
The role of simulation keeps increasing for the sensitivity analysis and the uncertainty quantification of complex systems. Such numerical procedures are generally based on the processing of a huge amount of code evaluations. When the computational cost associated with one particular evaluation of the code is high, such direct approaches based on the computer code only, are not affordable. Surrogate models have therefore to be introduced to interpolate the information given by a fixed set of code evaluations to the whole input space. When confronted to deterministic mappings, the Gaussian process regression (GPR), or kriging, presents a good compromise between complexity, efficiency and error control. Such a method considers the quantity of interest of the system as a particular realization of a Gaussian stochastic process, whose mean and covariance functions have to be identified from the available code evaluations. In this context, this work proposes an innovative parametrization of this mean function, which is based on the composition of two polynomials. This approach is particularly relevant for the approximation of strongly non linear quantities of interest from very little information. After presenting the theoretical basis of this method, this work compares its efficiency to alternative approaches on a series of examples.
NASA Astrophysics Data System (ADS)
Hamed, Samia; Rangel, Tonatiuh; Bruneval, Fabien; Neaton, Jeffrey B.
Quantitative understanding of charged and neutral excitations of organic molecules is critical in diverse areas of study that include astrophysics and the development of energy technologies that are clean and efficient. The recent use of local basis sets with ab initio many-body perturbation theory in the GW approximation and the Bethe-Saltpeter equation approach (BSE), methods traditionally applied to periodic condensed phases with a plane-wave basis, has opened the door to detailed study of such excitations for molecules, as well as accurate numerical benchmarks. Here, through a series of systematic benchmarks with a Gaussian basis, we report on the extent to which the predictive power and utility of this approach depend critically on interdependent underlying approximations and choices for molecules, including the mean-field starting point (eg optimally-tuned range separated hybrids, pure DFT functionals, and untuned hybrids), the GW scheme, and the Tamm Dancoff approximation. We demonstrate the effects of these choices in the context of Thiels' set while drawing analogies to linear-response time-dependent DFT and making comparisons to best theoretical estimates from higher-order wavefunction-based theories.
On the parametrization of lateral dose profiles in proton radiation therapy.
Bellinzona, V E; Ciocca, M; Embriaco, A; Fontana, A; Mairani, A; Mori, M; Parodi, K
2015-07-01
The accurate evaluation of the lateral dose profile is an important issue in the field of proton radiation therapy. The beam spread, due to Multiple Coulomb Scattering (MCS), is described by the Molière's theory. To take into account also the contribution of nuclear interactions, modern Treatment Planning Systems (TPSs) generally approximate the dose profiles by a sum of Gaussian functions. In this paper we have compared different parametrizations for the lateral dose profile of protons in water for therapeutical energies: the goal is to improve the performances of the actual treatment planning. We have simulated typical dose profiles at the CNAO (Centro Nazionale di Adroterapia Oncologica) beamline with the FLUKA code and validated them with data taken at CNAO considering different energies and depths. We then performed best fits of the lateral dose profiles for different functions using ROOT and MINUIT. The accuracy of the best fits was analyzed by evaluating the reduced χ(2), the number of free parameters of the functions and the calculation time. The best results were obtained with the triple Gaussian and double Gaussian Lorentz-Cauchy functions which have 6 parameters, but good results were also obtained with the so called Gauss-Rutherford function which has only 4 parameters. The comparison of the studied functions with accurate and validated Monte Carlo calculations and with experimental data from CNAO lead us to propose an original parametrization, the Gauss-Rutherford function, to describe the lateral dose profiles of proton beams. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
s -wave scattering length of a Gaussian potential
NASA Astrophysics Data System (ADS)
Jeszenszki, Peter; Cherny, Alexander Yu.; Brand, Joachim
2018-04-01
We provide accurate expressions for the s -wave scattering length for a Gaussian potential well in one, two, and three spatial dimensions. The Gaussian potential is widely used as a pseudopotential in the theoretical description of ultracold-atomic gases, where the s -wave scattering length is a physically relevant parameter. We first describe a numerical procedure to compute the value of the s -wave scattering length from the parameters of the Gaussian, but find that its accuracy is limited in the vicinity of singularities that result from the formation of new bound states. We then derive simple analytical expressions that capture the correct asymptotic behavior of the s -wave scattering length near the bound states. Expressions that are increasingly accurate in wide parameter regimes are found by a hierarchy of approximations that capture an increasing number of bound states. The small number of numerical coefficients that enter these expressions is determined from accurate numerical calculations. The approximate formulas combine the advantages of the numerical and approximate expressions, yielding an accurate and simple description from the weakly to the strongly interacting limit.
Speech Enhancement, Gain, and Noise Spectrum Adaptation Using Approximate Bayesian Estimation
Hao, Jiucang; Attias, Hagai; Nagarajan, Srikantan; Lee, Te-Won; Sejnowski, Terrence J.
2010-01-01
This paper presents a new approximate Bayesian estimator for enhancing a noisy speech signal. The speech model is assumed to be a Gaussian mixture model (GMM) in the log-spectral domain. This is in contrast to most current models in frequency domain. Exact signal estimation is a computationally intractable problem. We derive three approximations to enhance the efficiency of signal estimation. The Gaussian approximation transforms the log-spectral domain GMM into the frequency domain using minimal Kullback–Leiber (KL)-divergency criterion. The frequency domain Laplace method computes the maximum a posteriori (MAP) estimator for the spectral amplitude. Correspondingly, the log-spectral domain Laplace method computes the MAP estimator for the log-spectral amplitude. Further, the gain and noise spectrum adaptation are implemented using the expectation–maximization (EM) algorithm within the GMM under Gaussian approximation. The proposed algorithms are evaluated by applying them to enhance the speeches corrupted by the speech-shaped noise (SSN). The experimental results demonstrate that the proposed algorithms offer improved signal-to-noise ratio, lower word recognition error rate, and less spectral distortion. PMID:20428253
NASA Technical Reports Server (NTRS)
Simpson, Timothy W.
1998-01-01
The use of response surface models and kriging models are compared for approximating non-random, deterministic computer analyses. After discussing the traditional response surface approach for constructing polynomial models for approximation, kriging is presented as an alternative statistical-based approximation method for the design and analysis of computer experiments. Both approximation methods are applied to the multidisciplinary design and analysis of an aerospike nozzle which consists of a computational fluid dynamics model and a finite element analysis model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations. Four optimization problems are formulated and solved using both approximation models. While neither approximation technique consistently outperforms the other in this example, the kriging models using only a constant for the underlying global model and a Gaussian correlation function perform as well as the second order polynomial response surface models.
MAI statistics estimation and analysis in a DS-CDMA system
NASA Astrophysics Data System (ADS)
Alami Hassani, A.; Zouak, M.; Mrabti, M.; Abdi, F.
2018-05-01
A primary limitation of Direct Sequence Code Division Multiple Access DS-CDMA link performance and system capacity is multiple access interference (MAI). To examine the performance of CDMA systems in the presence of MAI, i.e., in a multiuser environment, several works assumed that the interference can be approximated by a Gaussian random variable. In this paper, we first develop a new and simple approach to characterize the MAI in a multiuser system. In addition to statistically quantifying the MAI power, the paper also proposes a statistical model for both variance and mean of the MAI for synchronous and asynchronous CDMA transmission. We show that the MAI probability density function (PDF) is Gaussian for the equal-received-energy case and validate it by computer simulations.
NASA Technical Reports Server (NTRS)
Frehlich, Rod
1993-01-01
Calculations of the exact Cramer-Rao Bound (CRB) for unbiased estimates of the mean frequency, signal power, and spectral width of Doppler radar/lidar signals (a Gaussian random process) are presented. Approximate CRB's are derived using the Discrete Fourier Transform (DFT). These approximate results are equal to the exact CRB when the DFT coefficients are mutually uncorrelated. Previous high SNR limits for CRB's are shown to be inaccurate because the discrete summations cannot be approximated with integration. The performance of an approximate maximum likelihood estimator for mean frequency approaches the exact CRB for moderate signal to noise ratio and moderate spectral width.
Fast estimate of Hartley entropy in image sharpening
NASA Astrophysics Data System (ADS)
Krbcová, Zuzana; Kukal, Jaromír.; Svihlik, Jan; Fliegel, Karel
2016-09-01
Two classes of linear IIR filters: Laplacian of Gaussian (LoG) and Difference of Gaussians (DoG) are frequently used as high pass filters for contextual vision and edge detection. They are also used for image sharpening when linearly combined with the original image. Resulting sharpening filters are radially symmetric in spatial and frequency domains. Our approach is based on the radial approximation of unknown optimal filter, which is designed as a weighted sum of Gaussian filters with various radii. The novel filter is designed for MRI image enhancement where the image intensity represents anatomical structure plus additive noise. We prefer the gradient norm of Hartley entropy of whole image intensity as a measure which has to be maximized for the best sharpening. The entropy estimation procedure is as fast as FFT included in the filter but this estimate is a continuous function of enhanced image intensities. Physically motivated heuristic is used for optimum sharpening filter design by its parameter tuning. Our approach is compared with Wiener filter on MRI images.
Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg
2017-05-09
A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.
Extremality of Gaussian quantum states.
Wolf, Michael M; Giedke, Geza; Cirac, J Ignacio
2006-03-03
We investigate Gaussian quantum states in view of their exceptional role within the space of all continuous variables states. A general method for deriving extremality results is provided and applied to entanglement measures, secret key distillation and the classical capacity of bosonic quantum channels. We prove that for every given covariance matrix the distillable secret key rate and the entanglement, if measured appropriately, are minimized by Gaussian states. This result leads to a clearer picture of the validity of frequently made Gaussian approximations. Moreover, it implies that Gaussian encodings are optimal for the transmission of classical information through bosonic channels, if the capacity is additive.
Gaussian beam and physical optics iteration technique for wideband beam waveguide feed design
NASA Technical Reports Server (NTRS)
Veruttipong, W.; Chen, J. C.; Bathker, D. A.
1991-01-01
The Gaussian beam technique has become increasingly popular for wideband beam waveguide (BWG) design. However, it is observed that the Gaussian solution is less accurate for smaller mirrors (approximately less than 30 lambda in diameter). Therefore, a high-performance wideband BWG design cannot be achieved by using the Gaussian beam technique alone. This article demonstrates a new design approach by iterating Gaussian beam and BWG parameters simultaneously at various frequencies to obtain a wideband BWG. The result is further improved by comparing it with physical optics results and repeating the iteration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kafafi, S.A.
1998-12-10
A novel general purpose density functional methodology for the computation of accurate electronic and thermodynamic properties of molecules and improved long-range behavior is reported. Assuming the separability of the exchange (E{sub x}) and correlation (E{sub c}) contributions to the total exchange-correlation energy functional (E{sub xc}), the E{sub x} term consists of a hybrid mixture of 37.5% Hartree-Fock exchange and the appropriate local spin density exchange using the adiabatic connection formula. He demonstrated that E{sub x} and its corresponding potential V{sub x} [=dE{sub x}/d{rho}(r)] have the proper asymptotic limits at r = 0 and r {r_arrow} {infinity}, E{sub c} consists ofmore » the Vosko, Wilk, and Nusair formula for the free-electron gas correlation energy and a generalized gradient approximation term with one adjustable parameter. V{sub c} [=dE{sub c}/d{rho}(r)] was shown to obey the r {r_arrow} {infinity} limit of the corresponding potential derived from exact atomic exchange-correlation computations; namely, V{sub c} is proportional to r{sup {minus}4}. Most importantly, he demonstrated that, at r values where dispersion forces are operating, V{sub c} is proportional to 1/r{sup n} (n = 4, 6, 8, {hor_ellipsis}). The reported method was denoted by K2-BVWN because it used two adjustable parameters in its formulation. The K2-BVWN scheme scales as N{sup 3}, where N is the number of basis functions, compared to {approximately}N{sup 7} for Gaussian-2 (G2) ab initio theory and related methods, {approximately}N{sup 5} for Barone`s mPW1,3PW, and {approximately}N{sup 4} for Becke`s three-parameter density functional approaches. The G2 data set complemented by the reported molecular systems investigated in this work was recommended as a critical test for evaluating novel ab initio and density functional methodologies. The K2-BVWN method has been implemented in the Gaussian series of programs.« less
Assessment of parametric uncertainty for groundwater reactive transport modeling,
Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun
2014-01-01
The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood functions, improve model calibration, and reduce predictive uncertainty in other groundwater reactive transport and environmental modeling.
A function approximation approach to anomaly detection in propulsion system test data
NASA Technical Reports Server (NTRS)
Whitehead, Bruce A.; Hoyt, W. A.
1993-01-01
Ground test data from propulsion systems such as the Space Shuttle Main Engine (SSME) can be automatically screened for anomalies by a neural network. The neural network screens data after being trained with nominal data only. Given the values of 14 measurements reflecting external influences on the SSME at a given time, the neural network predicts the expected nominal value of a desired engine parameter at that time. We compared the ability of three different function-approximation techniques to perform this nominal value prediction: a novel neural network architecture based on Gaussian bar basis functions, a conventional back propagation neural network, and linear regression. These three techniques were tested with real data from six SSME ground tests containing two anomalies. The basis function network trained more rapidly than back propagation. It yielded nominal predictions with, a tight enough confidence interval to distinguish anomalous deviations from the nominal fluctuations in an engine parameter. Since the function-approximation approach requires nominal training data only, it is capable of detecting unknown classes of anomalies for which training data is not available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aquino, Fredy W.; Govind, Niranjan; Autschbach, Jochen
2011-10-01
Density functional theory (DFT) calculations of NMR chemical shifts and molecular g-tensors with Gaussian-type orbitals are implemented via second-order energy derivatives within the scalar relativistic zeroth order regular approximation (ZORA) framework. Nonhybrid functionals, standard (global) hybrids, and range-separated (Coulomb-attenuated, long-range corrected) hybrid functionals are tested. Origin invariance of the results is ensured by use of gauge-including atomic orbital (GIAO) basis functions. The new implementation in the NWChem quantum chemistry package is verified by calculations of nuclear shielding constants for the heavy atoms in HX (X=F, Cl, Br, I, At) and H2X (X = O, S, Se, Te, Po), and Temore » chemical shifts in a number of tellurium compounds. The basis set and functional dependence of g-shifts is investigated for 14 radicals with light and heavy atoms. The problem of accurately predicting F NMR shielding in UF6-nCln, n = 1 to 6, is revisited. The results are sensitive to approximations in the density functionals, indicating a delicate balance of DFT self-interaction vs. correlation. For the uranium halides, the results with the range-separated functionals are mixed.« less
Cosmic microwave background bispectrum from primordial magnetic fields on large angular scales.
Seshadri, T R; Subramanian, Kandaswamy
2009-08-21
Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB) even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arises only as a higher-order effect. We propose a novel probe of stochastic primordial magnetic fields that exploits the characteristic CMB non-Gaussianity that they induce. We compute the CMB bispectrum (b(l1l2l3)) induced by such fields on large angular scales. We find a typical value of l1(l1 + 1)l3(l3 + 1)b(l1l2l3) approximately 10(-22), for magnetic fields of strength B0 approximately 3 nG and with a nearly scale invariant magnetic spectrum. Observational limits on the bispectrum allow us to set upper limits on B0 approximately 35 nG.
Implementation of Two-Component Time-Dependent Density Functional Theory in TURBOMOLE.
Kühn, Michael; Weigend, Florian
2013-12-10
We report the efficient implementation of a two-component time-dependent density functional theory proposed by Wang et al. (Wang, F.; Ziegler, T.; van Lenthe, E.; van Gisbergen, S.; Baerends, E. J. J. Chem. Phys. 2005, 122, 204103) that accounts for spin-orbit effects on excitations of closed-shell systems by employing a noncollinear exchange-correlation kernel. In contrast to the aforementioned implementation, our method is based on two-component effective core potentials as well as Gaussian-type basis functions. It is implemented in the TURBOMOLE program suite for functionals of the local density approximation and the generalized gradient approximation. Accuracy is assessed by comparison of two-component vertical excitation energies of heavy atoms and ions (Cd, Hg, Au(+)) and small molecules (I2, TlH) to other two- and four-component approaches. Efficiency is demonstrated by calculating the electronic spectrum of Au20.
On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series
Fransson, Peter
2016-01-01
Abstract Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI) data is an increasingly popular strategy to investigate temporal dynamics of the brain's large-scale network architecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation, which aims to stabilize the variance of correlation values that fluctuate around varying true correlation values. It is, however, unclear how well the stabilization of signal variance performed by the Fisher transformation works for each connectivity time series, when the true correlation is assumed to be fluctuating. This is of importance because many subsequent analyses either assume or perform better when the time series have stable variance or adheres to an approximate Gaussian distribution. In this article, using simulations and analysis of resting-state fMRI data, we analyze the effect of applying different variance stabilization strategies on connectivity time series. We focus our investigation on the Fisher transformation, the Box–Cox (BC) transformation and an approach that combines both transformations. Our results show that, if the intention of stabilizing the variance is to use metrics on the time series, where stable variance or a Gaussian distribution is desired (e.g., clustering), the Fisher transformation is not optimal and may even skew connectivity time series away from being Gaussian. Furthermore, we show that the suboptimal performance of the Fisher transformation can be substantially improved by including an additional BC transformation after the dynamic functional connectivity time series has been Fisher transformed. PMID:27784176
On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series.
Thompson, William Hedley; Fransson, Peter
2016-12-01
Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI) data is an increasingly popular strategy to investigate temporal dynamics of the brain's large-scale network architecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation, which aims to stabilize the variance of correlation values that fluctuate around varying true correlation values. It is, however, unclear how well the stabilization of signal variance performed by the Fisher transformation works for each connectivity time series, when the true correlation is assumed to be fluctuating. This is of importance because many subsequent analyses either assume or perform better when the time series have stable variance or adheres to an approximate Gaussian distribution. In this article, using simulations and analysis of resting-state fMRI data, we analyze the effect of applying different variance stabilization strategies on connectivity time series. We focus our investigation on the Fisher transformation, the Box-Cox (BC) transformation and an approach that combines both transformations. Our results show that, if the intention of stabilizing the variance is to use metrics on the time series, where stable variance or a Gaussian distribution is desired (e.g., clustering), the Fisher transformation is not optimal and may even skew connectivity time series away from being Gaussian. Furthermore, we show that the suboptimal performance of the Fisher transformation can be substantially improved by including an additional BC transformation after the dynamic functional connectivity time series has been Fisher transformed.
The Nature of the Nodes, Weights and Degree of Precision in Gaussian Quadrature Rules
ERIC Educational Resources Information Center
Prentice, J. S. C.
2011-01-01
We present a comprehensive proof of the theorem that relates the weights and nodes of a Gaussian quadrature rule to its degree of precision. This level of detail is often absent in modern texts on numerical analysis. We show that the degree of precision is maximal, and that the approximation error in Gaussian quadrature is minimal, in a…
NASA Technical Reports Server (NTRS)
Chadwick, C.
1984-01-01
This paper describes the development and use of an algorithm to compute approximate statistics of the magnitude of a single random trajectory correction maneuver (TCM) Delta v vector. The TCM Delta v vector is modeled as a three component Cartesian vector each of whose components is a random variable having a normal (Gaussian) distribution with zero mean and possibly unequal standard deviations. The algorithm uses these standard deviations as input to produce approximations to (1) the mean and standard deviation of the magnitude of Delta v, (2) points of the probability density function of the magnitude of Delta v, and (3) points of the cumulative and inverse cumulative distribution functions of Delta v. The approximates are based on Monte Carlo techniques developed in a previous paper by the author and extended here. The algorithm described is expected to be useful in both pre-flight planning and in-flight analysis of maneuver propellant requirements for space missions.
Approximating a retarded-advanced differential equation that models human phonation
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena
2017-11-01
In [1, 2, 3] we have got the numerical solution of a linear mixed type functional differential equation (MTFDE) introduced initially in [4], considering the autonomous and non-autonomous case by collocation, least squares and finite element methods considering B-splines basis set. The present work introduces a numerical scheme using least squares method (LSM) and Gaussian basis functions to solve numerically a nonlinear mixed type equation with symmetric delay and advance which models human phonation. The preliminary results are promising. We obtain an accuracy comparable with the previous results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behbahani, Siavosh R.; /SLAC /Stanford U., Phys. Dept. /Boston U.; Dymarsky, Anatoly
2012-06-06
We apply the Effective Field Theory of Inflation to study the case where the continuous shift symmetry of the Goldstone boson {pi} is softly broken to a discrete subgroup. This case includes and generalizes recently proposed String Theory inspired models of Inflation based on Axion Monodromy. The models we study have the property that the 2-point function oscillates as a function of the wavenumber, leading to oscillations in the CMB power spectrum. The non-linear realization of time diffeomorphisms induces some self-interactions for the Goldstone boson that lead to a peculiar non-Gaussianity whose shape oscillates as a function of the wavenumber.more » We find that in the regime of validity of the effective theory, the oscillatory signal contained in the n-point correlation functions, with n > 2, is smaller than the one contained in the 2-point function, implying that the signature of oscillations, if ever detected, will be easier to find first in the 2-point function, and only then in the higher order correlation functions. Still the signal contained in higher-order correlation functions, that we study here in generality, could be detected at a subleading level, providing a very compelling consistency check for an approximate discrete shift symmetry being realized during inflation.« less
NASA Astrophysics Data System (ADS)
Schwartz, Craig R.; Thelen, Brian J.; Kenton, Arthur C.
1995-06-01
A statistical parametric multispectral sensor performance model was developed by ERIM to support mine field detection studies, multispectral sensor design/performance trade-off studies, and target detection algorithm development. The model assumes target detection algorithms and their performance models which are based on data assumed to obey multivariate Gaussian probability distribution functions (PDFs). The applicability of these algorithms and performance models can be generalized to data having non-Gaussian PDFs through the use of transforms which convert non-Gaussian data to Gaussian (or near-Gaussian) data. An example of one such transform is the Box-Cox power law transform. In practice, such a transform can be applied to non-Gaussian data prior to the introduction of a detection algorithm that is formally based on the assumption of multivariate Gaussian data. This paper presents an extension of these techniques to the case where the joint multivariate probability density function of the non-Gaussian input data is known, and where the joint estimate of the multivariate Gaussian statistics, under the Box-Cox transform, is desired. The jointly estimated multivariate Gaussian statistics can then be used to predict the performance of a target detection algorithm which has an associated Gaussian performance model.
Ramasesha, Krupa; De Marco, Luigi; Horning, Andrew D; Mandal, Aritra; Tokmakoff, Andrei
2012-04-07
We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.
2007-01-01
European options on coupon bonds are studied in a quantum field theory model of forward interest rates. Swaptions are briefly reviewed. An approximation scheme for the coupon bond option price is developed based on the fact that the volatility of the forward interest rates is a small quantity. The field theory for the forward interest rates is Gaussian, but when the payoff function for the coupon bond option is included it makes the field theory nonlocal and nonlinear. A perturbation expansion using Feynman diagrams gives a closed form approximation for the price of coupon bond option. A special case of the approximate bond option is shown to yield the industry standard one-factor HJM formula with exponential volatility.
Baaquie, Belal E
2007-01-01
European options on coupon bonds are studied in a quantum field theory model of forward interest rates. Swaptions are briefly reviewed. An approximation scheme for the coupon bond option price is developed based on the fact that the volatility of the forward interest rates is a small quantity. The field theory for the forward interest rates is Gaussian, but when the payoff function for the coupon bond option is included it makes the field theory nonlocal and nonlinear. A perturbation expansion using Feynman diagrams gives a closed form approximation for the price of coupon bond option. A special case of the approximate bond option is shown to yield the industry standard one-factor HJM formula with exponential volatility.
Controlling the sign problem in finite-density quantum field theory
NASA Astrophysics Data System (ADS)
Garron, Nicolas; Langfeld, Kurt
2017-07-01
Quantum field theories at finite matter densities generically possess a partition function that is exponentially suppressed with the volume compared to that of the phase quenched analog. The smallness arises from an almost uniform distribution for the phase of the fermion determinant. Large cancellations upon integration is the origin of a poor signal to noise ratio. We study three alternatives for this integration: the Gaussian approximation, the "telegraphic" approximation, and a novel expansion in terms of theory-dependent moments and universal coefficients. We have tested the methods for QCD at finite densities of heavy quarks. We find that for two of the approximations the results are extremely close—if not identical—to the full answer in the strong sign-problem regime.
SuperGaussian distribution functions in inhomogenous plasmas
NASA Astrophysics Data System (ADS)
Matte, Jean-Pierre
2008-11-01
In plasmas heated by a narrow laser beam, the shape of the distribution function is influenced by both the absorption, which tends to give a superGaussian (DLM) distribution function [1], and the effects of heat flow, which tends to make the distribution more Maxwellian, when the hot region is considerably wider than the laser beam [2]. Thus, it is only at early times that the deformation is as strong as predicted by our uniform intensity formula [1]. A large number of electron kinetic simulations of a finite width laser beam heating a uniform density plasma were performed with the electron kinetic code FPI [1] to study the competition between these two mechanisms. In some cases, the deformation is approximately given by this formula if we average the laser intensity over the entire plasma. This may explain why distributions were more Maxwellian than expected in some experiments [3]. [0pt] [1] J.-P. Matte et al., Plasma Phys. Contr. Fusion 30, 1665 (1988) [2] S. Brunner and E. Valeo, Phys. Plasmas 9, 923 (2002) [3] S.H. Glenzer et al., Phys. Rev. Lett. 82, 97 (1999).
Comparison of dynamical approximation schemes for non-linear gravitational clustering
NASA Technical Reports Server (NTRS)
Melott, Adrian L.
1994-01-01
We have recently conducted a controlled comparison of a number of approximations for gravitational clustering against the same n-body simulations. These include ordinary linear perturbation theory (Eulerian), the adhesion approximation, the frozen-flow approximation, the Zel'dovich approximation (describable as first-order Lagrangian perturbation theory), and its second-order generalization. In the last two cases we also created new versions of approximation by truncation, i.e., smoothing the initial conditions by various smoothing window shapes and varying their sizes. The primary tool for comparing simulations to approximation schemes was crosscorrelation of the evolved mass density fields, testing the extent to which mass was moved to the right place. The Zel'dovich approximation, with initial convolution with a Gaussian e(exp -k(exp 2)/k(exp 2, sub G)) where k(sub G) is adjusted to be just into the nonlinear regime of the evolved model (details in text) worked extremely well. Its second-order generalization worked slightly better. All other schemes, including those proposed as generalizations of the Zel'dovich approximation created by adding forces, were in fact generally worse by this measure. By explicitly checking, we verified that the success of our best-choice was a result of the best treatment of the phases of nonlinear Fourier components. Of all schemes tested, the adhesion approximation produced the most accurate nonlinear power spectrum and density distribution, but its phase errors suggest mass condensations were moved to slightly the wrong location. Due to its better reproduction of the mass density distribution function and power spectrum, it might be preferred for some uses. We recommend either n-body simulations or our modified versions of the Zel'dovich approximation, depending upon the purpose. The theoretical implication is that pancaking is implicit in all cosmological gravitational clustering, at least from Gaussian initial conditions, even when subcondensations are present.
Probability function of breaking-limited surface elevation. [wind generated waves of ocean
NASA Technical Reports Server (NTRS)
Tung, C. C.; Huang, N. E.; Yuan, Y.; Long, S. R.
1989-01-01
The effect of wave breaking on the probability function of surface elevation is examined. The surface elevation limited by wave breaking zeta sub b(t) is first related to the original wave elevation zeta(t) and its second derivative. An approximate, second-order, nonlinear, non-Gaussian model for zeta(t) of arbitrary but moderate bandwidth is presented, and an expression for the probability density function zeta sub b(t) is derived. The results show clearly that the effect of wave breaking on the probability density function of surface elevation is to introduce a secondary hump on the positive side of the probability density function, a phenomenon also observed in wind wave tank experiments.
Automatic detection of echolocation clicks based on a Gabor model of their waveform.
Madhusudhana, Shyam; Gavrilov, Alexander; Erbe, Christine
2015-06-01
Prior research has shown that echolocation clicks of several species of terrestrial and marine fauna can be modelled as Gabor-like functions. Here, a system is proposed for the automatic detection of a variety of such signals. By means of mathematical formulation, it is shown that the output of the Teager-Kaiser Energy Operator (TKEO) applied to Gabor-like signals can be approximated by a Gaussian function. Based on the inferences, a detection algorithm involving the post-processing of the TKEO outputs is presented. The ratio of the outputs of two moving-average filters, a Gaussian and a rectangular filter, is shown to be an effective detection parameter. Detector performance is assessed using synthetic and real (taken from MobySound database) recordings. The detection method is shown to work readily with a variety of echolocation clicks and in various recording scenarios. The system exhibits low computational complexity and operates several times faster than real-time. Performance comparisons are made to other publicly available detectors including pamguard.
The equivalent thermal properties of a single fracture
NASA Astrophysics Data System (ADS)
Sangaré, D.; Thovert, J.-F.; Adler, P. M.
2008-10-01
The normal resistance and the tangential conductivity of a single fracture with Gaussian or self-affine surfaces are systematically studied as functions of the nature of the materials in contact and of the geometrical parameters. Analytical formulas are provided in the lubrication limit for fractures with sinusoidal apertures; these formulas are used to substantiate empirical formulas for resistance and conductivity. Other approximations based on the combination of series and parallel formulas are tested.
Relativistic diffusive motion in random electromagnetic fields
NASA Astrophysics Data System (ADS)
Haba, Z.
2011-08-01
We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Jüttner equilibrium at the inverse temperature β-1 = mc2. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).
Superexchange and spin-glass formation in semimagnetic semiconductors
NASA Astrophysics Data System (ADS)
Rusin, Tomasz M.
1996-05-01
The Mn-Mn superexchange interaction in semimagnetic semiconductors A1-xMnxB (where A=Zn, Cd and B=S, Se, Te) is studied within the three-level model of the band structure. We focus on the dependence of the interaction on the interion distance Jdd(r)=J0f(r). In the present work, the function f(r) is obtained analytically. This, only weakly material-dependent function is found to decrease with Mn-Mn distance much slower than its Gaussian approximation derived previously. The exact form of the decay of the superexchange can be approximated by a power law J0r-8.5. This is close to an experimental result, J0r-6.8, determined on the basis of the spin-glass transition temperature on the composition.
Series approximation to probability densities
NASA Astrophysics Data System (ADS)
Cohen, L.
2018-04-01
One of the historical and fundamental uses of the Edgeworth and Gram-Charlier series is to "correct" a Gaussian density when it is determined that the probability density under consideration has moments that do not correspond to the Gaussian [5, 6]. There is a fundamental difficulty with these methods in that if the series are truncated, then the resulting approximate density is not manifestly positive. The aim of this paper is to attempt to expand a probability density so that if it is truncated it will still be manifestly positive.
Real-time model learning using Incremental Sparse Spectrum Gaussian Process Regression.
Gijsberts, Arjan; Metta, Giorgio
2013-05-01
Novel applications in unstructured and non-stationary human environments require robots that learn from experience and adapt autonomously to changing conditions. Predictive models therefore not only need to be accurate, but should also be updated incrementally in real-time and require minimal human intervention. Incremental Sparse Spectrum Gaussian Process Regression is an algorithm that is targeted specifically for use in this context. Rather than developing a novel algorithm from the ground up, the method is based on the thoroughly studied Gaussian Process Regression algorithm, therefore ensuring a solid theoretical foundation. Non-linearity and a bounded update complexity are achieved simultaneously by means of a finite dimensional random feature mapping that approximates a kernel function. As a result, the computational cost for each update remains constant over time. Finally, algorithmic simplicity and support for automated hyperparameter optimization ensures convenience when employed in practice. Empirical validation on a number of synthetic and real-life learning problems confirms that the performance of Incremental Sparse Spectrum Gaussian Process Regression is superior with respect to the popular Locally Weighted Projection Regression, while computational requirements are found to be significantly lower. The method is therefore particularly suited for learning with real-time constraints or when computational resources are limited. Copyright © 2012 Elsevier Ltd. All rights reserved.
Improved Linear Algebra Methods for Redshift Computation from Limited Spectrum Data - II
NASA Technical Reports Server (NTRS)
Foster, Leslie; Waagen, Alex; Aijaz, Nabella; Hurley, Michael; Luis, Apolo; Rinsky, Joel; Satyavolu, Chandrika; Gazis, Paul; Srivastava, Ashok; Way, Michael
2008-01-01
Given photometric broadband measurements of a galaxy, Gaussian processes may be used with a training set to solve the regression problem of approximating the redshift of this galaxy. However, in practice solving the traditional Gaussian processes equation is too slow and requires too much memory. We employed several methods to avoid this difficulty using algebraic manipulation and low-rank approximation, and were able to quickly approximate the redshifts in our testing data within 17 percent of the known true values using limited computational resources. The accuracy of one method, the V Formulation, is comparable to the accuracy of the best methods currently used for this problem.
Quantum Brownian motion with inhomogeneous damping and diffusion
NASA Astrophysics Data System (ADS)
Massignan, Pietro; Lampo, Aniello; Wehr, Jan; Lewenstein, Maciej
2015-03-01
We analyze the microscopic model of quantum Brownian motion, describing a Brownian particle interacting with a bosonic bath through a coupling which is linear in the creation and annihilation operators of the bath, but may be a nonlinear function of the position of the particle. Physically, this corresponds to a configuration in which damping and diffusion are spatially inhomogeneous. We derive systematically the quantum master equation for the Brownian particle in the Born-Markov approximation and we discuss the appearance of additional terms, for various polynomials forms of the coupling. We discuss the cases of linear and quadratic coupling in great detail and we derive, using Wigner function techniques, the stationary solutions of the master equation for a Brownian particle in a harmonic trapping potential. We predict quite generally Gaussian stationary states, and we compute the aspect ratio and the spread of the distributions. In particular, we find that these solutions may be squeezed (superlocalized) with respect to the position of the Brownian particle. We analyze various restrictions to the validity of our theory posed by non-Markovian effects and by the Heisenberg principle. We further study the dynamical stability of the system, by applying a Gaussian approximation to the time-dependent Wigner function, and we compute the decoherence rates of coherent quantum superpositions in position space. Finally, we propose a possible experimental realization of the physics discussed here, by considering an impurity particle embedded in a degenerate quantum gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modak, Viraj P., E-mail: virajmodak@gmail.com; Wyslouzil, Barbara E., E-mail: wyslouzil.1@osu.edu; Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
The crystal-vapor surface free energy γ is an important physical parameter governing physical processes, such as wetting and adhesion. We explore exact and approximate routes to calculate γ based on cleaving an intact crystal into non-interacting sub-systems with crystal-vapor interfaces. We do this by turning off the interactions, ΔV, between the sub-systems. Using the soft-core scheme for turning off ΔV, we find that the free energy varies smoothly with the coupling parameter λ, and a single thermodynamic integration yields the exact γ. We generate another exact method, and a cumulant expansion for γ by expressing the surface free energy inmore » terms of an average of e{sup −βΔV} in the intact crystal. The second cumulant, or Gaussian approximation for γ is surprisingly accurate in most situations, even though we find that the underlying probability distribution for ΔV is clearly not Gaussian. We account for this fact by developing a non-Gaussian theory for γ and find that the difference between the non-Gaussian and Gaussian expressions for γ consist of terms that are negligible in many situations. Exact and approximate methods are applied to the (111) surface of a Lennard-Jones crystal and are also tested for more complex molecular solids, the surface of octane and nonadecane. Alkane surfaces were chosen for study because their crystal-vapor surface free energy has been of particular interest for understanding surface freezing in these systems.« less
The luminosity function of quasars
NASA Technical Reports Server (NTRS)
Pei, Yichuan C.
1995-01-01
We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.
Toward the detection of gravitational waves under non-Gaussian noises I. Locally optimal statistic.
Yokoyama, Jun'ichi
2014-01-01
After reviewing the standard hypothesis test and the matched filter technique to identify gravitational waves under Gaussian noises, we introduce two methods to deal with non-Gaussian stationary noises. We formulate the likelihood ratio function under weakly non-Gaussian noises through the Edgeworth expansion and strongly non-Gaussian noises in terms of a new method we call Gaussian mapping where the observed marginal distribution and the two-body correlation function are fully taken into account. We then apply these two approaches to Student's t-distribution which has a larger tails than Gaussian. It is shown that while both methods work well in the case the non-Gaussianity is small, only the latter method works well for highly non-Gaussian case.
New approaches to probing Minkowski functionals
NASA Astrophysics Data System (ADS)
Munshi, D.; Smidt, J.; Cooray, A.; Renzi, A.; Heavens, A.; Coles, P.
2013-10-01
We generalize the concept of the ordinary skew-spectrum to probe the effect of non-Gaussianity on the morphology of cosmic microwave background (CMB) maps in several domains: in real space (where they are commonly known as cumulant-correlators), and in harmonic and needlet bases. The essential aim is to retain more information than normally contained in these statistics, in order to assist in determining the source of any measured non-Gaussianity, in the same spirit as Munshi & Heavens skew-spectra were used to identify foreground contaminants to the CMB bispectrum in Planck data. Using a perturbative series to construct the Minkowski functionals (MFs), we provide a pseudo-C_ℓ based approach in both harmonic and needlet representations to estimate these spectra in the presence of a mask and inhomogeneous noise. Assuming homogeneous noise, we present approximate expressions for error covariance for the purpose of joint estimation of these spectra. We present specific results for four different models of primordial non-Gaussianity local, equilateral, orthogonal and enfolded models, as well as non-Gaussianity caused by unsubtracted point sources. Closed form results of next-order corrections to MFs too are obtained in terms of a quadruplet of kurt-spectra. We also use the method of modal decomposition of the bispectrum and trispectrum to reconstruct the MFs as an alternative method of reconstruction of morphological properties of CMB maps. Finally, we introduce the odd-parity skew-spectra to probe the odd-parity bispectrum and its impact on the morphology of the CMB sky. Although developed for the CMB, the generic results obtained here can be useful in other areas of cosmology.
Deterministic Mean-Field Ensemble Kalman Filtering
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
2016-05-03
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d
Deterministic Mean-Field Ensemble Kalman Filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d
Wilhelm, Jan; Seewald, Patrick; Del Ben, Mauro; Hutter, Jürg
2016-12-13
We present an algorithm for computing the correlation energy in the random phase approximation (RPA) in a Gaussian basis requiring [Formula: see text] operations and [Formula: see text] memory. The method is based on the resolution of the identity (RI) with the overlap metric, a reformulation of RI-RPA in the Gaussian basis, imaginary time, and imaginary frequency integration techniques, and the use of sparse linear algebra. Additional memory reduction without extra computations can be achieved by an iterative scheme that overcomes the memory bottleneck of canonical RPA implementations. We report a massively parallel implementation that is the key for the application to large systems. Finally, cubic-scaling RPA is applied to a thousand water molecules using a correlation-consistent triple-ζ quality basis.
NASA Astrophysics Data System (ADS)
Nguyen, Ngoc Minh; Corff, Sylvain Le; Moulines, Éric
2017-12-01
This paper focuses on sequential Monte Carlo approximations of smoothing distributions in conditionally linear and Gaussian state spaces. To reduce Monte Carlo variance of smoothers, it is typical in these models to use Rao-Blackwellization: particle approximation is used to sample sequences of hidden regimes while the Gaussian states are explicitly integrated conditional on the sequence of regimes and observations, using variants of the Kalman filter/smoother. The first successful attempt to use Rao-Blackwellization for smoothing extends the Bryson-Frazier smoother for Gaussian linear state space models using the generalized two-filter formula together with Kalman filters/smoothers. More recently, a forward-backward decomposition of smoothing distributions mimicking the Rauch-Tung-Striebel smoother for the regimes combined with backward Kalman updates has been introduced. This paper investigates the benefit of introducing additional rejuvenation steps in all these algorithms to sample at each time instant new regimes conditional on the forward and backward particles. This defines particle-based approximations of the smoothing distributions whose support is not restricted to the set of particles sampled in the forward or backward filter. These procedures are applied to commodity markets which are described using a two-factor model based on the spot price and a convenience yield for crude oil data.
Toward the detection of gravitational waves under non-Gaussian noises I. Locally optimal statistic
YOKOYAMA, Jun’ichi
2014-01-01
After reviewing the standard hypothesis test and the matched filter technique to identify gravitational waves under Gaussian noises, we introduce two methods to deal with non-Gaussian stationary noises. We formulate the likelihood ratio function under weakly non-Gaussian noises through the Edgeworth expansion and strongly non-Gaussian noises in terms of a new method we call Gaussian mapping where the observed marginal distribution and the two-body correlation function are fully taken into account. We then apply these two approaches to Student’s t-distribution which has a larger tails than Gaussian. It is shown that while both methods work well in the case the non-Gaussianity is small, only the latter method works well for highly non-Gaussian case. PMID:25504231
Full stellar kinematical profiles of central parts of nearby galaxies
NASA Astrophysics Data System (ADS)
Vudragović, A.; Samurović, S.; Jovanović, M.
2016-09-01
Context. We present the largest catalog of detailed stellar kinematics of the central parts of nearby galaxies, which includes higher moments of the line-of-sight velocity distribution (LOSVD) function represented by the Gauss-Hermite series. The kinematics is measured on a sample of galaxies selected from the Arecibo Legacy Fast ALFA (Alfalfa) survey using spectroscopy from the Sloan Digital Sky Survey (SDSS DR7). Aims: The SDSS DR7 offers measurements of the LOSVD based on the assumption of a pure Gaussian shape of the broadening function caused by the combination of rotational and random motion of the stars in galaxies. We discuss the consequences of this oversimplification since the velocity dispersion, one of the measured quantities, often serves as the proxy to important modeling parameters such as the black-hole mass and the virial mass of galaxies. Methods: The publicly available pPXF code is used to calculate the full kinematical profile for the sample galaxies including higher moments of their LOSVD. Both observed and synthetic stellar libraries were used and the related template mismatch problem is discussed. Results: For the whole sample of 2180 nearby galaxies reflecting morphological distribution characteristic for the local Universe, we successfully recovered stellar kinematics of their central parts, including higher order moments of the LOSVD function, for signal-to-noise above 50. Conclusions: We show the consequences of the oversimplification of the LOSVD function with Gaussian function on the velocity dispersion for the empirical and the synthetic stellar library. For the empirical stellar library, this approximation leads to an increase in the virial mass of 13% on average, while for the synthetic library the effect is weaker, with an increase of 9% on average. Systematic erroneous estimates of the velocity dispersion comes from the use of the synthetic stellar library instead of the empirical one and is much larger than the value imposed by the use of the Gaussian function. Only after a careful analysis of the template mismatch problem does one need to address the issue of the deviation of the LOSVD from the Gaussian function. We also show that the kurtotic parameter describing symmetrical departures from the Gaussian seems to increase along the continuous morphological sequence from late- to early-type galaxies. The catalog is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A40
Non-Gaussianity and Excursion Set Theory: Halo Bias
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adshead, Peter; Baxter, Eric J.; Dodelson, Scott
2012-09-01
We study the impact of primordial non-Gaussianity generated during inflation on the bias of halos using excursion set theory. We recapture the familiar result that the bias scales asmore » $$k^{-2}$$ on large scales for local type non-Gaussianity but explicitly identify the approximations that go into this conclusion and the corrections to it. We solve the more complicated problem of non-spherical halos, for which the collapse threshold is scale dependent.« less
1990-11-01
1 = Q- 1 - 1 QlaaQ- 1.1 + a’Q-1a This is a simple case of a general formula called Woodbury’s formula by some authors; see, for example, Phadke and...1 2. The First-Order Moving Average Model ..... .................. 3. Some Approaches to the Iterative...the approximate likelihood function in some time series models. Useful suggestions have been the Cholesky decomposition of the covariance matrix and
Edgeworth streaming model for redshift space distortions
NASA Astrophysics Data System (ADS)
Uhlemann, Cora; Kopp, Michael; Haugg, Thomas
2015-09-01
We derive the Edgeworth streaming model (ESM) for the redshift space correlation function starting from an arbitrary distribution function for biased tracers of dark matter by considering its two-point statistics and show that it reduces to the Gaussian streaming model (GSM) when neglecting non-Gaussianities. We test the accuracy of the GSM and ESM independent of perturbation theory using the Horizon Run 2 N -body halo catalog. While the monopole of the redshift space halo correlation function is well described by the GSM, higher multipoles improve upon including the leading order non-Gaussian correction in the ESM: the GSM quadrupole breaks down on scales below 30 Mpc /h whereas the ESM stays accurate to 2% within statistical errors down to 10 Mpc /h . To predict the scale-dependent functions entering the streaming model we employ convolution Lagrangian perturbation theory (CLPT) based on the dust model and local Lagrangian bias. Since dark matter halos carry an intrinsic length scale given by their Lagrangian radius, we extend CLPT to the coarse-grained dust model and consider two different smoothing approaches operating in Eulerian and Lagrangian space, respectively. The coarse graining in Eulerian space features modified fluid dynamics different from dust while the coarse graining in Lagrangian space is performed in the initial conditions with subsequent single-streaming dust dynamics, implemented by smoothing the initial power spectrum in the spirit of the truncated Zel'dovich approximation. Finally, we compare the predictions of the different coarse-grained models for the streaming model ingredients to N -body measurements and comment on the proper choice of both the tracer distribution function and the smoothing scale. Since the perturbative methods we considered are not yet accurate enough on small scales, the GSM is sufficient when applied to perturbation theory.
Gaussian Radial Basis Function for Efficient Computation of Forest Indirect Illumination
NASA Astrophysics Data System (ADS)
Abbas, Fayçal; Babahenini, Mohamed Chaouki
2018-06-01
Global illumination of natural scenes in real time like forests is one of the most complex problems to solve, because the multiple inter-reflections between the light and material of the objects composing the scene. The major problem that arises is the problem of visibility computation. In fact, the computing of visibility is carried out for all the set of leaves visible from the center of a given leaf, given the enormous number of leaves present in a tree, this computation performed for each leaf of the tree which also reduces performance. We describe a new approach that approximates visibility queries, which precede in two steps. The first step is to generate point cloud representing the foliage. We assume that the point cloud is composed of two classes (visible, not-visible) non-linearly separable. The second step is to perform a point cloud classification by applying the Gaussian radial basis function, which measures the similarity in term of distance between each leaf and a landmark leaf. It allows approximating the visibility requests to extract the leaves that will be used to calculate the amount of indirect illumination exchanged between neighbor leaves. Our approach allows efficiently treat the light exchanges in the scene of a forest, it allows a fast computation and produces images of good visual quality, all this takes advantage of the immense power of computation of the GPU.
NASA Astrophysics Data System (ADS)
Kang, Yan-Mei; Chen, Xi; Lin, Xu-Dong; Tan, Ning
The mean first passage time (MFPT) in a phenomenological gene transcriptional regulatory model with non-Gaussian noise is analytically investigated based on the singular perturbation technique. The effect of the non-Gaussian noise on the phenomenon of stochastic resonance (SR) is then disclosed based on a new combination of adiabatic elimination and linear response approximation. Compared with the results in the Gaussian noise case, it is found that bounded non-Gaussian noise inhibits the transition between different concentrations of protein, while heavy-tailed non-Gaussian noise accelerates the transition. It is also found that the optimal noise intensity for SR in the heavy-tailed noise case is smaller, while the optimal noise intensity in the bounded noise case is larger. These observations can be explained by the heavy-tailed noise easing random transitions.
Flat-top beam for laser-stimulated pain
NASA Astrophysics Data System (ADS)
McCaughey, Ryan; Nadeau, Valerie; Dickinson, Mark
2005-04-01
One of the main problems during laser stimulation in human pain research is the risk of tissue damage caused by excessive heating of the skin. This risk has been reduced by using a laser beam with a flattop (or superGaussian) intensity profile, instead of the conventional Gaussian beam. A finite difference approximation to the heat conduction equation has been applied to model the temperature distribution in skin as a result of irradiation by flattop and Gaussian profile CO2 laser beams. The model predicts that a 15 mm diameter, 15 W, 100 ms CO2 laser pulse with an order 6 superGaussian profile produces a maximum temperature 6 oC less than a Gaussian beam with the same energy density. A superGaussian profile was created by passing a Gaussian beam through a pair of zinc selenide aspheric lenses which refract the more intense central region of the beam towards the less intense periphery. The profiles of the lenses were determined by geometrical optics. In human pain trials the superGaussian beam required more power than the Gaussian beam to reach sensory and pain thresholds.
Variational methods in supersymmetric lattice field theory: The vacuum sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, A.; Meyer-Ortmanns, H.; Roskies, R.
1987-12-15
The application of variational methods to the computation of the spectrum in supersymmetric lattice theories is considered, with special attention to O(N) supersymmetric sigma models. Substantial cancellations are found between bosonic and fermionic contributions even in approximate Ansa$uml: tze for the vacuum wave function. The nonlinear limit of the linear sigma model is studied in detail, and it is shown how to construct an appropriate non-Gaussian vacuum wave function for the nonlinear model. The vacuum energy is shown to be of order unity in lattice units in the latter case, after infinite cancellations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He Guangjun; Duan Wenshan; Tian Duoxiang
2008-04-15
For unmagnetized dusty plasma with many different dust grain species containing both hot isothermal electrons and ions, both the linear dispersion relation and the Kadomtsev-Petviashvili equation for small, but finite amplitude dust acoustic waves are obtained. The linear dispersion relation is investigated numerically. Furthermore, the variations of amplitude, width, and propagation velocity of the nonlinear solitary wave with an arbitrary dust size distribution function are studied as well. Moreover, both the power law distribution and the Gaussian distribution are approximately simulated by using appropriate arbitrary dust size distribution functions.
Super-resolving random-Gaussian apodized photon sieve.
Sabatyan, Arash; Roshaninejad, Parisa
2012-09-10
A novel apodized photon sieve is presented in which random dense Gaussian distribution is implemented to modulate the pinhole density in each zone. The random distribution in dense Gaussian distribution causes intrazone discontinuities. Also, the dense Gaussian distribution generates a substantial number of pinholes in order to form a large degree of overlap between the holes in a few innermost zones of the photon sieve; thereby, clear zones are formed. The role of the discontinuities on the focusing properties of the photon sieve is examined as well. Analysis shows that secondary maxima have evidently been suppressed, transmission has increased enormously, and the central maxima width is approximately unchanged in comparison to the dense Gaussian distribution. Theoretical results have been completely verified by experiment.
NASA Astrophysics Data System (ADS)
Lekner, John; Andrejic, Petar
2018-01-01
Solutions of the Helmholtz equation which describe electromagnetic beams (and also acoustic or particle beams) are discussed. We show that an exact solution which reproduces the Gaussian beam waveform on the beam axis does not exist. This is surprising, since the Gaussian beam is a solution of the paraxial equation, and thus supposedly accurate on and near the beam axis. Likewise, a solution of the Helmholtz equation which exactly reproduces the Gaussian beam in the focal plane does not exist. We show that the last statement also holds for Bessel-Gauss beams. However, solutions of the Helmholtz equation (one of which is discussed in detail) can approximate the Gaussian waveform within the central focal region.
Asymptotic safety of quantum gravity beyond Ricci scalars
NASA Astrophysics Data System (ADS)
Falls, Kevin; King, Callum R.; Litim, Daniel F.; Nikolakopoulos, Kostas; Rahmede, Christoph
2018-04-01
We investigate the asymptotic safety conjecture for quantum gravity including curvature invariants beyond Ricci scalars. Our strategy is put to work for families of gravitational actions which depend on functions of the Ricci scalar, the Ricci tensor, and products thereof. Combining functional renormalization with high order polynomial approximations and full numerical integration we derive the renormalization group flow for all couplings and analyse their fixed points, scaling exponents, and the fixed point effective action as a function of the background Ricci curvature. The theory is characterized by three relevant couplings. Higher-dimensional couplings show near-Gaussian scaling with increasing canonical mass dimension. We find that Ricci tensor invariants stabilize the UV fixed point and lead to a rapid convergence of polynomial approximations. We apply our results to models for cosmology and establish that the gravitational fixed point admits inflationary solutions. We also compare findings with those from f (R ) -type theories in the same approximation and pin-point the key new effects due to Ricci tensor interactions. Implications for the asymptotic safety conjecture of gravity are indicated.
Partial-Wave Representations of Laser Beams for Use in Light-Scattering Calculations
NASA Technical Reports Server (NTRS)
Gouesbet, Gerard; Lock, James A.; Grehan, Gerard
1995-01-01
In the framework of generalized Lorenz-Mie theory, laser beams are described by sets of beam-shape coefficients. The modified localized approximation to evaluate these coefficients for a focused Gaussian beam is presented. A new description of Gaussian beams, called standard beams, is introduced. A comparison is made between the values of the beam-shape coefficients in the framework of the localized approximation and the beam-shape coefficients of standard beams. This comparison leads to new insights concerning the electromagnetic description of laser beams. The relevance of our discussion is enhanced by a demonstration that the localized approximation provides a very satisfactory description of top-hat beams as well.
Liu, Chengyu; Zheng, Dingchang; Zhao, Lina; Liu, Changchun
2014-01-01
It has been reported that Gaussian functions could accurately and reliably model both carotid and radial artery pressure waveforms (CAPW and RAPW). However, the physiological relevance of the characteristic features from the modeled Gaussian functions has been little investigated. This study thus aimed to determine characteristic features from the Gaussian functions and to make comparisons of them between normal subjects and heart failure patients. Fifty-six normal subjects and 51 patients with heart failure were studied with the CAPW and RAPW signals recorded simultaneously. The two signals were normalized first and then modeled by three positive Gaussian functions, with their peak amplitude, peak time, and half-width determined. Comparisons of these features were finally made between the two groups. Results indicated that the peak amplitude of the first Gaussian curve was significantly decreased in heart failure patients compared with normal subjects (P<0.001). Significantly increased peak amplitude of the second Gaussian curves (P<0.001) and significantly shortened peak times of the second and third Gaussian curves (both P<0.001) were also presented in heart failure patients. These results were true for both CAPW and RAPW signals, indicating the clinical significance of the Gaussian modeling, which should provide essential tools for further understanding the underlying physiological mechanisms of the artery pressure waveform.
Propagation of a laser beam in a plasma
NASA Technical Reports Server (NTRS)
Chapman, J. M.; Kevorkian, J.; Steinhauer, L. C.; Vagners, J.
1975-01-01
This paper shows that for a nonabsorbing medium with a prescribed index of refraction, the effects of beam stability, line focusing, and beam distortion can be predicted from simple ray optics. When the paraxial approximation is used, diffraction effects are examined for Gaussian, Lorentzian, and square beams. Most importantly, it is shown that for a Gaussian beam, diffraction effects can be included simply by adding imaginary solutions to the paraxial ray equations. Also presented are several procedures to extend the paraxial approximation so that the solution will have a domain of validity of greater extent.
Gaussian-Beam/Physical-Optics Design Of Beam Waveguide
NASA Technical Reports Server (NTRS)
Veruttipong, Watt; Chen, Jacqueline C.; Bathker, Dan A.
1993-01-01
In iterative method of designing wideband beam-waveguide feed for paraboloidal-reflector antenna, Gaussian-beam approximation alternated with more nearly exact physical-optics analysis of diffraction. Includes curved and straight reflectors guiding radiation from feed horn to subreflector. For iterative design calculations, curved mirrors mathematically modeled as thin lenses. Each distance Li is combined length of two straight-line segments intersecting at one of flat mirrors. Method useful for designing beam-waveguide reflectors or mirrors required to have diameters approximately less than 30 wavelengths at one or more intended operating frequencies.
Vacuum Stress in Schwarzschild Spacetime
NASA Astrophysics Data System (ADS)
Howard, Kenneth Webster
Vacuum stress in the conformally invariant scalar field in the region exterior to the horizon of a Schwarzschild black hole is examined. In the Hartle-Hawking vacuum state <(phi)('2)> and
Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States
NASA Astrophysics Data System (ADS)
Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas
2017-11-01
Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.
Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States.
Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas
2017-11-03
Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.
Pang, Junbiao; Qin, Lei; Zhang, Chunjie; Zhang, Weigang; Huang, Qingming; Yin, Baocai
2015-12-01
Local coordinate coding (LCC) is a framework to approximate a Lipschitz smooth function by combining linear functions into a nonlinear one. For locally linear classification, LCC requires a coding scheme that heavily determines the nonlinear approximation ability, posing two main challenges: 1) the locality making faraway anchors have smaller influences on current data and 2) the flexibility balancing well between the reconstruction of current data and the locality. In this paper, we address the problem from the theoretical analysis of the simplest local coding schemes, i.e., local Gaussian coding and local student coding, and propose local Laplacian coding (LPC) to achieve the locality and the flexibility. We apply LPC into locally linear classifiers to solve diverse classification tasks. The comparable or exceeded performances of state-of-the-art methods demonstrate the effectiveness of the proposed method.
Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland
2009-04-21
Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.
NASA Astrophysics Data System (ADS)
Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland
2009-04-01
Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.
Symplectic semiclassical wave packet dynamics II: non-Gaussian states
NASA Astrophysics Data System (ADS)
Ohsawa, Tomoki
2018-05-01
We generalize our earlier work on the symplectic/Hamiltonian formulation of the dynamics of the Gaussian wave packet to non-Gaussian semiclassical wave packets. We find the symplectic forms and asymptotic expansions of the Hamiltonians associated with these semiclassical wave packets, and obtain Hamiltonian systems governing their dynamics. Numerical experiments demonstrate that the dynamics give a very good approximation to the short-time dynamics of the expectation values computed by a method based on Egorov’s theorem or the initial value representation.
Accretion rates of protoplanets. II - Gaussian distributions of planetesimal velocities
NASA Technical Reports Server (NTRS)
Greenzweig, Yuval; Lissauer, Jack J.
1992-01-01
In the present growth-rate calculations for a protoplanet that is embedded in a disk of planetesimals with triaxial Gaussian velocity dispersion and uniform surface density, the protoplanet is on a circular orbit. The accretion rate in the two-body approximation is found to be enhanced by a factor of about 3 relative to the case where all planetesimals' eccentricities and inclinations are equal to the rms values of those disk variables having locally Gaussian velocity dispersion. This accretion-rate enhancement should be incorporated by all models that assume a single random velocity for all planetesimals in lieu of a Gaussian distribution.
Correction Factor for Gaussian Deconvolution of Optically Thick Linewidths in Homogeneous Sources
NASA Technical Reports Server (NTRS)
Kastner, S. O.; Bhatia, A. K.
1999-01-01
Profiles of optically thick, non-Gaussian emission line profiles convoluted with Gaussian instrumental profiles are constructed, and are deconvoluted on the usual Gaussian basis to examine the departure from accuracy thereby caused in "measured" linewidths. It is found that "measured" linewidths underestimate the true linewidths of optically thick lines, by a factor which depends on the resolution factor r congruent to Doppler width/instrumental width and on the optical thickness tau(sub 0). An approximating expression is obtained for this factor, applicable in the range of at least 0 <= tau(sub 0) <= 10, which can provide estimates of the true linewidth and optical thickness.
A New Algorithm with Plane Waves and Wavelets for Random Velocity Fields with Many Spatial Scales
NASA Astrophysics Data System (ADS)
Elliott, Frank W.; Majda, Andrew J.
1995-03-01
A new Monte Carlo algorithm for constructing and sampling stationary isotropic Gaussian random fields with power-law energy spectrum, infrared divergence, and fractal self-similar scaling is developed here. The theoretical basis for this algorithm involves the fact that such a random field is well approximated by a superposition of random one-dimensional plane waves involving a fixed finite number of directions. In general each one-dimensional plane wave is the sum of a random shear layer and a random acoustical wave. These one-dimensional random plane waves are then simulated by a wavelet Monte Carlo method for a single space variable developed recently by the authors. The computational results reported in this paper demonstrate remarkable low variance and economical representation of such Gaussian random fields through this new algorithm. In particular, the velocity structure function for an imcorepressible isotropic Gaussian random field in two space dimensions with the Kolmogoroff spectrum can be simulated accurately over 12 decades with only 100 realizations of the algorithm with the scaling exponent accurate to 1.1% and the constant prefactor accurate to 6%; in fact, the exponent of the velocity structure function can be computed over 12 decades within 3.3% with only 10 realizations. Furthermore, only 46,592 active computational elements are utilized in each realization to achieve these results for 12 decades of scaling behavior.
NASA Astrophysics Data System (ADS)
Liu, Peng; Wang, Yanfei
2018-04-01
We study problems associated with seismic data decomposition and migration imaging. We first represent the seismic data utilizing Gaussian beam basis functions, which have nonzero curvature, and then consider the sparse decomposition technique. The sparse decomposition problem is an l0-norm constrained minimization problem. In solving the l0-norm minimization, a polynomial Radon transform is performed to achieve sparsity, and a fast gradient descent method is used to calculate the waveform functions. The waveform functions can subsequently be used for sparse Gaussian beam migration. Compared with traditional sparse Gaussian beam methods, the seismic data can be properly reconstructed employing fewer Gaussian beams with nonzero initial curvature. The migration approach described in this paper is more efficient than the traditional sparse Gaussian beam migration.
NASA Astrophysics Data System (ADS)
Olsen, M. K.
2017-02-01
We propose and analyze a pumped and damped Bose-Hubbard dimer as a source of continuous-variable Einstein-Podolsky-Rosen (EPR) steering with non-Gaussian statistics. We use and compare the results of the approximate truncated Wigner and the exact positive-P representation to calculate and compare the predictions for intensities, second-order quantum correlations, and third- and fourth-order cumulants. We find agreement for intensities and the products of inferred quadrature variances, which indicate that states demonstrating the EPR paradox are present. We find clear signals of non-Gaussianity in the quantum states of the modes from both the approximate and exact techniques, with quantitative differences in their predictions. Our proposed experimental configuration is extrapolated from current experimental techniques and adds another apparatus to the current toolbox of quantum atom optics.
NASA Astrophysics Data System (ADS)
Fletcher, S. J.; Kleist, D.; Ide, K.
2017-12-01
As the resolution of operational global numerical weather prediction system approach the meso-scale, then the assumption of Gaussianity for the errors at these scales may not valid. However, it is also true that synoptic variables that are positive definite in behavior, for example humidity, cannot be optimally analyzed with a Gaussian error structure, where the increment could force the full field to go negative. In this presentation we present the initial work of implementing a mixed Gaussian-lognormal approximation for the temperature and moisture variable in both the ensemble and variational component of the NCEP GSI hybrid EnVAR. We shall also lay the foundation for the implementation of the lognormal approximation to cloud related control variables to allow for a possible more consistent assimilation of cloudy radiances.
Noise effects in nonlinear biochemical signaling
NASA Astrophysics Data System (ADS)
Bostani, Neda; Kessler, David A.; Shnerb, Nadav M.; Rappel, Wouter-Jan; Levine, Herbert
2012-01-01
It has been generally recognized that stochasticity can play an important role in the information processing accomplished by reaction networks in biological cells. Most treatments of that stochasticity employ Gaussian noise even though it is a priori obvious that this approximation can violate physical constraints, such as the positivity of chemical concentrations. Here, we show that even when such nonphysical fluctuations are rare, an exact solution of the Gaussian model shows that the model can yield unphysical results. This is done in the context of a simple incoherent-feedforward model which exhibits perfect adaptation in the deterministic limit. We show how one can use the natural separation of time scales in this model to yield an approximate model, that is analytically solvable, including its dynamical response to an environmental change. Alternatively, one can employ a cutoff procedure to regularize the Gaussian result.
NASA Astrophysics Data System (ADS)
Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio; Behler, Jörg; Csányi, Gábor; Ceriotti, Michele; Götz, Andreas W.; Paesani, Francesco
2018-06-01
The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.
A test of the adhesion approximation for gravitational clustering
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Shandarin, Sergei; Weinberg, David H.
1993-01-01
We quantitatively compare a particle implementation of the adhesion approximation to fully non-linear, numerical 'N-body' simulations. Our primary tool, cross-correlation of N-body simulations with the adhesion approximation, indicates good agreement, better than that found by the same test performed with the Zel-dovich approximation (hereafter ZA). However, the cross-correlation is not as good as that of the truncated Zel-dovich approximation (TZA), obtained by applying the Zel'dovich approximation after smoothing the initial density field with a Gaussian filter. We confirm that the adhesion approximation produces an excessively filamentary distribution. Relative to the N-body results, we also find that: (a) the power spectrum obtained from the adhesion approximation is more accurate than that from ZA or TZA, (b) the error in the phase angle of Fourier components is worse than that from TZA, and (c) the mass distribution function is more accurate than that from ZA or TZA. It appears that adhesion performs well statistically, but that TZA is more accurate dynamically, in the sense of moving mass to the right place.
A test of the adhesion approximation for gravitational clustering
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Shandarin, Sergei F.; Weinberg, David H.
1994-01-01
We quantitatively compare a particle implementation of the adhesion approximation to fully nonlinear, numerical 'N-body' simulations. Our primary tool, cross-correlation of N-body simulations with the adhesion approximation, indicates good agreement, better than that found by the same test performed with the Zel'dovich approximation (hereafter ZA). However, the cross-correlation is not as good as that of the truncated Zel'dovich approximation (TZA), obtained by applying the Zel'dovich approximation after smoothing the initial density field with a Gaussian filter. We confirm that the adhesion approximation produces an excessively filamentary distribution. Relative to the N-body results, we also find that: (a) the power spectrum obtained from the adhesion approximation is more accurate that that from ZA to TZA, (b) the error in the phase angle of Fourier components is worse that that from TZA, and (c) the mass distribution function is more accurate than that from ZA or TZA. It appears that adhesion performs well statistically, but that TZA is more accurate dynamically, in the sense of moving mass to the right place.
Some error bounds for K-iterated Gaussian recursive filters
NASA Astrophysics Data System (ADS)
Cuomo, Salvatore; Galletti, Ardelio; Giunta, Giulio; Marcellino, Livia
2016-10-01
Recursive filters (RFs) have achieved a central role in several research fields over the last few years. For example, they are used in image processing, in data assimilation and in electrocardiogram denoising. More in particular, among RFs, the Gaussian RFs are an efficient computational tool for approximating Gaussian-based convolutions and are suitable for digital image processing and applications of the scale-space theory. As is a common knowledge, the Gaussian RFs, applied to signals with support in a finite domain, generate distortions and artifacts, mostly localized at the boundaries. Heuristic and theoretical improvements have been proposed in literature to deal with this issue (namely boundary conditions). They include the case in which a Gaussian RF is applied more than once, i.e. the so called K-iterated Gaussian RFs. In this paper, starting from a summary of the comprehensive mathematical background, we consider the case of the K-iterated first-order Gaussian RF and provide the study of its numerical stability and some component-wise theoretical error bounds.
NASA Astrophysics Data System (ADS)
Libera, A.; de Barros, F.; Riva, M.; Guadagnini, A.
2016-12-01
Managing contaminated groundwater systems is an arduous task for multiple reasons. First, subsurface hydraulic properties are heterogeneous and the high costs associated with site characterization leads to data scarcity (therefore, model predictions are uncertain). Second, it is common for water agencies to schedule groundwater extraction through a temporal sequence of pumping rates to maximize the benefits to anthropogenic activities and minimize the environmental footprint of the withdrawal operations. The temporal variability in pumping rates and aquifer heterogeneity affect dilution rates of contaminant plumes and chemical concentration breakthrough curves (BTCs) at the well. While contaminant transport under steady-state pumping is widely studied, the manner in which a given time-varying pumping schedule affects contaminant plume behavior is tackled only marginally. At the same time, most studies focus on the impact of Gaussian random hydraulic conductivity (K) fields on transport. Here, we systematically analyze the significance of the random space function (RSF) model characterizing K in the presence of distinct pumping operations on the uncertainty of the concentration BTC at the operating well. We juxtapose Monte Carlo based numerical results associated with two models: (a) a recently proposed Generalized Sub-Gaussian model which allows capturing non-Gaussian statistical scaling features of RSFs such as hydraulic conductivity, and (b) the commonly used Gaussian field approximation. Our novel results include an appraisal of the coupled effect of (a) the model employed to depict the random spatial variability of K and (b) transient flow regime, as induced by a temporally varying pumping schedule, on the concentration BTC at the operating well. We systematically quantify the sensitivity of the uncertainty in the contaminant BTC to the RSF model adopted for K (non-Gaussian or Gaussian) in the presence of diverse well pumping schedules. Results contribute to determine conditions under which any of these two key factors prevails on the other.
Richardson, Magnus J E; Gerstner, Wulfram
2005-04-01
The subthreshold membrane voltage of a neuron in active cortical tissue is a fluctuating quantity with a distribution that reflects the firing statistics of the presynaptic population. It was recently found that conductance-based synaptic drive can lead to distributions with a significant skew. Here it is demonstrated that the underlying shot noise caused by Poissonian spike arrival also skews the membrane distribution, but in the opposite sense. Using a perturbative method, we analyze the effects of shot noise on the distribution of synaptic conductances and calculate the consequent voltage distribution. To first order in the perturbation theory, the voltage distribution is a gaussian modulated by a prefactor that captures the skew. The gaussian component is identical to distributions derived using current-based models with an effective membrane time constant. The well-known effective-time-constant approximation can therefore be identified as the leading-order solution to the full conductance-based model. The higher-order modulatory prefactor containing the skew comprises terms due to both shot noise and conductance fluctuations. The diffusion approximation misses these shot-noise effects implying that analytical approaches such as the Fokker-Planck equation or simulation with filtered white noise cannot be used to improve on the gaussian approximation. It is further demonstrated that quantities used for fitting theory to experiment, such as the voltage mean and variance, are robust against these non-Gaussian effects. The effective-time-constant approximation is therefore relevant to experiment and provides a simple analytic base on which other pertinent biological details may be added.
Proton-deuteron double scattering
NASA Technical Reports Server (NTRS)
Wilson, J. W.
1974-01-01
A simple but accurate form for the proton-deuteron elastic double scattering amplitude, which includes both projectile and target recoil motion and is applicable at all momentum transfer, is derived by taking advantage of the restricted range of Fermi momentum allowed by the deuteron wave function. This amplitude can be directly compared to approximations which have neglected target recoil or are limited to small momentum transfer; the target recoil and large momentum transfer effects are evaluated explicitly within the context of a Gaussian model.
Tachyon warm-intermediate inflationary universe model in high dissipative regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setare, M.R.; Kamali, V., E-mail: rezakord@ipm.ir, E-mail: vkamali1362@gmail.com
2012-08-01
We consider tachyonic warm-inflationary models in the context of intermediate inflation. We derive the characteristics of this model in slow-roll approximation and develop our model in two cases, 1- For a constant dissipative parameter Γ. 2- Γ as a function of tachyon field φ. We also describe scalar and tensor perturbations for this scenario. The parameters appearing in our model are constrained by recent observational data. We find that the level of non-Gaussianity for this model is comparable with non-tachyonic model.
A mathematical study of a random process proposed as an atmospheric turbulence model
NASA Technical Reports Server (NTRS)
Sidwell, K.
1977-01-01
A random process is formed by the product of a local Gaussian process and a random amplitude process, and the sum of that product with an independent mean value process. The mathematical properties of the resulting process are developed, including the first and second order properties and the characteristic function of general order. An approximate method for the analysis of the response of linear dynamic systems to the process is developed. The transition properties of the process are also examined.
NASA Astrophysics Data System (ADS)
Franović, Igor; Todorović, Kristina; Vasović, Nebojša; Burić, Nikola
2014-02-01
We consider the approximations behind the typical mean-field model derived for a class of systems made up of type II excitable units influenced by noise and coupling delays. The formulation of the two approximations, referred to as the Gaussian and the quasi-independence approximation, as well as the fashion in which their validity is verified, are adapted to reflect the essential properties of the underlying system. It is demonstrated that the failure of the mean-field model associated with the breakdown of the quasi-independence approximation can be predicted by the noise-induced bistability in the dynamics of the mean-field system. As for the Gaussian approximation, its violation is related to the increase of noise intensity, but the actual condition for failure can be cast in qualitative, rather than quantitative terms. We also discuss how the fulfillment of the mean-field approximations affects the statistics of the first return times for the local and global variables, further exploring the link between the fulfillment of the quasi-independence approximation and certain forms of synchronization between the individual units.
Kernel K-Means Sampling for Nyström Approximation.
He, Li; Zhang, Hong
2018-05-01
A fundamental problem in Nyström-based kernel matrix approximation is the sampling method by which training set is built. In this paper, we suggest to use kernel -means sampling, which is shown in our works to minimize the upper bound of a matrix approximation error. We first propose a unified kernel matrix approximation framework, which is able to describe most existing Nyström approximations under many popular kernels, including Gaussian kernel and polynomial kernel. We then show that, the matrix approximation error upper bound, in terms of the Frobenius norm, is equal to the -means error of data points in kernel space plus a constant. Thus, the -means centers of data in kernel space, or the kernel -means centers, are the optimal representative points with respect to the Frobenius norm error upper bound. Experimental results, with both Gaussian kernel and polynomial kernel, on real-world data sets and image segmentation tasks show the superiority of the proposed method over the state-of-the-art methods.
Gaussian-input Gaussian mixture model for representing density maps and atomic models.
Kawabata, Takeshi
2018-07-01
A new Gaussian mixture model (GMM) has been developed for better representations of both atomic models and electron microscopy 3D density maps. The standard GMM algorithm employs an EM algorithm to determine the parameters. It accepted a set of 3D points with weights, corresponding to voxel or atomic centers. Although the standard algorithm worked reasonably well; however, it had three problems. First, it ignored the size (voxel width or atomic radius) of the input, and thus it could lead to a GMM with a smaller spread than the input. Second, the algorithm had a singularity problem, as it sometimes stopped the iterative procedure due to a Gaussian function with almost zero variance. Third, a map with a large number of voxels required a long computation time for conversion to a GMM. To solve these problems, we have introduced a Gaussian-input GMM algorithm, which considers the input atoms or voxels as a set of Gaussian functions. The standard EM algorithm of GMM was extended to optimize the new GMM. The new GMM has identical radius of gyration to the input, and does not suddenly stop due to the singularity problem. For fast computation, we have introduced a down-sampled Gaussian functions (DSG) by merging neighboring voxels into an anisotropic Gaussian function. It provides a GMM with thousands of Gaussian functions in a short computation time. We also have introduced a DSG-input GMM: the Gaussian-input GMM with the DSG as the input. This new algorithm is much faster than the standard algorithm. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yin, Biwei; Liang, Chia-Pin; Vuong, Barry; Tearney, Guillermo J.
2017-02-01
Conventional OCT images, obtained using a focused Gaussian beam have a lateral resolution of approximately 30 μm and a depth of focus (DOF) of 2-3 mm, defined as the confocal parameter (twice of Gaussian beam Rayleigh range). Improvement of lateral resolution without sacrificing imaging range requires techniques that can extend the DOF. Previously, we described a self-imaging wavefront division optical system that provided an estimated one order of magnitude DOF extension. In this study, we further investigate the properties of the coaxially focused multi-mode (CAFM) beam created by this self-imaging wavefront division optical system and demonstrate its feasibility for real-time biological tissue imaging. Gaussian beam and CAFM beam fiber optic probes with similar numerical apertures (objective NA≈0.5) were fabricated, providing lateral resolutions of approximately 2 μm. Rigorous lateral resolution characterization over depth was performed for both probes. The CAFM beam probe was found to be able to provide a DOF that was approximately one order of magnitude greater than that of Gaussian beam probe. By incorporating the CAFM beam fiber optic probe into a μOCT system with 1.5 μm axial resolution, we were able to acquire cross-sectional images of swine small intestine ex vivo, enabling the visualization of subcellular structures, providing high quality OCT images over more than a 300 μm depth range.
NASA Technical Reports Server (NTRS)
Luo, Xiaochun; Schramm, David N.
1993-01-01
One of the crucial aspects of density perturbations that are produced by the standard inflation scenario is that they are Gaussian where seeds produced by topological defects tend to be non-Gaussian. The three-point correlation function of the temperature anisotropy of the cosmic microwave background radiation (CBR) provides a sensitive test of this aspect of the primordial density field. In this paper, this function is calculated in the general context of various allowed non-Gaussian models. It is shown that the Cosmic Background Explorer and the forthcoming South Pole and balloon CBR anisotropy data may be able to provide a crucial test of the Gaussian nature of the perturbations.
NASA Astrophysics Data System (ADS)
Siu-Siu, Guo; Qingxuan, Shi
2017-03-01
In this paper, single-degree-of-freedom (SDOF) systems combined to Gaussian white noise and Gaussian/non-Gaussian colored noise excitations are investigated. By expressing colored noise excitation as a second-order filtered white noise process and introducing colored noise as an additional state variable, the equation of motion for SDOF system under colored noise is then transferred artificially to multi-degree-of-freedom (MDOF) system under white noise excitations with four-coupled first-order differential equations. As a consequence, corresponding Fokker-Planck-Kolmogorov (FPK) equation governing the joint probabilistic density function (PDF) of state variables increases to 4-dimension (4-D). Solution procedure and computer programme become much more sophisticated. The exponential-polynomial closure (EPC) method, widely applied for cases of SDOF systems under white noise excitations, is developed and improved for cases of systems under colored noise excitations and for solving the complex 4-D FPK equation. On the other hand, Monte Carlo simulation (MCS) method is performed to test the approximate EPC solutions. Two examples associated with Gaussian and non-Gaussian colored noise excitations are considered. Corresponding band-limited power spectral densities (PSDs) for colored noise excitations are separately given. Numerical studies show that the developed EPC method provides relatively accurate estimates of the stationary probabilistic solutions, especially the ones in the tail regions of the PDFs. Moreover, statistical parameter of mean-up crossing rate (MCR) is taken into account, which is important for reliability and failure analysis. Hopefully, our present work could provide insights into the investigation of structures under random loadings.
NASA Astrophysics Data System (ADS)
Bourouaine, Sofiane; Perez, Jean C.
2018-05-01
In this Letter, we present an analysis of two-point, two-time correlation functions from high-resolution numerical simulations of Reflection-driven Alfvén Turbulence near the Alfvén critical point r c. The simulations model the turbulence in a prescribed background solar wind model chosen to match observational constraints. This analysis allows us to investigate the temporal decorrelation of solar wind turbulence and the validity of Taylor’s approximation near the heliocentric distance r c, which Parker Solar Probe (PSP) is expected to explore in the coming years. The simulations show that the temporal decay of the Fourier-transformed turbulence decorrelation function is better described by a Gaussian model rather than a pure exponential time decay, and that the decorrelation frequency is almost linear with perpendicular wave number k ⊥ (perpendicular with respect to the background magnetic field {{\\boldsymbol{B}}}0). Based on the simulations, we conclude that Taylor’s approximation cannot be used in this instance to provide a connection between the frequency ω of the time signal (measured in the probe frame) and the wavevector k ⊥ of the fluctuations because the frequency k ⊥ V sc (V sc is the spacecraft speed) near r c is comparable to the estimated decorrelation frequency. However, the use of Taylor’s approximation still leads to the correct spectral indices of the power spectra measured at the spacecraft frame. In this Letter, based on a Gaussian model, we suggest a modified relationship between ω and k ⊥, which might be useful in the interpretation of future PSP measurements.
Lin, Guoxing
2016-11-21
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) techniques have been increasingly used to study anomalous diffusion in nuclear magnetic resonance and magnetic resonance imaging. However, the interpretation of PFG anomalous diffusion is complicated. Moreover, the exact signal attenuation expression including the finite gradient pulse width effect has not been obtained based on fractional derivatives for PFG anomalous diffusion. In this paper, a new method, a Mainardi-Luchko-Pagnini (MLP) phase distribution approximation, is proposed to describe PFG fractional diffusion. MLP phase distribution is a non-Gaussian phase distribution. From the fractional derivative model, both the probability density function (PDF) of a spin in real space and the PDF of the spin's accumulating phase shift in virtual phase space are MLP distributions. The MLP phase distribution leads to a Mittag-Leffler function based PFG signal attenuation, which differs significantly from the exponential attenuation for normal diffusion and from the stretched exponential attenuation for fractional diffusion based on the fractal derivative model. A complete signal attenuation expression E α (-D f b α,β * ) including the finite gradient pulse width effect was obtained and it can handle all three types of PFG fractional diffusions. The result was also extended in a straightforward way to give a signal attenuation expression of fractional diffusion in PFG intramolecular multiple quantum coherence experiments, which has an n β dependence upon the order of coherence which is different from the familiar n 2 dependence in normal diffusion. The results obtained in this study are in agreement with the results from the literature. The results in this paper provide a set of new, convenient approximation formalisms to interpret complex PFG fractional diffusion experiments.
Nonlinear laser pulse response in a crystalline lens.
Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D
2016-04-01
The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated.
NASA Astrophysics Data System (ADS)
Joubert-Doriol, Loïc; Izmaylov, Artur F.
2018-03-01
A new methodology of simulating nonadiabatic dynamics using frozen-width Gaussian wavepackets within the moving crude adiabatic representation with the on-the-fly evaluation of electronic structure is presented. The main feature of the new approach is the elimination of any global or local model representation of electronic potential energy surfaces; instead, the electron-nuclear interaction is treated explicitly using the Gaussian integration. As a result, the new scheme does not introduce any uncontrolled approximations. The employed variational principle ensures the energy conservation and leaves the number of electronic and nuclear basis functions as the only parameter determining the accuracy. To assess performance of the approach, a model with two electronic and two nuclear spacial degrees of freedom containing conical intersections between potential energy surfaces has been considered. Dynamical features associated with nonadiabatic transitions and nontrivial geometric (or Berry) phases were successfully reproduced within a limited basis expansion.
Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data
Wikle, C.K.; Royle, J. Andrew
2005-01-01
Many ecological processes exhibit spatial structure that changes over time in a coherent, dynamical fashion. This dynamical component is often ignored in the design of spatial monitoring networks. Furthermore, ecological variables related to processes such as habitat are often non-Gaussian (e.g. Poisson or log-normal). We demonstrate that a simulation-based design approach can be used in settings where the data distribution is from a spatio-temporal exponential family. The key random component in the conditional mean function from this distribution is then a spatio-temporal dynamic process. Given the computational burden of estimating the expected utility of various designs in this setting, we utilize an extended Kalman filter approximation to facilitate implementation. The approach is motivated by, and demonstrated on, the problem of selecting sampling locations to estimate July brood counts in the prairie pothole region of the U.S.
Near-field spectral shift of a zero-order Bessel beam scattered from a spherical particle
NASA Astrophysics Data System (ADS)
Chen, Feinan; Li, Jia; Belafhal, Abdelmajid; Chafiq, Abdelghani; Sun, Xiaobing
2018-06-01
Within the accuracy of the first-order Born approximation, expressions are derived for the near-zone spectrum of a zero-order Bessel beam scattered from a spherical particle whose correlation function satisfies a Gaussian distribution. The dependence of the spectral shift and spectral switch of the scattered field on the effective size of the scattering potential (ESSP) are determined by numerical simulations. It is shown that the spectral shift of the scattered field does not occur along the longitudinal propagation direction. Furthermore, when the medium’s ESSP is comparable with the central wavelength of the beam, the spectrum of the scattered field loses the Gaussian distribution and exhibits a blue shift as the reference point sufficiently far away from central origin. These results may have prospective applications in guiding tiny particles when the near-zone spectrums of scattered beams are captured and analyzed.
A Distant, X-Ray Luminous Cluster of Galaxies at Redshift 0.83
NASA Technical Reports Server (NTRS)
Donahue, Megan
1999-01-01
We have observed the most distant (= 0.829) cluster of galaxies in the Einstein Extended Medium Sensitivity Survey (EMSS), with the ASCA and ROSAT satellites. We find an X-ray temperature of 12.3(sup 3.1, sub 2.2) keV for this cluster, and the ROSAT map reveals significant substructure. The high temperature of MS1054-0321 is consistent with both its approximate velocity dispersion, based on the redshifts of 12 cluster members we have obtained at the Keck and the Canada-France-Hawaii telescopes, and with its weak lensing signature. The X-ray temperature of this cluster implies a virial mass approximately 7.4 x 10(exp 14) /h solar mass, if the mean matter density in the universe equals the critical value (OMEGA(sub 0) = 1), or larger if OMEGA(sub 0) < 1. Finding such a hot, massive cluster in the EMSS is extremely improbable if clusters grew from Gaussian perturbations in an OMEGA(sub 0) = 1 universe. Combining the assumptions that OMEGA(sub 0) = 1 and that the initial perturbations were Gaussian with the observed X-ray temperature function at low redshift, we show that this probability of this cluster occurring in the volume sampled by the EMSS is less than a few times 10(exp -5). Nor is MS1054-0321 the only hot cluster at high redshift; the only two other z > 0.5 EMSS clusters already observed with ASCA also have temperatures exceeding 8 keV. Assuming again that the initial perturbations were Gaussian and OMEGA(sub 0) = 1, we find that each one is improbable at the < 10(exp -2) level. These observations, along with the fact that these luminosities and temperatures of the high-z clusters all agree with the low-z L(sub x) - T(sub x) relation, argue strongly that OMEGA(sub 0) < 1. Otherwise, the initial perturbations must be non-Gaussian, if these clusters' temperatures do indeed reflect their gravitational potentials.
Description of high-power laser radiation in the paraxial approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milant'ev, V P; Karnilovich, S P; Shaar, Ya N
2015-11-30
We consider the feasibility of an adequate description of a laser pulse of arbitrary shape within the framework of the paraxial approximation. In this approximation, using a parabolic equation and an expansion in the small parameter, expressions are obtained for the field of a sufficiently intense laser radiation given in the form of axially symmetric Hermite – Gaussian beams of arbitrary mode and arbitrary polarisation. It is shown that in the case of sufficiently short pulses, corrections to the transverse components of the laser field are the first-order rather than the secondorder quantities in the expansion in the small parameter.more » The peculiarities of the description of higher-mode Hermite – Gaussian beams are outlined. (light wave transformation)« less
Exact posterior computation in non-conjugate Gaussian location-scale parameters models
NASA Astrophysics Data System (ADS)
Andrade, J. A. A.; Rathie, P. N.
2017-12-01
In Bayesian analysis the class of conjugate models allows to obtain exact posterior distributions, however this class quite restrictive in the sense that it involves only a few distributions. In fact, most of the practical applications involves non-conjugate models, thus approximate methods, such as the MCMC algorithms, are required. Although these methods can deal with quite complex structures, some practical problems can make their applications quite time demanding, for example, when we use heavy-tailed distributions, convergence may be difficult, also the Metropolis-Hastings algorithm can become very slow, in addition to the extra work inevitably required on choosing efficient candidate generator distributions. In this work, we draw attention to the special functions as a tools for Bayesian computation, we propose an alternative method for obtaining the posterior distribution in Gaussian non-conjugate models in an exact form. We use complex integration methods based on the H-function in order to obtain the posterior distribution and some of its posterior quantities in an explicit computable form. Two examples are provided in order to illustrate the theory.
Yi, Qu; Zhan-ming, Li; Er-chao, Li
2012-11-01
A new fault detection and diagnosis (FDD) problem via the output probability density functions (PDFs) for non-gausian stochastic distribution systems (SDSs) is investigated. The PDFs can be approximated by radial basis functions (RBFs) neural networks. Different from conventional FDD problems, the measured information for FDD is the output stochastic distributions and the stochastic variables involved are not confined to Gaussian ones. A (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network. In this work, a nonlinear adaptive observer-based fault detection and diagnosis algorithm is presented by introducing the tuning parameter so that the residual is as sensitive as possible to the fault. Stability and Convergency analysis is performed in fault detection and fault diagnosis analysis for the error dynamic system. At last, an illustrated example is given to demonstrate the efficiency of the proposed algorithm, and satisfactory results have been obtained. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Bokor, Nándor; Davidson, Nir
2006-01-15
The properties of the focal spot for 4pi focusing with radially polarized first-order Laguerre-Gaussian beams are calculated. It is shown that a focal spot that has an extremely sharp dark region at the center and an almost-perfect spherical symmetry can be achieved. When such a hollow dark spherical spot is used in 4pi fluorescence depletion microscopy, an axial FWHM spot size of approximately 39 nm and a transverse FWHM spot size of approximately 64 nm can be achieved simultaneously in a practical system.
NASA Astrophysics Data System (ADS)
Urunkar, T. U.; Valkunde, A. T.; Vhanmore, B. D.; Gavade, K. M.; Patil, S. D.; Takale, M. V.
2018-05-01
It is quite known that critical power of the laser plays vital role in the propagation of Gaussian laser beam in collisionless plasma. The nonlinearity in dielectric constant considered herein is due to the ponderomotive force. In the present analysis, the interval of critical beam power has been explored to sustain the competition between diffraction and self-focusing of Gaussian laser beam during propagation in collisionless magnetized plasma. Differential equation for beam-width parameter has been established by using WKB and paraxial approximations under parabolic equation approach. The effect of critical power on the propagation of Gaussian laser beam has been presented graphically and discussed.
Slow-roll corrections in multi-field inflation: a separate universes approach
NASA Astrophysics Data System (ADS)
Karčiauskas, Mindaugas; Kohri, Kazunori; Mori, Taro; White, Jonathan
2018-05-01
In view of cosmological parameters being measured to ever higher precision, theoretical predictions must also be computed to an equally high level of precision. In this work we investigate the impact on such predictions of relaxing some of the simplifying assumptions often used in these computations. In particular, we investigate the importance of slow-roll corrections in the computation of multi-field inflation observables, such as the amplitude of the scalar spectrum Pζ, its spectral tilt ns, the tensor-to-scalar ratio r and the non-Gaussianity parameter fNL. To this end we use the separate universes approach and δ N formalism, which allows us to consider slow-roll corrections to the non-Gaussianity of the primordial curvature perturbation as well as corrections to its two-point statistics. In the context of the δ N expansion, we divide slow-roll corrections into two categories: those associated with calculating the correlation functions of the field perturbations on the initial flat hypersurface and those associated with determining the derivatives of the e-folding number with respect to the field values on the initial flat hypersurface. Using the results of Nakamura & Stewart '96, corrections of the first kind can be written in a compact form. Corrections of the second kind arise from using different levels of slow-roll approximation in solving for the super-horizon evolution, which in turn corresponds to using different levels of slow-roll approximation in the background equations of motion. We consider four different levels of approximation and apply the results to a few example models. The various approximations are also compared to exact numerical solutions.
Least square regularized regression in sum space.
Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu
2013-04-01
This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.
Digital image analysis of a turbulent flame
NASA Astrophysics Data System (ADS)
Zucherman, L.; Kawall, J. G.; Keffer, J. F.
1988-01-01
Digital image analysis of cine pictures of an unconfined rich premixed turbulent flame has been used to determine structural characteristics of the turbulent/non-turbulent interface of the flame. The results, comprising various moments of the interface position, probability density functions and correlation functions, establish that the instantaneous flame-interface position is essentially a Gaussian random variable with a superimposed quasi-periodical component. The latter is ascribable to a pulsation caused by the convection and the stretching of ring vortices present within the flame. To a first approximation, the flame can be considered similar to a three-dimensional axisymmetric turbulent jet, with superimposed ring vortices, in which combustion occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.
2000-05-08
The Krieger, Li, and Iafrate approximation to the optimized effective potential including the self-interaction correction for density functional theory has been implemented in a molecular code, NWChem, that uses Gaussian functions to represent the Kohn and Sham spin-orbitals. The differences between the implementation of the self-interaction correction in codes where planewaves are used with an optimized effective potential are discussed. The importance of the localization of the spin-orbitals to maximize the exchange-correlation of the self-interaction correction is discussed. We carried out exchange-only calculations to compare the results obtained with these approximations, and those obtained with the local spin density approximation,more » the generalized gradient approximation and Hartree-Fock theory. Interesting results for the energy difference (GAP) between the highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, (spin-orbital energies of closed shell atoms and molecules) using the optimized effective potential and the self-interaction correction have been obtained. The effect of the diffuse character of the basis set on the HOMO and LUMO eigenvalues at the various levels is discussed. Total energies obtained with the optimized effective potential and the self-interaction correction show that the exchange energy with these approximations is overestimated and this will be an important topic for future work. (c) 2000 American Institute of Physics.« less
This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgorithms--theory and practice.
Harmany, Zachary T; Marcia, Roummel F; Willett, Rebecca M
2012-03-01
Observations in many applications consist of counts of discrete events, such as photons hitting a detector, which cannot be effectively modeled using an additive bounded or Gaussian noise model, and instead require a Poisson noise model. As a result, accurate reconstruction of a spatially or temporally distributed phenomenon (f*) from Poisson data (y) cannot be effectively accomplished by minimizing a conventional penalized least-squares objective function. The problem addressed in this paper is the estimation of f* from y in an inverse problem setting, where the number of unknowns may potentially be larger than the number of observations and f* admits sparse approximation. The optimization formulation considered in this paper uses a penalized negative Poisson log-likelihood objective function with nonnegativity constraints (since Poisson intensities are naturally nonnegative). In particular, the proposed approach incorporates key ideas of using separable quadratic approximations to the objective function at each iteration and penalization terms related to l1 norms of coefficient vectors, total variation seminorms, and partition-based multiscale estimation methods.
Approximations to camera sensor noise
NASA Astrophysics Data System (ADS)
Jin, Xiaodan; Hirakawa, Keigo
2013-02-01
Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.
Random medium model for cusping of plane waves.
Li, Jia; Korotkova, Olga
2017-09-01
We introduce a model for a three-dimensional (3D) Schell-type stationary medium whose degree of potential's correlation satisfies the Fractional Multi-Gaussian (FMG) function. Compared with the scattered profile produced by the Gaussian Schell-model (GSM) medium, the Fractional Multi-Gaussian Schell-model (FMGSM) medium gives rise to a sharp concave intensity apex in the scattered field. This implies that the FMGSM medium also accounts for a larger than Gaussian's power in the bucket (PIB) in the forward scattering direction, hence being a better candidate than the GSM medium for generating highly-focused (cusp-like) scattered profiles in the far zone. Compared to other mathematical models for the medium's correlation function which can produce similar cusped scattered profiles the FMG function offers unprecedented tractability being the weighted superposition of Gaussian functions. Our results provide useful applications to energy counter problems and particle manipulation by weakly scattered fields.
Speech Enhancement Using Gaussian Scale Mixture Models
Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.
2011-01-01
This paper presents a novel probabilistic approach to speech enhancement. Instead of a deterministic logarithmic relationship, we assume a probabilistic relationship between the frequency coefficients and the log-spectra. The speech model in the log-spectral domain is a Gaussian mixture model (GMM). The frequency coefficients obey a zero-mean Gaussian whose covariance equals to the exponential of the log-spectra. This results in a Gaussian scale mixture model (GSMM) for the speech signal in the frequency domain, since the log-spectra can be regarded as scaling factors. The probabilistic relation between frequency coefficients and log-spectra allows these to be treated as two random variables, both to be estimated from the noisy signals. Expectation-maximization (EM) was used to train the GSMM and Bayesian inference was used to compute the posterior signal distribution. Because exact inference of this full probabilistic model is computationally intractable, we developed two approaches to enhance the efficiency: the Laplace method and a variational approximation. The proposed methods were applied to enhance speech corrupted by Gaussian noise and speech-shaped noise (SSN). For both approximations, signals reconstructed from the estimated frequency coefficients provided higher signal-to-noise ratio (SNR) and those reconstructed from the estimated log-spectra produced lower word recognition error rate because the log-spectra fit the inputs to the recognizer better. Our algorithms effectively reduced the SSN, which algorithms based on spectral analysis were not able to suppress. PMID:21359139
Efficient method of evaluation for Gaussian Hartree-Fock exchange operator for Gau-PBE functional
NASA Astrophysics Data System (ADS)
Song, Jong-Won; Hirao, Kimihiko
2015-07-01
We previously developed an efficient screened hybrid functional called Gaussian-Perdew-Burke-Ernzerhof (Gau-PBE) [Song et al., J. Chem. Phys. 135, 071103 (2011)] for large molecules and extended systems, which is characterized by the usage of a Gaussian function as a modified Coulomb potential for the Hartree-Fock (HF) exchange. We found that the adoption of a Gaussian HF exchange operator considerably decreases the calculation time cost of periodic systems while improving the reproducibility of the bandgaps of semiconductors. We present a distance-based screening scheme here that is tailored for the Gaussian HF exchange integral that utilizes multipole expansion for the Gaussian two-electron integrals. We found a new multipole screening scheme helps to save the time cost for the HF exchange integration by efficiently decreasing the number of integrals of, specifically, the near field region without incurring substantial changes in total energy. In our assessment on the periodic systems of seven semiconductors, the Gau-PBE hybrid functional with a new screening scheme has 1.56 times the time cost of a pure functional while the previous Gau-PBE was 1.84 times and HSE06 was 3.34 times.
Efficient method of evaluation for Gaussian Hartree-Fock exchange operator for Gau-PBE functional
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jong-Won; Hirao, Kimihiko, E-mail: hirao@riken.jp
2015-07-14
We previously developed an efficient screened hybrid functional called Gaussian-Perdew–Burke–Ernzerhof (Gau-PBE) [Song et al., J. Chem. Phys. 135, 071103 (2011)] for large molecules and extended systems, which is characterized by the usage of a Gaussian function as a modified Coulomb potential for the Hartree-Fock (HF) exchange. We found that the adoption of a Gaussian HF exchange operator considerably decreases the calculation time cost of periodic systems while improving the reproducibility of the bandgaps of semiconductors. We present a distance-based screening scheme here that is tailored for the Gaussian HF exchange integral that utilizes multipole expansion for the Gaussian two-electron integrals.more » We found a new multipole screening scheme helps to save the time cost for the HF exchange integration by efficiently decreasing the number of integrals of, specifically, the near field region without incurring substantial changes in total energy. In our assessment on the periodic systems of seven semiconductors, the Gau-PBE hybrid functional with a new screening scheme has 1.56 times the time cost of a pure functional while the previous Gau-PBE was 1.84 times and HSE06 was 3.34 times.« less
Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field
NASA Astrophysics Data System (ADS)
Tang, Xu-Bing; Gao, Fang; Wang, Yao-Xiong; Kuang, Sen; Shuang, Feng
2015-03-01
Recent studies show that quantum non-Gaussian states or using non-Gaussian operations can improve entanglement distillation, quantum swapping, teleportation, and cloning. In this work, employing a strategy of non-Gaussian operations (namely subtracting and adding a single photon), we propose a scheme to generate non-Gaussian quantum states named single-photon-added and -subtracted coherent (SPASC) superposition states by implementing Bell measurements, and then investigate the corresponding nonclassical features. By squeezed the input field, we demonstrate that robustness of non-Gaussianity can be improved. Controllable phase space distribution offers the possibility to approximately generate a displaced coherent superposition states (DCSS). The fidelity can reach up to F ≥ 0.98 and F ≥ 0.90 for size of amplitude z = 1.53 and 2.36, respectively. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203061 and 61074052), the Outstanding Young Talent Foundation of Anhui Province, China (Grant No. 2012SQRL040), and the Natural Science Foundation of Anhui Province, China (Grant No. KJ2012Z035).
A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo
A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smallwood, D.O.
It is recognized that some dynamic and noise environments are characterized by time histories which are not Gaussian. An example is high intensity acoustic noise. Another example is some transportation vibration. A better simulation of these environments can be generated if a zero mean non-Gaussian time history can be reproduced with a specified auto (or power) spectral density (ASD or PSD) and a specified probability density function (pdf). After the required time history is synthesized, the waveform can be used for simulation purposes. For example, modem waveform reproduction techniques can be used to reproduce the waveform on electrodynamic or electrohydraulicmore » shakers. Or the waveforms can be used in digital simulations. A method is presented for the generation of realizations of zero mean non-Gaussian random time histories with a specified ASD, and pdf. First a Gaussian time history with the specified auto (or power) spectral density (ASD) is generated. A monotonic nonlinear function relating the Gaussian waveform to the desired realization is then established based on the Cumulative Distribution Function (CDF) of the desired waveform and the known CDF of a Gaussian waveform. The established function is used to transform the Gaussian waveform to a realization of the desired waveform. Since the transformation preserves the zero-crossings and peaks of the original Gaussian waveform, and does not introduce any substantial discontinuities, the ASD is not substantially changed. Several methods are available to generate a realization of a Gaussian distributed waveform with a known ASD. The method of Smallwood and Paez (1993) is an example. However, the generation of random noise with a specified ASD but with a non-Gaussian distribution is less well known.« less
GAUSSIAN BEAM LASER RESONATOR PROGRAM
NASA Technical Reports Server (NTRS)
Cross, P. L.
1994-01-01
In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.
Simulation and analysis of scalable non-Gaussian statistically anisotropic random functions
NASA Astrophysics Data System (ADS)
Riva, Monica; Panzeri, Marco; Guadagnini, Alberto; Neuman, Shlomo P.
2015-12-01
Many earth and environmental (as well as other) variables, Y, and their spatial or temporal increments, ΔY, exhibit non-Gaussian statistical scaling. Previously we were able to capture some key aspects of such scaling by treating Y or ΔY as standard sub-Gaussian random functions. We were however unable to reconcile two seemingly contradictory observations, namely that whereas sample frequency distributions of Y (or its logarithm) exhibit relatively mild non-Gaussian peaks and tails, those of ΔY display peaks that grow sharper and tails that become heavier with decreasing separation distance or lag. Recently we overcame this difficulty by developing a new generalized sub-Gaussian model which captures both behaviors in a unified and consistent manner, exploring it on synthetically generated random functions in one dimension (Riva et al., 2015). Here we extend our generalized sub-Gaussian model to multiple dimensions, present an algorithm to generate corresponding random realizations of statistically isotropic or anisotropic sub-Gaussian functions and illustrate it in two dimensions. We demonstrate the accuracy of our algorithm by comparing ensemble statistics of Y and ΔY (such as, mean, variance, variogram and probability density function) with those of Monte Carlo generated realizations. We end by exploring the feasibility of estimating all relevant parameters of our model by analyzing jointly spatial moments of Y and ΔY obtained from a single realization of Y.
Low-complexity approximations to maximum likelihood MPSK modulation classification
NASA Technical Reports Server (NTRS)
Hamkins, Jon
2004-01-01
We present a new approximation to the maximum likelihood classifier to discriminate between M-ary and M'-ary phase-shift-keying transmitted on an additive white Gaussian noise (AWGN) channel and received noncoherentl, partially coherently, or coherently.
Non-Gaussianities in a two-field generalization of natural inflation
NASA Astrophysics Data System (ADS)
Riquelme M., Simon
2018-04-01
We describe a two-field model that generalizes natural inflation, in which the inflaton is the pseudo-Goldstone boson of an approximate symmetry that is spontaneously broken, and the radial mode is dynamical. We analyze how the dynamics fundamentally depends on the mass of the radial mode and calculate/estimate the non-Gaussianities arising from such a scenario.
NASA Astrophysics Data System (ADS)
Hassan, M. A. M.; Nour El-Din, M. S. M.; Ellithi, A.; Hosny, H.; Salama, T. N. E.
2017-10-01
In the framework of Glauber optical limit approximation where Coulomb effect is taken into account, the elastic scattering differential cross section for halo nuclei with {}^{12}{C} at 800 MeV/N has been calculated. Its sensitivity to the halo densities and the root mean square of the core and halo is the main goal of the current study. The projectile nuclei are taken to be one-neutron and two-neutron halo. The calculations are carried out for Gaussian-Gaussian, Gaussian-Oscillator and Gaussian-2 s phenomenological densities for each considered projectile in the mass number range 6-29. Also included a comparison between the obtained results of phenomenological densities and the results within the microscopic densities LSSM of {}6{He} and {}^{11}{Li} and microscopic densities GCM of {}^{11}{Be} where the density of the target nucleus {}^{12}{C} obtained from electron-{}^{12}{C} scattering is used. The zero range approximation is considered in the calculations. We found that the sensitivity of elastic scattering differential cross section to the halo density is clear if the nucleus appears as two clear different clusters, core and halo.
Improved Discrete Approximation of Laplacian of Gaussian
NASA Technical Reports Server (NTRS)
Shuler, Robert L., Jr.
2004-01-01
An improved method of computing a discrete approximation of the Laplacian of a Gaussian convolution of an image has been devised. The primary advantage of the method is that without substantially degrading the accuracy of the end result, it reduces the amount of information that must be processed and thus reduces the amount of circuitry needed to perform the Laplacian-of- Gaussian (LOG) operation. Some background information is necessary to place the method in context. The method is intended for application to the LOG part of a process of real-time digital filtering of digitized video data that represent brightnesses in pixels in a square array. The particular filtering process of interest is one that converts pixel brightnesses to binary form, thereby reducing the amount of information that must be performed in subsequent correlation processing (e.g., correlations between images in a stereoscopic pair for determining distances or correlations between successive frames of the same image for detecting motions). The Laplacian is often included in the filtering process because it emphasizes edges and textures, while the Gaussian is often included because it smooths out noise that might not be consistent between left and right images or between successive frames of the same image.
Approximate Bayesian computation for forward modeling in cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akeret, Joël; Refregier, Alexandre; Amara, Adam
Bayesian inference is often used in cosmology and astrophysics to derive constraints on model parameters from observations. This approach relies on the ability to compute the likelihood of the data given a choice of model parameters. In many practical situations, the likelihood function may however be unavailable or intractable due to non-gaussian errors, non-linear measurements processes, or complex data formats such as catalogs and maps. In these cases, the simulation of mock data sets can often be made through forward modeling. We discuss how Approximate Bayesian Computation (ABC) can be used in these cases to derive an approximation to themore » posterior constraints using simulated data sets. This technique relies on the sampling of the parameter set, a distance metric to quantify the difference between the observation and the simulations and summary statistics to compress the information in the data. We first review the principles of ABC and discuss its implementation using a Population Monte-Carlo (PMC) algorithm and the Mahalanobis distance metric. We test the performance of the implementation using a Gaussian toy model. We then apply the ABC technique to the practical case of the calibration of image simulations for wide field cosmological surveys. We find that the ABC analysis is able to provide reliable parameter constraints for this problem and is therefore a promising technique for other applications in cosmology and astrophysics. Our implementation of the ABC PMC method is made available via a public code release.« less
Hamiltonian Monte Carlo acceleration using surrogate functions with random bases.
Zhang, Cheng; Shahbaba, Babak; Zhao, Hongkai
2017-11-01
For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov chain Monte Carlo methods, namely, Hamiltonian Monte Carlo. The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Abeln, Brant Anthony
The study of metastable electronic resonances, anion or neutral states of finite lifetime, in molecules is an important area of research where currently no theoretical technique is generally applicable. The role of theory is to calculate both the position and width, which is proportional to the inverse of the lifetime, of these resonances and how they vary with respect to nuclear geometry in order to generate potential energy surfaces. These surfaces are the basis of time-dependent models of the molecular dynamics where the system moves towards vibrational excitation or fragmentation. Three fundamental electronic processes that can be modeled this way are dissociative electronic attachment, vibrational excitation through electronic impact and autoionization. Currently, experimental investigation into these processes is being preformed on polyatomic molecules while theoreticians continue their fifty-year-old search for robust methods to calculate them. The separable insertion method, investigated in this thesis, seeks to tackle the problem of calculating metastable resonances by using existing quantum chemistry tools along with a grid-based method employing exterior complex scaling (ECS). Modern quantum chemistry methods are extremely efficient at calculating ground and (bound) excited electronic states of atoms and molecules by utilizing Gaussian basis functions. These functions provide both a numerically fast and analytic solution to the necessary two-electron, six-dimensional integrals required in structure calculations. However, these computer programs, based on analytic Gaussian basis sets, cannot construct solutions that are not square-integrable, such as resonance wavefunctions. ECS, on the other hand, can formally calculate resonance solutions by rotating the asymptotic electronic coordinates into the complex plane. The complex Siegert energies for resonances, Eres = ER - iGamma/2 where ER is the real-valued position of the resonance and Gamma is the width of the resonance, can be found directly as an isolated pole in the complex energy plane. Unlike the straight complex scaling, ECS on the electronic coordinates overcomes the non-analytic behavior of the nuclear attraction potential, as a function of complex [special characters omitted] where the sum is over each nucleus in a molecular system. Discouragingly, the Gaussian basis functions, which are computationally well-suited for bound electronic structure, fail at forming an effective basis set for ECS due to the derivative discontinuity generated by the complex coordinate rotation and the piecewise defined contour. This thesis seeks to explore methods for implementing ECS indirectly without losing the numerical simplicity and power of Gaussian basis sets. The separable insertion method takes advantage of existing software by constructing a N2-term separable potential of the target system using Gaussian functions to be inserted into a finite-element discrete variable representation (FE-DVR) grid that implements ECS. This work reports an exhaustive investigation into this approach for calculating resonances. This thesis shows that this technique is successful at describing an anion shape resonance of a closed-shell atom or molecule in the static-exchange approximation. This method is applied to the 2P Be-, 2pig N2- and 2pi u CO2- shape resonances to calculate their complex Seigert energies. Additionally, many details on the exact construction of the separable potential and of the expansion basis are explored. The future work considers methods for faster convergence of the resonance energy, moving beyond the static-exchange approximation and applying this technique to polyatomic systems of interest.
NASA Astrophysics Data System (ADS)
Wang, Kai; Cao, Qing; Zhang, Huifang; Shen, Pengcheng; Xing, Lujing
2018-06-01
Based on the TE01 mode of a rectangular metal waveguide and the Gaussian mode of a fiber, we propose the cos-Gaussian mode of a terahertz rectangular metal waveguide filled with multiple slices of dielectric. First, we consider a rectangular metal waveguide filled with an ideal graded-index dielectric along one direction. Furthermore, we replace the graded-index dielectric with multiple slices of dielectric according to the effective medium theory. The modal field, the effective index, and the coupling efficiency of this waveguide are investigated. It is found that the approximately linearly polarized electric field is Gaussian along one dimensionality and cosine along the other one. In addition, the low loss and high coupling efficiency with a Gaussian beam can be acquired at 0.9 THz. By optimization, the coupling efficiency could reach 88.5%.
NASA Astrophysics Data System (ADS)
Monfared, Yashar E.; Ponomarenko, Sergey A.
2017-10-01
We explore theoretically and numerically extreme event excitation in stimulated Raman scattering in gases. We consider gas-filled hollow-core photonic crystal fibers as a particular system realization. We show that moderate amplitude pump fluctuations obeying Gaussian statistics lead to the emergence of heavy-tailed non-Gaussian statistics as coherent seed Stokes pulses are amplified on propagation along the fiber. We reveal the crucial role that coherent memory effects play in causing non-Gaussian statistics of the system. We discover that extreme events can occur even at the initial stage of stimulated Raman scattering when one can neglect energy depletion of an intense, strongly fluctuating Gaussian pump source. Our analytical results in the undepleted pump approximation explicitly illustrate power-law probability density generation as the input pump noise is transferred to the output Stokes pulses.
Analytical theory of mesoscopic Bose-Einstein condensation in an ideal gas
NASA Astrophysics Data System (ADS)
Kocharovsky, Vitaly V.; Kocharovsky, Vladimir V.
2010-03-01
We find the universal structure and scaling of the Bose-Einstein condensation (BEC) statistics and thermodynamics (Gibbs free energy, average energy, heat capacity) for a mesoscopic canonical-ensemble ideal gas in a trap with an arbitrary number of atoms, any volume, and any temperature, including the whole critical region. We identify a universal constraint-cutoff mechanism that makes BEC fluctuations strongly non-Gaussian and is responsible for all unusual critical phenomena of the BEC phase transition in the ideal gas. The main result is an analytical solution to the problem of critical phenomena. It is derived by, first, calculating analytically the universal probability distribution of the noncondensate occupation, or a Landau function, and then using it for the analytical calculation of the universal functions for the particular physical quantities via the exact formulas which express the constraint-cutoff mechanism. We find asymptotics of that analytical solution as well as its simple analytical approximations which describe the universal structure of the critical region in terms of the parabolic cylinder or confluent hypergeometric functions. The obtained results for the order parameter, all higher-order moments of BEC fluctuations, and thermodynamic quantities perfectly match the known asymptotics outside the critical region for both low and high temperature limits. We suggest two- and three-level trap models of BEC and find their exact solutions in terms of the cutoff negative binomial distribution (which tends to the cutoff gamma distribution in the continuous limit) and the confluent hypergeometric distribution, respectively. Also, we present an exactly solvable cutoff Gaussian model of BEC in a degenerate interacting gas. All these exact solutions confirm the universality and constraint-cutoff origin of the strongly non-Gaussian BEC statistics. We introduce a regular refinement scheme for the condensate statistics approximations on the basis of the infrared universality of higher-order cumulants and the method of superposition and show how to model BEC statistics in the actual traps. In particular, we find that the three-level trap model with matching the first four or five cumulants is enough to yield remarkably accurate results for all interesting quantities in the whole critical region. We derive an exact multinomial expansion for the noncondensate occupation probability distribution and find its high-temperature asymptotics (Poisson distribution) and corrections to it. Finally, we demonstrate that the critical exponents and a few known terms of the Taylor expansion of the universal functions, which were calculated previously from fitting the finite-size simulations within the phenomenological renormalization-group theory, can be easily obtained from the presented full analytical solutions for the mesoscopic BEC as certain approximations in the close vicinity of the critical point.
A Gaussian theory for fluctuations in simple liquids.
Krüger, Matthias; Dean, David S
2017-04-07
Assuming an effective quadratic Hamiltonian, we derive an approximate, linear stochastic equation of motion for the density-fluctuations in liquids, composed of overdamped Brownian particles. From this approach, time dependent two point correlation functions (such as the intermediate scattering function) are derived. We show that this correlation function is exact at short times, for any interaction and, in particular, for arbitrary external potentials so that it applies to confined systems. Furthermore, we discuss the relation of this approach to previous ones, such as dynamical density functional theory as well as the formally exact treatment. This approach, inspired by the well known Landau-Ginzburg Hamiltonians, and the corresponding "Model B" equation of motion, may be seen as its microscopic version, containing information about the details on the particle level.
A Gaussian theory for fluctuations in simple liquids
NASA Astrophysics Data System (ADS)
Krüger, Matthias; Dean, David S.
2017-04-01
Assuming an effective quadratic Hamiltonian, we derive an approximate, linear stochastic equation of motion for the density-fluctuations in liquids, composed of overdamped Brownian particles. From this approach, time dependent two point correlation functions (such as the intermediate scattering function) are derived. We show that this correlation function is exact at short times, for any interaction and, in particular, for arbitrary external potentials so that it applies to confined systems. Furthermore, we discuss the relation of this approach to previous ones, such as dynamical density functional theory as well as the formally exact treatment. This approach, inspired by the well known Landau-Ginzburg Hamiltonians, and the corresponding "Model B" equation of motion, may be seen as its microscopic version, containing information about the details on the particle level.
Kumar, Anil; Adhikary, Amitava; Shamoun, Lance; Sevilla, Michael D
2016-03-10
The solvated electron (e(aq)⁻) is a primary intermediate after an ionization event that produces reductive DNA damage. Accurate standard redox potentials (E(o)) of nucleobases and of e(aq)⁻ determine the extent of reaction of e(aq)⁻ with nucleobases. In this work, E(o) values of e(aq)⁻ and of nucleobases have been calculated employing the accurate ab initio Gaussian 4 theory including the polarizable continuum model (PCM). The Gaussian 4-calculated E(o) of e(aq)⁻ (-2.86 V) is in excellent agreement with the experimental one (-2.87 V). The Gaussian 4-calculated E(o) of nucleobases in dimethylformamide (DMF) lie in the range (-2.36 V to -2.86 V); they are in reasonable agreement with the experimental E(o) in DMF and have a mean unsigned error (MUE) = 0.22 V. However, inclusion of specific water molecules reduces this error significantly (MUE = 0.07). With the use of a model of e(aq)⁻ nucleobase complex with six water molecules, the reaction of e(aq)⁻ with the adjacent nucleobase is investigated using approximate ab initio molecular dynamics (MD) simulations including PCM. Our MD simulations show that e(aq)⁻ transfers to uracil, thymine, cytosine, and adenine, within 10 to 120 fs and e(aq)⁻ reacts with guanine only when a water molecule forms a hydrogen bond to O6 of guanine which stabilizes the anion radical.
NASA Astrophysics Data System (ADS)
Dragoni, Daniele; Daff, Thomas D.; Csányi, Gábor; Marzari, Nicola
2018-01-01
We show that the Gaussian Approximation Potential (GAP) machine-learning framework can describe complex magnetic potential energy surfaces, taking ferromagnetic iron as a paradigmatic challenging case. The training database includes total energies, forces, and stresses obtained from density-functional theory in the generalized-gradient approximation, and comprises approximately 150,000 local atomic environments, ranging from pristine and defected bulk configurations to surfaces and generalized stacking faults with different crystallographic orientations. We find the structural, vibrational, and thermodynamic properties of the GAP model to be in excellent agreement with those obtained directly from first-principles electronic-structure calculations. There is good transferability to quantities, such as Peierls energy barriers, which are determined to a large extent by atomic configurations that were not part of the training set. We observe the benefit and the need of using highly converged electronic-structure calculations to sample a target potential energy surface. The end result is a systematically improvable potential that can achieve the same accuracy of density-functional theory calculations, but at a fraction of the computational cost.
Universality for 1d Random Band Matrices: Sigma-Model Approximation
NASA Astrophysics Data System (ADS)
Shcherbina, Mariya; Shcherbina, Tatyana
2018-02-01
The paper continues the development of the rigorous supersymmetric transfer matrix approach to the random band matrices started in (J Stat Phys 164:1233-1260, 2016; Commun Math Phys 351:1009-1044, 2017). We consider random Hermitian block band matrices consisting of W× W random Gaussian blocks (parametrized by j,k \\in Λ =[1,n]^d\\cap Z^d ) with a fixed entry's variance J_{jk}=δ _{j,k}W^{-1}+β Δ _{j,k}W^{-2} , β >0 in each block. Taking the limit W→ ∞ with fixed n and β , we derive the sigma-model approximation of the second correlation function similar to Efetov's one. Then, considering the limit β , n→ ∞, we prove that in the dimension d=1 the behaviour of the sigma-model approximation in the bulk of the spectrum, as β ≫ n , is determined by the classical Wigner-Dyson statistics.
ERIC Educational Resources Information Center
Earl, Boyd L.
2008-01-01
A general result for the integrals of the Gaussian function over the harmonic oscillator wavefunctions is derived using generating functions. Using this result, an example problem of a harmonic oscillator with various Gaussian perturbations is explored in order to compare the results of precise numerical solution, the variational method, and…
Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams
NASA Technical Reports Server (NTRS)
Steely, Sidney L.
1993-01-01
The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.
Accelerator test of the coded aperture mask technique for gamma-ray astronomy
NASA Technical Reports Server (NTRS)
Jenkins, T. L.; Frye, G. M., Jr.; Owens, A.; Carter, J. N.; Ramsden, D.
1982-01-01
A prototype gamma-ray telescope employing the coded aperture mask technique has been constructed and its response to a point source of 20 MeV gamma-rays has been measured. The point spread function is approximately a Gaussian with a standard deviation of 12 arc minutes. This resolution is consistent with the cell size of the mask used and the spatial resolution of the detector. In the context of the present experiment, the error radius of the source position (90 percent confidence level) is 6.1 arc minutes.
Gas and Dust Structures of the Protoplanetary Disk around HD 142527
NASA Astrophysics Data System (ADS)
Momose, M.; Muto, T.; Hanawa, T.; Fukagawa, M.; Tsukagoshi, T.; Saigo, K.; Kataoka, A.; Nomura, H.; Takeuchi, T.; Akiyama, E.; Ohashi, N.; Fujiwara, H.; Shibai, H.; Kitamura, Y.; Inutsuka, S.; Kobayashi, H.; Honda, M.; Aso, Y.; Takahashi, S. Z.
2015-12-01
HD142527 is a Herbig Fe star accompanied by a disk with ring-like structure. We derive the distributions of dust and gas separately by model fitting and discuss the spatial variation of gas-to-dust mass ratio in the disk. The radial distribution of dust is well approximated by a Gaussian function, while the gas is roughly followed by a power-law distribution between 110 and 400 AU in radius, which is significantly more extended than dust. G/d may reach the order of unity at the northern peak.
A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation.
Huang, Yong; Tao, Gang
2014-09-01
The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.
A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yong, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn; Tao, Gang, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn
2014-09-01
The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.
Neural pulse frequency modulation of an exponentially correlated Gaussian process
NASA Technical Reports Server (NTRS)
Hutchinson, C. E.; Chon, Y.-T.
1976-01-01
The effect of NPFM (Neural Pulse Frequency Modulation) on a stationary Gaussian input, namely an exponentially correlated Gaussian input, is investigated with special emphasis on the determination of the average number of pulses in unit time, known also as the average frequency of pulse occurrence. For some classes of stationary input processes where the formulation of the appropriate multidimensional Markov diffusion model of the input-plus-NPFM system is possible, the average impulse frequency may be obtained by a generalization of the approach adopted. The results are approximate and numerical, but are in close agreement with Monte Carlo computer simulation results.
Antonov, N V; Kostenko, M M
2014-12-01
The field theoretic renormalization group and the operator product expansion are applied to two models of passive scalar quantities (the density and the tracer fields) advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝δ(t-t')k(4-d-y), where d is the dimension of space and y is an arbitrary exponent. The original stochastic problems are reformulated as multiplicatively renormalizable field theoretic models; the corresponding renormalization group equations possess infrared attractive fixed points. It is shown that various correlation functions of the scalar field, its powers and gradients, demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y. The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y. The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant. The validity of the one-loop approximation and comparison with Gaussian models are briefly discussed.
NASA Astrophysics Data System (ADS)
Vanicek, Jiri
2014-03-01
Rigorous quantum-mechanical calculations of coherent ultrafast electronic spectra remain difficult. I will present several approaches developed in our group that increase the efficiency and accuracy of such calculations: First, we justified the feasibility of evaluating time-resolved spectra of large systems by proving that the number of trajectories needed for convergence of the semiclassical dephasing representation/phase averaging is independent of dimensionality. Recently, we further accelerated this approximation with a cellular scheme employing inverse Weierstrass transform and optimal scaling of the cell size. The accuracy of potential energy surfaces was increased by combining the dephasing representation with accurate on-the-fly ab initio electronic structure calculations, including nonadiabatic and spin-orbit couplings. Finally, the inherent semiclassical approximation was removed in the exact quantum Gaussian dephasing representation, in which semiclassical trajectories are replaced by communicating frozen Gaussian basis functions evolving classically with an average Hamiltonian. Among other examples I will present an on-the-fly ab initio semiclassical dynamics calculation of the dispersed time-resolved stimulated emission spectrum of the 54-dimensional azulene. This research was supported by EPFL and by the Swiss National Science Foundation NCCR MUST (Molecular Ultrafast Science and Technology) and Grant No. 200021124936/1.
Clerkin, L.; Kirk, D.; Manera, M.; ...
2016-08-30
It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (kappa_WL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the Counts in Cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey (DES) Science Verification data over 139 deg^2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirmmore » that the galaxy density contrast distribution is well modeled by a lognormal PDF convolved with Poisson noise at angular scales from 10-40 arcmin (corresponding to physical scales of 3-10 Mpc). We note that as kappa_WL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the kappa_WL distribution is well modeled by a lognormal PDF convolved with Gaussian shape noise at scales between 10 and 20 arcmin, with a best-fit chi^2/DOF of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07 respectively, at a scale of 10 arcmin. Above 20 arcmin a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation.« less
NASA Astrophysics Data System (ADS)
Clerkin, L.; Kirk, D.; Manera, M.; Lahav, O.; Abdalla, F.; Amara, A.; Bacon, D.; Chang, C.; Gaztañaga, E.; Hawken, A.; Jain, B.; Joachimi, B.; Vikram, V.; Abbott, T.; Allam, S.; Armstrong, R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Carrasco Kind, M.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Melchior, P.; Miquel, R.; Nord, B.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.
2017-04-01
It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (κWL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the counts-in-cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey Science Verification data over 139 deg2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modelled by a lognormal PDF convolved with Poisson noise at angular scales from 10 to 40 arcmin (corresponding to physical scales of 3-10 Mpc). We note that as κWL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the κWL distribution is well modelled by a lognormal PDF convolved with Gaussian shape noise at scales between 10 and 20 arcmin, with a best-fitting χ2/dof of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07, respectively, at a scale of 10 arcmin. Above 20 arcmin a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check, we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation.
The effect of unresolved contaminant stars on the cross-matching of photometric catalogues
NASA Astrophysics Data System (ADS)
Wilson, Tom J.; Naylor, Tim
2017-07-01
A fundamental process in astrophysics is the matching of two photometric catalogues. It is crucial that the correct objects be paired, and that their photometry does not suffer from any spurious additional flux. We compare the positions of sources in Wide-field Infrared Survey Explorer (WISE), INT Photometric H α Survey, Two Micron All Sky Survey and AAVSO Photometric All Sky Survey with Gaia Data Release 1 astrometric positions. We find that the separations are described by a combination of a Gaussian distribution, wider than naively assumed based on their quoted uncertainties, and a large wing, which some authors ascribe to proper motions. We show that this is caused by flux contamination from blended stars not treated separately. We provide linear fits between the quoted Gaussian uncertainty and the core fit to the separation distributions. We show that at least one in three of the stars in the faint half of a given catalogue will suffer from flux contamination above the 1 per cent level when the density of catalogue objects per point spread function area is above approximately 0.005. This has important implications for the creation of composite catalogues. It is important for any closest neighbour matches as there will be a given fraction of matches that are flux contaminated, while some matches will be missed due to significant astrometric perturbation by faint contaminants. In the case of probability-based matching, this contamination affects the probability density function of matches as a function of distance. This effect results in up to 50 per cent fewer counterparts being returned as matches, assuming Gaussian astrometric uncertainties for WISE-Gaia matching in crowded Galactic plane regions, compared with a closest neighbour match.
Shutin, Dmitriy; Zlobinskaya, Olga
2010-02-01
The goal of this contribution is to apply model-based information-theoretic measures to the quantification of relative differences between immunofluorescent signals. Several models for approximating the empirical fluorescence intensity distributions are considered, namely Gaussian, Gamma, Beta, and kernel densities. As a distance measure the Hellinger distance and the Kullback-Leibler divergence are considered. For the Gaussian, Gamma, and Beta models the closed-form expressions for evaluating the distance as a function of the model parameters are obtained. The advantages of the proposed quantification framework as compared to simple mean-based approaches are analyzed with numerical simulations. Two biological experiments are also considered. The first is the functional analysis of the p8 subunit of the TFIIH complex responsible for a rare hereditary multi-system disorder--trichothiodystrophy group A (TTD-A). In the second experiment the proposed methods are applied to assess the UV-induced DNA lesion repair rate. A good agreement between our in vivo results and those obtained with an alternative in vitro measurement is established. We believe that the computational simplicity and the effectiveness of the proposed quantification procedure will make it very attractive for different analysis tasks in functional proteomics, as well as in high-content screening. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Probability distribution for the Gaussian curvature of the zero level surface of a random function
NASA Astrophysics Data System (ADS)
Hannay, J. H.
2018-04-01
A rather natural construction for a smooth random surface in space is the level surface of value zero, or ‘nodal’ surface f(x,y,z) = 0, of a (real) random function f; the interface between positive and negative regions of the function. A physically significant local attribute at a point of a curved surface is its Gaussian curvature (the product of its principal curvatures) because, when integrated over the surface it gives the Euler characteristic. Here the probability distribution for the Gaussian curvature at a random point on the nodal surface f = 0 is calculated for a statistically homogeneous (‘stationary’) and isotropic zero mean Gaussian random function f. Capitalizing on the isotropy, a ‘fixer’ device for axes supplies the probability distribution directly as a multiple integral. Its evaluation yields an explicit algebraic function with a simple average. Indeed, this average Gaussian curvature has long been known. For a non-zero level surface instead of the nodal one, the probability distribution is not fully tractable, but is supplied as an integral expression.
Hastings, A.; Hom, C. L.
1989-01-01
We demonstrate that, in a model incorporating weak Gaussian stabilizing selection on n additively determined characters, at most n loci are polymorphic at a stable equilibrium. The number of characters is defined to be the number of independent components in the Gaussian selection scheme. We also assume linkage equilibrium, and that either the number of loci is large enough that the phenotypic distribution in the population can be approximated as multivariate Gaussian or that selection is weak enough that the mean fitness of the population can be approximated using only the mean and the variance of the characters in the population. Our results appear to rule out antagonistic pleiotropy without epistasis as a major force in maintaining additive genetic variation in a uniform environment. However, they are consistent with the maintenance of variability by genotype-environment interaction if a trait in different environments corresponds to different characters and the number of different environments exceeds the number of polymorphic loci that affect the trait. PMID:2767424
Improved key-rate bounds for practical decoy-state quantum-key-distribution systems
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Zhao, Qi; Razavi, Mohsen; Ma, Xiongfeng
2017-01-01
The decoy-state scheme is the most widely implemented quantum-key-distribution protocol in practice. In order to account for the finite-size key effects on the achievable secret key generation rate, a rigorous statistical fluctuation analysis is required. Originally, a heuristic Gaussian-approximation technique was used for this purpose, which, despite its analytical convenience, was not sufficiently rigorous. The fluctuation analysis has recently been made rigorous by using the Chernoff bound. There is a considerable gap, however, between the key-rate bounds obtained from these techniques and that obtained from the Gaussian assumption. Here we develop a tighter bound for the decoy-state method, which yields a smaller failure probability. This improvement results in a higher key rate and increases the maximum distance over which secure key exchange is possible. By optimizing the system parameters, our simulation results show that our method almost closes the gap between the two previously proposed techniques and achieves a performance similar to that of conventional Gaussian approximations.
LASER BIOLOGY AND MEDICINE: Light scattering study of rheumatoid arthritis
NASA Astrophysics Data System (ADS)
Beuthan, J.; Netz, U.; Minet, O.; Klose, Annerose D.; Hielscher, A. H.; Scheel, A.; Henniger, J.; Müller, G.
2002-11-01
The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient μs, absorption coefficient μa, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the finger cross section. Model tests of the quality of this reconstruction method show good results.
Falch, Ken Vidar; Detlefs, Carsten; Snigirev, Anatoly; Mathiesen, Ragnvald H
2018-01-01
Analytical expressions for the transmission cross-coefficients for x-ray microscopes based on compound refractive lenses are derived based on Gaussian approximations of the source shape and energy spectrum. The effects of partial coherence, defocus, beam convergence, as well as lateral and longitudinal chromatic aberrations are accounted for and discussed. Taking the incoherent limit of the transmission cross-coefficients, a compact analytical expression for the modulation transfer function of the system is obtained, and the resulting point, line and edge spread functions are presented. Finally, analytical expressions for optimal numerical aperture, coherence ratio, and bandwidth are given. Copyright © 2017 Elsevier B.V. All rights reserved.
Topology of large-scale structure in seeded hot dark matter models
NASA Technical Reports Server (NTRS)
Beaky, Matthew M.; Scherrer, Robert J.; Villumsen, Jens V.
1992-01-01
The topology of the isodensity surfaces in seeded hot dark matter models, in which static seed masses provide the density perturbations in a universe dominated by massive neutrinos is examined. When smoothed with a Gaussian window, the linear initial conditions in these models show no trace of non-Gaussian behavior for r0 equal to or greater than 5 Mpc (h = 1/2), except for very low seed densities, which show a shift toward isolated peaks. An approximate analytic expression is given for the genus curve expected in linear density fields from randomly distributed seed masses. The evolved models have a Gaussian topology for r0 = 10 Mpc, but show a shift toward a cellular topology with r0 = 5 Mpc; Gaussian models with an identical power spectrum show the same behavior.
Renyi entropy measures of heart rate Gaussianity.
Lake, Douglas E
2006-01-01
Sample entropy and approximate entropy are measures that have been successfully utilized to study the deterministic dynamics of heart rate (HR). A complementary stochastic point of view and a heuristic argument using the Central Limit Theorem suggests that the Gaussianity of HR is a complementary measure of the physiological complexity of the underlying signal transduction processes. Renyi entropy (or q-entropy) is a widely used measure of Gaussianity in many applications. Particularly important members of this family are differential (or Shannon) entropy (q = 1) and quadratic entropy (q = 2). We introduce the concepts of differential and conditional Renyi entropy rate and, in conjunction with Burg's theorem, develop a measure of the Gaussianity of a linear random process. Robust algorithms for estimating these quantities are presented along with estimates of their standard errors.
Ince-Gaussian series representation of the two-dimensional fractional Fourier transform.
Bandres, Miguel A; Gutiérrez-Vega, Julio C
2005-03-01
We introduce the Ince-Gaussian series representation of the two-dimensional fractional Fourier transform in elliptical coordinates. A physical interpretation is provided in terms of field propagation in quadratic graded-index media whose eigenmodes in elliptical coordinates are derived for the first time to our knowledge. The kernel of the new series representation is expressed in terms of Ince-Gaussian functions. The equivalence among the Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian series representations is verified by establishing the relation among the three definitions.
NON-GAUSSIANITIES IN THE LOCAL CURVATURE OF THE FIVE-YEAR WMAP DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudjord, Oeystein; Groeneboom, Nicolaas E.; Hansen, Frode K.
Using the five-year WMAP data, we re-investigate claims of non-Gaussianities and asymmetries detected in local curvature statistics of the one-year WMAP data. In Hansen et al., it was found that the northern ecliptic hemisphere was non-Gaussian at the {approx}1% level testing the densities of hill, lake, and saddle points based on the second derivatives of the cosmic microwave background temperature map. The five-year WMAP data have a much lower noise level and better control of systematics. Using these, we find that the anomalies are still present at a consistent level. Also the direction of maximum non-Gaussianity remains. Due to limitedmore » availability of computer resources, Hansen et al. were unable to calculate the full covariance matrix for the {chi}{sup 2}-test used. Here, we apply the full covariance matrix instead of the diagonal approximation and find that the non-Gaussianities disappear and there is no preferred non-Gaussian direction. We compare with simulations of weak lensing to see if this may cause the observed non-Gaussianity when using a diagonal covariance matrix. We conclude that weak lensing does not produce non-Gaussianity in the local curvature statistics at the scales investigated in this paper. The cause of the non-Gaussian detection in the case of a diagonal matrix remains unclear.« less
Integral momenta of vortex Bessel-Gaussian beams in turbulent atmosphere.
Lukin, Igor P
2016-04-20
The orbital angular momentum of vortex Bessel-Gaussian beams propagating in turbulent atmosphere is studied theoretically. The field of an optical beam is determined through the solution of the paraxial wave equation for a randomly inhomogeneous medium with fluctuations of the refraction index of the turbulent atmosphere. Peculiarities in the behavior of the total power of the vortex Bessel-Gaussian beam at the receiver (or transmitter) are examined. The dependence of the total power of the vortex Bessel-Gaussian beam on optical beam parameters, namely, the transverse wave number of optical radiation, amplitude factor radius, and, especially, topological charge of the optical beam, is analyzed in detail. It turns out that the mean value of the orbital angular momentum of the vortex Bessel-Gaussian beam remains constant during propagation in the turbulent atmosphere. It is shown that the variance of fluctuations of the orbital angular momentum of the vortex Bessel-Gaussian beam propagating in turbulent atmosphere calculated with the "mean-intensity" approximation is equal to zero identically. Thus, it is possible to declare confidently that the variance of fluctuations of the orbital angular momentum of the vortex Bessel-Gaussian beam in turbulent atmosphere is not very large.
How Many Separable Sources? Model Selection In Independent Components Analysis
Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen
2015-01-01
Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher's iris data set and Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian. PMID:25811988
León, Larry F; Cai, Tianxi
2012-04-01
In this paper we develop model checking techniques for assessing functional form specifications of covariates in censored linear regression models. These procedures are based on a censored data analog to taking cumulative sums of "robust" residuals over the space of the covariate under investigation. These cumulative sums are formed by integrating certain Kaplan-Meier estimators and may be viewed as "robust" censored data analogs to the processes considered by Lin, Wei & Ying (2002). The null distributions of these stochastic processes can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be generated by computer simulation. Each observed process can then be graphically compared with a few realizations from the Gaussian process. We also develop formal test statistics for numerical comparison. Such comparisons enable one to assess objectively whether an apparent trend seen in a residual plot reects model misspecification or natural variation. We illustrate the methods with a well known dataset. In addition, we examine the finite sample performance of the proposed test statistics in simulation experiments. In our simulation experiments, the proposed test statistics have good power of detecting misspecification while at the same time controlling the size of the test.
Model-checking techniques based on cumulative residuals.
Lin, D Y; Wei, L J; Ying, Z
2002-03-01
Residuals have long been used for graphical and numerical examinations of the adequacy of regression models. Conventional residual analysis based on the plots of raw residuals or their smoothed curves is highly subjective, whereas most numerical goodness-of-fit tests provide little information about the nature of model misspecification. In this paper, we develop objective and informative model-checking techniques by taking the cumulative sums of residuals over certain coordinates (e.g., covariates or fitted values) or by considering some related aggregates of residuals, such as moving sums and moving averages. For a variety of statistical models and data structures, including generalized linear models with independent or dependent observations, the distributions of these stochastic processes tinder the assumed model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be easily generated by computer simulation. Each observed process can then be compared, both graphically and numerically, with a number of realizations from the Gaussian process. Such comparisons enable one to assess objectively whether a trend seen in a residual plot reflects model misspecification or natural variation. The proposed techniques are particularly useful in checking the functional form of a covariate and the link function. Illustrations with several medical studies are provided.
Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML)
Lechevalier, D.; Ak, R.; Ferguson, M.; Law, K. H.; Lee, Y.-T. T.; Rachuri, S.
2017-01-01
This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain. PMID:29202125
Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML).
Park, J; Lechevalier, D; Ak, R; Ferguson, M; Law, K H; Lee, Y-T T; Rachuri, S
2017-01-01
This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain.
On the streaming model for redshift-space distortions
NASA Astrophysics Data System (ADS)
Kuruvilla, Joseph; Porciani, Cristiano
2018-06-01
The streaming model describes the mapping between real and redshift space for 2-point clustering statistics. Its key element is the probability density function (PDF) of line-of-sight pairwise peculiar velocities. Following a kinetic-theory approach, we derive the fundamental equations of the streaming model for ordered and unordered pairs. In the first case, we recover the classic equation while we demonstrate that modifications are necessary for unordered pairs. We then discuss several statistical properties of the pairwise velocities for DM particles and haloes by using a suite of high-resolution N-body simulations. We test the often used Gaussian ansatz for the PDF of pairwise velocities and discuss its limitations. Finally, we introduce a mixture of Gaussians which is known in statistics as the generalised hyperbolic distribution and show that it provides an accurate fit to the PDF. Once inserted in the streaming equation, the fit yields an excellent description of redshift-space correlations at all scales that vastly outperforms the Gaussian and exponential approximations. Using a principal-component analysis, we reduce the complexity of our model for large redshift-space separations. Our results increase the robustness of studies of anisotropic galaxy clustering and are useful for extending them towards smaller scales in order to test theories of gravity and interacting dark-energy models.
Elegant Ince-Gaussian beams in a quadratic-index medium
NASA Astrophysics Data System (ADS)
Bai, Zhi-Yong; Deng, Dong-Mei; Guo, Qi
2011-09-01
Elegant Ince—Gaussian beams, which are the exact solutions of the paraxial wave equation in a quadratic-index medium, are derived in elliptical coordinates. These kinds of beams are the alternative form of standard Ince—Gaussian beams and they display better symmetry between the Ince-polynomials and the Gaussian function in mathematics. The transverse intensity distribution and the phase of the elegant Ince—Gaussian beams are discussed.
NASA Astrophysics Data System (ADS)
McCurdy, C. William; Lucchese, Robert L.; Greenman, Loren
2017-04-01
The complex Kohn variational method, which represents the continuum wave function in each channel using a combination of Gaussians and Bessel or Coulomb functions, has been successful in numerous applications to electron-polyatomic molecule scattering and molecular photoionization. The hybrid basis representation limits it to relatively low energies (< 50 eV) , requires an approximation to exchange matrix elements involving continuum functions, and hampers its coupling to modern electronic structure codes for the description of correlated target states. We describe a successful implementation of the method using completely adaptive overset grids to describe continuum functions, in which spherical subgrids are placed on every atomic center to complement a spherical master grid that describes the behavior at large distances. An accurate method for applying the free-particle Green's function on the grid eliminates the need to operate explicitly with the kinetic energy, enabling a rapidly convergent Arnoldi algorithm for solving linear equations on the grid, and no approximations to exchange operators are made. Results for electron scattering from several polyatomic molecules will be presented. Army Research Office, MURI, WN911NF-14-1-0383 and U. S. DOE DE-SC0012198 (at Texas A&M).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smallwood, D.O.
In a previous paper Smallwood and Paez (1991) showed how to generate realizations of partially coherent stationary normal time histories with a specified cross-spectral density matrix. This procedure is generalized for the case of multiple inputs with a specified cross-spectral density function and a specified marginal probability density function (pdf) for each of the inputs. The specified pdfs are not required to be Gaussian. A zero memory nonlinear (ZMNL) function is developed for each input to transform a Gaussian or normal time history into a time history with a specified non-Gaussian distribution. The transformation functions have the property that amore » transformed time history will have nearly the same auto spectral density as the original time history. A vector of Gaussian time histories are then generated with the specified cross-spectral density matrix. These waveforms are then transformed into the required time history realizations using the ZMNL function.« less
A Simplified GCS-DCSK Modulation and Its Performance Optimization
NASA Astrophysics Data System (ADS)
Xu, Weikai; Wang, Lin; Chi, Chong-Yung
2016-12-01
In this paper, a simplified Generalized Code-Shifted Differential Chaos Shift Keying (GCS-DCSK) whose transmitter never needs any delay circuits, is proposed. However, its performance is deteriorated because the orthogonality between substreams cannot be guaranteed. In order to optimize its performance, the system model of the proposed GCS-DCSK with power allocations on substreams is presented. An approximate bit error rate (BER) expression of the proposed model, which is a function of substreams’ power, is derived using Gaussian Approximation. Based on the BER expression, an optimal power allocation strategy between information substreams and reference substream is obtained. Simulation results show that the BER performance of the proposed GCS-DCSK with the optimal power allocation can be significantly improved when the number of substreams M is large.
The Gaussian CL s method for searches of new physics
Qian, X.; Tan, A.; Ling, J. J.; ...
2016-04-23
Here we describe a method based on the CL s approach to present results in searches of new physics, under the condition that the relevant parameter space is continuous. Our method relies on a class of test statistics developed for non-nested hypotheses testing problems, denoted by ΔT, which has a Gaussian approximation to its parent distribution when the sample size is large. This leads to a simple procedure of forming exclusion sets for the parameters of interest, which we call the Gaussian CL s method. Our work provides a self-contained mathematical proof for the Gaussian CL s method, that explicitlymore » outlines the required conditions. These conditions are milder than that required by the Wilks' theorem to set confidence intervals (CIs). We illustrate the Gaussian CL s method in an example of searching for a sterile neutrino, where the CL s approach was rarely used before. We also compare data analysis results produced by the Gaussian CL s method and various CI methods to showcase their differences.« less
NASA Astrophysics Data System (ADS)
Regnier, D.; Verrière, M.; Dubray, N.; Schunck, N.
2016-03-01
We describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in N-dimensions (N ≥ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank-Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle a realistic calculation of fission dynamics.
NASA Astrophysics Data System (ADS)
Cheng, Xiaolu; Cina, Jeffrey A.
2014-07-01
A variational mixed quantum-semiclassical theory for the internal nuclear dynamics of a small molecule and the induced small-amplitude coherent motion of a low-temperature host medium is developed, tested, and used to simulate the temporal evolution of nonstationary states of the internal molecular and surrounding medium degrees of freedom. In this theory, termed the Fixed Vibrational Basis/Gaussian Bath (FVB/GB) method, the system is treated fully quantum mechanically while Gaussian wave packets are used for the bath degrees of freedom. An approximate time-dependent wave function of the entire model is obtained instead of just a reduced system density matrix, so the theory enables the analysis of the entangled system and bath dynamics that ensues following initial displacement of the internal-molecular (system) coordinate from its equilibrium position. The norm- and energy-conserving properties of the propagation of our trial wave function are natural consequences of the Dirac-Frenkel-McLachlan variational principle. The variational approach also stabilizes the time evolution in comparison to the same ansatz propagated under a previously employed locally quadratic approximation to the bath potential and system-bath interaction terms in the bath-parameter equations of motion. Dynamics calculations are carried out for molecular iodine in a 2D krypton lattice that reveal both the time-course of vibrational decoherence and the details of host-atom motion accompanying energy dissipation and dephasing. This work sets the stage for the comprehensive simulation of ultrafast time-resolved optical experiments on small molecules in low-temperature solids.
Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time Domain Technique
NASA Technical Reports Server (NTRS)
Sun, W.; Nousiainen, T.; Fu, Q.; Loeb, N. G.; Videen, G.; Muinonen, K.
2003-01-01
The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Qiangkun; Hu, Yawei; Jia, Qian; Song, Changji
2018-02-01
It is the key point of quantitative research on agricultural non-point source pollution load, the estimation of pollutant concentration in agricultural drain. In the guidance of uncertainty theory, the synthesis of fertilization and irrigation is used as an impulse input to the farmland, meanwhile, the pollutant concentration in agricultural drain is looked as the response process corresponding to the impulse input. The migration and transformation of pollutant in soil is expressed by Inverse Gaussian Probability Density Function. The law of pollutants migration and transformation in soil at crop different growth periods is reflected by adjusting parameters of Inverse Gaussian Distribution. Based on above, the estimation model for pollutant concentration in agricultural drain at field scale was constructed. Taking the of Qing Tong Xia Irrigation District in Ningxia as an example, the concentration of nitrate nitrogen and total phosphorus in agricultural drain was simulated by this model. The results show that the simulated results accorded with measured data approximately and Nash-Sutcliffe coefficients were 0.972 and 0.964, respectively.
Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion
NASA Astrophysics Data System (ADS)
Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin
2018-02-01
Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.
Golze, Dorothea; Benedikter, Niels; Iannuzzi, Marcella; Wilhelm, Jan; Hutter, Jürg
2017-01-21
An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.
NASA Astrophysics Data System (ADS)
Golze, Dorothea; Benedikter, Niels; Iannuzzi, Marcella; Wilhelm, Jan; Hutter, Jürg
2017-01-01
An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.
Bulemela, E; Tremaine, Peter R
2008-05-08
Apparent molar volumes of dilute aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), N,N-dimethylethanolamine (DMEA), ethylethanolamine (EAE), 2-diethylethanolamine (2-DEEA), and 3-methoxypropylamine (3-MPA) and their salts were measured at temperatures from 150 to 325 degrees C and pressures as high as 15 MPa. The results were corrected for the ionization and used to obtain the standard partial molar volumes, Vo2. A three-parameter equation of state was used to describe the temperature and pressure dependence of the standard partial molar volumes. The fitting parameters were successfully divided into functional group contributions at all temperatures to obtain the standard partial molar volume contributions. Including literature results for alcohols, carboxylic acids, and hydroxycarboxylic acids yielded the standard partial molar volume contributions of the functional groups >CH-, >CH2, -CH3, -OH, -COOH, -O-, -->N, >NH, -NH2, -COO-Na+, -NH3+Cl-, >NH2+Cl-, and -->NH+Cl- over the range (150 degrees C
Fox, Christopher; Simon, Tom; Simon, Bill; Dempsey, James F.; Kahler, Darren; Palta, Jatinder R.; Liu, Chihray; Yan, Guanghua
2010-01-01
Purpose: Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. Methods: In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm3 and a diode of surface area 0.64 mm2. The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10×10 cm2 field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. Results: Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a ±0.7 mm variation in the 80%–20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping parameter between in-plane and cross-plane measurements. This is primarily due to the directional difference in penumbral width measured by the FC65 chamber, which can more than double in profiles obtained with the detector stem parallel compared to perpendicular to the scan direction. For the more symmetric CC13 chamber the variation was only 3% between in-plane and cross-plane measurements. Conclusions: The authors have shown that the detector response varies with detector type, depth, SSD, and detector scan direction. In-plane vs cross-plane scanning can require calculation of a direction dependent response function. The effect of a 10% overall variation in the response function, for an ionization chamber, translates to a small deviation in the penumbra from that of the Edge detector measured profile when deconvolved. Due to the uncertainties introduced by deconvolution the Edge detector would be preferable in obtaining an approximation of the true profile, particularly for field sizes where the energy dependence of the diode can be neglected. However, an averaged response function could be utilized to provide a good approximation of the true profile for large ionization chambers and for larger fields for which diode detectors are not recommended. PMID:20229856
NASA Technical Reports Server (NTRS)
Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.
1995-01-01
We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.
Gaussian theory for spatially distributed self-propelled particles
NASA Astrophysics Data System (ADS)
Seyed-Allaei, Hamid; Schimansky-Geier, Lutz; Ejtehadi, Mohammad Reza
2016-12-01
Obtaining a reduced description with particle and momentum flux densities outgoing from the microscopic equations of motion of the particles requires approximations. The usual method, we refer to as truncation method, is to zero Fourier modes of the orientation distribution starting from a given number. Here we propose another method to derive continuum equations for interacting self-propelled particles. The derivation is based on a Gaussian approximation (GA) of the distribution of the direction of particles. First, by means of simulation of the microscopic model, we justify that the distribution of individual directions fits well to a wrapped Gaussian distribution. Second, we numerically integrate the continuum equations derived in the GA in order to compare with results of simulations. We obtain that the global polarization in the GA exhibits a hysteresis in dependence on the noise intensity. It shows qualitatively the same behavior as we find in particles simulations. Moreover, both global polarizations agree perfectly for low noise intensities. The spatiotemporal structures of the GA are also in agreement with simulations. We conclude that the GA shows qualitative agreement for a wide range of noise intensities. In particular, for low noise intensities the agreement with simulations is better as other approximations, making the GA to an acceptable candidates of describing spatially distributed self-propelled particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiangjiang; Li, Weixuan; Zeng, Lingzao
Surrogate models are commonly used in Bayesian approaches such as Markov Chain Monte Carlo (MCMC) to avoid repetitive CPU-demanding model evaluations. However, the approximation error of a surrogate may lead to biased estimations of the posterior distribution. This bias can be corrected by constructing a very accurate surrogate or implementing MCMC in a two-stage manner. Since the two-stage MCMC requires extra original model evaluations, the computational cost is still high. If the information of measurement is incorporated, a locally accurate approximation of the original model can be adaptively constructed with low computational cost. Based on this idea, we propose amore » Gaussian process (GP) surrogate-based Bayesian experimental design and parameter estimation approach for groundwater contaminant source identification problems. A major advantage of the GP surrogate is that it provides a convenient estimation of the approximation error, which can be incorporated in the Bayesian formula to avoid over-confident estimation of the posterior distribution. The proposed approach is tested with a numerical case study. Without sacrificing the estimation accuracy, the new approach achieves about 200 times of speed-up compared to our previous work using two-stage MCMC.« less
M-estimation for robust sparse unmixing of hyperspectral images
NASA Astrophysics Data System (ADS)
Toomik, Maria; Lu, Shijian; Nelson, James D. B.
2016-10-01
Hyperspectral unmixing methods often use a conventional least squares based lasso which assumes that the data follows the Gaussian distribution. The normality assumption is an approximation which is generally invalid for real imagery data. We consider a robust (non-Gaussian) approach to sparse spectral unmixing of remotely sensed imagery which reduces the sensitivity of the estimator to outliers and relaxes the linearity assumption. The method consists of several appropriate penalties. We propose to use an lp norm with 0 < p < 1 in the sparse regression problem, which induces more sparsity in the results, but makes the problem non-convex. On the other hand, the problem, though non-convex, can be solved quite straightforwardly with an extensible algorithm based on iteratively reweighted least squares. To deal with the huge size of modern spectral libraries we introduce a library reduction step, similar to the multiple signal classification (MUSIC) array processing algorithm, which not only speeds up unmixing but also yields superior results. In the hyperspectral setting we extend the traditional least squares method to the robust heavy-tailed case and propose a generalised M-lasso solution. M-estimation replaces the Gaussian likelihood with a fixed function ρ(e) that restrains outliers. The M-estimate function reduces the effect of errors with large amplitudes or even assigns the outliers zero weights. Our experimental results on real hyperspectral data show that noise with large amplitudes (outliers) often exists in the data. This ability to mitigate the influence of such outliers can therefore offer greater robustness. Qualitative hyperspectral unmixing results on real hyperspectral image data corroborate the efficacy of the proposed method.
NASA Astrophysics Data System (ADS)
Selim, M. M.; Bezák, V.
2003-06-01
The one-dimensional version of the radiative transfer problem (i.e. the so-called rod model) is analysed with a Gaussian random extinction function (x). Then the optical length X = 0 Ldx(x) is a Gaussian random variable. The transmission and reflection coefficients, T(X) and R(X), are taken as infinite series. When these series (and also when the series representing T 2(X), T 2(X), R(X)T(X), etc.) are averaged, term by term, according to the Gaussian statistics, the series become divergent after averaging. As it was shown in a former paper by the authors (in Acta Physica Slovaca (2003)), a rectification can be managed when a `modified' Gaussian probability density function is used, equal to zero for X > 0 and proportional to the standard Gaussian probability density for X > 0. In the present paper, the authors put forward an alternative, showing that if the m.s.r. of X is sufficiently small in comparison with & $bar X$ ; , the standard Gaussian averaging is well functional provided that the summation in the series representing the variable T m-j (X)R j (X) (m = 1,2,..., j = 1,...,m) is truncated at a well-chosen finite term. The authors exemplify their analysis by some numerical calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutzler, F.W.; Painter, G.S.
1992-02-15
A fully self-consistent series of nonlocal (gradient) density-functional calculations has been carried out using the augmented-Gaussian-orbital method to determine the magnitude of gradient corrections to the potential-energy curves of the first-row diatomics, Li{sub 2} through F{sub 2}. Both the Langreth-Mehl-Hu and the Perdew-Wang gradient-density functionals were used in calculations of the binding energy, bond length, and vibrational frequency for each dimer. Comparison with results obtained in the local-spin-density approximation (LSDA) using the Vosko-Wilk-Nusair functional, and with experiment, reveals that bond lengths and vibrational frequencies are rather insensitive to details of the gradient functionals, including self-consistency effects, but the gradient correctionsmore » reduce the overbinding commonly observed in the LSDA calculations of first-row diatomics (with the exception of Li{sub 2}, the gradient-functional binding-energy error is only 50--12 % of the LSDA error). The improved binding energies result from a large differential energy lowering, which occurs in open-shell atoms relative to the diatomics. The stabilization of the atom arises from the use of nonspherical charge and spin densities in the gradient-functional calculations. This stabilization is negligibly small in LSDA calculations performed with nonspherical densities.« less
From plane waves to local Gaussians for the simulation of correlated periodic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booth, George H., E-mail: george.booth@kcl.ac.uk; Tsatsoulis, Theodoros; Grüneis, Andreas, E-mail: a.grueneis@fkf.mpg.de
2016-08-28
We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of themore » basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.« less
Evaluation and validity of a LORETA normative EEG database.
Thatcher, R W; North, D; Biver, C
2005-04-01
To evaluate the reliability and validity of a Z-score normative EEG database for Low Resolution Electromagnetic Tomography (LORETA), EEG digital samples (2 second intervals sampled 128 Hz, 1 to 2 minutes eyes closed) were acquired from 106 normal subjects, and the cross-spectrum was computed and multiplied by the Key Institute's LORETA 2,394 gray matter pixel T Matrix. After a log10 transform or a Box-Cox transform the mean and standard deviation of the *.lor files were computed for each of the 2394 gray matter pixels, from 1 to 30 Hz, for each of the subjects. Tests of Gaussianity were computed in order to best approximate a normal distribution for each frequency and gray matter pixel. The relative sensitivity of a Z-score database was computed by measuring the approximation to a Gaussian distribution. The validity of the LORETA normative database was evaluated by the degree to which confirmed brain pathologies were localized using the LORETA normative database. Log10 and Box-Cox transforms approximated Gaussian distribution in the range of 95.64% to 99.75% accuracy. The percentage of normative Z-score values at 2 standard deviations ranged from 1.21% to 3.54%, and the percentage of Z-scores at 3 standard deviations ranged from 0% to 0.83%. Left temporal lobe epilepsy, right sensory motor hematoma and a right hemisphere stroke exhibited maximum Z-score deviations in the same locations as the pathologies. We conclude: (1) Adequate approximation to a Gaussian distribution can be achieved using LORETA by using a log10 transform or a Box-Cox transform and parametric statistics, (2) a Z-Score normative database is valid with adequate sensitivity when using LORETA, and (3) the Z-score LORETA normative database also consistently localized known pathologies to the expected Brodmann areas as an hypothesis test based on the surface EEG before computing LORETA.
A Concept for Measuring Electron Distribution Functions Using Collective Thomson Scattering
NASA Astrophysics Data System (ADS)
Milder, A. L.; Froula, D. H.
2017-10-01
A.B. Langdon proposed that stable non-Maxwellian distribution functions are realized in coronal inertial confinement fusion plasmas via inverse bremsstrahlung heating. For Zvosc2
NASA Astrophysics Data System (ADS)
Bukhari, W.; Hong, S.-M.
2016-03-01
The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient’s breathing cycle. The algorithm, named EKF-GPRN+ , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN+ prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN+ implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN+ . The experimental results show that the EKF-GPRN+ algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN+ algorithm can further reduce the prediction error by employing the gating function, albeit at the cost of reduced duty cycle. The error reduction allows the clinical target volume to planning target volume (CTV-PTV) margin to be reduced, leading to decreased normal-tissue toxicity and possible dose escalation. The CTV-PTV margin is also evaluated to quantify clinical benefits of EKF-GPRN+ prediction.
A simple structure wavelet transform circuit employing function link neural networks and SI filters
NASA Astrophysics Data System (ADS)
Mu, Li; Yigang, He
2016-12-01
Signal processing by means of analog circuits offers advantages from a power consumption viewpoint. Implementing wavelet transform (WT) using analog circuits is of great interest when low-power consumption becomes an important issue. In this article, a novel simple structure WT circuit in analog domain is presented by employing functional link neural network (FLNN) and switched-current (SI) filters. First, the wavelet base is approximated using FLNN algorithms for giving a filter transfer function that is suitable for simple structure WT circuit implementation. Next, the WT circuit is constructed with the wavelet filter bank, whose impulse response is the approximated wavelet and its dilations. The filter design that follows is based on a follow-the-leader feedback (FLF) structure with multiple output bilinear SI integrators and current mirrors as the main building blocks. SI filter is well suited for this application since the dilation constant across different scales of the transform can be precisely implemented and controlled by the clock frequency of the circuit with the same system architecture. Finally, to illustrate the design procedure, a seventh-order FLNN-approximated Gaussian wavelet is implemented as an example. Simulations have successfully verified that the designed simple structure WT circuit has low sensitivity, low-power consumption and litter effect to the imperfections.
Fast Low-Rank Bayesian Matrix Completion With Hierarchical Gaussian Prior Models
NASA Astrophysics Data System (ADS)
Yang, Linxiao; Fang, Jun; Duan, Huiping; Li, Hongbin; Zeng, Bing
2018-06-01
The problem of low rank matrix completion is considered in this paper. To exploit the underlying low-rank structure of the data matrix, we propose a hierarchical Gaussian prior model, where columns of the low-rank matrix are assumed to follow a Gaussian distribution with zero mean and a common precision matrix, and a Wishart distribution is specified as a hyperprior over the precision matrix. We show that such a hierarchical Gaussian prior has the potential to encourage a low-rank solution. Based on the proposed hierarchical prior model, a variational Bayesian method is developed for matrix completion, where the generalized approximate massage passing (GAMP) technique is embedded into the variational Bayesian inference in order to circumvent cumbersome matrix inverse operations. Simulation results show that our proposed method demonstrates superiority over existing state-of-the-art matrix completion methods.
Approximate bandpass and frequency response models of the difference of Gaussian filter
NASA Astrophysics Data System (ADS)
Birch, Philip; Mitra, Bhargav; Bangalore, Nagachetan M.; Rehman, Saad; Young, Rupert; Chatwin, Chris
2010-12-01
The Difference of Gaussian (DOG) filter is widely used in optics and image processing as, among other things, an edge detection and correlation filter. It has important biological applications and appears to be part of the mammalian vision system. In this paper we analyse the filter and provide details of the full width half maximum, bandwidth and frequency response in order to aid the full characterisation of its performance.
Efficient computation of PDF-based characteristics from diffusion MR signal.
Assemlal, Haz-Edine; Tschumperlé, David; Brun, Luc
2008-01-01
We present a general method for the computation of PDF-based characteristics of the tissue micro-architecture in MR imaging. The approach relies on the approximation of the MR signal by a series expansion based on Spherical Harmonics and Laguerre-Gaussian functions, followed by a simple projection step that is efficiently done in a finite dimensional space. The resulting algorithm is generic, flexible and is able to compute a large set of useful characteristics of the local tissues structure. We illustrate the effectiveness of this approach by showing results on synthetic and real MR datasets acquired in a clinical time-frame.
Effects of time ordering in quantum nonlinear optics
NASA Astrophysics Data System (ADS)
Quesada, Nicolás; Sipe, J. E.
2014-12-01
We study time-ordering corrections to the description of spontaneous parametric down-conversion (SPDC), four-wave mixing (SFWM), and frequency conversion using the Magnus expansion. Analytic approximations to the evolution operator that are unitary are obtained. They are Gaussian preserving, and allow us to understand order-by-order the effects of time ordering. We show that the corrections due to time ordering vanish exactly if the phase-matching function is sufficiently broad. The calculation of the effects of time ordering on the joint spectral amplitude of the photons generated in SPDC and SFWM are reduced to quadrature.
PERIODIC AUTOREGRESSIVE-MOVING AVERAGE (PARMA) MODELING WITH APPLICATIONS TO WATER RESOURCES.
Vecchia, A.V.
1985-01-01
Results involving correlation properties and parameter estimation for autogressive-moving average models with periodic parameters are presented. A multivariate representation of the PARMA model is used to derive parameter space restrictions and difference equations for the periodic autocorrelations. Close approximation to the likelihood function for Gaussian PARMA processes results in efficient maximum-likelihood estimation procedures. Terms in the Fourier expansion of the parameters are sequentially included, and a selection criterion is given for determining the optimal number of harmonics to be included. Application of the techniques is demonstrated through analysis of a monthly streamflow time series.
Chaotic oscillations and noise transformations in a simple dissipative system with delayed feedback
NASA Astrophysics Data System (ADS)
Zverev, V. V.; Rubinstein, B. Ya.
1991-04-01
We analyze the statistical behavior of signals in nonlinear circuits with delayed feedback in the presence of external Markovian noise. For the special class of circuits with intense phase mixing we develop an approach for the computation of the probability distributions and multitime correlation functions based on the random phase approximation. Both Gaussian and Kubo-Andersen models of external noise statistics are analyzed and the existence of the stationary (asymptotic) random process in the long-time limit is shown. We demonstrate that a nonlinear system with chaotic behavior becomes a noise amplifier with specific statistical transformation properties.
The possible modifications of the HISSE model for pure LANDSAT agricultural data
NASA Technical Reports Server (NTRS)
Peters, C.
1981-01-01
A method for relaxing the assumption of class conditional independence of LANDSAT spectral measurements within the same patch (field) is discussed. Theoretical arguments are given which show that any significant refinement of the model beyond this proposal will not allow the reduction, essential to HISSE, of the pure data to patch summary statistics. A slight alteration of the new model is shown to be a reasonable approximation to the model which describes pure data elements from the same patch as jointly Gaussian with a covariance function which exhibits exponential decay with respect to spatial separation.
NASA Astrophysics Data System (ADS)
Yıldız, Fehmiye; Kurt, Hamza
2017-09-01
It is well known that atmospheric turbulence severely limits the applications based on the laser propagation though the atmosphere. The most common disturbances occurring due to the atmospheric turbulence are beam spreading, beam wandering, and scintillation. These effects are continuously changing in response to atmospheric conditions. In this study, we create a Non-Kolmogorov turbulence model which is based on the geometrical optics approximation and the property of Gamma function and integrate with in Gaussian beam analytically. This approach helps us to understand the propagation of the laser beam at different wavelengths in the atmospheric turbulence.
Chen, Zhaoxue; Chen, Hao
2014-01-01
A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.
Theoretical investigation of gas-surface interactions
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.
1990-01-01
A Dirac-Hartree-Fock code was developed for polyatomic molecules. The program uses integrals over symmetry-adapted real spherical harmonic Gaussian basis functions generated by a modification of the MOLECULE integrals program. A single Gaussian function is used for the nuclear charge distribution, to ensure proper boundary conditions at the nuclei. The Gaussian primitive functions are chosen to satisfy the kinetic balance condition. However, contracted functions which do not necessarily satisfy this condition may be used. The Fock matrix is constructed in the scalar basis and transformed to a jj-coupled 2-spinor basis before diagonalization. The program was tested against numerical results for atoms with a Gaussian nucleus and diatomic molecules with point nuclei. The energies converge on the numerical values as the basis set size is increased. Full use of molecular symmetry (restricted to D sub 2h and subgroups) is yet to be implemented.
Bonding in the first-row diatomic molecules within the local spin-density approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Painter, G.S.; Averill, F.W.
1982-08-15
The Hohenberg-Kohn-Sham density-functional equations in the local spin-density approximation (LSDA) have been solved with essentially no loss of accuracy for dimers of the first row of the Periodic Table with the use of a fully-self-consistent spin-polarized Gaussian-orbital approach. Spectroscopic constants (binding energies, equilibrium separations, and ground-state vibrational frequencies) have been derived from the calculated potential-energy curves. Intercomparison of results obtained using the exchange-correlation functionals of Slater (scaled exchange or X..cap alpha..), Gunnarsson and Lundqvist (GL), and Vosko, Wilk, and Nusair (VWN) permits assessment of the relative merits of each and serves to identify general shortcomings in the LSDA. Basic trendsmore » are similar for each functional, but the treatment of the spin dependence of the exchange-correlation energy in the GL and VWN functionals yields a variation of the binding energy across the series which is more systematic than that in the X..cap alpha.. approximation. Agreement between the present results and those of Dunlap, Connolly, and Sabin in the X..cap alpha.., approximation confirms the accuracy of the variational charge-density-fit procedure used in the latter work. The refinements in correlation treatment within the VWN functional are reflected in improvements in binding energies which are only slight for most dimers in the series. This behavior is attributed to the error remaining in the exchange channel within the LSDA and demonstrates the necessity for self-interaction corrections for more accurate binding-energy determinations. Within the current LSDA, absolute accuracies of the VWN functional for the first-row dimers are within 2.3 eV for binding energies, 0.07 a.u. for bond lengths, and approx.200 cm/sup -1/ for vibrational frequencies.« less
Comparison of dynamical approximation schemes for nonlinear gravitaional clustering
NASA Technical Reports Server (NTRS)
Melott, Adrian L.
1994-01-01
We have recently conducted a controlled comparison of a number of approximations for gravitational clustering against the same n-body simulations. These include ordinary linear perturbation theory (Eulerian), the lognormal approximation, the adhesion approximation, the frozen-flow approximation, the Zel'dovich approximation (describable as first-order Lagrangian perturbation theory), and its second-order generalization. In the last two cases we also created new versions of the approximation by truncation, i.e., by smoothing the initial conditions with various smoothing window shapes and varying their sizes. The primary tool for comparing simulations to approximation schemes was cross-correlation of the evolved mass density fields, testing the extent to which mass was moved to the right place. The Zel'dovich approximation, with initial convolution with a Gaussian e(exp -k(exp 2)/k(sub G(exp 2)), where k(sub G) is adjusted to be just into the nonlinear regime of the evolved model (details in text) worked extremely well. Its second-order generalization worked slightly better. We recommend either n-body simulations or our modified versions of the Zel'dovich approximation, depending upon the purpose. The theoretical implication is that pancaking is implicit in all cosmological gravitational clustering, at least from Gaussian initial conditions, even when subcondensations are present. This in turn provides a natural explanation for the presence of sheets and filaments in the observed galaxy distribution. Use of the approximation scheme can permit extremely rapid generation of large numbers of realizations of model universes with good accuracy down to galaxy group mass scales.
Large-scale velocities and primordial non-Gaussianity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Fabian
2010-09-15
We study the peculiar velocities of density peaks in the presence of primordial non-Gaussianity. Rare, high-density peaks in the initial density field can be identified with tracers such as galaxies and clusters in the evolved matter distribution. The distribution of relative velocities of peaks is derived in the large-scale limit using two different approaches based on a local biasing scheme. Both approaches agree, and show that halos still stream with the dark matter locally as well as statistically, i.e. they do not acquire a velocity bias. Nonetheless, even a moderate degree of (not necessarily local) non-Gaussianity induces a significant skewnessmore » ({approx}0.1-0.2) in the relative velocity distribution, making it a potentially interesting probe of non-Gaussianity on intermediate to large scales. We also study two-point correlations in redshift space. The well-known Kaiser formula is still a good approximation on large scales, if the Gaussian halo bias is replaced with its (scale-dependent) non-Gaussian generalization. However, there are additional terms not encompassed by this simple formula which become relevant on smaller scales (k > or approx. 0.01h/Mpc). Depending on the allowed level of non-Gaussianity, these could be of relevance for future large spectroscopic surveys.« less
Four Theorems on the Psychometric Function
May, Keith A.; Solomon, Joshua A.
2013-01-01
In a 2-alternative forced-choice (2AFC) discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, . This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull “slope” parameter, , can be approximated by , where is the of the Weibull function that fits best to the cumulative noise distribution, and depends on the transducer. We derive general expressions for and , from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when , . We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4–0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of for contrast discrimination suggests that, if internal noise is stimulus-independent, it has lower kurtosis than a Gaussian. PMID:24124456
Regnier, D.; Verriere, M.; Dubray, N.; ...
2015-11-30
In this study, we describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in NN-dimensions (N ≥ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank–Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle amore » realistic calculation of fission dynamics.« less
Erickson, Collin B; Ankenman, Bruce E; Sanchez, Susan M
2018-06-01
This data article provides the summary data from tests comparing various Gaussian process software packages. Each spreadsheet represents a single function or type of function using a particular input sample size. In each spreadsheet, a row gives the results for a particular replication using a single package. Within each spreadsheet there are the results from eight Gaussian process model-fitting packages on five replicates of the surface. There is also one spreadsheet comparing the results from two packages performing stochastic kriging. These data enable comparisons between the packages to determine which package will give users the best results.
Consistency relations for sharp inflationary non-Gaussian features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooij, Sander; Palma, Gonzalo A.; Panotopoulos, Grigoris
If cosmic inflation suffered tiny time-dependent deviations from the slow-roll regime, these would induce the existence of small scale-dependent features imprinted in the primordial spectra, with their shapes and sizes revealing information about the physics that produced them. Small sharp features could be suppressed at the level of the two-point correlation function, making them undetectable in the power spectrum, but could be amplified at the level of the three-point correlation function, offering us a window of opportunity to uncover them in the non-Gaussian bispectrum. In this article, we show that sharp features may be analyzed using only data coming frommore » the three point correlation function parametrizing primordial non-Gaussianity. More precisely, we show that if features appear in a particular non-Gaussian triangle configuration (e.g. equilateral, folded, squeezed), these must reappear in every other configuration according to a specific relation allowing us to correlate features across the non-Gaussian bispectrum. As a result, we offer a method to study scale-dependent features generated during inflation that depends only on data coming from measurements of non-Gaussianity, allowing us to omit data from the power spectrum.« less
Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.
Dinpajooh, Mohammadhasan; Matyushov, Dmitry V
2014-07-17
Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.
Light scattering study of rheumatoid arthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beuthan, J; Netz, U; Minet, O
The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient {mu}{sub s}, absorption coefficient {mu}{sub a}, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the fingermore » cross section. Model tests of the quality of this reconstruction method show good results. (laser biology and medicine)« less
Solution of a cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula
NASA Astrophysics Data System (ADS)
Remizov, I. D.
2012-07-01
The Cauchy problem for a class of diffusion equations in a Hilbert space is studied. It is proved that the Cauchy problem in well posed in the class of uniform limits of infinitely smooth bounded cylindrical functions on the Hilbert space, and the solution is presented in the form of the so-called Feynman formula, i.e., a limit of multiple integrals against a gaussian measure as the multiplicity tends to infinity. It is also proved that the solution of the Cauchy problem depends continuously on the diffusion coefficient. A process reducing an approximate solution of an infinite-dimensional diffusion equation to finding a multiple integral of a real function of finitely many real variables is indicated.
Statistics of a neuron model driven by asymmetric colored noise.
Müller-Hansen, Finn; Droste, Felix; Lindner, Benjamin
2015-02-01
Irregular firing of neurons can be modeled as a stochastic process. Here we study the perfect integrate-and-fire neuron driven by dichotomous noise, a Markovian process that jumps between two states (i.e., possesses a non-Gaussian statistics) and exhibits nonvanishing temporal correlations (i.e., represents a colored noise). Specifically, we consider asymmetric dichotomous noise with two different transition rates. Using a first-passage-time formulation, we derive exact expressions for the probability density and the serial correlation coefficient of the interspike interval (time interval between two subsequent neural action potentials) and the power spectrum of the spike train. Furthermore, we extend the model by including additional Gaussian white noise, and we give approximations for the interspike interval (ISI) statistics in this case. Numerical simulations are used to validate the exact analytical results for pure dichotomous noise, and to test the approximations of the ISI statistics when Gaussian white noise is included. The results may help to understand how correlations and asymmetry of noise and signals in nerve cells shape neuronal firing statistics.
Feasibility study on the least square method for fitting non-Gaussian noise data
NASA Astrophysics Data System (ADS)
Xu, Wei; Chen, Wen; Liang, Yingjie
2018-02-01
This study is to investigate the feasibility of least square method in fitting non-Gaussian noise data. We add different levels of the two typical non-Gaussian noises, Lévy and stretched Gaussian noises, to exact value of the selected functions including linear equations, polynomial and exponential equations, and the maximum absolute and the mean square errors are calculated for the different cases. Lévy and stretched Gaussian distributions have many applications in fractional and fractal calculus. It is observed that the non-Gaussian noises are less accurately fitted than the Gaussian noise, but the stretched Gaussian cases appear to perform better than the Lévy noise cases. It is stressed that the least-squares method is inapplicable to the non-Gaussian noise cases when the noise level is larger than 5%.
Analysis of low altitude atmospheric turbulence data measured in flight
NASA Technical Reports Server (NTRS)
Ganzer, V. M.; Joppa, R. G.; Vanderwees, G.
1977-01-01
All three components of turbulence were measured simultaneously in flight at each wing tip of a Beech D-18 aircraft. The flights were conducted at low altitude, 30.5 - 61.0 meters (100-200 ft.), over water in the presence of wind driven turbulence. Statistical properties of flight measured turbulence were compared with Gaussian and non-Gaussian turbulence models. Spatial characteristics of the turbulence were analyzed using the data from flight perpendicular and parallel to the wind. The probability density distributions of the vertical gusts show distinctly non-Gaussian characteristics. The distributions of the longitudinal and lateral gusts are generally Gaussian. The power spectra compare in the inertial subrange at some points better with the Dryden spectrum, while at other points the von Karman spectrum is a better approximation. In the low frequency range the data show peaks or dips in the power spectral density. The cross between vertical gusts in the direction of the mean wind were compared with a matched non-Gaussian model. The real component of the cross spectrum is in general close to the non-Gaussian model. The imaginary component, however, indicated a larger phase shift between these two gust components than was found in previous research.
GAUSSIAN 76: An ab initio Molecular Orbital Program
DOE R&D Accomplishments Database
Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.
1978-01-01
Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.
NASA Astrophysics Data System (ADS)
Tang, Huiqin; Zhu, Kaicheng
2013-12-01
Based on the generalized Huygens-Fresnel diffraction integral, a closed-form propagation equation related to sine-Gaussian beams through a cylindrical lens and a focusing lens is derived and illustrated with numerical methods. It is found that a sine-Gaussian beam through such a system may be converted into a dark hollow beam (DHB) with topological charge index one and its bright enclosure is approximately an elongated ellipse with very high ellipticity. Moreover, the parameter values at which the DHBs have perfect intensity patterns are designed. The optimal relative orientation between the dislocation line of the input sine-Gaussian beam and the axial orientation of the cylindrical lens is specified. And the ellipticity of the elliptical DHBs is mainly defined by the focal length of the cylindrical lens and the Fresnel number of the optical system.
Matsuoka, A J; Abbas, P J; Rubinstein, J T; Miller, C A
2000-11-01
Experimental results from humans and animals show that electrically evoked compound action potential (EAP) responses to constant-amplitude pulse train stimulation can demonstrate an alternating pattern, due to the combined effects of highly synchronized responses to electrical stimulation and refractory effects (Wilson et al., 1994). One way to improve signal representation is to reduce the level of across-fiber synchrony and hence, the level of the amplitude alternation. To accomplish this goal, we have examined EAP responses in the presence of Gaussian noise added to the pulse train stimulus. Addition of Gaussian noise at a level approximately -30 dB relative to EAP threshold to the pulse trains decreased the amount of alternation, indicating that stochastic resonance may be induced in the auditory nerve. The use of some type of conditioning stimulus such as Gaussian noise may provide a more 'normal' neural response pattern.
A note on: "A Gaussian-product stochastic Gent-McWilliams parameterization"
NASA Astrophysics Data System (ADS)
Jansen, Malte F.
2017-02-01
This note builds on a recent article by Grooms (2016), which introduces a new stochastic parameterization for eddy buoyancy fluxes. The closure proposed by Grooms accounts for the fact that eddy fluxes arise as the product of two approximately Gaussian variables, which in turn leads to a distinctly non-Gaussian distribution. The directionality of the stochastic eddy fluxes, however, remains somewhat ad-hoc and depends on the reference frame of the chosen coordinate system. This note presents a modification of the approach proposed by Grooms, which eliminates this shortcoming. Eddy fluxes are computed based on a stochastic mixing length model, which leads to a frame invariant formulation. As in the original closure proposed by Grooms, eddy fluxes are proportional to the product of two Gaussian variables, and the parameterization reduces to the Gent and McWilliams parameterization for the mean buyoancy fluxes.
Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam
NASA Astrophysics Data System (ADS)
Romero, J.; Giovannini, D.; McLaren, M. G.; Galvez, E. J.; Forbes, A.; Padgett, M. J.
2012-08-01
We report orbital angular momentum (OAM) and angle correlations between signal and idler photons observed when the nonlinear crystal used in spontaneous parametric down-conversion is illuminated by a non-fundamental Gaussian pump beam. We introduce a π-phase step to the transverse profile of the pump, before it impinges on the crystal to create a phase-flipped Gaussian mode, which is a close approximation to an HG10 Hermite-Gaussian-like beam. The correlations in OAM and angular position are then measured holographically using two separate spatial light modulators in the signal and idler arms. We show the transfer of the OAM spectrum of the pump to the down-converted fields, manifested as a redistribution in the OAM correlations consistent with OAM conservation. This corresponds to a modulation of the angular position correlations consistent with the Fourier relationship between the OAM and angle.
Unified control/structure design and modeling research
NASA Technical Reports Server (NTRS)
Mingori, D. L.; Gibson, J. S.; Blelloch, P. A.; Adamian, A.
1986-01-01
To demonstrate the applicability of the control theory for distributed systems to large flexible space structures, research was focused on a model of a space antenna which consists of a rigid hub, flexible ribs, and a mesh reflecting surface. The space antenna model used is discussed along with the finite element approximation of the distributed model. The basic control problem is to design an optimal or near-optimal compensator to suppress the linear vibrations and rigid-body displacements of the structure. The application of an infinite dimensional Linear Quadratic Gaussian (LQG) control theory to flexible structure is discussed. Two basic approaches for robustness enhancement were investigated: loop transfer recovery and sensitivity optimization. A third approach synthesized from elements of these two basic approaches is currently under development. The control driven finite element approximation of flexible structures is discussed. Three sets of finite element basic vectors for computing functional control gains are compared. The possibility of constructing a finite element scheme to approximate the infinite dimensional Hamiltonian system directly, instead of indirectly is discussed.
Outlier Resistant Predictive Source Encoding for a Gaussian Stationary Nominal Source.
1987-09-18
breakdown point and influence function . The proposed sequence of predictive encoders attains strictly positive breakdown point and uniformly bounded... influence function , at the expense of increased mean difference-squared distortion and differential entropy, at the Gaussian nominal source.
Explicitly-correlated Gaussian geminals in electronic structure calculations
NASA Astrophysics Data System (ADS)
Szalewicz, Krzysztof; Jeziorski, Bogumił
2010-11-01
Explicitly correlated functions have been used since 1929, but initially only for two-electron systems. In 1960, Boys and Singer showed that if the correlating factor is of Gaussian form, many-electron integrals can be computed for general molecules. The capability of explicitly correlated Gaussian (ECG) functions to accurately describe many-electron atoms and molecules was demonstrated only in the early 1980s when Monkhorst, Zabolitzky and the present authors cast the many-body perturbation theory (MBPT) and coupled cluster (CC) equations as a system of integro-differential equations and developed techniques of solving these equations with two-electron ECG functions (Gaussian-type geminals, GTG). This work brought a new accuracy standard to MBPT/CC calculations. In 1985, Kutzelnigg suggested that the linear r 12 correlating factor can also be employed if n-electron integrals, n > 2, are factorised with the resolution of identity. Later, this factor was replaced by more general functions f (r 12), most often by ? , usually represented as linear combinations of Gaussian functions which makes the resulting approach (called F12) a special case of the original GTG expansion. The current state-of-art is that, for few-electron molecules, ECGs provide more accurate results than any other basis available, but for larger systems the F12 approach is the method of choice, giving significant improvements over orbital calculations.
Ergodicity of the Stochastic Nosé-Hoover Heat Bath
NASA Astrophysics Data System (ADS)
Wei Chung Lo,; Baowen Li,
2010-07-01
We numerically study the ergodicity of the stochastic Nosé-Hoover heat bath whose formalism is based on the Markovian approximation for the Nosé-Hoover equation [J. Phys. Soc. Jpn. 77 (2008) 103001]. The approximation leads to a Langevin-like equation driven by a fluctuating dissipative force and multiplicative Gaussian white noise. The steady state solution of the associated Fokker-Planck equation is the canonical distribution. We investigate the dynamics of this method for the case of (i) free particle, (ii) nonlinear oscillators and (iii) lattice chains. We derive the Fokker-Planck equation for the free particle and present approximate analytical solution for the stationary distribution in the context of the Markovian approximation. Numerical simulation results for nonlinear oscillators show that this method results in a Gaussian distribution for the particles velocity. We also employ the method as heat baths to study nonequilibrium heat flow in one-dimensional Fermi-Pasta-Ulam (FPU-β) and Frenkel-Kontorova (FK) lattices. The establishment of well-defined temperature profiles are observed only when the lattice size is large. Our results provide numerical justification for such Markovian approximation for classical single- and many-body systems.
Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.
Mitri, Farid G
2015-10-01
Partial-wave series expansions (PWSEs) satisfying the Helmholtz equation in spherical coordinates are derived for circular spherically focused piston (i.e., apodized by a uniform velocity amplitude normal to its surface), X-cut (i.e., apodized by a velocity amplitude parallel to the axis of wave propagation), and Gaussian (i.e., apodized by a Gaussian distribution of the velocity amplitude) beams. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSEs assuming weakly focused beams (with focusing angle α ⩽ 20°) in the Fresnel-Kirchhoff (parabolic) approximation. In contrast with previous analytical models, the derived expressions allow computing the scattering and acoustic radiation force from a sphere of radius a without restriction to either the Rayleigh (a ≪ λ, where λ is the wavelength of the incident radiation) or the ray acoustics (a ≫λ) regimes. The analytical formulations are valid for wavelengths largely exceeding the radius of the focused acoustic radiator, when the viscosity of the surrounding fluid can be neglected, and when the sphere is translated along the axis of wave propagation. Computational results illustrate the analysis with particular emphasis on the sphere's elastic properties and the axial distance to the center of the concave surface, with close connection of the emergence of negative trapping forces. Potential applications are in single-beam acoustical tweezers, acoustic levitation, and particle manipulation.
NASA Astrophysics Data System (ADS)
Sakhr, Jamal; Nieminen, John M.
2018-03-01
Two decades ago, Wang and Ong, [Phys. Rev. A 55, 1522 (1997)], 10.1103/PhysRevA.55.1522 hypothesized that the local box-counting dimension of a discrete quantum spectrum should depend exclusively on the nearest-neighbor spacing distribution (NNSD) of the spectrum. In this Rapid Communication, we validate their hypothesis by deriving an explicit formula for the local box-counting dimension of a countably-infinite discrete quantum spectrum. This formula expresses the local box-counting dimension of a spectrum in terms of single and double integrals of the NNSD of the spectrum. As applications, we derive an analytical formula for Poisson spectra and closed-form approximations to the local box-counting dimension for spectra having Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE), and Gaussian symplectic ensemble (GSE) spacing statistics. In the Poisson and GOE cases, we compare our theoretical formulas with the published numerical data of Wang and Ong and observe excellent agreement between their data and our theory. We also study numerically the local box-counting dimensions of the Riemann zeta function zeros and the alternate levels of GOE spectra, which are often used as numerical models of spectra possessing GUE and GSE spacing statistics, respectively. In each case, the corresponding theoretical formula is found to accurately describe the numerically computed local box-counting dimension.
On the asymptotic evolution of finite energy Airy wave functions.
Chamorro-Posada, P; Sánchez-Curto, J; Aceves, A B; McDonald, G S
2015-06-15
In general, there is an inverse relation between the degree of localization of a wave function of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wave packets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far-field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyze the asymptotic properties of finite energy Airy wave functions using the stationary phase method. We obtain one dominant contribution to the long-term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased.
Revisiting non-Gaussianity from non-attractor inflation models
NASA Astrophysics Data System (ADS)
Cai, Yi-Fu; Chen, Xingang; Namjoo, Mohammad Hossein; Sasaki, Misao; Wang, Dong-Gang; Wang, Ziwei
2018-05-01
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition—such as in the case of smooth transition or some sharp transition scenarios—the Script O(1) local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.
Testing the mutual information expansion of entropy with multivariate Gaussian distributions.
Goethe, Martin; Fita, Ignacio; Rubi, J Miguel
2017-12-14
The mutual information expansion (MIE) represents an approximation of the configurational entropy in terms of low-dimensional integrals. It is frequently employed to compute entropies from simulation data of large systems, such as macromolecules, for which brute-force evaluation of the full configurational integral is intractable. Here, we test the validity of MIE for systems consisting of more than m = 100 degrees of freedom (dofs). The dofs are distributed according to multivariate Gaussian distributions which were generated from protein structures using a variant of the anisotropic network model. For the Gaussian distributions, we have semi-analytical access to the configurational entropy as well as to all contributions of MIE. This allows us to accurately assess the validity of MIE for different situations. We find that MIE diverges for systems containing long-range correlations which means that the error of consecutive MIE approximations grows with the truncation order n for all tractable n ≪ m. This fact implies severe limitations on the applicability of MIE, which are discussed in the article. For systems with correlations that decay exponentially with distance, MIE represents an asymptotic expansion of entropy, where the first successive MIE approximations approach the exact entropy, while MIE also diverges for larger orders. In this case, MIE serves as a useful entropy expansion when truncated up to a specific truncation order which depends on the correlation length of the system.
Coherent superposition of propagation-invariant laser beams
NASA Astrophysics Data System (ADS)
Soskind, R.; Soskind, M.; Soskind, Y. G.
2012-10-01
The coherent superposition of propagation-invariant laser beams represents an important beam-shaping technique, and results in new beam shapes which retain the unique property of propagation invariance. Propagation-invariant laser beam shapes depend on the order of the propagating beam, and include Hermite-Gaussian and Laguerre-Gaussian beams, as well as the recently introduced Ince-Gaussian beams which additionally depend on the beam ellipticity parameter. While the superposition of Hermite-Gaussian and Laguerre-Gaussian beams has been discussed in the past, the coherent superposition of Ince-Gaussian laser beams has not received significant attention in literature. In this paper, we present the formation of propagation-invariant laser beams based on the coherent superposition of Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian beams of different orders. We also show the resulting field distributions of the superimposed Ince-Gaussian laser beams as a function of the ellipticity parameter. By changing the beam ellipticity parameter, we compare the various shapes of the superimposed propagation-invariant laser beams transitioning from Laguerre-Gaussian beams at one ellipticity extreme to Hermite-Gaussian beams at the other extreme.
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1979-01-01
The evolution of the two-point correlation function for the large-scale distribution of galaxies in an expanding universe is studied on the assumption that the perturbation densities lie in a Gaussian distribution centered on any given mass scale. The perturbations are evolved according to the Friedmann equation, and the correlation function for the resulting distribution of perturbations at the present epoch is calculated. It is found that: (1) the computed correlation function gives a satisfactory fit to the observed function in cosmological models with a density parameter (Omega) of approximately unity, provided that a certain free parameter is suitably adjusted; (2) the power-law slope in the nonlinear regime reflects the initial fluctuation spectrum, provided that the density profile of individual perturbations declines more rapidly than the -2.4 power of distance; and (3) both positive and negative contributions to the correlation function are predicted for cosmological models with Omega less than unity.
Bayesian Recurrent Neural Network for Language Modeling.
Chien, Jen-Tzung; Ku, Yuan-Chu
2016-02-01
A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.
NASA Astrophysics Data System (ADS)
Cheng, Qin-Bo; Chen, Xi; Xu, Chong-Yu; Reinhardt-Imjela, Christian; Schulte, Achim
2014-11-01
In this study, the likelihood functions for uncertainty analysis of hydrological models are compared and improved through the following steps: (1) the equivalent relationship between the Nash-Sutcliffe Efficiency coefficient (NSE) and the likelihood function with Gaussian independent and identically distributed residuals is proved; (2) a new estimation method of the Box-Cox transformation (BC) parameter is developed to improve the effective elimination of the heteroscedasticity of model residuals; and (3) three likelihood functions-NSE, Generalized Error Distribution with BC (BC-GED) and Skew Generalized Error Distribution with BC (BC-SGED)-are applied for SWAT-WB-VSA (Soil and Water Assessment Tool - Water Balance - Variable Source Area) model calibration in the Baocun watershed, Eastern China. Performances of calibrated models are compared using the observed river discharges and groundwater levels. The result shows that the minimum variance constraint can effectively estimate the BC parameter. The form of the likelihood function significantly impacts on the calibrated parameters and the simulated results of high and low flow components. SWAT-WB-VSA with the NSE approach simulates flood well, but baseflow badly owing to the assumption of Gaussian error distribution, where the probability of the large error is low, but the small error around zero approximates equiprobability. By contrast, SWAT-WB-VSA with the BC-GED or BC-SGED approach mimics baseflow well, which is proved in the groundwater level simulation. The assumption of skewness of the error distribution may be unnecessary, because all the results of the BC-SGED approach are nearly the same as those of the BC-GED approach.
Non-Gaussian microwave background fluctuations from nonlinear gravitational effects
NASA Technical Reports Server (NTRS)
Salopek, D. S.; Kunstatter, G. (Editor)
1991-01-01
Whether the statistics of primordial fluctuations for structure formation are Gaussian or otherwise may be determined if the Cosmic Background Explorer (COBE) Satellite makes a detection of the cosmic microwave-background temperature anisotropy delta T(sub CMB)/T(sub CMB). Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the resulting Sachs-Wolfe temperature fluctuations at large angular scales (greater than 3 degrees). In the long-wavelength approximation, one can confidently determine the nonlinear evolution of quantum noise with gravity during the inflationary epoch because: (1) different spatial points are no longer in causal contact; and (2) quantum gravity corrections are typically small-- it is sufficient to model the system using classical random fields. If the potential for two scalar fields V(phi sub 1, phi sub 2) possesses a sharp feature, then non-Gaussian fluctuations may arise. An explicit model is given where cold spots in delta T(sub CMB)/T(sub CMB) maps are suppressed as compared to the Gaussian case. The fluctuations are essentially scale-invariant.
Photocurrent spectroscopy of pentacene thin film transistors
NASA Astrophysics Data System (ADS)
Breban, Mihaela
We demonstrate the application of photocurrent modulation spectroscopy in characterizing the performance of organic thin-film transistors. A parallel analysis of the direct current and photocurrent voltage characteristics provides a model free determination of the field-effect mobility and the density of free carriers in the transistor channel as a function of the applied gate voltage. Applying this technique to pentacene thin-film transistors demonstrates that the mobility increases as V1/3g . The free-carrier density is approximately 1/10 of the expected capacitive charge, and the mobility increases monotonically with the free carrier density, consistent with the trap and release model of transport. Also, the modulated photocurrent spectroscopy can be used as a probe of defect states in pentacene thin film transistors, measuring simultaneously the magnitude and the phase of the photocurrent as a function of the modulation frequency. This is accomplished by modeling the photo-carrier generation process as exciton dissociation via interaction with localized traps. Experimental data reveal a Gaussian distribution of localized states centered around 0.3 eV above the highest occupied molecular orbital. We also investigated the effect of the gate dielectric material with our probe and found that the position of the extracted Gaussian slightly shifts, consistent with the expected image charge effect for Pn through the dielectric substrate. Also shifts in the Gaussian position for samples fabricated with variable deposition conditions are correlated with changes in Pn morphology. The morphological differences between Pn films were also detected in current-voltage characteristics and photocurrent spectra. However, the origin of the ubiquitous 0.3 eV defect in Pn seems to be unrelated to structural differences in Pn films.
Xu, Yongfeng F.; Zhu, Weidong D.; Smith, Scott A.
2017-07-01
Mode shapes (MSs) have been extensively used to identify structural damage. This paper presents a new non-model-based method that uses principal, mean and Gaussian curvature MSs (CMSs) to identify damage in plates; the method is applicable and robust to MSs associated with low and high elastic modes on dense and coarse measurement grids. A multi-scale discrete differential-geometry scheme is proposed to calculate principal, mean and Gaussian CMSs associated with a MS of a plate, which can alleviate adverse effects of measurement noise on calculating the CMSs. Principal, mean and Gaussian CMSs of a damaged plate and those of an undamagedmore » one are used to yield four curvature damage indices (CDIs), including Maximum-CDIs, Minimum-CDIs, Mean-CDIs and Gaussian-CDIs. Damage can be identified near regions with consistently higher values of the CDIs. It is shown that a MS of an undamaged plate can be well approximated using a polynomial with a properly determined order that fits a MS of a damaged one, provided that the undamaged plate has a smooth geometry and is made of material that has no stiffness and mass discontinuities. New fitting and convergence indices are proposed to quantify the level of approximation of a MS from a polynomial fit to that of a damaged plate and to determine the proper order of the polynomial fit, respectively. A MS of an aluminum plate with damage in the form of a machined thickness reduction area was measured to experimentally investigate the effectiveness of the proposed CDIs in damage identification; the damage on the plate was successfully identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yongfeng F.; Zhu, Weidong D.; Smith, Scott A.
Mode shapes (MSs) have been extensively used to identify structural damage. This paper presents a new non-model-based method that uses principal, mean and Gaussian curvature MSs (CMSs) to identify damage in plates; the method is applicable and robust to MSs associated with low and high elastic modes on dense and coarse measurement grids. A multi-scale discrete differential-geometry scheme is proposed to calculate principal, mean and Gaussian CMSs associated with a MS of a plate, which can alleviate adverse effects of measurement noise on calculating the CMSs. Principal, mean and Gaussian CMSs of a damaged plate and those of an undamagedmore » one are used to yield four curvature damage indices (CDIs), including Maximum-CDIs, Minimum-CDIs, Mean-CDIs and Gaussian-CDIs. Damage can be identified near regions with consistently higher values of the CDIs. It is shown that a MS of an undamaged plate can be well approximated using a polynomial with a properly determined order that fits a MS of a damaged one, provided that the undamaged plate has a smooth geometry and is made of material that has no stiffness and mass discontinuities. New fitting and convergence indices are proposed to quantify the level of approximation of a MS from a polynomial fit to that of a damaged plate and to determine the proper order of the polynomial fit, respectively. A MS of an aluminum plate with damage in the form of a machined thickness reduction area was measured to experimentally investigate the effectiveness of the proposed CDIs in damage identification; the damage on the plate was successfully identified.« less
NASA Astrophysics Data System (ADS)
Belov, A. V.; Kurkov, Andrei S.; Chikolini, A. V.
1990-08-01
An offset method is modified to allow an analysis of the distribution of fields in a single-mode fiber waveguide without recourse to the Gaussian approximation. A new approximation for the field is obtained for fiber waveguides with a step refractive index profile and a special analysis employing the Hankel transformation is applied to waveguides with a distributed refractive index. The field distributions determined by this method are compared with the corresponding distributions calculated from the refractive index of a preform from which the fibers are drawn. It is shown that these new approaches can be used to determine the dimensions of a mode spot defined in different ways and to forecast the dispersion characteristics of single-mode fiber waveguides.
New stochastic approach for extreme response of slow drift motion of moored floating structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Shunji; Okazaki, Takashi
1995-12-31
A new stochastic method for investigating the flow drift response statistics of moored floating structures is described. Assuming that wave drift excitation process can be driven by a Gaussian white noise process, an exact stochastic equation governing a time evolution of the response Probability Density Function (PDF) is derived on a basis of Projection operator technique in the field of statistical physics. In order to get an approximate solution of the GFP equation, the authors develop the renormalized perturbation technique which is a kind of singular perturbation methods and solve the GFP equation taken into account up to third ordermore » moments of a non-Gaussian excitation. As an example of the present method, a closed form of the joint PDF is derived for linear response in surge motion subjected to a non-Gaussian wave drift excitation and it is represented by the product of a form factor and the quasi-Cauchy PDFs. In this case, the motion displacement and velocity processes are not mutually independent if the excitation process has a significant third order moment. From a comparison between the response PDF by the present solution and the exact one derived by Naess, it is found that the present solution is effective for calculating both the response PDF and the joint PDF. Furthermore it is shown that the displacement-velocity independence is satisfied if the damping coefficient in equation of motion is not so large and that both the non-Gaussian property of excitation and the damping coefficient should be taken into account for estimating the probability exceedance of the response.« less
Receiver design for SPAD-based VLC systems under Poisson-Gaussian mixed noise model.
Mao, Tianqi; Wang, Zhaocheng; Wang, Qi
2017-01-23
Single-photon avalanche diode (SPAD) is a promising photosensor because of its high sensitivity to optical signals in weak illuminance environment. Recently, it has drawn much attention from researchers in visible light communications (VLC). However, existing literature only deals with the simplified channel model, which only considers the effects of Poisson noise introduced by SPAD, but neglects other noise sources. Specifically, when an analog SPAD detector is applied, there exists Gaussian thermal noise generated by the transimpedance amplifier (TIA) and the digital-to-analog converter (D/A). Therefore, in this paper, we propose an SPAD-based VLC system with pulse-amplitude-modulation (PAM) under Poisson-Gaussian mixed noise model, where Gaussian-distributed thermal noise at the receiver is also investigated. The closed-form conditional likelihood of received signals is derived using the Laplace transform and the saddle-point approximation method, and the corresponding quasi-maximum-likelihood (quasi-ML) detector is proposed. Furthermore, the Poisson-Gaussian-distributed signals are converted to Gaussian variables with the aid of the generalized Anscombe transform (GAT), leading to an equivalent additive white Gaussian noise (AWGN) channel, and a hard-decision-based detector is invoked. Simulation results demonstrate that, the proposed GAT-based detector can reduce the computational complexity with marginal performance loss compared with the proposed quasi-ML detector, and both detectors are capable of accurately demodulating the SPAD-based PAM signals.
Karakida, Ryo; Okada, Masato; Amari, Shun-Ichi
2016-07-01
The restricted Boltzmann machine (RBM) is an essential constituent of deep learning, but it is hard to train by using maximum likelihood (ML) learning, which minimizes the Kullback-Leibler (KL) divergence. Instead, contrastive divergence (CD) learning has been developed as an approximation of ML learning and widely used in practice. To clarify the performance of CD learning, in this paper, we analytically derive the fixed points where ML and CDn learning rules converge in two types of RBMs: one with Gaussian visible and Gaussian hidden units and the other with Gaussian visible and Bernoulli hidden units. In addition, we analyze the stability of the fixed points. As a result, we find that the stable points of CDn learning rule coincide with those of ML learning rule in a Gaussian-Gaussian RBM. We also reveal that larger principal components of the input data are extracted at the stable points. Moreover, in a Gaussian-Bernoulli RBM, we find that both ML and CDn learning can extract independent components at one of stable points. Our analysis demonstrates that the same feature components as those extracted by ML learning are extracted simply by performing CD1 learning. Expanding this study should elucidate the specific solutions obtained by CD learning in other types of RBMs or in deep networks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Time-spatial drift of decelerating electromagnetic pulses.
Nerukh, Alexander G; Nerukh, Dmitry A
2013-07-15
A time dependent electromagnetic pulse generated by a current running laterally to the direction of the pulse propagation is considered in paraxial approximation. It is shown that the pulse envelope moves in the time-spatial coordinates on the surface of a parabolic cylinder for the Airy pulse and a hyperbolic cylinder for the Gaussian. These pulses propagate in time with deceleration along the dominant propagation direction and drift uniformly in the lateral direction. The Airy pulse stops at infinity while the asymptotic velocity of the Gaussian is nonzero.
Effect of central obscuration on the LDR point spread function
NASA Technical Reports Server (NTRS)
Vanzyl, Jakob J.
1988-01-01
It is well known that Gaussian apodization of an aperture reduces the sidelobe levels of its point spread function (PSF). In the limit where the standard deviation of the Gaussian function is much smaller than the diameter of the aperture, the sidelobes completely disappear. However, when Gaussian apodization is applied to the Large Deployable Reflector (LDR) array consisting of 84 hexagonal panels, it is found that the sidelobe level only decreases by about 2.5 dB. The reason for this is explained. The PSF is shown for an array consisting of 91 uniformly illuminated hexagonal apertures; this array is identical to the LDR array, except that the central hole in the LDR array is filled with seven additional panels. For comparison, the PSF of the uniformly illuminated LDR array is shown. Notice that it is already evident that the sidelobe structure of the LDR array is different from that of the full array of 91 panels. The PSF's of the same two arrays are shown, but with the illumination apodized with a Gaussian function to have 20 dB tapering at the edges of the arrays. While the sidelobes of the full array have decreased dramatically, those of the LDR array changed in structure, but stayed at almost the same level. This result is not completely surprising, since the Gaussian apodization tends to emphasize the contributions from the central portion of the array; exactly where the hole in the LDR array is located. The two most important conclusions are: the size of the central hole should be minimized, and a simple Gaussian apodization scheme to suppress the sidelobes in the PSF should not be used. A more suitable apodization scheme would be a Gaussian annular ring.
Inference of reaction rate parameters based on summary statistics from experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, Mohammad; Chowdhary, Kamaljit Singh; Safta, Cosmin
Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H 2/O 2-mechanism chain branching reaction H + O 2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the givenmore » summary statistics, using Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to illustrate the need to account for correlation among the Arrhenius rate parameters of one reaction and across rate parameters of different reactions.« less
Inference of reaction rate parameters based on summary statistics from experiments
Khalil, Mohammad; Chowdhary, Kamaljit Singh; Safta, Cosmin; ...
2016-10-15
Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H 2/O 2-mechanism chain branching reaction H + O 2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the givenmore » summary statistics, using Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to illustrate the need to account for correlation among the Arrhenius rate parameters of one reaction and across rate parameters of different reactions.« less
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlfeld, R., E-mail: r.ahlfeld14@imperial.ac.uk; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrixmore » is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10 different input distributions or histograms.« less
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
NASA Astrophysics Data System (ADS)
Ahlfeld, R.; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10 different input distributions or histograms.
Relativistic wide-angle galaxy bispectrum on the light cone
NASA Astrophysics Data System (ADS)
Bertacca, Daniele; Raccanelli, Alvise; Bartolo, Nicola; Liguori, Michele; Matarrese, Sabino; Verde, Licia
2018-01-01
Given the important role that the galaxy bispectrum has recently acquired in cosmology and the scale and precision of forthcoming galaxy clustering observations, it is timely to derive the full expression of the large-scale bispectrum going beyond approximated treatments which neglect integrated terms or higher-order bias terms or use the Limber approximation. On cosmological scales, relativistic effects that arise from observing the past light cone alter the observed galaxy number counts, therefore leaving their imprints on N-point correlators at all orders. In this paper we compute for the first time the bispectrum including all general relativistic, local and integrated, effects at second order, the tracers' bias at second order, geometric effects as well as the primordial non-Gaussianity contribution. This is timely considering that future surveys will probe scales comparable to the horizon where approximations widely used currently may not hold; neglecting these effects may introduce biases in estimation of cosmological parameters as well as primordial non-Gaussianity.
Gaussian process regression for sensor networks under localization uncertainty
Jadaliha, M.; Xu, Yunfei; Choi, Jongeun; Johnson, N.S.; Li, Weiming
2013-01-01
In this paper, we formulate Gaussian process regression with observations under the localization uncertainty due to the resource-constrained sensor networks. In our formulation, effects of observations, measurement noise, localization uncertainty, and prior distributions are all correctly incorporated in the posterior predictive statistics. The analytically intractable posterior predictive statistics are proposed to be approximated by two techniques, viz., Monte Carlo sampling and Laplace's method. Such approximation techniques have been carefully tailored to our problems and their approximation error and complexity are analyzed. Simulation study demonstrates that the proposed approaches perform much better than approaches without considering the localization uncertainty properly. Finally, we have applied the proposed approaches on the experimentally collected real data from a dye concentration field over a section of a river and a temperature field of an outdoor swimming pool to provide proof of concept tests and evaluate the proposed schemes in real situations. In both simulation and experimental results, the proposed methods outperform the quick-and-dirty solutions often used in practice.
Geographically weighted regression model on poverty indicator
NASA Astrophysics Data System (ADS)
Slamet, I.; Nugroho, N. F. T. A.; Muslich
2017-12-01
In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.
Photon polarization tensor in pulsed Hermite- and Laguerre-Gaussian beams
NASA Astrophysics Data System (ADS)
Karbstein, Felix; Mosman, Elena A.
2017-12-01
In this article, we provide analytical expressions for the photon polarization tensor in pulsed Hermite- and Laguerre-Gaussian laser beams. Our results are based on a locally constant field approximation of the one-loop Heisenberg-Euler effective Lagrangian for quantum electrodynamics. Hence, by construction they are limited to slowly varying electromagnetic fields, varying on spatial and temporal scales significantly larger than the Compton wavelength/time of the electron. The latter criterion is fulfilled by all laser beams currently available in the laboratory. Our findings will, e.g., be relevant for the study of vacuum birefringence experienced by probe photons brought into collision with a high-intensity laser pulse which can be represented as a superposition of either Hermite- or Laguerre-Gaussian modes.
Gaussian basis functions for highly oscillatory scattering wavefunctions
NASA Astrophysics Data System (ADS)
Mant, B. P.; Law, M. M.
2018-04-01
We have applied a basis set of distributed Gaussian functions within the S-matrix version of the Kohn variational method to scattering problems involving deep potential energy wells. The Gaussian positions and widths are tailored to the potential using the procedure of Bačić and Light (1986 J. Chem. Phys. 85 4594) which has previously been applied to bound-state problems. The placement procedure is shown to be very efficient and gives scattering wavefunctions and observables in agreement with direct numerical solutions. We demonstrate the basis function placement method with applications to hydrogen atom–hydrogen atom scattering and antihydrogen atom–hydrogen atom scattering.
An empirical analysis of the distribution of overshoots in a stationary Gaussian stochastic process
NASA Technical Reports Server (NTRS)
Carter, M. C.; Madison, M. W.
1973-01-01
The frequency distribution of overshoots in a stationary Gaussian stochastic process is analyzed. The primary processes involved in this analysis are computer simulation and statistical estimation. Computer simulation is used to simulate stationary Gaussian stochastic processes that have selected autocorrelation functions. An analysis of the simulation results reveals a frequency distribution for overshoots with a functional dependence on the mean and variance of the process. Statistical estimation is then used to estimate the mean and variance of a process. It is shown that for an autocorrelation function, the mean and the variance for the number of overshoots, a frequency distribution for overshoots can be estimated.
NASA Astrophysics Data System (ADS)
Lasuik, J.; Shalchi, A.
2018-06-01
In the current paper we explore the influence of the assumed particle statistics on the transport of energetic particles across a mean magnetic field. In previous work the assumption of a Gaussian distribution function was standard, although there have been known cases for which the transport is non-Gaussian. In the present work we combine a kappa distribution with the ordinary differential equation provided by the so-called unified non-linear transport theory. We then compute running perpendicular diffusion coefficients for different values of κ and turbulence configurations. We show that changing the parameter κ slightly increases or decreases the perpendicular diffusion coefficient depending on the considered turbulence configuration. Since these changes are small, we conclude that the assumed statistics is less significant in particle transport theory. The results obtained in the current paper support to use a Gaussian distribution function as usually done in particle transport theory.
A High Performance Bayesian Computing Framework for Spatiotemporal Uncertainty Modeling
NASA Astrophysics Data System (ADS)
Cao, G.
2015-12-01
All types of spatiotemporal measurements are subject to uncertainty. With spatiotemporal data becomes increasingly involved in scientific research and decision making, it is important to appropriately model the impact of uncertainty. Quantitatively modeling spatiotemporal uncertainty, however, is a challenging problem considering the complex dependence and dataheterogeneities.State-space models provide a unifying and intuitive framework for dynamic systems modeling. In this paper, we aim to extend the conventional state-space models for uncertainty modeling in space-time contexts while accounting for spatiotemporal effects and data heterogeneities. Gaussian Markov Random Field (GMRF) models, also known as conditional autoregressive models, are arguably the most commonly used methods for modeling of spatially dependent data. GMRF models basically assume that a geo-referenced variable primarily depends on its neighborhood (Markov property), and the spatial dependence structure is described via a precision matrix. Recent study has shown that GMRFs are efficient approximation to the commonly used Gaussian fields (e.g., Kriging), and compared with Gaussian fields, GMRFs enjoy a series of appealing features, such as fast computation and easily accounting for heterogeneities in spatial data (e.g, point and areal). This paper represents each spatial dataset as a GMRF and integrates them into a state-space form to statistically model the temporal dynamics. Different types of spatial measurements (e.g., categorical, count or continuous), can be accounted for by according link functions. A fast alternative to MCMC framework, so-called Integrated Nested Laplace Approximation (INLA), was adopted for model inference.Preliminary case studies will be conducted to showcase the advantages of the described framework. In the first case, we apply the proposed method for modeling the water table elevation of Ogallala aquifer over the past decades. In the second case, we analyze the drought impacts in Texas counties in the past years, where the spatiotemporal dynamics are represented in areal data.
Unfolding of Proteins: Thermal and Mechanical Unfolding
NASA Technical Reports Server (NTRS)
Hur, Joe S.; Darve, Eric
2004-01-01
We have employed a Hamiltonian model based on a self-consistent Gaussian appoximation to examine the unfolding process of proteins in external - both mechanical and thermal - force elds. The motivation was to investigate the unfolding pathways of proteins by including only the essence of the important interactions of the native-state topology. Furthermore, if such a model can indeed correctly predict the physics of protein unfolding, it can complement more computationally expensive simulations and theoretical work. The self-consistent Gaussian approximation by Micheletti et al. has been incorporated in our model to make the model mathematically tractable by signi cantly reducing the computational cost. All thermodynamic properties and pair contact probabilities are calculated by simply evaluating the values of a series of Incomplete Gamma functions in an iterative manner. We have compared our results to previous molecular dynamics simulation and experimental data for the mechanical unfolding of the giant muscle protein Titin (1TIT). Our model, especially in light of its simplicity and excellent agreement with experiment and simulation, demonstrates the basic physical elements necessary to capture the mechanism of protein unfolding in an external force field.
New description of charged particle propagation in random magnetic fields
NASA Technical Reports Server (NTRS)
Earl, James A.
1994-01-01
When charged particles spiral along a large constant magnetic field, their trajectories are scattered by random components that are superposed on the guiding field. In the simplest analysis of this situation, scattering causes the particles to diffuse parallel to the guiding field. At the next level of approximation, moving pulses that correspond to a coherent mode of propagation are present, but they are represented by delta-functions whose infinitely narrow width makes no sense physically and is inconsistent with the finite duration of coherent pulses observed in solar energetic particle events. To derive a more realistic description, the transport problem is formulated in terms of 4 x 4 matrices, which derive from a representation of the particle distribution function in terms of eigenfunctions of the scattering operator, and which lead to useful approximations that give explicit predictions of the detailed evolution not only of the coherent pulses, but also of the diffusive wake. More specifically, the new description embodies a simple convolution of a narrow Gaussian with the solutions above that involve delta-functions, but with a slightly reduced coherent velocity. The validity of these approximations, which can easily be calculated on a desktop computer, has been exhaustively confirmed by comparison with results of Monte Carlo simulations which kept track of 50 million particles and which were carried out on the Maspar computer at Goddard Space Flight Center.
Truncated Gaussians as tolerance sets
NASA Technical Reports Server (NTRS)
Cozman, Fabio; Krotkov, Eric
1994-01-01
This work focuses on the use of truncated Gaussian distributions as models for bounded data measurements that are constrained to appear between fixed limits. The authors prove that the truncated Gaussian can be viewed as a maximum entropy distribution for truncated bounded data, when mean and covariance are given. The characteristic function for the truncated Gaussian is presented; from this, algorithms are derived for calculation of mean, variance, summation, application of Bayes rule and filtering with truncated Gaussians. As an example of the power of their methods, a derivation of the disparity constraint (used in computer vision) from their models is described. The authors' approach complements results in Statistics, but their proposal is not only to use the truncated Gaussian as a model for selected data; they propose to model measurements as fundamentally in terms of truncated Gaussians.
Method for discovering relationships in data by dynamic quantum clustering
Weinstein, Marvin; Horn, David
2017-05-09
Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.
Method for discovering relationships in data by dynamic quantum clustering
Weinstein, Marvin; Horn, David
2014-10-28
Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.
Moncho, Salvador; Autschbach, Jochen
2010-01-12
A benchmark study for relativistic density functional calculations of NMR spin-spin coupling constants has been performed. The test set contained 47 complexes with heavy metal atoms (W, Pt, Hg, Tl, Pb) with a total of 88 coupling constants involving one or two heavy metal atoms. One-, two-, three-, and four-bond spin-spin couplings have been computed at different levels of theory (nonhybrid vs hybrid DFT, scalar vs two-component relativistic). The computational model was based on geometries fully optimized at the BP/TZP scalar relativistic zeroth-order regular approximation (ZORA) and the conductor-like screening model (COSMO) to include solvent effects. The NMR computations also employed the continuum solvent model. Computations in the gas phase were performed in order to assess the importance of the solvation model. The relative median deviations between various computational models and experiment were found to range between 13% and 21%, with the highest-level computational model (hybrid density functional computations including scalar plus spin-orbit relativistic effects, the COSMO solvent model, and a Gaussian finite-nucleus model) performing best.
Detection of nonlinear transfer functions by the use of Gaussian statistics
NASA Technical Reports Server (NTRS)
Sheppard, J. G.
1972-01-01
The possibility of using on-line signal statistics to detect electronic equipment nonlinearities is discussed. The results of an investigation using Gaussian statistics are presented, and a nonlinearity test that uses ratios of the moments of a Gaussian random variable is developed and discussed. An outline for further investigation is presented.
Non-Born-Oppenheimer calculations of the pure vibrational spectrum of HeH+.
Pavanello, Michele; Bubin, Sergiy; Molski, Marcin; Adamowicz, Ludwik
2005-09-08
Very accurate calculations of the pure vibrational spectrum of the HeH(+) ion are reported. The method used does not assume the Born-Oppenheimer approximation, and the motion of both the electrons and the nuclei are treated on equal footing. In such an approach the vibrational motion cannot be decoupled from the motion of electrons, and thus the pure vibrational states are calculated as the states of the system with zero total angular momentum. The wave functions of the states are expanded in terms of explicitly correlated Gaussian basis functions multipled by even powers of the internuclear distance. The calculations yielded twelve bound states and corresponding eleven transition energies. Those are compared with the pure vibrational transition energies extracted from the experimental rovibrational spectrum.
A Method for Approximating the Bivariate Normal Correlation Coefficient.
ERIC Educational Resources Information Center
Kirk, David B.
Improvements of the Gaussian quadrature in conjunction with the Newton-Raphson iteration technique (TM 000 789) are discussed as effective methods of calculating the bivariate normal correlation coefficient. (CK)
Critical phenomena in active matter
NASA Astrophysics Data System (ADS)
Paoluzzi, M.; Maggi, C.; Marini Bettolo Marconi, U.; Gnan, N.
2016-11-01
We investigate the effect of self-propulsion on a mean-field order-disorder transition. Starting from a φ4 scalar field theory subject to an exponentially correlated noise, we exploit the unified colored-noise approximation to map the nonequilibrium active dynamics onto an effective equilibrium one. This allows us to follow the evolution of the second-order critical point as a function of the noise parameters: the correlation time τ and the noise strength D . Our results suggest that the universality class of the model remains unchanged. We also estimate the effect of Gaussian fluctuations on the mean-field approximation finding an Ornstein-Zernike-like expression for the static structure factor at long wavelengths. Finally, to assess the validity of our predictions, we compare the mean-field theoretical results with numerical simulations of active Lennard-Jones particles in two and three dimensions, finding good qualitative agreement at small τ values.
Effective quadrature formula in solving linear integro-differential equations of order two
NASA Astrophysics Data System (ADS)
Eshkuvatov, Z. K.; Kammuji, M.; Long, N. M. A. Nik; Yunus, Arif A. M.
2017-08-01
In this note, we solve general form of Fredholm-Volterra integro-differential equations (IDEs) of order 2 with boundary condition approximately and show that proposed method is effective and reliable. Initially, IDEs is reduced into integral equation of the third kind by using standard integration techniques and identity between multiple and single integrals then truncated Legendre series are used to estimate the unknown function. For the kernel integrals, we have applied Gauss-Legendre quadrature formula and collocation points are chosen as the roots of the Legendre polynomials. Finally, reduce the integral equations of the third kind into the system of algebraic equations and Gaussian elimination method is applied to get approximate solutions. Numerical examples and comparisons with other methods reveal that the proposed method is very effective and dominated others in many cases. General theory of existence of the solution is also discussed.
Accounting for crustal magnetization in models of the core magnetic field
NASA Technical Reports Server (NTRS)
Jackson, Andrew
1990-01-01
The problem of determining the magnetic field originating in the earth's core in the presence of remanent and induced magnetization is considered. The effect of remanent magnetization in the crust on satellite measurements of the core magnetic field is investigated. The crust as a zero-mean stationary Gaussian random process is modelled using an idea proposed by Parker (1988). It is shown that the matrix of second-order statistics is proportional to the Gram matrix, which depends only on the inner-products of the appropriate Green's functions, and that at a typical satellite altitude of 400 km the data are correlated out to an angular separation of approximately 15 deg. Accurate and efficient means of calculating the matrix elements are given. It is shown that the variance of measurements of the radial component of a magnetic field due to the crust is expected to be approximately twice that in horizontal components.
EVOLUTION OF THE MAGNETIC FIELD LINE DIFFUSION COEFFICIENT AND NON-GAUSSIAN STATISTICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, A. P.; Ruffolo, D.; Matthaeus, W. H.
The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with thesemore » underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.« less
FPGA implementation of neuro-fuzzy system with improved PSO learning.
Karakuzu, Cihan; Karakaya, Fuat; Çavuşlu, Mehmet Ali
2016-07-01
This paper presents the first hardware implementation of neuro-fuzzy system (NFS) with its metaheuristic learning ability on field programmable gate array (FPGA). Metaheuristic learning of NFS for all of its parameters is accomplished by using the improved particle swarm optimization (iPSO). As a second novelty, a new functional approach, which does not require any memory and multiplier usage, is proposed for the Gaussian membership functions of NFS. NFS and its learning using iPSO are implemented on Xilinx Virtex5 xc5vlx110-3ff1153 and efficiency of the proposed implementation tested on two dynamic system identification problems and licence plate detection problem as a practical application. Results indicate that proposed NFS implementation and membership function approximation is as effective as the other approaches available in the literature but requires less hardware resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimation of a monotone percentile residual life function under random censorship.
Franco-Pereira, Alba M; de Uña-Álvarez, Jacobo
2013-01-01
In this paper, we introduce a new estimator of a percentile residual life function with censored data under a monotonicity constraint. Specifically, it is assumed that the percentile residual life is a decreasing function. This assumption is useful when estimating the percentile residual life of units, which degenerate with age. We establish a law of the iterated logarithm for the proposed estimator, and its n-equivalence to the unrestricted estimator. The asymptotic normal distribution of the estimator and its strong approximation to a Gaussian process are also established. We investigate the finite sample performance of the monotone estimator in an extensive simulation study. Finally, data from a clinical trial in primary biliary cirrhosis of the liver are analyzed with the proposed methods. One of the conclusions of our work is that the restricted estimator may be much more efficient than the unrestricted one. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diffusion of test particles in stochastic magnetic fields for small Kubo numbers.
Neuer, Marcus; Spatschek, Karl H
2006-02-01
Motion of charged particles in a collisional plasma with stochastic magnetic field lines is investigated on the basis of the so-called A-Langevin equation. Compared to the previously used A-Langevin model, here finite Larmor radius effects are taken into account. The A-Langevin equation is solved under the assumption that the Lagrangian correlation function for the magnetic field fluctuations is related to the Eulerian correlation function (in Gaussian form) via the Corrsin approximation. The latter is justified for small Kubo numbers. The velocity correlation function, being averaged with respect to the stochastic variables including collisions, leads to an implicit differential equation for the mean square displacement. From the latter, different transport regimes, including the well-known Rechester-Rosenbluth diffusion coefficient, are derived. Finite Larmor radius contributions show a decrease of the diffusion coefficient compared to the guiding center limit. The case of small (or vanishing) mean fields is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Victoria; Kishan, Amar U.; Cao, Minsong
2014-03-15
Purpose: To demonstrate a new method of evaluating dose response of treatment-induced lung radiographic injury post-SBRT (stereotactic body radiotherapy) treatment and the discovery of bimodal dose behavior within clinically identified injury volumes. Methods: Follow-up CT scans at 3, 6, and 12 months were acquired from 24 patients treated with SBRT for stage-1 primary lung cancers or oligometastic lesions. Injury regions in these scans were propagated to the planning CT coordinates by performing deformable registration of the follow-ups to the planning CTs. A bimodal behavior was repeatedly observed from the probability distribution for dose values within the deformed injury regions. Basedmore » on a mixture-Gaussian assumption, an Expectation-Maximization (EM) algorithm was used to obtain characteristic parameters for such distribution. Geometric analysis was performed to interpret such parameters and infer the critical dose level that is potentially inductive of post-SBRT lung injury. Results: The Gaussian mixture obtained from the EM algorithm closely approximates the empirical dose histogram within the injury volume with good consistency. The average Kullback-Leibler divergence values between the empirical differential dose volume histogram and the EM-obtained Gaussian mixture distribution were calculated to be 0.069, 0.063, and 0.092 for the 3, 6, and 12 month follow-up groups, respectively. The lower Gaussian component was located at approximately 70% prescription dose (35 Gy) for all three follow-up time points. The higher Gaussian component, contributed by the dose received by planning target volume, was located at around 107% of the prescription dose. Geometrical analysis suggests the mean of the lower Gaussian component, located at 35 Gy, as a possible indicator for a critical dose that induces lung injury after SBRT. Conclusions: An innovative and improved method for analyzing the correspondence between lung radiographic injury and SBRT treatment dose has been demonstrated. Bimodal behavior was observed in the dose distribution of lung injury after SBRT. Novel statistical and geometrical analysis has shown that the systematically quantified low-dose peak at approximately 35 Gy, or 70% prescription dose, is a good indication of a critical dose for injury. The determined critical dose of 35 Gy resembles the critical dose volume limit of 30 Gy for ipsilateral bronchus in RTOG 0618 and results from previous studies. The authors seek to further extend this improved analysis method to a larger cohort to better understand the interpatient variation in radiographic lung injury dose response post-SBRT.« less
A Gaussian Model-Based Probabilistic Approach for Pulse Transit Time Estimation.
Jang, Dae-Geun; Park, Seung-Hun; Hahn, Minsoo
2016-01-01
In this paper, we propose a new probabilistic approach to pulse transit time (PTT) estimation using a Gaussian distribution model. It is motivated basically by the hypothesis that PTTs normalized by RR intervals follow the Gaussian distribution. To verify the hypothesis, we demonstrate the effects of arterial compliance on the normalized PTTs using the Moens-Korteweg equation. Furthermore, we observe a Gaussian distribution of the normalized PTTs on real data. In order to estimate the PTT using the hypothesis, we first assumed that R-waves in the electrocardiogram (ECG) can be correctly identified. The R-waves limit searching ranges to detect pulse peaks in the photoplethysmogram (PPG) and to synchronize the results with cardiac beats--i.e., the peaks of the PPG are extracted within the corresponding RR interval of the ECG as pulse peak candidates. Their probabilities of being the actual pulse peak are then calculated using a Gaussian probability function. The parameters of the Gaussian function are automatically updated when a new pulse peak is identified. This update makes the probability function adaptive to variations of cardiac cycles. Finally, the pulse peak is identified as the candidate with the highest probability. The proposed approach is tested on a database where ECG and PPG waveforms are collected simultaneously during the submaximal bicycle ergometer exercise test. The results are promising, suggesting that the method provides a simple but more accurate PTT estimation in real applications.
Positive Wigner functions render classical simulation of quantum computation efficient.
Mari, A; Eisert, J
2012-12-07
We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.
Dvořák, Martin; Svobodová, Jana; Dubský, Pavel; Riesová, Martina; Vigh, Gyula; Gaš, Bohuslav
2015-03-01
Although the classical formula of peak resolution was derived to characterize the extent of separation only for Gaussian peaks of equal areas, it is often used even when the peaks follow non-Gaussian distributions and/or have unequal areas. This practice can result in misleading information about the extent of separation in terms of the severity of peak overlap. We propose here the use of the equivalent peak resolution value, a term based on relative peak overlap, to characterize the extent of separation that had been achieved. The definition of equivalent peak resolution is not constrained either by the form(s) of the concentration distribution function(s) of the peaks (Gaussian or non-Gaussian) or the relative area of the peaks. The equivalent peak resolution value and the classically defined peak resolution value are numerically identical when the separated peaks are Gaussian and have identical areas and SDs. Using our new freeware program, Resolution Analyzer, one can calculate both the classically defined and the equivalent peak resolution values. With the help of this tool, we demonstrate here that the classical peak resolution values mischaracterize the extent of peak overlap even when the peaks are Gaussian but have different areas. We show that under ideal conditions of the separation process, the relative peak overlap value is easily accessible by fitting the overall peak profile as the sum of two Gaussian functions. The applicability of the new approach is demonstrated on real separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Fan, Jiwen; Ghan, Steven; Ovchinnikov, Mikhail; Liu, Xiaohong; Rasch, Philip J.; Korolev, Alexei
2011-01-01
Two types of Arctic mixed-phase clouds observed during the ISDAC and M-PACE field campaigns are simulated using a 3-dimensional cloud-resolving model (CRM) with size-resolved cloud microphysics. The modeled cloud properties agree reasonably well with aircraft measurements and surface-based retrievals. Cloud properties such as the probability density function (PDF) of vertical velocity (w), cloud liquid and ice, regimes of cloud particle growth, including the Wegener-Bergeron-Findeisen (WBF) process, and the relationships among properties/processes in mixed-phase clouds are examined to gain insights for improving their representation in General Circulation Models (GCMs). The PDF of the simulated w is well represented by a Gaussian function, validating, at least for arctic clouds, the subgrid treatment used in GCMs. The PDFs of liquid and ice water contents can be approximated by Gamma functions, and a Gaussian function can describe the total water distribution, but a fixed variance assumption should be avoided in both cases. The CRM results support the assumption frequently used in GCMs that mixed phase clouds maintain water vapor near liquid saturation. Thus, ice continues to grow throughout the stratiform cloud but the WBF process occurs in about 50% of cloud volume where liquid and ice co-exist, predominantly in downdrafts. In updrafts, liquid and ice particles grow simultaneously. The relationship between the ice depositional growth rate and cloud ice strongly depends on the capacitance of ice particles. The simplified size-independent capacitance of ice particles used in GCMs could lead to large deviations in ice depositional growth.
Online Reinforcement Learning Using a Probability Density Estimation.
Agostini, Alejandro; Celaya, Enric
2017-01-01
Function approximation in online, incremental, reinforcement learning needs to deal with two fundamental problems: biased sampling and nonstationarity. In this kind of task, biased sampling occurs because samples are obtained from specific trajectories dictated by the dynamics of the environment and are usually concentrated in particular convergence regions, which in the long term tend to dominate the approximation in the less sampled regions. The nonstationarity comes from the recursive nature of the estimations typical of temporal difference methods. This nonstationarity has a local profile, varying not only along the learning process but also along different regions of the state space. We propose to deal with these problems using an estimation of the probability density of samples represented with a gaussian mixture model. To deal with the nonstationarity problem, we use the common approach of introducing a forgetting factor in the updating formula. However, instead of using the same forgetting factor for the whole domain, we make it dependent on the local density of samples, which we use to estimate the nonstationarity of the function at any given input point. To address the biased sampling problem, the forgetting factor applied to each mixture component is modulated according to the new information provided in the updating, rather than forgetting depending only on time, thus avoiding undesired distortions of the approximation in less sampled regions.
NASA Astrophysics Data System (ADS)
Rubel, Aleksey S.; Lukin, Vladimir V.; Egiazarian, Karen O.
2015-03-01
Results of denoising based on discrete cosine transform for a wide class of images corrupted by additive noise are obtained. Three types of noise are analyzed: additive white Gaussian noise and additive spatially correlated Gaussian noise with middle and high correlation levels. TID2013 image database and some additional images are taken as test images. Conventional DCT filter and BM3D are used as denoising techniques. Denoising efficiency is described by PSNR and PSNR-HVS-M metrics. Within hard-thresholding denoising mechanism, DCT-spectrum coefficient statistics are used to characterize images and, subsequently, denoising efficiency for them. Results of denoising efficiency are fitted for such statistics and efficient approximations are obtained. It is shown that the obtained approximations provide high accuracy of prediction of denoising efficiency.
A State-Space Approach to Optimal Level-Crossing Prediction for Linear Gaussian Processes
NASA Technical Reports Server (NTRS)
Martin, Rodney Alexander
2009-01-01
In many complex engineered systems, the ability to give an alarm prior to impending critical events is of great importance. These critical events may have varying degrees of severity, and in fact they may occur during normal system operation. In this article, we investigate approximations to theoretically optimal methods of designing alarm systems for the prediction of level-crossings by a zero-mean stationary linear dynamic system driven by Gaussian noise. An optimal alarm system is designed to elicit the fewest false alarms for a fixed detection probability. This work introduces the use of Kalman filtering in tandem with the optimal level-crossing problem. It is shown that there is a negligible loss in overall accuracy when using approximations to the theoretically optimal predictor, at the advantage of greatly reduced computational complexity. I
Hamilton, Craig S; Kruse, Regina; Sansoni, Linda; Barkhofen, Sonja; Silberhorn, Christine; Jex, Igor
2017-10-27
Boson sampling has emerged as a tool to explore the advantages of quantum over classical computers as it does not require universal control over the quantum system, which favors current photonic experimental platforms. Here, we introduce Gaussian Boson sampling, a classically hard-to-solve problem that uses squeezed states as a nonclassical resource. We relate the probability to measure specific photon patterns from a general Gaussian state in the Fock basis to a matrix function called the Hafnian, which answers the last remaining question of sampling from Gaussian states. Based on this result, we design Gaussian Boson sampling, a #P hard problem, using squeezed states. This demonstrates that Boson sampling from Gaussian states is possible, with significant advantages in the photon generation probability, compared to existing protocols.
NASA Astrophysics Data System (ADS)
Rosenfeld, Yaakov
1989-01-01
The linearized mean-force-field approximation, leading to a Gaussian distribution, provides an exact formal solution to the mean-spherical integral equation model for the electric microfield distribution at a charged point in the general charged-hard-particles fluid. Lado's explicit solution for plasmas immediately follows this general observation.
Evaluation of stochastic differential equation approximation of ion channel gating models.
Bruce, Ian C
2009-04-01
Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.
NASA Astrophysics Data System (ADS)
Kanada-En'yo, Yoshiko
2014-10-01
We analyze the α-cluster wave functions in cluster states of ^8Be and ^{20}Ne by comparing the exact relative wave function obtained by the generator coordinate method (GCM) with various types of trial functions. For the trial functions, we adopt the fixed range shifted Gaussian of the Brink-Bloch (BB) wave function, the spherical Gaussian with the adjustable range parameter of the spherical Tohsaki-Horiuchi-Schuck-Röpke (sTHSR), the deformed Gaussian of the deformed THSR (dTHSR), and a function with the Yukawa tail (YT). The quality of the description of the exact wave function with a trial function is judged by the squared overlap between the trial function and the GCM wave function. A better result is obtained with the sTHSR wave function than the BB wave function, and further improvement can be made with the dTHSR wave function because these wave functions can describe the outer tail better. The YT wave function gives almost an equal quality to or even better quality than the dTHSR wave function, indicating that the outer tail of α-cluster states is characterized by the Yukawa-like tail rather than the Gaussian tail. In weakly bound α-cluster states with small α separation energy and the low centrifugal and Coulomb barriers, the outer tail part is the slowly damping function described well by the quantum penetration through the effective barrier. This outer tail characterizes the almost zero-energy free α gas behavior, i.e., the delocalization of the cluster.
Contributions of Optical and Non-Optical Blur to Variation in Visual Acuity
McAnany, J. Jason; Shahidi, Mahnaz; Applegate, Raymond A.; Zelkha, Ruth; Alexander, Kenneth R.
2011-01-01
Purpose To determine the relative contributions of optical and non-optical sources of intrinsic blur to variations in visual acuity (VA) among normally sighted subjects. Methods Best-corrected VA of sixteen normally sighted subjects was measured using briefly presented (59 ms) tumbling E optotypes that were either unblurred or blurred through convolution with Gaussian functions of different widths. A standard model of intrinsic blur was used to estimate each subject’s equivalent intrinsic blur (σint) and VA for the unblurred tumbling E (MAR0). For 14 subjects, a radially averaged optical point spread function due to higher-order aberrations was derived by Shack-Hartmann aberrometry and fit with a Gaussian function. The standard deviation of the best-fit Gaussian function defined optical blur (σopt). An index of non-optical blur (η) was defined as: 1-σopt/σint. A control experiment was conducted on 5 subjects to evaluate the effect of stimulus duration on MAR0 and σint. Results Log MAR0 for the briefly presented E was correlated significantly with log σint (r = 0.95, p < 0.01), consistent with previous work. However, log MAR0 was not correlated significantly with log σopt (r = 0.46, p = 0.11). For subjects with log MAR0 equivalent to approximately 20/20 or better, log MAR0 was independent of log η, whereas for subjects with larger log MAR0 values, log MAR0 was proportional to log η. The control experiment showed a statistically significant effect of stimulus duration on log MAR0 (p < 0.01) but a non-significant effect on σint (p = 0.13). Conclusions The relative contributions of optical and non-optical blur to VA varied among the subjects, and were related to the subject’s VA. Evaluating optical and non-optical blur may be useful for predicting changes in VA following procedures that improve the optics of the eye in patients with both optical and non-optical sources of VA loss. PMID:21460756
Some Modified Integrated Squared Error Procedures for Multivariate Normal Data.
1982-06-01
p-dimensional Gaussian. There are a number of measures of qualitative robustness but the most important is the influence function . Most of the other...measures are derived from the influence function . The influence function is simply proportional to the score function (Huber, 1981, p. 45 ). The... influence function at the p-variate Gaussian distribution Np (UV) is as -1P IC(x; ,N) = IE&) ;-") sD=XV = (I+c) (p+2)(x-p) exp(- ! (x-p) TV-.1-)) (3.6
A Systematic Approach for Understanding Slater-Gaussian Functions in Computational Chemistry
ERIC Educational Resources Information Center
Stewart, Brianna; Hylton, Derrick J.; Ravi, Natarajan
2013-01-01
A systematic way to understand the intricacies of quantum mechanical computations done by a software package known as "Gaussian" is undertaken via an undergraduate research project. These computations involve the evaluation of key parameters in a fitting procedure to express a Slater-type orbital (STO) function in terms of the linear…
Use of the Box-Cox Transformation in Detecting Changepoints in Daily Precipitation Data Series
NASA Astrophysics Data System (ADS)
Wang, X. L.; Chen, H.; Wu, Y.; Pu, Q.
2009-04-01
This study integrates a Box-Cox power transformation procedure into two statistical tests for detecting changepoints in Gaussian data series, to make the changepoint detection methods applicable to non-Gaussian data series, such as daily precipitation amounts. The detection power aspects of transformed methods in a common trend two-phase regression setting are assessed by Monte Carlo simulations for data of a log-normal or Gamma distribution. The results show that the transformed methods have increased the power of detection, in comparison with the corresponding original (untransformed) methods. The transformed data much better approximate to a Gaussian distribution. As an example of application, the new methods are applied to a series of daily precipitation amounts recorded at a station in Canada, showing satisfactory detection power.
Parameterization of cloud lidar backscattering profiles by means of asymmetrical Gaussians
NASA Astrophysics Data System (ADS)
del Guasta, Massimo; Morandi, Marco; Stefanutti, Leopoldo
1995-06-01
A fitting procedure for cloud lidar data processing is shown that is based on the computation of the first three moments of the vertical-backscattering (or -extinction) profile. Single-peak clouds or single cloud layers are approximated to asymmetrical Gaussians. The algorithm is particularly stable with respect to noise and processing errors, and it is much faster than the equivalent least-squares approach. Multilayer clouds can easily be treated as a sum of single asymmetrical Gaussian peaks. The method is suitable for cloud-shape parametrization in noisy lidar signatures (like those expected from satellite lidars). It also permits an improvement of cloud radiative-property computations that are based on huge lidar data sets for which storage and careful examination of single lidar profiles can't be carried out.
NASA Astrophysics Data System (ADS)
Huang, Xingguo; Sun, Hui
2018-05-01
Gaussian beam is an important complex geometrical optical technology for modeling seismic wave propagation and diffraction in the subsurface with complex geological structure. Current methods for Gaussian beam modeling rely on the dynamic ray tracing and the evanescent wave tracking. However, the dynamic ray tracing method is based on the paraxial ray approximation and the evanescent wave tracking method cannot describe strongly evanescent fields. This leads to inaccuracy of the computed wave fields in the region with a strong inhomogeneous medium. To address this problem, we compute Gaussian beam wave fields using the complex phase by directly solving the complex eikonal equation. In this method, the fast marching method, which is widely used for phase calculation, is combined with Gauss-Newton optimization algorithm to obtain the complex phase at the regular grid points. The main theoretical challenge in combination of this method with Gaussian beam modeling is to address the irregular boundary near the curved central ray. To cope with this challenge, we present the non-uniform finite difference operator and a modified fast marching method. The numerical results confirm the proposed approach.
A Gaussian beam method for ultrasonic non-destructive evaluation modeling
NASA Astrophysics Data System (ADS)
Jacquet, O.; Leymarie, N.; Cassereau, D.
2018-05-01
The propagation of high-frequency ultrasonic body waves can be efficiently estimated with a semi-analytic Dynamic Ray Tracing approach using paraxial approximation. Although this asymptotic field estimation avoids the computational cost of numerical methods, it may encounter several limitations in reproducing identified highly interferential features. Nevertheless, some can be managed by allowing paraxial quantities to be complex-valued. This gives rise to localized solutions, known as paraxial Gaussian beams. Whereas their propagation and transmission/reflection laws are well-defined, the fact remains that the adopted complexification introduces additional initial conditions. While their choice is usually performed according to strategies specifically tailored to limited applications, a Gabor frame method has been implemented to indiscriminately initialize a reasonable number of paraxial Gaussian beams. Since this method can be applied for an usefully wide range of ultrasonic transducers, the typical case of the time-harmonic piston radiator is investigated. Compared to the commonly used Multi-Gaussian Beam model [1], a better agreement is obtained throughout the radiated field between the results of numerical integration (or analytical on-axis solution) and the resulting Gaussian beam superposition. Sparsity of the proposed solution is also discussed.
Elegant Gaussian beams for enhanced optical manipulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alpmann, Christina, E-mail: c.alpmann@uni-muenster.de; Schöler, Christoph; Denz, Cornelia
2015-06-15
Generation of micro- and nanostructured complex light beams attains increasing impact in photonics and laser applications. In this contribution, we demonstrate the implementation and experimental realization of the relatively unknown, but highly versatile class of complex-valued Elegant Hermite- and Laguerre-Gaussian beams. These beams create higher trapping forces compared to standard Gaussian light fields due to their propagation changing properties. We demonstrate optical trapping and alignment of complex functional particles as nanocontainers with standard and Elegant Gaussian light beams. Elegant Gaussian beams will inspire manifold applications in optical manipulation, direct laser writing, or microscopy, where the design of the point-spread functionmore » is relevant.« less
Gaussian effective potential: Quantum mechanics
NASA Astrophysics Data System (ADS)
Stevenson, P. M.
1984-10-01
We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.
Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.
2011-01-01
We investigate optical torques over absorbent negative refractive index spherical scatterers under the influence of linear and circularly polarized TEM00 focused Gaussian beams, in the framework of the generalized Lorenz-Mie theory with the integral localized approximation. The fundamental differences between optical torques due to spin angular momentum transfer in positive and negative refractive index optical trapping are outlined, revealing the effect of the Mie scattering coefficients in one of the most fundamental properties in optical trapping systems. PMID:21833372
NASA Technical Reports Server (NTRS)
Welford, David; Rines, David M.; Dinerman, Bradley J.; Martinsen, Robert
1992-01-01
The authors report operation of a laser-diode side-pumped Nd:YAG laser with a novel pumping geometry that ensures efficient conversion of pump energy into the TEM00 mode. Significant enhancement of thermally induced lensing due to the near-Gaussian energy deposition profile of the pump radiation was observed. An induced lens of approximately 3.2-m focal length was measured at average incident pump powers of only 3.2 W (corresponding to a 0.6 W heat load).
Shear Melting of a Colloidal Glass
NASA Astrophysics Data System (ADS)
Eisenmann, Christoph; Kim, Chanjoong; Mattsson, Johan; Weitz, David A.
2010-01-01
We use confocal microscopy to explore shear melting of colloidal glasses, which occurs at strains of ˜0.08, coinciding with a strongly non-Gaussian step size distribution. For larger strains, the particle mean square displacement increases linearly with strain and the step size distribution becomes Gaussian. The effective diffusion coefficient varies approximately linearly with shear rate, consistent with a modified Stokes-Einstein relationship in which thermal energy is replaced by shear energy and the length scale is set by the size of cooperatively moving regions consisting of ˜3 particles.
NASA Technical Reports Server (NTRS)
Quek, Kok How Francis
1990-01-01
A method of computing reliable Gaussian and mean curvature sign-map descriptors from the polynomial approximation of surfaces was demonstrated. Such descriptors which are invariant under perspective variation are suitable for hypothesis generation. A means for determining the pose of constructed geometric forms whose algebraic surface descriptors are nonlinear in terms of their orienting parameters was developed. This was done by means of linear functions which are capable of approximating nonlinear forms and determining their parameters. It was shown that biquadratic surfaces are suitable companion linear forms for cylindrical approximation and parameter estimation. The estimates provided the initial parametric approximations necessary for a nonlinear regression stage to fine tune the estimates by fitting the actual nonlinear form to the data. A hypothesis-based split-merge algorithm for extraction and pose determination of cylinders and planes which merge smoothly into other surfaces was developed. It was shown that all split-merge algorithms are hypothesis-based. A finite-state algorithm for the extraction of the boundaries of run-length regions was developed. The computation takes advantage of the run list topology and boundary direction constraints implicit in the run-length encoding.
NASA Astrophysics Data System (ADS)
Santana, Victor Mancir da Silva; David, Denis; de Almeida, Jailton Souza; Godet, Christian
2018-06-01
A Fourier transform (FT) algorithm is proposed to retrieve the energy loss function (ELF) of solid surfaces from experimental X-ray photoelectron spectra. The intensity measured over a broad energy range towards lower kinetic energies results from convolution of four spectral distributions: photoemission line shape, multiple plasmon loss probability, X-ray source line structure and Gaussian broadening of the photoelectron analyzer. The FT of the measured XPS spectrum, including the zero-loss peak and all inelastic scattering mechanisms, being a mathematical function of the respective FT of X-ray source, photoemission line shape, multiple plasmon loss function, and Gaussian broadening of the photoelectron analyzer, the proposed algorithm gives straightforward access to the bulk ELF and effective dielectric function of the solid, assuming identical ELF for intrinsic and extrinsic plasmon excitations. This method is applied to aluminum single crystal Al(002) where the photoemission line shape has been computed accurately beyond the Doniach-Sunjic approximation using the Mahan-Wertheim-Citrin approach which takes into account the density of states near the Fermi level; the only adjustable parameters are the singularity index and the broadening energy D (inverse hole lifetime). After correction for surface plasmon excitations, the q-averaged bulk loss function,
NASA Astrophysics Data System (ADS)
Santana, Victor Mancir da Silva; David, Denis; de Almeida, Jailton Souza; Godet, Christian
2018-04-01
A Fourier transform (FT) algorithm is proposed to retrieve the energy loss function (ELF) of solid surfaces from experimental X-ray photoelectron spectra. The intensity measured over a broad energy range towards lower kinetic energies results from convolution of four spectral distributions: photoemission line shape, multiple plasmon loss probability, X-ray source line structure and Gaussian broadening of the photoelectron analyzer. The FT of the measured XPS spectrum, including the zero-loss peak and all inelastic scattering mechanisms, being a mathematical function of the respective FT of X-ray source, photoemission line shape, multiple plasmon loss function, and Gaussian broadening of the photoelectron analyzer, the proposed algorithm gives straightforward access to the bulk ELF and effective dielectric function of the solid, assuming identical ELF for intrinsic and extrinsic plasmon excitations. This method is applied to aluminum single crystal Al(002) where the photoemission line shape has been computed accurately beyond the Doniach-Sunjic approximation using the Mahan-Wertheim-Citrin approach which takes into account the density of states near the Fermi level; the only adjustable parameters are the singularity index and the broadening energy D (inverse hole lifetime). After correction for surface plasmon excitations, the q-averaged bulk loss function,
Brown, James; Carrington, Tucker
2015-07-28
Although phase-space localized Gaussians are themselves poor basis functions, they can be used to effectively contract a discrete variable representation basis [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. 109, 070402 (2012)]. This works despite the fact that elements of the Hamiltonian and overlap matrices labelled by discarded Gaussians are not small. By formulating the matrix problem as a regular (i.e., not a generalized) matrix eigenvalue problem, we show that it is possible to use an iterative eigensolver to compute vibrational energy levels in the Gaussian basis.
Yura, Harold T; Hanson, Steen G
2012-04-01
Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.
Multi-pose facial correction based on Gaussian process with combined kernel function
NASA Astrophysics Data System (ADS)
Shi, Shuyan; Ji, Ruirui; Zhang, Fan
2018-04-01
In order to improve the recognition rate of various postures, this paper proposes a method of facial correction based on Gaussian Process which build a nonlinear regression model between the front and the side face with combined kernel function. The face images with horizontal angle from -45° to +45° can be properly corrected to front faces. Finally, Support Vector Machine is employed for face recognition. Experiments on CAS PEAL R1 face database show that Gaussian process can weaken the influence of pose changes and improve the accuracy of face recognition to certain extent.
Mass functions from the excursion set model
NASA Astrophysics Data System (ADS)
Hiotelis, Nicos; Del Popolo, Antonino
2017-11-01
Aims: We aim to study the stochastic evolution of the smoothed overdensity δ at scale S of the form δ(S) = ∫0S K(S,u)dW(u), where K is a kernel and dW is the usual Wiener process. Methods: For a Gaussian density field, smoothed by the top-hat filter, in real space, we used a simple kernel that gives the correct correlation between scales. A Monte Carlo procedure was used to construct random walks and to calculate first crossing distributions and consequently mass functions for a constant barrier. Results: We show that the evolution considered here improves the agreement with the results of N-body simulations relative to analytical approximations which have been proposed from the same problem by other authors. In fact, we show that an evolution which is fully consistent with the ideas of the excursion set model, describes accurately the mass function of dark matter haloes for values of ν ≤ 1 and underestimates the number of larger haloes. Finally, we show that a constant threshold of collapse, lower than it is usually used, it is able to produce a mass function which approximates the results of N-body simulations for a variety of redshifts and for a wide range of masses. Conclusions: A mass function in good agreement with N-body simulations can be obtained analytically using a lower than usual constant collapse threshold.
Gaussianization for fast and accurate inference from cosmological data
NASA Astrophysics Data System (ADS)
Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.
2016-06-01
We present a method to transform multivariate unimodal non-Gaussian posterior probability densities into approximately Gaussian ones via non-linear mappings, such as Box-Cox transformations and generalizations thereof. This permits an analytical reconstruction of the posterior from a point sample, like a Markov chain, and simplifies the subsequent joint analysis with other experiments. This way, a multivariate posterior density can be reported efficiently, by compressing the information contained in Markov Chain Monte Carlo samples. Further, the model evidence integral (I.e. the marginal likelihood) can be computed analytically. This method is analogous to the search for normal parameters in the cosmic microwave background, but is more general. The search for the optimally Gaussianizing transformation is performed computationally through a maximum-likelihood formalism; its quality can be judged by how well the credible regions of the posterior are reproduced. We demonstrate that our method outperforms kernel density estimates in this objective. Further, we select marginal posterior samples from Planck data with several distinct strongly non-Gaussian features, and verify the reproduction of the marginal contours. To demonstrate evidence computation, we Gaussianize the joint distribution of data from weak lensing and baryon acoustic oscillations, for different cosmological models, and find a preference for flat Λcold dark matter. Comparing to values computed with the Savage-Dickey density ratio, and Population Monte Carlo, we find good agreement of our method within the spread of the other two.
Tables Of Gaussian-Type Orbital Basis Functions
NASA Technical Reports Server (NTRS)
Partridge, Harry
1992-01-01
NASA technical memorandum contains tables of estimated Hartree-Fock wave functions for atoms lithium through neon and potassium through krypton. Sets contain optimized Gaussian-type orbital exponents and coefficients, and near Hartree-Fock quality. Orbital exponents optimized by minimizing restricted Hartree-Fock energy via scaled Newton-Raphson scheme in which Hessian evaluated numerically by use of analytically determined gradients.
Complete stability of delayed recurrent neural networks with Gaussian activation functions.
Liu, Peng; Zeng, Zhigang; Wang, Jun
2017-01-01
This paper addresses the complete stability of delayed recurrent neural networks with Gaussian activation functions. By means of the geometrical properties of Gaussian function and algebraic properties of nonsingular M-matrix, some sufficient conditions are obtained to ensure that for an n-neuron neural network, there are exactly 3 k equilibrium points with 0≤k≤n, among which 2 k and 3 k -2 k equilibrium points are locally exponentially stable and unstable, respectively. Moreover, it concludes that all the states converge to one of the equilibrium points; i.e., the neural networks are completely stable. The derived conditions herein can be easily tested. Finally, a numerical example is given to illustrate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Advanced Machine Learning Emulators of Radiative Transfer Models
NASA Astrophysics Data System (ADS)
Camps-Valls, G.; Verrelst, J.; Martino, L.; Vicent, J.
2017-12-01
Physically-based model inversion methodologies are based on physical laws and established cause-effect relationships. A plethora of remote sensing applications rely on the physical inversion of a Radiative Transfer Model (RTM), which lead to physically meaningful bio-geo-physical parameter estimates. The process is however computationally expensive, needs expert knowledge for both the selection of the RTM, its parametrization and the the look-up table generation, as well as its inversion. Mimicking complex codes with statistical nonlinear machine learning algorithms has become the natural alternative very recently. Emulators are statistical constructs able to approximate the RTM, although at a fraction of the computational cost, providing an estimation of uncertainty, and estimations of the gradient or finite integral forms. We review the field and recent advances of emulation of RTMs with machine learning models. We posit Gaussian processes (GPs) as the proper framework to tackle the problem. Furthermore, we introduce an automatic methodology to construct emulators for costly RTMs. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of GPs with the accurate design of an acquisition function that favours sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of our emulators in toy examples, leaf and canopy levels PROSPECT and PROSAIL RTMs, and for the construction of an optimal look-up-table for atmospheric correction based on MODTRAN5.
Four theorems on the psychometric function.
May, Keith A; Solomon, Joshua A
2013-01-01
In a 2-alternative forced-choice (2AFC) discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, Δx. This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull "slope" parameter, β, can be approximated by β(Noise) x β(Transducer), where β(Noise) is the β of the Weibull function that fits best to the cumulative noise distribution, and β(Transducer) depends on the transducer. We derive general expressions for β(Noise) and β(Transducer), from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when d' ∝ (Δx)(b), β ≈ β(Noise) x b. We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4-0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull β reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of β for contrast discrimination suggests that, if internal noise is stimulus-independent, it has lower kurtosis than a Gaussian.
Operational quantification of continuous-variable correlations.
Rodó, Carles; Adesso, Gerardo; Sanpera, Anna
2008-03-21
We quantify correlations (quantum and/or classical) between two continuous-variable modes as the maximal number of correlated bits extracted via local quadrature measurements. On Gaussian states, such "bit quadrature correlations" majorize entanglement, reducing to an entanglement monotone for pure states. For non-Gaussian states, such as photonic Bell states, photon-subtracted states, and mixtures of Gaussian states, the bit correlations are shown to be a monotonic function of the negativity. This quantification yields a feasible, operational way to measure non-Gaussian entanglement in current experiments by means of direct homodyne detection, without a complete state tomography.
Gaussian Mixture Model of Heart Rate Variability
Costa, Tommaso; Boccignone, Giuseppe; Ferraro, Mario
2012-01-01
Heart rate variability (HRV) is an important measure of sympathetic and parasympathetic functions of the autonomic nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV, namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum. Comparisons have been made also with synthetic data generated from different physiologically based models showing the plausibility of the Gaussian mixture parameters. PMID:22666386
NASA Astrophysics Data System (ADS)
Wang, Wei; Shen, Jianqi
2018-06-01
The use of a shaped beam for applications relying on light scattering depends much on the ability to evaluate the beam shape coefficients (BSC) effectively. Numerical techniques for evaluating the BSCs of a shaped beam, such as the quadrature, the localized approximation (LA), the integral localized approximation (ILA) methods, have been developed within the framework of generalized Lorenz-Mie theory (GLMT). The quadrature methods usually employ the 2-/3-dimensional integrations. In this work, the expressions of the BSCs for an elliptical Gaussian beam (EGB) are simplified into the 1-dimensional integral so as to speed up the numerical computation. Numerical results of BSCs are used to reconstruct the beam field and the fidelity of the reconstructed field to the given beam field is estimated. It is demonstrated that the proposed method is much faster than the 2-dimensional integrations and it can acquire more accurate results than the LA method. Limitations of the quadrature method and also the LA method in the numerical calculation are analyzed in detail.
The determination of modified barrier heights in Ti/GaN nano-Schottky diodes at high temperature.
Lee, Seung-Yong; Kim, Tae-Hong; Chol, Nam-Kyu; Seong, Han-Kyu; Choi, Heon-Jin; Ahn, Byung-Guk; Lee, Sang-Kwon
2008-10-01
We have investigated the size-effect of the nano-Schottky diodes on the electrical transport properties and the temperature-dependent current transport mechanism in a metal-semiconductor nanowire junction (a Ti/GaN nano-Schottky diode) using current-voltage characterization in the range of 300-423 K. We found that the modified mean Schottky barrier height (SBH) was approximately 0.7 eV with a standard deviation of approximately 0.14 V using a Gaussian distribution model of the barrier heights. The slightly high value of the modified mean SBH (approximately 0.11 eV) compared to the results from the thin-film based Ti/GaN Schottky diodes could be due to an additional oxide layer at the interface between the Ti and GaN nanowires. Moreover, we found that the abnormal behavior of the barrier heights and the ideality factors in a Ti/GaN nano-Schottky diode at a temperature below 423 K could be explained by a combination of the enhancement of the tunneling current and a model with a Gaussian distribution of the barrier heights.
LD-SPatt: large deviations statistics for patterns on Markov chains.
Nuel, G
2004-01-01
Statistics on Markov chains are widely used for the study of patterns in biological sequences. Statistics on these models can be done through several approaches. Central limit theorem (CLT) producing Gaussian approximations are one of the most popular ones. Unfortunately, in order to find a pattern of interest, these methods have to deal with tail distribution events where CLT is especially bad. In this paper, we propose a new approach based on the large deviations theory to assess pattern statistics. We first recall theoretical results for empiric mean (level 1) as well as empiric distribution (level 2) large deviations on Markov chains. Then, we present the applications of these results focusing on numerical issues. LD-SPatt is the name of GPL software implementing these algorithms. We compare this approach to several existing ones in terms of complexity and reliability and show that the large deviations are more reliable than the Gaussian approximations in absolute values as well as in terms of ranking and are at least as reliable as compound Poisson approximations. We then finally discuss some further possible improvements and applications of this new method.
Optical generation of millimeter-wave pulses using a fiber Bragg grating in a fiber-optics system.
Ye, Qing; Qu, Ronghui; Fang, Zujie
2007-04-10
A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission.
Flexible link functions in nonparametric binary regression with Gaussian process priors.
Li, Dan; Wang, Xia; Lin, Lizhen; Dey, Dipak K
2016-09-01
In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. © 2015, The International Biometric Society.
Flexible Link Functions in Nonparametric Binary Regression with Gaussian Process Priors
Li, Dan; Lin, Lizhen; Dey, Dipak K.
2015-01-01
Summary In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. PMID:26686333
Fitted Hanbury-Brown Twiss radii versus space-time variances in flow-dominated models
NASA Astrophysics Data System (ADS)
Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan
2006-04-01
The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.
Fitted Hanbury-Brown-Twiss radii versus space-time variances in flow-dominated models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan
2006-04-15
The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown-Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simplemore » Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.« less
Developing the Polynomial Expressions for Fields in the ITER Tokamak
NASA Astrophysics Data System (ADS)
Sharma, Stephen
2017-10-01
The two most important problems to be solved in the development of working nuclear fusion power plants are: sustained partial ignition and turbulence. These two phenomena are the subject of research and investigation through the development of analytic functions and computational models. Ansatz development through Gaussian wave-function approximations, dielectric quark models, field solutions using new elliptic functions, and better descriptions of the polynomials of the superconducting current loops are the critical theoretical developments that need to be improved. Euler-Lagrange equations of motion in addition to geodesic formulations generate the particle model which should correspond to the Dirac dispersive scattering coefficient calculations and the fluid plasma model. Feynman-Hellman formalism and Heaviside step functional forms are introduced to the fusion equations to produce simple expressions for the kinetic energy and loop currents. Conclusively, a polynomial description of the current loops, the Biot-Savart field, and the Lagrangian must be uncovered before there can be an adequate computational and iterative model of the thermonuclear plasma.
Expressions for Fields in the ITER Tokamak
NASA Astrophysics Data System (ADS)
Sharma, Stephen
2017-10-01
The two most important problems to be solved in the development of working nuclear fusion power plants are: sustained partial ignition and turbulence. These two phenomenon are the subject of research and investigation through the development of analytic functions and computational models. Ansatz development through Gaussian wave-function approximations, dielectric quark models, field solutions using new elliptic functions, and better descriptions of the polynomials of the superconducting current loops are the critical theoretical developments that need to be improved. Euler-Lagrange equations of motion in addition to geodesic formulations generate the particle model which should correspond to the Dirac dispersive scattering coefficient calculations and the fluid plasma model. Feynman-Hellman formalism and Heaviside step functional forms are introduced to the fusion equations to produce simple expressions for the kinetic energy and loop currents. Conclusively, a polynomial description of the current loops, the Biot-Savart field, and the Lagrangian must be uncovered before there can be an adequate computational and iterative model of the thermonuclear plasma.
NASA Astrophysics Data System (ADS)
Kanaun, S.; Markov, A.
2017-06-01
An efficient numerical method for solution of static problems of elasticity for an infinite homogeneous medium containing inhomogeneities (cracks and inclusions) is developed. Finite number of heterogeneous inclusions and planar parallel cracks of arbitrary shapes is considered. The problem is reduced to a system of surface integral equations for crack opening vectors and volume integral equations for stress tensors inside the inclusions. For the numerical solution of these equations, a class of Gaussian approximating functions is used. The method based on these functions is mesh free. For such functions, the elements of the matrix of the discretized system are combinations of explicit analytical functions and five standard 1D-integrals that can be tabulated. Thus, the numerical integration is excluded from the construction of the matrix of the discretized problem. For regular node grids, the matrix of the discretized system has Toeplitz's properties, and Fast Fourier Transform technique can be used for calculation matrix-vector products of such matrices.
Łazarski, Roman; Burow, Asbjörn Manfred; Grajciar, Lukáš; Sierka, Marek
2016-10-30
A full implementation of analytical energy gradients for molecular and periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. Its key component is a combination of density fitting (DF) approximation and continuous fast multipole method (CFMM) that allows for an efficient calculation of the Coulomb energy gradient. For exchange-correlation part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097) is extended to energy gradients. Computational efficiency and asymptotic O(N) scaling behavior of the implementation is demonstrated for various molecular and periodic model systems, with the largest unit cell of hematite containing 640 atoms and 19,072 basis functions. The overall computational effort of energy gradient is comparable to that of the Kohn-Sham matrix formation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Modelling the excitation field of an optical resonator
NASA Astrophysics Data System (ADS)
Romanini, Daniele
2014-06-01
Assuming the paraxial approximation, we derive efficient recursive expressions for the projection coefficients of a Gaussian beam over the Gauss--Hermite transverse electro-magnetic (TEM) modes of an optical cavity. While previous studies considered cavities with cylindrical symmetry, our derivation accounts for "simple" astigmatism and ellipticity, which allows to deal with more realistic optical systems. The resulting expansion of the Gaussian beam over the cavity TEM modes provides accurate simulation of the excitation field distribution inside the cavity, in transmission, and in reflection. In particular, this requires including counter-propagating TEM modes, usually neglected in textbooks. As an illustrative application to a complex case, we simulate reentrant cavity configurations where Herriott spots are obtained at cavity output. We show that the case of an astigmatic cavity is also easily modelled. To our knowledge, such relevant applications are usually treated under the simplified geometrical optics approximation, or using heavier numerical methods.
THE DISTRIBUTION OF COOK’S D STATISTIC
Muller, Keith E.; Mok, Mario Chen
2013-01-01
Cook (1977) proposed a diagnostic to quantify the impact of deleting an observation on the estimated regression coefficients of a General Linear Univariate Model (GLUM). Simulations of models with Gaussian response and predictors demonstrate that his suggestion of comparing the diagnostic to the median of the F for overall regression captures an erratically varying proportion of the values. We describe the exact distribution of Cook’s statistic for a GLUM with Gaussian predictors and response. We also present computational forms, simple approximations, and asymptotic results. A simulation supports the accuracy of the results. The methods allow accurate evaluation of a single value or the maximum value from a regression analysis. The approximations work well for a single value, but less well for the maximum. In contrast, the cut-point suggested by Cook provides widely varying tail probabilities. As with all diagnostics, the data analyst must use scientific judgment in deciding how to treat highlighted observations. PMID:24363487
Sampling schemes and parameter estimation for nonlinear Bernoulli-Gaussian sparse models
NASA Astrophysics Data System (ADS)
Boudineau, Mégane; Carfantan, Hervé; Bourguignon, Sébastien; Bazot, Michael
2016-06-01
We address the sparse approximation problem in the case where the data are approximated by the linear combination of a small number of elementary signals, each of these signals depending non-linearly on additional parameters. Sparsity is explicitly expressed through a Bernoulli-Gaussian hierarchical model in a Bayesian framework. Posterior mean estimates are computed using Markov Chain Monte-Carlo algorithms. We generalize the partially marginalized Gibbs sampler proposed in the linear case in [1], and build an hybrid Hastings-within-Gibbs algorithm in order to account for the nonlinear parameters. All model parameters are then estimated in an unsupervised procedure. The resulting method is evaluated on a sparse spectral analysis problem. It is shown to converge more efficiently than the classical joint estimation procedure, with only a slight increase of the computational cost per iteration, consequently reducing the global cost of the estimation procedure.
Ridge Minimization of Ablated Morphologies on ITO Thin Films Using Squared Quasi-Flat Top Beam
Jeon, Jin-Woo; Choi, Wonsuk; Shin, Young-Gwan; Ji, Suk-Young
2018-01-01
In this study, we explore the improvements in pattern quality that was obtained with a femtosecond laser with quasi-flat top beam profiles at the ablated edge of indium tin oxide (ITO) thin films for the patterning of optoelectronic devices. To ablate the ITO thin films, a femtosecond laser is used that has a wavelength and pulse duration of 1030 nm and 190 fs, respectively. The squared quasi-flat top beam is obtained from a circular Gaussian beam using slits with varying x-y axes. Then, the patterned ITO thin films are measured using both scanning electron and atomic force microscopes. In the case of the Gaussian beam, the ridge height and width are approximately 39 nm and 1.1 μm, respectively, whereas, when the quasi-flat top beam is used, the ridge height and width are approximately 7 nm and 0.25 μm, respectively. PMID:29601515
Almost sure convergence in quantum spin glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buzinski, David, E-mail: dab197@case.edu; Meckes, Elizabeth, E-mail: elizabeth.meckes@case.edu
2015-12-15
Recently, Keating, Linden, and Wells [Markov Processes Relat. Fields 21(3), 537-555 (2015)] showed that the density of states measure of a nearest-neighbor quantum spin glass model is approximately Gaussian when the number of particles is large. The density of states measure is the ensemble average of the empirical spectral measure of a random matrix; in this paper, we use concentration of measure and entropy techniques together with the result of Keating, Linden, and Wells to show that in fact the empirical spectral measure of such a random matrix is almost surely approximately Gaussian itself with no ensemble averaging. We alsomore » extend this result to a spherical quantum spin glass model and to the more general coupling geometries investigated by Erdős and Schröder [Math. Phys., Anal. Geom. 17(3-4), 441–464 (2014)].« less
Gaussian-Beam Laser-Resonator Program
NASA Technical Reports Server (NTRS)
Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman
1989-01-01
Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).
NASA Astrophysics Data System (ADS)
Kumar, Santosh
2015-11-01
We provide a proof to a recent conjecture by Forrester (2014 J. Phys. A: Math. Theor. 47 065202) regarding the algebraic and arithmetic structure of Meijer G-functions which appear in the expression for probability of all eigenvalues real for the product of two real Gaussian matrices. In the process we come across several interesting identities involving Meijer G-functions.
Free energy calculations, enhanced by a Gaussian ansatz, for the "chemical work" distribution.
Boulougouris, Georgios C
2014-05-15
The evaluation of the free energy is essential in molecular simulation because it is intimately related with the existence of multiphase equilibrium. Recently, it was demonstrated that it is possible to evaluate the Helmholtz free energy using a single statistical ensemble along an entire isotherm by accounting for the "chemical work" of transforming each molecule, from an interacting one, to an ideal gas. In this work, we show that it is possible to perform such a free energy perturbation over a liquid vapor phase transition. Furthermore, we investigate the link between a general free energy perturbation scheme and the novel nonequilibrium theories of Crook's and Jarzinsky. We find that for finite systems away from the thermodynamic limit the second law of thermodynamics will always be an inequality for isothermal free energy perturbations, resulting always to a dissipated work that may tend to zero only in the thermodynamic limit. The work, the heat, and the entropy produced during a thermodynamic free energy perturbation can be viewed in the context of the Crooks and Jarzinsky formalism, revealing that for a given value of the ensemble average of the "irreversible" work, the minimum entropy production corresponded to a Gaussian distribution for the histogram of the work. We propose the evaluation of the free energy difference in any free energy perturbation based scheme on the average irreversible "chemical work" minus the dissipated work that can be calculated from the variance of the distribution of the logarithm of the work histogram, within the Gaussian approximation. As a consequence, using the Gaussian ansatz for the distribution of the "chemical work," accurate estimates for the chemical potential and the free energy of the system can be performed using much shorter simulations and avoiding the necessity of sampling the computational costly tails of the "chemical work." For a more general free energy perturbation scheme that the Gaussian ansatz may not be valid, the free energy calculation can be expressed in terms of the moment generating function of the "chemical work" distribution. Copyright © 2014 Wiley Periodicals, Inc.
Digital processing of satellite imagery application to jungle areas of Peru
NASA Technical Reports Server (NTRS)
Pomalaza, J. C. (Principal Investigator); Pomalaza, C. A.; Espinoza, J.
1976-01-01
The author has identified the following significant results. The use of clustering methods permits the development of relatively fast classification algorithms that could be implemented in an inexpensive computer system with limited amount of memory. Analysis of CCTs using these techniques can provide a great deal of detail permitting the use of the maximum resolution of LANDSAT imagery. Potential cases were detected in which the use of other techniques for classification using a Gaussian approximation for the distribution functions can be used with advantage. For jungle areas, channels 5 and 7 can provide enough information to delineate drainage patterns, swamp and wet areas, and make a reasonable broad classification of forest types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S. D., E-mail: sdpatilphy@gmail.com; Takale, M. V.
2016-05-06
This paper presents an influence of light absorption on self-focusing of laser beam propagation in plasma. The differential equation for beam-width parameter is obtained using the Wentzel-Kramers-Brillouin and paraxial approximations through parabolic equation approach. The nonlinearity in dielectric function is assumed to be aroused due to the combined effect of weakly relativistic and ponderomotive regime. To highlight the nature of propagation, behavior of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments where light absorption plays a vital role.
Wigner molecules: natural orbitals of strongly correlated two-electron harmonium.
Cioslowski, Jerzy; Buchowiecki, Marcin
2006-08-14
Explicit asymptotic expressions for natural orbitals and their occupancies are derived for the harmonium atom at the strong-correlation limit at which the confinement strength omega tends to zero. Unlike in systems with moderate correlation effects, the occupancies at the omega-->0 limit (derived from occupation amplitudes with alternating sign patterns) are vanishingly small and asymptotically independent of the angular momentum, forming a geometric progression with the scale factor proportional to omega(1/3) and the common ratio of ca. 0.0186. The radial components of the natural orbitals are given by products of polynomials and Gaussian functions that, as expected, peak at approximately half of the equilibrium interelectron distance.
2009-11-01
is estimated using the Gaussian kernel function: c′(w, i) = N∑ j =1 c(w, j ) exp [−(i− j )2 2σ2 ] (2) where i and j are absolute positions of the...corresponding terms in the document, and N is the length of the document; c(w, j ) is the actual count of term w at position j . The PLM P (·|D, i) needs to...probability of rel- evance well. The distribution of relevance can be approximated as fol- lows: p(i|θrel) = ∑ j δ(Qj , i)∑ i ∑ j δ(Qj , i) (10
A Comparative Study of Interferometric Regridding Algorithms
NASA Technical Reports Server (NTRS)
Hensley, Scott; Safaeinili, Ali
1999-01-01
THe paper discusses regridding options: (1) The problem of interpolating data that is not sampled on a uniform grid, that is noisy, and contains gaps is a difficult problem. (2) Several interpolation algorithms have been implemented: (a) Nearest neighbor - Fast and easy but shows some artifacts in shaded relief images. (b) Simplical interpolator - uses plane going through three points containing point where interpolation is required. Reasonably fast and accurate. (c) Convolutional - uses a windowed Gaussian approximating the optimal prolate spheroidal weighting function for a specified bandwidth. (d) First or second order surface fitting - Uses the height data centered in a box about a given point and does a weighted least squares surface fit.
Level statistics of a noncompact cosmological billiard
NASA Astrophysics Data System (ADS)
Csordas, Andras; Graham, Robert; Szepfalusy, Peter
1991-08-01
A noncompact chaotic billiard on a two-dimensional space of constant negative curvature, the infinite equilateral triangle describing anisotropy oscillations in the very early universe, is studied quantum-mechanically. A Weyl formula with a logarithmic correction term is derived for the smoothed number of states function. For one symmetry class of the eigenfunctions, the level spacing distribution, the spectral rigidity Delta3, and the Sigma2 statistics are determined numerically using the finite matrix approximation. Systematic deviations are found both from the Gaussian orthogonal ensemble (GOE) and the Poissonian ensemble. However, good agreement with the GOE is found if the fundamental triangle is deformed in such a way that it no longer tiles the space.
Progress in integrated-circuit horn antennas for receiver applications. Part 1: Antenna design
NASA Technical Reports Server (NTRS)
Eleftheriades, George V.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.
1992-01-01
The purpose of this work is to present a systematic method for the design of multimode quasi-integrated horn antennas. The design methodology is based on the Gaussian beam approach and the structures are optimized for achieving maximum fundamental Gaussian coupling efficiency. For this purpose, a hybrid technique is employed in which the integrated part of the antennas is treated using full-wave analysis, whereas the machined part is treated using an approximate method. This results in a simple and efficient design process. The developed design procedure has been applied for the design of a 20, a 23, and a 25 dB quasi-integrated horn antennas, all with a Gaussian coupling efficiency exceeding 97 percent. The designed antennas have been tested and characterized using both full-wave analysis and 90 GHz/370 GHz measurements.
Computationally efficient algorithm for Gaussian Process regression in case of structured samples
NASA Astrophysics Data System (ADS)
Belyaev, M.; Burnaev, E.; Kapushev, Y.
2016-04-01
Surrogate modeling is widely used in many engineering problems. Data sets often have Cartesian product structure (for instance factorial design of experiments with missing points). In such case the size of the data set can be very large. Therefore, one of the most popular algorithms for approximation-Gaussian Process regression-can be hardly applied due to its computational complexity. In this paper a computationally efficient approach for constructing Gaussian Process regression in case of data sets with Cartesian product structure is presented. Efficiency is achieved by using a special structure of the data set and operations with tensors. Proposed algorithm has low computational as well as memory complexity compared to existing algorithms. In this work we also introduce a regularization procedure allowing to take into account anisotropy of the data set and avoid degeneracy of regression model.
Quantifying non-Markovianity of continuous-variable Gaussian dynamical maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasile, Ruggero; Maniscalco, Sabrina; Paris, Matteo G. A.
2011-11-15
We introduce a non-Markovianity measure for continuous-variable open quantum systems based on the idea put forward in H.-P. Breuer et al.[Phys. Rev. Lett. 103, 210401 (2009);], that is, by quantifying the flow of information from the environment back to the open system. Instead of the trace distance we use here the fidelity to assess distinguishability of quantum states. We employ our measure to evaluate non-Markovianity of two paradigmatic Gaussian channels: the purely damping channel and the quantum Brownian motion channel with Ohmic environment. We consider different classes of Gaussian states and look for pairs of states maximizing the backflow ofmore » information. For coherent states we find simple analytical solutions, whereas for squeezed states we provide both exact numerical and approximate analytical solutions in the weak coupling limit.« less
Analyzing the errors of DFT approximations for compressed water systems
NASA Astrophysics Data System (ADS)
Alfè, D.; Bartók, A. P.; Csányi, G.; Gillan, M. J.
2014-07-01
We report an extensive study of the errors of density functional theory (DFT) approximations for compressed water systems. The approximations studied are based on the widely used PBE and BLYP exchange-correlation functionals, and we characterize their errors before and after correction for 1- and 2-body errors, the corrections being performed using the methods of Gaussian approximation potentials. The errors of the uncorrected and corrected approximations are investigated for two related types of water system: first, the compressed liquid at temperature 420 K and density 1.245 g/cm3 where the experimental pressure is 15 kilobars; second, thermal samples of compressed water clusters from the trimer to the 27-mer. For the liquid, we report four first-principles molecular dynamics simulations, two generated with the uncorrected PBE and BLYP approximations and a further two with their 1- and 2-body corrected counterparts. The errors of the simulations are characterized by comparing with experimental data for the pressure, with neutron-diffraction data for the three radial distribution functions, and with quantum Monte Carlo (QMC) benchmarks for the energies of sets of configurations of the liquid in periodic boundary conditions. The DFT errors of the configuration samples of compressed water clusters are computed using QMC benchmarks. We find that the 2-body and beyond-2-body errors in the liquid are closely related to similar errors exhibited by the clusters. For both the liquid and the clusters, beyond-2-body errors of DFT make a substantial contribution to the overall errors, so that correction for 1- and 2-body errors does not suffice to give a satisfactory description. For BLYP, a recent representation of 3-body energies due to Medders, Babin, and Paesani [J. Chem. Theory Comput. 9, 1103 (2013)] gives a reasonably good way of correcting for beyond-2-body errors, after which the remaining errors are typically 0.5 mEh ≃ 15 meV/monomer for the liquid and the clusters.
Analyzing the errors of DFT approximations for compressed water systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfè, D.; London Centre for Nanotechnology, UCL, London WC1H 0AH; Thomas Young Centre, UCL, London WC1H 0AH
We report an extensive study of the errors of density functional theory (DFT) approximations for compressed water systems. The approximations studied are based on the widely used PBE and BLYP exchange-correlation functionals, and we characterize their errors before and after correction for 1- and 2-body errors, the corrections being performed using the methods of Gaussian approximation potentials. The errors of the uncorrected and corrected approximations are investigated for two related types of water system: first, the compressed liquid at temperature 420 K and density 1.245 g/cm{sup 3} where the experimental pressure is 15 kilobars; second, thermal samples of compressed watermore » clusters from the trimer to the 27-mer. For the liquid, we report four first-principles molecular dynamics simulations, two generated with the uncorrected PBE and BLYP approximations and a further two with their 1- and 2-body corrected counterparts. The errors of the simulations are characterized by comparing with experimental data for the pressure, with neutron-diffraction data for the three radial distribution functions, and with quantum Monte Carlo (QMC) benchmarks for the energies of sets of configurations of the liquid in periodic boundary conditions. The DFT errors of the configuration samples of compressed water clusters are computed using QMC benchmarks. We find that the 2-body and beyond-2-body errors in the liquid are closely related to similar errors exhibited by the clusters. For both the liquid and the clusters, beyond-2-body errors of DFT make a substantial contribution to the overall errors, so that correction for 1- and 2-body errors does not suffice to give a satisfactory description. For BLYP, a recent representation of 3-body energies due to Medders, Babin, and Paesani [J. Chem. Theory Comput. 9, 1103 (2013)] gives a reasonably good way of correcting for beyond-2-body errors, after which the remaining errors are typically 0.5 mE{sub h} ≃ 15 meV/monomer for the liquid and the clusters.« less
Precise Determination of the Absorption Maximum in Wide Bands
ERIC Educational Resources Information Center
Eriksson, Karl-Hugo; And Others
1977-01-01
A precise method of determining absorption maxima where Gaussian functions occur is described. The method is based on a logarithmic transformation of the Gaussian equation and is suited for a mini-computer. (MR)
Characterization of Adrenal Adenoma by Gaussian Model-Based Algorithm.
Hsu, Larson D; Wang, Carolyn L; Clark, Toshimasa J
2016-01-01
We confirmed that computed tomography (CT) attenuation values of pixels in an adrenal nodule approximate a Gaussian distribution. Building on this and the previously described histogram analysis method, we created an algorithm that uses mean and standard deviation to estimate the percentage of negative attenuation pixels in an adrenal nodule, thereby allowing differentiation of adenomas and nonadenomas. The institutional review board approved both components of this study in which we developed and then validated our criteria. In the first, we retrospectively assessed CT attenuation values of adrenal nodules for normality using a 2-sample Kolmogorov-Smirnov test. In the second, we evaluated a separate cohort of patients with adrenal nodules using both the conventional 10HU unit mean attenuation method and our Gaussian model-based algorithm. We compared the sensitivities of the 2 methods using McNemar's test. A total of 183 of 185 observations (98.9%) demonstrated a Gaussian distribution in adrenal nodule pixel attenuation values. The sensitivity and specificity of our Gaussian model-based algorithm for identifying adrenal adenoma were 86.1% and 83.3%, respectively. The sensitivity and specificity of the mean attenuation method were 53.2% and 94.4%, respectively. The sensitivities of the 2 methods were significantly different (P value < 0.001). In conclusion, the CT attenuation values within an adrenal nodule follow a Gaussian distribution. Our Gaussian model-based algorithm can characterize adrenal adenomas with higher sensitivity than the conventional mean attenuation method. The use of our algorithm, which does not require additional postprocessing, may increase workflow efficiency and reduce unnecessary workup of benign nodules. Copyright © 2016 Elsevier Inc. All rights reserved.
On the numbers of images of two stochastic gravitational lensing models
NASA Astrophysics Data System (ADS)
Wei, Ang
2017-02-01
We study two gravitational lensing models with Gaussian randomness: the continuous mass fluctuation model and the floating black hole model. The lens equations of these models are related to certain random harmonic functions. Using Rice's formula and Gaussian techniques, we obtain the expected numbers of zeros of these functions, which indicate the amounts of images in the corresponding lens systems.
Synthesis and analysis of discriminators under influence of broadband non-Gaussian noise
NASA Astrophysics Data System (ADS)
Artyushenko, V. M.; Volovach, V. I.
2018-01-01
We considered the problems of the synthesis and analysis of discriminators, when the useful signal is exposed to non-Gaussian additive broadband noise. It is shown that in this case, the discriminator of the tracking meter should contain the nonlinear transformation unit, the characteristics of which are determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian broadband noise and mismatch errors. The parameters of the discriminatory and phase characteristics of the discriminators working under the above conditions are obtained. It is shown that the efficiency of non-linear processing depends on the ratio of power of FM noise to the power of Gaussian noise. The analysis of the information loss of signal transformation caused by the linear section of discriminatory characteristics of the unit of nonlinear transformations of the discriminator is carried out. It is shown that the average slope of the nonlinear transformation characteristic is determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian noise and mismatch errors.
Fernandes, N M; Pinto, B D L; Almeida, L O B; Slaets, J F W; Köberle, R
2010-10-01
We study the reconstruction of visual stimuli from spike trains, representing the reconstructed stimulus by a Volterra series up to second order. We illustrate this procedure in a prominent example of spiking neurons, recording simultaneously from the two H1 neurons located in the lobula plate of the fly Chrysomya megacephala. The fly views two types of stimuli, corresponding to rotational and translational displacements. Second-order reconstructions require the manipulation of potentially very large matrices, which obstructs the use of this approach when there are many neurons. We avoid the computation and inversion of these matrices using a convenient set of basis functions to expand our variables in. This requires approximating the spike train four-point functions by combinations of two-point functions similar to relations, which would be true for gaussian stochastic processes. In our test case, this approximation does not reduce the quality of the reconstruction. The overall contribution to stimulus reconstruction of the second-order kernels, measured by the mean squared error, is only about 5% of the first-order contribution. Yet at specific stimulus-dependent instants, the addition of second-order kernels represents up to 100% improvement, but only for rotational stimuli. We present a perturbative scheme to facilitate the application of our method to weakly correlated neurons.
Waskasi, Morteza M; Newton, Marshall D; Matyushov, Dmitry V
2017-03-30
A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T. This kinetic law is a temperature analogue of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganization energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. The theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.
A fractional Fourier transform analysis of the scattering of ultrasonic waves.
Tant, Katherine M M; Mulholland, Anthony J; Langer, Matthias; Gachagan, Anthony
2015-03-08
Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time-frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time-frequency domain framework to assist in flaw identification and classification.
Spin Hall effect originated from fractal surface
NASA Astrophysics Data System (ADS)
Hajzadeh, I.; Mohseni, S. M.; Movahed, S. M. S.; Jafari, G. R.
2018-05-01
The spin Hall effect (SHE) has shown promising impact in the field of spintronics and magnonics from fundamental and practical points of view. This effect originates from several mechanisms of spin scatterers based on spin–orbit coupling (SOC) and also can be manipulated through the surface roughness. Here, the effect of correlated surface roughness on the SHE in metallic thin films with small SOC is investigated theoretically. Toward this, the self-affine fractal surface in the framework of the Born approximation is exploited. The surface roughness is described by the k-correlation model and is characterized by the roughness exponent H , the in-plane correlation length ξ and the rms roughness amplitude δ. It is found that the spin Hall angle in metallic thin film increases by two orders of magnitude when H decreases from H = 1 to H = 0. In addition, the source of SHE for surface roughness with Gaussian profile distribution function is found to be mainly the side jump scattering while that with a non-Gaussian profile suggests both of the side jump and skew scatterings are present. Our achievements address how details of the surface roughness profile can adjust the SHE in non-heavy metals.
Weighted Feature Gaussian Kernel SVM for Emotion Recognition
Jia, Qingxuan
2016-01-01
Emotion recognition with weighted feature based on facial expression is a challenging research topic and has attracted great attention in the past few years. This paper presents a novel method, utilizing subregion recognition rate to weight kernel function. First, we divide the facial expression image into some uniform subregions and calculate corresponding recognition rate and weight. Then, we get a weighted feature Gaussian kernel function and construct a classifier based on Support Vector Machine (SVM). At last, the experimental results suggest that the approach based on weighted feature Gaussian kernel function has good performance on the correct rate in emotion recognition. The experiments on the extended Cohn-Kanade (CK+) dataset show that our method has achieved encouraging recognition results compared to the state-of-the-art methods. PMID:27807443
Mean Field Variational Bayesian Data Assimilation
NASA Astrophysics Data System (ADS)
Vrettas, M.; Cornford, D.; Opper, M.
2012-04-01
Current data assimilation schemes propose a range of approximate solutions to the classical data assimilation problem, particularly state estimation. Broadly there are three main active research areas: ensemble Kalman filter methods which rely on statistical linearization of the model evolution equations, particle filters which provide a discrete point representation of the posterior filtering or smoothing distribution and 4DVAR methods which seek the most likely posterior smoothing solution. In this paper we present a recent extension to our variational Bayesian algorithm which seeks the most probably posterior distribution over the states, within the family of non-stationary Gaussian processes. Our original work on variational Bayesian approaches to data assimilation sought the best approximating time varying Gaussian process to the posterior smoothing distribution for stochastic dynamical systems. This approach was based on minimising the Kullback-Leibler divergence between the true posterior over paths, and our Gaussian process approximation. So long as the observation density was sufficiently high to bring the posterior smoothing density close to Gaussian the algorithm proved very effective, on lower dimensional systems. However for higher dimensional systems, the algorithm was computationally very demanding. We have been developing a mean field version of the algorithm which treats the state variables at a given time as being independent in the posterior approximation, but still accounts for their relationships between each other in the mean solution arising from the original dynamical system. In this work we present the new mean field variational Bayesian approach, illustrating its performance on a range of classical data assimilation problems. We discuss the potential and limitations of the new approach. We emphasise that the variational Bayesian approach we adopt, in contrast to other variational approaches, provides a bound on the marginal likelihood of the observations given parameters in the model which also allows inference of parameters such as observation errors, and parameters in the model and model error representation, particularly if this is written as a deterministic form with small additive noise. We stress that our approach can address very long time window and weak constraint settings. However like traditional variational approaches our Bayesian variational method has the benefit of being posed as an optimisation problem. We finish with a sketch of the future directions for our approach.
On Nonlinear Functionals of Random Spherical Eigenfunctions
NASA Astrophysics Data System (ADS)
Marinucci, Domenico; Wigman, Igor
2014-05-01
We prove central limit theorems and Stein-like bounds for the asymptotic behaviour of nonlinear functionals of spherical Gaussian eigenfunctions. Our investigation combines asymptotic analysis of higher order moments for Legendre polynomials and, in addition, recent results on Malliavin calculus and total variation bounds for Gaussian subordinated fields. We discuss applications to geometric functionals like the defect and invariant statistics, e.g., polyspectra of isotropic spherical random fields. Both of these have relevance for applications, especially in an astrophysical environment.
Video Shot Boundary Detection Using QR-Decomposition and Gaussian Transition Detection
NASA Astrophysics Data System (ADS)
Amiri, Ali; Fathy, Mahmood
2010-12-01
This article explores the problem of video shot boundary detection and examines a novel shot boundary detection algorithm by using QR-decomposition and modeling of gradual transitions by Gaussian functions. Specifically, the authors attend to the challenges of detecting gradual shots and extracting appropriate spatiotemporal features that affect the ability of algorithms to efficiently detect shot boundaries. The algorithm utilizes the properties of QR-decomposition and extracts a block-wise probability function that illustrates the probability of video frames to be in shot transitions. The probability function has abrupt changes in hard cut transitions, and semi-Gaussian behavior in gradual transitions. The algorithm detects these transitions by analyzing the probability function. Finally, we will report the results of the experiments using large-scale test sets provided by the TRECVID 2006, which has assessments for hard cut and gradual shot boundary detection. These results confirm the high performance of the proposed algorithm.