NASA Astrophysics Data System (ADS)
Sato, Aki-Hiro
2010-12-01
This study considers q-Gaussian distributions and stochastic differential equations with both multiplicative and additive noises. In the M-dimensional case a q-Gaussian distribution can be theoretically derived as a stationary probability distribution of the multiplicative stochastic differential equation with both mutually independent multiplicative and additive noises. By using the proposed stochastic differential equation a method to evaluate a default probability under a given risk buffer is proposed.
An empirical analysis of the distribution of overshoots in a stationary Gaussian stochastic process
NASA Technical Reports Server (NTRS)
Carter, M. C.; Madison, M. W.
1973-01-01
The frequency distribution of overshoots in a stationary Gaussian stochastic process is analyzed. The primary processes involved in this analysis are computer simulation and statistical estimation. Computer simulation is used to simulate stationary Gaussian stochastic processes that have selected autocorrelation functions. An analysis of the simulation results reveals a frequency distribution for overshoots with a functional dependence on the mean and variance of the process. Statistical estimation is then used to estimate the mean and variance of a process. It is shown that for an autocorrelation function, the mean and the variance for the number of overshoots, a frequency distribution for overshoots can be estimated.
Arbitrage with fractional Gaussian processes
NASA Astrophysics Data System (ADS)
Zhang, Xili; Xiao, Weilin
2017-04-01
While the arbitrage opportunity in the Black-Scholes model driven by fractional Brownian motion has a long history, the arbitrage strategy in the Black-Scholes model driven by general fractional Gaussian processes is in its infancy. The development of stochastic calculus with respect to fractional Gaussian processes allowed us to study such models. In this paper, following the idea of Shiryaev (1998), an arbitrage strategy is constructed for the Black-Scholes model driven by fractional Gaussian processes, when the stochastic integral is interpreted in the Riemann-Stieltjes sense. Arbitrage opportunities in some fractional Gaussian processes, including fractional Brownian motion, sub-fractional Brownian motion, bi-fractional Brownian motion, weighted-fractional Brownian motion and tempered fractional Brownian motion, are also investigated.
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.
Extracting features of Gaussian self-similar stochastic processes via the Bandt-Pompe approach.
Rosso, O A; Zunino, L; Pérez, D G; Figliola, A; Larrondo, H A; Garavaglia, M; Martín, M T; Plastino, A
2007-12-01
By recourse to appropriate information theory quantifiers (normalized Shannon entropy and Martín-Plastino-Rosso intensive statistical complexity measure), we revisit the characterization of Gaussian self-similar stochastic processes from a Bandt-Pompe viewpoint. We show that the ensuing approach exhibits considerable advantages with respect to other treatments. In particular, clear quantifiers gaps are found in the transition between the continuous processes and their associated noises.
Analysis of randomly time varying systems by gaussian closure technique
NASA Astrophysics Data System (ADS)
Dash, P. K.; Iyengar, R. N.
1982-07-01
The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.
A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation.
Huang, Yong; Tao, Gang
2014-09-01
The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.
A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yong, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn; Tao, Gang, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn
2014-09-01
The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.
Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.
García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G
2017-08-01
The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.
MSEE: Stochastic Cognitive Linguistic Behavior Models for Semantic Sensing
2013-09-01
recognition, a Gaussian Process Dynamic Model with Social Network Analysis (GPDM-SNA) for a small human group action recognition, an extended GPDM-SNA...44 3.2. Small Human Group Activity Modeling Based on Gaussian Process Dynamic Model and Social Network Analysis (SN-GPDM...51 Approved for public release; distribution unlimited. 3 3.2.3. Gaussian Process Dynamical Model and
Li, Tiejun; Min, Bin; Wang, Zhiming
2013-03-14
The stochastic integral ensuring the Newton-Leibnitz chain rule is essential in stochastic energetics. Marcus canonical integral has this property and can be understood as the Wong-Zakai type smoothing limit when the driving process is non-Gaussian. However, this important concept seems not well-known for physicists. In this paper, we discuss Marcus integral for non-Gaussian processes and its computation in the context of stochastic energetics. We give a comprehensive introduction to Marcus integral and compare three equivalent definitions in the literature. We introduce the exact pathwise simulation algorithm and give the error analysis. We show how to compute the thermodynamic quantities based on the pathwise simulation algorithm. We highlight the information hidden in the Marcus mapping, which plays the key role in determining thermodynamic quantities. We further propose the tau-leaping algorithm, which advance the process with deterministic time steps when tau-leaping condition is satisfied. The numerical experiments and its efficiency analysis show that it is very promising.
NASA Technical Reports Server (NTRS)
Parrish, R. S.; Carter, M. C.
1974-01-01
This analysis utilizes computer simulation and statistical estimation. Realizations of stationary gaussian stochastic processes with selected autocorrelation functions are computer simulated. Analysis of the simulated data revealed that the mean and the variance of a process were functionally dependent upon the autocorrelation parameter and crossing level. Using predicted values for the mean and standard deviation, by the method of moments, the distribution parameters was estimated. Thus, given the autocorrelation parameter, crossing level, mean, and standard deviation of a process, the probability of exceeding the crossing level for a particular length of time was calculated.
Non-Gaussian Multi-resolution Modeling of Magnetosphere-Ionosphere Coupling Processes
NASA Astrophysics Data System (ADS)
Fan, M.; Paul, D.; Lee, T. C. M.; Matsuo, T.
2016-12-01
The most dynamic coupling between the magnetosphere and ionosphere occurs in the Earth's polar atmosphere. Our objective is to model scale-dependent stochastic characteristics of high-latitude ionospheric electric fields that originate from solar wind magnetosphere-ionosphere interactions. The Earth's high-latitude ionospheric electric field exhibits considerable variability, with increasing non-Gaussian characteristics at decreasing spatio-temporal scales. Accurately representing the underlying stochastic physical process through random field modeling is crucial not only for scientific understanding of the energy, momentum and mass exchanges between the Earth's magnetosphere and ionosphere, but also for modern technological systems including telecommunication, navigation, positioning and satellite tracking. While a lot of efforts have been made to characterize the large-scale variability of the electric field in the context of Gaussian processes, no attempt has been made so far to model the small-scale non-Gaussian stochastic process observed in the high-latitude ionosphere. We construct a novel random field model using spherical needlets as building blocks. The double localization of spherical needlets in both spatial and frequency domains enables the model to capture the non-Gaussian and multi-resolutional characteristics of the small-scale variability. The estimation procedure is computationally feasible due to the utilization of an adaptive Gibbs sampler. We apply the proposed methodology to the computational simulation output from the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) magnetosphere model. Our non-Gaussian multi-resolution model results in characterizing significantly more energy associated with the small-scale ionospheric electric field variability in comparison to Gaussian models. By accurately representing unaccounted-for additional energy and momentum sources to the Earth's upper atmosphere, our novel random field modeling approach will provide a viable remedy to the current numerical models' systematic biases resulting from the underestimation of high-latitude energy and momentum sources.
Multi-fidelity Gaussian process regression for prediction of random fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parussini, L.; Venturi, D., E-mail: venturi@ucsc.edu; Perdikaris, P.
We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgersmore » equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.« less
A path integral approach to the Hodgkin-Huxley model
NASA Astrophysics Data System (ADS)
Baravalle, Roman; Rosso, Osvaldo A.; Montani, Fernando
2017-11-01
To understand how single neurons process sensory information, it is necessary to develop suitable stochastic models to describe the response variability of the recorded spike trains. Spikes in a given neuron are produced by the synergistic action of sodium and potassium of the voltage-dependent channels that open or close the gates. Hodgkin and Huxley (HH) equations describe the ionic mechanisms underlying the initiation and propagation of action potentials, through a set of nonlinear ordinary differential equations that approximate the electrical characteristics of the excitable cell. Path integral provides an adequate approach to compute quantities such as transition probabilities, and any stochastic system can be expressed in terms of this methodology. We use the technique of path integrals to determine the analytical solution driven by a non-Gaussian colored noise when considering the HH equations as a stochastic system. The different neuronal dynamics are investigated by estimating the path integral solutions driven by a non-Gaussian colored noise q. More specifically we take into account the correlational structures of the complex neuronal signals not just by estimating the transition probability associated to the Gaussian approach of the stochastic HH equations, but instead considering much more subtle processes accounting for the non-Gaussian noise that could be induced by the surrounding neural network and by feedforward correlations. This allows us to investigate the underlying dynamics of the neural system when different scenarios of noise correlations are considered.
NASA Astrophysics Data System (ADS)
Sposini, Vittoria; Chechkin, Aleksei V.; Seno, Flavio; Pagnini, Gianni; Metzler, Ralf
2018-04-01
A considerable number of systems have recently been reported in which Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential (Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time-dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments.
Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes.
Xu, Xiaoguang; Kypraios, Theodore; O'Neill, Philip D
2016-10-01
This paper considers novel Bayesian non-parametric methods for stochastic epidemic models. Many standard modeling and data analysis methods use underlying assumptions (e.g. concerning the rate at which new cases of disease will occur) which are rarely challenged or tested in practice. To relax these assumptions, we develop a Bayesian non-parametric approach using Gaussian Processes, specifically to estimate the infection process. The methods are illustrated with both simulated and real data sets, the former illustrating that the methods can recover the true infection process quite well in practice, and the latter illustrating that the methods can be successfully applied in different settings. © The Author 2016. Published by Oxford University Press.
Orthogonal Gaussian process models
Plumlee, Matthew; Joseph, V. Roshan
2017-01-01
Gaussian processes models are widely adopted for nonparameteric/semi-parametric modeling. Identifiability issues occur when the mean model contains polynomials with unknown coefficients. Though resulting prediction is unaffected, this leads to poor estimation of the coefficients in the mean model, and thus the estimated mean model loses interpretability. This paper introduces a new Gaussian process model whose stochastic part is orthogonal to the mean part to address this issue. As a result, this paper also discusses applications to multi-fidelity simulations using data examples.
Orthogonal Gaussian process models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plumlee, Matthew; Joseph, V. Roshan
Gaussian processes models are widely adopted for nonparameteric/semi-parametric modeling. Identifiability issues occur when the mean model contains polynomials with unknown coefficients. Though resulting prediction is unaffected, this leads to poor estimation of the coefficients in the mean model, and thus the estimated mean model loses interpretability. This paper introduces a new Gaussian process model whose stochastic part is orthogonal to the mean part to address this issue. As a result, this paper also discusses applications to multi-fidelity simulations using data examples.
Random Process Simulation for stochastic fatigue analysis. Ph.D. Thesis - Rice Univ., Houston, Tex.
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.
1988-01-01
A simulation technique is described which directly synthesizes the extrema of a random process and is more efficient than the Gaussian simulation method. Such a technique is particularly useful in stochastic fatigue analysis because the required stress range moment E(R sup m), is a function only of the extrema of the random stress process. The family of autoregressive moving average (ARMA) models is reviewed and an autoregressive model is presented for modeling the extrema of any random process which has a unimodal power spectral density (psd). The proposed autoregressive technique is found to produce rainflow stress range moments which compare favorably with those computed by the Gaussian technique and to average 11.7 times faster than the Gaussian technique. The autoregressive technique is also adapted for processes having bimodal psd's. The adaptation involves using two autoregressive processes to simulate the extrema due to each mode and the superposition of these two extrema sequences. The proposed autoregressive superposition technique is 9 to 13 times faster than the Gaussian technique and produces comparable values for E(R sup m) for bimodal psd's having the frequency of one mode at least 2.5 times that of the other mode.
NASA Astrophysics Data System (ADS)
Basin, M.; Maldonado, J. J.; Zendejo, O.
2016-07-01
This paper proposes new mean-square filter and parameter estimator design for linear stochastic systems with unknown parameters over linear observations, where unknown parameters are considered as combinations of Gaussian and Poisson white noises. The problem is treated by reducing the original problem to a filtering problem for an extended state vector that includes parameters as additional states, modelled as combinations of independent Gaussian and Poisson processes. The solution to this filtering problem is based on the mean-square filtering equations for incompletely polynomial states confused with Gaussian and Poisson noises over linear observations. The resulting mean-square filter serves as an identifier for the unknown parameters. Finally, a simulation example shows effectiveness of the proposed mean-square filter and parameter estimator.
Erickson, Collin B; Ankenman, Bruce E; Sanchez, Susan M
2018-06-01
This data article provides the summary data from tests comparing various Gaussian process software packages. Each spreadsheet represents a single function or type of function using a particular input sample size. In each spreadsheet, a row gives the results for a particular replication using a single package. Within each spreadsheet there are the results from eight Gaussian process model-fitting packages on five replicates of the surface. There is also one spreadsheet comparing the results from two packages performing stochastic kriging. These data enable comparisons between the packages to determine which package will give users the best results.
Activation rates for nonlinear stochastic flows driven by non-Gaussian noise
NASA Astrophysics Data System (ADS)
van den Broeck, C.; Hänggi, P.
1984-11-01
Activation rates are calculated for stochastic bistable flows driven by asymmetric dichotomic Markov noise (a two-state Markov process). This noise contains as limits both a particular type of non-Gaussian white shot noise and white Gaussian noise. Apart from investigating the role of colored noise on the escape rates, one can thus also study the influence of the non-Gaussian nature of the noise on these rates. The rate for white shot noise differs in leading order (Arrhenius factor) from the corresponding rate for white Gaussian noise of equal strength. In evaluating the rates we demonstrate the advantage of using transport theory over a mean first-passage time approach for cases with generally non-white and non-Gaussian noise sources. For white shot noise with exponentially distributed weights we succeed in evaluating the mean first-passage time of the corresponding integro-differential master-equation dynamics. The rate is shown to coincide in the weak noise limit with the inverse mean first-passage time.
Parametrization and Optimization of Gaussian Non-Markovian Unravelings for Open Quantum Dynamics
NASA Astrophysics Data System (ADS)
Megier, Nina; Strunz, Walter T.; Viviescas, Carlos; Luoma, Kimmo
2018-04-01
We derive a family of Gaussian non-Markovian stochastic Schrödinger equations for the dynamics of open quantum systems. The different unravelings correspond to different choices of squeezed coherent states, reflecting different measurement schemes on the environment. Consequently, we are able to give a single shot measurement interpretation for the stochastic states and microscopic expressions for the noise correlations of the Gaussian process. By construction, the reduced dynamics of the open system does not depend on the squeezing parameters. They determine the non-Hermitian Gaussian correlation, a wide range of which are compatible with the Markov limit. We demonstrate the versatility of our results for quantum information tasks in the non-Markovian regime. In particular, by optimizing the squeezing parameters, we can tailor unravelings for improving entanglement bounds or for environment-assisted entanglement protection.
Research in Stochastic Processes and their Applications
1993-01-01
goal is to learn how Gaussian and linear signal processing methodologies should be adapted to deal with non-Gaussian regimes. Part III continues the... smoothi fmictions in /I, ami we have a chain C ... C tir C ... C /I’) C 11_ C ... C 1t_, C_ ... C ¢’, 10 4o = fH,; H =H;, H, (Hilbert space). 4ý is a Fr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yunlong; Wang, Aiping; Guo, Lei
This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.
Gaussian random bridges and a geometric model for information equilibrium
NASA Astrophysics Data System (ADS)
Mengütürk, Levent Ali
2018-03-01
The paper introduces a class of conditioned stochastic processes that we call Gaussian random bridges (GRBs) and proves some of their properties. Due to the anticipative representation of any GRB as the sum of a random variable and a Gaussian (T , 0) -bridge, GRBs can model noisy information processes in partially observed systems. In this spirit, we propose an asset pricing model with respect to what we call information equilibrium in a market with multiple sources of information. The idea is to work on a topological manifold endowed with a metric that enables us to systematically determine an equilibrium point of a stochastic system that can be represented by multiple points on that manifold at each fixed time. In doing so, we formulate GRB-based information diversity over a Riemannian manifold and show that it is pinned to zero over the boundary determined by Dirac measures. We then define an influence factor that controls the dominance of an information source in determining the best estimate of a signal in the L2-sense. When there are two sources, this allows us to construct information equilibrium as a functional of a geodesic-valued stochastic process, which is driven by an equilibrium convergence rate representing the signal-to-noise ratio. This leads us to derive price dynamics under what can be considered as an equilibrium probability measure. We also provide a semimartingale representation of Markovian GRBs associated with Gaussian martingales and a non-anticipative representation of fractional Brownian random bridges that can incorporate degrees of information coupling in a given system via the Hurst exponent.
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Holland, R. L.
1978-01-01
A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.
New stochastic approach for extreme response of slow drift motion of moored floating structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Shunji; Okazaki, Takashi
1995-12-31
A new stochastic method for investigating the flow drift response statistics of moored floating structures is described. Assuming that wave drift excitation process can be driven by a Gaussian white noise process, an exact stochastic equation governing a time evolution of the response Probability Density Function (PDF) is derived on a basis of Projection operator technique in the field of statistical physics. In order to get an approximate solution of the GFP equation, the authors develop the renormalized perturbation technique which is a kind of singular perturbation methods and solve the GFP equation taken into account up to third ordermore » moments of a non-Gaussian excitation. As an example of the present method, a closed form of the joint PDF is derived for linear response in surge motion subjected to a non-Gaussian wave drift excitation and it is represented by the product of a form factor and the quasi-Cauchy PDFs. In this case, the motion displacement and velocity processes are not mutually independent if the excitation process has a significant third order moment. From a comparison between the response PDF by the present solution and the exact one derived by Naess, it is found that the present solution is effective for calculating both the response PDF and the joint PDF. Furthermore it is shown that the displacement-velocity independence is satisfied if the damping coefficient in equation of motion is not so large and that both the non-Gaussian property of excitation and the damping coefficient should be taken into account for estimating the probability exceedance of the response.« less
NASA Astrophysics Data System (ADS)
Guo, Yongfeng; Shen, Yajun; Tan, Jianguo
2016-09-01
The phenomenon of stochastic resonance (SR) in a piecewise nonlinear model driven by a periodic signal and correlated noises for the cases of a multiplicative non-Gaussian noise and an additive Gaussian white noise is investigated. Applying the path integral approach, the unified colored noise approximation and the two-state model theory, the analytical expression of the signal-to-noise ratio (SNR) is derived. It is found that conventional stochastic resonance exists in this system. From numerical computations we obtain that: (i) As a function of the non-Gaussian noise intensity, the SNR is increased when the non-Gaussian noise deviation parameter q is increased. (ii) As a function of the Gaussian noise intensity, the SNR is decreased when q is increased. This demonstrates that the effect of the non-Gaussian noise on SNR is different from that of the Gaussian noise in this system. Moreover, we further discuss the effect of the correlation time of the non-Gaussian noise, cross-correlation strength, the amplitude and frequency of the periodic signal on SR.
Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun
2017-08-01
Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2 = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.
Noise effects in nonlinear biochemical signaling
NASA Astrophysics Data System (ADS)
Bostani, Neda; Kessler, David A.; Shnerb, Nadav M.; Rappel, Wouter-Jan; Levine, Herbert
2012-01-01
It has been generally recognized that stochasticity can play an important role in the information processing accomplished by reaction networks in biological cells. Most treatments of that stochasticity employ Gaussian noise even though it is a priori obvious that this approximation can violate physical constraints, such as the positivity of chemical concentrations. Here, we show that even when such nonphysical fluctuations are rare, an exact solution of the Gaussian model shows that the model can yield unphysical results. This is done in the context of a simple incoherent-feedforward model which exhibits perfect adaptation in the deterministic limit. We show how one can use the natural separation of time scales in this model to yield an approximate model, that is analytically solvable, including its dynamical response to an environmental change. Alternatively, one can employ a cutoff procedure to regularize the Gaussian result.
Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion
NASA Astrophysics Data System (ADS)
Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin
2018-02-01
Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.
Lei, Youming; Zheng, Fan
2016-12-01
Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.
NASA Astrophysics Data System (ADS)
Hu, D. L.; Liu, X. B.
Both periodic loading and random forces commonly co-exist in real engineering applications. However, the dynamic behavior, especially dynamic stability of systems under parametric periodic and random excitations has been reported little in the literature. In this study, the moment Lyapunov exponent and stochastic stability of binary airfoil under combined harmonic and non-Gaussian colored noise excitations are investigated. The noise is simplified to an Ornstein-Uhlenbeck process by applying the path-integral method. Via the singular perturbation method, the second-order expansions of the moment Lyapunov exponent are obtained, which agree well with the results obtained by the Monte Carlo simulation. Finally, the effects of the noise and parametric resonance (such as subharmonic resonance and combination additive resonance) on the stochastic stability of the binary airfoil system are discussed.
Random mechanics: Nonlinear vibrations, turbulences, seisms, swells, fatigue
NASA Astrophysics Data System (ADS)
Kree, P.; Soize, C.
The random modeling of physical phenomena, together with probabilistic methods for the numerical calculation of random mechanical forces, are analytically explored. Attention is given to theoretical examinations such as probabilistic concepts, linear filtering techniques, and trajectory statistics. Applications of the methods to structures experiencing atmospheric turbulence, the quantification of turbulence, and the dynamic responses of the structures are considered. A probabilistic approach is taken to study the effects of earthquakes on structures and to the forces exerted by ocean waves on marine structures. Theoretical analyses by means of vector spaces and stochastic modeling are reviewed, as are Markovian formulations of Gaussian processes and the definition of stochastic differential equations. Finally, random vibrations with a variable number of links and linear oscillators undergoing the square of Gaussian processes are investigated.
NASA Astrophysics Data System (ADS)
Han, Qun; Xu, Wei; Sun, Jian-Qiao
2016-09-01
The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.
A note on: "A Gaussian-product stochastic Gent-McWilliams parameterization"
NASA Astrophysics Data System (ADS)
Jansen, Malte F.
2017-02-01
This note builds on a recent article by Grooms (2016), which introduces a new stochastic parameterization for eddy buoyancy fluxes. The closure proposed by Grooms accounts for the fact that eddy fluxes arise as the product of two approximately Gaussian variables, which in turn leads to a distinctly non-Gaussian distribution. The directionality of the stochastic eddy fluxes, however, remains somewhat ad-hoc and depends on the reference frame of the chosen coordinate system. This note presents a modification of the approach proposed by Grooms, which eliminates this shortcoming. Eddy fluxes are computed based on a stochastic mixing length model, which leads to a frame invariant formulation. As in the original closure proposed by Grooms, eddy fluxes are proportional to the product of two Gaussian variables, and the parameterization reduces to the Gent and McWilliams parameterization for the mean buyoancy fluxes.
Reduced equations of motion for quantum systems driven by diffusive Markov processes.
Sarovar, Mohan; Grace, Matthew D
2012-09-28
The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.
Recurrence plots of discrete-time Gaussian stochastic processes
NASA Astrophysics Data System (ADS)
Ramdani, Sofiane; Bouchara, Frédéric; Lagarde, Julien; Lesne, Annick
2016-09-01
We investigate the statistical properties of recurrence plots (RPs) of data generated by discrete-time stationary Gaussian random processes. We analytically derive the theoretical values of the probabilities of occurrence of recurrence points and consecutive recurrence points forming diagonals in the RP, with an embedding dimension equal to 1. These results allow us to obtain theoretical values of three measures: (i) the recurrence rate (REC) (ii) the percent determinism (DET) and (iii) RP-based estimation of the ε-entropy κ(ε) in the sense of correlation entropy. We apply these results to two Gaussian processes, namely first order autoregressive processes and fractional Gaussian noise. For these processes, we simulate a number of realizations and compare the RP-based estimations of the three selected measures to their theoretical values. These comparisons provide useful information on the quality of the estimations, such as the minimum required data length and threshold radius used to construct the RP.
Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process
NASA Astrophysics Data System (ADS)
Turner, Douglas C.; Ladde, Gangaram S.
2018-03-01
Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.
State Estimation for Linear Systems Driven Simultaneously by Wiener and Poisson Processes.
1978-12-01
The state estimation problem of linear stochastic systems driven simultaneously by Wiener and Poisson processes is considered, especially the case...where the incident intensities of the Poisson processes are low and the system is observed in an additive white Gaussian noise. The minimum mean squared
Renyi entropy measures of heart rate Gaussianity.
Lake, Douglas E
2006-01-01
Sample entropy and approximate entropy are measures that have been successfully utilized to study the deterministic dynamics of heart rate (HR). A complementary stochastic point of view and a heuristic argument using the Central Limit Theorem suggests that the Gaussianity of HR is a complementary measure of the physiological complexity of the underlying signal transduction processes. Renyi entropy (or q-entropy) is a widely used measure of Gaussianity in many applications. Particularly important members of this family are differential (or Shannon) entropy (q = 1) and quadratic entropy (q = 2). We introduce the concepts of differential and conditional Renyi entropy rate and, in conjunction with Burg's theorem, develop a measure of the Gaussianity of a linear random process. Robust algorithms for estimating these quantities are presented along with estimates of their standard errors.
Radiation Transport in Random Media With Large Fluctuations
NASA Astrophysics Data System (ADS)
Olson, Aaron; Prinja, Anil; Franke, Brian
2017-09-01
Neutral particle transport in media exhibiting large and complex material property spatial variation is modeled by representing cross sections as lognormal random functions of space and generated through a nonlinear memory-less transformation of a Gaussian process with covariance uniquely determined by the covariance of the cross section. A Karhunen-Loève decomposition of the Gaussian process is implemented to effciently generate realizations of the random cross sections and Woodcock Monte Carlo used to transport particles on each realization and generate benchmark solutions for the mean and variance of the particle flux as well as probability densities of the particle reflectance and transmittance. A computationally effcient stochastic collocation method is implemented to directly compute the statistical moments such as the mean and variance, while a polynomial chaos expansion in conjunction with stochastic collocation provides a convenient surrogate model that also produces probability densities of output quantities of interest. Extensive numerical testing demonstrates that use of stochastic reduced-order modeling provides an accurate and cost-effective alternative to random sampling for particle transport in random media.
Separation of components from a scale mixture of Gaussian white noises
NASA Astrophysics Data System (ADS)
Vamoş, Călin; Crăciun, Maria
2010-05-01
The time evolution of a physical quantity associated with a thermodynamic system whose equilibrium fluctuations are modulated in amplitude by a slowly varying phenomenon can be modeled as the product of a Gaussian white noise {Zt} and a stochastic process with strictly positive values {Vt} referred to as volatility. The probability density function (pdf) of the process Xt=VtZt is a scale mixture of Gaussian white noises expressed as a time average of Gaussian distributions weighted by the pdf of the volatility. The separation of the two components of {Xt} can be achieved by imposing the condition that the absolute values of the estimated white noise be uncorrelated. We apply this method to the time series of the returns of the daily S&P500 index, which has also been analyzed by means of the superstatistics method that imposes the condition that the estimated white noise be Gaussian. The advantage of our method is that this financial time series is processed without partitioning or removal of the extreme events and the estimated white noise becomes almost Gaussian only as result of the uncorrelation condition.
Extinction time of a stochastic predator-prey model by the generalized cell mapping method
NASA Astrophysics Data System (ADS)
Han, Qun; Xu, Wei; Hu, Bing; Huang, Dongmei; Sun, Jian-Qiao
2018-03-01
The stochastic response and extinction time of a predator-prey model with Gaussian white noise excitations are studied by the generalized cell mapping (GCM) method based on the short-time Gaussian approximation (STGA). The methods for stochastic response probability density functions (PDFs) and extinction time statistics are developed. The Taylor expansion is used to deal with non-polynomial nonlinear terms of the model for deriving the moment equations with Gaussian closure, which are needed for the STGA in order to compute the one-step transition probabilities. The work is validated with direct Monte Carlo simulations. We have presented the transient responses showing the evolution from a Gaussian initial distribution to a non-Gaussian steady-state one. The effects of the model parameter and noise intensities on the steady-state PDFs are discussed. It is also found that the effects of noise intensities on the extinction time statistics are opposite to the effects on the limit probability distributions of the survival species.
Stochastic differential calculus for Gaussian and non-Gaussian noises: A critical review
NASA Astrophysics Data System (ADS)
Falsone, G.
2018-03-01
In this paper a review of the literature works devoted to the study of stochastic differential equations (SDEs) subjected to Gaussian and non-Gaussian white noises and to fractional Brownian noises is given. In these cases, particular attention must be paid in treating the SDEs because the classical rules of the differential calculus, as the Newton-Leibnitz one, cannot be applied or are applicable with many difficulties. Here all the principal approaches solving the SDEs are reported for any kind of noise, highlighting the negative and positive properties of each one and making the comparisons, where it is possible.
Bayesian Computation for Log-Gaussian Cox Processes: A Comparative Analysis of Methods
Teng, Ming; Nathoo, Farouk S.; Johnson, Timothy D.
2017-01-01
The Log-Gaussian Cox Process is a commonly used model for the analysis of spatial point pattern data. Fitting this model is difficult because of its doubly-stochastic property, i.e., it is an hierarchical combination of a Poisson process at the first level and a Gaussian Process at the second level. Various methods have been proposed to estimate such a process, including traditional likelihood-based approaches as well as Bayesian methods. We focus here on Bayesian methods and several approaches that have been considered for model fitting within this framework, including Hamiltonian Monte Carlo, the Integrated nested Laplace approximation, and Variational Bayes. We consider these approaches and make comparisons with respect to statistical and computational efficiency. These comparisons are made through several simulation studies as well as through two applications, the first examining ecological data and the second involving neuroimaging data. PMID:29200537
NASA Astrophysics Data System (ADS)
Kang, Yan-Mei; Chen, Xi; Lin, Xu-Dong; Tan, Ning
The mean first passage time (MFPT) in a phenomenological gene transcriptional regulatory model with non-Gaussian noise is analytically investigated based on the singular perturbation technique. The effect of the non-Gaussian noise on the phenomenon of stochastic resonance (SR) is then disclosed based on a new combination of adiabatic elimination and linear response approximation. Compared with the results in the Gaussian noise case, it is found that bounded non-Gaussian noise inhibits the transition between different concentrations of protein, while heavy-tailed non-Gaussian noise accelerates the transition. It is also found that the optimal noise intensity for SR in the heavy-tailed noise case is smaller, while the optimal noise intensity in the bounded noise case is larger. These observations can be explained by the heavy-tailed noise easing random transitions.
Gaussian Processes for Prediction of Homing Pigeon Flight Trajectories
NASA Astrophysics Data System (ADS)
Mann, Richard; Freeman, Robin; Osborne, Michael; Garnett, Roman; Meade, Jessica; Armstrong, Chris; Biro, Dora; Guilford, Tim; Roberts, Stephen
2009-12-01
We construct and apply a stochastic Gaussian Process (GP) model of flight trajectory generation for pigeons trained to home from specific release sites. The model shows increasing predictive power as the birds become familiar with the sites, mirroring the animal's learning process. We show how the increasing similarity between successive flight trajectories can be used to infer, with increasing accuracy, an idealised route that captures the repeated spatial aspects of the bird's flight. We subsequently use techniques associated with reduced-rank GP approximations to objectively identify the key waypoints used by each bird to memorise its idiosyncratic habitual route between the release site and the home loft.
NASA Astrophysics Data System (ADS)
Zou, Yong; Donner, Reik V.; Kurths, Jürgen
2015-02-01
Long-range correlated processes are ubiquitous, ranging from climate variables to financial time series. One paradigmatic example for such processes is fractional Brownian motion (fBm). In this work, we highlight the potentials and conceptual as well as practical limitations when applying the recently proposed recurrence network (RN) approach to fBm and related stochastic processes. In particular, we demonstrate that the results of a previous application of RN analysis to fBm [Liu et al. Phys. Rev. E 89, 032814 (2014), 10.1103/PhysRevE.89.032814] are mainly due to an inappropriate treatment disregarding the intrinsic nonstationarity of such processes. Complementarily, we analyze some RN properties of the closely related stationary fractional Gaussian noise (fGn) processes and find that the resulting network properties are well-defined and behave as one would expect from basic conceptual considerations. Our results demonstrate that RN analysis can indeed provide meaningful results for stationary stochastic processes, given a proper selection of its intrinsic methodological parameters, whereas it is prone to fail to uniquely retrieve RN properties for nonstationary stochastic processes like fBm.
Evaluation of stochastic differential equation approximation of ion channel gating models.
Bruce, Ian C
2009-04-01
Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.
Wang, Shijun; Liu, Peter; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Summers, Ronald M
2012-01-01
In this paper, we propose a new pharmacokinetic model for parameter estimation of dynamic contrast-enhanced (DCE) MRI by using Gaussian process inference. Our model is based on the Tofts dual-compartment model for the description of tracer kinetics and the observed time series from DCE-MRI is treated as a Gaussian stochastic process. The parameter estimation is done through a maximum likelihood approach and we propose a variant of the coordinate descent method to solve this likelihood maximization problem. The new model was shown to outperform a baseline method on simulated data. Parametric maps generated on prostate DCE data with the new model also provided better enhancement of tumors, lower intensity on false positives, and better boundary delineation when compared with the baseline method. New statistical parameter maps from the process model were also found to be informative, particularly when paired with the PK parameter maps.
Modeling stock return distributions with a quantum harmonic oscillator
NASA Astrophysics Data System (ADS)
Ahn, K.; Choi, M. Y.; Dai, B.; Sohn, S.; Yang, B.
2017-11-01
We propose a quantum harmonic oscillator as a model for the market force which draws a stock return from short-run fluctuations to the long-run equilibrium. The stochastic equation governing our model is transformed into a Schrödinger equation, the solution of which features “quantized” eigenfunctions. Consequently, stock returns follow a mixed χ distribution, which describes Gaussian and non-Gaussian features. Analyzing the Financial Times Stock Exchange (FTSE) All Share Index, we demonstrate that our model outperforms traditional stochastic process models, e.g., the geometric Brownian motion and the Heston model, with smaller fitting errors and better goodness-of-fit statistics. In addition, making use of analogy, we provide an economic rationale of the physics concepts such as the eigenstate, eigenenergy, and angular frequency, which sheds light on the relationship between finance and econophysics literature.
A stochastic-geometric model of soil variation in Pleistocene patterned ground
NASA Astrophysics Data System (ADS)
Lark, Murray; Meerschman, Eef; Van Meirvenne, Marc
2013-04-01
In this paper we examine the spatial variability of soil in parent material with complex spatial structure which arises from complex non-linear geomorphic processes. We show that this variability can be better-modelled by a stochastic-geometric model than by a standard Gaussian random field. The benefits of the new model are seen in the reproduction of features of the target variable which influence processes like water movement and pollutant dispersal. Complex non-linear processes in the soil give rise to properties with non-Gaussian distributions. Even under a transformation to approximate marginal normality, such variables may have a more complex spatial structure than the Gaussian random field model of geostatistics can accommodate. In particular the extent to which extreme values of the variable are connected in spatially coherent regions may be misrepresented. As a result, for example, geostatistical simulation generally fails to reproduce the pathways for preferential flow in an environment where coarse infill of former fluvial channels or coarse alluvium of braided streams creates pathways for rapid movement of water. Multiple point geostatistics has been developed to deal with this problem. Multiple point methods proceed by sampling from a set of training images which can be assumed to reproduce the non-Gaussian behaviour of the target variable. The challenge is to identify appropriate sources of such images. In this paper we consider a mode of soil variation in which the soil varies continuously, exhibiting short-range lateral trends induced by local effects of the factors of soil formation which vary across the region of interest in an unpredictable way. The trends in soil variation are therefore only apparent locally, and the soil variation at regional scale appears random. We propose a stochastic-geometric model for this mode of soil variation called the Continuous Local Trend (CLT) model. We consider a case study of soil formed in relict patterned ground with pronounced lateral textural variations arising from the presence of infilled ice-wedges of Pleistocene origin. We show how knowledge of the pedogenetic processes in this environment, along with some simple descriptive statistics, can be used to select and fit a CLT model for the apparent electrical conductivity (ECa) of the soil. We use the model to simulate realizations of the CLT process, and compare these with realizations of a fitted Gaussian random field. We show how statistics that summarize the spatial coherence of regions with small values of ECa, which are expected to have coarse texture and so larger saturated hydraulic conductivity, are better reproduced by the CLT model than by the Gaussian random field. This suggests that the CLT model could be used to generate an unlimited supply of training images to allow multiple point geostatistical simulation or prediction of this or similar variables.
A Functional Central Limit Theorem for the Becker-Döring Model
NASA Astrophysics Data System (ADS)
Sun, Wen
2018-04-01
We investigate the fluctuations of the stochastic Becker-Döring model of polymerization when the initial size of the system converges to infinity. A functional central limit problem is proved for the vector of the number of polymers of a given size. It is shown that the stochastic process associated to fluctuations is converging to the strong solution of an infinite dimensional stochastic differential equation (SDE) in a Hilbert space. We also prove that, at equilibrium, the solution of this SDE is a Gaussian process. The proofs are based on a specific representation of the evolution equations, the introduction of a convenient Hilbert space and several technical estimates to control the fluctuations, especially of the first coordinate which interacts with all components of the infinite dimensional vector representing the state of the process.
Period Estimation for Sparsely-sampled Quasi-periodic Light Curves Applied to Miras
NASA Astrophysics Data System (ADS)
He, Shiyuan; Yuan, Wenlong; Huang, Jianhua Z.; Long, James; Macri, Lucas M.
2016-12-01
We develop a nonlinear semi-parametric Gaussian process model to estimate periods of Miras with sparsely sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequency parameter space over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms an existing algorithm on this simulated test data set as measured by period recovery rate and quality of the resulting period-luminosity relations.
Nonstationary stochastic charge fluctuations of a dust particle in plasmas.
Shotorban, B
2011-06-01
Stochastic charge fluctuations of a dust particle that are due to discreteness of electrons and ions in plasmas can be described by a one-step process master equation [T. Matsoukas and M. Russell, J. Appl. Phys. 77, 4285 (1995)] with no exact solution. In the present work, using the system size expansion method of Van Kampen along with the linear noise approximation, a Fokker-Planck equation with an exact Gaussian solution is developed by expanding the master equation. The Gaussian solution has time-dependent mean and variance governed by two ordinary differential equations modeling the nonstationary process of dust particle charging. The model is tested via the comparison of its results to the results obtained by solving the master equation numerically. The electron and ion currents are calculated through the orbital motion limited theory. At various times of the nonstationary process of charging, the model results are in a very good agreement with the master equation results. The deviation is more significant when the standard deviation of the charge is comparable to the mean charge in magnitude.
NASA Astrophysics Data System (ADS)
Tyagi, Neha; Cherayil, Binny J.
2018-03-01
The increasingly widespread occurrence in complex fluids of particle motion that is both Brownian and non-Gaussian has recently been found to be successfully modeled by a process (frequently referred to as ‘diffusing diffusivity’) in which the white noise that governs Brownian diffusion is itself stochastically modulated by either Ornstein–Uhlenbeck dynamics or by two-state noise. But the model has so far not been able to account for an aspect of non-Gaussian Brownian motion that is also commonly observed: a non-monotonic decay of the parameter that quantifies the extent of deviation from Gaussian behavior. In this paper, we show that the inclusion of memory effects in the model—via a generalized Langevin equation—can rationalise this phenomenon.
NASA Astrophysics Data System (ADS)
Magnen, Jacques; Unterberger, Jérémie
2012-03-01
{Let $B=(B_1(t),...,B_d(t))$ be a $d$-dimensional fractional Brownian motion with Hurst index $\\alpha<1/4$, or more generally a Gaussian process whose paths have the same local regularity. Defining properly iterated integrals of $B$ is a difficult task because of the low H\\"older regularity index of its paths. Yet rough path theory shows it is the key to the construction of a stochastic calculus with respect to $B$, or to solving differential equations driven by $B$. We intend to show in a series of papers how to desingularize iterated integrals by a weak, singular non-Gaussian perturbation of the Gaussian measure defined by a limit in law procedure. Convergence is proved by using "standard" tools of constructive field theory, in particular cluster expansions and renormalization. These powerful tools allow optimal estimates, and call for an extension of Gaussian tools such as for instance the Malliavin calculus. After a first introductory paper \\cite{MagUnt1}, this one concentrates on the details of the constructive proof of convergence for second-order iterated integrals, also known as L\\'evy area.
NASA Astrophysics Data System (ADS)
Uchida, Y.; Takada, E.; Fujisaki, A.; Kikuchi, T.; Ogawa, K.; Isobe, M.
2017-08-01
A method to stochastically discriminate neutron and γ-ray signals measured with a stilbene organic scintillator is proposed. Each pulse signal was stochastically categorized into two groups: neutron and γ-ray. In previous work, the Expectation Maximization (EM) algorithm was used with the assumption that the measured data followed a Gaussian mixture distribution. It was shown that probabilistic discrimination between these groups is possible. Moreover, by setting the initial parameters for the Gaussian mixture distribution with a k-means algorithm, the possibility of automatic discrimination was demonstrated. In this study, the Student's t-mixture distribution was used as a probabilistic distribution with the EM algorithm to improve the robustness against the effect of outliers caused by pileup of the signals. To validate the proposed method, the figures of merit (FOMs) were compared for the EM algorithm assuming a t-mixture distribution and a Gaussian mixture distribution. The t-mixture distribution resulted in an improvement of the FOMs compared with the Gaussian mixture distribution. The proposed data processing technique is a promising tool not only for neutron and γ-ray discrimination in fusion experiments but also in other fields, for example, homeland security, cancer therapy with high energy particles, nuclear reactor decommissioning, pattern recognition, and so on.
NASA Astrophysics Data System (ADS)
Molz, F. J.; Kozubowski, T. J.; Miller, R. S.; Podgorski, K.
2005-12-01
The theory of non-stationary stochastic processes with stationary increments gives rise to stochastic fractals. When such fractals are used to represent measurements of (assumed stationary) physical properties, such as ln(k) increments in sediments or velocity increments "delta(v)" in turbulent flows, the resulting measurements exhibit scaling, either spatial, temporal or both. (In the present context, such scaling refers to systematic changes in the statistical properties of the increment distributions, such as variance, with the lag size over which the increments are determined.) Depending on the class of probability density functions (PDFs) that describe the increment distributions, the resulting stochastic fractals will display different properties. Until recently, the stationary increment process was represented using mainly Gaussian, Gamma or Levy PDFs. However, measurements in both sediments and fluid turbulence indicate that these PDFs are not commonly observed. Based on recent data and previous studies referenced and discussed in Meerschaert et al. (2004) and Molz et al. (2005), the measured increment PDFs display an approximate double exponential (Laplace) shape at smaller lags, and this shape evolves towards Gaussian at larger lags. A model for this behavior based on the Generalized Laplace PDF family called fractional Laplace motion, in analogy with its Gaussian counterpart - fractional Brownian motion, has been suggested (Meerschaert et al., 2004) and the necessary mathematics elaborated (Kozubowski et al., 2005). The resulting stochastic fractal is not a typical self-affine monofractal, but it does exhibit monofractal-like scaling in certain lag size ranges. To date, it has been shown that the Generalized Laplace family fits ln(k) increment distributions and reproduces the original 1941 theory of Kolmogorov when applied to Eulerian turbulent velocity increments. However, to make a physically self-consistent application to turbulence, one must adopt a Lagrangian viewpoint, and the details of this approach are still being developed. The potential analogy between turbulent delta(v) and sediment delta[ln(k)] is intriguing, and perhaps offers insight into the underlying chaotic processes that constitute turbulence and may result also in the pervasive heterogeneity observed in most natural sediments. Properties of the new Laplace fractal are presented, and potential applications to both sediments and fluid turbulence are discussed.
NASA Astrophysics Data System (ADS)
Kwon, J.; Yang, H.
2006-12-01
Although GPS provides continuous and accurate position information, there are still some rooms for improvement of its positional accuracy, especially in the medium and long range baseline determination. In general, in case of more than 50 km baseline length, the effect of ionospheric delay is the one causing the largest degradation in positional accuracy. For example, the ionospheric delay in terms of double differenced mode easily reaches 10 cm with baseline length of 101 km. Therefore, many researchers have been tried to mitigate/reduce the effect using various modeling methods. In this paper, the optimal stochastic modeling of the ionospheric delay in terms of baseline length is presented. The data processing has been performed by constructing a Kalman filter with states of positions, ambiguities, and the ionospheric delays in the double differenced mode. Considering the long baseline length, both double differenced GPS phase and code observations are used as observables and LAMBDA has been applied to fix the ambiguities. Here, the ionospheric delay is stochastically modeled by well-known Gaussian, 1st and 3rd order Gauss-Markov process. The parameters required in those models such as correlation distance and time is determined by the least-square adjustment using ionosphere-only observables. Mainly the results and analysis from this study show the effect of stochastic models of the ionospheric delay in terms of the baseline length, models, and parameters used. In the above example with 101 km baseline length, it was found that the positional accuracy with appropriate ionospheric modeling (Gaussian) was about ±2 cm whereas it reaches about ±15 cm with no stochastic modeling. It is expected that the approach in this study contributes to improve positional accuracy, especially in medium and long range baseline determination.
Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thimmisetty, Charanraj A.; Zhao, Wenju; Chen, Xiao
2017-10-18
Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). Thismore » approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zentner, I.; Ferré, G., E-mail: gregoire.ferre@ponts.org; Poirion, F.
2016-06-01
In this paper, a new method for the identification and simulation of non-Gaussian and non-stationary stochastic fields given a database is proposed. It is based on two successive biorthogonal decompositions aiming at representing spatio–temporal stochastic fields. The proposed double expansion allows to build the model even in the case of large-size problems by separating the time, space and random parts of the field. A Gaussian kernel estimator is used to simulate the high dimensional set of random variables appearing in the decomposition. The capability of the method to reproduce the non-stationary and non-Gaussian features of random phenomena is illustrated bymore » applications to earthquakes (seismic ground motion) and sea states (wave heights).« less
A non-gaussian model of continuous atmospheric turbulence for use in aircraft design
NASA Technical Reports Server (NTRS)
Reeves, P. M.; Joppa, R. G.; Ganzer, V. M.
1976-01-01
A non-Gaussian model of atmospheric turbulence is presented and analyzed. The model is restricted to the regions of the atmosphere where the turbulence is steady or continuous, and the assumptions of homogeneity and stationarity are justified. Also spatial distribution of turbulence is neglected, so the model consists of three independent, stationary stochastic processes which represent the vertical, lateral, and longitudinal gust components. The non-Gaussian and Gaussian models are compared with experimental data, and it is shown that the Gaussian model underestimates the number of high velocity gusts which occur in the atmosphere, while the non-Gaussian model can be adjusted to match the observed high velocity gusts more satisfactorily. Application of the proposed model to aircraft response is investigated, with particular attention to the response power spectral density, the probability distribution, and the level crossing frequency. A numerical example is presented which illustrates the application of the non-Gaussian model to the study of an aircraft autopilot system. Listings and sample results of a number of computer programs used in working with the model are included.
Spatio-Temporal Data Analysis at Scale Using Models Based on Gaussian Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Michael
Gaussian processes are the most commonly used statistical model for spatial and spatio-temporal processes that vary continuously. They are broadly applicable in the physical sciences and engineering and are also frequently used to approximate the output of complex computer models, deterministic or stochastic. We undertook research related to theory, computation, and applications of Gaussian processes as well as some work on estimating extremes of distributions for which a Gaussian process assumption might be inappropriate. Our theoretical contributions include the development of new classes of spatial-temporal covariance functions with desirable properties and new results showing that certain covariance models lead tomore » predictions with undesirable properties. To understand how Gaussian process models behave when applied to deterministic computer models, we derived what we believe to be the first significant results on the large sample properties of estimators of parameters of Gaussian processes when the actual process is a simple deterministic function. Finally, we investigated some theoretical issues related to maxima of observations with varying upper bounds and found that, depending on the circumstances, standard large sample results for maxima may or may not hold. Our computational innovations include methods for analyzing large spatial datasets when observations fall on a partially observed grid and methods for estimating parameters of a Gaussian process model from observations taken by a polar-orbiting satellite. In our application of Gaussian process models to deterministic computer experiments, we carried out some matrix computations that would have been infeasible using even extended precision arithmetic by focusing on special cases in which all elements of the matrices under study are rational and using exact arithmetic. The applications we studied include total column ozone as measured from a polar-orbiting satellite, sea surface temperatures over the Pacific Ocean, and annual temperature extremes at a site in New York City. In each of these applications, our theoretical and computational innovations were directly motivated by the challenges posed by analyzing these and similar types of data.« less
Multivariate moment closure techniques for stochastic kinetic models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.
2015-09-07
Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporallymore » evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.« less
PERIOD ESTIMATION FOR SPARSELY SAMPLED QUASI-PERIODIC LIGHT CURVES APPLIED TO MIRAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Shiyuan; Huang, Jianhua Z.; Long, James
2016-12-01
We develop a nonlinear semi-parametric Gaussian process model to estimate periods of Miras with sparsely sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequencymore » parameter space over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms an existing algorithm on this simulated test data set as measured by period recovery rate and quality of the resulting period–luminosity relations.« less
Few-body problem in terms of correlated Gaussians
NASA Astrophysics Data System (ADS)
Silvestre-Brac, Bernard; Mathieu, Vincent
2007-10-01
In their textbook, Suzuki and Varga [Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems (Springer, Berlin, 1998)] present the stochastic variational method with the correlated Gaussian basis in a very exhaustive way. However, the Fourier transform of these functions and their application to the management of a relativistic kinetic energy operator are missing and cannot be found in the literature. In this paper we present these interesting formulas. We also give a derivation for formulations concerning central potentials.
Schlomann, Brandon H
2018-06-06
A central problem in population ecology is understanding the consequences of stochastic fluctuations. Analytically tractable models with Gaussian driving noise have led to important, general insights, but they fail to capture rare, catastrophic events, which are increasingly observed at scales ranging from global fisheries to intestinal microbiota. Due to mathematical challenges, growth processes with random catastrophes are less well characterized and it remains unclear how their consequences differ from those of Gaussian processes. In the face of a changing climate and predicted increases in ecological catastrophes, as well as increased interest in harnessing microbes for therapeutics, these processes have never been more relevant. To better understand them, I revisit here a differential equation model of logistic growth coupled to density-independent catastrophes that arrive as a Poisson process, and derive new analytic results that reveal its statistical structure. First, I derive exact expressions for the model's stationary moments, revealing a single effective catastrophe parameter that largely controls low order statistics. Then, I use weak convergence theorems to construct its Gaussian analog in a limit of frequent, small catastrophes, keeping the stationary population mean constant for normalization. Numerically computing statistics along this limit shows how they transform as the dynamics shifts from catastrophes to diffusions, enabling quantitative comparisons. For example, the mean time to extinction increases monotonically by orders of magnitude, demonstrating significantly higher extinction risk under catastrophes than under diffusions. Together, these results provide insight into a wide range of stochastic dynamical systems important for ecology and conservation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pure Gaussian state generation via dissipation: a quantum stochastic differential equation approach.
Yamamoto, Naoki
2012-11-28
Recently, the complete characterization of a general Gaussian dissipative system having a unique pure steady state was obtained. This result provides a clear guideline for engineering an environment such that the dissipative system has a desired pure steady state such as a cluster state. In this paper, we describe the system in terms of a quantum stochastic differential equation (QSDE) so that the environment channels can be explicitly dealt with. Then, a physical meaning of that characterization, which cannot be seen without the QSDE representation, is clarified; more specifically, the nullifier dynamics of any Gaussian system generating a unique pure steady state is passive. In addition, again based on the QSDE framework, we provide a general and practical method to implement a desired dissipative Gaussian system, which has a structure of quantum state transfer.
Bayesian Analysis of Non-Gaussian Long-Range Dependent Processes
NASA Astrophysics Data System (ADS)
Graves, T.; Franzke, C.; Gramacy, R. B.; Watkins, N. W.
2012-12-01
Recent studies have strongly suggested that surface temperatures exhibit long-range dependence (LRD). The presence of LRD would hamper the identification of deterministic trends and the quantification of their significance. It is well established that LRD processes exhibit stochastic trends over rather long periods of time. Thus, accurate methods for discriminating between physical processes that possess long memory and those that do not are an important adjunct to climate modeling. We have used Markov Chain Monte Carlo algorithms to perform a Bayesian analysis of Auto-Regressive Fractionally-Integrated Moving-Average (ARFIMA) processes, which are capable of modeling LRD. Our principal aim is to obtain inference about the long memory parameter, d,with secondary interest in the scale and location parameters. We have developed a reversible-jump method enabling us to integrate over different model forms for the short memory component. We initially assume Gaussianity, and have tested the method on both synthetic and physical time series such as the Central England Temperature. Many physical processes, for example the Faraday time series from Antarctica, are highly non-Gaussian. We have therefore extended this work by weakening the Gaussianity assumption. Specifically, we assume a symmetric α -stable distribution for the innovations. Such processes provide good, flexible, initial models for non-Gaussian processes with long memory. We will present a study of the dependence of the posterior variance σ d of the memory parameter d on the length of the time series considered. This will be compared with equivalent error diagnostics for other measures of d.
Solution of the finite Milne problem in stochastic media with RVT Technique
NASA Astrophysics Data System (ADS)
Slama, Howida; El-Bedwhey, Nabila A.; El-Depsy, Alia; Selim, Mustafa M.
2017-12-01
This paper presents the solution to the Milne problem in the steady state with isotropic scattering phase function. The properties of the medium are considered as stochastic ones with Gaussian or exponential distributions and hence the problem treated as a stochastic integro-differential equation. To get an explicit form for the radiant energy density, the linear extrapolation distance, reflectivity and transmissivity in the deterministic case the problem is solved using the Pomraning-Eddington method. The obtained solution is found to be dependent on the optical space variable and thickness of the medium which are considered as random variables. The random variable transformation (RVT) technique is used to find the first probability density function (1-PDF) of the solution process. Then the stochastic linear extrapolation distance, reflectivity and transmissivity are calculated. For illustration, numerical results with conclusions are provided.
An unbiased risk estimator for image denoising in the presence of mixed poisson-gaussian noise.
Le Montagner, Yoann; Angelini, Elsa D; Olivo-Marin, Jean-Christophe
2014-03-01
The behavior and performance of denoising algorithms are governed by one or several parameters, whose optimal settings depend on the content of the processed image and the characteristics of the noise, and are generally designed to minimize the mean squared error (MSE) between the denoised image returned by the algorithm and a virtual ground truth. In this paper, we introduce a new Poisson-Gaussian unbiased risk estimator (PG-URE) of the MSE applicable to a mixed Poisson-Gaussian noise model that unifies the widely used Gaussian and Poisson noise models in fluorescence bioimaging applications. We propose a stochastic methodology to evaluate this estimator in the case when little is known about the internal machinery of the considered denoising algorithm, and we analyze both theoretically and empirically the characteristics of the PG-URE estimator. Finally, we evaluate the PG-URE-driven parametrization for three standard denoising algorithms, with and without variance stabilizing transforms, and different characteristics of the Poisson-Gaussian noise mixture.
Codifference as a practical tool to measure interdependence
NASA Astrophysics Data System (ADS)
Wyłomańska, Agnieszka; Chechkin, Aleksei; Gajda, Janusz; Sokolov, Igor M.
2015-03-01
Correlation and spectral analysis represent the standard tools to study interdependence in statistical data. However, for the stochastic processes with heavy-tailed distributions such that the variance diverges, these tools are inadequate. The heavy-tailed processes are ubiquitous in nature and finance. We here discuss codifference as a convenient measure to study statistical interdependence, and we aim to give a short introductory review of its properties. By taking different known stochastic processes as generic examples, we present explicit formulas for their codifferences. We show that for the Gaussian processes codifference is equivalent to covariance. For processes with finite variance these two measures behave similarly with time. For the processes with infinite variance the covariance does not exist, however, the codifference is relevant. We demonstrate the practical importance of the codifference by extracting this function from simulated as well as real data taken from turbulent plasma of fusion device and financial market. We conclude that the codifference serves as a convenient practical tool to study interdependence for stochastic processes with both infinite and finite variances as well.
Lognormal-like statistics of a stochastic squeeze process
NASA Astrophysics Data System (ADS)
Shapira, Dekel; Cohen, Doron
2017-10-01
We analyze the full statistics of a stochastic squeeze process. The model's two parameters are the bare stretching rate w and the angular diffusion coefficient D . We carry out an exact analysis to determine the drift and the diffusion coefficient of log(r ) , where r is the radial coordinate. The results go beyond the heuristic lognormal description that is implied by the central limit theorem. Contrary to the common "quantum Zeno" approximation, the radial diffusion is not simply Dr=(1 /8 ) w2/D but has a nonmonotonic dependence on w /D . Furthermore, the calculation of the radial moments is dominated by the far non-Gaussian tails of the log(r ) distribution.
Technical notes and correspondence: Stochastic robustness of linear time-invariant control systems
NASA Technical Reports Server (NTRS)
Stengel, Robert F.; Ray, Laura R.
1991-01-01
A simple numerical procedure for estimating the stochastic robustness of a linear time-invariant system is described. Monte Carlo evaluations of the system's eigenvalues allows the probability of instability and the related stochastic root locus to be estimated. This analysis approach treats not only Gaussian parameter uncertainties but non-Gaussian cases, including uncertain-but-bounded variation. Confidence intervals for the scalar probability of instability address computational issues inherent in Monte Carlo simulation. Trivial extensions of the procedure admit consideration of alternate discriminants; thus, the probabilities that stipulated degrees of instability will be exceeded or that closed-loop roots will leave desirable regions can also be estimated. Results are particularly amenable to graphical presentation.
Large-deviation properties of Brownian motion with dry friction.
Chen, Yaming; Just, Wolfram
2014-10-01
We investigate piecewise-linear stochastic models with regard to the probability distribution of functionals of the stochastic processes, a question that occurs frequently in large deviation theory. The functionals that we are looking into in detail are related to the time a stochastic process spends at a phase space point or in a phase space region, as well as to the motion with inertia. For a Langevin equation with discontinuous drift, we extend the so-called backward Fokker-Planck technique for non-negative support functionals to arbitrary support functionals, to derive explicit expressions for the moments of the functional. Explicit solutions for the moments and for the distribution of the so-called local time, the occupation time, and the displacement are derived for the Brownian motion with dry friction, including quantitative measures to characterize deviation from Gaussian behavior in the asymptotic long time limit.
Stochastic bifurcation in a model of love with colored noise
NASA Astrophysics Data System (ADS)
Yue, Xiaokui; Dai, Honghua; Yuan, Jianping
2015-07-01
In this paper, we wish to examine the stochastic bifurcation induced by multiplicative Gaussian colored noise in a dynamical model of love where the random factor is used to describe the complexity and unpredictability of psychological systems. First, the dynamics in deterministic love-triangle model are considered briefly including equilibrium points and their stability, chaotic behaviors and chaotic attractors. Then, the influences of Gaussian colored noise with different parameters are explored such as the phase plots, top Lyapunov exponents, stationary probability density function (PDF) and stochastic bifurcation. The stochastic P-bifurcation through a qualitative change of the stationary PDF will be observed and bifurcation diagram on parameter plane of correlation time and noise intensity is presented to find the bifurcation behaviors in detail. Finally, the top Lyapunov exponent is computed to determine the D-bifurcation when the noise intensity achieves to a critical value. By comparison, we find there is no connection between two kinds of stochastic bifurcation.
Quantifying parameter uncertainty in stochastic models using the Box Cox transformation
NASA Astrophysics Data System (ADS)
Thyer, Mark; Kuczera, George; Wang, Q. J.
2002-08-01
The Box-Cox transformation is widely used to transform hydrological data to make it approximately Gaussian. Bayesian evaluation of parameter uncertainty in stochastic models using the Box-Cox transformation is hindered by the fact that there is no analytical solution for the posterior distribution. However, the Markov chain Monte Carlo method known as the Metropolis algorithm can be used to simulate the posterior distribution. This method properly accounts for the nonnegativity constraint implicit in the Box-Cox transformation. Nonetheless, a case study using the AR(1) model uncovered a practical problem with the implementation of the Metropolis algorithm. The use of a multivariate Gaussian jump distribution resulted in unacceptable convergence behaviour. This was rectified by developing suitable parameter transformations for the mean and variance of the AR(1) process to remove the strong nonlinear dependencies with the Box-Cox transformation parameter. Applying this methodology to the Sydney annual rainfall data and the Burdekin River annual runoff data illustrates the efficacy of these parameter transformations and demonstrate the value of quantifying parameter uncertainty.
A Stochastic Kinematic Model of Class Averaging in Single-Particle Electron Microscopy
Park, Wooram; Midgett, Charles R.; Madden, Dean R.; Chirikjian, Gregory S.
2011-01-01
Single-particle electron microscopy is an experimental technique that is used to determine the 3D structure of biological macromolecules and the complexes that they form. In general, image processing techniques and reconstruction algorithms are applied to micrographs, which are two-dimensional (2D) images taken by electron microscopes. Each of these planar images can be thought of as a projection of the macromolecular structure of interest from an a priori unknown direction. A class is defined as a collection of projection images with a high degree of similarity, presumably resulting from taking projections along similar directions. In practice, micrographs are very noisy and those in each class are aligned and averaged in order to reduce the background noise. Errors in the alignment process are inevitable due to noise in the electron micrographs. This error results in blurry averaged images. In this paper, we investigate how blurring parameters are related to the properties of the background noise in the case when the alignment is achieved by matching the mass centers and the principal axes of the experimental images. We observe that the background noise in micrographs can be treated as Gaussian. Using the mean and variance of the background Gaussian noise, we derive equations for the mean and variance of translational and rotational misalignments in the class averaging process. This defines a Gaussian probability density on the Euclidean motion group of the plane. Our formulation is validated by convolving the derived blurring function representing the stochasticity of the image alignments with the underlying noiseless projection and comparing with the original blurry image. PMID:21660125
Stochastic determination of matrix determinants
NASA Astrophysics Data System (ADS)
Dorn, Sebastian; Enßlin, Torsten A.
2015-07-01
Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations—matrices—acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.
Stochastic determination of matrix determinants.
Dorn, Sebastian; Ensslin, Torsten A
2015-07-01
Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.
Non-Gaussian, non-dynamical stochastic resonance
NASA Astrophysics Data System (ADS)
Szczepaniec, Krzysztof; Dybiec, Bartłomiej
2013-11-01
The classical model revealing stochastic resonance is a motion of an overdamped particle in a double-well fourth order potential when combined action of noise and external periodic driving results in amplifying of weak signals. Resonance behavior can also be observed in non-dynamical systems. The simplest example is a threshold triggered device. It consists of a periodic modulated input and noise. Every time an output crosses the threshold the signal is recorded. Such a digitally filtered signal is sensitive to the noise intensity. There exists the optimal value of the noise intensity resulting in the "most" periodic output. Here, we explore properties of the non-dynamical stochastic resonance in non-equilibrium situations, i.e. when the Gaussian noise is replaced by an α-stable noise. We demonstrate that non-equilibrium α-stable noises, depending on noise parameters, can either weaken or enhance the non-dynamical stochastic resonance.
Optimal Control of Stochastic Systems Driven by Fractional Brownian Motions
2014-10-09
problems for stochastic partial differential equations driven by fractional Brownian motions are explicitly solved. For the control of a continuous time...linear systems with Brownian motion or a discrete time linear system with a white Gaussian noise and costs 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 stochastic optimal control, fractional Brownian motion , stochastic
Stochastic Stirling Engine Operating in Contact with Active Baths
NASA Astrophysics Data System (ADS)
Zakine, Ruben; Solon, Alexandre; Gingrich, Todd; van Wijland, Frédéric
2017-04-01
A Stirling engine made of a colloidal particle in contact with a nonequilibrium bath is considered and analyzed with the tools of stochastic energetics. We model the bath by non Gaussian persistent noise acting on the colloidal particle. Depending on the chosen definition of an isothermal transformation in this nonequilibrium setting, we find that either the energetics of the engine parallels that of its equilibrium counterpart or, in the simplest case, that it ends up being less efficient. Persistence, more than non Gaussian effects, are responsible for this result.
Computing diffusivities from particle models out of equilibrium
NASA Astrophysics Data System (ADS)
Embacher, Peter; Dirr, Nicolas; Zimmer, Johannes; Reina, Celia
2018-04-01
A new method is proposed to numerically extract the diffusivity of a (typically nonlinear) diffusion equation from underlying stochastic particle systems. The proposed strategy requires the system to be in local equilibrium and have Gaussian fluctuations but it is otherwise allowed to undergo arbitrary out-of-equilibrium evolutions. This could be potentially relevant for particle data obtained from experimental applications. The key idea underlying the method is that finite, yet large, particle systems formally obey stochastic partial differential equations of gradient flow type satisfying a fluctuation-dissipation relation. The strategy is here applied to three classic particle models, namely independent random walkers, a zero-range process and a symmetric simple exclusion process in one space dimension, to allow the comparison with analytic solutions.
Parallel logic gates in synthetic gene networks induced by non-Gaussian noise.
Xu, Yong; Jin, Xiaoqin; Zhang, Huiqing
2013-11-01
The recent idea of logical stochastic resonance is verified in synthetic gene networks induced by non-Gaussian noise. We realize the switching between two kinds of logic gates under optimal moderate noise intensity by varying two different tunable parameters in a single gene network. Furthermore, in order to obtain more logic operations, thus providing additional information processing capacity, we obtain in a two-dimensional toggle switch model two complementary logic gates and realize the transformation between two logic gates via the methods of changing different parameters. These simulated results contribute to improve the computational power and functionality of the networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Kai; Song, Linze; Shi, Qiang, E-mail: qshi@iccas.ac.cn
Based on the path integral approach, we derive a new realization of the exact non-Markovian stochastic Schrödinger equation (SSE). The main difference from the previous non-Markovian quantum state diffusion (NMQSD) method is that the complex Gaussian stochastic process used for the forward propagation of the wave function is correlated, which may be used to reduce the amplitude of the non-Markovian memory term at high temperatures. The new SSE is then written into the recently developed hierarchy of pure states scheme, in a form that is more closely related to the hierarchical equation of motion approach. Numerical simulations are then performedmore » to demonstrate the efficiency of the new method.« less
NASA Technical Reports Server (NTRS)
Trosset, Michael W.
1999-01-01
Comprehensive computational experiments to assess the performance of algorithms for numerical optimization require (among other things) a practical procedure for generating pseudorandom nonlinear objective functions. We propose a procedure that is based on the convenient fiction that objective functions are realizations of stochastic processes. This report details the calculations necessary to implement our procedure for the case of certain stationary Gaussian processes and presents a specific implementation in the statistical programming language S-PLUS.
Xiao, Yanwen; Xu, Wei; Wang, Liang
2016-03-01
This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects on the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation.
Stochastic dynamic analysis of marine risers considering Gaussian system uncertainties
NASA Astrophysics Data System (ADS)
Ni, Pinghe; Li, Jun; Hao, Hong; Xia, Yong
2018-03-01
This paper performs the stochastic dynamic response analysis of marine risers with material uncertainties, i.e. in the mass density and elastic modulus, by using Stochastic Finite Element Method (SFEM) and model reduction technique. These uncertainties are assumed having Gaussian distributions. The random mass density and elastic modulus are represented by using the Karhunen-Loève (KL) expansion. The Polynomial Chaos (PC) expansion is adopted to represent the vibration response because the covariance of the output is unknown. Model reduction based on the Iterated Improved Reduced System (IIRS) technique is applied to eliminate the PC coefficients of the slave degrees of freedom to reduce the dimension of the stochastic system. Monte Carlo Simulation (MCS) is conducted to obtain the reference response statistics. Two numerical examples are studied in this paper. The response statistics from the proposed approach are compared with those from MCS. It is noted that the computational time is significantly reduced while the accuracy is kept. The results demonstrate the efficiency of the proposed approach for stochastic dynamic response analysis of marine risers.
NASA Astrophysics Data System (ADS)
Gambetta, Jay; Wiseman, H. M.
2002-07-01
Do stochastic Schrödinger equations, also known as unravelings, have a physical interpretation? In the Markovian limit, where the system on average obeys a master equation, the answer is yes. Markovian stochastic Schrödinger equations generate quantum trajectories for the system state conditioned on continuously monitoring the bath. For a given master equation, there are many different unravelings, corresponding to different sorts of measurement on the bath. In this paper we address the non-Markovian case, and in particular the sort of stochastic Schrödinger equation introduced by Strunz, Diósi, and Gisin [Phys. Rev. Lett. 82, 1801 (1999)]. Using a quantum-measurement theory approach, we rederive their unraveling that involves complex-valued Gaussian noise. We also derive an unraveling involving real-valued Gaussian noise. We show that in the Markovian limit, these two unravelings correspond to heterodyne and homodyne detection, respectively. Although we use quantum-measurement theory to define these unravelings, we conclude that the stochastic evolution of the system state is not a true quantum trajectory, as the identity of the state through time is a fiction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Yanwen; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Wang, Liang
2016-03-15
This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects onmore » the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation.« less
Detection methods for non-Gaussian gravitational wave stochastic backgrounds
NASA Astrophysics Data System (ADS)
Drasco, Steve; Flanagan, Éanna É.
2003-04-01
A gravitational wave stochastic background can be produced by a collection of independent gravitational wave events. There are two classes of such backgrounds, one for which the ratio of the average time between events to the average duration of an event is small (i.e., many events are on at once), and one for which the ratio is large. In the first case the signal is continuous, sounds something like a constant hiss, and has a Gaussian probability distribution. In the second case, the discontinuous or intermittent signal sounds something like popcorn popping, and is described by a non-Gaussian probability distribution. In this paper we address the issue of finding an optimal detection method for such a non-Gaussian background. As a first step, we examine the idealized situation in which the event durations are short compared to the detector sampling time, so that the time structure of the events cannot be resolved, and we assume white, Gaussian noise in two collocated, aligned detectors. For this situation we derive an appropriate version of the maximum likelihood detection statistic. We compare the performance of this statistic to that of the standard cross-correlation statistic both analytically and with Monte Carlo simulations. In general the maximum likelihood statistic performs better than the cross-correlation statistic when the stochastic background is sufficiently non-Gaussian, resulting in a gain factor in the minimum gravitational-wave energy density necessary for detection. This gain factor ranges roughly between 1 and 3, depending on the duty cycle of the background, for realistic observing times and signal strengths for both ground and space based detectors. The computational cost of the statistic, although significantly greater than that of the cross-correlation statistic, is not unreasonable. Before the statistic can be used in practice with real detector data, further work is required to generalize our analysis to accommodate separated, misaligned detectors with realistic, colored, non-Gaussian noise.
Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations
2013-01-01
In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson–Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably re-scaled, converges to a centred Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the chemical Langevin equation in the present setting. On a technical level, we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces, and by this are able to incorporate spatial structures of the underlying model. Mathematics Subject Classification (2000): 60F05, 60J25, 60J75, 92C20. PMID:23343328
Nested polynomial trends for the improvement of Gaussian process-based predictors
NASA Astrophysics Data System (ADS)
Perrin, G.; Soize, C.; Marque-Pucheu, S.; Garnier, J.
2017-10-01
The role of simulation keeps increasing for the sensitivity analysis and the uncertainty quantification of complex systems. Such numerical procedures are generally based on the processing of a huge amount of code evaluations. When the computational cost associated with one particular evaluation of the code is high, such direct approaches based on the computer code only, are not affordable. Surrogate models have therefore to be introduced to interpolate the information given by a fixed set of code evaluations to the whole input space. When confronted to deterministic mappings, the Gaussian process regression (GPR), or kriging, presents a good compromise between complexity, efficiency and error control. Such a method considers the quantity of interest of the system as a particular realization of a Gaussian stochastic process, whose mean and covariance functions have to be identified from the available code evaluations. In this context, this work proposes an innovative parametrization of this mean function, which is based on the composition of two polynomials. This approach is particularly relevant for the approximation of strongly non linear quantities of interest from very little information. After presenting the theoretical basis of this method, this work compares its efficiency to alternative approaches on a series of examples.
Discrimination of particulate matter emission sources using stochastic methods
NASA Astrophysics Data System (ADS)
Szczurek, Andrzej; Maciejewska, Monika; Wyłomańska, Agnieszka; Sikora, Grzegorz; Balcerek, Michał; Teuerle, Marek
2016-12-01
Particulate matter (PM) is one of the criteria pollutants which has been determined as harmful to public health and the environment. For this reason the ability to recognize its emission sources is very important. There are a number of measurement methods which allow to characterize PM in terms of concentration, particles size distribution, and chemical composition. All these information are useful to establish a link between the dust found in the air, its emission sources and influence on human as well as the environment. However, the methods are typically quite sophisticated and not applicable outside laboratories. In this work, we considered PM emission source discrimination method which is based on continuous measurements of PM concentration with a relatively cheap instrument and stochastic analysis of the obtained data. The stochastic analysis is focused on the temporal variation of PM concentration and it involves two steps: (1) recognition of the category of distribution for the data i.e. stable or the domain of attraction of stable distribution and (2) finding best matching distribution out of Gaussian, stable and normal-inverse Gaussian (NIG). We examined six PM emission sources. They were associated with material processing in industrial environment, namely machining and welding aluminum, forged carbon steel and plastic with various tools. As shown by the obtained results, PM emission sources may be distinguished based on statistical distribution of PM concentration variations. Major factor responsible for the differences detectable with our method was the type of material processing and the tool applied. In case different materials were processed by the same tool the distinction of emission sources was difficult. For successful discrimination it was crucial to consider size-segregated mass fraction concentrations. In our opinion the presented approach is very promising. It deserves further study and development.
Evaluation of Uncertainty in Runoff Analysis Incorporating Theory of Stochastic Process
NASA Astrophysics Data System (ADS)
Yoshimi, Kazuhiro; Wang, Chao-Wen; Yamada, Tadashi
2015-04-01
The aim of this paper is to provide a theoretical framework of uncertainty estimate on rainfall-runoff analysis based on theory of stochastic process. SDE (stochastic differential equation) based on this theory has been widely used in the field of mathematical finance due to predict stock price movement. Meanwhile, some researchers in the field of civil engineering have investigated by using this knowledge about SDE (stochastic differential equation) (e.g. Kurino et.al, 1999; Higashino and Kanda, 2001). However, there have been no studies about evaluation of uncertainty in runoff phenomenon based on comparisons between SDE (stochastic differential equation) and Fokker-Planck equation. The Fokker-Planck equation is a partial differential equation that describes the temporal variation of PDF (probability density function), and there is evidence to suggest that SDEs and Fokker-Planck equations are equivalent mathematically. In this paper, therefore, the uncertainty of discharge on the uncertainty of rainfall is explained theoretically and mathematically by introduction of theory of stochastic process. The lumped rainfall-runoff model is represented by SDE (stochastic differential equation) due to describe it as difference formula, because the temporal variation of rainfall is expressed by its average plus deviation, which is approximated by Gaussian distribution. This is attributed to the observed rainfall by rain-gauge station and radar rain-gauge system. As a result, this paper has shown that it is possible to evaluate the uncertainty of discharge by using the relationship between SDE (stochastic differential equation) and Fokker-Planck equation. Moreover, the results of this study show that the uncertainty of discharge increases as rainfall intensity rises and non-linearity about resistance grows strong. These results are clarified by PDFs (probability density function) that satisfy Fokker-Planck equation about discharge. It means the reasonable discharge can be estimated based on the theory of stochastic processes, and it can be applied to the probabilistic risk of flood management.
Stochastic space interval as a link between quantum randomness and macroscopic randomness?
NASA Astrophysics Data System (ADS)
Haug, Espen Gaarder; Hoff, Harald
2018-03-01
For many stochastic phenomena, we observe statistical distributions that have fat-tails and high-peaks compared to the Gaussian distribution. In this paper, we will explain how observable statistical distributions in the macroscopic world could be related to the randomness in the subatomic world. We show that fat-tailed (leptokurtic) phenomena in our everyday macroscopic world are ultimately rooted in Gaussian - or very close to Gaussian-distributed subatomic particle randomness, but they are not, in a strict sense, Gaussian distributions. By running a truly random experiment over a three and a half-year period, we observed a type of random behavior in trillions of photons. Combining our results with simple logic, we find that fat-tailed and high-peaked statistical distributions are exactly what we would expect to observe if the subatomic world is quantized and not continuously divisible. We extend our analysis to the fact that one typically observes fat-tails and high-peaks relative to the Gaussian distribution in stocks and commodity prices and many aspects of the natural world; these instances are all observable and documentable macro phenomena that strongly suggest that the ultimate building blocks of nature are discrete (e.g. they appear in quanta).
Higher-order stochastic differential equations and the positive Wigner function
NASA Astrophysics Data System (ADS)
Drummond, P. D.
2017-12-01
General higher-order stochastic processes that correspond to any diffusion-type tensor of higher than second order are obtained. The relationship of multivariate higher-order stochastic differential equations with tensor decomposition theory and tensor rank is explained. Techniques for generating the requisite complex higher-order noise are proved to exist either using polar coordinates and γ distributions, or from products of Gaussian variates. This method is shown to allow the calculation of the dynamics of the Wigner function, after it is extended to a complex phase space. The results are illustrated physically through dynamical calculations of the positive Wigner distribution for three-mode parametric downconversion, widely used in quantum optics. The approach eliminates paradoxes arising from truncation of the higher derivative terms in Wigner function time evolution. Anomalous results of negative populations and vacuum scattering found in truncated Wigner quantum simulations in quantum optics and Bose-Einstein condensate dynamics are shown not to occur with this type of stochastic theory.
NASA Astrophysics Data System (ADS)
Llopis-Albert, Carlos; Palacios-Marqués, Daniel; Merigó, José M.
2014-04-01
In this paper a methodology for the stochastic management of groundwater quality problems is presented, which can be used to provide agricultural advisory services. A stochastic algorithm to solve the coupled flow and mass transport inverse problem is combined with a stochastic management approach to develop methods for integrating uncertainty; thus obtaining more reliable policies on groundwater nitrate pollution control from agriculture. The stochastic inverse model allows identifying non-Gaussian parameters and reducing uncertainty in heterogeneous aquifers by constraining stochastic simulations to data. The management model determines the spatial and temporal distribution of fertilizer application rates that maximizes net benefits in agriculture constrained by quality requirements in groundwater at various control sites. The quality constraints can be taken, for instance, by those given by water laws such as the EU Water Framework Directive (WFD). Furthermore, the methodology allows providing the trade-off between higher economic returns and reliability in meeting the environmental standards. Therefore, this new technology can help stakeholders in the decision-making process under an uncertainty environment. The methodology has been successfully applied to a 2D synthetic aquifer, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques.
Scalable domain decomposition solvers for stochastic PDEs in high performance computing
Desai, Ajit; Khalil, Mohammad; Pettit, Chris; ...
2017-09-21
Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less
Scalable domain decomposition solvers for stochastic PDEs in high performance computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, Ajit; Khalil, Mohammad; Pettit, Chris
Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less
Spatially Controlled Relay Beamforming
NASA Astrophysics Data System (ADS)
Kalogerias, Dionysios
This thesis is about fusion of optimal stochastic motion control and physical layer communications. Distributed, networked communication systems, such as relay beamforming networks (e.g., Amplify & Forward (AF)), are typically designed without explicitly considering how the positions of the respective nodes might affect the quality of the communication. Optimum placement of network nodes, which could potentially improve the quality of the communication, is not typically considered. However, in most practical settings in physical layer communications, such as relay beamforming, the Channel State Information (CSI) observed by each node, per channel use, although it might be (modeled as) random, it is both spatially and temporally correlated. It is, therefore, reasonable to ask if and how the performance of the system could be improved by (predictively) controlling the positions of the network nodes (e.g., the relays), based on causal side (CSI) information, and exploitting the spatiotemporal dependencies of the wireless medium. In this work, we address this problem in the context of AF relay beamforming networks. This novel, cyber-physical system approach to relay beamforming is termed as "Spatially Controlled Relay Beamforming". First, we discuss wireless channel modeling, however, in a rigorous, Bayesian framework. Experimentally accurate and, at the same time, technically precise channel modeling is absolutely essential for designing and analyzing spatially controlled communication systems. In this work, we are interested in two distinct spatiotemporal statistical models, for describing the behavior of the log-scale magnitude of the wireless channel: 1. Stationary Gaussian Fields: In this case, the channel is assumed to evolve as a stationary, Gaussian stochastic field in continuous space and discrete time (say, for instance, time slots). Under such assumptions, spatial and temporal statistical interactions are determined by a set of time and space invariant parameters, which completely determine the mean and covariance of the underlying Gaussian measure. This model is relatively simple to describe, and can be sufficiently characterized, at least for our purposes, both statistically and topologically. Additionally, the model is rather versatile and there is existing experimental evidence, supporting its practical applicability. Our contributions are summarized in properly formulating the whole spatiotemporal model in a completely rigorous mathematical setting, under a convenient measure theoretic framework. Such framework greatly facilitates formulation of meaningful stochastic control problems, where the wireless channel field (or a function of it) can be regarded as a stochastic optimization surface.. 2. Conditionally Gaussian Fields, when conditioned on a Markovian channel state: This is a completely novel approach to wireless channel modeling. In this approach, the communication medium is assumed to behave as a partially observable (or hidden) system, where a hidden, global, temporally varying underlying stochastic process, called the channel state, affects the spatial interactions of the actual channel magnitude, evaluated at any set of locations in the plane. More specifically, we assume that, conditioned on the channel state, the wireless channel constitutes an observable, conditionally Gaussian stochastic process. The channel state evolves in time according to a known, possibly non stationary, non Gaussian, low dimensional Markov kernel. Recognizing the intractability of general nonlinear state estimation, we advocate the use of grid based approximate nonlinear filters as an effective and robust means for recursive tracking of the channel state. We also propose a sequential spatiotemporal predictor for tracking the channel gains at any point in time and space, providing real time sequential estimates for the respective channel gain map. In this context, our contributions are multifold. Except for the introduction of the layered channel model previously described, this line of research has resulted in a number of general, asymptotic convergence results, advancing the theory of grid-based approximate nonlinear stochastic filtering. In particular, sufficient conditions, ensuring asymptotic optimality are relaxed, and, at the same time, the mode of convergence is strengthened. Although the need for such results initiated as an attempt to theoretically characterize the performance of the proposed approximate methods for statistical inference, in regard to the proposed channel modeling approach, they turn out to be of fundamental importance in the areas of nonlinear estimation and stochastic control. The experimental validation of the proposed channel model, as well as the related parameter estimation problem, termed as "Markovian Channel Profiling (MCP)", fundamentally important for any practical deployment, are subject of current, ongoing research. Second, adopting the first of the two aforementioned channel modeling approaches, we consider the spatially controlled relay beamforming problem for an AF network with a single source, a single destination, and multiple, controlled at will, relay nodes. (Abstract shortened by ProQuest.).
Palacios, Julia A; Minin, Vladimir N
2013-03-01
Changes in population size influence genetic diversity of the population and, as a result, leave a signature of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process that generates genealogies connecting randomly sampled individuals from the population of interest. These genealogies serve as a glue between the population demographic history and genomic sequences. It turns out that only the times of genealogical lineage coalescences contain information about population size dynamics. Viewing these coalescent times as a point process, estimating population size trajectories is equivalent to estimating a conditional intensity of this point process. Therefore, our inverse problem is similar to estimating an inhomogeneous Poisson process intensity function. We demonstrate how recent advances in Gaussian process-based nonparametric inference for Poisson processes can be extended to Bayesian nonparametric estimation of population size dynamics under the coalescent. We compare our Gaussian process (GP) approach to one of the state-of-the-art Gaussian Markov random field (GMRF) methods for estimating population trajectories. Using simulated data, we demonstrate that our method has better accuracy and precision. Next, we analyze two genealogies reconstructed from real sequences of hepatitis C and human Influenza A viruses. In both cases, we recover more believed aspects of the viral demographic histories than the GMRF approach. We also find that our GP method produces more reasonable uncertainty estimates than the GMRF method. Copyright © 2013, The International Biometric Society.
Estimation and Control for Linear Systems with Additive Cauchy Noise
2013-12-17
man & Hall, New York, 1994. [11] J. L. Speyer and W. H. Chung, Stochastic Processes, Estimation, and Control, SIAM, 2008. [12] Nassim N. Taleb ...Gaussian control algorithms. 18 4 References [1] N. N. Taleb . The Black Swan: The Impact of the Highly Improbable...the multivariable system. The estimator was then evaluated numerically for a third-order example. REFERENCES [1] N. N. Taleb , The Black Swan: The
How to Quantify Deterministic and Random Influences on the Statistics of the Foreign Exchange Market
NASA Astrophysics Data System (ADS)
Friedrich, R.; Peinke, J.; Renner, Ch.
2000-05-01
It is shown that price changes of the U.S. dollar-German mark exchange rates upon different delay times can be regarded as a stochastic Marcovian process. Furthermore, we show how Kramers-Moyal coefficients can be estimated from the empirical data. Finally, we present an explicit Fokker-Planck equation which models very precisely the empirical probability distributions, in particular, their non-Gaussian heavy tails.
Robust radio interferometric calibration using the t-distribution
NASA Astrophysics Data System (ADS)
Kazemi, S.; Yatawatta, S.
2013-10-01
A major stage of radio interferometric data processing is calibration or the estimation of systematic errors in the data and the correction for such errors. A stochastic error (noise) model is assumed, and in most cases, this underlying model is assumed to be Gaussian. However, outliers in the data due to interference or due to errors in the sky model would have adverse effects on processing based on a Gaussian noise model. Most of the shortcomings of calibration such as the loss in flux or coherence, and the appearance of spurious sources, could be attributed to the deviations of the underlying noise model. In this paper, we propose to improve the robustness of calibration by using a noise model based on Student's t-distribution. Student's t-noise is a special case of Gaussian noise when the variance is unknown. Unlike Gaussian-noise-model-based calibration, traditional least-squares minimization would not directly extend to a case when we have a Student's t-noise model. Therefore, we use a variant of the expectation-maximization algorithm, called the expectation-conditional maximization either algorithm, when we have a Student's t-noise model and use the Levenberg-Marquardt algorithm in the maximization step. We give simulation results to show the robustness of the proposed calibration method as opposed to traditional Gaussian-noise-model-based calibration, especially in preserving the flux of weaker sources that are not included in the calibration model.
NASA Astrophysics Data System (ADS)
Parsons, Todd L.; Rogers, Tim
2017-10-01
Systems composed of large numbers of interacting agents often admit an effective coarse-grained description in terms of a multidimensional stochastic dynamical system, driven by small-amplitude intrinsic noise. In applications to biological, ecological, chemical and social dynamics it is common for these models to posses quantities that are approximately conserved on short timescales, in which case system trajectories are observed to remain close to some lower-dimensional subspace. Here, we derive explicit and general formulae for a reduced-dimension description of such processes that is exact in the limit of small noise and well-separated slow and fast dynamics. The Michaelis-Menten law of enzyme-catalysed reactions, and the link between the Lotka-Volterra and Wright-Fisher processes are explored as a simple worked examples. Extensions of the method are presented for infinite dimensional systems and processes coupled to non-Gaussian noise sources.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises.
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn
2016-08-15
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Statistics of a neuron model driven by asymmetric colored noise.
Müller-Hansen, Finn; Droste, Felix; Lindner, Benjamin
2015-02-01
Irregular firing of neurons can be modeled as a stochastic process. Here we study the perfect integrate-and-fire neuron driven by dichotomous noise, a Markovian process that jumps between two states (i.e., possesses a non-Gaussian statistics) and exhibits nonvanishing temporal correlations (i.e., represents a colored noise). Specifically, we consider asymmetric dichotomous noise with two different transition rates. Using a first-passage-time formulation, we derive exact expressions for the probability density and the serial correlation coefficient of the interspike interval (time interval between two subsequent neural action potentials) and the power spectrum of the spike train. Furthermore, we extend the model by including additional Gaussian white noise, and we give approximations for the interspike interval (ISI) statistics in this case. Numerical simulations are used to validate the exact analytical results for pure dichotomous noise, and to test the approximations of the ISI statistics when Gaussian white noise is included. The results may help to understand how correlations and asymmetry of noise and signals in nerve cells shape neuronal firing statistics.
Stochastic control of inertial sea wave energy converter.
Raffero, Mattia; Martini, Michele; Passione, Biagio; Mattiazzo, Giuliana; Giorcelli, Ermanno; Bracco, Giovanni
2015-01-01
The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks.
Stochastic Control of Inertial Sea Wave Energy Converter
Mattiazzo, Giuliana; Giorcelli, Ermanno
2015-01-01
The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks. PMID:25874267
The series product for gaussian quantum input processes
NASA Astrophysics Data System (ADS)
Gough, John E.; James, Matthew R.
2017-02-01
We present a theory for connecting quantum Markov components into a network with quantum input processes in a Gaussian state (including thermal and squeezed). One would expect on physical grounds that the connection rules should be independent of the state of the input to the network. To compute statistical properties, we use a version of Wicks' theorem involving fictitious vacuum fields (Fock space based representation of the fields) and while this aids computation, and gives a rigorous formulation, the various representations need not be unitarily equivalent. In particular, a naive application of the connection rules would lead to the wrong answer. We establish the correct interconnection rules, and show that while the quantum stochastic differential equations of motion display explicitly the covariances (thermal and squeezing parameters) of the Gaussian input fields we introduce the Wick-Stratonovich form which leads to a way of writing these equations that does not depend on these covariances and so corresponds to the universal equations written in terms of formal quantum input processes. We show that a wholly consistent theory of quantum open systems in series can be developed in this way, and as required physically, is universal and in particular representation-free.
The propagator of stochastic electrodynamics
NASA Astrophysics Data System (ADS)
Cavalleri, G.
1981-01-01
The "elementary propagator" for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density ~ω3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to ψψ* where ψ is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics.
NASA Astrophysics Data System (ADS)
Chang, Anteng; Li, Huajun; Wang, Shuqing; Du, Junfeng
2017-08-01
Both wave-frequency (WF) and low-frequency (LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system. This paper conducts a comprehensive investigation of applicable probability density functions (PDFs) of mooring tension amplitudes used to assess mooring-line fatigue damage via the spectral method. Short-term statistical characteristics of mooring-line tension responses are firstly investigated, in which the discrepancy arising from Gaussian approximation is revealed by comparing kurtosis and skewness coefficients. Several distribution functions based on present analytical spectral methods are selected to express the statistical distribution of the mooring-line tension amplitudes. Results indicate that the Gamma-type distribution and a linear combination of Dirlik and Tovo-Benasciutti formulas are suitable for separate WF and LF mooring tension components. A novel parametric method based on nonlinear transformations and stochastic optimization is then proposed to increase the effectiveness of mooring-line fatigue assessment due to non-Gaussian bimodal tension responses. Using time domain simulation as a benchmark, its accuracy is further validated using a numerical case study of a moored semi-submersible platform.
Modeling and forecasting foreign exchange daily closing prices with normal inverse Gaussian
NASA Astrophysics Data System (ADS)
Teneng, Dean
2013-09-01
We fit the normal inverse Gaussian(NIG) distribution to foreign exchange closing prices using the open software package R and select best models by Käärik and Umbleja (2011) proposed strategy. We observe that daily closing prices (12/04/2008 - 07/08/2012) of CHF/JPY, AUD/JPY, GBP/JPY, NZD/USD, QAR/CHF, QAR/EUR, SAR/CHF, SAR/EUR, TND/CHF and TND/EUR are excellent fits while EGP/EUR and EUR/GBP are good fits with a Kolmogorov-Smirnov test p-value of 0.062 and 0.08 respectively. It was impossible to estimate normal inverse Gaussian parameters (by maximum likelihood; computational problem) for JPY/CHF but CHF/JPY was an excellent fit. Thus, while the stochastic properties of an exchange rate can be completely modeled with a probability distribution in one direction, it may be impossible the other way around. We also demonstrate that foreign exchange closing prices can be forecasted with the normal inverse Gaussian (NIG) Lévy process, both in cases where the daily closing prices can and cannot be modeled by NIG distribution.
Crevillén-García, D
2018-04-01
Time-consuming numerical simulators for solving groundwater flow and dissolution models of physico-chemical processes in deep aquifers normally require some of the model inputs to be defined in high-dimensional spaces in order to return realistic results. Sometimes, the outputs of interest are spatial fields leading to high-dimensional output spaces. Although Gaussian process emulation has been satisfactorily used for computing faithful and inexpensive approximations of complex simulators, these have been mostly applied to problems defined in low-dimensional input spaces. In this paper, we propose a method for simultaneously reducing the dimensionality of very high-dimensional input and output spaces in Gaussian process emulators for stochastic partial differential equation models while retaining the qualitative features of the original models. This allows us to build a surrogate model for the prediction of spatial fields in such time-consuming simulators. We apply the methodology to a model of convection and dissolution processes occurring during carbon capture and storage.
Yi, Qu; Zhan-ming, Li; Er-chao, Li
2012-11-01
A new fault detection and diagnosis (FDD) problem via the output probability density functions (PDFs) for non-gausian stochastic distribution systems (SDSs) is investigated. The PDFs can be approximated by radial basis functions (RBFs) neural networks. Different from conventional FDD problems, the measured information for FDD is the output stochastic distributions and the stochastic variables involved are not confined to Gaussian ones. A (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network. In this work, a nonlinear adaptive observer-based fault detection and diagnosis algorithm is presented by introducing the tuning parameter so that the residual is as sensitive as possible to the fault. Stability and Convergency analysis is performed in fault detection and fault diagnosis analysis for the error dynamic system. At last, an illustrated example is given to demonstrate the efficiency of the proposed algorithm, and satisfactory results have been obtained. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sallah, M.
2014-03-01
The problem of monoenergetic radiative transfer in a finite planar stochastic atmospheric medium with polarized (vector) Rayleigh scattering is proposed. The solution is presented for an arbitrary absorption and scattering cross sections. The extinction function of the medium is assumed to be a continuous random function of position, with fluctuations about the mean taken as Gaussian distributed. The joint probability distribution function of these Gaussian random variables is used to calculate the ensemble-averaged quantities, such as reflectivity and transmissivity, for an arbitrary correlation function. A modified Gaussian probability distribution function is also used to average the solution in order to exclude the probable negative values of the optical variable. Pomraning-Eddington approximation is used, at first, to obtain the deterministic analytical solution for both the total intensity and the difference function used to describe the polarized radiation. The problem is treated with specular reflecting boundaries and angular-dependent externally incident flux upon the medium from one side and with no flux from the other side. For the sake of comparison, two different forms of the weight function, which introduced to force the boundary conditions to be fulfilled, are used. Numerical results of the average reflectivity and average transmissivity are obtained for both Gaussian and modified Gaussian probability density functions at the different degrees of polarization.
Statistical properties of two sine waves in Gaussian noise.
NASA Technical Reports Server (NTRS)
Esposito, R.; Wilson, L. R.
1973-01-01
A detailed study is presented of some statistical properties of a stochastic process that consists of the sum of two sine waves of unknown relative phase and a normal process. Since none of the statistics investigated seem to yield a closed-form expression, all the derivations are cast in a form that is particularly suitable for machine computation. Specifically, results are presented for the probability density function (pdf) of the envelope and the instantaneous value, the moments of these distributions, and the relative cumulative density function (cdf).
Edgeworth expansions of stochastic trading time
NASA Astrophysics Data System (ADS)
Decamps, Marc; De Schepper, Ann
2010-08-01
Under most local and stochastic volatility models the underlying forward is assumed to be a positive function of a time-changed Brownian motion. It relates nicely the implied volatility smile to the so-called activity rate in the market. Following Young and DeWitt-Morette (1986) [8], we propose to apply the Duru-Kleinert process-cum-time transformation in path integral to formulate the transition density of the forward. The method leads to asymptotic expansions of the transition density around a Gaussian kernel corresponding to the average activity in the market conditional on the forward value. The approximation is numerically illustrated for pricing vanilla options under the CEV model and the popular normal SABR model. The asymptotics can also be used for Monte Carlo simulations or backward integration schemes.
NASA Astrophysics Data System (ADS)
Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer M.; Derocher, Andrew E.; Lewis, Mark A.; Jonsen, Ian D.; Mills Flemming, Joanna
2016-05-01
State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible. They can model linear and nonlinear processes using a variety of statistical distributions. Recent ecological SSMs are often complex, with a large number of parameters to estimate. Through a simulation study, we show that even simple linear Gaussian SSMs can suffer from parameter- and state-estimation problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter estimates of a SSM describing the movement of polar bears (Ursus maritimus) result in overestimating their energy expenditure. We suggest potential solutions, but show that it often remains difficult to estimate parameters. While SSMs are powerful tools, they can give misleading results and we urge ecologists to assess whether the parameters can be estimated accurately before drawing ecological conclusions from their results.
Mean first-passage times of non-Markovian random walkers in confinement.
Guérin, T; Levernier, N; Bénichou, O; Voituriez, R
2016-06-16
The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.
Mean first-passage times of non-Markovian random walkers in confinement
NASA Astrophysics Data System (ADS)
Guérin, T.; Levernier, N.; Bénichou, O.; Voituriez, R.
2016-06-01
The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.
Bayesian Analysis of Non-Gaussian Long-Range Dependent Processes
NASA Astrophysics Data System (ADS)
Graves, Timothy; Watkins, Nicholas; Franzke, Christian; Gramacy, Robert
2013-04-01
Recent studies [e.g. the Antarctic study of Franzke, J. Climate, 2010] have strongly suggested that surface temperatures exhibit long-range dependence (LRD). The presence of LRD would hamper the identification of deterministic trends and the quantification of their significance. It is well established that LRD processes exhibit stochastic trends over rather long periods of time. Thus, accurate methods for discriminating between physical processes that possess long memory and those that do not are an important adjunct to climate modeling. As we briefly review, the LRD idea originated at the same time as H-selfsimilarity, so it is often not realised that a model does not have to be H-self similar to show LRD [e.g. Watkins, GRL Frontiers, 2013]. We have used Markov Chain Monte Carlo algorithms to perform a Bayesian analysis of Auto-Regressive Fractionally-Integrated Moving-Average ARFIMA(p,d,q) processes, which are capable of modeling LRD. Our principal aim is to obtain inference about the long memory parameter, d, with secondary interest in the scale and location parameters. We have developed a reversible-jump method enabling us to integrate over different model forms for the short memory component. We initially assume Gaussianity, and have tested the method on both synthetic and physical time series. Many physical processes, for example the Faraday Antarctic time series, are significantly non-Gaussian. We have therefore extended this work by weakening the Gaussianity assumption, assuming an alpha-stable distribution for the innovations, and performing joint inference on d and alpha. Such a modified FARIMA(p,d,q) process is a flexible, initial model for non-Gaussian processes with long memory. We will present a study of the dependence of the posterior variance of the memory parameter d on the length of the time series considered. This will be compared with equivalent error diagnostics for other measures of d.
Awazu, Akinori; Tanabe, Takahiro; Kamitani, Mari; Tezuka, Ayumi; Nagano, Atsushi J
2018-05-29
Gene expression levels exhibit stochastic variations among genetically identical organisms under the same environmental conditions. In many recent transcriptome analyses based on RNA sequencing (RNA-seq), variations in gene expression levels among replicates were assumed to follow a negative binomial distribution, although the physiological basis of this assumption remains unclear. In this study, RNA-seq data were obtained from Arabidopsis thaliana under eight conditions (21-27 replicates), and the characteristics of gene-dependent empirical probability density function (ePDF) profiles of gene expression levels were analyzed. For A. thaliana and Saccharomyces cerevisiae, various types of ePDF of gene expression levels were obtained that were classified as Gaussian, power law-like containing a long tail, or intermediate. These ePDF profiles were well fitted with a Gauss-power mixing distribution function derived from a simple model of a stochastic transcriptional network containing a feedback loop. The fitting function suggested that gene expression levels with long-tailed ePDFs would be strongly influenced by feedback regulation. Furthermore, the features of gene expression levels are correlated with their functions, with the levels of essential genes tending to follow a Gaussian-like ePDF while those of genes encoding nucleic acid-binding proteins and transcription factors exhibit long-tailed ePDF.
Ali, S. M.; Mehmood, C. A; Khan, B.; Jawad, M.; Farid, U; Jadoon, J. K.; Ali, M.; Tareen, N. K.; Usman, S.; Majid, M.; Anwar, S. M.
2016-01-01
In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion. PMID:27314229
Ali, S M; Mehmood, C A; Khan, B; Jawad, M; Farid, U; Jadoon, J K; Ali, M; Tareen, N K; Usman, S; Majid, M; Anwar, S M
2016-01-01
In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion.
Kleinert, H; Zatloukal, V
2013-11-01
The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration.
Lévy-Student distributions for halos in accelerator beams.
Cufaro Petroni, Nicola; De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio
2005-12-01
We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schrödinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonic (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Lévy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Lévy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Lévy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.
Levy-Student distributions for halos in accelerator beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cufaro Petroni, Nicola; De Martino, Salvatore; De Siena, Silvio
2005-12-15
We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schroedinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonicmore » (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.« less
Calculating the Malliavin derivative of some stochastic mechanics problems
Hauseux, Paul; Hale, Jack S.
2017-01-01
The Malliavin calculus is an extension of the classical calculus of variations from deterministic functions to stochastic processes. In this paper we aim to show in a practical and didactic way how to calculate the Malliavin derivative, the derivative of the expectation of a quantity of interest of a model with respect to its underlying stochastic parameters, for four problems found in mechanics. The non-intrusive approach uses the Malliavin Weight Sampling (MWS) method in conjunction with a standard Monte Carlo method. The models are expressed as ODEs or PDEs and discretised using the finite difference or finite element methods. Specifically, we consider stochastic extensions of; a 1D Kelvin-Voigt viscoelastic model discretised with finite differences, a 1D linear elastic bar, a hyperelastic bar undergoing buckling, and incompressible Navier-Stokes flow around a cylinder, all discretised with finite elements. A further contribution of this paper is an extension of the MWS method to the more difficult case of non-Gaussian random variables and the calculation of second-order derivatives. We provide open-source code for the numerical examples in this paper. PMID:29261776
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilipenko, A Yu
2003-04-30
Let {mu} be a Gaussian measure in the space X and H the Cameron-Martin space of the measure {mu}. Consider the stochastic differential equation d{xi}(u,t)=a{sub t}({xi}(u,t))dt+{sigma}{sub n}{sigma}{sub t}{sup n}({xi}(u,t))d{omega}{sub n}(t), t element of [0,T]; {xi}(u,0)=u,; where u element of X, a and {sigma}{sub n} are functions taking values in H, {omega}{sub n}(t), n{>=}1 are independent one-dimensional Wiener processes. Consider the easure-valued random process {mu}{sub t}:={mu}o{xi}( {center_dot} ,t){sup -1}. It is shown that under certain natural conditions on the coefficients of the initial equation the measures {mu}{sub t}({omega}) are equivalent to {mu} for almost all {omega}. Explicit expressions for their Radon-Nikodymmore » densities are obtained.« less
Multifractal analysis of time series generated by discrete Ito equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Telesca, Luciano; Czechowski, Zbigniew; Lovallo, Michele
2015-06-15
In this study, we show that discrete Ito equations with short-tail Gaussian marginal distribution function generate multifractal time series. The multifractality is due to the nonlinear correlations, which are hidden in Markov processes and are generated by the interrelation between the drift and the multiplicative stochastic forces in the Ito equation. A link between the range of the generalized Hurst exponents and the mean of the squares of all averaged net forces is suggested.
On the numbers of images of two stochastic gravitational lensing models
NASA Astrophysics Data System (ADS)
Wei, Ang
2017-02-01
We study two gravitational lensing models with Gaussian randomness: the continuous mass fluctuation model and the floating black hole model. The lens equations of these models are related to certain random harmonic functions. Using Rice's formula and Gaussian techniques, we obtain the expected numbers of zeros of these functions, which indicate the amounts of images in the corresponding lens systems.
Non-Gaussianity in a quasiclassical electronic circuit
NASA Astrophysics Data System (ADS)
Suzuki, Takafumi J.; Hayakawa, Hisao
2017-05-01
We study the non-Gaussian dynamics of a quasiclassical electronic circuit coupled to a mesoscopic conductor. Non-Gaussian noise accompanying the nonequilibrium transport through the conductor significantly modifies the stationary probability density function (PDF) of the flux in the dissipative circuit. We incorporate weak quantum fluctuation of the dissipative LC circuit with a stochastic method and evaluate the quantum correction of the stationary PDF. Furthermore, an inverse formula to infer the statistical properties of the non-Gaussian noise from the stationary PDF is derived in the classical-quantum crossover regime. The quantum correction is indispensable to correctly estimate the microscopic transfer events in the QPC with the quasiclassical inverse formula.
Patchwork sampling of stochastic differential equations
NASA Astrophysics Data System (ADS)
Kürsten, Rüdiger; Behn, Ulrich
2016-03-01
We propose a method to sample stationary properties of solutions of stochastic differential equations, which is accurate and efficient if there are rarely visited regions or rare transitions between distinct regions of the state space. The method is based on a complete, nonoverlapping partition of the state space into patches on which the stochastic process is ergodic. On each of these patches we run simulations of the process strictly truncated to the corresponding patch, which allows effective simulations also in rarely visited regions. The correct weight for each patch is obtained by counting the attempted transitions between all different patches. The results are patchworked to cover the whole state space. We extend the concept of truncated Markov chains which is originally formulated for processes which obey detailed balance to processes not fulfilling detailed balance. The method is illustrated by three examples, describing the one-dimensional diffusion of an overdamped particle in a double-well potential, a system of many globally coupled overdamped particles in double-well potentials subject to additive Gaussian white noise, and the overdamped motion of a particle on the circle in a periodic potential subject to a deterministic drift and additive noise. In an appendix we explain how other well-known Markov chain Monte Carlo algorithms can be related to truncated Markov chains.
Stochastic resonance in micro/nano cantilever sensors
NASA Astrophysics Data System (ADS)
Singh, Priyanka; Yadava, R. D. S.
2018-05-01
In this paper we present a comparative study on the stochastic resonance in micro/nano cantilever resonators due to fluctuations in the fundamental frequency or the damping coefficient. Considering DC+AC electrostatic actuation in the presence of zero-mean Gaussian noise with exponential autocorrelation we analyze stochastic resonance behaviors for the frequency and the damping fluctuations separately, and compare the effects of stochastic resonance on Q-factor of the resonators for different levels of damping losses. It is found that even though the stochastic resonance occurs for both types of fluctuations, only the damping fluctuation produces right cooperative influence on the fundamental resonance that improves both the amplitude response and the quality factor of the resonator.
Stochastic background from cosmic (super)strings: Popcorn-like and (Gaussian) continuous regimes
NASA Astrophysics Data System (ADS)
Regimbau, Tania; Giampanis, Stefanos; Siemens, Xavier; Mandic, Vuk
2012-03-01
In the era of the next generation of gravitational wave experiments a stochastic background from cusps of cosmic (super)strings is expected to be probed and, if not detected, to be significantly constrained. A popcornlike background can be, for part of the parameter space, as pronounced as the (Gaussian) continuous contribution from unresolved sources that overlap in frequency and time. We study both contributions from unresolved cosmic string cusps over a range of frequencies relevant to ground based interferometers, such as the LIGO/Virgo second generation and Einstein Telescope third generation detectors, the space antenna LISA, and pulsar timing arrays. We compute the sensitivity (at the 2σ level) in the parameter space for the LIGO/Virgo second generation detector, the Einstein Telescope detector, LISA, and pulsar timing arrays. We conclude that the popcorn regime is complementary to the continuous background. Its detection could therefore enhance confidence in a stochastic background detection and possibly help determine fundamental string parameters such as the string tension and the reconnection probability.
Minding Impacting Events in a Model of Stochastic Variance
Duarte Queirós, Sílvio M.; Curado, Evaldo M. F.; Nobre, Fernando D.
2011-01-01
We introduce a generalization of the well-known ARCH process, widely used for generating uncorrelated stochastic time series with long-term non-Gaussian distributions and long-lasting correlations in the (instantaneous) standard deviation exhibiting a clustering profile. Specifically, inspired by the fact that in a variety of systems impacting events are hardly forgot, we split the process into two different regimes: a first one for regular periods where the average volatility of the fluctuations within a certain period of time is below a certain threshold, , and another one when the local standard deviation outnumbers . In the former situation we use standard rules for heteroscedastic processes whereas in the latter case the system starts recalling past values that surpassed the threshold. Our results show that for appropriate parameter values the model is able to provide fat tailed probability density functions and strong persistence of the instantaneous variance characterized by large values of the Hurst exponent (), which are ubiquitous features in complex systems. PMID:21483864
Sulis, William H
2017-10-01
Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.
A stochastic model for correlated protein motions
NASA Astrophysics Data System (ADS)
Karain, Wael I.; Qaraeen, Nael I.; Ajarmah, Basem
2006-06-01
A one-dimensional Langevin-type stochastic difference equation is used to find the deterministic and Gaussian contributions of time series representing the projections of a Bovine Pancreatic Trypsin Inhibitor (BPTI) protein molecular dynamics simulation along different eigenvector directions determined using principal component analysis. The deterministic part shows a distinct nonlinear behavior only for eigenvectors contributing significantly to the collective protein motion.
Saltzman, Erica J; Schweizer, Kenneth S
2006-12-01
Brownian trajectory simulation methods are employed to fully establish the non-Gaussian fluctuation effects predicted by our nonlinear Langevin equation theory of single particle activated dynamics in glassy hard-sphere fluids. The consequences of stochastic mobility fluctuations associated with the space-time complexities of the transient localization and barrier hopping processes have been determined. The incoherent dynamic structure factor was computed for a range of wave vectors and becomes of an increasingly non-Gaussian form for volume fractions beyond the (naive) ideal mode coupling theory (MCT) transition. The non-Gaussian parameter (NGP) amplitude increases markedly with volume fraction and is well described by a power law in the maximum restoring force of the nonequilibrium free energy profile. The time scale associated with the NGP peak becomes much smaller than the alpha relaxation time for systems characterized by significant entropic barriers. An alternate non-Gaussian parameter that probes the long time alpha relaxation process displays a different shape, peak intensity, and time scale of its maximum. However, a strong correspondence between the classic and alternate NGP amplitudes is predicted which suggests a deep connection between the early and final stages of cage escape. Strong space-time decoupling emerges at high volume fractions as indicated by a nondiffusive wave vector dependence of the relaxation time and growth of the translation-relaxation decoupling parameter. Displacement distributions exhibit non-Gaussian behavior at intermediate times, evolving into a strongly bimodal form with slow and fast subpopulations at high volume fractions. Qualitative and semiquantitative comparisons of the theoretical results with colloid experiments, ideal MCT, and multiple simulation studies are presented.
Nonclassical point of view of the Brownian motion generation via fractional deterministic model
NASA Astrophysics Data System (ADS)
Gilardi-Velázquez, H. E.; Campos-Cantón, E.
In this paper, we present a dynamical system based on the Langevin equation without stochastic term and using fractional derivatives that exhibit properties of Brownian motion, i.e. a deterministic model to generate Brownian motion is proposed. The stochastic process is replaced by considering an additional degree of freedom in the second-order Langevin equation. Thus, it is transformed into a system of three first-order linear differential equations, additionally α-fractional derivative are considered which allow us to obtain better statistical properties. Switching surfaces are established as a part of fluctuating acceleration. The final system of three α-order linear differential equations does not contain a stochastic term, so the system generates motion in a deterministic way. Nevertheless, from the time series analysis, we found that the behavior of the system exhibits statistics properties of Brownian motion, such as, a linear growth in time of mean square displacement, a Gaussian distribution. Furthermore, we use the detrended fluctuation analysis to prove the Brownian character of this motion.
Application of IFT and SPSA to servo system control.
Rădac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M; Preitl, Stefan
2011-12-01
This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control. The representative case of controlled processes modeled by second-order systems with an integral component is discussed. New IFT and SPSA algorithms are suggested to tune the parameters of the state feedback controllers with an integrator in the linear-quadratic-Gaussian (LQG) problem formulation. An implementation case study concerning the LQG-based design of an angular position controller for a direct current servo system laboratory equipment is included to highlight the pros and cons of IFT and SPSA from an application's point of view. The comparison of IFT and SPSA algorithms is focused on an insight into their implementation.
Crystallographic Topology 2: Overview and Work in Progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.K.
1999-08-01
This overview describes an application of contemporary geometric topology and stochastic process concepts to structural crystallography. In this application, crystallographic groups become orbifolds, crystal structures become Morse functions on orbifolds, and vibrating atoms in a crystal become vector valued Gaussian measures with the Radon-Nikodym property. Intended crystallographic benefits include new methods for visualization of space groups and crystal structures, analysis of the thermal motion patterns seen in ORTEP drawings, and a classification scheme for crystal structures based on their Heegaard splitting properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuo, Rui; Wu, C. F. Jeff
Many computer models contain unknown parameters which need to be estimated using physical observations. Furthermore, the calibration method based on Gaussian process models may lead to unreasonable estimate for imperfect computer models. In this work, we extend their study to calibration problems with stochastic physical data. We propose a novel method, called the L 2 calibration, and show its semiparametric efficiency. The conventional method of the ordinary least squares is also studied. Theoretical analysis shows that it is consistent but not efficient. Here, numerical examples show that the proposed method outperforms the existing ones.
Non-stationary pre-envelope covariances of non-classically damped systems
NASA Astrophysics Data System (ADS)
Muscolino, G.
1991-08-01
A new formulation is given to evaluate the stationary and non-stationary response of linear non-classically damped systems subjected to multi-correlated non-separable Gaussian input processes. This formulation is based on a new and more suitable definition of the impulse response function matrix for such systems. It is shown that, when using this definition, the stochastic response of non-classically damped systems involves the evaluation of quantities similar to those of classically damped ones. Furthermore, considerations about non-stationary cross-covariances, spectral moments and pre-envelope cross-covariances are presented for a monocorrelated input process.
Diego, Vincent P; Almasy, Laura; Dyer, Thomas D; Soler, Júlia M P; Blangero, John
2003-12-31
Using univariate and multivariate variance components linkage analysis methods, we studied possible genotype x age interaction in cardiovascular phenotypes related to the aging process from the Framingham Heart Study. We found evidence for genotype x age interaction for fasting glucose and systolic blood pressure. There is polygenic genotype x age interaction for fasting glucose and systolic blood pressure and quantitative trait locus x age interaction for a linkage signal for systolic blood pressure phenotypes located on chromosome 17 at 67 cM.
Stochastic maps, continuous approximation, and stable distribution
NASA Astrophysics Data System (ADS)
Kessler, David A.; Burov, Stanislav
2017-10-01
A continuous approximation framework for general nonlinear stochastic as well as deterministic discrete maps is developed. For the stochastic map with uncorelated Gaussian noise, by successively applying the Itô lemma, we obtain a Langevin type of equation. Specifically, we show how nonlinear maps give rise to a Langevin description that involves multiplicative noise. The multiplicative nature of the noise induces an additional effective force, not present in the absence of noise. We further exploit the continuum description and provide an explicit formula for the stable distribution of the stochastic map and conditions for its existence. Our results are in good agreement with numerical simulations of several maps.
On stochastic control and optimal measurement strategies. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kramer, L. C.
1971-01-01
The control of stochastic dynamic systems is studied with particular emphasis on those which influence the quality or nature of the measurements which are made to effect control. Four main areas are discussed: (1) the meaning of stochastic optimality and the means by which dynamic programming may be applied to solve a combined control/measurement problem; (2) a technique by which it is possible to apply deterministic methods, specifically the minimum principle, to the study of stochastic problems; (3) the methods described are applied to linear systems with Gaussian disturbances to study the structure of the resulting control system; and (4) several applications are considered.
NASA Astrophysics Data System (ADS)
Most, S.; Nowak, W.; Bijeljic, B.
2014-12-01
Transport processes in porous media are frequently simulated as particle movement. This process can be formulated as a stochastic process of particle position increments. At the pore scale, the geometry and micro-heterogeneities prohibit the commonly made assumption of independent and normally distributed increments to represent dispersion. Many recent particle methods seek to loosen this assumption. Recent experimental data suggest that we have not yet reached the end of the need to generalize, because particle increments show statistical dependency beyond linear correlation and over many time steps. The goal of this work is to better understand the validity regions of commonly made assumptions. We are investigating after what transport distances can we observe: A statistical dependence between increments, that can be modelled as an order-k Markov process, boils down to order 1. This would be the Markovian distance for the process, where the validity of yet-unexplored non-Gaussian-but-Markovian random walks would start. A bivariate statistical dependence that simplifies to a multi-Gaussian dependence based on simple linear correlation (validity of correlated PTRW). Complete absence of statistical dependence (validity of classical PTRW/CTRW). The approach is to derive a statistical model for pore-scale transport from a powerful experimental data set via copula analysis. The model is formulated as a non-Gaussian, mutually dependent Markov process of higher order, which allows us to investigate the validity ranges of simpler models.
Detecting a Non-Gaussian Stochastic Background of Gravitational Radiation
NASA Astrophysics Data System (ADS)
Drasco, Steve; Flanagan, Éanna É.
2002-12-01
We derive a detection method for a stochastic background of gravitational waves produced by events where the ratio of the average time between events to the average duration of an event is large. Such a signal would sound something like popcorn popping. Our derivation is based on the somewhat unrealistic assumption that the duration of an event is smaller than the detector time resolution.
NASA Astrophysics Data System (ADS)
Massah, Mozhdeh; Kantz, Holger
2016-04-01
As we have one and only one earth and no replicas, climate characteristics are usually computed as time averages from a single time series. For understanding climate variability, it is essential to understand how close a single time average will typically be to an ensemble average. To answer this question, we study large deviation probabilities (LDP) of stochastic processes and characterize them by their dependence on the time window. In contrast to iid variables for which there exists an analytical expression for the rate function, the correlated variables such as auto-regressive (short memory) and auto-regressive fractionally integrated moving average (long memory) processes, have not an analytical LDP. We study LDP for these processes, in order to see how correlation affects this probability in comparison to iid data. Although short range correlations lead to a simple correction of sample size, long range correlations lead to a sub-exponential decay of LDP and hence to a very slow convergence of time averages. This effect is demonstrated for a 120 year long time series of daily temperature anomalies measured in Potsdam (Germany).
Inference for dynamics of continuous variables: the extended Plefka expansion with hidden nodes
NASA Astrophysics Data System (ADS)
Bravi, B.; Sollich, P.
2017-06-01
We consider the problem of a subnetwork of observed nodes embedded into a larger bulk of unknown (i.e. hidden) nodes, where the aim is to infer these hidden states given information about the subnetwork dynamics. The biochemical networks underlying many cellular and metabolic processes are important realizations of such a scenario as typically one is interested in reconstructing the time evolution of unobserved chemical concentrations starting from the experimentally more accessible ones. We present an application to this problem of a novel dynamical mean field approximation, the extended Plefka expansion, which is based on a path integral description of the stochastic dynamics. As a paradigmatic model we study the stochastic linear dynamics of continuous degrees of freedom interacting via random Gaussian couplings. The resulting joint distribution is known to be Gaussian and this allows us to fully characterize the posterior statistics of the hidden nodes. In particular the equal-time hidden-to-hidden variance—conditioned on observations—gives the expected error at each node when the hidden time courses are predicted based on the observations. We assess the accuracy of the extended Plefka expansion in predicting these single node variances as well as error correlations over time, focussing on the role of the system size and the number of observed nodes.
Refractory Sampling Links Efficiency and Costs of Sensory Encoding to Stimulus Statistics
Song, Zhuoyi
2014-01-01
Sensory neurons integrate information about the world, adapting their sampling to its changes. However, little is understood mechanistically how this primary encoding process, which ultimately limits perception, depends upon stimulus statistics. Here, we analyze this open question systematically by using intracellular recordings from fly (Drosophila melanogaster and Coenosia attenuata) photoreceptors and corresponding stochastic simulations from biophysically realistic photoreceptor models. Recordings show that photoreceptors can sample more information from naturalistic light intensity time series (NS) than from Gaussian white-noise (GWN), shuffled-NS or Gaussian-1/f stimuli; integrating larger responses with higher signal-to-noise ratio and encoding efficiency to large bursty contrast changes. Simulations reveal how a photoreceptor's information capture depends critically upon the stochastic refractoriness of its 30,000 sampling units (microvilli). In daylight, refractoriness sacrifices sensitivity to enhance intensity changes in neural image representations, with more and faster microvilli improving encoding. But for GWN and other stimuli, which lack longer dark contrasts of real-world intensity changes that reduce microvilli refractoriness, these performance gains are submaximal and energetically costly. These results provide mechanistic reasons why information sampling is more efficient for natural/naturalistic stimulation and novel insight into the operation, design, and evolution of signaling and code in sensory neurons. PMID:24849356
NASA Astrophysics Data System (ADS)
Sokołowski, Damian; Kamiński, Marcin
2018-01-01
This study proposes a framework for determination of basic probabilistic characteristics of the orthotropic homogenized elastic properties of the periodic composite reinforced with ellipsoidal particles and a high stiffness contrast between the reinforcement and the matrix. Homogenization problem, solved by the Iterative Stochastic Finite Element Method (ISFEM) is implemented according to the stochastic perturbation, Monte Carlo simulation and semi-analytical techniques with the use of cubic Representative Volume Element (RVE) of this composite containing single particle. The given input Gaussian random variable is Young modulus of the matrix, while 3D homogenization scheme is based on numerical determination of the strain energy of the RVE under uniform unit stretches carried out in the FEM system ABAQUS. The entire series of several deterministic solutions with varying Young modulus of the matrix serves for the Weighted Least Squares Method (WLSM) recovery of polynomial response functions finally used in stochastic Taylor expansions inherent for the ISFEM. A numerical example consists of the High Density Polyurethane (HDPU) reinforced with the Carbon Black particle. It is numerically investigated (1) if the resulting homogenized characteristics are also Gaussian and (2) how the uncertainty in matrix Young modulus affects the effective stiffness tensor components and their PDF (Probability Density Function).
Cheng, Mingjian; Guo, Ya; Li, Jiangting; Zheng, Xiaotong; Guo, Lixin
2018-04-20
We introduce an alternative distribution to the gamma-gamma (GG) distribution, called inverse Gaussian gamma (IGG) distribution, which can efficiently describe moderate-to-strong irradiance fluctuations. The proposed stochastic model is based on a modulation process between small- and large-scale irradiance fluctuations, which are modeled by gamma and inverse Gaussian distributions, respectively. The model parameters of the IGG distribution are directly related to atmospheric parameters. The accuracy of the fit among the IGG, log-normal, and GG distributions with the experimental probability density functions in moderate-to-strong turbulence are compared, and results indicate that the newly proposed IGG model provides an excellent fit to the experimental data. As the receiving diameter is comparable with the atmospheric coherence radius, the proposed IGG model can reproduce the shape of the experimental data, whereas the GG and LN models fail to match the experimental data. The fundamental channel statistics of a free-space optical communication system are also investigated in an IGG-distributed turbulent atmosphere, and a closed-form expression for the outage probability of the system is derived with Meijer's G-function.
Mathematical issues in eternal inflation
NASA Astrophysics Data System (ADS)
Singh Kohli, Ikjyot; Haslam, Michael C.
2015-04-01
In this paper, we consider the problem of the existence and uniqueness of solutions to the Einstein field equations for a spatially flat Friedmann-Lemaître-Robertson-Walker universe in the context of stochastic eternal inflation, where the stochastic mechanism is modelled by adding a stochastic forcing term representing Gaussian white noise to the Klein-Gordon equation. We show that under these considerations, the Klein-Gordon equation actually becomes a stochastic differential equation. Therefore, the existence and uniqueness of solutions to Einstein’s equations depend on whether the coefficients of this stochastic differential equation obey Lipschitz continuity conditions. We show that for any choice of V(φ ), the Einstein field equations are not globally well-posed, hence, any solution found to these equations is not guaranteed to be unique. Instead, the coefficients are at best locally Lipschitz continuous in the physical state space of the dynamical variables, which only exist up to a finite explosion time. We further perform Feller’s explosion test for an arbitrary power-law inflaton potential and prove that all solutions to the Einstein field equations explode in a finite time with probability one. This implies that the mechanism of stochastic inflation thus considered cannot be described to be eternal, since the very concept of eternal inflation implies that the process continues indefinitely. We therefore argue that stochastic inflation based on a stochastic forcing term would not produce an infinite number of universes in some multiverse ensemble. In general, since the Einstein field equations in both situations are not well-posed, we further conclude that the existence of a multiverse via the stochastic eternal inflation mechanism considered in this paper is still very much an open question that will require much deeper investigation.
NASA Astrophysics Data System (ADS)
Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Chen, Ying
2016-05-01
Health state estimation of inaccessible components in complex systems necessitates effective state estimation techniques using the observable variables of the system. The task becomes much complicated when the system is nonlinear/non-Gaussian and it receives stochastic input. In this work, a novel sequential state estimation framework is developed based on particle filtering (PF) scheme for state estimation of general class of nonlinear dynamical systems with stochastic input. Performance of the developed framework is then validated with simulation on a Bivariate Non-stationary Growth Model (BNGM) as a benchmark. In the next step, three-year operating data of an industrial gas turbine engine (GTE) are utilized to verify the effectiveness of the developed framework. A comprehensive thermodynamic model for the GTE is therefore developed to formulate the relation of the observable parameters and the dominant degradation symptoms of the turbine, namely, loss of isentropic efficiency and increase of the mass flow. The results confirm the effectiveness of the developed framework for simultaneous estimation of multiple degradation symptoms in complex systems with noisy measured inputs.
León, Larry F; Cai, Tianxi
2012-04-01
In this paper we develop model checking techniques for assessing functional form specifications of covariates in censored linear regression models. These procedures are based on a censored data analog to taking cumulative sums of "robust" residuals over the space of the covariate under investigation. These cumulative sums are formed by integrating certain Kaplan-Meier estimators and may be viewed as "robust" censored data analogs to the processes considered by Lin, Wei & Ying (2002). The null distributions of these stochastic processes can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be generated by computer simulation. Each observed process can then be graphically compared with a few realizations from the Gaussian process. We also develop formal test statistics for numerical comparison. Such comparisons enable one to assess objectively whether an apparent trend seen in a residual plot reects model misspecification or natural variation. We illustrate the methods with a well known dataset. In addition, we examine the finite sample performance of the proposed test statistics in simulation experiments. In our simulation experiments, the proposed test statistics have good power of detecting misspecification while at the same time controlling the size of the test.
A statistical approach to quasi-extinction forecasting.
Holmes, Elizabeth Eli; Sabo, John L; Viscido, Steven Vincent; Fagan, William Fredric
2007-12-01
Forecasting population decline to a certain critical threshold (the quasi-extinction risk) is one of the central objectives of population viability analysis (PVA), and such predictions figure prominently in the decisions of major conservation organizations. In this paper, we argue that accurate forecasting of a population's quasi-extinction risk does not necessarily require knowledge of the underlying biological mechanisms. Because of the stochastic and multiplicative nature of population growth, the ensemble behaviour of population trajectories converges to common statistical forms across a wide variety of stochastic population processes. This paper provides a theoretical basis for this argument. We show that the quasi-extinction surfaces of a variety of complex stochastic population processes (including age-structured, density-dependent and spatially structured populations) can be modelled by a simple stochastic approximation: the stochastic exponential growth process overlaid with Gaussian errors. Using simulated and real data, we show that this model can be estimated with 20-30 years of data and can provide relatively unbiased quasi-extinction risk with confidence intervals considerably smaller than (0,1). This was found to be true even for simulated data derived from some of the noisiest population processes (density-dependent feedback, species interactions and strong age-structure cycling). A key advantage of statistical models is that their parameters and the uncertainty of those parameters can be estimated from time series data using standard statistical methods. In contrast for most species of conservation concern, biologically realistic models must often be specified rather than estimated because of the limited data available for all the various parameters. Biologically realistic models will always have a prominent place in PVA for evaluating specific management options which affect a single segment of a population, a single demographic rate, or different geographic areas. However, for forecasting quasi-extinction risk, statistical models that are based on the convergent statistical properties of population processes offer many advantages over biologically realistic models.
GPU accelerated Monte Carlo simulation of Brownian motors dynamics with CUDA
NASA Astrophysics Data System (ADS)
Spiechowicz, J.; Kostur, M.; Machura, L.
2015-06-01
This work presents an updated and extended guide on methods of a proper acceleration of the Monte Carlo integration of stochastic differential equations with the commonly available NVIDIA Graphics Processing Units using the CUDA programming environment. We outline the general aspects of the scientific computing on graphics cards and demonstrate them with two models of a well known phenomenon of the noise induced transport of Brownian motors in periodic structures. As a source of fluctuations in the considered systems we selected the three most commonly occurring noises: the Gaussian white noise, the white Poissonian noise and the dichotomous process also known as a random telegraph signal. The detailed discussion on various aspects of the applied numerical schemes is also presented. The measured speedup can be of the astonishing order of about 3000 when compared to a typical CPU. This number significantly expands the range of problems solvable by use of stochastic simulations, allowing even an interactive research in some cases.
Bayesian parameter estimation for stochastic models of biological cell migration
NASA Astrophysics Data System (ADS)
Dieterich, Peter; Preuss, Roland
2013-08-01
Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.
NASA Astrophysics Data System (ADS)
Seif, Dariush; Ghoniem, Nasr M.
2014-12-01
A rate theory model based on the theory of nonlinear stochastic differential equations (SDEs) is developed to estimate the time-dependent size distribution of helium bubbles in metals under irradiation. Using approaches derived from Itô's calculus, rate equations for the first five moments of the size distribution in helium-vacancy space are derived, accounting for the stochastic nature of the atomic processes involved. In the first iteration of the model, the distribution is represented as a bivariate Gaussian distribution. The spread of the distribution about the mean is obtained by white-noise terms in the second-order moments, driven by fluctuations in the general absorption and emission of point defects by bubbles, and fluctuations stemming from collision cascades. This statistical model for the reconstruction of the distribution by its moments is coupled to a previously developed reduced-set, mean-field, rate theory model. As an illustrative case study, the model is applied to a tungsten plasma facing component under irradiation. Our findings highlight the important role of stochastic atomic fluctuations on the evolution of helium-vacancy cluster size distributions. It is found that when the average bubble size is small (at low dpa levels), the relative spread of the distribution is large and average bubble pressures may be very large. As bubbles begin to grow in size, average bubble pressures decrease, and stochastic fluctuations have a lessened effect. The distribution becomes tighter as it evolves in time, corresponding to a more uniform bubble population. The model is formulated in a general way, capable of including point defect drift due to internal temperature and/or stress gradients. These arise during pulsed irradiation, and also during steady irradiation as a result of externally applied or internally generated non-homogeneous stress fields. Discussion is given into how the model can be extended to include full spatial resolution and how the implementation of a path-integral approach may proceed if the distribution is known experimentally to significantly stray from a Gaussian description.
Stochastic dynamic modeling of regular and slow earthquakes
NASA Astrophysics Data System (ADS)
Aso, N.; Ando, R.; Ide, S.
2017-12-01
Both regular and slow earthquakes are slip phenomena on plate boundaries and are simulated by a (quasi-)dynamic modeling [Liu and Rice, 2005]. In these numerical simulations, spatial heterogeneity is usually considered not only for explaining real physical properties but also for evaluating the stability of the calculations or the sensitivity of the results on the condition. However, even though we discretize the model space with small grids, heterogeneity at smaller scales than the grid size is not considered in the models with deterministic governing equations. To evaluate the effect of heterogeneity at the smaller scales we need to consider stochastic interactions between slip and stress in a dynamic modeling. Tidal stress is known to trigger or affect both regular and slow earthquakes [Yabe et al., 2015; Ide et al., 2016], and such an external force with fluctuation can also be considered as a stochastic external force. A healing process of faults may also be stochastic, so we introduce stochastic friction law. In the present study, we propose a stochastic dynamic model to explain both regular and slow earthquakes. We solve mode III problem, which corresponds to the rupture propagation along the strike direction. We use BIEM (boundary integral equation method) scheme to simulate slip evolution, but we add stochastic perturbations in the governing equations, which is usually written in a deterministic manner. As the simplest type of perturbations, we adopt Gaussian deviations in the formulation of the slip-stress kernel, external force, and friction. By increasing the amplitude of perturbations of the slip-stress kernel, we reproduce complicated rupture process of regular earthquakes including unilateral and bilateral ruptures. By perturbing external force, we reproduce slow rupture propagation at a scale of km/day. The slow propagation generated by a combination of fast interaction at S-wave velocity is analogous to the kinetic theory of gasses: thermal diffusion appears much slower than the particle velocity of each molecule. The concept of stochastic triggering originates in the Brownian walk model [Ide, 2008], and the present study introduces the stochastic dynamics into dynamic simulations. The stochastic dynamic model has the potential to explain both regular and slow earthquakes more realistically.
A Modularized Efficient Framework for Non-Markov Time Series Estimation
NASA Astrophysics Data System (ADS)
Schamberg, Gabriel; Ba, Demba; Coleman, Todd P.
2018-06-01
We present a compartmentalized approach to finding the maximum a-posteriori (MAP) estimate of a latent time series that obeys a dynamic stochastic model and is observed through noisy measurements. We specifically consider modern signal processing problems with non-Markov signal dynamics (e.g. group sparsity) and/or non-Gaussian measurement models (e.g. point process observation models used in neuroscience). Through the use of auxiliary variables in the MAP estimation problem, we show that a consensus formulation of the alternating direction method of multipliers (ADMM) enables iteratively computing separate estimates based on the likelihood and prior and subsequently "averaging" them in an appropriate sense using a Kalman smoother. As such, this can be applied to a broad class of problem settings and only requires modular adjustments when interchanging various aspects of the statistical model. Under broad log-concavity assumptions, we show that the separate estimation problems are convex optimization problems and that the iterative algorithm converges to the MAP estimate. As such, this framework can capture non-Markov latent time series models and non-Gaussian measurement models. We provide example applications involving (i) group-sparsity priors, within the context of electrophysiologic specrotemporal estimation, and (ii) non-Gaussian measurement models, within the context of dynamic analyses of learning with neural spiking and behavioral observations.
Potential landscape and flux field theory for turbulence and nonequilibrium fluid systems
NASA Astrophysics Data System (ADS)
Wu, Wei; Zhang, Feng; Wang, Jin
2018-02-01
Turbulence is a paradigm for far-from-equilibrium systems without time reversal symmetry. To capture the nonequilibrium irreversible nature of turbulence and investigate its implications, we develop a potential landscape and flux field theory for turbulent flow and more general nonequilibrium fluid systems governed by stochastic Navier-Stokes equations. We find that equilibrium fluid systems with time reversibility are characterized by a detailed balance constraint that quantifies the detailed balance condition. In nonequilibrium fluid systems with nonequilibrium steady states, detailed balance breaking leads directly to a pair of interconnected consequences, namely, the non-Gaussian potential landscape and the irreversible probability flux, forming a 'nonequilibrium trinity'. The nonequilibrium trinity characterizes the nonequilibrium irreversible essence of fluid systems with intrinsic time irreversibility and is manifested in various aspects of these systems. The nonequilibrium stochastic dynamics of fluid systems including turbulence with detailed balance breaking is shown to be driven by both the non-Gaussian potential landscape gradient and the irreversible probability flux, together with the reversible convective force and the stochastic stirring force. We reveal an underlying connection of the energy flux essential for turbulence energy cascade to the irreversible probability flux and the non-Gaussian potential landscape generated by detailed balance breaking. Using the energy flux as a center of connection, we demonstrate that the four-fifths law in fully developed turbulence is a consequence and reflection of the nonequilibrium trinity. We also show how the nonequilibrium trinity can affect the scaling laws in turbulence.
Efficient calibration for imperfect computer models
Tuo, Rui; Wu, C. F. Jeff
2015-12-01
Many computer models contain unknown parameters which need to be estimated using physical observations. Furthermore, the calibration method based on Gaussian process models may lead to unreasonable estimate for imperfect computer models. In this work, we extend their study to calibration problems with stochastic physical data. We propose a novel method, called the L 2 calibration, and show its semiparametric efficiency. The conventional method of the ordinary least squares is also studied. Theoretical analysis shows that it is consistent but not efficient. Here, numerical examples show that the proposed method outperforms the existing ones.
Taylor, Stephen R; Simon, Joseph; Sampson, Laura
2017-05-05
We introduce a technique for gravitational-wave analysis, where Gaussian process regression is used to emulate the strain spectrum of a stochastic background by training on population-synthesis simulations. This leads to direct Bayesian inference on astrophysical parameters. For pulsar timing arrays specifically, we interpolate over the parameter space of supermassive black-hole binary environments, including three-body stellar scattering, and evolving orbital eccentricity. We illustrate our approach on mock data, and assess the prospects for inference with data similar to the NANOGrav 9-yr data release.
NASA Astrophysics Data System (ADS)
Guadagnini, A.; Riva, M.; Neuman, S. P.
2016-12-01
Environmental quantities such as log hydraulic conductivity (or transmissivity), Y(x) = ln K(x), and their spatial (or temporal) increments, ΔY, are known to be generally non-Gaussian. Documented evidence of such behavior includes symmetry of increment distributions at all separation scales (or lags) between incremental values of Y with sharp peaks and heavy tails that decay asymptotically as lag increases. This statistical scaling occurs in porous as well as fractured media characterized by either one or a hierarchy of spatial correlation scales. In hierarchical media one observes a range of additional statistical ΔY scaling phenomena, all of which are captured comprehensibly by a novel generalized sub-Gaussian (GSG) model. In this model Y forms a mixture Y(x) = U(x) G(x) of single- or multi-scale Gaussian processes G having random variances, U being a non-negative subordinator independent of G. Elsewhere we developed ways to generate unconditional and conditional random realizations of isotropic or anisotropic GSG fields which can be embedded in numerical Monte Carlo flow and transport simulations. Here we present and discuss expressions for probability distribution functions of Y and ΔY as well as their lead statistical moments. We then focus on a simple flow setting of mean uniform steady state flow in an unbounded, two-dimensional domain, exploring ways in which non-Gaussian heterogeneity affects stochastic flow and transport descriptions. Our expressions represent (a) lead order autocovariance and cross-covariance functions of hydraulic head, velocity and advective particle displacement as well as (b) analogues of preasymptotic and asymptotic Fickian dispersion coefficients. We compare them with corresponding expressions developed in the literature for Gaussian Y.
Front propagation and clustering in the stochastic nonlocal Fisher equation
NASA Astrophysics Data System (ADS)
Ganan, Yehuda A.; Kessler, David A.
2018-04-01
In this work, we study the problem of front propagation and pattern formation in the stochastic nonlocal Fisher equation. We find a crossover between two regimes: a steadily propagating regime for not too large interaction range and a stochastic punctuated spreading regime for larger ranges. We show that the former regime is well described by the heuristic approximation of the system by a deterministic system where the linear growth term is cut off below some critical density. This deterministic system is seen not only to give the right front velocity, but also predicts the onset of clustering for interaction kernels which give rise to stable uniform states, such as the Gaussian kernel, for sufficiently large cutoff. Above the critical cutoff, distinct clusters emerge behind the front. These same features are present in the stochastic model for sufficiently small carrying capacity. In the latter, punctuated spreading, regime, the population is concentrated on clusters, as in the infinite range case, which divide and separate as a result of the stochastic noise. Due to the finite interaction range, if a fragment at the edge of the population separates sufficiently far, it stabilizes as a new cluster, and the processes begins anew. The deterministic cutoff model does not have this spreading for large interaction ranges, attesting to its purely stochastic origins. We show that this mode of spreading has an exponentially small mean spreading velocity, decaying with the range of the interaction kernel.
Front propagation and clustering in the stochastic nonlocal Fisher equation.
Ganan, Yehuda A; Kessler, David A
2018-04-01
In this work, we study the problem of front propagation and pattern formation in the stochastic nonlocal Fisher equation. We find a crossover between two regimes: a steadily propagating regime for not too large interaction range and a stochastic punctuated spreading regime for larger ranges. We show that the former regime is well described by the heuristic approximation of the system by a deterministic system where the linear growth term is cut off below some critical density. This deterministic system is seen not only to give the right front velocity, but also predicts the onset of clustering for interaction kernels which give rise to stable uniform states, such as the Gaussian kernel, for sufficiently large cutoff. Above the critical cutoff, distinct clusters emerge behind the front. These same features are present in the stochastic model for sufficiently small carrying capacity. In the latter, punctuated spreading, regime, the population is concentrated on clusters, as in the infinite range case, which divide and separate as a result of the stochastic noise. Due to the finite interaction range, if a fragment at the edge of the population separates sufficiently far, it stabilizes as a new cluster, and the processes begins anew. The deterministic cutoff model does not have this spreading for large interaction ranges, attesting to its purely stochastic origins. We show that this mode of spreading has an exponentially small mean spreading velocity, decaying with the range of the interaction kernel.
Approximations to camera sensor noise
NASA Astrophysics Data System (ADS)
Jin, Xiaodan; Hirakawa, Keigo
2013-02-01
Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.
NASA Astrophysics Data System (ADS)
Gao, Feng-Yin; Kang, Yan-Mei; Chen, Xi; Chen, Guanrong
2018-05-01
This paper reveals the effect of fractional Gaussian noise with Hurst exponent H ∈(1 /2 ,1 ) on the information capacity of a general nonlinear neuron model with binary signal input. The fGn and its corresponding fractional Brownian motion exhibit long-range, strong-dependent increments. It extends standard Brownian motion to many types of fractional processes found in nature, such as the synaptic noise. In the paper, for the subthreshold binary signal, sufficient conditions are given based on the "forbidden interval" theorem to guarantee the occurrence of stochastic resonance, while for the suprathreshold binary signal, the simulated results show that additive fGn with Hurst exponent H ∈(1 /2 ,1 ) could increase the mutual information or bits count. The investigation indicated that the synaptic noise with the characters of long-range dependence and self-similarity might be the driving factor for the efficient encoding and decoding of the nervous system.
Connectivity ranking of heterogeneous random conductivity models
NASA Astrophysics Data System (ADS)
Rizzo, C. B.; de Barros, F.
2017-12-01
To overcome the challenges associated with hydrogeological data scarcity, the hydraulic conductivity (K) field is often represented by a spatial random process. The state-of-the-art provides several methods to generate 2D or 3D random K-fields, such as the classic multi-Gaussian fields or non-Gaussian fields, training image-based fields and object-based fields. We provide a systematic comparison of these models based on their connectivity. We use the minimum hydraulic resistance as a connectivity measure, which it has been found to be strictly correlated with early time arrival of dissolved contaminants. A computationally efficient graph-based algorithm is employed, allowing a stochastic treatment of the minimum hydraulic resistance through a Monte-Carlo approach and therefore enabling the computation of its uncertainty. The results show the impact of geostatistical parameters on the connectivity for each group of random fields, being able to rank the fields according to their minimum hydraulic resistance.
Modeling laser velocimeter signals as triply stochastic Poisson processes
NASA Technical Reports Server (NTRS)
Mayo, W. T., Jr.
1976-01-01
Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.
NASA Astrophysics Data System (ADS)
Libera, Arianna; de Barros, Felipe P. J.; Riva, Monica; Guadagnini, Alberto
2017-10-01
Our study is keyed to the analysis of the interplay between engineering factors (i.e., transient pumping rates versus less realistic but commonly analyzed uniform extraction rates) and the heterogeneous structure of the aquifer (as expressed by the probability distribution characterizing transmissivity) on contaminant transport. We explore the joint influence of diverse (a) groundwater pumping schedules (constant and variable in time) and (b) representations of the stochastic heterogeneous transmissivity (T) field on temporal histories of solute concentrations observed at an extraction well. The stochastic nature of T is rendered by modeling its natural logarithm, Y = ln T, through a typical Gaussian representation and the recently introduced Generalized sub-Gaussian (GSG) model. The latter has the unique property to embed scale-dependent non-Gaussian features of the main statistics of Y and its (spatial) increments, which have been documented in a variety of studies. We rely on numerical Monte Carlo simulations and compute the temporal evolution at the well of low order moments of the solute concentration (C), as well as statistics of the peak concentration (Cp), identified as the environmental performance metric of interest in this study. We show that the pumping schedule strongly affects the pattern of the temporal evolution of the first two statistical moments of C, regardless the nature (Gaussian or non-Gaussian) of the underlying Y field, whereas the latter quantitatively influences their magnitude. Our results show that uncertainty associated with C and Cp estimates is larger when operating under a transient extraction scheme than under the action of a uniform withdrawal schedule. The probability density function (PDF) of Cp displays a long positive tail in the presence of time-varying pumping schedule. All these aspects are magnified in the presence of non-Gaussian Y fields. Additionally, the PDF of Cp displays a bimodal shape for all types of pumping schemes analyzed, independent of the type of heterogeneity considered.
Modelling daily water temperature from air temperature for the Missouri River.
Zhu, Senlin; Nyarko, Emmanuel Karlo; Hadzima-Nyarko, Marijana
2018-01-01
The bio-chemical and physical characteristics of a river are directly affected by water temperature, which thereby affects the overall health of aquatic ecosystems. It is a complex problem to accurately estimate water temperature. Modelling of river water temperature is usually based on a suitable mathematical model and field measurements of various atmospheric factors. In this article, the air-water temperature relationship of the Missouri River is investigated by developing three different machine learning models (Artificial Neural Network (ANN), Gaussian Process Regression (GPR), and Bootstrap Aggregated Decision Trees (BA-DT)). Standard models (linear regression, non-linear regression, and stochastic models) are also developed and compared to machine learning models. Analyzing the three standard models, the stochastic model clearly outperforms the standard linear model and nonlinear model. All the three machine learning models have comparable results and outperform the stochastic model, with GPR having slightly better results for stations No. 2 and 3, while BA-DT has slightly better results for station No. 1. The machine learning models are very effective tools which can be used for the prediction of daily river temperature.
Probabilistic inference using linear Gaussian importance sampling for hybrid Bayesian networks
NASA Astrophysics Data System (ADS)
Sun, Wei; Chang, K. C.
2005-05-01
Probabilistic inference for Bayesian networks is in general NP-hard using either exact algorithms or approximate methods. However, for very complex networks, only the approximate methods such as stochastic sampling could be used to provide a solution given any time constraint. There are several simulation methods currently available. They include logic sampling (the first proposed stochastic method for Bayesian networks, the likelihood weighting algorithm) the most commonly used simulation method because of its simplicity and efficiency, the Markov blanket scoring method, and the importance sampling algorithm. In this paper, we first briefly review and compare these available simulation methods, then we propose an improved importance sampling algorithm called linear Gaussian importance sampling algorithm for general hybrid model (LGIS). LGIS is aimed for hybrid Bayesian networks consisting of both discrete and continuous random variables with arbitrary distributions. It uses linear function and Gaussian additive noise to approximate the true conditional probability distribution for continuous variable given both its parents and evidence in a Bayesian network. One of the most important features of the newly developed method is that it can adaptively learn the optimal important function from the previous samples. We test the inference performance of LGIS using a 16-node linear Gaussian model and a 6-node general hybrid model. The performance comparison with other well-known methods such as Junction tree (JT) and likelihood weighting (LW) shows that LGIS-GHM is very promising.
Model-checking techniques based on cumulative residuals.
Lin, D Y; Wei, L J; Ying, Z
2002-03-01
Residuals have long been used for graphical and numerical examinations of the adequacy of regression models. Conventional residual analysis based on the plots of raw residuals or their smoothed curves is highly subjective, whereas most numerical goodness-of-fit tests provide little information about the nature of model misspecification. In this paper, we develop objective and informative model-checking techniques by taking the cumulative sums of residuals over certain coordinates (e.g., covariates or fitted values) or by considering some related aggregates of residuals, such as moving sums and moving averages. For a variety of statistical models and data structures, including generalized linear models with independent or dependent observations, the distributions of these stochastic processes tinder the assumed model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be easily generated by computer simulation. Each observed process can then be compared, both graphically and numerically, with a number of realizations from the Gaussian process. Such comparisons enable one to assess objectively whether a trend seen in a residual plot reflects model misspecification or natural variation. The proposed techniques are particularly useful in checking the functional form of a covariate and the link function. Illustrations with several medical studies are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
St James, S; Bloch, C; Saini, J
Purpose: Proton pencil beam scanning is used clinically across the United States. There are no current guidelines on tolerances for daily QA specific to pencil beam scanning, specifically related to the individual spot properties (spot width). Using a stochastic method to determine tolerances has the potential to optimize tolerances on individual spots and decrease the number of false positive failures in daily QA. Individual and global spot tolerances were evaluated. Methods: As part of daily QA for proton pencil beam scanning, a field of 16 spots (corresponding to 8 energies) is measured using an array of ion chambers (Matrixx, IBA).more » Each individual spot is fit to two Gaussian functions (x,y). The spot width (σ) in × and y are recorded (32 parameters). Results from the daily QA were retrospectively analyzed for 100 days of data. The deviations of the spot widths were histogrammed and fit to a Gaussian function. The stochastic spot tolerance was taken to be the mean ± 3σ. Using these results, tolerances were developed and tested against known deviations in spot width. Results: The individual spot tolerances derived with the stochastic method decreased in 30/32 instances. Using the previous tolerances (± 20% width), the daily QA would have detected 0/20 days of the deviation. Using a tolerance of any 6 spots failing the stochastic tolerance, 18/20 days of the deviation would have been detected. Conclusion: Using a stochastic method we have been able to decrease daily tolerances on the spot widths for 30/32 spot widths measured. The stochastic tolerances can lead to detection of deviations that previously would have been picked up on monthly QA and missed by daily QA. This method could be easily extended for evaluation of other QA parameters in proton spot scanning.« less
Fluid Physics in a Fluctuating Acceleration Environment
NASA Technical Reports Server (NTRS)
Drolet, Francois; Vinals, Jorge
1999-01-01
Our program of research aims at developing a stochastic description of the residual acceleration field onboard spacecraft (g-jitter) to describe in quantitative detail its effect on fluid motion. Our main premise is that such a statistical description is necessary in those cases in which the characteristic time scales of the process under investigation are long compared with the correlation time of g-jitter. Although a clear separation between time scales makes this approach feasible, there remain several difficulties of practical nature: (i), g-jitter time series are not statistically stationary but rather show definite dependences on factors such as active or rest crew periods; (ii), it is very difficult to extract reliably the low frequency range of the power spectrum of the acceleration field. This range controls the magnitude of diffusive processes; and (iii), models used to date are Gaussian, but there is evidence that large amplitude disturbances occur much more frequently than a Gaussian distribution would predict. The lack of stationarity does not constitute a severe limitation in practice, since the intensity of the stochastic components changes very slowly during space missions (perhaps over times of the order of hours). A separate analysis of large amplitude disturbances has not been undertaken yet, but it does not seem difficult a priori to devise models that may describe this range better than a Gaussian distribution. The effect of low frequency components, on the other hand, is more difficult to ascertain, partly due to the difficulty associated with measuring them, and partly because they may be indistinguishable from slowly changing averages. This latter effect is further complicated by the lack of statistical stationarity of the time series. Recent work has focused on the effect of stochastic modulation on the onset of oscillatory instabilities as an example of resonant interaction between the driving acceleration and normal modes of the system, and on cavity flow as an example of how an oscillatory response under periodic driving becomes diffusive if the forcing is random instead. This paper describes three different topics that illustrate behavior that is peculiar to a stochastic acceleration field. In the first case, we show that g-jitter can induce effective attractive or repulsive forces between a pair of spherical particles that are suspended in an incompressible fluid of different density provided that the momentum diffusion length is larger than the interparticle separation (as in the case in most colloidal suspensions). Second, a stochastic modulation of the control parameter in the vicinity of a pitchfork or supercritical bifurcation is known not to affect the location of the threshold. We show, however, that resonance between the modulation and linearly stable modes close to onset can lead to a shift in threshold. Finally, we discuss the classical problem of vorticity diffusion away from a plane boundary that is being vibrated along its own plane. Periodic motion with zero average vorticity production results in an exponential decay of the vorticity away from the boundary. Random vibration, on the other hand, results in power law decay away from the boundary even if vorticity production averages to zero.
Statistical 21-cm Signal Separation via Gaussian Process Regression Analysis
NASA Astrophysics Data System (ADS)
Mertens, F. G.; Ghosh, A.; Koopmans, L. V. E.
2018-05-01
Detecting and characterizing the Epoch of Reionization and Cosmic Dawn via the redshifted 21-cm hyperfine line of neutral hydrogen will revolutionize the study of the formation of the first stars, galaxies, black holes and intergalactic gas in the infant Universe. The wealth of information encoded in this signal is, however, buried under foregrounds that are many orders of magnitude brighter. These must be removed accurately and precisely in order to reveal the feeble 21-cm signal. This requires not only the modeling of the Galactic and extra-galactic emission, but also of the often stochastic residuals due to imperfect calibration of the data caused by ionospheric and instrumental distortions. To stochastically model these effects, we introduce a new method based on `Gaussian Process Regression' (GPR) which is able to statistically separate the 21-cm signal from most of the foregrounds and other contaminants. Using simulated LOFAR-EoR data that include strong instrumental mode-mixing, we show that this method is capable of recovering the 21-cm signal power spectrum across the entire range k = 0.07 - 0.3 {h cMpc^{-1}}. The GPR method is most optimal, having minimal and controllable impact on the 21-cm signal, when the foregrounds are correlated on frequency scales ≳ 3 MHz and the rms of the signal has σ21cm ≳ 0.1 σnoise. This signal separation improves the 21-cm power-spectrum sensitivity by a factor ≳ 3 compared to foreground avoidance strategies and enables the sensitivity of current and future 21-cm instruments such as the Square Kilometre Array to be fully exploited.
Diffusion in biased turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlad, M.; Spineanu, F.; Misguich, J. H.
2001-06-01
Particle transport in two-dimensional divergence-free stochastic velocity fields with constant average is studied. Analytical expressions for the Lagrangian velocity correlation and for the time-dependent diffusion coefficients are obtained. They apply to stationary and homogeneous Gaussian velocity fields.
A hybrid continuous-discrete method for stochastic reaction-diffusion processes.
Lo, Wing-Cheong; Zheng, Likun; Nie, Qing
2016-09-01
Stochastic fluctuations in reaction-diffusion processes often have substantial effect on spatial and temporal dynamics of signal transductions in complex biological systems. One popular approach for simulating these processes is to divide the system into small spatial compartments assuming that molecules react only within the same compartment and jump between adjacent compartments driven by the diffusion. While the approach is convenient in terms of its implementation, its computational cost may become prohibitive when diffusive jumps occur significantly more frequently than reactions, as in the case of rapid diffusion. Here, we present a hybrid continuous-discrete method in which diffusion is simulated using continuous approximation while reactions are based on the Gillespie algorithm. Specifically, the diffusive jumps are approximated as continuous Gaussian random vectors with time-dependent means and covariances, allowing use of a large time step, even for rapid diffusion. By considering the correlation among diffusive jumps, the approximation is accurate for the second moment of the diffusion process. In addition, a criterion is obtained for identifying the region in which such diffusion approximation is required to enable adaptive calculations for better accuracy. Applications to a linear diffusion system and two nonlinear systems of morphogens demonstrate the effectiveness and benefits of the new hybrid method.
Radiative transfer in scattering stochastic atmospheres
NASA Astrophysics Data System (ADS)
Silant'ev, N. A.; Alekseeva, G. A.; Novikov, V. V.
2017-12-01
Many stars, active galactic nuclei, accretion discs etc. are affected by the stochastic variations of temperature, turbulent gas motions, magnetic fields, number densities of atoms and dust grains. These stochastic variations influence on the extinction factors, Doppler widths of lines and so on. The presence of many reasons for fluctuations gives rise to Gaussian distribution of fluctuations. The usual models leave out of account the fluctuations. In many cases the consideration of fluctuations improves the coincidence of theoretical values with the observed data. The objective of this paper is the investigation of the influence of the number density fluctuations on the form of radiative transfer equations. We consider non-magnetized atmosphere in continuum.
NASA Astrophysics Data System (ADS)
Raymond, Neil; Iouchtchenko, Dmitri; Roy, Pierre-Nicholas; Nooijen, Marcel
2018-05-01
We introduce a new path integral Monte Carlo method for investigating nonadiabatic systems in thermal equilibrium and demonstrate an approach to reducing stochastic error. We derive a general path integral expression for the partition function in a product basis of continuous nuclear and discrete electronic degrees of freedom without the use of any mapping schemes. We separate our Hamiltonian into a harmonic portion and a coupling portion; the partition function can then be calculated as the product of a Monte Carlo estimator (of the coupling contribution to the partition function) and a normalization factor (that is evaluated analytically). A Gaussian mixture model is used to evaluate the Monte Carlo estimator in a computationally efficient manner. Using two model systems, we demonstrate our approach to reduce the stochastic error associated with the Monte Carlo estimator. We show that the selection of the harmonic oscillators comprising the sampling distribution directly affects the efficiency of the method. Our results demonstrate that our path integral Monte Carlo method's deviation from exact Trotter calculations is dominated by the choice of the sampling distribution. By improving the sampling distribution, we can drastically reduce the stochastic error leading to lower computational cost.
NASA Astrophysics Data System (ADS)
Beach, Shaun E.; Semkow, Thomas M.; Remling, David J.; Bradt, Clayton J.
2017-07-01
We have developed accessible methods to demonstrate fundamental statistics in several phenomena, in the context of teaching electronic signal processing in a physics-based college-level curriculum. A relationship between the exponential time-interval distribution and Poisson counting distribution for a Markov process with constant rate is derived in a novel way and demonstrated using nuclear counting. Negative binomial statistics is demonstrated as a model for overdispersion and justified by the effect of electronic noise in nuclear counting. The statistics of digital packets on a computer network are shown to be compatible with the fractal-point stochastic process leading to a power-law as well as generalized inverse Gaussian density distributions of time intervals between packets.
NASA Astrophysics Data System (ADS)
Lam, D. T.; Kerrou, J.; Benabderrahmane, H.; Perrochet, P.
2017-12-01
The calibration of groundwater flow models in transient state can be motivated by the expected improved characterization of the aquifer hydraulic properties, especially when supported by a rich transient dataset. In the prospect of setting up a calibration strategy for a variably-saturated transient groundwater flow model of the area around the ANDRA's Bure Underground Research Laboratory, we wish to take advantage of the long hydraulic head and flowrate time series collected near and at the access shafts in order to help inform the model hydraulic parameters. A promising inverse approach for such high-dimensional nonlinear model, and which applicability has been illustrated more extensively in other scientific fields, could be an iterative ensemble smoother algorithm initially developed for a reservoir engineering problem. Furthermore, the ensemble-based stochastic framework will allow to address to some extent the uncertainty of the calibration for a subsequent analysis of a flow process dependent prediction. By assimilating the available data in one single step, this method iteratively updates each member of an initial ensemble of stochastic realizations of parameters until the minimization of an objective function. However, as it is well known for ensemble-based Kalman methods, this correction computed from approximations of covariance matrices is most efficient when the ensemble realizations are multi-Gaussian. As shown by the comparison of the updated ensemble mean obtained for our simplified synthetic model of 2D vertical flow by using either multi-Gaussian or multipoint simulations of parameters, the ensemble smoother fails to preserve the initial connectivity of the facies and the parameter bimodal distribution. Given the geological structures depicted by the multi-layered geological model built for the real case, our goal is to find how to still best leverage the performance of the ensemble smoother while using an initial ensemble of conditional multi-Gaussian simulations or multipoint simulations as conceptually consistent as possible. Performance of the algorithm including additional steps to help mitigate the effects of non-Gaussian patterns, such as Gaussian anamorphosis, or resampling of facies from the training image using updated local probability constraints will be assessed.
Stochastic Feshbach Projection for the Dynamics of Open Quantum Systems
NASA Astrophysics Data System (ADS)
Link, Valentin; Strunz, Walter T.
2017-11-01
We present a stochastic projection formalism for the description of quantum dynamics in bosonic or spin environments. The Schrödinger equation in the coherent state representation with respect to the environmental degrees of freedom can be reformulated by employing the Feshbach partitioning technique for open quantum systems based on the introduction of suitable non-Hermitian projection operators. In this picture the reduced state of the system can be obtained as a stochastic average over pure state trajectories, for any temperature of the bath. The corresponding non-Markovian stochastic Schrödinger equations include a memory integral over the past states. In the case of harmonic environments and linear coupling the approach gives a new form of the established non-Markovian quantum state diffusion stochastic Schrödinger equation without functional derivatives. Utilizing spin coherent states, the evolution equation for spin environments resembles the bosonic case with, however, a non-Gaussian average for the reduced density operator.
Stochastic inflation lattice simulations - Ultra-large scale structure of the universe
NASA Technical Reports Server (NTRS)
Salopek, D. S.
1991-01-01
Non-Gaussian fluctuations for structure formation may arise in inflation from the nonlinear interaction of long wavelength gravitational and scalar fields. Long wavelength fields have spatial gradients, a (exp -1), small compared to the Hubble radius, and they are described in terms of classical random fields that are fed by short wavelength quantum noise. Lattice Langevin calculations are given for a toy model with a scalar field interacting with an exponential potential where one can obtain exact analytic solutions of the Fokker-Planck equation. For single scalar field models that are consistent with current microwave background fluctuations, the fluctuations are Gaussian. However, for scales much larger than our observable Universe, one expects large metric fluctuations that are non-Gaussian. This example illuminates non-Gaussian models involving multiple scalar fields which are consistent with current microwave background limits.
A novel multitarget model of radiation-induced cell killing based on the Gaussian distribution.
Zhao, Lei; Mi, Dong; Sun, Yeqing
2017-05-07
The multitarget version of the traditional target theory based on the Poisson distribution is still used to describe the dose-survival curves of cells after ionizing radiation in radiobiology and radiotherapy. However, noting that the usual ionizing radiation damage is the result of two sequential stochastic processes, the probability distribution of the damage number per cell should follow a compound Poisson distribution, like e.g. Neyman's distribution of type A (N. A.). In consideration of that the Gaussian distribution can be considered as the approximation of the N. A. in the case of high flux, a multitarget model based on the Gaussian distribution is proposed to describe the cell inactivation effects in low linear energy transfer (LET) radiation with high dose-rate. Theoretical analysis and experimental data fitting indicate that the present theory is superior to the traditional multitarget model and similar to the Linear - Quadratic (LQ) model in describing the biological effects of low-LET radiation with high dose-rate, and the parameter ratio in the present model can be used as an alternative indicator to reflect the radiation damage and radiosensitivity of the cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reflection Positive Stochastic Processes Indexed by Lie Groups
NASA Astrophysics Data System (ADS)
Jorgensen, Palle E. T.; Neeb, Karl-Hermann; Ólafsson, Gestur
2016-06-01
Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongge; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Yang, Guidong
The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractionalmore » order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.« less
NASA Astrophysics Data System (ADS)
Papalexiou, Simon Michael
2018-05-01
Hydroclimatic processes come in all "shapes and sizes". They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific "parent" Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.
Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML)
Lechevalier, D.; Ak, R.; Ferguson, M.; Law, K. H.; Lee, Y.-T. T.; Rachuri, S.
2017-01-01
This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain. PMID:29202125
Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML).
Park, J; Lechevalier, D; Ak, R; Ferguson, M; Law, K H; Lee, Y-T T; Rachuri, S
2017-01-01
This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain.
Exact solution for a non-Markovian dissipative quantum dynamics.
Ferialdi, Luca; Bassi, Angelo
2012-04-27
We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.
Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model
NASA Astrophysics Data System (ADS)
Dtchetgnia Djeundam, S. R.; Yamapi, R.; Kofane, T. C.; Aziz-Alaoui, M. A.
2013-09-01
We analyze the bifurcations occurring in the 3D Hindmarsh-Rose neuronal model with and without random signal. When under a sufficient stimulus, the neuron activity takes place; we observe various types of bifurcations that lead to chaotic transitions. Beside the equilibrium solutions and their stability, we also investigate the deterministic bifurcation. It appears that the neuronal activity consists of chaotic transitions between two periodic phases called bursting and spiking solutions. The stochastic bifurcation, defined as a sudden change in character of a stochastic attractor when the bifurcation parameter of the system passes through a critical value, or under certain condition as the collision of a stochastic attractor with a stochastic saddle, occurs when a random Gaussian signal is added. Our study reveals two kinds of stochastic bifurcation: the phenomenological bifurcation (P-bifurcations) and the dynamical bifurcation (D-bifurcations). The asymptotical method is used to analyze phenomenological bifurcation. We find that the neuronal activity of spiking and bursting chaos remains for finite values of the noise intensity.
NASA Astrophysics Data System (ADS)
Tripathy, Rohit; Bilionis, Ilias; Gonzalez, Marcial
2016-09-01
Uncertainty quantification (UQ) tasks, such as model calibration, uncertainty propagation, and optimization under uncertainty, typically require several thousand evaluations of the underlying computer codes. To cope with the cost of simulations, one replaces the real response surface with a cheap surrogate based, e.g., on polynomial chaos expansions, neural networks, support vector machines, or Gaussian processes (GP). However, the number of simulations required to learn a generic multivariate response grows exponentially as the input dimension increases. This curse of dimensionality can only be addressed, if the response exhibits some special structure that can be discovered and exploited. A wide range of physical responses exhibit a special structure known as an active subspace (AS). An AS is a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. If the dimensionality of the AS is low enough, then learning the link function is a much easier problem than the original problem of learning a high-dimensional function. The classic approach to discovering the AS requires gradient information, a fact that severely limits its applicability. Furthermore, and partly because of its reliance to gradients, it is not able to handle noisy observations. The latter is an essential trait if one wants to be able to propagate uncertainty through stochastic simulators, e.g., through molecular dynamics codes. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction. In particular, the AS is represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the model, we design a two-step maximum likelihood optimization procedure that ensures the orthogonality of the projection matrix by exploiting recent results on the Stiefel manifold, i.e., the manifold of matrices with orthogonal columns. The additional benefit of our probabilistic formulation, is that it allows us to select the dimensionality of the AS via the Bayesian information criterion. We validate our approach by showing that it can discover the right AS in synthetic examples without gradient information using both noiseless and noisy observations. We demonstrate that our method is able to discover the same AS as the classical approach in a challenging one-hundred-dimensional problem involving an elliptic stochastic partial differential equation with random conductivity. Finally, we use our approach to study the effect of geometric and material uncertainties in the propagation of solitary waves in a one dimensional granular system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathy, Rohit, E-mail: rtripath@purdue.edu; Bilionis, Ilias, E-mail: ibilion@purdue.edu; Gonzalez, Marcial, E-mail: marcial-gonzalez@purdue.edu
2016-09-15
Uncertainty quantification (UQ) tasks, such as model calibration, uncertainty propagation, and optimization under uncertainty, typically require several thousand evaluations of the underlying computer codes. To cope with the cost of simulations, one replaces the real response surface with a cheap surrogate based, e.g., on polynomial chaos expansions, neural networks, support vector machines, or Gaussian processes (GP). However, the number of simulations required to learn a generic multivariate response grows exponentially as the input dimension increases. This curse of dimensionality can only be addressed, if the response exhibits some special structure that can be discovered and exploited. A wide range ofmore » physical responses exhibit a special structure known as an active subspace (AS). An AS is a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. If the dimensionality of the AS is low enough, then learning the link function is a much easier problem than the original problem of learning a high-dimensional function. The classic approach to discovering the AS requires gradient information, a fact that severely limits its applicability. Furthermore, and partly because of its reliance to gradients, it is not able to handle noisy observations. The latter is an essential trait if one wants to be able to propagate uncertainty through stochastic simulators, e.g., through molecular dynamics codes. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction. In particular, the AS is represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the model, we design a two-step maximum likelihood optimization procedure that ensures the orthogonality of the projection matrix by exploiting recent results on the Stiefel manifold, i.e., the manifold of matrices with orthogonal columns. The additional benefit of our probabilistic formulation, is that it allows us to select the dimensionality of the AS via the Bayesian information criterion. We validate our approach by showing that it can discover the right AS in synthetic examples without gradient information using both noiseless and noisy observations. We demonstrate that our method is able to discover the same AS as the classical approach in a challenging one-hundred-dimensional problem involving an elliptic stochastic partial differential equation with random conductivity. Finally, we use our approach to study the effect of geometric and material uncertainties in the propagation of solitary waves in a one dimensional granular system.« less
Persistence of non-Markovian Gaussian stationary processes in discrete time
NASA Astrophysics Data System (ADS)
Nyberg, Markus; Lizana, Ludvig
2018-04-01
The persistence of a stochastic variable is the probability that it does not cross a given level during a fixed time interval. Although persistence is a simple concept to understand, it is in general hard to calculate. Here we consider zero mean Gaussian stationary processes in discrete time n . Few results are known for the persistence P0(n ) in discrete time, except the large time behavior which is characterized by the nontrivial constant θ through P0(n ) ˜θn . Using a modified version of the independent interval approximation (IIA) that we developed before, we are able to calculate P0(n ) analytically in z -transform space in terms of the autocorrelation function A (n ) . If A (n )→0 as n →∞ , we extract θ numerically, while if A (n )=0 , for finite n >N , we find θ exactly (within the IIA). We apply our results to three special cases: the nearest-neighbor-correlated "first order moving average process", where A (n )=0 for n >1 , the double exponential-correlated "second order autoregressive process", where A (n ) =c1λ1n+c2λ2n , and power-law-correlated variables, where A (n ) ˜n-μ . Apart from the power-law case when μ <5 , we find excellent agreement with simulations.
The Kolmogorov-Obukhov Statistical Theory of Turbulence
NASA Astrophysics Data System (ADS)
Birnir, Björn
2013-08-01
In 1941 Kolmogorov and Obukhov postulated the existence of a statistical theory of turbulence, which allows the computation of statistical quantities that can be simulated and measured in a turbulent system. These are quantities such as the moments, the structure functions and the probability density functions (PDFs) of the turbulent velocity field. In this paper we will outline how to construct this statistical theory from the stochastic Navier-Stokes equation. The additive noise in the stochastic Navier-Stokes equation is generic noise given by the central limit theorem and the large deviation principle. The multiplicative noise consists of jumps multiplying the velocity, modeling jumps in the velocity gradient. We first estimate the structure functions of turbulence and establish the Kolmogorov-Obukhov 1962 scaling hypothesis with the She-Leveque intermittency corrections. Then we compute the invariant measure of turbulence, writing the stochastic Navier-Stokes equation as an infinite-dimensional Ito process, and solving the linear Kolmogorov-Hopf functional differential equation for the invariant measure. Finally we project the invariant measure onto the PDF. The PDFs turn out to be the normalized inverse Gaussian (NIG) distributions of Barndorff-Nilsen, and compare well with PDFs from simulations and experiments.
Intermediate scattering function of an anisotropic active Brownian particle
Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas
2016-01-01
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations. PMID:27830719
Intermediate scattering function of an anisotropic active Brownian particle.
Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas
2016-10-10
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.
Intermediate scattering function of an anisotropic active Brownian particle
NASA Astrophysics Data System (ADS)
Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas
2016-10-01
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.
Matsuoka, A J; Abbas, P J; Rubinstein, J T; Miller, C A
2000-11-01
Experimental results from humans and animals show that electrically evoked compound action potential (EAP) responses to constant-amplitude pulse train stimulation can demonstrate an alternating pattern, due to the combined effects of highly synchronized responses to electrical stimulation and refractory effects (Wilson et al., 1994). One way to improve signal representation is to reduce the level of across-fiber synchrony and hence, the level of the amplitude alternation. To accomplish this goal, we have examined EAP responses in the presence of Gaussian noise added to the pulse train stimulus. Addition of Gaussian noise at a level approximately -30 dB relative to EAP threshold to the pulse trains decreased the amount of alternation, indicating that stochastic resonance may be induced in the auditory nerve. The use of some type of conditioning stimulus such as Gaussian noise may provide a more 'normal' neural response pattern.
Adaptive conversion of a high-order mode beam into a near-diffraction-limited beam.
Zhao, Haichuan; Wang, Xiaolin; Ma, Haotong; Zhou, Pu; Ma, Yanxing; Xu, Xiaojun; Zhao, Yijun
2011-08-01
We present a new method for efficiently transforming a high-order mode beam into a nearly Gaussian beam with much higher beam quality. The method is based on modulation of phases of different lobes by stochastic parallel gradient descent algorithm and coherent addition after phase flattening. We demonstrate the method by transforming an LP11 mode into a nearly Gaussian beam. The experimental results reveal that the power in the diffraction-limited bucket in the far field is increased by more than a factor of 1.5.
Diffusive motion with nonlinear friction: apparently Brownian.
Goohpattader, Partho S; Chaudhury, Manoj K
2010-07-14
We study the diffusive motion of a small object placed on a solid support using an inertial tribometer. With an external bias and a Gaussian noise, the object slides accompanied with a fluctuation of displacement that exhibits unique characteristics at different powers of the noise. While it exhibits a fluidlike motion at high powers, a stick-slip motion occurs at a low power. Below a critical power, no motion is observed. The signature of a nonlinear friction is evident in this type of stochastic motion both in the reduced mobility in comparison to that governed by a linear kinematic (Stokes-Einstein-like) friction and in the non-Gaussian probability distribution of the displacement fluctuation. As the power of the noise increases, the effect of the nonlinearity appears to play a lesser role, so that the displacement fluctuation becomes more Gaussian. When the distribution is exponential, it also exhibits an asymmetry with its skewness increasing with the applied bias. A new finding of this study is that the stochastic velocities of the object are so poorly correlated that its diffusivity is much lower than either the linear or the nonlinear friction cases studied by de Gennes [J. Stat. Phys. 119, 953 (2005)]. The mobilities at different powers of the noise together with the estimated variances of velocity fluctuations follow an Einstein-like relation.
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Lacey, Simon; Sathian, K
2018-02-01
In a recent study Eklund et al. have shown that cluster-wise family-wise error (FWE) rate-corrected inferences made in parametric statistical method-based functional magnetic resonance imaging (fMRI) studies over the past couple of decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; principally because the spatial autocorrelation functions (sACFs) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggest otherwise. Hence, the residuals from general linear model (GLM)-based fMRI activation estimates in these studies may not have possessed a homogenously Gaussian sACF. Here we propose a method based on the assumption that heterogeneity and non-Gaussianity of the sACF of the first-level GLM analysis residuals, as well as temporal autocorrelations in the first-level voxel residual time-series, are caused by unmodeled MRI signal from neuronal and physiological processes as well as motion and other artifacts, which can be approximated by appropriate decompositions of the first-level residuals with principal component analysis (PCA), and removed. We show that application of this method yields GLM residuals with significantly reduced spatial correlation, nearly Gaussian sACF and uniform spatial smoothness across the brain, thereby allowing valid cluster-based FWE-corrected inferences based on assumption of Gaussian spatial noise. We further show that application of this method renders the voxel time-series of first-level GLM residuals independent, and identically distributed across time (which is a necessary condition for appropriate voxel-level GLM inference), without having to fit ad hoc stochastic colored noise models. Furthermore, the detection power of individual subject brain activation analysis is enhanced. This method will be especially useful for case studies, which rely on first-level GLM analysis inferences.
Line-edge roughness performance targets for EUV lithography
NASA Astrophysics Data System (ADS)
Brunner, Timothy A.; Chen, Xuemei; Gabor, Allen; Higgins, Craig; Sun, Lei; Mack, Chris A.
2017-03-01
Our paper will use stochastic simulations to explore how EUV pattern roughness can cause device failure through rare events, so-called "black swans". We examine the impact of stochastic noise on the yield of simple wiring patterns with 36nm pitch, corresponding to 7nm node logic, using a local Critical Dimension (CD)-based fail criteria Contact hole failures are examined in a similar way. For our nominal EUV process, local CD uniformity variation and local Pattern Placement Error variation was observed, but no pattern failures were seen in the modest (few thousand) number of features simulated. We degraded the image quality by incorporating Moving Standard Deviation (MSD) blurring to degrade the Image Log-Slope (ILS), and were able to find conditions where pattern failures were observed. We determined the Line Width Roughness (LWR) value as a function of the ILS. By use of an artificial "step function" image degraded by various MSD blur, we were able to extend the LWR vs ILS curve into regimes that might be available for future EUV imagery. As we decreased the image quality, we observed LWR grow and also began to see pattern failures. For high image quality, we saw CD distributions that were symmetrical and close to Gaussian in shape. Lower image quality caused CD distributions that were asymmetric, with "fat tails" on the low CD side (under-exposed) which were associated with pattern failures. Similar non-Gaussian CD distributions were associated with image conditions that caused missing contact holes, i.e. CD=0.
Molecules with an induced dipole moment in a stochastic electric field.
Band, Y B; Ben-Shimol, Y
2013-10-01
The mean-field dynamics of a molecule with an induced dipole moment (e.g., a homonuclear diatomic molecule) in a deterministic and a stochastic (fluctuating) electric field is solved to obtain the decoherence properties of the system. The average (over fluctuations) electric dipole moment and average angular momentum as a function of time for a Gaussian white noise electric field are determined via perturbative and nonperturbative solutions in the fluctuating field. In the perturbative solution, the components of the average electric dipole moment and the average angular momentum along the deterministic electric field direction do not decay to zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average over fluctuations of a magnetic moment in a Gaussian white noise magnetic field. In the nonperturbative solution, the component of the average electric dipole moment and the average angular momentum in the deterministic electric field direction also decay to zero.
A hybrid continuous-discrete method for stochastic reaction–diffusion processes
Zheng, Likun; Nie, Qing
2016-01-01
Stochastic fluctuations in reaction–diffusion processes often have substantial effect on spatial and temporal dynamics of signal transductions in complex biological systems. One popular approach for simulating these processes is to divide the system into small spatial compartments assuming that molecules react only within the same compartment and jump between adjacent compartments driven by the diffusion. While the approach is convenient in terms of its implementation, its computational cost may become prohibitive when diffusive jumps occur significantly more frequently than reactions, as in the case of rapid diffusion. Here, we present a hybrid continuous-discrete method in which diffusion is simulated using continuous approximation while reactions are based on the Gillespie algorithm. Specifically, the diffusive jumps are approximated as continuous Gaussian random vectors with time-dependent means and covariances, allowing use of a large time step, even for rapid diffusion. By considering the correlation among diffusive jumps, the approximation is accurate for the second moment of the diffusion process. In addition, a criterion is obtained for identifying the region in which such diffusion approximation is required to enable adaptive calculations for better accuracy. Applications to a linear diffusion system and two nonlinear systems of morphogens demonstrate the effectiveness and benefits of the new hybrid method. PMID:27703710
Hamiltonian chaos acts like a finite energy reservoir: accuracy of the Fokker-Planck approximation.
Riegert, Anja; Baba, Nilüfer; Gelfert, Katrin; Just, Wolfram; Kantz, Holger
2005-02-11
The Hamiltonian dynamics of slow variables coupled to fast degrees of freedom is modeled by an effective stochastic differential equation. Formal perturbation expansions, involving a Markov approximation, yield a Fokker-Planck equation in the slow subspace which respects conservation of energy. A detailed numerical and analytical analysis of suitable model systems demonstrates the feasibility of obtaining the system specific drift and diffusion terms and the accuracy of the stochastic approximation on all time scales. Non-Markovian and non-Gaussian features of the fast variables are negligible.
Spectral changes in stochastic anisotropic electromagnetic beams propagating through turbulent ocean
NASA Astrophysics Data System (ADS)
Tang, Miaomiao; Zhao, Daomu
2014-02-01
Based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization of light, the spectral changes of stochastic anisotropic electromagnetic beams propagating through oceanic turbulence are revealed. As an example, some numerical calculations are illustrated for an anisotropic electromagnetic Gaussian Schell-model beam propagating in a homogeneous and isotropic turbulent ocean. It is shown that, under the influence of oceanic turbulence, the on-axis spectrum is always blue-shifted along with the propagation distance, however, for the off-axis positions, red-blue spectral switch can be found.
A Stochastic Super-Exponential Growth Model for Population Dynamics
NASA Astrophysics Data System (ADS)
Avila, P.; Rekker, A.
2010-11-01
A super-exponential growth model with environmental noise has been studied analytically. Super-exponential growth rate is a property of dynamical systems exhibiting endogenous nonlinear positive feedback, i.e., of self-reinforcing systems. Environmental noise acts on the growth rate multiplicatively and is assumed to be Gaussian white noise in the Stratonovich interpretation. An analysis of the stochastic super-exponential growth model with derivations of exact analytical formulae for the conditional probability density and the mean value of the population abundance are presented. Interpretations and various applications of the results are discussed.
NASA Astrophysics Data System (ADS)
Tian, Yuexin; Gao, Kun; Liu, Ying; Han, Lu
2015-08-01
Aiming at the nonlinear and non-Gaussian features of the real infrared scenes, an optimal nonlinear filtering based algorithm for the infrared dim target tracking-before-detecting application is proposed. It uses the nonlinear theory to construct the state and observation models and uses the spectral separation scheme based Wiener chaos expansion method to resolve the stochastic differential equation of the constructed models. In order to improve computation efficiency, the most time-consuming operations independent of observation data are processed on the fore observation stage. The other observation data related rapid computations are implemented subsequently. Simulation results show that the algorithm possesses excellent detection performance and is more suitable for real-time processing.
NASA Astrophysics Data System (ADS)
Bouchaud, Jean-Philippe; Sornette, Didier
1994-06-01
The ability to price risks and devise optimal investment strategies in thé présence of an uncertain "random" market is thé cornerstone of modern finance theory. We first consider thé simplest such problem of a so-called "European call option" initially solved by Black and Scholes using Ito stochastic calculus for markets modelled by a log-Brownien stochastic process. A simple and powerful formalism is presented which allows us to generalize thé analysis to a large class of stochastic processes, such as ARCH, jump or Lévy processes. We also address thé case of correlated Gaussian processes, which is shown to be a good description of three différent market indices (MATIF, CAC40, FTSE100). Our main result is thé introduction of thé concept of an optimal strategy in the sense of (functional) minimization of the risk with respect to the portfolio. If the risk may be made to vanish for particular continuous uncorrelated 'quasiGaussian' stochastic processes (including Black and Scholes model), this is no longer the case for more general stochastic processes. The value of the residual risk is obtained and suggests the concept of risk-corrected option prices. In the presence of very large deviations such as in Lévy processes, new criteria for rational fixing of the option prices are discussed. We also apply our method to other types of options, `Asian', `American', and discuss new possibilities (`doubledecker'...). The inclusion of transaction costs leads to the appearance of a natural characteristic trading time scale. L'aptitude à quantifier le coût du risque et à définir une stratégie optimale de gestion de portefeuille dans un marché aléatoire constitue la base de la théorie moderne de la finance. Nous considérons d'abord le problème le plus simple de ce type, à savoir celui de l'option d'achat `européenne', qui a été résolu par Black et Scholes à l'aide du calcul stochastique d'Ito appliqué aux marchés modélisés par un processus Log-Brownien. Nous présentons un formalisme simple et puissant qui permet de généraliser l'analyse à une grande classe de processus stochastiques, tels que les processus ARCH, de Lévy et ceux à sauts. Nous étudions également le cas des processus Gaussiens corrélés, dont nous montrons qu'ils donnent une bonne description de trois indices boursiers (MATIF, CAC40, FTSE100). Notre résultat principal consiste en l'introduction du concept de stratégie optimale dans le sens d'une minimisation (fonctionnelle) du risque en fonction du portefeuille d'actions. Si le risque peut être annulé pour les processus `quasi-Gaussien' non-corrélés, dont le modèle de Black et Scholes est un exemple, cela n'est plus vrai dans le cas général, le risque résiduel permettant de proposer des coûts d'options "corrigés". En présence de très grandes fluctuations du marché telles que décrites par les processus de Lévy, de nouveaux critères pour fixer rationnellement le prix des options sont nécessaires et sont discutés. Nous appliquons notre méthode à d'autres types d'options, telles que `asiatiques', `américaines', et à de nouvelles options que nous introduisons comme les `options à deux étages'... L'inclusion des frais de transaction dans le formalisme conduit à l'introduction naturelle d'un temps caractéristique de transaction.
Plant uprooting by flow as a fatigue mechanical process
NASA Astrophysics Data System (ADS)
Perona, Paolo; Edmaier, Katharina; Crouzy, Benoît
2015-04-01
In river corridors, plant uprooting by flow mostly occurs as a delayed process where flow erosion first causes root exposure until residual anchoring balances hydrodynamic forces on the part of the plant that is exposed to the stream. Because a given plant exposure time to the action of the stream is needed before uprooting occurs (time-to-uprooting), this uprooting mechanism has been denominated Type II, in contrast to Type I, which mostly affect early stage seedlings and is rather instantaneous. In this work, we propose a stochastic framework that describes a (deterministic) mechanical fatigue process perturbed by a (stochastic) process noise, where collapse occurs after a given exposure time. We test the model using the experimental data of Edmaier (2014) and Edmaier et al. (submitted), who investigated vegetation uprooting by flow in the limit of low plant stem-to-sediment size ratio by inducing parallel riverbed erosion within an experimental flume. We first identify the proper timescale and lengthscale for rescaling the model. Then, we show that it describes well all the empirical cumulative distribution functions (cdf) of time-to-uprooting obtained under constant riverbed erosion rate and assuming additive gaussian process noise. By this mean, we explore the level of determinism and stochasticity affecting the time-to-uprooting for Avena sativa in relation to root anchoring and flow drag forces. We eventually ascribe the overall dynamics of the Type II uprooting mechanism to the memory of the plant-soil system that is stored by root anchoring, and discuss related implications thereof. References Edmaier, K., Uprooting mechansims of juvenile vegetation by flow erosion, Ph.D. thesis, EPFL, 2014. Edmaier, K., Crouzy, B. and P. Perona. Experimental characterization of vegetation uprooting by flow. J. of Geophys. Res. - Biogeosci., submitted
Modulation of spectral intensity, polarization and coherence of a stochastic electromagnetic beam.
Wu, Gaofeng; Cai, Yangjian
2011-04-25
Analytical formula for the cross-spectral density matrix of a stochastic electromagnetic Gaussian Schell-model (EGSM) beam truncated by a circular phase aperture propagating in free space is derived with the help of a tensor method, which provides a reliable and fast way for studying the propagation and transformation of a truncated EGSM beam. Statistics properties, such as the spectral intensity, the degree of coherence, the degree of polarization and the polarization ellipse of a truncated EGSM beam in free space are studied numerically. The propagation factor of a truncated EGSM beam is also analyzed. Our numerical results show that we can modulate the spectral intensity, the polarization, the coherence and the propagation factor of an EGSM beam by a circular phase aperture. It is found that the phase aperture can be used to shape the beam profile of an EGSM beam and generate electromagnetic partially coherent dark hollow or flat-topped beam, which is useful in some applications, such as optical trapping, material processing, free-space optical communications.
NASA Astrophysics Data System (ADS)
Negrea, M.; Petrisor, I.; Shalchi, A.
2017-11-01
We study the diffusion of magnetic field lines in turbulence with magnetic shear. In the first part of the series, we developed a quasi-linear theory for this type of scenario. In this article, we employ the so-called DeCorrelation Trajectory method in order to compute the diffusion coefficients of stochastic magnetic field lines. The magnetic field configuration used here contains fluctuating terms which are described by the dimensionless functions bi(X, Y, Z), i = (x, y) and they are assumed to be Gaussian processes and are perpendicular with respect to the main magnetic field B0. Furthermore, there is also a z-component of the magnetic field depending on radial coordinate x (representing the gradient of the magnetic field) and a poloidal average component. We calculate the diffusion coefficients for magnetic field lines for different values of the magnetic Kubo number K, the dimensionless inhomogeneous magnetic parallel and perpendicular Kubo numbers KB∥, KB⊥ , as well as Ka v=bya vKB∥/KB⊥ .
NASA Astrophysics Data System (ADS)
Deco, Gustavo; Martí, Daniel
2007-03-01
The analysis of transitions in stochastic neurodynamical systems is essential to understand the computational principles that underlie those perceptual and cognitive processes involving multistable phenomena, like decision making and bistable perception. To investigate the role of noise in a multistable neurodynamical system described by coupled differential equations, one usually considers numerical simulations, which are time consuming because of the need for sufficiently many trials to capture the statistics of the influence of the fluctuations on that system. An alternative analytical approach involves the derivation of deterministic differential equations for the moments of the distribution of the activity of the neuronal populations. However, the application of the method of moments is restricted by the assumption that the distribution of the state variables of the system takes on a unimodal Gaussian shape. We extend in this paper the classical moments method to the case of bimodal distribution of the state variables, such that a reduced system of deterministic coupled differential equations can be derived for the desired regime of multistability.
Langevin equation with fluctuating diffusivity: A two-state model
NASA Astrophysics Data System (ADS)
Miyaguchi, Tomoshige; Akimoto, Takuma; Yamamoto, Eiji
2016-07-01
Recently, anomalous subdiffusion, aging, and scatter of the diffusion coefficient have been reported in many single-particle-tracking experiments, though the origins of these behaviors are still elusive. Here, as a model to describe such phenomena, we investigate a Langevin equation with diffusivity fluctuating between a fast and a slow state. Namely, the diffusivity follows a dichotomous stochastic process. We assume that the sojourn time distributions of these two states are given by power laws. It is shown that, for a nonequilibrium ensemble, the ensemble-averaged mean-square displacement (MSD) shows transient subdiffusion. In contrast, the time-averaged MSD shows normal diffusion, but an effective diffusion coefficient transiently shows aging behavior. The propagator is non-Gaussian for short time and converges to a Gaussian distribution in a long-time limit; this convergence to Gaussian is extremely slow for some parameter values. For equilibrium ensembles, both ensemble-averaged and time-averaged MSDs show only normal diffusion and thus we cannot detect any traces of the fluctuating diffusivity with these MSDs. Therefore, as an alternative approach to characterizing the fluctuating diffusivity, the relative standard deviation (RSD) of the time-averaged MSD is utilized and it is shown that the RSD exhibits slow relaxation as a signature of the long-time correlation in the fluctuating diffusivity. Furthermore, it is shown that the RSD is related to a non-Gaussian parameter of the propagator. To obtain these theoretical results, we develop a two-state renewal theory as an analytical tool.
An application of information theory to stochastic classical gravitational fields
NASA Astrophysics Data System (ADS)
Angulo, J.; Angulo, J. C.; Angulo, J. M.
2018-06-01
The objective of this study lies on the incorporation of the concepts developed in the Information Theory (entropy, complexity, etc.) with the aim of quantifying the variation of the uncertainty associated with a stochastic physical system resident in a spatiotemporal region. As an example of application, a relativistic classical gravitational field has been considered, with a stochastic behavior resulting from the effect induced by one or several external perturbation sources. One of the key concepts of the study is the covariance kernel between two points within the chosen region. Using this concept and the appropriate criteria, a methodology is proposed to evaluate the change of uncertainty at a given spatiotemporal point, based on available information and efficiently applying the diverse methods that Information Theory provides. For illustration, a stochastic version of the Einstein equation with an added Gaussian Langevin term is analyzed.
Méndez-Balbuena, Ignacio; Huidobro, Nayeli; Silva, Mayte; Flores, Amira; Trenado, Carlos; Quintanar, Luis; Arias-Carrión, Oscar; Kristeva, Rumyana; Manjarrez, Elias
2015-10-01
The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise. Specifically, we examined whether a particular level of mechanical Gaussian noise applied to the index finger can improve the amplitude of the VEP. We compared the amplitude of the positive P100 VEP component between zero noise (ZN), optimal noise (ON), and high mechanical noise (HN). The data disclosed an inverted U-like graph for all the subjects, thus demonstrating the occurrence of a multisensory stochastic resonance in the P100 VEP. Copyright © 2015 the American Physiological Society.
Bayesian nonparametric adaptive control using Gaussian processes.
Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A
2015-03-01
Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.
NASA Astrophysics Data System (ADS)
Cascio, David M.
1988-05-01
States of nature or observed data are often stochastically modelled as Gaussian random variables. At times it is desirable to transmit this information from a source to a destination with minimal distortion. Complicating this objective is the possible presence of an adversary attempting to disrupt this communication. In this report, solutions are provided to a class of minimax and maximin decision problems, which involve the transmission of a Gaussian random variable over a communications channel corrupted by both additive Gaussian noise and probabilistic jamming noise. The jamming noise is termed probabilistic in the sense that with nonzero probability 1-P, the jamming noise is prevented from corrupting the channel. We shall seek to obtain optimal linear encoder-decoder policies which minimize given quadratic distortion measures.
Revealing transient strain in geodetic data with Gaussian process regression
NASA Astrophysics Data System (ADS)
Hines, T. T.; Hetland, E. A.
2018-03-01
Transient strain derived from global navigation satellite system (GNSS) data can be used to detect and understand geophysical processes such as slow slip events and post-seismic deformation. Here we propose using Gaussian process regression (GPR) as a tool for estimating transient strain from GNSS data. GPR is a non-parametric, Bayesian method for interpolating scattered data. In our approach, we assume a stochastic prior model for transient displacements. The prior describes how much we expect transient displacements to covary spatially and temporally. A posterior estimate of transient strain is obtained by differentiating the posterior transient displacements, which are formed by conditioning the prior with the GNSS data. As a demonstration, we use GPR to detect transient strain resulting from slow slip events in the Pacific Northwest. Maximum likelihood methods are used to constrain a prior model for transient displacements in this region. The temporal covariance of our prior model is described by a compact Wendland covariance function, which significantly reduces the computational burden that can be associated with GPR. Our results reveal the spatial and temporal evolution of strain from slow slip events. We verify that the transient strain estimated with GPR is in fact geophysical signal by comparing it to the seismic tremor that is associated with Pacific Northwest slow slip events.
Identifying stochastic oscillations in single-cell live imaging time series using Gaussian processes
Manning, Cerys; Rattray, Magnus
2017-01-01
Multiple biological processes are driven by oscillatory gene expression at different time scales. Pulsatile dynamics are thought to be widespread, and single-cell live imaging of gene expression has lead to a surge of dynamic, possibly oscillatory, data for different gene networks. However, the regulation of gene expression at the level of an individual cell involves reactions between finite numbers of molecules, and this can result in inherent randomness in expression dynamics, which blurs the boundaries between aperiodic fluctuations and noisy oscillators. This underlies a new challenge to the experimentalist because neither intuition nor pre-existing methods work well for identifying oscillatory activity in noisy biological time series. Thus, there is an acute need for an objective statistical method for classifying whether an experimentally derived noisy time series is periodic. Here, we present a new data analysis method that combines mechanistic stochastic modelling with the powerful methods of non-parametric regression with Gaussian processes. Our method can distinguish oscillatory gene expression from random fluctuations of non-oscillatory expression in single-cell time series, despite peak-to-peak variability in period and amplitude of single-cell oscillations. We show that our method outperforms the Lomb-Scargle periodogram in successfully classifying cells as oscillatory or non-oscillatory in data simulated from a simple genetic oscillator model and in experimental data. Analysis of bioluminescent live-cell imaging shows a significantly greater number of oscillatory cells when luciferase is driven by a Hes1 promoter (10/19), which has previously been reported to oscillate, than the constitutive MoMuLV 5’ LTR (MMLV) promoter (0/25). The method can be applied to data from any gene network to both quantify the proportion of oscillating cells within a population and to measure the period and quality of oscillations. It is publicly available as a MATLAB package. PMID:28493880
NASA Astrophysics Data System (ADS)
Hsieh, Chang-Yu; Cao, Jianshu
2018-01-01
We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum environment. We exemplify the general framework by studying a two-level quantum system coupled bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the present formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.
ISIM3D: AN ANSI-C THREE-DIMENSIONAL MULTIPLE INDICATOR CONDITIONAL SIMULATION PROGRAM
The indicator conditional simulation technique provides stochastic simulations of a variable that (i) honor the initial data and (ii) can feature a richer family of spatial structures not limited by Gaussianity. he data are encoded into a series of indicators which then are used ...
Past observable dynamics of a continuously monitored qubit
NASA Astrophysics Data System (ADS)
García-Pintos, Luis Pedro; Dressel, Justin
2017-12-01
Monitoring a quantum observable continuously in time produces a stochastic measurement record that noisily tracks the observable. For a classical process, such noise may be reduced to recover an average signal by minimizing the mean squared error between the noisy record and a smooth dynamical estimate. We show that for a monitored qubit, this usual procedure returns unusual results. While the record seems centered on the expectation value of the observable during causal generation, examining the collected past record reveals that it better approximates a moving-mean Gaussian stochastic process centered at a distinct (smoothed) observable estimate. We show that this shifted mean converges to the real part of a generalized weak value in the time-continuous limit without additional postselection. We verify that this smoothed estimate minimizes the mean squared error even for individual measurement realizations. We go on to show that if a second observable is weakly monitored concurrently, then that second record is consistent with the smoothed estimate of the second observable based solely on the information contained in the first observable record. Moreover, we show that such a smoothed estimate made from incomplete information can still outperform estimates made using full knowledge of the causal quantum state.
Kernel methods and flexible inference for complex stochastic dynamics
NASA Astrophysics Data System (ADS)
Capobianco, Enrico
2008-07-01
Approximation theory suggests that series expansions and projections represent standard tools for random process applications from both numerical and statistical standpoints. Such instruments emphasize the role of both sparsity and smoothness for compression purposes, the decorrelation power achieved in the expansion coefficients space compared to the signal space, and the reproducing kernel property when some special conditions are met. We consider these three aspects central to the discussion in this paper, and attempt to analyze the characteristics of some known approximation instruments employed in a complex application domain such as financial market time series. Volatility models are often built ad hoc, parametrically and through very sophisticated methodologies. But they can hardly deal with stochastic processes with regard to non-Gaussianity, covariance non-stationarity or complex dependence without paying a big price in terms of either model mis-specification or computational efficiency. It is thus a good idea to look at other more flexible inference tools; hence the strategy of combining greedy approximation and space dimensionality reduction techniques, which are less dependent on distributional assumptions and more targeted to achieve computationally efficient performances. Advantages and limitations of their use will be evaluated by looking at algorithmic and model building strategies, and by reporting statistical diagnostics.
Ponciano, José Miguel
2017-11-22
Using a nonparametric Bayesian approach Palacios and Minin (2013) dramatically improved the accuracy, precision of Bayesian inference of population size trajectories from gene genealogies. These authors proposed an extension of a Gaussian Process (GP) nonparametric inferential method for the intensity function of non-homogeneous Poisson processes. They found that not only the statistical properties of the estimators were improved with their method, but also, that key aspects of the demographic histories were recovered. The authors' work represents the first Bayesian nonparametric solution to this inferential problem because they specify a convenient prior belief without a particular functional form on the population trajectory. Their approach works so well and provides such a profound understanding of the biological process, that the question arises as to how truly "biology-free" their approach really is. Using well-known concepts of stochastic population dynamics, here I demonstrate that in fact, Palacios and Minin's GP model can be cast as a parametric population growth model with density dependence and environmental stochasticity. Making this link between population genetics and stochastic population dynamics modeling provides novel insights into eliciting biologically meaningful priors for the trajectory of the effective population size. The results presented here also bring novel understanding of GP as models for the evolution of a trait. Thus, the ecological principles foundation of Palacios and Minin (2013)'s prior adds to the conceptual and scientific value of these authors' inferential approach. I conclude this note by listing a series of insights brought about by this connection with Ecology. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Four tails problems for dynamical collapse theories
NASA Astrophysics Data System (ADS)
McQueen, Kelvin J.
2015-02-01
The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory.
NASA Astrophysics Data System (ADS)
Queirós, S. M. D.; Tsallis, C.
2005-11-01
The GARCH algorithm is the most renowned generalisation of Engle's original proposal for modelising returns, the ARCH process. Both cases are characterised by presenting a time dependent and correlated variance or volatility. Besides a memory parameter, b, (present in ARCH) and an independent and identically distributed noise, ω, GARCH involves another parameter, c, such that, for c=0, the standard ARCH process is reproduced. In this manuscript we use a generalised noise following a distribution characterised by an index qn, such that qn=1 recovers the Gaussian distribution. Matching low statistical moments of GARCH distribution for returns with a q-Gaussian distribution obtained through maximising the entropy Sq=1-sumipiq/q-1, basis of nonextensive statistical mechanics, we obtain a sole analytical connection between q and left( b,c,qnright) which turns out to be remarkably good when compared with computational simulations. With this result we also derive an analytical approximation for the stationary distribution for the (squared) volatility. Using a generalised Kullback-Leibler relative entropy form based on Sq, we also analyse the degree of dependence between successive returns, zt and zt+1, of GARCH(1,1) processes. This degree of dependence is quantified by an entropic index, qop. Our analysis points the existence of a unique relation between the three entropic indexes qop, q and qn of the problem, independent of the value of (b,c).
Stochastic sensitivity of a bistable energy model for visual perception
NASA Astrophysics Data System (ADS)
Pisarchik, Alexander N.; Bashkirtseva, Irina; Ryashko, Lev
2017-01-01
Modern trends in physiology, psychology and cognitive neuroscience suggest that noise is an essential component of brain functionality and self-organization. With adequate noise the brain as a complex dynamical system can easily access different ordered states and improve signal detection for decision-making by preventing deadlocks. Using a stochastic sensitivity function approach, we analyze how sensitive equilibrium points are to Gaussian noise in a bistable energy model often used for qualitative description of visual perception. The probability distribution of noise-induced transitions between two coexisting percepts is calculated at different noise intensity and system stability. Stochastic squeezing of the hysteresis range and its transition from positive (bistable regime) to negative (intermittency regime) are demonstrated as the noise intensity increases. The hysteresis is more sensitive to noise in the system with higher stability.
Compensating for estimation smoothing in kriging
Olea, R.A.; Pawlowsky, Vera
1996-01-01
Smoothing is a characteristic inherent to all minimum mean-square-error spatial estimators such as kriging. Cross-validation can be used to detect and model such smoothing. Inversion of the model produces a new estimator-compensated kriging. A numerical comparison based on an exhaustive permeability sampling of a 4-fr2 slab of Berea Sandstone shows that the estimation surface generated by compensated kriging has properties intermediate between those generated by ordinary kriging and stochastic realizations resulting from simulated annealing and sequential Gaussian simulation. The frequency distribution is well reproduced by the compensated kriging surface, which also approximates the experimental semivariogram well - better than ordinary kriging, but not as well as stochastic realizations. Compensated kriging produces surfaces that are more accurate than stochastic realizations, but not as accurate as ordinary kriging. ?? 1996 International Association for Mathematical Geology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harlim, John, E-mail: jharlim@psu.edu; Mahdi, Adam, E-mail: amahdi@ncsu.edu; Majda, Andrew J., E-mail: jonjon@cims.nyu.edu
2014-01-15
A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partialmore » noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.« less
A sharp interpolation between the Hölder and Gaussian Young inequalities
NASA Astrophysics Data System (ADS)
da Pelo, Paolo; Lanconelli, Alberto; Stan, Aurel I.
2016-03-01
We prove a very general sharp inequality of the Hölder-Young-type for functions defined on infinite dimensional Gaussian spaces. We begin by considering a family of commutative products for functions which interpolates between the pointwise and Wick products; this family arises naturally in the context of stochastic differential equations, through Wong-Zakai-type approximation theorems, and plays a key role in some generalizations of the Beckner-type Poincaré inequality. We then obtain a crucial integral representation for that family of products which is employed, together with a generalization of the classic Young inequality due to Lieb, to prove our main theorem. We stress that our main inequality contains as particular cases the Hölder inequality and Nelson’s hyper-contractive estimate, thus providing a unified framework for two fundamental results of the Gaussian analysis.
Theoretical analysis of non-Gaussian heterogeneity effects on subsurface flow and transport
NASA Astrophysics Data System (ADS)
Riva, Monica; Guadagnini, Alberto; Neuman, Shlomo P.
2017-04-01
Much of the stochastic groundwater literature is devoted to the analysis of flow and transport in Gaussian or multi-Gaussian log hydraulic conductivity (or transmissivity) fields, Y(x)=ln\\func K(x) (x being a position vector), characterized by one or (less frequently) a multiplicity of spatial correlation scales. Yet Y and many other variables and their (spatial or temporal) increments, ΔY, are known to be generally non-Gaussian. One common manifestation of non-Gaussianity is that whereas frequency distributions of Y often exhibit mild peaks and light tails, those of increments ΔY are generally symmetric with peaks that grow sharper, and tails that become heavier, as separation scale or lag between pairs of Y values decreases. A statistical model that captures these disparate, scale-dependent distributions of Y and ΔY in a unified and consistent manner has been recently proposed by us. This new "generalized sub-Gaussian (GSG)" model has the form Y(x)=U(x)G(x) where G(x) is (generally, but not necessarily) a multiscale Gaussian random field and U(x) is a nonnegative subordinator independent of G. The purpose of this paper is to explore analytically, in an elementary manner, lead-order effects that non-Gaussian heterogeneity described by the GSG model have on the stochastic description of flow and transport. Recognizing that perturbation expansion of hydraulic conductivity K=eY diverges when Y is sub-Gaussian, we render the expansion convergent by truncating Y's domain of definition. We then demonstrate theoretically and illustrate by way of numerical examples that, as the domain of truncation expands, (a) the variance of truncated Y (denoted by Yt) approaches that of Y and (b) the pdf (and thereby moments) of Yt increments approach those of Y increments and, as a consequence, the variogram of Yt approaches that of Y. This in turn guarantees that perturbing Kt=etY to second order in σYt (the standard deviation of Yt) yields results which approach those we obtain upon perturbing K=eY to second order in σY even as the corresponding series diverges. Our analysis is rendered mathematically tractable by considering mean-uniform steady state flow in an unbounded, two-dimensional domain of mildly heterogeneous Y with a single-scale function G having an isotropic exponential covariance. Results consist of expressions for (a) lead-order autocovariance and cross-covariance functions of hydraulic head, velocity, and advective particle displacement and (b) analogues of preasymptotic as well as asymptotic Fickian dispersion coefficients. We compare these theoretically and graphically with corresponding expressions developed in the literature for Gaussian Y. We find the former to differ from the latter by a factor k =
NASA Astrophysics Data System (ADS)
Wei, J. Q.; Cong, Y. C.; Xiao, M. Q.
2018-05-01
As renewable energies are increasingly integrated into power systems, there is increasing interest in stochastic analysis of power systems.Better techniques should be developed to account for the uncertainty caused by penetration of renewables and consequently analyse its impacts on stochastic stability of power systems. In this paper, the Stochastic Differential Equations (SDEs) are used to represent the evolutionary behaviour of the power systems. The stationary Probability Density Function (PDF) solution to SDEs modelling power systems excited by Gaussian white noise is analysed. Subjected to such random excitation, the Joint Probability Density Function (JPDF) solution to the phase angle and angular velocity is governed by the generalized Fokker-Planck-Kolmogorov (FPK) equation. To solve this equation, the numerical method is adopted. Special measure is taken such that the generalized FPK equation is satisfied in the average sense of integration with the assumed PDF. Both weak and strong intensities of the stochastic excitations are considered in a single machine infinite bus power system. The numerical analysis has the same result as the one given by the Monte Carlo simulation. Potential studies on stochastic behaviour of multi-machine power systems with random excitations are discussed at the end.
Stochastic mixed-mode oscillations in a three-species predator-prey model
NASA Astrophysics Data System (ADS)
Sadhu, Susmita; Kuehn, Christian
2018-03-01
The effect of demographic stochasticity, in the form of Gaussian white noise, in a predator-prey model with one fast and two slow variables is studied. We derive the stochastic differential equations (SDEs) from a discrete model. For suitable parameter values, the deterministic drift part of the model admits a folded node singularity and exhibits a singular Hopf bifurcation. We focus on the parameter regime near the Hopf bifurcation, where small amplitude oscillations exist as stable dynamics in the absence of noise. In this regime, the stochastic model admits noise-driven mixed-mode oscillations (MMOs), which capture the intermediate dynamics between two cycles of population outbreaks. We perform numerical simulations to calculate the distribution of the random number of small oscillations between successive spikes for varying noise intensities and distance to the Hopf bifurcation. We also study the effect of noise on a suitable Poincaré map. Finally, we prove that the stochastic model can be transformed into a normal form near the folded node, which can be linked to recent results on the interplay between deterministic and stochastic small amplitude oscillations. The normal form can also be used to study the parameter influence on the noise level near folded singularities.
NASA Astrophysics Data System (ADS)
Martínez-Casado, R.; Vega, J. L.; Sanz, A. S.; Miret-Artés, S.
2007-08-01
The study of diffusion and low-frequency vibrational motions of particles on metal surfaces is of paramount importance; it provides valuable information on the nature of the adsorbate-substrate and substrate-substrate interactions. In particular, the experimental broadening observed in the diffusive peak with increasing coverage is usually interpreted in terms of a dipole-dipole-like interaction among adsorbates via extensive molecular dynamics calculations within the Langevin framework. Here we present an alternative way to interpret this broadening by means of a purely stochastic description, namely the interacting single-adsorbate approximation, where two noise sources are considered: (1) a Gaussian white noise accounting for the surface friction and temperature, and (2) a white shot noise replacing the interaction potential between adsorbates. Standard Langevin numerical simulations for flat and corrugated surfaces (with a separable potential) illustrate the dynamics of Na atoms on a Cu(100) surface which fit fairly well to the analytical expressions issued from simple models (free particle and anharmonic oscillator) when the Gaussian approximation is assumed. A similar broadening is also expected for the frustrated translational mode peaks.
Bayesian Lagrangian Data Assimilation and Drifter Deployment Strategies
NASA Astrophysics Data System (ADS)
Dutt, A.; Lermusiaux, P. F. J.
2017-12-01
Ocean currents transport a variety of natural (e.g. water masses, phytoplankton, zooplankton, sediments, etc.) and man-made materials and other objects (e.g. pollutants, floating debris, search and rescue, etc.). Lagrangian Coherent Structures (LCSs) or the most influential/persistent material lines in a flow, provide a robust approach to characterize such Lagrangian transports and organize classic trajectories. Using the flow-map stochastic advection and a dynamically-orthogonal decomposition, we develop uncertainty prediction schemes for both Eulerian and Lagrangian variables. We then extend our Bayesian Gaussian Mixture Model (GMM)-DO filter to a joint Eulerian-Lagrangian Bayesian data assimilation scheme. The resulting nonlinear filter allows the simultaneous non-Gaussian estimation of Eulerian variables (e.g. velocity, temperature, salinity, etc.) and Lagrangian variables (e.g. drifter/float positions, trajectories, LCSs, etc.). Its results are showcased using a double-gyre flow with a random frequency, a stochastic flow past a cylinder, and realistic ocean examples. We further show how our Bayesian mutual information and adaptive sampling equations provide a rigorous efficient methodology to plan optimal drifter deployment strategies and predict the optimal times, locations, and types of measurements to be collected.
Self-organisation of random oscillators with Lévy stable distributions
NASA Astrophysics Data System (ADS)
Moradi, Sara; Anderson, Johan
2017-08-01
A novel possibility of self-organized behaviour of stochastically driven oscillators is presented. It is shown that synchronization by Lévy stable processes is significantly more efficient than that by oscillators with Gaussian statistics. The impact of outlier events from the tail of the distribution function was examined by artificially introducing a few additional oscillators with very strong coupling strengths and it is found that remarkably even one such rare and extreme event may govern the long term behaviour of the coupled system. In addition to the multiplicative noise component, we have investigated the impact of an external additive Lévy distributed noise component on the synchronisation properties of the oscillators.
Linear theory for filtering nonlinear multiscale systems with model error
Berry, Tyrus; Harlim, John
2014-01-01
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online, as part of a filtering procedure, simultaneously produce accurate filtering and equilibrium statistical prediction. In contrast, an offline estimation technique based on a linear regression, which fits the parameters to a training dataset without using the filter, yields filter estimates which are worse than the observations or even divergent when the slow variables are not fully observed. This finding does not imply that all offline methods are inherently inferior to the online method for nonlinear estimation problems, it only suggests that an ideal estimation technique should estimate all parameters simultaneously whether it is online or offline. PMID:25002829
Hessian eigenvalue distribution in a random Gaussian landscape
NASA Astrophysics Data System (ADS)
Yamada, Masaki; Vilenkin, Alexander
2018-03-01
The energy landscape of multiverse cosmology is often modeled by a multi-dimensional random Gaussian potential. The physical predictions of such models crucially depend on the eigenvalue distribution of the Hessian matrix at potential minima. In particular, the stability of vacua and the dynamics of slow-roll inflation are sensitive to the magnitude of the smallest eigenvalues. The Hessian eigenvalue distribution has been studied earlier, using the saddle point approximation, in the leading order of 1/ N expansion, where N is the dimensionality of the landscape. This approximation, however, is insufficient for the small eigenvalue end of the spectrum, where sub-leading terms play a significant role. We extend the saddle point method to account for the sub-leading contributions. We also develop a new approach, where the eigenvalue distribution is found as an equilibrium distribution at the endpoint of a stochastic process (Dyson Brownian motion). The results of the two approaches are consistent in cases where both methods are applicable. We discuss the implications of our results for vacuum stability and slow-roll inflation in the landscape.
Ramasesha, Krupa; De Marco, Luigi; Horning, Andrew D; Mandal, Aritra; Tokmakoff, Andrei
2012-04-07
We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.
The statistics of primordial density fluctuations
NASA Astrophysics Data System (ADS)
Barrow, John D.; Coles, Peter
1990-05-01
The statistical properties of the density fluctuations produced by power-law inflation are investigated. It is found that, even the fluctuations present in the scalar field driving the inflation are Gaussian, the resulting density perturbations need not be, due to stochastic variations in the Hubble parameter. All the moments of the density fluctuations are calculated, and is is argued that, for realistic parameter choices, the departures from Gaussian statistics are small and would have a negligible effect on the large-scale structure produced in the model. On the other hand, the model predicts a power spectrum with n not equal to 1, and this could be good news for large-scale structure.
Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiao; Dong, Jin; Djouadi, Seddik M
2015-01-01
The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, wheremore » the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.« less
Restoring the encoding properties of a stochastic neuron model by an exogenous noise
Paffi, Alessandra; Camera, Francesca; Apollonio, Francesca; d'Inzeo, Guglielmo; Liberti, Micaela
2015-01-01
Here we evaluate the possibility of improving the encoding properties of an impaired neuronal system by superimposing an exogenous noise to an external electric stimulation signal. The approach is based on the use of mathematical neuron models consisting of stochastic HH-like circuit, where the impairment of the endogenous presynaptic inputs is described as a subthreshold injected current and the exogenous stimulation signal is a sinusoidal voltage perturbation across the membrane. Our results indicate that a correlated Gaussian noise, added to the sinusoidal signal can significantly increase the encoding properties of the impaired system, through the Stochastic Resonance (SR) phenomenon. These results suggest that an exogenous noise, suitably tailored, could improve the efficacy of those stimulation techniques used in neuronal systems, where the presynaptic sensory neurons are impaired and have to be artificially bypassed. PMID:25999845
NASA Astrophysics Data System (ADS)
Tian, Liang; Wilkinson, Richard; Yang, Zhibing; Power, Henry; Fagerlund, Fritjof; Niemi, Auli
2017-08-01
We explore the use of Gaussian process emulators (GPE) in the numerical simulation of CO2 injection into a deep heterogeneous aquifer. The model domain is a two-dimensional, log-normally distributed stochastic permeability field. We first estimate the cumulative distribution functions (CDFs) of the CO2 breakthrough time and the total CO2 mass using a computationally expensive Monte Carlo (MC) simulation. We then show that we can accurately reproduce these CDF estimates with a GPE, using only a small fraction of the computational cost required by traditional MC simulation. In order to build a GPE that can predict the simulator output from a permeability field consisting of 1000s of values, we use a truncated Karhunen-Loève (K-L) expansion of the permeability field, which enables the application of the Bayesian functional regression approach. We perform a cross-validation exercise to give an insight of the optimization of the experiment design for selected scenarios: we find that it is sufficient to use 100s values for the size of training set and that it is adequate to use as few as 15 K-L components. Our work demonstrates that GPE with truncated K-L expansion can be effectively applied to uncertainty analysis associated with modelling of multiphase flow and transport processes in heterogeneous media.
Randomized central limit theorems: A unified theory.
Eliazar, Iddo; Klafter, Joseph
2010-08-01
The central limit theorems (CLTs) characterize the macroscopic statistical behavior of large ensembles of independent and identically distributed random variables. The CLTs assert that the universal probability laws governing ensembles' aggregate statistics are either Gaussian or Lévy, and that the universal probability laws governing ensembles' extreme statistics are Fréchet, Weibull, or Gumbel. The scaling schemes underlying the CLTs are deterministic-scaling all ensemble components by a common deterministic scale. However, there are "random environment" settings in which the underlying scaling schemes are stochastic-scaling the ensemble components by different random scales. Examples of such settings include Holtsmark's law for gravitational fields and the Stretched Exponential law for relaxation times. In this paper we establish a unified theory of randomized central limit theorems (RCLTs)-in which the deterministic CLT scaling schemes are replaced with stochastic scaling schemes-and present "randomized counterparts" to the classic CLTs. The RCLT scaling schemes are shown to be governed by Poisson processes with power-law statistics, and the RCLTs are shown to universally yield the Lévy, Fréchet, and Weibull probability laws.
A quantum extended Kalman filter
NASA Astrophysics Data System (ADS)
Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.
2017-06-01
In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements.
Single molecular biology: coming of age in DNA replication.
Liu, Xiao-Jing; Lou, Hui-Qiang
2017-09-20
DNA replication is an essential process of the living organisms. To achieve precise and reliable replication, DNA polymerases play a central role in DNA synthesis. Previous investigations have shown that the average rates of DNA synthesis on the leading and lagging strands in a replisome must be similar to avoid the formation of significant gaps in the nascent strands. The underlying mechanism has been assumed to be coordination between leading- and lagging-strand polymerases. However, Kowalczykowski's lab members recently performed single molecule techniques in E. coli and showed the real-time behavior of a replisome. The leading- and lagging-strand polymerases function stochastically and independently. Furthermore, when a DNA polymerase is paused, the helicase slows down in a self-regulating fail-safe mechanism, akin to a ''dead-man's switch''. Based on the real-time single-molecular observation, the authors propose that leading- and lagging-strand polymerases synthesize DNA stochastically within a Gaussian distribution. Along with the development and application of single-molecule techniques, we will witness a new age of DNA replication and other biological researches.
NASA Astrophysics Data System (ADS)
Ricciardone, Angelo; Tasinato, Gianmassimo
2018-02-01
We develop a scenario of inflation with spontaneously broken time and space diffeomorphisms, with distinctive features for the primordial tensor modes. Inflationary tensor fluctuations are not conserved outside the horizon, and can acquire a mass during the inflationary epoch. They can evade the Higuchi bound around de Sitter space, thanks to interactions with the fields driving expansion. Correspondingly, the primordial stochastic gravitational wave background (SGWB) is characterised by a tuneable scale dependence, and can be detectable at interferometer scales. In this set-up, tensor non-Gaussianity can be parametrically enhanced in the squeezed limit. This induces a coupling between long and short tensor modes, leading to a specific quadrupolar anisotropy in the primordial SGWB spectrum, which can be used to build estimators for tensor non-Gaussianity. We analyse how our inflationary system can be tested with interferometers, also discussing how an interferometer can be sensitive to a primordial anisotropic SGWB.
What distinguishes individual stocks from the index?
NASA Astrophysics Data System (ADS)
Wagner, F.; Milaković, M.; Alfarano, S.
2010-01-01
Stochastic volatility models decompose the time series of financial returns into the product of a volatility factor and an iid noise factor. Assuming a slow dynamic for the volatility factor, we show via nonparametric tests that both the index as well as its individual stocks share a common volatility factor. While the noise component is Gaussian for the index, individual stock returns turn out to require a leptokurtic noise. Thus we propose a two-component model for stocks, given by the sum of Gaussian noise, which reflects market-wide fluctuations, and Laplacian noise, which incorporates firm-specific factors such as firm profitability or growth performance, both of which are known to be Laplacian distributed. In the case of purely Gaussian noise, the chi-squared probability for the density of individual stock returns is typically on the order of 10-20, while it increases to values of O(1) by adding the Laplace component.
Cosmic microwave background bispectrum from primordial magnetic fields on large angular scales.
Seshadri, T R; Subramanian, Kandaswamy
2009-08-21
Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB) even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arises only as a higher-order effect. We propose a novel probe of stochastic primordial magnetic fields that exploits the characteristic CMB non-Gaussianity that they induce. We compute the CMB bispectrum (b(l1l2l3)) induced by such fields on large angular scales. We find a typical value of l1(l1 + 1)l3(l3 + 1)b(l1l2l3) approximately 10(-22), for magnetic fields of strength B0 approximately 3 nG and with a nearly scale invariant magnetic spectrum. Observational limits on the bispectrum allow us to set upper limits on B0 approximately 35 nG.
A new approach for measuring power spectra and reconstructing time series in active galactic nuclei
NASA Astrophysics Data System (ADS)
Li, Yan-Rong; Wang, Jian-Min
2018-05-01
We provide a new approach to measure power spectra and reconstruct time series in active galactic nuclei (AGNs) based on the fact that the Fourier transform of AGN stochastic variations is a series of complex Gaussian random variables. The approach parametrizes a stochastic series in frequency domain and transforms it back to time domain to fit the observed data. The parameters and their uncertainties are derived in a Bayesian framework, which also allows us to compare the relative merits of different power spectral density models. The well-developed fast Fourier transform algorithm together with parallel computation enables an acceptable time complexity for the approach.
Variational Solutions and Random Dynamical Systems to SPDEs Perturbed by Fractional Gaussian Noise
Zeng, Caibin; Yang, Qigui; Cao, Junfei
2014-01-01
This paper deals with the following type of stochastic partial differential equations (SPDEs) perturbed by an infinite dimensional fractional Brownian motion with a suitable volatility coefficient Φ: dX(t) = A(X(t))dt+Φ(t)dB H(t), where A is a nonlinear operator satisfying some monotonicity conditions. Using the variational approach, we prove the existence and uniqueness of variational solutions to such system. Moreover, we prove that this variational solution generates a random dynamical system. The main results are applied to a general type of nonlinear SPDEs and the stochastic generalized p-Laplacian equation. PMID:24574903
Dynamic decomposition of spatiotemporal neural signals
2017-01-01
Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals. PMID:28558039
On modeling animal movements using Brownian motion with measurement error.
Pozdnyakov, Vladimir; Meyer, Thomas; Wang, Yu-Bo; Yan, Jun
2014-02-01
Modeling animal movements with Brownian motion (or more generally by a Gaussian process) has a long tradition in ecological studies. The recent Brownian bridge movement model (BBMM), which incorporates measurement errors, has been quickly adopted by ecologists because of its simplicity and tractability. We discuss some nontrivial properties of the discrete-time stochastic process that results from observing a Brownian motion with added normal noise at discrete times. In particular, we demonstrate that the observed sequence of random variables is not Markov. Consequently the expected occupation time between two successively observed locations does not depend on just those two observations; the whole path must be taken into account. Nonetheless, the exact likelihood function of the observed time series remains tractable; it requires only sparse matrix computations. The likelihood-based estimation procedure is described in detail and compared to the BBMM estimation.
Consentaneous Agent-Based and Stochastic Model of the Financial Markets
Gontis, Vygintas; Kononovicius, Aleksejus
2014-01-01
We are looking for the agent-based treatment of the financial markets considering necessity to build bridges between microscopic, agent based, and macroscopic, phenomenological modeling. The acknowledgment that agent-based modeling framework, which may provide qualitative and quantitative understanding of the financial markets, is very ambiguous emphasizes the exceptional value of well defined analytically tractable agent systems. Herding as one of the behavior peculiarities considered in the behavioral finance is the main property of the agent interactions we deal with in this contribution. Looking for the consentaneous agent-based and macroscopic approach we combine two origins of the noise: exogenous one, related to the information flow, and endogenous one, arising form the complex stochastic dynamics of agents. As a result we propose a three state agent-based herding model of the financial markets. From this agent-based model we derive a set of stochastic differential equations, which describes underlying macroscopic dynamics of agent population and log price in the financial markets. The obtained solution is then subjected to the exogenous noise, which shapes instantaneous return fluctuations. We test both Gaussian and q-Gaussian noise as a source of the short term fluctuations. The resulting model of the return in the financial markets with the same set of parameters reproduces empirical probability and spectral densities of absolute return observed in New York, Warsaw and NASDAQ OMX Vilnius Stock Exchanges. Our result confirms the prevalent idea in behavioral finance that herding interactions may be dominant over agent rationality and contribute towards bubble formation. PMID:25029364
Extended q -Gaussian and q -exponential distributions from gamma random variables
NASA Astrophysics Data System (ADS)
Budini, Adrián A.
2015-05-01
The family of q -Gaussian and q -exponential probability densities fit the statistical behavior of diverse complex self-similar nonequilibrium systems. These distributions, independently of the underlying dynamics, can rigorously be obtained by maximizing Tsallis "nonextensive" entropy under appropriate constraints, as well as from superstatistical models. In this paper we provide an alternative and complementary scheme for deriving these objects. We show that q -Gaussian and q -exponential random variables can always be expressed as a function of two statistically independent gamma random variables with the same scale parameter. Their shape index determines the complexity q parameter. This result also allows us to define an extended family of asymmetric q -Gaussian and modified q -exponential densities, which reduce to the standard ones when the shape parameters are the same. Furthermore, we demonstrate that a simple change of variables always allows relating any of these distributions with a beta stochastic variable. The extended distributions are applied in the statistical description of different complex dynamics such as log-return signals in financial markets and motion of point defects in a fluid flow.
Estimation of High-Dimensional Graphical Models Using Regularized Score Matching
Lin, Lina; Drton, Mathias; Shojaie, Ali
2017-01-01
Graphical models are widely used to model stochastic dependences among large collections of variables. We introduce a new method of estimating undirected conditional independence graphs based on the score matching loss, introduced by Hyvärinen (2005), and subsequently extended in Hyvärinen (2007). The regularized score matching method we propose applies to settings with continuous observations and allows for computationally efficient treatment of possibly non-Gaussian exponential family models. In the well-explored Gaussian setting, regularized score matching avoids issues of asymmetry that arise when applying the technique of neighborhood selection, and compared to existing methods that directly yield symmetric estimates, the score matching approach has the advantage that the considered loss is quadratic and gives piecewise linear solution paths under ℓ1 regularization. Under suitable irrepresentability conditions, we show that ℓ1-regularized score matching is consistent for graph estimation in sparse high-dimensional settings. Through numerical experiments and an application to RNAseq data, we confirm that regularized score matching achieves state-of-the-art performance in the Gaussian case and provides a valuable tool for computationally efficient estimation in non-Gaussian graphical models. PMID:28638498
Predictions of Experimentally Observed Stochastic Ground Vibrations Induced by Blasting
Kostić, Srđan; Perc, Matjaž; Vasović, Nebojša; Trajković, Slobodan
2013-01-01
In the present paper, we investigate the blast induced ground motion recorded at the limestone quarry “Suva Vrela” near Kosjerić, which is located in the western part of Serbia. We examine the recorded signals by means of surrogate data methods and a determinism test, in order to determine whether the recorded ground velocity is stochastic or deterministic in nature. Longitudinal, transversal and the vertical ground motion component are analyzed at three monitoring points that are located at different distances from the blasting source. The analysis reveals that the recordings belong to a class of stationary linear stochastic processes with Gaussian inputs, which could be distorted by a monotonic, instantaneous, time-independent nonlinear function. Low determinism factors obtained with the determinism test further confirm the stochastic nature of the recordings. Guided by the outcome of time series analysis, we propose an improved prediction model for the peak particle velocity based on a neural network. We show that, while conventional predictors fail to provide acceptable prediction accuracy, the neural network model with four main blast parameters as input, namely total charge, maximum charge per delay, distance from the blasting source to the measuring point, and hole depth, delivers significantly more accurate predictions that may be applicable on site. We also perform a sensitivity analysis, which reveals that the distance from the blasting source has the strongest influence on the final value of the peak particle velocity. This is in full agreement with previous observations and theory, thus additionally validating our methodology and main conclusions. PMID:24358140
Mode entanglement of Gaussian fermionic states
NASA Astrophysics Data System (ADS)
Spee, C.; Schwaiger, K.; Giedke, G.; Kraus, B.
2018-04-01
We investigate the entanglement of n -mode n -partite Gaussian fermionic states (GFS). First, we identify a reasonable definition of separability for GFS and derive a standard form for mixed states, to which any state can be mapped via Gaussian local unitaries (GLU). As the standard form is unique, two GFS are equivalent under GLU if and only if their standard forms coincide. Then, we investigate the important class of local operations assisted by classical communication (LOCC). These are central in entanglement theory as they allow one to partially order the entanglement contained in states. We show, however, that there are no nontrivial Gaussian LOCC (GLOCC) among pure n -partite (fully entangled) states. That is, any such GLOCC transformation can also be accomplished via GLU. To obtain further insight into the entanglement properties of such GFS, we investigate the richer class of Gaussian stochastic local operations assisted by classical communication (SLOCC). We characterize Gaussian SLOCC classes of pure n -mode n -partite states and derive them explicitly for few-mode states. Furthermore, we consider certain fermionic LOCC and show how to identify the maximally entangled set of pure n -mode n -partite GFS, i.e., the minimal set of states having the property that any other state can be obtained from one state inside this set via fermionic LOCC. We generalize these findings also to the pure m -mode n -partite (for m >n ) case.
A new model to predict weak-lensing peak counts. II. Parameter constraint strategies
NASA Astrophysics Data System (ADS)
Lin, Chieh-An; Kilbinger, Martin
2015-11-01
Context. Peak counts have been shown to be an excellent tool for extracting the non-Gaussian part of the weak lensing signal. Recently, we developed a fast stochastic forward model to predict weak-lensing peak counts. Our model is able to reconstruct the underlying distribution of observables for analysis. Aims: In this work, we explore and compare various strategies for constraining a parameter using our model, focusing on the matter density Ωm and the density fluctuation amplitude σ8. Methods: First, we examine the impact from the cosmological dependency of covariances (CDC). Second, we perform the analysis with the copula likelihood, a technique that makes a weaker assumption than does the Gaussian likelihood. Third, direct, non-analytic parameter estimations are applied using the full information of the distribution. Fourth, we obtain constraints with approximate Bayesian computation (ABC), an efficient, robust, and likelihood-free algorithm based on accept-reject sampling. Results: We find that neglecting the CDC effect enlarges parameter contours by 22% and that the covariance-varying copula likelihood is a very good approximation to the true likelihood. The direct techniques work well in spite of noisier contours. Concerning ABC, the iterative process converges quickly to a posterior distribution that is in excellent agreement with results from our other analyses. The time cost for ABC is reduced by two orders of magnitude. Conclusions: The stochastic nature of our weak-lensing peak count model allows us to use various techniques that approach the true underlying probability distribution of observables, without making simplifying assumptions. Our work can be generalized to other observables where forward simulations provide samples of the underlying distribution.
Power Spectrum of a Noisy System Close to a Heteroclinic Orbit
NASA Astrophysics Data System (ADS)
Giner-Baldó, Jordi; Thomas, Peter J.; Lindner, Benjamin
2017-07-01
We consider a two-dimensional dynamical system that possesses a heteroclinic orbit connecting four saddle points. This system is not able to show self-sustained oscillations on its own. If endowed with white Gaussian noise it displays stochastic oscillations, the frequency and quality factor of which are controlled by the noise intensity. This stochastic oscillation of a nonlinear system with noise is conveniently characterized by the power spectrum of suitable observables. In this paper we explore different analytical and semianalytical ways to compute such power spectra. Besides a number of explicit expressions for the power spectrum, we find scaling relations for the frequency, spectral width, and quality factor of the stochastic heteroclinic oscillator in the limit of weak noise. In particular, the quality factor shows a slow logarithmic increase with decreasing noise of the form Q˜ [ln (1/D)]^2. Our results are compared to numerical simulations of the respective Langevin equations.
Diffusion of test particles in stochastic magnetic fields for small Kubo numbers.
Neuer, Marcus; Spatschek, Karl H
2006-02-01
Motion of charged particles in a collisional plasma with stochastic magnetic field lines is investigated on the basis of the so-called A-Langevin equation. Compared to the previously used A-Langevin model, here finite Larmor radius effects are taken into account. The A-Langevin equation is solved under the assumption that the Lagrangian correlation function for the magnetic field fluctuations is related to the Eulerian correlation function (in Gaussian form) via the Corrsin approximation. The latter is justified for small Kubo numbers. The velocity correlation function, being averaged with respect to the stochastic variables including collisions, leads to an implicit differential equation for the mean square displacement. From the latter, different transport regimes, including the well-known Rechester-Rosenbluth diffusion coefficient, are derived. Finite Larmor radius contributions show a decrease of the diffusion coefficient compared to the guiding center limit. The case of small (or vanishing) mean fields is also discussed.
Stochastic resonance in underdamped periodic potential systems with alpha stable Lévy noise
NASA Astrophysics Data System (ADS)
Liu, Ruo-Nan; Kang, Yan-Mei
2018-06-01
In this paper, we investigate the effect of alpha stable Lévy noise with alpha stability index α (0 < α ≤ 2) on stochastic resonance (SR) in underdamped periodic potential systems by the non-perturbative expansion moment method and stochastic simulation. Using the spectral amplification factor as a quantifying index, we find that SR can occur in both sinusoidal potentials and ratchet potentials when α is close to 2, while the resonant effect becomes weaker as the stability index decreases. By means of massive numerical statistics, we ascribe this trend to the typical jumps of non-Gaussian Lévy noise (0 < α < 2), which play a destructive role on the periodicity of the long time mean response. We also disclose that the skewness parameter of Lévy noise has a more notable impact on the resonant effect of the asymmetric ratchet potential than that of the symmetric sinusoidal potential because of symmetry breaking.
Diffusion in randomly perturbed dissipative dynamics
NASA Astrophysics Data System (ADS)
Rodrigues, Christian S.; Chechkin, Aleksei V.; de Moura, Alessandro P. S.; Grebogi, Celso; Klages, Rainer
2014-11-01
Dynamical systems having many coexisting attractors present interesting properties from both fundamental theoretical and modelling points of view. When such dynamics is under bounded random perturbations, the basins of attraction are no longer invariant and there is the possibility of transport among them. Here we introduce a basic theoretical setting which enables us to study this hopping process from the perspective of anomalous transport using the concept of a random dynamical system with holes. We apply it to a simple model by investigating the role of hyperbolicity for the transport among basins. We show numerically that our system exhibits non-Gaussian position distributions, power-law escape times, and subdiffusion. Our simulation results are reproduced consistently from stochastic continuous time random walk theory.
NASA Astrophysics Data System (ADS)
Walter, Christian
2015-03-01
The following sections are included: * Introduction * The Noah and Joseph effects and the non-Gaussian and non-Brownian issues of the financial theory * The first model of Mandelbrot (1962): α-stable motion with paretian tails * The second model of Mandelbrot (1965): fractional brownian motion with aperiodic cycles * The third model of Mandelbrot (1967): time changed Brownian motion with stochastic clock * Appendix: a tale of fat tails * Bibliography
Stochastic Analysis for Navigation of Autonomous Platforms Using Range Finders.
1987-08-01
34) where T oi2 = E[vivi] ( 35 ) and T _j2 = E[ujuj] (36) Choice of An Approximating Function In this report, we are interested in obtaining smoothed...1. Gaussian curvature: The mean curvature of a surface at (tq) is defined as: (0.5) ZsM (Sn) (45) Noting in Euler’s theorem that the sum of two
Phase space methods for Majorana fermions
NASA Astrophysics Data System (ADS)
Rushin Joseph, Ria; Rosales-Zárate, Laura E. C.; Drummond, Peter D.
2018-06-01
Fermionic phase space representations are a promising method for studying correlated fermion systems. The fermionic Q-function and P-function have been defined using Gaussian operators of fermion annihilation and creation operators. The resulting phase-space of covariance matrices belongs to the symmetry class D, one of the non-standard symmetry classes. This was originally proposed to study mesoscopic normal-metal-superconducting hybrid structures, which is the type of structure that has led to recent experimental observations of Majorana fermions. Under a unitary transformation, it is possible to express these Gaussian operators using real anti-symmetric matrices and Majorana operators, which are much simpler mathematical objects. We derive differential identities involving Majorana fermion operators and an antisymmetric matrix which are relevant to the derivation of the corresponding Fokker–Planck equations on symmetric space. These enable stochastic simulations either in real or imaginary time. This formalism has direct relevance to the study of fermionic systems in which there are Majorana type excitations, and is an alternative to using expansions involving conventional Fermi operators. The approach is illustrated by showing how a linear coupled Hamiltonian as used to study topological excitations can be transformed to Fokker–Planck and stochastic equation form, including dissipation through particle losses.
Ergodicity of the Stochastic Nosé-Hoover Heat Bath
NASA Astrophysics Data System (ADS)
Wei Chung Lo,; Baowen Li,
2010-07-01
We numerically study the ergodicity of the stochastic Nosé-Hoover heat bath whose formalism is based on the Markovian approximation for the Nosé-Hoover equation [J. Phys. Soc. Jpn. 77 (2008) 103001]. The approximation leads to a Langevin-like equation driven by a fluctuating dissipative force and multiplicative Gaussian white noise. The steady state solution of the associated Fokker-Planck equation is the canonical distribution. We investigate the dynamics of this method for the case of (i) free particle, (ii) nonlinear oscillators and (iii) lattice chains. We derive the Fokker-Planck equation for the free particle and present approximate analytical solution for the stationary distribution in the context of the Markovian approximation. Numerical simulation results for nonlinear oscillators show that this method results in a Gaussian distribution for the particles velocity. We also employ the method as heat baths to study nonequilibrium heat flow in one-dimensional Fermi-Pasta-Ulam (FPU-β) and Frenkel-Kontorova (FK) lattices. The establishment of well-defined temperature profiles are observed only when the lattice size is large. Our results provide numerical justification for such Markovian approximation for classical single- and many-body systems.
Quantum diffusion during inflation and primordial black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattison, Chris; Assadullahi, Hooshyar; Wands, David
We calculate the full probability density function (PDF) of inflationary curvature perturbations, even in the presence of large quantum backreaction. Making use of the stochastic-δ N formalism, two complementary methods are developed, one based on solving an ordinary differential equation for the characteristic function of the PDF, and the other based on solving a heat equation for the PDF directly. In the classical limit where quantum diffusion is small, we develop an expansion scheme that not only recovers the standard Gaussian PDF at leading order, but also allows us to calculate the first non-Gaussian corrections to the usual result. Inmore » the opposite limit where quantum diffusion is large, we find that the PDF is given by an elliptic theta function, which is fully characterised by the ratio between the squared width and height (in Planck mass units) of the region where stochastic effects dominate. We then apply these results to the calculation of the mass fraction of primordial black holes from inflation, and show that no more than ∼ 1 e -fold can be spent in regions of the potential dominated by quantum diffusion. We explain how this requirement constrains inflationary potentials with two examples.« less
Quantum diffusion during inflation and primordial black holes
NASA Astrophysics Data System (ADS)
Pattison, Chris; Vennin, Vincent; Assadullahi, Hooshyar; Wands, David
2017-10-01
We calculate the full probability density function (PDF) of inflationary curvature perturbations, even in the presence of large quantum backreaction. Making use of the stochastic-δ N formalism, two complementary methods are developed, one based on solving an ordinary differential equation for the characteristic function of the PDF, and the other based on solving a heat equation for the PDF directly. In the classical limit where quantum diffusion is small, we develop an expansion scheme that not only recovers the standard Gaussian PDF at leading order, but also allows us to calculate the first non-Gaussian corrections to the usual result. In the opposite limit where quantum diffusion is large, we find that the PDF is given by an elliptic theta function, which is fully characterised by the ratio between the squared width and height (in Planck mass units) of the region where stochastic effects dominate. We then apply these results to the calculation of the mass fraction of primordial black holes from inflation, and show that no more than ~ 1 e-fold can be spent in regions of the potential dominated by quantum diffusion. We explain how this requirement constrains inflationary potentials with two examples.
NASA Technical Reports Server (NTRS)
Jacobson, R. A.
1975-01-01
Difficulties arise in guiding a solar electric propulsion spacecraft due to nongravitational accelerations caused by random fluctuations in the magnitude and direction of the thrust vector. These difficulties may be handled by using a low thrust guidance law based on the linear-quadratic-Gaussian problem of stochastic control theory with a minimum terminal miss performance criterion. Explicit constraints are imposed on the variances of the control parameters, and an algorithm based on the Hilbert space extension of a parameter optimization method is presented for calculation of gains in the guidance law. The terminal navigation of a 1980 flyby mission to the comet Encke is used as an example.
Discrete-time state estimation for stochastic polynomial systems over polynomial observations
NASA Astrophysics Data System (ADS)
Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.
2018-07-01
This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.
Supercomputer optimizations for stochastic optimal control applications
NASA Technical Reports Server (NTRS)
Chung, Siu-Leung; Hanson, Floyd B.; Xu, Huihuang
1991-01-01
Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations.
Tsallis non-extensive statistics and solar wind plasma complexity
NASA Astrophysics Data System (ADS)
Pavlos, G. P.; Iliopoulos, A. C.; Zastenker, G. N.; Zelenyi, L. M.; Karakatsanis, L. P.; Riazantseva, M. O.; Xenakis, M. N.; Pavlos, E. G.
2015-03-01
This article presents novel results revealing non-equilibrium phase transition processes in the solar wind plasma during a strong shock event, which took place on 26th September 2011. Solar wind plasma is a typical case of stochastic spatiotemporal distribution of physical state variables such as force fields (B → , E →) and matter fields (particle and current densities or bulk plasma distributions). This study shows clearly the non-extensive and non-Gaussian character of the solar wind plasma and the existence of multi-scale strong correlations from the microscopic to the macroscopic level. It also underlines the inefficiency of classical magneto-hydro-dynamic (MHD) or plasma statistical theories, based on the classical central limit theorem (CLT), to explain the complexity of the solar wind dynamics, since these theories include smooth and differentiable spatial-temporal functions (MHD theory) or Gaussian statistics (Boltzmann-Maxwell statistical mechanics). On the contrary, the results of this study indicate the presence of non-Gaussian non-extensive statistics with heavy tails probability distribution functions, which are related to the q-extension of CLT. Finally, the results of this study can be understood in the framework of modern theoretical concepts such as non-extensive statistical mechanics (Tsallis, 2009), fractal topology (Zelenyi and Milovanov, 2004), turbulence theory (Frisch, 1996), strange dynamics (Zaslavsky, 2002), percolation theory (Milovanov, 1997), anomalous diffusion theory and anomalous transport theory (Milovanov, 2001), fractional dynamics (Tarasov, 2013) and non-equilibrium phase transition theory (Chang, 1992).
Adiabatic elimination for systems with inertia driven by compound Poisson colored noise.
Li, Tiejun; Min, Bin; Wang, Zhiming
2014-02-01
We consider the dynamics of systems driven by compound Poisson colored noise in the presence of inertia. We study the limit when the frictional relaxation time and the noise autocorrelation time both tend to zero. We show that the Itô and Marcus stochastic calculuses naturally arise depending on these two time scales, and an extra intermediate type occurs when the two time scales are comparable. This leads to three different limiting regimes which are supported by numerical simulations. Furthermore, we establish that when the resulting compound Poisson process tends to the Wiener process in the frequent jump limit the Itô and Marcus calculuses, respectively, tend to the classical Itô and Stratonovich calculuses for Gaussian white noise, and the crossover type calculus tends to a crossover between the Itô and Stratonovich calculuses. Our results would be very helpful for understanding relevant experiments when jump type noise is involved.
NASA Astrophysics Data System (ADS)
Niedermeier, Dennis; Ervens, Barbara; Clauss, Tina; Voigtländer, Jens; Wex, Heike; Hartmann, Susan; Stratmann, Frank
2014-01-01
In a recent study, the Soccer ball model (SBM) was introduced for modeling and/or parameterizing heterogeneous ice nucleation processes. The model applies classical nucleation theory. It allows for a consistent description of both apparently singular and stochastic ice nucleation behavior, by distributing contact angles over the nucleation sites of a particle population assuming a Gaussian probability density function. The original SBM utilizes the Monte Carlo technique, which hampers its usage in atmospheric models, as fairly time-consuming calculations must be performed to obtain statistically significant results. Thus, we have developed a simplified and computationally more efficient version of the SBM. We successfully used the new SBM to parameterize experimental nucleation data of, e.g., bacterial ice nucleation. Both SBMs give identical results; however, the new model is computationally less expensive as confirmed by cloud parcel simulations. Therefore, it is a suitable tool for describing heterogeneous ice nucleation processes in atmospheric models.
A new estimator method for GARCH models
NASA Astrophysics Data System (ADS)
Onody, R. N.; Favaro, G. M.; Cazaroto, E. R.
2007-06-01
The GARCH (p, q) model is a very interesting stochastic process with widespread applications and a central role in empirical finance. The Markovian GARCH (1, 1) model has only 3 control parameters and a much discussed question is how to estimate them when a series of some financial asset is given. Besides the maximum likelihood estimator technique, there is another method which uses the variance, the kurtosis and the autocorrelation time to determine them. We propose here to use the standardized 6th moment. The set of parameters obtained in this way produces a very good probability density function and a much better time autocorrelation function. This is true for both studied indexes: NYSE Composite and FTSE 100. The probability of return to the origin is investigated at different time horizons for both Gaussian and Laplacian GARCH models. In spite of the fact that these models show almost identical performances with respect to the final probability density function and to the time autocorrelation function, their scaling properties are, however, very different. The Laplacian GARCH model gives a better scaling exponent for the NYSE time series, whereas the Gaussian dynamics fits better the FTSE scaling exponent.
Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series
NASA Astrophysics Data System (ADS)
Foreman-Mackey, Daniel; Agol, Eric; Ambikasaran, Sivaram; Angus, Ruth
2017-12-01
The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators—providing a physical motivation for and interpretation of this choice—but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable GP methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.
New Steering Strategies for the USNO Master Clocks
1999-12-01
1992. P. Koppang and R. Leland , “Linear quadratic stochastic control of atomic hydrogen masers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr...vol. 46, pp. 517-522, May 1999. P. Koppang and R. Leland , “Steering of frequency standards by the use of linear quadratic gaussian control theory...3lst Annual Precise Time and Time Interval (PTTI) Meeting NEWSTEERINGSTRATEGIESFOR THEUSNOMASTERCLOCKS Paul A. Koppang Datum, Inc. Beverly, MA
Stochastic Forcing for Ocean Uncertainty Prediction
2013-09-30
using the desired dynamics and the fitting of that velocity field to the bathymetry, coasts and discretization for the desired simulation. New algorithms...numerical bias is removed. Pdfs of the forecast errors are shown to capture and evolve non- Gaussian statistics. Comparing the Kullback - Leibler ...advances in collaborative sea exercises of opportunity vi) Strengthen existing and initiate new collaborations with NRL, using and leveraging the MIT
Stochastic Ocean Eddy Perturbations in a Coupled General Circulation Model.
NASA Astrophysics Data System (ADS)
Howe, N.; Williams, P. D.; Gregory, J. M.; Smith, R. S.
2014-12-01
High-resolution ocean models, which are eddy permitting and resolving, require large computing resources to produce centuries worth of data. Also, some previous studies have suggested that increasing resolution does not necessarily solve the problem of unresolved scales, because it simply introduces a new set of unresolved scales. Applying stochastic parameterisations to ocean models is one solution that is expected to improve the representation of small-scale (eddy) effects without increasing run-time. Stochastic parameterisation has been shown to have an impact in atmosphere-only models and idealised ocean models, but has not previously been studied in ocean general circulation models. Here we apply simple stochastic perturbations to the ocean temperature and salinity tendencies in the low-resolution coupled climate model, FAMOUS. The stochastic perturbations are implemented according to T(t) = T(t-1) + (ΔT(t) + ξ(t)), where T is temperature or salinity, ΔT is the corresponding deterministic increment in one time step, and ξ(t) is Gaussian noise. We use high-resolution HiGEM data coarse-grained to the FAMOUS grid to provide information about the magnitude and spatio-temporal correlation structure of the noise to be added to the lower resolution model. Here we present results of adding white and red noise, showing the impacts of an additive stochastic perturbation on mean climate state and variability in an AOGCM.
Stochastic analysis of concentration field in a wake region.
Yassin, Mohamed F; Elmi, Abdirashid A
2011-02-01
Identifying geographic locations in urban areas from which air pollutants enter the atmosphere is one of the most important information needed to develop effective mitigation strategies for pollution control. Stochastic analysis is a powerful tool that can be used for estimating concentration fluctuation in plume dispersion in a wake region around buildings. Only few studies have been devoted to evaluate applications of stochastic analysis to pollutant dispersion in an urban area. This study was designed to investigate the concentration fields in the wake region using obstacle model such as an isolated building model. We measured concentration fluctuations at centerline of various downwind distances from the source, and different heights with the frequency of 1 KHz. Concentration fields were analyzed stochastically, using the probability density functions (pdf). Stochastic analysis was performed on the concentration fluctuation and the pdf of mean concentration, fluctuation intensity, and crosswind mean-plume dispersion. The pdf of the concentration fluctuation data have shown a significant non-Gaussian behavior. The lognormal distribution appeared to be the best fit to the shape of concentration measured in the boundary layer. We observed that the plume dispersion pdf near the source was shorter than the plume dispersion far from the source. Our findings suggest that the use of stochastic technique in complex building environment can be a powerful tool to help understand the distribution and location of air pollutants.
NASA Astrophysics Data System (ADS)
Wang, C.; Rubin, Y.
2014-12-01
Spatial distribution of important geotechnical parameter named compression modulus Es contributes considerably to the understanding of the underlying geological processes and the adequate assessment of the Es mechanics effects for differential settlement of large continuous structure foundation. These analyses should be derived using an assimilating approach that combines in-situ static cone penetration test (CPT) with borehole experiments. To achieve such a task, the Es distribution of stratum of silty clay in region A of China Expo Center (Shanghai) is studied using the Bayesian-maximum entropy method. This method integrates rigorously and efficiently multi-precision of different geotechnical investigations and sources of uncertainty. Single CPT samplings were modeled as a rational probability density curve by maximum entropy theory. Spatial prior multivariate probability density function (PDF) and likelihood PDF of the CPT positions were built by borehole experiments and the potential value of the prediction point, then, preceding numerical integration on the CPT probability density curves, the posterior probability density curve of the prediction point would be calculated by the Bayesian reverse interpolation framework. The results were compared between Gaussian Sequential Stochastic Simulation and Bayesian methods. The differences were also discussed between single CPT samplings of normal distribution and simulated probability density curve based on maximum entropy theory. It is shown that the study of Es spatial distributions can be improved by properly incorporating CPT sampling variation into interpolation process, whereas more informative estimations are generated by considering CPT Uncertainty for the estimation points. Calculation illustrates the significance of stochastic Es characterization in a stratum, and identifies limitations associated with inadequate geostatistical interpolation techniques. This characterization results will provide a multi-precision information assimilation method of other geotechnical parameters.
Prescription-induced jump distributions in multiplicative Poisson processes.
Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos
2011-06-01
Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.
Prescription-induced jump distributions in multiplicative Poisson processes
NASA Astrophysics Data System (ADS)
Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos
2011-06-01
Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.
Lévy targeting and the principle of detailed balance.
Garbaczewski, Piotr; Stephanovich, Vladimir
2011-07-01
We investigate confining mechanisms for Lévy flights under premises of the principle of detailed balance. In this case, the master equation of the jump-type process admits a transformation to the Lévy-Schrödinger semigroup dynamics akin to a mapping of the Fokker-Planck equation into the generalized diffusion equation. This sets a correspondence between above two stochastic dynamical systems, within which we address a (stochastic) targeting problem for an arbitrary stability index μ ε (0,2) of symmetric Lévy drivers. Namely, given a probability density function, specify the semigroup potential, and thence the jump-type dynamics for which this PDF is actually a long-time asymptotic (target) solution of the master equation. Here, an asymptotic behavior of different μ-motion scenarios ceases to depend on μ. That is exemplified by considering Gaussian and Cauchy family target PDFs. A complementary problem of the reverse engineering is analyzed: given a priori a semigroup potential, quantify how sensitive upon the choice of the μ driver is an asymptotic behavior of solutions of the associated master equation and thus an invariant PDF itself. This task is accomplished for so-called μ family of Lévy oscillators.
Divergence instability of pipes conveying fluid with uncertain flow velocity
NASA Astrophysics Data System (ADS)
Rahmati, Mehdi; Mirdamadi, Hamid Reza; Goli, Sareh
2018-02-01
This article deals with investigation of probabilistic stability of pipes conveying fluid with stochastic flow velocity in time domain. As a matter of fact, this study has focused on the randomness effects of flow velocity on stability of pipes conveying fluid while most of research efforts have only focused on the influences of deterministic parameters on the system stability. The Euler-Bernoulli beam and plug flow theory are employed to model pipe structure and internal flow, respectively. In addition, flow velocity is considered as a stationary random process with Gaussian distribution. Afterwards, the stochastic averaging method and Routh's stability criterion are used so as to investigate the stability conditions of system. Consequently, the effects of boundary conditions, viscoelastic damping, mass ratio, and elastic foundation on the stability regions are discussed. Results delineate that the critical mean flow velocity decreases by increasing power spectral density (PSD) of the random velocity. Moreover, by increasing PSD from zero, the type effects of boundary condition and presence of elastic foundation are diminished, while the influences of viscoelastic damping and mass ratio could increase. Finally, to have a more applicable study, regression analysis is utilized to develop design equations and facilitate further analyses for design purposes.
Posterior consistency in conditional distribution estimation
Pati, Debdeep; Dunson, David B.; Tokdar, Surya T.
2014-01-01
A wide variety of priors have been proposed for nonparametric Bayesian estimation of conditional distributions, and there is a clear need for theorems providing conditions on the prior for large support, as well as posterior consistency. Estimation of an uncountable collection of conditional distributions across different regions of the predictor space is a challenging problem, which differs in some important ways from density and mean regression estimation problems. Defining various topologies on the space of conditional distributions, we provide sufficient conditions for posterior consistency focusing on a broad class of priors formulated as predictor-dependent mixtures of Gaussian kernels. This theory is illustrated by showing that the conditions are satisfied for a class of generalized stick-breaking process mixtures in which the stick-breaking lengths are monotone, differentiable functions of a continuous stochastic process. We also provide a set of sufficient conditions for the case where stick-breaking lengths are predictor independent, such as those arising from a fixed Dirichlet process prior. PMID:25067858
The interplay of intrinsic and extrinsic bounded noises in biomolecular networks.
Caravagna, Giulio; Mauri, Giancarlo; d'Onofrio, Alberto
2013-01-01
After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii) a model of enzymatic futile cycle and (iii) a genetic toggle switch. In (ii) and (iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.
Effects of laser phase fluctuations on squeezing in intracavity second-harmonic generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, T. A. B.; Anderson, T. B.; Walls, D. F.
1989-08-01
Excellent squeezing in intracavity second-harmonic generation has been predicted to occur on cavity resonance in the output intensity fluctuations. Cavity detunings cause laser phase noise to couple in and reduce the squeezing observable. Here we consider the effects of laser phase fluctuations on the output-squeezing spectrum. Laser phase noise is modeled as an Ornstein-Uhlenbeck (colored-noise) Gaussian stochastic process and its effects are compared with the white-noise limit. This indicates that the white-noise model may qualitatively overestimate the deleterious effects of laser fluctuations on sideband squeezing. We compare our results with the recently reported experiment of Pereira /ital et/ /ital al/.more » (Phys. Rev. A 38, 4931 (1988)) and present an analysis of the empty cavity for comparison.« less
Zero-crossing statistics for non-Markovian time series.
Nyberg, Markus; Lizana, Ludvig; Ambjörnsson, Tobias
2018-03-01
In applications spanning from image analysis and speech recognition to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging, and therefore few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero crossings in a fixed time interval of a zero-mean Gaussian stationary process. In this study we use the so-called independent interval approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agree well with simulations for the non-Markovian autoregressive model.
The analytical design of spectral measurements for multispectral remote sensor systems
NASA Technical Reports Server (NTRS)
Wiersma, D. J.; Landgrebe, D. A. (Principal Investigator)
1979-01-01
The author has identified the following significant results. In order to choose a design which will be optimal for the largest class of remote sensing problems, a method was developed which attempted to represent the spectral response function from a scene as accurately as possible. The performance of the overall recognition system was studied relative to the accuracy of the spectral representation. The spectral representation was only one of a set of five interrelated parameter categories which also included the spatial representation parameter, the signal to noise ratio, ancillary data, and information classes. The spectral response functions observed from a stratum were modeled as a stochastic process with a Gaussian probability measure. The criterion for spectral representation was defined by the minimum expected mean-square error.
Fractional Brownian motion with a reflecting wall
NASA Astrophysics Data System (ADS)
Wada, Alexander H. O.; Vojta, Thomas
2018-02-01
Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior
Zero-crossing statistics for non-Markovian time series
NASA Astrophysics Data System (ADS)
Nyberg, Markus; Lizana, Ludvig; Ambjörnsson, Tobias
2018-03-01
In applications spanning from image analysis and speech recognition to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging, and therefore few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero crossings in a fixed time interval of a zero-mean Gaussian stationary process. In this study we use the so-called independent interval approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agree well with simulations for the non-Markovian autoregressive model.
Chen, Nan; Majda, Andrew J
2017-12-05
Solving the Fokker-Planck equation for high-dimensional complex dynamical systems is an important issue. Recently, the authors developed efficient statistically accurate algorithms for solving the Fokker-Planck equations associated with high-dimensional nonlinear turbulent dynamical systems with conditional Gaussian structures, which contain many strong non-Gaussian features such as intermittency and fat-tailed probability density functions (PDFs). The algorithms involve a hybrid strategy with a small number of samples [Formula: see text], where a conditional Gaussian mixture in a high-dimensional subspace via an extremely efficient parametric method is combined with a judicious Gaussian kernel density estimation in the remaining low-dimensional subspace. In this article, two effective strategies are developed and incorporated into these algorithms. The first strategy involves a judicious block decomposition of the conditional covariance matrix such that the evolutions of different blocks have no interactions, which allows an extremely efficient parallel computation due to the small size of each individual block. The second strategy exploits statistical symmetry for a further reduction of [Formula: see text] The resulting algorithms can efficiently solve the Fokker-Planck equation with strongly non-Gaussian PDFs in much higher dimensions even with orders in the millions and thus beat the curse of dimension. The algorithms are applied to a [Formula: see text]-dimensional stochastic coupled FitzHugh-Nagumo model for excitable media. An accurate recovery of both the transient and equilibrium non-Gaussian PDFs requires only [Formula: see text] samples! In addition, the block decomposition facilitates the algorithms to efficiently capture the distinct non-Gaussian features at different locations in a [Formula: see text]-dimensional two-layer inhomogeneous Lorenz 96 model, using only [Formula: see text] samples. Copyright © 2017 the Author(s). Published by PNAS.
Efficiency of single-particle engines
NASA Astrophysics Data System (ADS)
Proesmans, Karel; Driesen, Cedric; Cleuren, Bart; Van den Broeck, Christian
2015-09-01
We study the efficiency of a single-particle Szilard and Carnot engine. Within a first order correction to the quasistatic limit, the work distribution is found to be Gaussian and the correction factor to average work and efficiency only depends on the piston speed. The stochastic efficiency is studied for both models and the recent findings on efficiency fluctuations are confirmed numerically. Special features are revealed in the zero-temperature limit.
Adaptive Bayes classifiers for remotely sensed data
NASA Technical Reports Server (NTRS)
Raulston, H. S.; Pace, M. O.; Gonzalez, R. C.
1975-01-01
An algorithm is developed for a learning, adaptive, statistical pattern classifier for remotely sensed data. The estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest, and (2) a projection of the parameters in time and space. The results reported are for Gaussian data in which the mean vector of each class may vary with time or position after the classifier is trained.
High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics
Carvalho, Carlos M.; Chang, Jeffrey; Lucas, Joseph E.; Nevins, Joseph R.; Wang, Quanli; West, Mike
2010-01-01
We describe studies in molecular profiling and biological pathway analysis that use sparse latent factor and regression models for microarray gene expression data. We discuss breast cancer applications and key aspects of the modeling and computational methodology. Our case studies aim to investigate and characterize heterogeneity of structure related to specific oncogenic pathways, as well as links between aggregate patterns in gene expression profiles and clinical biomarkers. Based on the metaphor of statistically derived “factors” as representing biological “subpathway” structure, we explore the decomposition of fitted sparse factor models into pathway subcomponents and investigate how these components overlay multiple aspects of known biological activity. Our methodology is based on sparsity modeling of multivariate regression, ANOVA, and latent factor models, as well as a class of models that combines all components. Hierarchical sparsity priors address questions of dimension reduction and multiple comparisons, as well as scalability of the methodology. The models include practically relevant non-Gaussian/nonparametric components for latent structure, underlying often quite complex non-Gaussianity in multivariate expression patterns. Model search and fitting are addressed through stochastic simulation and evolutionary stochastic search methods that are exemplified in the oncogenic pathway studies. Supplementary supporting material provides more details of the applications, as well as examples of the use of freely available software tools for implementing the methodology. PMID:21218139
NASA Astrophysics Data System (ADS)
Gooh Pattader, Partho Sarathi
There are enumerable examples of natural processes which fall in the class of non-equilibrium stochastic dynamics. In the literature it is prescribed that such a process can be described completely using transition probability that satisfy the Fokker Planck equation. The analytical solutions of transition probability density function are difficult to obtain and are available for linear systems along with few first order nonlinear systems. We studied such nonlinear stochastic systems and tried to identify the important parameters associated with the dynamics and energy dissipative mechanism using statistical tools. We present experimental study of macroscopic systems driven away far from equilibrium with an applied bias and external mechanical noise. This includes sliding of small solid object, gliding of a liquid drop or a rolling of a rigid sphere. We demonstrated that the displacement statistics are non-Gaussian at short observation time, but they tend towards a Gaussian behavior at long time scale. We also found that, the drift velocity increases sub-linearly, but the diffusivity increases super-linearly with the strength of the noise. These observations reflect that the underlying non-linear friction controls the stochastic dynamics in each of these cases. We established a new statistical approach to determine the underlying friction law and identified the operating range of linear and nonlinear friction regime. In all these experiments source of the noise and the origin of the energy dissipation mechanism (i.e. friction) are decoupled. Naturally question arises whether the stochastic dynamics of these athermal systems are amenable to Einstein's Fluctuation dissipation theorem which is valid strictly for a closed thermodynamic system. We addressed these issues by comparing Einstein's ratio of Diffusivity and mobility which are measurable quantities in our experimental systems. As all our experimental systems exhibit substantial negative fluctuations of displacement that diminishes with observation time scale, we used another approach of integrated fluctuation theorem to identify athermal temperature of the system by characterizing a persistence time of negative fluctuations in terms of the measurable quantity. Specific experiments have also been designed to study the crossing of a small object over a physical barrier assisted by an external noise and a bias force. These results mimic the classical Arrhenius behavior from which another effective temperature may be deduced. All these studies confer that the nonlinear system does not possess any unique temperature. Detachment of a solid sphere as well as a liquid drop from a structured rubber surface during subcritical motion in presence of external noise was examined in the light of Arrhenius' activated rate equation. Drift velocity of small drops of water-glycerin solution behaves nonlinearly with viscosity which is reminiscence of Kramers' turn over theory of activated rate. In a designed experiment of barrier crossing of liquid drops we satisfactorily verified the Kramers' formalism of activated rate at the low friction limit.
Robust stochastic resonance: Signal detection and adaptation in impulsive noise
NASA Astrophysics Data System (ADS)
Kosko, Bart; Mitaim, Sanya
2001-11-01
Stochastic resonance (SR) occurs when noise improves a system performance measure such as a spectral signal-to-noise ratio or a cross-correlation measure. All SR studies have assumed that the forcing noise has finite variance. Most have further assumed that the noise is Gaussian. We show that SR still occurs for the more general case of impulsive or infinite-variance noise. The SR effect fades as the noise grows more impulsive. We study this fading effect on the family of symmetric α-stable bell curves that includes the Gaussian bell curve as a special case. These bell curves have thicker tails as the parameter α falls from 2 (the Gaussian case) to 1 (the Cauchy case) to even lower values. Thicker tails create more frequent and more violent noise impulses. The main feedback and feedforward models in the SR literature show this fading SR effect for periodic forcing signals when we plot either the signal-to-noise ratio or a signal correlation measure against the dispersion of the α-stable noise. Linear regression shows that an exponential law γopt(α)=cAα describes this relation between the impulsive index α and the SR-optimal noise dispersion γopt. The results show that SR is robust against noise ``outliers.'' So SR may be more widespread in nature than previously believed. Such robustness also favors the use of SR in engineering systems. We further show that an adaptive system can learn the optimal noise dispersion for two standard SR models (the quartic bistable model and the FitzHugh-Nagumo neuron model) for the signal-to-noise ratio performance measure. This also favors practical applications of SR and suggests that evolution may have tuned the noise-sensitive parameters of biological systems.
A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields
Osborn, Sarah; Vassilevski, Panayot S.; Villa, Umberto
2017-10-26
In this paper, we propose an alternative method to generate samples of a spatially correlated random field with applications to large-scale problems for forward propagation of uncertainty. A classical approach for generating these samples is the Karhunen--Loève (KL) decomposition. However, the KL expansion requires solving a dense eigenvalue problem and is therefore computationally infeasible for large-scale problems. Sampling methods based on stochastic partial differential equations provide a highly scalable way to sample Gaussian fields, but the resulting parametrization is mesh dependent. We propose a multilevel decomposition of the stochastic field to allow for scalable, hierarchical sampling based on solving amore » mixed finite element formulation of a stochastic reaction-diffusion equation with a random, white noise source function. Lastly, numerical experiments are presented to demonstrate the scalability of the sampling method as well as numerical results of multilevel Monte Carlo simulations for a subsurface porous media flow application using the proposed sampling method.« less
A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, Sarah; Vassilevski, Panayot S.; Villa, Umberto
In this paper, we propose an alternative method to generate samples of a spatially correlated random field with applications to large-scale problems for forward propagation of uncertainty. A classical approach for generating these samples is the Karhunen--Loève (KL) decomposition. However, the KL expansion requires solving a dense eigenvalue problem and is therefore computationally infeasible for large-scale problems. Sampling methods based on stochastic partial differential equations provide a highly scalable way to sample Gaussian fields, but the resulting parametrization is mesh dependent. We propose a multilevel decomposition of the stochastic field to allow for scalable, hierarchical sampling based on solving amore » mixed finite element formulation of a stochastic reaction-diffusion equation with a random, white noise source function. Lastly, numerical experiments are presented to demonstrate the scalability of the sampling method as well as numerical results of multilevel Monte Carlo simulations for a subsurface porous media flow application using the proposed sampling method.« less
Frank, Steven A.
2010-01-01
We typically observe large-scale outcomes that arise from the interactions of many hidden, small-scale processes. Examples include age of disease onset, rates of amino acid substitutions, and composition of ecological communities. The macroscopic patterns in each problem often vary around a characteristic shape that can be generated by neutral processes. A neutral generative model assumes that each microscopic process follows unbiased or random stochastic fluctuations: random connections of network nodes; amino acid substitutions with no effect on fitness; species that arise or disappear from communities randomly. These neutral generative models often match common patterns of nature. In this paper, I present the theoretical background by which we can understand why these neutral generative models are so successful. I show where the classic patterns come from, such as the Poisson pattern, the normal or Gaussian pattern, and many others. Each classic pattern was often discovered by a simple neutral generative model. The neutral patterns share a special characteristic: they describe the patterns of nature that follow from simple constraints on information. For example, any aggregation of processes that preserves information only about the mean and variance attracts to the Gaussian pattern; any aggregation that preserves information only about the mean attracts to the exponential pattern; any aggregation that preserves information only about the geometric mean attracts to the power law pattern. I present a simple and consistent informational framework of the common patterns of nature based on the method of maximum entropy. This framework shows that each neutral generative model is a special case that helps to discover a particular set of informational constraints; those informational constraints define a much wider domain of non-neutral generative processes that attract to the same neutral pattern. PMID:19538344
Mean Field Variational Bayesian Data Assimilation
NASA Astrophysics Data System (ADS)
Vrettas, M.; Cornford, D.; Opper, M.
2012-04-01
Current data assimilation schemes propose a range of approximate solutions to the classical data assimilation problem, particularly state estimation. Broadly there are three main active research areas: ensemble Kalman filter methods which rely on statistical linearization of the model evolution equations, particle filters which provide a discrete point representation of the posterior filtering or smoothing distribution and 4DVAR methods which seek the most likely posterior smoothing solution. In this paper we present a recent extension to our variational Bayesian algorithm which seeks the most probably posterior distribution over the states, within the family of non-stationary Gaussian processes. Our original work on variational Bayesian approaches to data assimilation sought the best approximating time varying Gaussian process to the posterior smoothing distribution for stochastic dynamical systems. This approach was based on minimising the Kullback-Leibler divergence between the true posterior over paths, and our Gaussian process approximation. So long as the observation density was sufficiently high to bring the posterior smoothing density close to Gaussian the algorithm proved very effective, on lower dimensional systems. However for higher dimensional systems, the algorithm was computationally very demanding. We have been developing a mean field version of the algorithm which treats the state variables at a given time as being independent in the posterior approximation, but still accounts for their relationships between each other in the mean solution arising from the original dynamical system. In this work we present the new mean field variational Bayesian approach, illustrating its performance on a range of classical data assimilation problems. We discuss the potential and limitations of the new approach. We emphasise that the variational Bayesian approach we adopt, in contrast to other variational approaches, provides a bound on the marginal likelihood of the observations given parameters in the model which also allows inference of parameters such as observation errors, and parameters in the model and model error representation, particularly if this is written as a deterministic form with small additive noise. We stress that our approach can address very long time window and weak constraint settings. However like traditional variational approaches our Bayesian variational method has the benefit of being posed as an optimisation problem. We finish with a sketch of the future directions for our approach.
Bauermeister, Christoph; Schwalger, Tilo; Russell, David F; Neiman, Alexander B; Lindner, Benjamin
2013-01-01
Stochastic signals with pronounced oscillatory components are frequently encountered in neural systems. Input currents to a neuron in the form of stochastic oscillations could be of exogenous origin, e.g. sensory input or synaptic input from a network rhythm. They shape spike firing statistics in a characteristic way, which we explore theoretically in this report. We consider a perfect integrate-and-fire neuron that is stimulated by a constant base current (to drive regular spontaneous firing), along with Gaussian narrow-band noise (a simple example of stochastic oscillations), and a broadband noise. We derive expressions for the nth-order interval distribution, its variance, and the serial correlation coefficients of the interspike intervals (ISIs) and confirm these analytical results by computer simulations. The theory is then applied to experimental data from electroreceptors of paddlefish, which have two distinct types of internal noisy oscillators, one forcing the other. The theory provides an analytical description of their afferent spiking statistics during spontaneous firing, and replicates a pronounced dependence of ISI serial correlation coefficients on the relative frequency of the driving oscillations, and furthermore allows extraction of certain parameters of the intrinsic oscillators embedded in these electroreceptors.
NASA Astrophysics Data System (ADS)
Takaishi, Tetsuya
2018-06-01
The realized stochastic volatility model has been introduced to estimate more accurate volatility by using both daily returns and realized volatility. The main advantage of the model is that no special bias-correction factor for the realized volatility is required a priori. Instead, the model introduces a bias-correction parameter responsible for the bias hidden in realized volatility. We empirically investigate the bias-correction parameter for realized volatilities calculated at various sampling frequencies for six stocks on the Tokyo Stock Exchange, and then show that the dynamic behavior of the bias-correction parameter as a function of sampling frequency is qualitatively similar to that of the Hansen-Lunde bias-correction factor although their values are substantially different. Under the stochastic diffusion assumption of the return dynamics, we investigate the accuracy of estimated volatilities by examining the standardized returns. We find that while the moments of the standardized returns from low-frequency realized volatilities are consistent with the expectation from the Gaussian variables, the deviation from the expectation becomes considerably large at high frequencies. This indicates that the realized stochastic volatility model itself cannot completely remove bias at high frequencies.
Rupture Propagation for Stochastic Fault Models
NASA Astrophysics Data System (ADS)
Favreau, P.; Lavallee, D.; Archuleta, R.
2003-12-01
The inversion of strong motion data of large earhquakes give the spatial distribution of pre-stress on the ruptured faults and it can be partially reproduced by stochastic models, but a fundamental question remains: how rupture propagates, constrained by the presence of spatial heterogeneity? For this purpose we investigate how the underlying random variables, that control the pre-stress spatial variability, condition the propagation of the rupture. Two stochastic models of prestress distributions are considered, respectively based on Cauchy and Gaussian random variables. The parameters of the two stochastic models have values corresponding to the slip distribution of the 1979 Imperial Valley earthquake. We use a finite difference code to simulate the spontaneous propagation of shear rupture on a flat fault in a 3D continuum elastic body. The friction law is the slip dependent friction law. The simulations show that the propagation of the rupture front is more complex, incoherent or snake-like for a prestress distribution based on Cauchy random variables. This may be related to the presence of a higher number of asperities in this case. These simulations suggest that directivity is stronger in the Cauchy scenario, compared to the smoother rupture of the Gauss scenario.
NASA Astrophysics Data System (ADS)
Watkins, Nicholas
2013-04-01
Stochastic modelling is of increasing importance, both specifically in climate science and more broadly across the whole of nonlinear geophysics. Traditionally, the noise components of such models would be spectrally white (delta-correlated) and Gaussian in amplitude, and their variance (first named by Fisher in 1918) would well characterise the likely size of fluctuations. Integration, for example in autoregressive models like AR(1), would redden a noise spectrum, while multiplication in turbulent cascades could greatly increase the range of fluctuation amplitudes, but such processes would still inherit aspects of their finite variance building blocks. In the 60s and 70s, however, Mandelbrot and others [see e.g. Watkins, GRL Frontiers, 2013] began to present evidence in nature for much stronger departures from Gaussianity (via very heavy tailed, infinite variance, distributions) and from white noise (through long range dependence (LRD) in time). He also observed intermittency, defined here as correlations between absolute magnitudes in some time series, in, for example, finance and turbulence. He proposed various models, including self-similar ones for heavy tails and LRD, and multifractal cascades for intermittency. In this presentation we compare contrasting types of model by looking at the "wild" events that they produce. The notion of a "wild" event can be made more precise in many ways, including by its duration in time, peak amplitude, and spatial extent. Our chosen measure will be the "burst", defined as the area of a time series above a fixed threshold. We will compare burst scaling in a self-similar, LRD, heavy tailed model (LFSM, e.g. Watkins et al, PRE, 2009] with our newer results for multifractal random walks [with M. Rypdal and O. Lovsletten], and for the heavy tailed extended version of the FARIMA (1,d,0) process, which combines long range dependence with the high frequency structure familiar from AR(1). We will also discuss the physical meaning of FARIMA and its potential as a modelling tool.
On the nature of persistence in dendrochronologic records with implications for hydrology
Landwehr, J.M.; Matalas, N.C.
1986-01-01
Hydrologic processes are generally held to be persistent and not secularly independent. Impetus for this view was given by Hurst in his work which dealt with properties of the rescaled range of many types of long geophysical records, in particular dendrochronologic records, in addition to hydrologic records. Mandelbrot introduced an infinite memory stationary process, the fractional Gaussian noise process (F), as an explanation for Hurst's observations. This is in contrast to other explanations which have been predicated on the implicit non-stationarity of the process underlying the construction of the records. In this work, we introduce a stationary finite memory process which arises naturally from a physical concept and show that it can accommodate the persistence structures observed for dendrochronological records more successfully than an F or any other of a family of related processes examined herein. Further, some question arises as to the empirical plausibility of an F process. Dendrochronologic records are used because they are widely held to be surrogates for records of average hydrologic phenomena and the length of these records allows one to explore questions of stochastic process structure which cannot be explored with great validity in the case of generally much shorter hydrologic records. ?? 1986.
Assessing hail risk for a building portfolio by generating stochastic events
NASA Astrophysics Data System (ADS)
Nicolet, Pierrick; Choffet, Marc; Demierre, Jonathan; Imhof, Markus; Jaboyedoff, Michel; Nguyen, Liliane; Voumard, Jérémie
2015-04-01
Among the natural hazards affecting buildings, hail is one of the most costly and is nowadays a major concern for building insurance companies. In Switzerland, several costly events were reported these last years, among which the July 2011 event, which cost around 125 million EUR to the Aargauer public insurance company (North-western Switzerland). This study presents the new developments in a stochastic model which aims at evaluating the risk for a building portfolio. Thanks to insurance and meteorological radar data of the 2011 Aargauer event, vulnerability curves are proposed by comparing the damage rate to the radar intensity (i.e. the maximum hailstone size reached during the event, deduced from the radar signal). From these data, vulnerability is defined by a two-step process. The first step defines the probability for a building to be affected (i.e. to claim damages), while the second, if the building is affected, attributes a damage rate to the building from a probability distribution specific to the intensity class. To assess the risk, stochastic events are then generated by summing a set of Gaussian functions with 6 random parameters (X and Y location, maximum hailstone size, standard deviation, eccentricity and orientation). The location of these functions is constrained by a general event shape and by the position of the previously defined functions of the same event. For each generated event, the total cost is calculated in order to obtain a distribution of event costs. The general events parameters (shape, size, …) as well as the distribution of the Gaussian parameters are inferred from two radar intensity maps, namely the one of the aforementioned event, and a second from an event which occurred in 2009. After a large number of simulations, the hailstone size distribution obtained in different regions is compared to the distribution inferred from pre-existing hazard maps, built from a larger set of radar data. The simulation parameters are then adjusted by trial and error, in order to get the best reproduction of the expected distributions. The value of the mean annual risk obtained using the model is also compared to the mean annual risk calculated using directly the hazard maps. According to the first results, the return period of an event inducing a total damage cost equal or greater than 125 million EUR for the Aargauer insurance company would be of around 10 to 40 years.
Gaussian Random Fields Methods for Fork-Join Network with Synchronization Constraints
2014-12-22
substantial efforts were dedicated to the study of the max-plus recursions [21, 3, 12]. More recently, Atar et al. [2] have studied a fork-join...feedback and NES, Atar et al. [2] show that a dynamic priority discipline achieves throughput optimal- ity asymptotically in the conventional heavy...2011) Patient flow in hospitals: a data-based queueing-science perspective. Submitted to Stochastic Systems, 20. [2] R. Atar , A. Mandelbaum and A
Müller, Eike H.; Scheichl, Rob; Shardlow, Tony
2015-01-01
This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy. PMID:27547075
Müller, Eike H; Scheichl, Rob; Shardlow, Tony
2015-04-08
This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy.
Mutual Information in Frequency and Its Application to Measure Cross-Frequency Coupling in Epilepsy
NASA Astrophysics Data System (ADS)
Malladi, Rakesh; Johnson, Don H.; Kalamangalam, Giridhar P.; Tandon, Nitin; Aazhang, Behnaam
2018-06-01
We define a metric, mutual information in frequency (MI-in-frequency), to detect and quantify the statistical dependence between different frequency components in the data, referred to as cross-frequency coupling and apply it to electrophysiological recordings from the brain to infer cross-frequency coupling. The current metrics used to quantify the cross-frequency coupling in neuroscience cannot detect if two frequency components in non-Gaussian brain recordings are statistically independent or not. Our MI-in-frequency metric, based on Shannon's mutual information between the Cramer's representation of stochastic processes, overcomes this shortcoming and can detect statistical dependence in frequency between non-Gaussian signals. We then describe two data-driven estimators of MI-in-frequency: one based on kernel density estimation and the other based on the nearest neighbor algorithm and validate their performance on simulated data. We then use MI-in-frequency to estimate mutual information between two data streams that are dependent across time, without making any parametric model assumptions. Finally, we use the MI-in- frequency metric to investigate the cross-frequency coupling in seizure onset zone from electrocorticographic recordings during seizures. The inferred cross-frequency coupling characteristics are essential to optimize the spatial and spectral parameters of electrical stimulation based treatments of epilepsy.
Bending the Rules: Widefield Microscopy and the Abbe Limit of Resolution
Verdaasdonk, Jolien S.; Stephens, Andrew D.; Haase, Julian; Bloom, Kerry
2014-01-01
One of the most fundamental concepts of microscopy is that of resolution–the ability to clearly distinguish two objects as separate. Recent advances such as structured illumination microscopy (SIM) and point localization techniques including photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM) strive to overcome the inherent limits of resolution of the modern light microscope. These techniques, however, are not always feasible or optimal for live cell imaging. Thus, in this review, we explore three techniques for extracting high resolution data from images acquired on a widefield microscope–deconvolution, model convolution, and Gaussian fitting. Deconvolution is a powerful tool for restoring a blurred image using knowledge of the point spread function (PSF) describing the blurring of light by the microscope, although care must be taken to ensure accuracy of subsequent quantitative analysis. The process of model convolution also requires knowledge of the PSF to blur a simulated image which can then be compared to the experimentally acquired data to reach conclusions regarding its geometry and fluorophore distribution. Gaussian fitting is the basis for point localization microscopy, and can also be applied to tracking spot motion over time or measuring spot shape and size. All together, these three methods serve as powerful tools for high-resolution imaging using widefield microscopy. PMID:23893718
NASA Astrophysics Data System (ADS)
Liang, Yingjie; Chen, Wen; Magin, Richard L.
2016-07-01
Analytical solutions to the fractional diffusion equation are often obtained by using Laplace and Fourier transforms, which conveniently encode the order of the time and the space derivatives (α and β) as non-integer powers of the conjugate transform variables (s, and k) for the spectral and the spatial frequencies, respectively. This study presents a new solution to the fractional diffusion equation obtained using the Laplace transform and expressed as a Fox's H-function. This result clearly illustrates the kinetics of the underlying stochastic process in terms of the Laplace spectral frequency and entropy. The spectral entropy is numerically calculated by using the direct integration method and the adaptive Gauss-Kronrod quadrature algorithm. Here, the properties of spectral entropy are investigated for the cases of sub-diffusion and super-diffusion. We find that the overall spectral entropy decreases with the increasing α and β, and that the normal or Gaussian case with α = 1 and β = 2, has the lowest spectral entropy (i.e., less information is needed to describe the state of a Gaussian process). In addition, as the neighborhood over which the entropy is calculated increases, the spectral entropy decreases, which implies a spatial averaging or coarse graining of the material properties. Consequently, the spectral entropy is shown to provide a new way to characterize the temporal correlation of anomalous diffusion. Future studies should be designed to examine changes of spectral entropy in physical, chemical and biological systems undergoing phase changes, chemical reactions and tissue regeneration.
Discrimination of numerical proportions: A comparison of binomial and Gaussian models.
Raidvee, Aire; Lember, Jüri; Allik, Jüri
2017-01-01
Observers discriminated the numerical proportion of two sets of elements (N = 9, 13, 33, and 65) that differed either by color or orientation. According to the standard Thurstonian approach, the accuracy of proportion discrimination is determined by irreducible noise in the nervous system that stochastically transforms the number of presented visual elements onto a continuum of psychological states representing numerosity. As an alternative to this customary approach, we propose a Thurstonian-binomial model, which assumes discrete perceptual states, each of which is associated with a certain visual element. It is shown that the probability β with which each visual element can be noticed and registered by the perceptual system can explain data of numerical proportion discrimination at least as well as the continuous Thurstonian-Gaussian model, and better, if the greater parsimony of the Thurstonian-binomial model is taken into account using AIC model selection. We conclude that Gaussian and binomial models represent two different fundamental principles-internal noise vs. using only a fraction of available information-which are both plausible descriptions of visual perception.
Transfer Entropy as a Log-Likelihood Ratio
NASA Astrophysics Data System (ADS)
Barnett, Lionel; Bossomaier, Terry
2012-09-01
Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.
Transfer entropy as a log-likelihood ratio.
Barnett, Lionel; Bossomaier, Terry
2012-09-28
Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.
Random bursts determine dynamics of active filaments.
Weber, Christoph A; Suzuki, Ryo; Schaller, Volker; Aranson, Igor S; Bausch, Andreas R; Frey, Erwin
2015-08-25
Constituents of living or synthetic active matter have access to a local energy supply that serves to keep the system out of thermal equilibrium. The statistical properties of such fluctuating active systems differ from those of their equilibrium counterparts. Using the actin filament gliding assay as a model, we studied how nonthermal distributions emerge in active matter. We found that the basic mechanism involves the interplay between local and random injection of energy, acting as an analog of a thermal heat bath, and nonequilibrium energy dissipation processes associated with sudden jump-like changes in the system's dynamic variables. We show here how such a mechanism leads to a nonthermal distribution of filament curvatures with a non-Gaussian shape. The experimental curvature statistics and filament relaxation dynamics are reproduced quantitatively by stochastic computer simulations and a simple kinetic model.
Improvements in GRACE Gravity Field Determination through Stochastic Observation Modeling
NASA Astrophysics Data System (ADS)
McCullough, C.; Bettadpur, S. V.
2016-12-01
Current unconstrained Release 05 GRACE gravity field solutions from the Center for Space Research (CSR RL05) assume random observation errors following an independent multivariate Gaussian distribution. This modeling of observations, a simplifying assumption, fails to account for long period, correlated errors arising from inadequacies in the background force models. Fully modeling the errors inherent in the observation equations, through the use of a full observation covariance (modeling colored noise), enables optimal combination of GPS and inter-satellite range-rate data and obviates the need for estimating kinematic empirical parameters during the solution process. Most importantly, fully modeling the observation errors drastically improves formal error estimates of the spherical harmonic coefficients, potentially enabling improved uncertainty quantification of scientific results derived from GRACE and optimizing combinations of GRACE with independent data sets and a priori constraints.
Fractional Brownian motion with a reflecting wall.
Wada, Alexander H O; Vojta, Thomas
2018-02-01
Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior 〈x^{2}〉∼t^{α}, the interplay between the geometric confinement and the long-time memory leads to a highly non-Gaussian probability density function with a power-law singularity at the barrier. In the superdiffusive case α>1, the particles accumulate at the barrier leading to a divergence of the probability density. For subdiffusion α<1, in contrast, the probability density is depleted close to the barrier. We discuss implications of these findings, in particular, for applications that are dominated by rare events.
Iterative LQG Controller Design Through Closed-Loop Identification
NASA Technical Reports Server (NTRS)
Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.
1996-01-01
This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.
Random bursts determine dynamics of active filaments
Weber, Christoph A.; Suzuki, Ryo; Schaller, Volker; Aranson, Igor S.; Bausch, Andreas R.; Frey, Erwin
2015-01-01
Constituents of living or synthetic active matter have access to a local energy supply that serves to keep the system out of thermal equilibrium. The statistical properties of such fluctuating active systems differ from those of their equilibrium counterparts. Using the actin filament gliding assay as a model, we studied how nonthermal distributions emerge in active matter. We found that the basic mechanism involves the interplay between local and random injection of energy, acting as an analog of a thermal heat bath, and nonequilibrium energy dissipation processes associated with sudden jump-like changes in the system’s dynamic variables. We show here how such a mechanism leads to a nonthermal distribution of filament curvatures with a non-Gaussian shape. The experimental curvature statistics and filament relaxation dynamics are reproduced quantitatively by stochastic computer simulations and a simple kinetic model. PMID:26261319
On the Origins of Suboptimality in Human Probabilistic Inference
Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M.
2014-01-01
Humans have been shown to combine noisy sensory information with previous experience (priors), in qualitative and sometimes quantitative agreement with the statistically-optimal predictions of Bayesian integration. However, when the prior distribution becomes more complex than a simple Gaussian, such as skewed or bimodal, training takes much longer and performance appears suboptimal. It is unclear whether such suboptimality arises from an imprecise internal representation of the complex prior, or from additional constraints in performing probabilistic computations on complex distributions, even when accurately represented. Here we probe the sources of suboptimality in probabilistic inference using a novel estimation task in which subjects are exposed to an explicitly provided distribution, thereby removing the need to remember the prior. Subjects had to estimate the location of a target given a noisy cue and a visual representation of the prior probability density over locations, which changed on each trial. Different classes of priors were examined (Gaussian, unimodal, bimodal). Subjects' performance was in qualitative agreement with the predictions of Bayesian Decision Theory although generally suboptimal. The degree of suboptimality was modulated by statistical features of the priors but was largely independent of the class of the prior and level of noise in the cue, suggesting that suboptimality in dealing with complex statistical features, such as bimodality, may be due to a problem of acquiring the priors rather than computing with them. We performed a factorial model comparison across a large set of Bayesian observer models to identify additional sources of noise and suboptimality. Our analysis rejects several models of stochastic behavior, including probability matching and sample-averaging strategies. Instead we show that subjects' response variability was mainly driven by a combination of a noisy estimation of the parameters of the priors, and by variability in the decision process, which we represent as a noisy or stochastic posterior. PMID:24945142
Manual choice reaction times in the rate-domain
Harris, Christopher M.; Waddington, Jonathan; Biscione, Valerio; Manzi, Sean
2014-01-01
Over the last 150 years, human manual reaction times (RTs) have been recorded countless times. Yet, our understanding of them remains remarkably poor. RTs are highly variable with positively skewed frequency distributions, often modeled as an inverse Gaussian distribution reflecting a stochastic rise to threshold (diffusion process). However, latency distributions of saccades are very close to the reciprocal Normal, suggesting that “rate” (reciprocal RT) may be the more fundamental variable. We explored whether this phenomenon extends to choice manual RTs. We recorded two-alternative choice RTs from 24 subjects, each with 4 blocks of 200 trials with two task difficulties (easy vs. difficult discrimination) and two instruction sets (urgent vs. accurate). We found that rate distributions were, indeed, very close to Normal, shifting to lower rates with increasing difficulty and accuracy, and for some blocks they appeared to become left-truncated, but still close to Normal. Using autoregressive techniques, we found temporal sequential dependencies for lags of at least 3. We identified a transient and steady-state component in each block. Because rates were Normal, we were able to estimate autoregressive weights using the Box-Jenkins technique, and convert to a moving average model using z-transforms to show explicit dependence on stimulus input. We also found a spatial sequential dependence for the previous 3 lags depending on whether the laterality of previous trials was repeated or alternated. This was partially dissociated from temporal dependency as it only occurred in the easy tasks. We conclude that 2-alternative choice manual RT distributions are close to reciprocal Normal and not the inverse Gaussian. This is not consistent with stochastic rise to threshold models, and we propose a simple optimality model in which reward is maximized to yield to an optimal rate, and hence an optimal time to respond. We discuss how it might be implemented. PMID:24959134
Bootstrapping Least Squares Estimates in Biochemical Reaction Networks
Linder, Daniel F.
2015-01-01
The paper proposes new computational methods of computing confidence bounds for the least squares estimates (LSEs) of rate constants in mass-action biochemical reaction network and stochastic epidemic models. Such LSEs are obtained by fitting the set of deterministic ordinary differential equations (ODEs), corresponding to the large volume limit of a reaction network, to network’s partially observed trajectory treated as a continuous-time, pure jump Markov process. In the large volume limit the LSEs are asymptotically Gaussian, but their limiting covariance structure is complicated since it is described by a set of nonlinear ODEs which are often ill-conditioned and numerically unstable. The current paper considers two bootstrap Monte-Carlo procedures, based on the diffusion and linear noise approximations for pure jump processes, which allow one to avoid solving the limiting covariance ODEs. The results are illustrated with both in-silico and real data examples from the LINE 1 gene retrotranscription model and compared with those obtained using other methods. PMID:25898769
Chance-Constrained Guidance With Non-Convex Constraints
NASA Technical Reports Server (NTRS)
Ono, Masahiro
2011-01-01
Missions to small bodies, such as comets or asteroids, require autonomous guidance for descent to these small bodies. Such guidance is made challenging by uncertainty in the position and velocity of the spacecraft, as well as the uncertainty in the gravitational field around the small body. In addition, the requirement to avoid collision with the asteroid represents a non-convex constraint that means finding the optimal guidance trajectory, in general, is intractable. In this innovation, a new approach is proposed for chance-constrained optimal guidance with non-convex constraints. Chance-constrained guidance takes into account uncertainty so that the probability of collision is below a specified threshold. In this approach, a new bounding method has been developed to obtain a set of decomposed chance constraints that is a sufficient condition of the original chance constraint. The decomposition of the chance constraint enables its efficient evaluation, as well as the application of the branch and bound method. Branch and bound enables non-convex problems to be solved efficiently to global optimality. Considering the problem of finite-horizon robust optimal control of dynamic systems under Gaussian-distributed stochastic uncertainty, with state and control constraints, a discrete-time, continuous-state linear dynamics model is assumed. Gaussian-distributed stochastic uncertainty is a more natural model for exogenous disturbances such as wind gusts and turbulence than the previously studied set-bounded models. However, with stochastic uncertainty, it is often impossible to guarantee that state constraints are satisfied, because there is typically a non-zero probability of having a disturbance that is large enough to push the state out of the feasible region. An effective framework to address robustness with stochastic uncertainty is optimization with chance constraints. These require that the probability of violating the state constraints (i.e., the probability of failure) is below a user-specified bound known as the risk bound. An example problem is to drive a car to a destination as fast as possible while limiting the probability of an accident to 10(exp -7). This framework allows users to trade conservatism against performance by choosing the risk bound. The more risk the user accepts, the better performance they can expect.
Operation of Power Grids with High Penetration of Wind Power
NASA Astrophysics Data System (ADS)
Al-Awami, Ali Taleb
The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus improving trading risk control. A case study comparing coordinated with uncoordinated bidding strategies depending on the trader's risk attitude is included. Simulation results show that coordinated bidding can improve the expected profits while significantly improving the CVaR.
NASA Astrophysics Data System (ADS)
Simonsen, I.; Jensen, M. H.; Johansen, A.
2002-06-01
In stochastic finance, one traditionally considers the return as a competitive measure of an asset, i.e., the profit generated by that asset after some fixed time span Δt, say one week or one year. This measures how well (or how bad) the asset performs over that given period of time. It has been established that the distribution of returns exhibits ``fat tails'' indicating that large returns occur more frequently than what is expected from standard Gaussian stochastic processes [1-3]. Instead of estimating this ``fat tail'' distribution of returns, we propose here an alternative approach, which is outlined by addressing the following question: What is the smallest time interval needed for an asset to cross a fixed return level of say 10%? For a particular asset, we refer to this time as the investment horizon and the corresponding distribution as the investment horizon distribution. This latter distribution complements that of returns and provides new and possibly crucial information for portfolio design and risk-management, as well as for pricing of more exotic options. By considering historical financial data, exemplified by the Dow Jones Industrial Average, we obtain a novel set of probability distributions for the investment horizons which can be used to estimate the optimal investment horizon for a stock or a future contract.
The meta-Gaussian Bayesian Processor of forecasts and associated preliminary experiments
NASA Astrophysics Data System (ADS)
Chen, Fajing; Jiao, Meiyan; Chen, Jing
2013-04-01
Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to optimize available forecasting information. The Bayesian Processor of Forecast (BPF), a new statistical method for probabilistic forecast, can transform a deterministic forecast into a probabilistic forecast according to the historical statistical relationship between observations and forecasts generated by that forecasting system. This technique accounts for the typical forecasting performance of a deterministic forecasting system in quantifying the forecast uncertainty. The meta-Gaussian likelihood model is suitable for a variety of stochastic dependence structures with monotone likelihood ratios. The meta-Gaussian BPF adopting this kind of likelihood model can therefore be applied across many fields, including meteorology and hydrology. The Bayes theorem with two continuous random variables and the normal-linear BPF are briefly introduced. The meta-Gaussian BPF for a continuous predictand using a single predictor is then presented and discussed. The performance of the meta-Gaussian BPF is tested in a preliminary experiment. Control forecasts of daily surface temperature at 0000 UTC at Changsha and Wuhan stations are used as the deterministic forecast data. These control forecasts are taken from ensemble predictions with a 96-h lead time generated by the National Meteorological Center of the China Meteorological Administration, the European Centre for Medium-Range Weather Forecasts, and the US National Centers for Environmental Prediction during January 2008. The results of the experiment show that the meta-Gaussian BPF can transform a deterministic control forecast of surface temperature from any one of the three ensemble predictions into a useful probabilistic forecast of surface temperature. These probabilistic forecasts quantify the uncertainty of the control forecast; accordingly, the performance of the probabilistic forecasts differs based on the source of the underlying deterministic control forecasts.
Discrepancy-based error estimates for Quasi-Monte Carlo III. Error distributions and central limits
NASA Astrophysics Data System (ADS)
Hoogland, Jiri; Kleiss, Ronald
1997-04-01
In Quasi-Monte Carlo integration, the integration error is believed to be generally smaller than in classical Monte Carlo with the same number of integration points. Using an appropriate definition of an ensemble of quasi-random point sets, we derive various results on the probability distribution of the integration error, which can be compared to the standard Central Limit Theorem for normal stochastic sampling. In many cases, a Gaussian error distribution is obtained.
Modeling the response of a standard accretion disc to stochastic viscous fluctuations
NASA Astrophysics Data System (ADS)
Ahmad, Naveel; Misra, Ranjeev; Iqbal, Naseer; Maqbool, Bari; Hamid, Mubashir
2018-01-01
The observed variability of X-ray binaries over a wide range of time-scales can be understood in the framework of a stochastic propagation model, where viscous fluctuations at different radii induce accretion rate variability that propagate inwards to the X-ray producing region. The scenario successfully explains the power spectra, the linear rms-flux relation as well as the time-lag between different energy photons. The predictions of this model have been obtained using approximate analytical solutions or empirically motivated models which take into account the effect of these propagating variability on the radiative process of complex accretion flows. Here, we study the variation of the accretion rate due to such viscous fluctuations using a hydro-dynamical code for the standard geometrically thin, gas pressure dominated α-disc with a zero torque boundary condition. Our results confirm earlier findings that the time-lag between a perturbation and the resultant inner accretion rate variation depends on the frequency (or time-period) of the perturbation. Here we have quantified that the time-lag tlag ∝f-0.54 , for time-periods less than the viscous time-scale of the perturbation radius and is nearly constant otherwise. This, coupled with radiative process would produce the observed frequency dependent time-lag between different energy bands. We also confirm that if there are random Gaussian fluctuations of the α-parameter at different radii, the resultant inner accretion rate has a power spectrum which is a power-law.
Prequantum classical statistical field theory: background field as a source of everything?
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2011-07-01
Prequantum classical statistical field theory (PCSFT) is a new attempt to consider quantum mechanics (QM) as an emergent phenomenon, cf. with De Broglie's "double solution" approach, Bohmian mechanics, stochastic electrodynamics (SED), Nelson's stochastic QM and its generalization by Davidson, 't Hooft's models and their development by Elze. PCSFT is a comeback to a purely wave viewpoint on QM, cf. with early Schrodinger. There is no quantum particles at all, only waves. In particular, photons are simply wave-pulses of the classical electromagnetic field, cf. SED. Moreover, even massive particles are special "prequantum fields": the electron field, the neutron field, and so on. PCSFT claims that (sooner or later) people will be able to measure components of these fields: components of the "photonic field" (the classical electromagnetic field of low intensity), electronic field, neutronic field, and so on. At the moment we are able to produce quantum correlations as correlations of classical Gaussian random fields. In this paper we are interested in mathematical and physical reasons of usage of Gaussian fields. We consider prequantum signals (corresponding to quantum systems) as composed of a huge number of wave-pulses (on very fine prequantum time scale). We speculate that the prequantum background field (the field of "vacuum fluctuations") might play the role of a source of such pulses, i.e., the source of everything.
NASA Astrophysics Data System (ADS)
Gupta, Vijay; Rani, Sarma; Koch, Donald
2017-11-01
A stochastic theory is developed to predict the Radial Distribution Function (RDF) of monodisperse, rapidly settling, low-inertia particle pairs in isotropic turbulence. The theory is based on approximating the turbulent flow in a reference frame following an aerosol particle as a locally linear velocity field. In the first version of the theory (referred to as T1), the fluid velocity gradient tensor ``seen'' by the primary aerosol particle is further assumed to be Gaussian. Analytical closures are then derived for the drift and diffusive fluxes controling the RDF, in the asymptotic limits of small particle Stokes number (St =τp /τη << 1), and large dimensionless settling velocity (Sv = gτp /uη >> 1). It is seen that the RDF for rapidly settling pairs has an inverse power dependency on pair separation r with an exponent, c1, that is proportional to St2 . However, the c1 predicted by T1 for Sv >> 1 particles is higher than the c1 of even non-settling (Sv = 0) particles obtained from DNS of particle-laden isotropic turbulence. Thus, the Gaussian velocity gradient in T1 leads to the unphysical effect that gravity enhances pair clustering. To address this inconsistency, a second version (T2) was developed. Funding from the CBET Division of the National Science Foundation is gratefully acknowledged.
Hierarchical Bayesian modeling of ionospheric TEC disturbances as non-stationary processes
NASA Astrophysics Data System (ADS)
Seid, Abdu Mohammed; Berhane, Tesfahun; Roininen, Lassi; Nigussie, Melessew
2018-03-01
We model regular and irregular variation of ionospheric total electron content as stationary and non-stationary processes, respectively. We apply the method developed to SCINDA GPS data set observed at Bahir Dar, Ethiopia (11.6 °N, 37.4 °E) . We use hierarchical Bayesian inversion with Gaussian Markov random process priors, and we model the prior parameters in the hyperprior. We use Matérn priors via stochastic partial differential equations, and use scaled Inv -χ2 hyperpriors for the hyperparameters. For drawing posterior estimates, we use Markov Chain Monte Carlo methods: Gibbs sampling and Metropolis-within-Gibbs for parameter and hyperparameter estimations, respectively. This allows us to quantify model parameter estimation uncertainties as well. We demonstrate the applicability of the method proposed using a synthetic test case. Finally, we apply the method to real GPS data set, which we decompose to regular and irregular variation components. The result shows that the approach can be used as an accurate ionospheric disturbance characterization technique that quantifies the total electron content variability with corresponding error uncertainties.
NASA Astrophysics Data System (ADS)
Krogh-Madsen, Trine; Kold Taylor, Louise; Skriver, Anne D.; Schaffer, Peter; Guevara, Michael R.
2017-09-01
The transmembrane potential is recorded from small isopotential clusters of 2-4 embryonic chick ventricular cells spontaneously generating action potentials. We analyze the cycle-to-cycle fluctuations in the time between successive action potentials (the interbeat interval or IBI). We also convert an existing model of electrical activity in the cluster, which is formulated as a Hodgkin-Huxley-like deterministic system of nonlinear ordinary differential equations describing five individual ionic currents, into a stochastic model consisting of a population of ˜20 000 independently and randomly gating ionic channels, with the randomness being set by a real physical stochastic process (radio static). This stochastic model, implemented using the Clay-DeFelice algorithm, reproduces the fluctuations seen experimentally: e.g., the coefficient of variation (standard deviation/mean) of IBI is 4.3% in the model vs. the 3.9% average value of the 17 clusters studied. The model also replicates all but one of several other quantitative measures of the experimental results, including the power spectrum and correlation integral of the voltage, as well as the histogram, Poincaré plot, serial correlation coefficients, power spectrum, detrended fluctuation analysis, approximate entropy, and sample entropy of IBI. The channel noise from one particular ionic current (IKs), which has channel kinetics that are relatively slow compared to that of the other currents, makes the major contribution to the fluctuations in IBI. Reproduction of the experimental coefficient of variation of IBI by adding a Gaussian white noise-current into the deterministic model necessitates using an unrealistically high noise-current amplitude. Indeed, a major implication of the modelling results is that, given the wide range of time-scales over which the various species of channels open and close, only a cell-specific stochastic model that is formulated taking into consideration the widely different ranges in the frequency content of the channel-noise produced by the opening and closing of several different types of channels will be able to reproduce precisely the various effects due to membrane noise seen in a particular electrophysiological preparation.
Statistical Compression of Wind Speed Data
NASA Astrophysics Data System (ADS)
Tagle, F.; Castruccio, S.; Crippa, P.; Genton, M.
2017-12-01
In this work we introduce a lossy compression approach that utilizes a stochastic wind generator based on a non-Gaussian distribution to reproduce the internal climate variability of daily wind speed as represented by the CESM Large Ensemble over Saudi Arabia. Stochastic wind generators, and stochastic weather generators more generally, are statistical models that aim to match certain statistical properties of the data on which they are trained. They have been used extensively in applications ranging from agricultural models to climate impact studies. In this novel context, the parameters of the fitted model can be interpreted as encoding the information contained in the original uncompressed data. The statistical model is fit to only 3 of the 30 ensemble members and it adequately captures the variability of the ensemble in terms of seasonal internannual variability of daily wind speed. To deal with such a large spatial domain, it is partitioned into 9 region, and the model is fit independently to each of these. We further discuss a recent refinement of the model, which relaxes this assumption of regional independence, by introducing a large-scale component that interacts with the fine-scale regional effects.
Stochastic Lagrangian dynamics for charged flows in the E-F regions of ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Wenbo; Mahalov, Alex
2013-03-15
We develop a three-dimensional numerical model for the E-F region ionosphere and study the Lagrangian dynamics for plasma flows in this region. Our interest rests on the charge-neutral interactions and the statistics associated with stochastic Lagrangian motion. In particular, we examine the organizing mixing patterns for plasma flows due to polarized gravity wave excitations in the neutral field, using Lagrangian coherent structures (LCS). LCS objectively depict the flow topology-the extracted attractors indicate generation of ionospheric density gradients, due to accumulation of plasma. Using Lagrangian measures such as the finite-time Lyapunov exponents, we locate the Lagrangian skeletons for mixing in plasma,more » hence where charged fronts are expected to appear. With polarized neutral wind, we find that the corresponding plasma velocity is also polarized. Moreover, the polarized velocity alone, coupled with stochastic Lagrangian motion, may give rise to polarized density fronts in plasma. Statistics of these trajectories indicate high level of non-Gaussianity. This includes clear signatures of variance, skewness, and kurtosis of displacements taking polarized structures aligned with the gravity waves, and being anisotropic.« less
First Test of Stochastic Growth Theory for Langmuir Waves in Earth's Foreshock
NASA Technical Reports Server (NTRS)
Cairns, Iver H.; Robinson, P. A.
1997-01-01
This paper presents the first test of whether stochastic growth theory (SGT) can explain the detailed characteristics of Langmuir-like waves in Earth's foreshock. A period with unusually constant solar wind magnetic field is analyzed. The observed distributions P(logE) of wave fields E for two intervals with relatively constant spacecraft location (DIFF) are shown to agree well with the fundamental prediction of SGT, that P(logE) is Gaussian in log E. This stochastic growth can be accounted for semi-quantitatively in terms of standard foreshock beam parameters and a model developed for interplanetary type III bursts. Averaged over the entire period with large variations in DIFF, the P(logE) distribution is a power-law with index approximately -1; this is interpreted in terms of convolution of intrinsic, spatially varying P(logE) distributions with a probability function describing ISEE's residence time at a given DIFF. Wave data from this interval thus provide good observational evidence that SGT can sometimes explain the clumping, burstiness, persistence, and highly variable fields of the foreshock Langmuir-like waves.
First test of stochastic growth theory for Langmuir waves in Earth's foreshock
NASA Astrophysics Data System (ADS)
Cairns, Iver H.; Robinson, P. A.
This paper presents the first test of whether stochastic growth theory (SGT) can explain the detailed characteristics of Langmuir-like waves in Earth's foreshock. A period with unusually constant solar wind magnetic field is analyzed. The observed distributions P(log E) of wave fields E for two intervals with relatively constant spacecraft location (DIFF) are shown to agree well with the fundamental prediction of SGT, that P(log E) is Gaussian in log E. This stochastic growth can be accounted for semi-quantitatively in terms of standard foreshock beam parameters and a model developed for interplanetary type III bursts. Averaged over the entire period with large variations in DIFF, the P(log E) distribution is a power-law with index ˜ -1 this is interpreted in terms of convolution of intrinsic, spatially varying P(log E) distributions with a probability function describing ISEE's residence time at a given DIFF. Wave data from this interval thus provide good observational evidence that SGT can sometimes explain the clumping, burstiness, persistence, and highly variable fields of the foreshock Langmuir-like waves.
NonMarkov Ito Processes with 1- state memory
NASA Astrophysics Data System (ADS)
McCauley, Joseph L.
2010-08-01
A Markov process, by definition, cannot depend on any previous state other than the last observed state. An Ito process implies the Fokker-Planck and Kolmogorov backward time partial differential eqns. for transition densities, which in turn imply the Chapman-Kolmogorov eqn., but without requiring the Markov condition. We present a class of Ito process superficially resembling Markov processes, but with 1-state memory. In finance, such processes would obey the efficient market hypothesis up through the level of pair correlations. These stochastic processes have been mislabeled in recent literature as 'nonlinear Markov processes'. Inspired by Doob and Feller, who pointed out that the ChapmanKolmogorov eqn. is not restricted to Markov processes, we exhibit a Gaussian Ito transition density with 1-state memory in the drift coefficient that satisfies both of Kolmogorov's partial differential eqns. and also the Chapman-Kolmogorov eqn. In addition, we show that three of the examples from McKean's seminal 1966 paper are also nonMarkov Ito processes. Last, we show that the transition density of the generalized Black-Scholes type partial differential eqn. describes a martingale, and satisfies the ChapmanKolmogorov eqn. This leads to the shortest-known proof that the Green function of the Black-Scholes eqn. with variable diffusion coefficient provides the so-called martingale measure of option pricing.
Tradeoff studies in multiobjective insensitive design of airplane control systems
NASA Technical Reports Server (NTRS)
Schy, A. A.; Giesy, D. P.
1983-01-01
A computer aided design method for multiobjective parameter-insensitive design of airplane control systems is described. Methods are presented for trading off nominal values of design objectives against sensitivities of the design objectives to parameter uncertainties, together with guidelines for designer utilization of the methods. The methods are illustrated by application to the design of a lateral stability augmentation system for two supersonic flight conditions of the Shuttle Orbiter. Objective functions are conventional handling quality measures and peak magnitudes of control deflections and rates. The uncertain parameters are assumed Gaussian, and numerical approximations of the stochastic behavior of the objectives are described. Results of applying the tradeoff methods to this example show that stochastic-insensitive designs are distinctly different from deterministic multiobjective designs. The main penalty for achieving significant decrease in sensitivity is decreased speed of response for the nominal system.
NASA Astrophysics Data System (ADS)
Corbetta, Matteo; Sbarufatti, Claudio; Giglio, Marco; Todd, Michael D.
2018-05-01
The present work critically analyzes the probabilistic definition of dynamic state-space models subject to Bayesian filters used for monitoring and predicting monotonic degradation processes. The study focuses on the selection of the random process, often called process noise, which is a key perturbation source in the evolution equation of particle filtering. Despite the large number of applications of particle filtering predicting structural degradation, the adequacy of the picked process noise has not been investigated. This paper reviews existing process noise models that are typically embedded in particle filters dedicated to monitoring and predicting structural damage caused by fatigue, which is monotonic in nature. The analysis emphasizes that existing formulations of the process noise can jeopardize the performance of the filter in terms of state estimation and remaining life prediction (i.e., damage prognosis). This paper subsequently proposes an optimal and unbiased process noise model and a list of requirements that the stochastic model must satisfy to guarantee high prognostic performance. These requirements are useful for future and further implementations of particle filtering for monotonic system dynamics. The validity of the new process noise formulation is assessed against experimental fatigue crack growth data from a full-scale aeronautical structure using dedicated performance metrics.
Digital simulation of an arbitrary stationary stochastic process by spectral representation.
Yura, Harold T; Hanson, Steen G
2011-04-01
In this paper we present a straightforward, efficient, and computationally fast method for creating a large number of discrete samples with an arbitrary given probability density function and a specified spectral content. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In contrast to previous work, where the analyses were limited to auto regressive and or iterative techniques to obtain satisfactory results, we find that a single application of the inverse transform method yields satisfactory results for a wide class of arbitrary probability distributions. Although a single application of the inverse transform technique does not conserve the power spectra exactly, it yields highly accurate numerical results for a wide range of probability distributions and target power spectra that are sufficient for system simulation purposes and can thus be regarded as an accurate engineering approximation, which can be used for wide range of practical applications. A sufficiency condition is presented regarding the range of parameter values where a single application of the inverse transform method yields satisfactory agreement between the simulated and target power spectra, and a series of examples relevant for the optics community are presented and discussed. Outside this parameter range the agreement gracefully degrades but does not distort in shape. Although we demonstrate the method here focusing on stationary random processes, we see no reason why the method could not be extended to simulate non-stationary random processes. © 2011 Optical Society of America
Complex network approach to fractional time series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manshour, Pouya
In order to extract correlation information inherited in stochastic time series, the visibility graph algorithm has been recently proposed, by which a time series can be mapped onto a complex network. We demonstrate that the visibility algorithm is not an appropriate one to study the correlation aspects of a time series. We then employ the horizontal visibility algorithm, as a much simpler one, to map fractional processes onto complex networks. The degree distributions are shown to have parabolic exponential forms with Hurst dependent fitting parameter. Further, we take into account other topological properties such as maximum eigenvalue of the adjacencymore » matrix and the degree assortativity, and show that such topological quantities can also be used to predict the Hurst exponent, with an exception for anti-persistent fractional Gaussian noises. To solve this problem, we take into account the Spearman correlation coefficient between nodes' degrees and their corresponding data values in the original time series.« less
NASA Astrophysics Data System (ADS)
Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua
2015-07-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
Meerschaert, Mark M; Sabzikar, Farzad; Chen, Jinghua
2015-07-15
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
MEERSCHAERT, MARK M.; SABZIKAR, FARZAD; CHEN, JINGHUA
2014-01-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series. PMID:26085690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu; Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu; Chen, Jinghua, E-mail: cjhdzdz@163.com
2015-07-15
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a temperedmore » fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.« less
NASA Astrophysics Data System (ADS)
Pang, Guofei; Perdikaris, Paris; Cai, Wei; Karniadakis, George Em
2017-11-01
The fractional advection-dispersion equation (FADE) can describe accurately the solute transport in groundwater but its fractional order has to be determined a priori. Here, we employ multi-fidelity Bayesian optimization to obtain the fractional order under various conditions, and we obtain more accurate results compared to previously published data. Moreover, the present method is very efficient as we use different levels of resolution to construct a stochastic surrogate model and quantify its uncertainty. We consider two different problem set ups. In the first set up, we obtain variable fractional orders of one-dimensional FADE, considering both synthetic and field data. In the second set up, we identify constant fractional orders of two-dimensional FADE using synthetic data. We employ multi-resolution simulations using two-level and three-level Gaussian process regression models to construct the surrogates.
Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks.
Vlachas, Pantelis R; Byeon, Wonmin; Wan, Zhong Y; Sapsis, Themistoklis P; Koumoutsakos, Petros
2018-05-01
We introduce a data-driven forecasting method for high-dimensional chaotic systems using long short-term memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPs) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model. The LSTM networks outperform the GPs in short-term forecasting accuracy in all applications considered. A hybrid architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is proposed to ensure convergence to the invariant measure. This novel hybrid method is fully data-driven and extends the forecasting capabilities of LSTM networks.
VTOL controls for shipboard landing. M.S.Thesis
NASA Technical Reports Server (NTRS)
Mcmuldroch, C. G.
1979-01-01
The problem of landing a VTOL aircraft on a small ship in rough seas using an automatic controller is examined. The controller design uses the linear quadratic Gaussian results of modern control theory. Linear time invariant dynamic models are developed for the aircraft, ship, and wave motions. A hover controller commands the aircraft to track position and orientation of the ship deck using only low levels of control power. Commands for this task are generated by the solution of the steady state linear quadratic gaussian regulator problem. Analytical performance and control requirement tradeoffs are obtained. A landing controller commands the aircraft from stationary hover along a smooth, low control effort trajectory, to a touchdown on a predicted crest of ship motion. The design problem is formulated and solved as an approximate finite-time linear quadratic stochastic regulator. Performance and control results are found by Monte Carlo simulations.
Stochastic Optimal Control via Bellman's Principle
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Sun, Jian Q.
2003-01-01
This paper presents a method for finding optimal controls of nonlinear systems subject to random excitations. The method is capable to generate global control solutions when state and control constraints are present. The solution is global in the sense that controls for all initial conditions in a region of the state space are obtained. The approach is based on Bellman's Principle of optimality, the Gaussian closure and the Short-time Gaussian approximation. Examples include a system with a state-dependent diffusion term, a system in which the infinite hierarchy of moment equations cannot be analytically closed, and an impact system with a elastic boundary. The uncontrolled and controlled dynamics are studied by creating a Markov chain with a control dependent transition probability matrix via the Generalized Cell Mapping method. In this fashion, both the transient and stationary controlled responses are evaluated. The results show excellent control performances.
Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.
Jiang, Z; Chen, W; Burkhart, C
2013-11-01
Obtaining an accurate three-dimensional (3D) structure of a porous microstructure is important for assessing the material properties based on finite element analysis. Whereas directly obtaining 3D images of the microstructure is impractical under many circumstances, two sets of methods have been developed in literature to generate (reconstruct) 3D microstructure from its 2D images: one characterizes the microstructure based on certain statistical descriptors, typically two-point correlation function and cluster correlation function, and then performs an optimization process to build a 3D structure that matches those statistical descriptors; the other method models the microstructure using stochastic models like a Gaussian random field and generates a 3D structure directly from the function. The former obtains a relatively accurate 3D microstructure, but computationally the optimization process can be very intensive, especially for problems with large image size; the latter generates a 3D microstructure quickly but sacrifices the accuracy due to issues in numerical implementations. A hybrid optimization approach of modelling the 3D porous microstructure of random isotropic two-phase materials is proposed in this paper, which combines the two sets of methods and hence maintains the accuracy of the correlation-based method with improved efficiency. The proposed technique is verified for 3D reconstructions based on silica polymer composite images with different volume fractions. A comparison of the reconstructed microstructures and the optimization histories for both the original correlation-based method and our hybrid approach demonstrates the improved efficiency of the approach. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
van der Groen, Onno; Wenderoth, Nicole
2016-05-11
Random noise enhances the detectability of weak signals in nonlinear systems, a phenomenon known as stochastic resonance (SR). Though counterintuitive at first, SR has been demonstrated in a variety of naturally occurring processes, including human perception, where it has been shown that adding noise directly to weak visual, tactile, or auditory stimuli enhances detection performance. These results indicate that random noise can push subthreshold receptor potentials across the transfer threshold, causing action potentials in an otherwise silent afference. Despite the wealth of evidence demonstrating SR for noise added to a stimulus, relatively few studies have explored whether or not noise added directly to cortical networks enhances sensory detection. Here we administered transcranial random noise stimulation (tRNS; 100-640 Hz zero-mean Gaussian white noise) to the occipital region of human participants. For increasing tRNS intensities (ranging from 0 to 1.5 mA), the detection accuracy of a visual stimuli changed according to an inverted-U-shaped function, typical of the SR phenomenon. When the optimal level of noise was added to visual cortex, detection performance improved significantly relative to a zero noise condition (9.7 ± 4.6%) and to a similar extent as optimal noise added to the visual stimuli (11.2 ± 4.7%). Our results demonstrate that adding noise to cortical networks can improve human behavior and that tRNS is an appropriate tool to exploit this mechanism. Our findings suggest that neural processing at the network level exhibits nonlinear system properties that are sensitive to the stochastic resonance phenomenon and highlight the usefulness of tRNS as a tool to modulate human behavior. Since tRNS can be applied to all cortical areas, exploiting the SR phenomenon is not restricted to the perceptual domain, but can be used for other functions that depend on nonlinear neural dynamics (e.g., decision making, task switching, response inhibition, and many other processes). This will open new avenues for using tRNS to investigate brain function and enhance the behavior of healthy individuals or patients. Copyright © 2016 the authors 0270-6474/16/365289-10$15.00/0.
NASA Astrophysics Data System (ADS)
Bożejko, Marek; Lytvynov, Eugene
2011-03-01
Let T be an underlying space with a non-atomic measure σ on it. In [ Comm. Math. Phys. 292, 99-129 (2009)] the Meixner class of non-commutative generalized stochastic processes with freely independent values, {ω=(ω(t))_{tin T}} , was characterized through the continuity of the corresponding orthogonal polynomials. In this paper, we derive a generating function for these orthogonal polynomials. The first question we have to answer is: What should serve as a generating function for a system of polynomials of infinitely many non-commuting variables? We construct a class of operator-valued functions {Z=(Z(t))_{tin T}} such that Z( t) commutes with ω( s) for any {s,tin T}. Then a generating function can be understood as {G(Z,ω)=sum_{n=0}^infty int_{T^n}P^{(n)}(ω(t_1),dots,ω(t_n))Z(t_1)dots Z(t_n)} {σ(dt_1) dots σ(dt_n)} , where {P^{(n)}(ω(t_1),dots,ω(t_n))} is (the kernel of the) n th orthogonal polynomial. We derive an explicit form of G( Z, ω), which has a resolvent form and resembles the generating function in the classical case, albeit it involves integrals of non-commuting operators. We finally discuss a related problem of the action of the annihilation operators {partial_t,t in T} . In contrast to the classical case, we prove that the operators ∂ t related to the free Gaussian and Poisson processes have a property of globality. This result is genuinely infinite-dimensional, since in one dimension one loses the notion of globality.
Space-time-modulated stochastic processes
NASA Astrophysics Data System (ADS)
Giona, Massimiliano
2017-10-01
Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.
Effective action for stochastic partial differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, David; Centro de Astrobiologia, INTA, Carratera Ajalvir, Km. 4, 28850 Torrejon, Madrid,; Molina-Paris, Carmen
Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important tomore » realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this ''direct approach'' is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from QFT to the case of SPDEs. An important result is that the amplitude of the two-point function governing the noise acts as the loop-counting parameter and is the analog of Planck's constant ({Dirac_h}/2{pi}) in this SPDE context. We derive a general expression for the one-loop effective potential of an arbitrary SPDE subject to translation-invariant Gaussian noise, and compare this with the one-loop potential for QFT. (c) 1999 The American Physical Society.« less
Global solutions to random 3D vorticity equations for small initial data
NASA Astrophysics Data System (ADS)
Barbu, Viorel; Röckner, Michael
2017-11-01
One proves the existence and uniqueness in (Lp (R3)) 3, 3/2 < p < 2, of a global mild solution to random vorticity equations associated to stochastic 3D Navier-Stokes equations with linear multiplicative Gaussian noise of convolution type, for sufficiently small initial vorticity. This resembles some earlier deterministic results of T. Kato [16] and are obtained by treating the equation in vorticity form and reducing the latter to a random nonlinear parabolic equation. The solution has maximal regularity in the spatial variables and is weakly continuous in (L3 ∩L 3p/4p - 6)3 with respect to the time variable. Furthermore, we obtain the pathwise continuous dependence of solutions with respect to the initial data. In particular, one gets a locally unique solution of 3D stochastic Navier-Stokes equation in vorticity form up to some explosion stopping time τ adapted to the Brownian motion.
NASA Technical Reports Server (NTRS)
Davis, Brynmor; Kim, Edward; Piepmeier, Jeffrey; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
Many new Earth remote-sensing instruments are embracing both the advantages and added complexity that result from interferometric or fully polarimetric operation. To increase instrument understanding and functionality a model of the signals these instruments measure is presented. A stochastic model is used as it recognizes the non-deterministic nature of any real-world measurements while also providing a tractable mathematical framework. A stationary, Gaussian-distributed model structure is proposed. Temporal and spectral correlation measures provide a statistical description of the physical properties of coherence and polarization-state. From this relationship the model is mathematically defined. The model is shown to be unique for any set of physical parameters. A method of realizing the model (necessary for applications such as synthetic calibration-signal generation) is given and computer simulation results are presented. The signals are constructed using the output of a multi-input multi-output linear filter system, driven with white noise.
Ultrasound Image Despeckling Using Stochastic Distance-Based BM3D.
Santos, Cid A N; Martins, Diego L N; Mascarenhas, Nelson D A
2017-06-01
Ultrasound image despeckling is an important research field, since it can improve the interpretability of one of the main categories of medical imaging. Many techniques have been tried over the years for ultrasound despeckling, and more recently, a great deal of attention has been focused on patch-based methods, such as non-local means and block-matching collaborative filtering (BM3D). A common idea in these recent methods is the measure of distance between patches, originally proposed as the Euclidean distance, for filtering additive white Gaussian noise. In this paper, we derive new stochastic distances for the Fisher-Tippett distribution, based on well-known statistical divergences, and use them as patch distance measures in a modified version of the BM3D algorithm for despeckling log-compressed ultrasound images. State-of-the-art results in filtering simulated, synthetic, and real ultrasound images confirm the potential of the proposed approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Florian, E-mail: florian.mueller@sam.math.ethz.ch; Jenny, Patrick, E-mail: jenny@ifd.mavt.ethz.ch; Meyer, Daniel W., E-mail: meyerda@ethz.ch
2013-10-01
Monte Carlo (MC) is a well known method for quantifying uncertainty arising for example in subsurface flow problems. Although robust and easy to implement, MC suffers from slow convergence. Extending MC by means of multigrid techniques yields the multilevel Monte Carlo (MLMC) method. MLMC has proven to greatly accelerate MC for several applications including stochastic ordinary differential equations in finance, elliptic stochastic partial differential equations and also hyperbolic problems. In this study, MLMC is combined with a streamline-based solver to assess uncertain two phase flow and Buckley–Leverett transport in random heterogeneous porous media. The performance of MLMC is compared tomore » MC for a two dimensional reservoir with a multi-point Gaussian logarithmic permeability field. The influence of the variance and the correlation length of the logarithmic permeability on the MLMC performance is studied.« less
López-Caraballo, C. H.; Lazzús, J. A.; Salfate, I.; Rojas, P.; Rivera, M.; Palma-Chilla, L.
2015-01-01
An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ N) from 0.01 to 0.1. PMID:26351449
López-Caraballo, C H; Lazzús, J A; Salfate, I; Rojas, P; Rivera, M; Palma-Chilla, L
2015-01-01
An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ(N)) from 0.01 to 0.1.
Stochastic analysis of a pulse-type prey-predator model
NASA Astrophysics Data System (ADS)
Wu, Y.; Zhu, W. Q.
2008-04-01
A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.
Stochastic analysis of a pulse-type prey-predator model.
Wu, Y; Zhu, W Q
2008-04-01
A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.
NASA Astrophysics Data System (ADS)
Liao, Q.; Tchelepi, H.; Zhang, D.
2015-12-01
Uncertainty quantification aims at characterizing the impact of input parameters on the output responses and plays an important role in many areas including subsurface flow and transport. In this study, a sparse grid collocation approach, which uses a nested Kronrod-Patterson-Hermite quadrature rule with moderate delay for Gaussian random parameters, is proposed to quantify the uncertainty of model solutions. The conventional stochastic collocation method serves as a promising non-intrusive approach and has drawn a great deal of interests. The collocation points are usually chosen to be Gauss-Hermite quadrature nodes, which are naturally unnested. The Kronrod-Patterson-Hermite nodes are shown to be more efficient than the Gauss-Hermite nodes due to nestedness. We propose a Kronrod-Patterson-Hermite rule with moderate delay to further improve the performance. Our study demonstrates the effectiveness of the proposed method for uncertainty quantification through subsurface flow and transport examples.
Osborn, Sarah; Zulian, Patrick; Benson, Thomas; ...
2018-01-30
This work describes a domain embedding technique between two nonmatching meshes used for generating realizations of spatially correlated random fields with applications to large-scale sampling-based uncertainty quantification. The goal is to apply the multilevel Monte Carlo (MLMC) method for the quantification of output uncertainties of PDEs with random input coefficients on general and unstructured computational domains. We propose a highly scalable, hierarchical sampling method to generate realizations of a Gaussian random field on a given unstructured mesh by solving a reaction–diffusion PDE with a stochastic right-hand side. The stochastic PDE is discretized using the mixed finite element method on anmore » embedded domain with a structured mesh, and then, the solution is projected onto the unstructured mesh. This work describes implementation details on how to efficiently transfer data from the structured and unstructured meshes at coarse levels, assuming that this can be done efficiently on the finest level. We investigate the efficiency and parallel scalability of the technique for the scalable generation of Gaussian random fields in three dimensions. An application of the MLMC method is presented for quantifying uncertainties of subsurface flow problems. Here, we demonstrate the scalability of the sampling method with nonmatching mesh embedding, coupled with a parallel forward model problem solver, for large-scale 3D MLMC simulations with up to 1.9·109 unknowns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, Sarah; Zulian, Patrick; Benson, Thomas
This work describes a domain embedding technique between two nonmatching meshes used for generating realizations of spatially correlated random fields with applications to large-scale sampling-based uncertainty quantification. The goal is to apply the multilevel Monte Carlo (MLMC) method for the quantification of output uncertainties of PDEs with random input coefficients on general and unstructured computational domains. We propose a highly scalable, hierarchical sampling method to generate realizations of a Gaussian random field on a given unstructured mesh by solving a reaction–diffusion PDE with a stochastic right-hand side. The stochastic PDE is discretized using the mixed finite element method on anmore » embedded domain with a structured mesh, and then, the solution is projected onto the unstructured mesh. This work describes implementation details on how to efficiently transfer data from the structured and unstructured meshes at coarse levels, assuming that this can be done efficiently on the finest level. We investigate the efficiency and parallel scalability of the technique for the scalable generation of Gaussian random fields in three dimensions. An application of the MLMC method is presented for quantifying uncertainties of subsurface flow problems. Here, we demonstrate the scalability of the sampling method with nonmatching mesh embedding, coupled with a parallel forward model problem solver, for large-scale 3D MLMC simulations with up to 1.9·109 unknowns.« less
NASA Astrophysics Data System (ADS)
Liu, L.; Neretnieks, I.
Canisters with spent nuclear fuel will be deposited in fractured crystalline rock in the Swedish concept for a final repository. The fractures intersect the canister holes at different angles and they have variable apertures and therefore locally varying flowrates. Our previous model with fractures with a constant aperture and a 90° intersection angle is now extended to arbitrary intersection angles and stochastically variable apertures. It is shown that the previous basic model can be simply amended to account for these effects. More importantly, it has been found that the distributions of the volumetric and the equivalent flow rates are all close to the Normal for both fractal and Gaussian fractures, with the mean of the distribution of the volumetric flow rate being determined solely by the hydraulic aperture, and that of the equivalent flow rate being determined by the mechanical aperture. Moreover, the standard deviation of the volumetric flow rates of the many realizations increases with increasing roughness and spatial correlation length of the aperture field, and so does that of the equivalent flow rates. Thus, two simple statistical relations can be developed to describe the stochastic properties of fluid flow and solute transport through a single fracture with spatially variable apertures. This obviates, then, the need to simulate each fracture that intersects a canister in great detail, and allows the use of complex fractures also in very large fracture network models used in performance assessment.
Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.
Basit, Abdul; Espinosa, Francisco; Avila, Ruben; Raza, S; Irfan, N
2008-12-01
In this paper we present an atmospheric dispersion scenario for a proposed nuclear power plant in Pakistan involving the hypothetical accidental release of radionuclides. For this, a concept involving a Lagrangian stochastic particle model (LSPM) coupled with an Eulerian regional atmospheric modelling system (RAMS) is used. The atmospheric turbulent dispersion of radionuclides (represented by non-buoyant particles/neutral traces) in the LSPM is modelled by applying non-homogeneous turbulence conditions. The mean wind velocities governed by the topography of the region and the surface fluxes of momentum and heat are calculated by the RAMS code. A moving least squares (MLS) technique is introduced to calculate the concentration of radionuclides at ground level. The numerically calculated vertical profiles of wind velocity and temperature are compared with observed data. The results obtained demonstrate that in regions of complex terrain it is not sufficient to model the atmospheric dispersion of particles using a straight-line Gaussian plume model, and that by utilising a Lagrangian stochastic particle model and regional atmospheric modelling system a much more realistic estimation of the dispersion in such a hypothetical scenario was ascertained. The particle dispersion results for a 12 h ground release show that a triangular area of about 400 km(2) situated in the north-west quadrant of release is under radiological threat. The particle distribution shows that the use of a Gaussian plume model (GPM) in such situations will yield quite misleading results.
Stochastic uncertainty analysis for unconfined flow systems
Liu, Gaisheng; Zhang, Dongxiao; Lu, Zhiming
2006-01-01
A new stochastic approach proposed by Zhang and Lu (2004), called the Karhunen‐Loeve decomposition‐based moment equation (KLME), has been extended to solving nonlinear, unconfined flow problems in randomly heterogeneous aquifers. This approach is on the basis of an innovative combination of Karhunen‐Loeve decomposition, polynomial expansion, and perturbation methods. The random log‐transformed hydraulic conductivity field (lnKS) is first expanded into a series in terms of orthogonal Gaussian standard random variables with their coefficients obtained as the eigenvalues and eigenfunctions of the covariance function of lnKS. Next, head h is decomposed as a perturbation expansion series Σh(m), where h(m) represents the mth‐order head term with respect to the standard deviation of lnKS. Then h(m) is further expanded into a polynomial series of m products of orthogonal Gaussian standard random variables whose coefficients hi1,i2,...,im(m) are deterministic and solved sequentially from low to high expansion orders using MODFLOW‐2000. Finally, the statistics of head and flux are computed using simple algebraic operations on hi1,i2,...,im(m). A series of numerical test results in 2‐D and 3‐D unconfined flow systems indicated that the KLME approach is effective in estimating the mean and (co)variance of both heads and fluxes and requires much less computational effort as compared to the traditional Monte Carlo simulation technique.
Hermite-Hadamard type inequality for φ{sub h}-convex stochastic processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarıkaya, Mehmet Zeki, E-mail: sarikayamz@gmail.com; Kiriş, Mehmet Eyüp, E-mail: kiris@aku.edu.tr; Çelik, Nuri, E-mail: ncelik@bartin.edu.tr
2016-04-18
The main aim of the present paper is to introduce φ{sub h}-convex stochastic processes and we investigate main properties of these mappings. Moreover, we prove the Hadamard-type inequalities for φ{sub h}-convex stochastic processes. We also give some new general inequalities for φ{sub h}-convex stochastic processes.
The applications of Complexity Theory and Tsallis Non-extensive Statistics at Solar Plasma Dynamics
NASA Astrophysics Data System (ADS)
Pavlos, George
2015-04-01
As the solar plasma lives far from equilibrium it is an excellent laboratory for testing complexity theory and non-equilibrium statistical mechanics. In this study, we present the highlights of complexity theory and Tsallis non extensive statistical mechanics as concerns their applications at solar plasma dynamics, especially at sunspot, solar flare and solar wind phenomena. Generally, when a physical system is driven far from equilibrium states some novel characteristics can be observed related to the nonlinear character of dynamics. Generally, the nonlinearity in space plasma dynamics can generate intermittent turbulence with the typical characteristics of the anomalous diffusion process and strange topologies of stochastic space plasma fields (velocity and magnetic fields) caused by the strange dynamics and strange kinetics (Zaslavsky, 2002). In addition, according to Zelenyi and Milovanov (2004) the complex character of the space plasma system includes the existence of non-equilibrium (quasi)-stationary states (NESS) having the topology of a percolating fractal set. The stabilization of a system near the NESS is perceived as a transition into a turbulent state determined by self-organization processes. The long-range correlation effects manifest themselves as a strange non-Gaussian behavior of kinetic processes near the NESS plasma state. The complex character of space plasma can also be described by the non-extensive statistical thermodynamics pioneered by Tsallis, which offers a consistent and effective theoretical framework, based on a generalization of Boltzmann - Gibbs (BG) entropy, to describe far from equilibrium nonlinear complex dynamics (Tsallis, 2009). In a series of recent papers, the hypothesis of Tsallis non-extensive statistics in magnetosphere, sunspot dynamics, solar flares, solar wind and space plasma in general, was tested and verified (Karakatsanis et al., 2013; Pavlos et al., 2014; 2015). Our study includes the analysis of solar plasma time series at three cases: sunspot index, solar flare and solar wind data. The non-linear analysis of the sunspot index is embedded in the non-extensive statistical theory of Tsallis (1988; 2004; 2009). The q-triplet of Tsallis, as well as the correlation dimension and the Lyapunov exponent spectrum were estimated for the SVD components of the sunspot index timeseries. Also the multifractal scaling exponent spectrum f(a), the generalized Renyi dimension spectrum D(q) and the spectrum J(p) of the structure function exponents were estimated experimentally and theoretically by using the q-entropy principle included in Tsallis non-extensive statistical theory, following Arimitsu and Arimitsu (2000, 2001). Our analysis showed clearly the following: (a) a phase transition process in the solar dynamics from high dimensional non-Gaussian SOC state to a low dimensional non-Gaussian chaotic state, (b) strong intermittent solar turbulence and anomalous (multifractal) diffusion solar process, which is strengthened as the solar dynamics makes a phase transition to low dimensional chaos in accordance to Ruzmaikin, Zelenyi and Milovanov's studies (Zelenyi and Milovanov, 1991; Milovanov and Zelenyi, 1993; Ruzmakin et al., 1996), (c) faithful agreement of Tsallis non-equilibrium statistical theory with the experimental estimations of: (i) non-Gaussian probability distribution function P(x), (ii) multifractal scaling exponent spectrum f(a) and generalized Renyi dimension spectrum Dq, (iii) exponent spectrum J(p) of the structure functions estimated for the sunspot index and its underlying non equilibrium solar dynamics. Also, the q-triplet of Tsallis as well as the correlation dimension and the Lyapunov exponent spectrum were estimated for the singular value decomposition (SVD) components of the solar flares timeseries. Also the multifractal scaling exponent spectrum f(a), the generalized Renyi dimension spectrum D(q) and the spectrum J(p) of the structure function exponents were estimated experimentally and theoretically by using the q-entropy principle included in Tsallis non-extensive statistical theory, following Arimitsu and Arimitsu (2000). Our analysis showed clearly the following: (a) a phase transition process in the solar flare dynamics from a high dimensional non-Gaussian self-organized critical (SOC) state to a low dimensional also non-Gaussian chaotic state, (b) strong intermittent solar corona turbulence and an anomalous (multifractal) diffusion solar corona process, which is strengthened as the solar corona dynamics makes a phase transition to low dimensional chaos, (c) faithful agreement of Tsallis non-equilibrium statistical theory with the experimental estimations of the functions: (i) non-Gaussian probability distribution function P(x), (ii) f(a) and D(q), and (iii) J(p) for the solar flares timeseries and its underlying non-equilibrium solar dynamics, and (d) the solar flare dynamical profile is revealed similar to the dynamical profile of the solar corona zone as far as the phase transition process from self-organized criticality (SOC) to chaos state. However the solar low corona (solar flare) dynamical characteristics can be clearly discriminated from the dynamical characteristics of the solar convection zone. At last we present novel results revealing non-equilibrium phase transition processes in the solar wind plasma during a strong shock event, which can take place in Solar wind plasma system. The solar wind plasma as well as the entire solar plasma system is a typical case of stochastic spatiotemporal distribution of physical state variables such as force fields ( ) and matter fields (particle and current densities or bulk plasma distributions). This study shows clearly the non-extensive and non-Gaussian character of the solar wind plasma and the existence of multi-scale strong correlations from the microscopic to the macroscopic level. It also underlines the inefficiency of classical magneto-hydro-dynamic (MHD) or plasma statistical theories, based on the classical central limit theorem (CLT), to explain the complexity of the solar wind dynamics, since these theories include smooth and differentiable spatial-temporal functions (MHD theory) or Gaussian statistics (Boltzmann-Maxwell statistical mechanics). On the contrary, the results of this study indicate the presence of non-Gaussian non-extensive statistics with heavy tails probability distribution functions, which are related to the q-extension of CLT. Finally, the results of this study can be understood in the framework of modern theoretical concepts such as non-extensive statistical mechanics (Tsallis, 2009), fractal topology (Zelenyi and Milovanov, 2004), turbulence theory (Frisch, 1996), strange dynamics (Zaslavsky, 2002), percolation theory (Milovanov, 1997), anomalous diffusion theory and anomalous transport theory (Milovanov, 2001), fractional dynamics (Tarasov, 2013) and non-equilibrium phase transition theory (Chang, 1992). References 1. T. Arimitsu, N. Arimitsu, Tsallis statistics and fully developed turbulence, J. Phys. A: Math. Gen. 33 (2000) L235. 2. T. Arimitsu, N. Arimitsu, Analysis of turbulence by statistics based on generalized entropies, Physica A 295 (2001) 177-194. 3. T. Chang, Low-dimensional behavior and symmetry braking of stochastic systems near criticality can these effects be observed in space and in the laboratory, IEEE 20 (6) (1992) 691-694. 4. U. Frisch, Turbulence, Cambridge University Press, Cambridge, UK, 1996, p. 310. 5. L.P. Karakatsanis, G.P. Pavlos, M.N. Xenakis, Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma. Part two: Solar flares dynamics, Physica A 392 (2013) 3920-3944. 6. A.V. Milovanov, Topological proof for the Alexander-Orbach conjecture, Phys. Rev. E 56 (3) (1997) 2437-2446. 7. A.V. Milovanov, L.M. Zelenyi, Fracton excitations as a driving mechanism for the self-organized dynamical structuring in the solar wind, Astrophys. Space Sci. 264 (1-4) (1999) 317-345. 8. A.V. Milovanov, Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: large-scale behavior of the turbulent transport coefficient, Phys. Rev. E 63 (2001) 047301. 9. G.P. Pavlos, et al., Universality of non-extensive Tsallis statistics and time series analysis: Theory and applications, Physica A 395 (2014) 58-95. 10. G.P. Pavlos, et al., Tsallis non-extensive statistics and solar wind plasma complexity, Physica A 422 (2015) 113-135. 11. A.A. Ruzmaikin, et al., Spectral properties of solar convection and diffusion, ApJ 471 (1996) 1022. 12. V.E. Tarasov, Review of some promising fractional physical models, Internat. J. Modern Phys. B 27 (9) (2013) 1330005. 13. C. Tsallis, Possible generalization of BG statistics, J. Stat. Phys. J 52 (1-2) (1988) 479-487. 14. C. Tsallis, Nonextensive statistical mechanics: construction and physical interpretation, in: G.M. Murray, C. Tsallis (Eds.), Nonextensive Entropy-Interdisciplinary Applications, Oxford Univ. Press, 2004, pp. 1-53. 15. C. Tsallis, Introduction to Non-Extensive Statistical Mechanics, Springer, 2009. 16. G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Physics Reports 371 (2002) 461-580. 17. L.M. Zelenyi, A.V. Milovanov, Fractal properties of sunspots, Sov. Astron. Lett. 17 (6) (1991) 425. 18. L.M. Zelenyi, A.V. Milovanov, Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics, Phys.-Usp. 47 (8), (2004) 749-788.
Stable Lévy motion with inverse Gaussian subordinator
NASA Astrophysics Data System (ADS)
Kumar, A.; Wyłomańska, A.; Gajda, J.
2017-09-01
In this paper we study the stable Lévy motion subordinated by the so-called inverse Gaussian process. This process extends the well known normal inverse Gaussian (NIG) process introduced by Barndorff-Nielsen, which arises by subordinating ordinary Brownian motion (with drift) with inverse Gaussian process. The NIG process found many interesting applications, especially in financial data description. We discuss here the main features of the introduced subordinated process, such as distributional properties, existence of fractional order moments and asymptotic tail behavior. We show the connection of the process with continuous time random walk. Further, the governing fractional partial differential equations for the probability density function is also obtained. Moreover, we discuss the asymptotic distribution of sample mean square displacement, the main tool in detection of anomalous diffusion phenomena (Metzler et al., 2014). In order to apply the stable Lévy motion time-changed by inverse Gaussian subordinator we propose a step-by-step procedure of parameters estimation. At the end, we show how the examined process can be useful to model financial time series.
A stochastic-field description of finite-size spiking neural networks
Longtin, André
2017-01-01
Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity—the density of active neurons per unit time—is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics. PMID:28787447
High-Dimensional Bayesian Geostatistics
Banerjee, Sudipto
2017-01-01
With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as “priors” for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings. PMID:29391920
High-Dimensional Bayesian Geostatistics.
Banerjee, Sudipto
2017-06-01
With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as "priors" for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings.
Quantum stochastic calculus associated with quadratic quantum noises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr; Sinha, Kalyan B., E-mail: kbs-jaya@yahoo.co.in
2016-02-15
We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculusmore » extends the Hudson-Parthasarathy quantum stochastic calculus.« less
The Laplace method for probability measures in Banach spaces
NASA Astrophysics Data System (ADS)
Piterbarg, V. I.; Fatalov, V. R.
1995-12-01
Contents §1. Introduction Chapter I. Asymptotic analysis of continual integrals in Banach space, depending on a large parameter §2. The large deviation principle and logarithmic asymptotics of continual integrals §3. Exact asymptotics of Gaussian integrals in Banach spaces: the Laplace method 3.1. The Laplace method for Gaussian integrals taken over the whole Hilbert space: isolated minimum points ([167], I) 3.2. The Laplace method for Gaussian integrals in Hilbert space: the manifold of minimum points ([167], II) 3.3. The Laplace method for Gaussian integrals in Banach space ([90], [174], [176]) 3.4. Exact asymptotics of large deviations of Gaussian norms §4. The Laplace method for distributions of sums of independent random elements with values in Banach space 4.1. The case of a non-degenerate minimum point ([137], I) 4.2. A degenerate isolated minimum point and the manifold of minimum points ([137], II) §5. Further examples 5.1. The Laplace method for the local time functional of a Markov symmetric process ([217]) 5.2. The Laplace method for diffusion processes, a finite number of non-degenerate minimum points ([116]) 5.3. Asymptotics of large deviations for Brownian motion in the Hölder norm 5.4. Non-asymptotic expansion of a strong stable law in Hilbert space ([41]) Chapter II. The double sum method - a version of the Laplace method in the space of continuous functions §6. Pickands' method of double sums 6.1. General situations 6.2. Asymptotics of the distribution of the maximum of a Gaussian stationary process 6.3. Asymptotics of the probability of a large excursion of a Gaussian non-stationary process §7. Probabilities of large deviations of trajectories of Gaussian fields 7.1. Homogeneous fields and fields with constant dispersion 7.2. Finitely many maximum points of dispersion 7.3. Manifold of maximum points of dispersion 7.4. Asymptotics of distributions of maxima of Wiener fields §8. Exact asymptotics of large deviations of the norm of Gaussian vectors and processes with values in the spaces L_k^p and l^2. Gaussian fields with the set of parameters in Hilbert space 8.1 Exact asymptotics of the distribution of the l_k^p-norm of a Gaussian finite-dimensional vector with dependent coordinates, p > 1 8.2. Exact asymptotics of probabilities of high excursions of trajectories of processes of type \\chi^2 8.3. Asymptotics of the probabilities of large deviations of Gaussian processes with a set of parameters in Hilbert space [74] 8.4. Asymptotics of distributions of maxima of the norms of l^2-valued Gaussian processes 8.5. Exact asymptotics of large deviations for the l^2-valued Ornstein-Uhlenbeck process Bibliography
NASA Astrophysics Data System (ADS)
Das, Siddhartha; Siopsis, George; Weedbrook, Christian
2018-02-01
With the significant advancement in quantum computation during the past couple of decades, the exploration of machine-learning subroutines using quantum strategies has become increasingly popular. Gaussian process regression is a widely used technique in supervised classical machine learning. Here we introduce an algorithm for Gaussian process regression using continuous-variable quantum systems that can be realized with technology based on photonic quantum computers under certain assumptions regarding distribution of data and availability of efficient quantum access. Our algorithm shows that by using a continuous-variable quantum computer a dramatic speedup in computing Gaussian process regression can be achieved, i.e., the possibility of exponentially reducing the time to compute. Furthermore, our results also include a continuous-variable quantum-assisted singular value decomposition method of nonsparse low rank matrices and forms an important subroutine in our Gaussian process regression algorithm.
Computational analysis of the roles of biochemical reactions in anomalous diffusion dynamics
NASA Astrophysics Data System (ADS)
Naruemon, Rueangkham; Charin, Modchang
2016-04-01
Most biochemical processes in cells are usually modeled by reaction-diffusion (RD) equations. In these RD models, the diffusive process is assumed to be Gaussian. However, a growing number of studies have noted that intracellular diffusion is anomalous at some or all times, which may result from a crowded environment and chemical kinetics. This work aims to computationally study the effects of chemical reactions on the diffusive dynamics of RD systems by using both stochastic and deterministic algorithms. Numerical method to estimate the mean-square displacement (MSD) from a deterministic algorithm is also investigated. Our computational results show that anomalous diffusion can be solely due to chemical reactions. The chemical reactions alone can cause anomalous sub-diffusion in the RD system at some or all times. The time-dependent anomalous diffusion exponent is found to depend on many parameters, including chemical reaction rates, reaction orders, and chemical concentrations. Project supported by the Thailand Research Fund and Mahidol University (Grant No. TRG5880157), the Thailand Center of Excellence in Physics (ThEP), CHE, Thailand, and the Development Promotion of Science and Technology.
Transient aging in fractional Brownian and Langevin-equation motion.
Kursawe, Jochen; Schulz, Johannes; Metzler, Ralf
2013-12-01
Stochastic processes driven by stationary fractional Gaussian noise, that is, fractional Brownian motion and fractional Langevin-equation motion, are usually considered to be ergodic in the sense that, after an algebraic relaxation, time and ensemble averages of physical observables coincide. Recently it was demonstrated that fractional Brownian motion and fractional Langevin-equation motion under external confinement are transiently nonergodic-time and ensemble averages behave differently-from the moment when the particle starts to sense the confinement. Here we show that these processes also exhibit transient aging, that is, physical observables such as the time-averaged mean-squared displacement depend on the time lag between the initiation of the system at time t=0 and the start of the measurement at the aging time t(a). In particular, it turns out that for fractional Langevin-equation motion the aging dependence on t(a) is different between the cases of free and confined motion. We obtain explicit analytical expressions for the aged moments of the particle position as well as the time-averaged mean-squared displacement and present a numerical analysis of this transient aging phenomenon.
Combined optimization of image-gathering and image-processing systems for scene feature detection
NASA Technical Reports Server (NTRS)
Halyo, Nesim; Arduini, Robert F.; Samms, Richard W.
1987-01-01
The relationship between the image gathering and image processing systems for minimum mean squared error estimation of scene characteristics is investigated. A stochastic optimization problem is formulated where the objective is to determine a spatial characteristic of the scene rather than a feature of the already blurred, sampled and noisy image data. An analytical solution for the optimal characteristic image processor is developed. The Wiener filter for the sampled image case is obtained as a special case, where the desired characteristic is scene restoration. Optimal edge detection is investigated using the Laplacian operator x G as the desired characteristic, where G is a two dimensional Gaussian distribution function. It is shown that the optimal edge detector compensates for the blurring introduced by the image gathering optics, and notably, that it is not circularly symmetric. The lack of circular symmetry is largely due to the geometric effects of the sampling lattice used in image acquisition. The optimal image gathering optical transfer function is also investigated and the results of a sensitivity analysis are shown.
Wiggins, Paul A
2015-07-21
This article describes the application of a change-point algorithm to the analysis of stochastic signals in biological systems whose underlying state dynamics consist of transitions between discrete states. Applications of this analysis include molecular-motor stepping, fluorophore bleaching, electrophysiology, particle and cell tracking, detection of copy number variation by sequencing, tethered-particle motion, etc. We present a unified approach to the analysis of processes whose noise can be modeled by Gaussian, Wiener, or Ornstein-Uhlenbeck processes. To fit the model, we exploit explicit, closed-form algebraic expressions for maximum-likelihood estimators of model parameters and estimated information loss of the generalized noise model, which can be computed extremely efficiently. We implement change-point detection using the frequentist information criterion (which, to our knowledge, is a new information criterion). The frequentist information criterion specifies a single, information-based statistical test that is free from ad hoc parameters and requires no prior probability distribution. We demonstrate this information-based approach in the analysis of simulated and experimental tethered-particle-motion data. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Derivation of the spin-glass order parameter from stochastic thermodynamics
NASA Astrophysics Data System (ADS)
Crisanti, A.; Picco, M.; Ritort, F.
2018-05-01
A fluctuation relation is derived to extract the order parameter function q (x ) in weakly ergodic systems. The relation is based on measuring and classifying entropy production fluctuations according to the value of the overlap q between configurations. For a fixed value of q , entropy production fluctuations are Gaussian distributed allowing us to derive the quasi-FDT so characteristic of aging systems. The theory is validated by extracting the q (x ) in various types of glassy models. It might be generally applicable to other nonequilibrium systems and experimental small systems.
Effects on the CMB from magnetic field dissipation before recombination
NASA Astrophysics Data System (ADS)
Kunze, Kerstin E.
2017-09-01
Magnetic fields present before decoupling are damped due to radiative viscosity. This energy injection affects the thermal and ionization history of the cosmic plasma. The implications for the CMB anisotropies and polarization are investigated for different parameter choices of a nonhelical stochastic magnetic field. Assuming a Gaussian smoothing scale determined by the magnetic damping wave number at recombination, it is found that magnetic fields with present-day strength less than 0.1 nG and negative magnetic spectral indices have a sizable effect on the CMB temperature anisotropies and polarization.
A Simple Mechanism for Cooperation in the Well-Mixed Prisoner's Dilemma Game
NASA Astrophysics Data System (ADS)
Perc, Matjaž
2008-11-01
I show that the addition of Gaussian noise to the payoffs is able to stabilize cooperation in well-mixed populations, where individuals play the prisoner's dilemma game. The impact of stochasticity on the evolutionary dynamics can be expressed deterministically via a simple small-noise expansion of multiplicative noisy terms. In particular, cooperation emerges as a stable noise-induced steady state in the replicator dynamics. Due to the generality of the employed theoretical framework, presented results should prove valuable in various scientific disciplines, ranging from economy to ecology.
Stochastic models for inferring genetic regulation from microarray gene expression data.
Tian, Tianhai
2010-03-01
Microarray expression profiles are inherently noisy and many different sources of variation exist in microarray experiments. It is still a significant challenge to develop stochastic models to realize noise in microarray expression profiles, which has profound influence on the reverse engineering of genetic regulation. Using the target genes of the tumour suppressor gene p53 as the test problem, we developed stochastic differential equation models and established the relationship between the noise strength of stochastic models and parameters of an error model for describing the distribution of the microarray measurements. Numerical results indicate that the simulated variance from stochastic models with a stochastic degradation process can be represented by a monomial in terms of the hybridization intensity and the order of the monomial depends on the type of stochastic process. The developed stochastic models with multiple stochastic processes generated simulations whose variance is consistent with the prediction of the error model. This work also established a general method to develop stochastic models from experimental information. 2009 Elsevier Ireland Ltd. All rights reserved.
Cox process representation and inference for stochastic reaction-diffusion processes
NASA Astrophysics Data System (ADS)
Schnoerr, David; Grima, Ramon; Sanguinetti, Guido
2016-05-01
Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling.
Feynman-Kac formula for stochastic hybrid systems.
Bressloff, Paul C
2017-01-01
We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.
Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes
NASA Technical Reports Server (NTRS)
Williams Colin P.
1999-01-01
Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.
Efficient Mean Field Variational Algorithm for Data Assimilation (Invited)
NASA Astrophysics Data System (ADS)
Vrettas, M. D.; Cornford, D.; Opper, M.
2013-12-01
Data assimilation algorithms combine available observations of physical systems with the assumed model dynamics in a systematic manner, to produce better estimates of initial conditions for prediction. Broadly they can be categorized in three main approaches: (a) sequential algorithms, (b) sampling methods and (c) variational algorithms which transform the density estimation problem to an optimization problem. However, given finite computational resources, only a handful of ensemble Kalman filters and 4DVar algorithms have been applied operationally to very high dimensional geophysical applications, such as weather forecasting. In this paper we present a recent extension to our variational Bayesian algorithm which seeks the ';optimal' posterior distribution over the continuous time states, within a family of non-stationary Gaussian processes. Our initial work on variational Bayesian approaches to data assimilation, unlike the well-known 4DVar method which seeks only the most probable solution, computes the best time varying Gaussian process approximation to the posterior smoothing distribution for dynamical systems that can be represented by stochastic differential equations. This approach was based on minimising the Kullback-Leibler divergence, over paths, between the true posterior and our Gaussian process approximation. Whilst the observations were informative enough to keep the posterior smoothing density close to Gaussian the algorithm proved very effective on low dimensional systems (e.g. O(10)D). However for higher dimensional systems, the high computational demands make the algorithm prohibitively expensive. To overcome the difficulties presented in the original framework and make our approach more efficient in higher dimensional systems we have been developing a new mean field version of the algorithm which treats the state variables at any given time as being independent in the posterior approximation, while still accounting for their relationships in the mean solution arising from the original system dynamics. Here we present this new mean field approach, illustrating its performance on a range of benchmark data assimilation problems whose dimensionality varies from O(10) to O(10^3)D. We emphasise that the variational Bayesian approach we adopt, unlike other variational approaches, provides a natural bound on the marginal likelihood of the observations given the model parameters which also allows for inference of (hyper-) parameters such as observational errors, parameters in the dynamical model and model error representation. We also stress that since our approach is intrinsically parallel it can be implemented very efficiently to address very long data assimilation time windows. Moreover, like most traditional variational approaches our Bayesian variational method has the benefit of being posed as an optimisation problem therefore its complexity can be tuned to the available computational resources. We finish with a sketch of possible future directions.
Likelihood for transcriptions in a genetic regulatory system under asymmetric stable Lévy noise
NASA Astrophysics Data System (ADS)
Wang, Hui; Cheng, Xiujun; Duan, Jinqiao; Kurths, Jürgen; Li, Xiaofan
2018-01-01
This work is devoted to investigating the evolution of concentration in a genetic regulation system, when the synthesis reaction rate is under additive and multiplicative asymmetric stable Lévy fluctuations. By focusing on the impact of skewness (i.e., non-symmetry) in the probability distributions of noise, we find that via examining the mean first exit time (MFET) and the first escape probability (FEP), the asymmetric fluctuations, interacting with nonlinearity in the system, lead to peculiar likelihood for transcription. This includes, in the additive noise case, realizing higher likelihood of transcription for larger positive skewness (i.e., asymmetry) index β, causing a stochastic bifurcation at the non-Gaussianity index value α = 1 (i.e., it is a separating point or line for the likelihood for transcription), and achieving a turning point at the threshold value β ≈ - 0.5 (i.e., beyond which the likelihood for transcription suddenly reversed for α values). The stochastic bifurcation and turning point phenomena do not occur in the symmetric noise case (β = 0). While in the multiplicative noise case, non-Gaussianity index value α = 1 is a separating point or line for both the MFET and the FEP. We also investigate the noise enhanced stability phenomenon. Additionally, we are able to specify the regions in the whole parameter space for the asymmetric noise, in which we attain desired likelihood for transcription. We have conducted a series of numerical experiments in "regulating" the likelihood of gene transcription by tuning asymmetric stable Lévy noise indexes. This work offers insights for possible ways of achieving gene regulation in experimental research.
Information analysis of posterior canal afferents in the turtle, Trachemys scripta elegans.
Rowe, Michael H; Neiman, Alexander B
2012-01-24
We have used sinusoidal and band-limited Gaussian noise stimuli along with information measures to characterize the linear and non-linear responses of morpho-physiologically identified posterior canal (PC) afferents and to examine the relationship between mutual information rate and other physiological parameters. Our major findings are: 1) spike generation in most PC afferents is effectively a stochastic renewal process, and spontaneous discharges are fully characterized by their first order statistics; 2) a regular discharge, as measured by normalized coefficient of variation (cv*), reduces intrinsic noise in afferent discharges at frequencies below the mean firing rate; 3) coherence and mutual information rates, calculated from responses to band-limited Gaussian noise, are jointly determined by gain and intrinsic noise (discharge regularity), the two major determinants of signal to noise ratio in the afferent response; 4) measures of optimal non-linear encoding were only moderately greater than optimal linear encoding, indicating that linear stimulus encoding is limited primarily by internal noise rather than by non-linearities; and 5) a leaky integrate and fire model reproduces these results and supports the suggestion that the combination of high discharge regularity and high discharge rates serves to extend the linear encoding range of afferents to higher frequencies. These results provide a framework for future assessments of afferent encoding of signals generated during natural head movements and for comparison with coding strategies used by other sensory systems. This article is part of a Special Issue entitled: Neural Coding. Copyright © 2011 Elsevier B.V. All rights reserved.
Lévy flight with absorption: A model for diffusing diffusivity with long tails
NASA Astrophysics Data System (ADS)
Jain, Rohit; Sebastian, K. L.
2017-03-01
We consider diffusion of a particle in rearranging environment, so that the diffusivity of the particle is a stochastic function of time. In our previous model of "diffusing diffusivity" [Jain and Sebastian, J. Phys. Chem. B 120, 3988 (2016), 10.1021/acs.jpcb.6b01527], it was shown that the mean square displacement of particle remains Fickian, i.e.,
NASA Astrophysics Data System (ADS)
Gholizadeh Doonechaly, N.; Rahman, S. S.
2012-05-01
Simulation of naturally fractured reservoirs offers significant challenges due to the lack of a methodology that can utilize field data. To date several methods have been proposed by authors to characterize naturally fractured reservoirs. Among them is the unfolding/folding method which offers some degree of accuracy in estimating the probability of the existence of fractures in a reservoir. Also there are statistical approaches which integrate all levels of field data to simulate the fracture network. This approach, however, is dependent on the availability of data sources, such as seismic attributes, core descriptions, well logs, etc. which often make it difficult to obtain field wide. In this study a hybrid tectono-stochastic simulation is proposed to characterize a naturally fractured reservoir. A finite element based model is used to simulate the tectonic event of folding and unfolding of a geological structure. A nested neuro-stochastic technique is used to develop the inter-relationship between the data and at the same time it utilizes the sequential Gaussian approach to analyze field data along with fracture probability data. This approach has the ability to overcome commonly experienced discontinuity of the data in both horizontal and vertical directions. This hybrid technique is used to generate a discrete fracture network of a specific Australian gas reservoir, Palm Valley in the Northern Territory. Results of this study have significant benefit in accurately describing fluid flow simulation and well placement for maximal hydrocarbon recovery.
Quantum key distillation from Gaussian states by Gaussian operations.
Navascués, M; Bae, J; Cirac, J I; Lewestein, M; Sanpera, A; Acín, A
2005-01-14
We study the secrecy properties of Gaussian states under Gaussian operations. Although such operations are useless for quantum distillation, we prove that it is possible to distill a secret key secure against any attack from sufficiently entangled Gaussian states with nonpositive partial transposition. Moreover, all such states allow for key distillation, when Eve is assumed to perform finite-size coherent attacks before the reconciliation process.
Kendall, G M; Wakeford, R; Athanson, M; Vincent, T J; Carter, E J; McColl, N P; Little, M P
2016-03-01
Gamma radiation from natural sources (including directly ionising cosmic rays) is an important component of background radiation. In the present paper, indoor measurements of naturally occurring gamma rays that were undertaken as part of the UK Childhood Cancer Study are summarised, and it is shown that these are broadly compatible with an earlier UK National Survey. The distribution of indoor gamma-ray dose rates in Great Britain is approximately normal with mean 96 nGy/h and standard deviation 23 nGy/h. Directly ionising cosmic rays contribute about one-third of the total. The expanded dataset allows a more detailed description than previously of indoor gamma-ray exposures and in particular their geographical variation. Various strategies for predicting indoor natural background gamma-ray dose rates were explored. In the first of these, a geostatistical model was fitted, which assumes an underlying geologically determined spatial variation, superimposed on which is a Gaussian stochastic process with Matérn correlation structure that models the observed tendency of dose rates in neighbouring houses to correlate. In the second approach, a number of dose-rate interpolation measures were first derived, based on averages over geologically or administratively defined areas or using distance-weighted averages of measurements at nearest-neighbour points. Linear regression was then used to derive an optimal linear combination of these interpolation measures. The predictive performances of the two models were compared via cross-validation, using a randomly selected 70 % of the data to fit the models and the remaining 30 % to test them. The mean square error (MSE) of the linear-regression model was lower than that of the Gaussian-Matérn model (MSE 378 and 411, respectively). The predictive performance of the two candidate models was also evaluated via simulation; the OLS model performs significantly better than the Gaussian-Matérn model.
Stochastic characteristics and Second Law violations of atomic fluids in Couette flow
NASA Astrophysics Data System (ADS)
Raghavan, Bharath V.; Karimi, Pouyan; Ostoja-Starzewski, Martin
2018-04-01
Using Non-equilibrium Molecular Dynamics (NEMD) simulations, we study the statistical properties of an atomic fluid undergoing planar Couette flow, in which particles interact via a Lennard-Jones potential. We draw a connection between local density contrast and temporal fluctuations in the shear stress, which arise naturally through the equivalence between the dissipation function and entropy production according to the fluctuation theorem. We focus on the shear stress and the spatio-temporal density fluctuations and study the autocorrelations and spectral densities of the shear stress. The bispectral density of the shear stress is used to measure the degree of departure from a Gaussian model and the degree of nonlinearity induced in the system owing to the applied strain rate. More evidence is provided by the probability density function of the shear stress. We use the Information Theory to account for the departure from Gaussian statistics and to develop a more general probability distribution function that captures this broad range of effects. By accounting for negative shear stress increments, we show how this distribution preserves the violations of the Second Law of Thermodynamics observed in planar Couette flow of atomic fluids, and also how it captures the non-Gaussian nature of the system by allowing for non-zero higher moments. We also demonstrate how the temperature affects the band-width of the shear-stress and how the density affects its Power Spectral Density, thus determining the conditions under which the shear-stress acts is a narrow-band or wide-band random process. We show that changes in the statistical characteristics of the parameters of interest occur at a critical strain rate at which an ordering transition occurs in the fluid causing shear thinning and affecting its stability. A critical strain rate of this kind is also predicted by the Loose-Hess stability criterion.
NASA Astrophysics Data System (ADS)
Ingo, Carson; Sui, Yi; Chen, Yufen; Parrish, Todd; Webb, Andrew; Ronen, Itamar
2015-03-01
In this paper, we provide a context for the modeling approaches that have been developed to describe non-Gaussian diffusion behavior, which is ubiquitous in diffusion weighted magnetic resonance imaging of water in biological tissue. Subsequently, we focus on the formalism of the continuous time random walk theory to extract properties of subdiffusion and superdiffusion through novel simplifications of the Mittag-Leffler function. For the case of time-fractional subdiffusion, we compute the kurtosis for the Mittag-Leffler function, which provides both a connection and physical context to the much-used approach of diffusional kurtosis imaging. We provide Monte Carlo simulations to illustrate the concepts of anomalous diffusion as stochastic processes of the random walk. Finally, we demonstrate the clinical utility of the Mittag-Leffler function as a model to describe tissue microstructure through estimations of subdiffusion and kurtosis with diffusion MRI measurements in the brain of a chronic ischemic stroke patient.
Environmentally adaptive processing for shallow ocean applications: A sequential Bayesian approach.
Candy, J V
2015-09-01
The shallow ocean is a changing environment primarily due to temperature variations in its upper layers directly affecting sound propagation throughout. The need to develop processors capable of tracking these changes implies a stochastic as well as an environmentally adaptive design. Bayesian techniques have evolved to enable a class of processors capable of performing in such an uncertain, nonstationary (varying statistics), non-Gaussian, variable shallow ocean environment. A solution to this problem is addressed by developing a sequential Bayesian processor capable of providing a joint solution to the modal function tracking and environmental adaptivity problem. Here, the focus is on the development of both a particle filter and an unscented Kalman filter capable of providing reasonable performance for this problem. These processors are applied to hydrophone measurements obtained from a vertical array. The adaptivity problem is attacked by allowing the modal coefficients and/or wavenumbers to be jointly estimated from the noisy measurement data along with tracking of the modal functions while simultaneously enhancing the noisy pressure-field measurements.
Statistical analysis of Hasegawa-Wakatani turbulence
NASA Astrophysics Data System (ADS)
Anderson, Johan; Hnat, Bogdan
2017-06-01
Resistive drift wave turbulence is a multipurpose paradigm that can be used to understand transport at the edge of fusion devices. The Hasegawa-Wakatani model captures the essential physics of drift turbulence while retaining the simplicity needed to gain a qualitative understanding of this process. We provide a theoretical interpretation of numerically generated probability density functions (PDFs) of intermittent events in Hasegawa-Wakatani turbulence with enforced equipartition of energy in large scale zonal flows, and small scale drift turbulence. We find that for a wide range of adiabatic index values, the stochastic component representing the small scale turbulent eddies of the flow, obtained from the autoregressive integrated moving average model, exhibits super-diffusive statistics, consistent with intermittent transport. The PDFs of large events (above one standard deviation) are well approximated by the Laplace distribution, while small events often exhibit a Gaussian character. Furthermore, there exists a strong influence of zonal flows, for example, via shearing and then viscous dissipation maintaining a sub-diffusive character of the fluxes.
NASA Astrophysics Data System (ADS)
Ide, Satoshi; Maury, Julie
2018-04-01
Tectonic tremors, low-frequency earthquakes, very low-frequency earthquakes, and slow slip events are all regarded as components of broadband slow earthquakes, which can be modeled as a stochastic process using Brownian motion. Here we show that the Brownian slow earthquake model provides theoretical relationships among the seismic moment, seismic energy, and source duration of slow earthquakes and that this model explains various estimates of these quantities in three major subduction zones: Japan, Cascadia, and Mexico. While the estimates for these three regions are similar at the seismological frequencies, the seismic moment rates are significantly different in the geodetic observation. This difference is ascribed to the difference in the characteristic times of the Brownian slow earthquake model, which is controlled by the width of the source area. We also show that the model can include non-Gaussian fluctuations, which better explains recent findings of a near-constant source duration for low-frequency earthquake families.
Gaussian Process Interpolation for Uncertainty Estimation in Image Registration
Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William
2014-01-01
Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127
Resource theory of non-Gaussian operations
NASA Astrophysics Data System (ADS)
Zhuang, Quntao; Shor, Peter W.; Shapiro, Jeffrey H.
2018-05-01
Non-Gaussian states and operations are crucial for various continuous-variable quantum information processing tasks. To quantitatively understand non-Gaussianity beyond states, we establish a resource theory for non-Gaussian operations. In our framework, we consider Gaussian operations as free operations, and non-Gaussian operations as resources. We define entanglement-assisted non-Gaussianity generating power and show that it is a monotone that is nonincreasing under the set of free superoperations, i.e., concatenation and tensoring with Gaussian channels. For conditional unitary maps, this monotone can be analytically calculated. As examples, we show that the non-Gaussianity of ideal photon-number subtraction and photon-number addition equal the non-Gaussianity of the single-photon Fock state. Based on our non-Gaussianity monotone, we divide non-Gaussian operations into two classes: (i) the finite non-Gaussianity class, e.g., photon-number subtraction, photon-number addition, and all Gaussian-dilatable non-Gaussian channels; and (ii) the diverging non-Gaussianity class, e.g., the binary phase-shift channel and the Kerr nonlinearity. This classification also implies that not all non-Gaussian channels are exactly Gaussian dilatable. Our resource theory enables a quantitative characterization and a first classification of non-Gaussian operations, paving the way towards the full understanding of non-Gaussianity.
NASA Astrophysics Data System (ADS)
Main, I. G.; Bell, A. F.; Naylor, M.; Atkinson, M.; Filguera, R.; Meredith, P. G.; Brantut, N.
2012-12-01
Accurate prediction of catastrophic brittle failure in rocks and in the Earth presents a significant challenge on theoretical and practical grounds. The governing equations are not known precisely, but are known to produce highly non-linear behavior similar to those of near-critical dynamical systems, with a large and irreducible stochastic component due to material heterogeneity. In a laboratory setting mechanical, hydraulic and rock physical properties are known to change in systematic ways prior to catastrophic failure, often with significant non-Gaussian fluctuations about the mean signal at a given time, for example in the rate of remotely-sensed acoustic emissions. The effectiveness of such signals in real-time forecasting has never been tested before in a controlled laboratory setting, and previous work has often been qualitative in nature, and subject to retrospective selection bias, though it has often been invoked as a basis in forecasting natural hazard events such as volcanoes and earthquakes. Here we describe a collaborative experiment in real-time data assimilation to explore the limits of predictability of rock failure in a best-case scenario. Data are streamed from a remote rock deformation laboratory to a user-friendly portal, where several proposed physical/stochastic models can be analysed in parallel in real time, using a variety of statistical fitting techniques, including least squares regression, maximum likelihood fitting, Markov-chain Monte-Carlo and Bayesian analysis. The results are posted and regularly updated on the web site prior to catastrophic failure, to ensure a true and and verifiable prospective test of forecasting power. Preliminary tests on synthetic data with known non-Gaussian statistics shows how forecasting power is likely to evolve in the live experiments. In general the predicted failure time does converge on the real failure time, illustrating the bias associated with the 'benefit of hindsight' in retrospective analyses. Inference techniques that account explicitly for non-Gaussian statistics significantly reduce the bias, and increase the reliability and accuracy, of the forecast failure time in prospective mode.
Stochastic Community Assembly: Does It Matter in Microbial Ecology?
Zhou, Jizhong; Ning, Daliang
2017-12-01
Understanding the mechanisms controlling community diversity, functions, succession, and biogeography is a central, but poorly understood, topic in ecology, particularly in microbial ecology. Although stochastic processes are believed to play nonnegligible roles in shaping community structure, their importance relative to deterministic processes is hotly debated. The importance of ecological stochasticity in shaping microbial community structure is far less appreciated. Some of the main reasons for such heavy debates are the difficulty in defining stochasticity and the diverse methods used for delineating stochasticity. Here, we provide a critical review and synthesis of data from the most recent studies on stochastic community assembly in microbial ecology. We then describe both stochastic and deterministic components embedded in various ecological processes, including selection, dispersal, diversification, and drift. We also describe different approaches for inferring stochasticity from observational diversity patterns and highlight experimental approaches for delineating ecological stochasticity in microbial communities. In addition, we highlight research challenges, gaps, and future directions for microbial community assembly research. Copyright © 2017 American Society for Microbiology.
Extended Plefka expansion for stochastic dynamics
NASA Astrophysics Data System (ADS)
Bravi, B.; Sollich, P.; Opper, M.
2016-05-01
We propose an extension of the Plefka expansion, which is well known for the dynamics of discrete spins, to stochastic differential equations with continuous degrees of freedom and exhibiting generic nonlinearities. The scenario is sufficiently general to allow application to e.g. biochemical networks involved in metabolism and regulation. The main feature of our approach is to constrain in the Plefka expansion not just first moments akin to magnetizations, but also second moments, specifically two-time correlations and responses for each degree of freedom. The end result is an effective equation of motion for each single degree of freedom, where couplings to other variables appear as a self-coupling to the past (i.e. memory term) and a coloured noise. This constitutes a new mean field approximation that should become exact in the thermodynamic limit of a large network, for suitably long-ranged couplings. For the analytically tractable case of linear dynamics we establish this exactness explicitly by appeal to spectral methods of random matrix theory, for Gaussian couplings with arbitrary degree of symmetry.
Detection methods for stochastic gravitational-wave backgrounds: a unified treatment
NASA Astrophysics Data System (ADS)
Romano, Joseph D.; Cornish, Neil. J.
2017-04-01
We review detection methods that are currently in use or have been proposed to search for a stochastic background of gravitational radiation. We consider both Bayesian and frequentist searches using ground-based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar timing arrays; and we allow for anisotropy, non-Gaussianity, and non-standard polarization states. Our focus is on relevant data analysis issues, and not on the particular astrophysical or early Universe sources that might give rise to such backgrounds. We provide a unified treatment of these searches at the level of detector response functions, detection sensitivity curves, and, more generally, at the level of the likelihood function, since the choice of signal and noise models and prior probability distributions are actually what define the search. Pedagogical examples are given whenever possible to compare and contrast different approaches. We have tried to make the article as self-contained and comprehensive as possible, targeting graduate students and new researchers looking to enter this field.
Dual adaptive dynamic control of mobile robots using neural networks.
Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato
2009-02-01
This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.
Accommodating the ecological fallacy in disease mapping in the absence of individual exposures.
Wang, Feifei; Wang, Jian; Gelfand, Alan; Li, Fan
2017-12-30
In health exposure modeling, in particular, disease mapping, the ecological fallacy arises because the relationship between aggregated disease incidence on areal units and average exposure on those units differs from the relationship between the event of individual incidence and the associated individual exposure. This article presents a novel modeling approach to address the ecological fallacy in the least informative data setting. We assume the known population at risk with an observed incidence for a collection of areal units and, separately, environmental exposure recorded during the period of incidence at a collection of monitoring stations. We do not assume any partial individual level information or random allocation of individuals to observed exposures. We specify a conceptual incidence surface over the study region as a function of an exposure surface resulting in a stochastic integral of the block average disease incidence. The true block level incidence is an unavailable Monte Carlo integration for this stochastic integral. We propose an alternative manageable Monte Carlo integration for the integral. Modeling in this setting is immediately hierarchical, and we fit our model within a Bayesian framework. To alleviate the resulting computational burden, we offer 2 strategies for efficient model fitting: one is through modularization, the other is through sparse or dimension-reduced Gaussian processes. We illustrate the performance of our model with simulations based on a heat-related mortality dataset in Ohio and then analyze associated real data. Copyright © 2017 John Wiley & Sons, Ltd.
Stochastic architecture for Hopfield neural nets
NASA Technical Reports Server (NTRS)
Pavel, Sandy
1992-01-01
An expandable stochastic digital architecture for recurrent (Hopfield like) neural networks is proposed. The main features and basic principles of stochastic processing are presented. The stochastic digital architecture is based on a chip with n full interconnected neurons with a pipeline, bit processing structure. For large applications, a flexible way to interconnect many such chips is provided.
Scale-invariant curvature fluctuations from an extended semiclassical gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinamonti, Nicola, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it; INFN Sezione di Genova, Via Dodecaneso 33, 16146 Genova; Siemssen, Daniel, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it
2015-02-15
We present an extension of the semiclassical Einstein equations which couple n-point correlation functions of a stochastic Einstein tensor to the n-point functions of the quantum stress-energy tensor. We apply this extension to calculate the quantum fluctuations during an inflationary period, where we take as a model a massive conformally coupled scalar field on a perturbed de Sitter space and describe how a renormalization independent, almost-scale-invariant power spectrum of the scalar metric perturbation is produced. Furthermore, we discuss how this model yields a natural basis for the calculation of non-Gaussianities of the considered metric fluctuations.
Numerical Schemes for Dynamically Orthogonal Equations of Stochastic Fluid and Ocean Flows
2011-11-03
stages of the simulation (see §5.1). Also, because the pdf is discrete, we calculate the mo- ments using the biased estimator CYiYj ≈ 1q ∑ r Yr,iYr,j...independent random variables. For problems that require large p (e.g. non-Gaussian) and large s (e.g. large ocean or fluid simulations ), the number of...Sc = ν̂/K̂ is the Schmidt number which is the ratio of kinematic viscosity ν̂ to molecular diffusivity K̂ for the density field, ĝ′ = ĝ (ρ̂max−ρ̂min
Individual power density spectra of Swift gamma-ray bursts
NASA Astrophysics Data System (ADS)
Guidorzi, C.; Dichiara, S.; Amati, L.
2016-05-01
Context. Timing analysis can be a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of gamma-ray bursts (GRBs). Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and, more in general, to investigate the dominant variability timescales in astrophysical sources. Because of the limited duration and of the statistical properties involved, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature thus far. Aims: We aim at characterising the individual PDS of GRBs to describe their variability in terms of a stochastic process, to explore their variety, and to carry out for the first time a systematic search for periodic signals and for a link between PDS properties and other GRB observables. Methods: We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study the individual PDS of 215 bright long GRBs detected with the Swift Burst Alert Telescope in the 15-150 keV band from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Results: Two classes of GRBs emerge: with or without a unique dominant timescale. A comparison with active galactic nuclei (AGNs) reveals similar distributions of PDS slopes. Unexpectedly, GRBs with subsecond-dominant timescales and duration longer than a few tens of seconds in the source frame appear to be either very rare or altogether absent. Three GRBs are found with possible evidence for a periodic signal at 3.0-3.2σ (Gaussian) significance, corresponding to a multi-trial chance probability of ~1%. Thus, we found no compelling evidence for periodic signal in GRBs. Conclusions: The analogy between the PDS of GRBs and of AGNs could tentatively indicate similar stochastic processes that rule BH accretion across different BH mass scales and objects. In addition, we find evidence that short dominant timescales and duration are not completely independent of each other, in contrast with commonly accepted paradigms. Full Tables 1-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A98
Bayesian sensitivity analysis of bifurcating nonlinear models
NASA Astrophysics Data System (ADS)
Becker, W.; Worden, K.; Rowson, J.
2013-01-01
Sensitivity analysis allows one to investigate how changes in input parameters to a system affect the output. When computational expense is a concern, metamodels such as Gaussian processes can offer considerable computational savings over Monte Carlo methods, albeit at the expense of introducing a data modelling problem. In particular, Gaussian processes assume a smooth, non-bifurcating response surface. This work highlights a recent extension to Gaussian processes which uses a decision tree to partition the input space into homogeneous regions, and then fits separate Gaussian processes to each region. In this way, bifurcations can be modelled at region boundaries and different regions can have different covariance properties. To test this method, both the treed and standard methods were applied to the bifurcating response of a Duffing oscillator and a bifurcating FE model of a heart valve. It was found that the treed Gaussian process provides a practical way of performing uncertainty and sensitivity analysis on large, potentially-bifurcating models, which cannot be dealt with by using a single GP, although an open problem remains how to manage bifurcation boundaries that are not parallel to coordinate axes.
Gaussian processes: a method for automatic QSAR modeling of ADME properties.
Obrezanova, Olga; Csanyi, Gabor; Gola, Joelle M R; Segall, Matthew D
2007-01-01
In this article, we discuss the application of the Gaussian Process method for the prediction of absorption, distribution, metabolism, and excretion (ADME) properties. On the basis of a Bayesian probabilistic approach, the method is widely used in the field of machine learning but has rarely been applied in quantitative structure-activity relationship and ADME modeling. The method is suitable for modeling nonlinear relationships, does not require subjective determination of the model parameters, works for a large number of descriptors, and is inherently resistant to overtraining. The performance of Gaussian Processes compares well with and often exceeds that of artificial neural networks. Due to these features, the Gaussian Processes technique is eminently suitable for automatic model generation-one of the demands of modern drug discovery. Here, we describe the basic concept of the method in the context of regression problems and illustrate its application to the modeling of several ADME properties: blood-brain barrier, hERG inhibition, and aqueous solubility at pH 7.4. We also compare Gaussian Processes with other modeling techniques.
Doubly stochastic Poisson processes in artificial neural learning.
Card, H C
1998-01-01
This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.
Some error bounds for K-iterated Gaussian recursive filters
NASA Astrophysics Data System (ADS)
Cuomo, Salvatore; Galletti, Ardelio; Giunta, Giulio; Marcellino, Livia
2016-10-01
Recursive filters (RFs) have achieved a central role in several research fields over the last few years. For example, they are used in image processing, in data assimilation and in electrocardiogram denoising. More in particular, among RFs, the Gaussian RFs are an efficient computational tool for approximating Gaussian-based convolutions and are suitable for digital image processing and applications of the scale-space theory. As is a common knowledge, the Gaussian RFs, applied to signals with support in a finite domain, generate distortions and artifacts, mostly localized at the boundaries. Heuristic and theoretical improvements have been proposed in literature to deal with this issue (namely boundary conditions). They include the case in which a Gaussian RF is applied more than once, i.e. the so called K-iterated Gaussian RFs. In this paper, starting from a summary of the comprehensive mathematical background, we consider the case of the K-iterated first-order Gaussian RF and provide the study of its numerical stability and some component-wise theoretical error bounds.
Hayashi, Norio; Miyati, Tosiaki; Takanaga, Masako; Ohno, Naoki; Hamaguchi, Takashi; Kozaka, Kazuto; Sanada, Shigeru; Yamamoto, Tomoyuki; Matsui, Osamu
2011-01-01
In the direction where the phased array coil used in parallel magnetic resonance imaging (MRI) is perpendicular to the arrangement, sensitivity falls significantly. Moreover, in a 3.0 tesla (3T) abdominal MRI, the quality of the image is reduced by changes in the relaxation time, reinforcement of the magnetic susceptibility effect, etc. In a 3T MRI, which has a high resonant frequency, the signal of the depths (central part) is reduced in the trunk part. SCIC, which is sensitivity correction processing, has inadequate correction processing, such as that edges are emphasized and the central part is corrected. Therefore, we used 3T with a Gaussian distribution. The uneven compensation processing for sensitivity of an abdomen MR image was considered. The correction processing consisted of the following methods. 1) The center of gravity of the domain of the human body in an abdomen MR image was calculated. 2) The correction coefficient map was created from the center of gravity using the Gaussian distribution. 3) The sensitivity correction image was created from the correction coefficient map and the original picture image. Using the Gaussian correction to process the image, the uniformity calculated using the NEMA method was improved significantly compared to the original image of a phantom. In a visual evaluation by radiologists, the uniformity was improved significantly using the Gaussian correction processing. Because of the homogeneous improvement of the abdomen image taken using 3T MRI, the Gaussian correction processing is considered to be a very useful technique.
A Stochastic Diffusion Process for the Dirichlet Distribution
Bakosi, J.; Ristorcelli, J. R.
2013-03-01
The method of potential solutions of Fokker-Planck equations is used to develop a transport equation for the joint probability ofNcoupled stochastic variables with the Dirichlet distribution as its asymptotic solution. To ensure a bounded sample space, a coupled nonlinear diffusion process is required: the Wiener processes in the equivalent system of stochastic differential equations are multiplicative with coefficients dependent on all the stochastic variables. Individual samples of a discrete ensemble, obtained from the stochastic process, satisfy a unit-sum constraint at all times. The process may be used to represent realizations of a fluctuating ensemble ofNvariables subject to a conservation principle.more » Similar to the multivariate Wright-Fisher process, whose invariant is also Dirichlet, the univariate case yields a process whose invariant is the beta distribution. As a test of the results, Monte Carlo simulations are used to evolve numerical ensembles toward the invariant Dirichlet distribution.« less
Poly-Gaussian model of randomly rough surface in rarefied gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksenova, Olga A.; Khalidov, Iskander A.
2014-12-09
Surface roughness is simulated by the model of non-Gaussian random process. Our results for the scattering of rarefied gas atoms from a rough surface using modified approach to the DSMC calculation of rarefied gas flow near a rough surface are developed and generalized applying the poly-Gaussian model representing probability density as the mixture of Gaussian densities. The transformation of the scattering function due to the roughness is characterized by the roughness operator. Simulating rough surface of the walls by the poly-Gaussian random field expressed as integrated Wiener process, we derive a representation of the roughness operator that can be appliedmore » in numerical DSMC methods as well as in analytical investigations.« less
Accelerating Sequential Gaussian Simulation with a constant path
NASA Astrophysics Data System (ADS)
Nussbaumer, Raphaël; Mariethoz, Grégoire; Gravey, Mathieu; Gloaguen, Erwan; Holliger, Klaus
2018-03-01
Sequential Gaussian Simulation (SGS) is a stochastic simulation technique commonly employed for generating realizations of Gaussian random fields. Arguably, the main limitation of this technique is the high computational cost associated with determining the kriging weights. This problem is compounded by the fact that often many realizations are required to allow for an adequate uncertainty assessment. A seemingly simple way to address this problem is to keep the same simulation path for all realizations. This results in identical neighbourhood configurations and hence the kriging weights only need to be determined once and can then be re-used in all subsequent realizations. This approach is generally not recommended because it is expected to result in correlation between the realizations. Here, we challenge this common preconception and make the case for the use of a constant path approach in SGS by systematically evaluating the associated benefits and limitations. We present a detailed implementation, particularly regarding parallelization and memory requirements. Extensive numerical tests demonstrate that using a constant path allows for substantial computational gains with very limited loss of simulation accuracy. This is especially the case for a constant multi-grid path. The computational savings can be used to increase the neighbourhood size, thus allowing for a better reproduction of the spatial statistics. The outcome of this study is a recommendation for an optimal implementation of SGS that maximizes accurate reproduction of the covariance structure as well as computational efficiency.
[Glossary of terms used by radiologists in image processing].
Rolland, Y; Collorec, R; Bruno, A; Ramée, A; Morcet, N; Haigron, P
1995-01-01
We give the definition of 166 words used in image processing. Adaptivity, aliazing, analog-digital converter, analysis, approximation, arc, artifact, artificial intelligence, attribute, autocorrelation, bandwidth, boundary, brightness, calibration, class, classification, classify, centre, cluster, coding, color, compression, contrast, connectivity, convolution, correlation, data base, decision, decomposition, deconvolution, deduction, descriptor, detection, digitization, dilation, discontinuity, discretization, discrimination, disparity, display, distance, distorsion, distribution dynamic, edge, energy, enhancement, entropy, erosion, estimation, event, extrapolation, feature, file, filter, filter floaters, fitting, Fourier transform, frequency, fusion, fuzzy, Gaussian, gradient, graph, gray level, group, growing, histogram, Hough transform, Houndsfield, image, impulse response, inertia, intensity, interpolation, interpretation, invariance, isotropy, iterative, JPEG, knowledge base, label, laplacian, learning, least squares, likelihood, matching, Markov field, mask, matching, mathematical morphology, merge (to), MIP, median, minimization, model, moiré, moment, MPEG, neural network, neuron, node, noise, norm, normal, operator, optical system, optimization, orthogonal, parametric, pattern recognition, periodicity, photometry, pixel, polygon, polynomial, prediction, pulsation, pyramidal, quantization, raster, reconstruction, recursive, region, rendering, representation space, resolution, restoration, robustness, ROC, thinning, transform, sampling, saturation, scene analysis, segmentation, separable function, sequential, smoothing, spline, split (to), shape, threshold, tree, signal, speckle, spectrum, spline, stationarity, statistical, stochastic, structuring element, support, syntaxic, synthesis, texture, truncation, variance, vision, voxel, windowing.
Structure and Randomness of Continuous-Time, Discrete-Event Processes
NASA Astrophysics Data System (ADS)
Marzen, Sarah E.; Crutchfield, James P.
2017-10-01
Loosely speaking, the Shannon entropy rate is used to gauge a stochastic process' intrinsic randomness; the statistical complexity gives the cost of predicting the process. We calculate, for the first time, the entropy rate and statistical complexity of stochastic processes generated by finite unifilar hidden semi-Markov models—memoryful, state-dependent versions of renewal processes. Calculating these quantities requires introducing novel mathematical objects (ɛ -machines of hidden semi-Markov processes) and new information-theoretic methods to stochastic processes.
Minimum uncertainty and squeezing in diffusion processes and stochastic quantization
NASA Technical Reports Server (NTRS)
Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe
1994-01-01
We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Fatichi, Simone; Burlando, Paolo
2015-04-01
A new stochastic approach to generate wind advection, cloud cover and precipitation fields is presented with the aim of formulating a space-time weather generator characterized by fields with high spatial and temporal resolution (e.g., 1 km x 1 km and 5 min). Its use is suitable for stochastic downscaling of climate scenarios in the context of hydrological, ecological and geomorphological applications. The approach is based on concepts from the Advanced WEather GENerator (AWE-GEN) presented by Fatichi et al. (2011, Adv. Water Resour.), the Space-Time Realizations of Areal Precipitation model (STREAP) introduced by Paschalis et al. (2013, Water Resour. Res.), and the High-Resolution Synoptically conditioned Weather Generator (HiReS-WG) presented by Peleg and Morin (2014, Water Resour. Res.). Advection fields are generated on the basis of the 500 hPa u and v wind direction variables derived from global or regional climate models. The advection velocity and direction are parameterized using Kappa and von Mises distributions respectively. A random Gaussian fields is generated using a fast Fourier transform to preserve the spatial correlation of advection. The cloud cover area, total precipitation area and mean advection of the field are coupled using a multi-autoregressive model. The approach is relatively parsimonious in terms of computational demand and, in the context of climate change, allows generating many stochastic realizations of current and projected climate in a fast and efficient way. A preliminary test of the approach is presented with reference to a case study in a complex orography terrain in the Swiss Alps.
NASA Astrophysics Data System (ADS)
Penna, Pedro A. A.; Mascarenhas, Nelson D. A.
2018-02-01
The development of new methods to denoise images still attract researchers, who seek to combat the noise with the minimal loss of resolution and details, like edges and fine structures. Many algorithms have the goal to remove additive white Gaussian noise (AWGN). However, it is not the only type of noise which interferes in the analysis and interpretation of images. Therefore, it is extremely important to expand the filters capacity to different noise models present in li-terature, for example the multiplicative noise called speckle that is present in synthetic aperture radar (SAR) images. The state-of-the-art algorithms in remote sensing area work with similarity between patches. This paper aims to develop two approaches using the non local means (NLM), developed for AWGN. In our research, we expanded its capacity for intensity SAR ima-ges speckle. The first approach is grounded on the use of stochastic distances based on the G0 distribution without transforming the data to the logarithm domain, like homomorphic transformation. It takes into account the speckle and backscatter to estimate the parameters necessary to compute the stochastic distances on NLM. The second method uses a priori NLM denoising with a homomorphic transformation and applies the inverse Gamma distribution to estimate the parameters that were used into NLM with stochastic distances. The latter method also presents a new alternative to compute the parameters for the G0 distribution. Finally, this work compares and analyzes the synthetic and real results of the proposed methods with some recent filters of the literature.
Likelihood for transcriptions in a genetic regulatory system under asymmetric stable Lévy noise.
Wang, Hui; Cheng, Xiujun; Duan, Jinqiao; Kurths, Jürgen; Li, Xiaofan
2018-01-01
This work is devoted to investigating the evolution of concentration in a genetic regulation system, when the synthesis reaction rate is under additive and multiplicative asymmetric stable Lévy fluctuations. By focusing on the impact of skewness (i.e., non-symmetry) in the probability distributions of noise, we find that via examining the mean first exit time (MFET) and the first escape probability (FEP), the asymmetric fluctuations, interacting with nonlinearity in the system, lead to peculiar likelihood for transcription. This includes, in the additive noise case, realizing higher likelihood of transcription for larger positive skewness (i.e., asymmetry) index β, causing a stochastic bifurcation at the non-Gaussianity index value α = 1 (i.e., it is a separating point or line for the likelihood for transcription), and achieving a turning point at the threshold value β≈-0.5 (i.e., beyond which the likelihood for transcription suddenly reversed for α values). The stochastic bifurcation and turning point phenomena do not occur in the symmetric noise case (β = 0). While in the multiplicative noise case, non-Gaussianity index value α = 1 is a separating point or line for both the MFET and the FEP. We also investigate the noise enhanced stability phenomenon. Additionally, we are able to specify the regions in the whole parameter space for the asymmetric noise, in which we attain desired likelihood for transcription. We have conducted a series of numerical experiments in "regulating" the likelihood of gene transcription by tuning asymmetric stable Lévy noise indexes. This work offers insights for possible ways of achieving gene regulation in experimental research.
Noise adaptation in integrate-and fire neurons.
Rudd, M E; Brown, L G
1997-07-01
The statistical spiking response of an ensemble of identically prepared stochastic integrate-and-fire neurons to a rectangular input current plus gaussian white noise is analyzed. It is shown that, on average, integrate-and-fire neurons adapt to the root-mean-square noise level of their input. This phenomenon is referred to as noise adaptation. Noise adaptation is characterized by a decrease in the average neural firing rate and an accompanying decrease in the average value of the generator potential, both of which can be attributed to noise-induced resets of the generator potential mediated by the integrate-and-fire mechanism. A quantitative theory of noise adaptation in stochastic integrate-and-fire neurons is developed. It is shown that integrate-and-fire neurons, on average, produce transient spiking activity whenever there is an increase in the level of their input noise. This transient noise response is either reduced or eliminated over time, depending on the parameters of the model neuron. Analytical methods are used to prove that nonleaky integrate-and-fire neurons totally adapt to any constant input noise level, in the sense that their asymptotic spiking rates are independent of the magnitude of their input noise. For leaky integrate-and-fire neurons, the long-run noise adaptation is not total, but the response to noise is partially eliminated. Expressions for the probability density function of the generator potential and the first two moments of the potential distribution are derived for the particular case of a nonleaky neuron driven by gaussian white noise of mean zero and constant variance. The functional significance of noise adaptation for the performance of networks comprising integrate-and-fire neurons is discussed.
Stochastic search, optimization and regression with energy applications
NASA Astrophysics Data System (ADS)
Hannah, Lauren A.
Designing clean energy systems will be an important task over the next few decades. One of the major roadblocks is a lack of mathematical tools to economically evaluate those energy systems. However, solutions to these mathematical problems are also of interest to the operations research and statistical communities in general. This thesis studies three problems that are of interest to the energy community itself or provide support for solution methods: R&D portfolio optimization, nonparametric regression and stochastic search with an observable state variable. First, we consider the one stage R&D portfolio optimization problem to avoid the sequential decision process associated with the multi-stage. The one stage problem is still difficult because of a non-convex, combinatorial decision space and a non-convex objective function. We propose a heuristic solution method that uses marginal project values---which depend on the selected portfolio---to create a linear objective function. In conjunction with the 0-1 decision space, this new problem can be solved as a knapsack linear program. This method scales well to large decision spaces. We also propose an alternate, provably convergent algorithm that does not exploit problem structure. These methods are compared on a solid oxide fuel cell R&D portfolio problem. Next, we propose Dirichlet Process mixtures of Generalized Linear Models (DPGLM), a new method of nonparametric regression that accommodates continuous and categorical inputs, and responses that can be modeled by a generalized linear model. We prove conditions for the asymptotic unbiasedness of the DP-GLM regression mean function estimate. We also give examples for when those conditions hold, including models for compactly supported continuous distributions and a model with continuous covariates and categorical response. We empirically analyze the properties of the DP-GLM and why it provides better results than existing Dirichlet process mixture regression models. We evaluate DP-GLM on several data sets, comparing it to modern methods of nonparametric regression like CART, Bayesian trees and Gaussian processes. Compared to existing techniques, the DP-GLM provides a single model (and corresponding inference algorithms) that performs well in many regression settings. Finally, we study convex stochastic search problems where a noisy objective function value is observed after a decision is made. There are many stochastic search problems whose behavior depends on an exogenous state variable which affects the shape of the objective function. Currently, there is no general purpose algorithm to solve this class of problems. We use nonparametric density estimation to take observations from the joint state-outcome distribution and use them to infer the optimal decision for a given query state. We propose two solution methods that depend on the problem characteristics: function-based and gradient-based optimization. We examine two weighting schemes, kernel-based weights and Dirichlet process-based weights, for use with the solution methods. The weights and solution methods are tested on a synthetic multi-product newsvendor problem and the hour-ahead wind commitment problem. Our results show that in some cases Dirichlet process weights offer substantial benefits over kernel based weights and more generally that nonparametric estimation methods provide good solutions to otherwise intractable problems.
Bidirectional Classical Stochastic Processes with Measurements and Feedback
NASA Technical Reports Server (NTRS)
Hahne, G. E.
2005-01-01
A measurement on a quantum system is said to cause the "collapse" of the quantum state vector or density matrix. An analogous collapse occurs with measurements on a classical stochastic process. This paper addresses the question of describing the response of a classical stochastic process when there is feedback from the output of a measurement to the input, and is intended to give a model for quantum-mechanical processes that occur along a space-like reaction coordinate. The classical system can be thought of in physical terms as two counterflowing probability streams, which stochastically exchange probability currents in a way that the net probability current, and hence the overall probability, suitably interpreted, is conserved. The proposed formalism extends the . mathematics of those stochastic processes describable with linear, single-step, unidirectional transition probabilities, known as Markov chains and stochastic matrices. It is shown that a certain rearrangement and combination of the input and output of two stochastic matrices of the same order yields another matrix of the same type. Each measurement causes the partial collapse of the probability current distribution in the midst of such a process, giving rise to calculable, but non-Markov, values for the ensuing modification of the system's output probability distribution. The paper concludes with an analysis of a classical probabilistic version of the so-called grandfather paradox.
Quantum entanglement beyond Gaussian criteria
Gomes, R. M.; Salles, A.; Toscano, F.; Souto Ribeiro, P. H.; Walborn, S. P.
2009-01-01
Most of the attention given to continuous variable systems for quantum information processing has traditionally been focused on Gaussian states. However, non-Gaussianity is an essential requirement for universal quantum computation and entanglement distillation, and can improve the efficiency of other quantum information tasks. Here we report the experimental observation of genuine non-Gaussian entanglement using spatially entangled photon pairs. The quantum correlations are invisible to all second-order tests, which identify only Gaussian entanglement, and are revealed only under application of a higher-order entanglement criterion. Thus, the photons exhibit a variety of entanglement that cannot be reproduced by Gaussian states. PMID:19995963
Quantum entanglement beyond Gaussian criteria.
Gomes, R M; Salles, A; Toscano, F; Souto Ribeiro, P H; Walborn, S P
2009-12-22
Most of the attention given to continuous variable systems for quantum information processing has traditionally been focused on Gaussian states. However, non-Gaussianity is an essential requirement for universal quantum computation and entanglement distillation, and can improve the efficiency of other quantum information tasks. Here we report the experimental observation of genuine non-Gaussian entanglement using spatially entangled photon pairs. The quantum correlations are invisible to all second-order tests, which identify only Gaussian entanglement, and are revealed only under application of a higher-order entanglement criterion. Thus, the photons exhibit a variety of entanglement that cannot be reproduced by Gaussian states.
Mutual information identifies spurious Hurst phenomena in resting state EEG and fMRI data
NASA Astrophysics Data System (ADS)
von Wegner, Frederic; Laufs, Helmut; Tagliazucchi, Enzo
2018-02-01
Long-range memory in time series is often quantified by the Hurst exponent H , a measure of the signal's variance across several time scales. We analyze neurophysiological time series from electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state experiments with two standard Hurst exponent estimators and with the time-lagged mutual information function applied to discretized versions of the signals. A confidence interval for the mutual information function is obtained from surrogate Markov processes with equilibrium distribution and transition matrix identical to the underlying signal. For EEG signals, we construct an additional mutual information confidence interval from a short-range correlated, tenth-order autoregressive model. We reproduce the previously described Hurst phenomenon (H >0.5 ) in the analytical amplitude of alpha frequency band oscillations, in EEG microstate sequences, and in fMRI signals, but we show that the Hurst phenomenon occurs without long-range memory in the information-theoretical sense. We find that the mutual information function of neurophysiological data behaves differently from fractional Gaussian noise (fGn), for which the Hurst phenomenon is a sufficient condition to prove long-range memory. Two other well-characterized, short-range correlated stochastic processes (Ornstein-Uhlenbeck, Cox-Ingersoll-Ross) also yield H >0.5 , whereas their mutual information functions lie within the Markovian confidence intervals, similar to neural signals. In these processes, which do not have long-range memory by construction, a spurious Hurst phenomenon occurs due to slow relaxation times and heteroscedasticity (time-varying conditional variance). In summary, we find that mutual information correctly distinguishes long-range from short-range dependence in the theoretical and experimental cases discussed. Our results also suggest that the stationary fGn process is not sufficient to describe neural data, which seem to belong to a more general class of stochastic processes, in which multiscale variance effects produce Hurst phenomena without long-range dependence. In our experimental data, the Hurst phenomenon and long-range memory appear as different system properties that should be estimated and interpreted independently.
NASA Astrophysics Data System (ADS)
Del Rio Amador, Lenin; Lovejoy, Shaun
2017-04-01
Over the past ten years, a key advance in our understanding of atmospheric variability is the discovery that between the weather and climate regime lies an intermediate "macroweather" regime, spanning the range of scales from ≈10 days to ≈30 years. Macroweather statistics are characterized by two fundamental symmetries: scaling and the factorization of the joint space-time statistics. In the time domain, the scaling has low intermittency with the additional property that successive fluctuations tend to cancel. In space, on the contrary the scaling has high (multifractal) intermittency corresponding to the existence of different climate zones. These properties have fundamental implications for macroweather forecasting: a) the temporal scaling implies that the system has a long range memory that can be exploited for forecasting; b) the low temporal intermittency implies that mathematically well-established (Gaussian) forecasting techniques can be used; and c), the statistical factorization property implies that although spatial correlations (including teleconnections) may be large, if long enough time series are available, they are not necessarily useful in improving forecasts. Theoretically, these conditions imply the existence of stochastic predictability limits in our talk, we show that these limits apply to GCM's. Based on these statistical implications, we developed the Stochastic Seasonal and Interannual Prediction System (StocSIPS) for the prediction of temperature from regional to global scales and from one month to many years horizons. One of the main components of StocSIPS is the separation and prediction of both the internal and externally forced variabilities. In order to test the theoretical assumptions and consequences for predictability and predictions, we use 41 different CMIP5 model outputs from preindustrial control runs that have fixed external forcings: whose variability is purely internally generated. We first show that these statistical assumptions hold with relatively good accuracy and then we performed hindcasts at global and regional scales from monthly to annual time resolutions using StocSIPS. We obtained excellent agreement between the hindcast Mean Square Skill Score (MSSS) and the theoretical stochastic limits. We also show the application of StocSIPS to the prediction of average global temperature and compare our results with those obtained using multi-model ensemble approaches. StocSIPS has numerous advantages including a) higher MSSS for large time horizons, b) the from convergence to the real - not model - climate, c) much higher computational speed, d) no need for data assimilation, e) no ad hoc post processing and f) no need for downscaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granita, E-mail: granitafc@gmail.com; Bahar, A.
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.
The statistical mechanics of relativistic orbits around a massive black hole
NASA Astrophysics Data System (ADS)
Bar-Or, Ben; Alexander, Tal
2014-12-01
Stars around a massive black hole (MBH) move on nearly fixed Keplerian orbits, in a centrally-dominated potential. The random fluctuations of the discrete stellar background cause small potential perturbations, which accelerate the evolution of orbital angular momentum by resonant relaxation. This drives many phenomena near MBHs, such as extreme mass-ratio gravitational wave inspirals, the warping of accretion disks, and the formation of exotic stellar populations. We present here a formal statistical mechanics framework to analyze such systems, where the background potential is described as a correlated Gaussian noise. We derive the leading order, phase-averaged 3D stochastic Hamiltonian equations of motion, for evolving the orbital elements of a test star, and obtain the effective Fokker-Planck equation for a general correlated Gaussian noise, for evolving the stellar distribution function. We show that the evolution of angular momentum depends critically on the temporal smoothness of the background potential fluctuations. Smooth noise has a maximal variability frequency {{ν }max }. We show that in the presence of such noise, the evolution of the normalized angular momentum j=\\sqrt{1-{{e}2}} of a relativistic test star, undergoing Schwarzschild (in-plane) general relativistic precession with frequency {{ν }GR}/{{j}2}, is exponentially suppressed for j\\lt {{j}b}, where {{ν }GR}/jb2˜ {{ν }max }, due to the adiabatic invariance of the precession against the slowly varying random background torques. This results in an effective Schwarzschild precession-induced barrier in angular momentum. When jb is large enough, this barrier can have significant dynamical implications for processes near the MBH.
Interrupted monitoring of a stochastic process
NASA Technical Reports Server (NTRS)
Palmer, E.
1977-01-01
Normative strategies are developed for tasks where the pilot must interrupt his monitoring of a stochastic process in order to attend to other duties. Results are given as to how characteristics of the stochastic process and the other tasks affect the optimal strategies. The optimum strategy is also compared to the strategies used by subjects in a pilot experiment.
An estimator for the relative entropy rate of path measures for stochastic differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opper, Manfred, E-mail: manfred.opper@tu-berlin.de
2017-02-01
We address the problem of estimating the relative entropy rate (RER) for two stochastic processes described by stochastic differential equations. For the case where the drift of one process is known analytically, but one has only observations from the second process, we use a variational bound on the RER to construct an estimator.
Kinect Posture Reconstruction Based on a Local Mixture of Gaussian Process Models.
Liu, Zhiguang; Zhou, Liuyang; Leung, Howard; Shum, Hubert P H
2016-11-01
Depth sensor based 3D human motion estimation hardware such as Kinect has made interactive applications more popular recently. However, it is still challenging to accurately recognize postures from a single depth camera due to the inherently noisy data derived from depth images and self-occluding action performed by the user. In this paper, we propose a new real-time probabilistic framework to enhance the accuracy of live captured postures that belong to one of the action classes in the database. We adopt the Gaussian Process model as a prior to leverage the position data obtained from Kinect and marker-based motion capture system. We also incorporate a temporal consistency term into the optimization framework to constrain the velocity variations between successive frames. To ensure that the reconstructed posture resembles the accurate parts of the observed posture, we embed a set of joint reliability measurements into the optimization framework. A major drawback of Gaussian Process is its cubic learning complexity when dealing with a large database due to the inverse of a covariance matrix. To solve the problem, we propose a new method based on a local mixture of Gaussian Processes, in which Gaussian Processes are defined in local regions of the state space. Due to the significantly decreased sample size in each local Gaussian Process, the learning time is greatly reduced. At the same time, the prediction speed is enhanced as the weighted mean prediction for a given sample is determined by the nearby local models only. Our system also allows incrementally updating a specific local Gaussian Process in real time, which enhances the likelihood of adapting to run-time postures that are different from those in the database. Experimental results demonstrate that our system can generate high quality postures even under severe self-occlusion situations, which is beneficial for real-time applications such as motion-based gaming and sport training.
Semisupervised Gaussian Process for Automated Enzyme Search.
Mellor, Joseph; Grigoras, Ioana; Carbonell, Pablo; Faulon, Jean-Loup
2016-06-17
Synthetic biology is today harnessing the design of novel and greener biosynthesis routes for the production of added-value chemicals and natural products. The design of novel pathways often requires a detailed selection of enzyme sequences to import into the chassis at each of the reaction steps. To address such design requirements in an automated way, we present here a tool for exploring the space of enzymatic reactions. Given a reaction and an enzyme the tool provides a probability estimate that the enzyme catalyzes the reaction. Our tool first considers the similarity of a reaction to known biochemical reactions with respect to signatures around their reaction centers. Signatures are defined based on chemical transformation rules by using extended connectivity fingerprint descriptors. A semisupervised Gaussian process model associated with the similar known reactions then provides the probability estimate. The Gaussian process model uses information about both the reaction and the enzyme in providing the estimate. These estimates were validated experimentally by the application of the Gaussian process model to a newly identified metabolite in Escherichia coli in order to search for the enzymes catalyzing its associated reactions. Furthermore, we show with several pathway design examples how such ability to assign probability estimates to enzymatic reactions provides the potential to assist in bioengineering applications, providing experimental validation to our proposed approach. To the best of our knowledge, the proposed approach is the first application of Gaussian processes dealing with biological sequences and chemicals, the use of a semisupervised Gaussian process framework is also novel in the context of machine learning applied to bioinformatics. However, the ability of an enzyme to catalyze a reaction depends on the affinity between the substrates of the reaction and the enzyme. This affinity is generally quantified by the Michaelis constant KM. Therefore, we also demonstrate using Gaussian process regression to predict KM given a substrate-enzyme pair.
Steady-state distributions of probability fluxes on complex networks
NASA Astrophysics Data System (ADS)
Chełminiak, Przemysław; Kurzyński, Michał
2017-02-01
We consider a simple model of the Markovian stochastic dynamics on complex networks to examine the statistical properties of the probability fluxes. The additional transition, called hereafter a gate, powered by the external constant force breaks a detailed balance in the network. We argue, using a theoretical approach and numerical simulations, that the stationary distributions of the probability fluxes emergent under such conditions converge to the Gaussian distribution. By virtue of the stationary fluctuation theorem, its standard deviation depends directly on the square root of the mean flux. In turn, the nonlinear relation between the mean flux and the external force, which provides the key result of the present study, allows us to calculate the two parameters that entirely characterize the Gaussian distribution of the probability fluxes both close to as well as far from the equilibrium state. Also, the other effects that modify these parameters, such as the addition of shortcuts to the tree-like network, the extension and configuration of the gate and a change in the network size studied by means of computer simulations are widely discussed in terms of the rigorous theoretical predictions.
Stochastic Nature in Cellular Processes
NASA Astrophysics Data System (ADS)
Liu, Bo; Liu, Sheng-Jun; Wang, Qi; Yan, Shi-Wei; Geng, Yi-Zhao; Sakata, Fumihiko; Gao, Xing-Fa
2011-11-01
The importance of stochasticity in cellular processes is increasingly recognized in both theoretical and experimental studies. General features of stochasticity in gene regulation and expression are briefly reviewed in this article, which include the main experimental phenomena, classification, quantization and regulation of noises. The correlation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methods that can capture effects of intrinsic and extrinsic noise are described.
Characteristics of broadband slow earthquakes explained by a Brownian model
NASA Astrophysics Data System (ADS)
Ide, S.; Takeo, A.
2017-12-01
Brownian slow earthquake (BSE) model (Ide, 2008; 2010) is a stochastic model for the temporal change of seismic moment release by slow earthquakes, which can be considered as a broadband phenomena including tectonic tremors, low frequency earthquakes, and very low frequency (VLF) earthquakes in the seismological frequency range, and slow slip events in geodetic range. Although the concept of broadband slow earthquake may not have been widely accepted, most of recent observations are consistent with this concept. Then, we review the characteristics of slow earthquakes and how they are explained by BSE model. In BSE model, the characteristic size of slow earthquake source is represented by a random variable, changed by a Gaussian fluctuation added at every time step. The model also includes a time constant, which divides the model behavior into short- and long-time regimes. In nature, the time constant corresponds to the spatial limit of tremor/SSE zone. In the long-time regime, the seismic moment rate is constant, which explains the moment-duration scaling law (Ide et al., 2007). For a shorter duration, the moment rate increases with size, as often observed for VLF earthquakes (Ide et al., 2008). The ratio between seismic energy and seismic moment is constant, as shown in Japan, Cascadia, and Mexico (Maury et al., 2017). The moment rate spectrum has a section of -1 slope, limited by two frequencies corresponding to the above time constant and the time increment of the stochastic process. Such broadband spectra have been observed for slow earthquakes near the trench axis (Kaneko et al., 2017). This spectrum also explains why we can obtain VLF signals by stacking broadband seismograms relative to tremor occurrence (e.g., Takeo et al., 2010; Ide and Yabe, 2014). The fluctuation in BSE model can be non-Gaussian, as far as the variance is finite, as supported by the central limit theorem. Recent observations suggest that tremors and LFEs are spatially characteristic, rather than random (Rubin and Armbruster, 2013; Bostock et al., 2015). Since even spatially characteristic source must be activated randomly in time, moment release from these sources are compatible to the fluctuation in BSE model. Therefore, BSE model contains the model of Gomberg et al. (2016), which suggests that the cluster of LFEs makes VLF signals, as a special case.
Distributed parallel computing in stochastic modeling of groundwater systems.
Dong, Yanhui; Li, Guomin; Xu, Haizhen
2013-03-01
Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Li, Xiumin; Wang, Jiang; Hu, Wuhua
2007-10-01
The response of three coupled FitzHugh-Nagumo neurons, under Gaussian white noise, to a subthreshold periodic signal is studied in this paper. By combining the canard dynamics, chemical coupling, and stochastic resonance together, the information transfer in this neural system is investigated. We find that chemical synaptic coupling is more efficient than the well-known linear coupling (gap junction) for local signal input, i.e., only one of the three neurons is subject to the periodic signal. This weak and local input is common in biological systems for the sake of low energy consumption.
Generalised and Fractional Langevin Equations-Implications for Energy Balance Models
NASA Astrophysics Data System (ADS)
Watkins, N. W.; Chapman, S. C.; Chechkin, A.; Ford, I.; Klages, R.; Stainforth, D. A.
2017-12-01
Energy Balance Models (EBMs) have a long heritage in climate science, including their use in modelling anomalies in global mean temperature. Many types of EBM have now been studied, and this presentation concerns the stochastic EBMs, which allow direct treatment of climate fluctuations and noise. Some recent stochastic EBMs (e.g. [1]) map on to Langevin's original form of his equation, with temperature anomaly replacing velocity, and other corresponding replacements being made. Considerable sophistication has now been reached in the application of multivariate stochastic Langevin modelling in many areas of climate. Our work is complementary in intent and investigates the Mori-Kubo "Generalised Langevin Equation" (GLE) which incorporates non-Markovian noise and response in a univariate framework, as a tool for modelling GMT [2]. We show how, if it is present, long memory simplifies the GLE to a fractional Langevin equation (FLE). Evidence for long range memory in global temperature, and the success of fractional Gaussian noise in its prediction [5] has already motivated investigation of a power law response model [3,4,5]. We go beyond this work to ask whether an EBM of FLE-type exists, and what its solutions would be. [l] Padilla et al, J. Climate (2011); [2] Watkins, GRL (2013); [3] Rypdal, JGR (2012); [4] Rypdal and Rypdal, J. Climate (2014); [5] Lovejoy et al, ESDD (2015).
NASA Astrophysics Data System (ADS)
Silva, Antonio
2005-03-01
It is well-known that the mathematical theory of Brownian motion was first developed in the Ph. D. thesis of Louis Bachelier for the French stock market before Einstein [1]. In Ref. [2] we studied the so-called Heston model, where the stock-price dynamics is governed by multiplicative Brownian motion with stochastic diffusion coefficient. We solved the corresponding Fokker-Planck equation exactly and found an analytic formula for the time-dependent probability distribution of stock price changes (returns). The formula interpolates between the exponential (tent-shaped) distribution for short time lags and the Gaussian (parabolic) distribution for long time lags. The theoretical formula agrees very well with the actual stock-market data ranging from the Dow-Jones index [2] to individual companies [3], such as Microsoft, Intel, etc. [] [1] Louis Bachelier, ``Th'eorie de la sp'eculation,'' Annales Scientifiques de l''Ecole Normale Sup'erieure, III-17:21-86 (1900).[] [2] A. A. Dragulescu and V. M. Yakovenko, ``Probability distribution of returns in the Heston model with stochastic volatility,'' Quantitative Finance 2, 443--453 (2002); Erratum 3, C15 (2003). [cond-mat/0203046] [] [3] A. C. Silva, R. E. Prange, and V. M. Yakovenko, ``Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact,'' Physica A 344, 227--235 (2004). [cond-mat/0401225
The effects of noise on binocular rivalry waves: a stochastic neural field model
NASA Astrophysics Data System (ADS)
Webber, Matthew A.; Bressloff, Paul C.
2013-03-01
We analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction-diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave.
NASA Astrophysics Data System (ADS)
Dehbi, Y.; Haunert, J.-H.; Plümer, L.
2017-10-01
3D city and building models according to CityGML encode the geometry, represent the structure and model semantically relevant building parts such as doors, windows and balconies. Building information models support the building design, construction and the facility management. In contrast to CityGML, they include also objects which cannot be observed from the outside. The three dimensional indoor models characterize a missing link between both worlds. Their derivation, however, is expensive. The semantic automatic interpretation of 3D point clouds of indoor environments is a methodically demanding task. The data acquisition is costly and difficult. The laser scanners and image-based methods require the access to every room. Based on an approach which does not require an additional geometry acquisition of building indoors, we propose an attempt for filling the gaps between 3D building models and building information models. Based on sparse observations such as the building footprint and room areas, 3D indoor models are generated using combinatorial and stochastic reasoning. The derived models are expanded by a-priori not observable structures such as electric installation. Gaussian mixtures, linear and bi-linear constraints are used to represent the background knowledge and structural regularities. The derivation of hypothesised models is performed by stochastic reasoning using graphical models, Gauss-Markov models and MAP-estimators.
Hyperbolic Cross Truncations for Stochastic Fourier Cosine Series
Zhang, Zhihua
2014-01-01
Based on our decomposition of stochastic processes and our asymptotic representations of Fourier cosine coefficients, we deduce an asymptotic formula of approximation errors of hyperbolic cross truncations for bivariate stochastic Fourier cosine series. Moreover we propose a kind of Fourier cosine expansions with polynomials factors such that the corresponding Fourier cosine coefficients decay very fast. Although our research is in the setting of stochastic processes, our results are also new for deterministic functions. PMID:25147842
Stochastic Processes in Physics: Deterministic Origins and Control
NASA Astrophysics Data System (ADS)
Demers, Jeffery
Stochastic processes are ubiquitous in the physical sciences and engineering. While often used to model imperfections and experimental uncertainties in the macroscopic world, stochastic processes can attain deeper physical significance when used to model the seemingly random and chaotic nature of the underlying microscopic world. Nowhere more prevalent is this notion than in the field of stochastic thermodynamics - a modern systematic framework used describe mesoscale systems in strongly fluctuating thermal environments which has revolutionized our understanding of, for example, molecular motors, DNA replication, far-from equilibrium systems, and the laws of macroscopic thermodynamics as they apply to the mesoscopic world. With progress, however, come further challenges and deeper questions, most notably in the thermodynamics of information processing and feedback control. Here it is becoming increasingly apparent that, due to divergences and subtleties of interpretation, the deterministic foundations of the stochastic processes themselves must be explored and understood. This thesis presents a survey of stochastic processes in physical systems, the deterministic origins of their emergence, and the subtleties associated with controlling them. First, we study time-dependent billiards in the quivering limit - a limit where a billiard system is indistinguishable from a stochastic system, and where the simplified stochastic system allows us to view issues associated with deterministic time-dependent billiards in a new light and address some long-standing problems. Then, we embark on an exploration of the deterministic microscopic Hamiltonian foundations of non-equilibrium thermodynamics, and we find that important results from mesoscopic stochastic thermodynamics have simple microscopic origins which would not be apparent without the benefit of both the micro and meso perspectives. Finally, we study the problem of stabilizing a stochastic Brownian particle with feedback control, and we find that in order to avoid paradoxes involving the first law of thermodynamics, we need a model for the fine details of the thermal driving noise. The underlying theme of this thesis is the argument that the deterministic microscopic perspective and stochastic mesoscopic perspective are both important and useful, and when used together, we can more deeply and satisfyingly understand the physics occurring over either scale.
Stochasticity in materials structure, properties, and processing—A review
NASA Astrophysics Data System (ADS)
Hull, Robert; Keblinski, Pawel; Lewis, Dan; Maniatty, Antoinette; Meunier, Vincent; Oberai, Assad A.; Picu, Catalin R.; Samuel, Johnson; Shephard, Mark S.; Tomozawa, Minoru; Vashishth, Deepak; Zhang, Shengbai
2018-03-01
We review the concept of stochasticity—i.e., unpredictable or uncontrolled fluctuations in structure, chemistry, or kinetic processes—in materials. We first define six broad classes of stochasticity: equilibrium (thermodynamic) fluctuations; structural/compositional fluctuations; kinetic fluctuations; frustration and degeneracy; imprecision in measurements; and stochasticity in modeling and simulation. In this review, we focus on the first four classes that are inherent to materials phenomena. We next develop a mathematical framework for describing materials stochasticity and then show how it can be broadly applied to these four materials-related stochastic classes. In subsequent sections, we describe structural and compositional fluctuations at small length scales that modify material properties and behavior at larger length scales; systems with engineered fluctuations, concentrating primarily on composite materials; systems in which stochasticity is developed through nucleation and kinetic phenomena; and configurations in which constraints in a given system prevent it from attaining its ground state and cause it to attain several, equally likely (degenerate) states. We next describe how stochasticity in these processes results in variations in physical properties and how these variations are then accentuated by—or amplify—stochasticity in processing and manufacturing procedures. In summary, the origins of materials stochasticity, the degree to which it can be predicted and/or controlled, and the possibility of using stochastic descriptions of materials structure, properties, and processing as a new degree of freedom in materials design are described.
Seasonal Synchronization of a Simple Stochastic Dynamical Model Capturing El Niño Diversity
NASA Astrophysics Data System (ADS)
Thual, S.; Majda, A.; Chen, N.
2017-12-01
The El Niño-Southern Oscillation (ENSO) has significant impact on global climate and seasonal prediction. Recently, a simple ENSO model was developed that automatically captures the ENSO diversity and intermittency in nature, where state-dependent stochastic wind bursts and nonlinear advection of sea surface temperature (SST) are coupled to simple ocean-atmosphere processes that are otherwise deterministic, linear and stable. In the present article, it is further shown that the model can reproduce qualitatively the ENSO synchronization (or phase-locking) to the seasonal cycle in nature. This goal is achieved by incorporating a cloud radiative feedback that is derived naturally from the model's atmosphere dynamics with no ad-hoc assumptions and accounts in simple fashion for the marked seasonal variations of convective activity and cloud cover in the eastern Pacific. In particular, the weak convective response to SSTs in boreal fall favors the eastern Pacific warming that triggers El Niño events while the increased convective activity and cloud cover during the following spring contributes to the shutdown of those events by blocking incoming shortwave solar radiations. In addition to simulating the ENSO diversity with realistic non-Gaussian statistics in different Niño regions, both the eastern Pacific moderate and super El Niño, the central Pacific El Niño as well as La Niña show a realistic chronology with a tendency to peak in boreal winter as well as decreased predictability in spring consistent with the persistence barrier in nature. The incorporation of other possible seasonal feedbacks in the model is also documented for completeness.
Simulation of time series by distorted Gaussian processes
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
1977-01-01
Distorted stationary Gaussian process can be used to provide computer-generated imitations of experimental time series. A method of analyzing a source time series and synthesizing an imitation is shown, and an example using X-band radiometer data is given.
Nonturbulent dispersion processes in complex terrain
Michael A. Fosberg; Douglas G. Fox; E.A. Howard; Jack D. Cohen
1976-01-01
Mass divergence influences on plume dispersion modify classic Gaussian calculations by as much as a factor of two in complex terrain. The Gaussian plume was derived in flux form to include this process.Authors' response to comments and criticism received following this publication:
Multi-pose facial correction based on Gaussian process with combined kernel function
NASA Astrophysics Data System (ADS)
Shi, Shuyan; Ji, Ruirui; Zhang, Fan
2018-04-01
In order to improve the recognition rate of various postures, this paper proposes a method of facial correction based on Gaussian Process which build a nonlinear regression model between the front and the side face with combined kernel function. The face images with horizontal angle from -45° to +45° can be properly corrected to front faces. Finally, Support Vector Machine is employed for face recognition. Experiments on CAS PEAL R1 face database show that Gaussian process can weaken the influence of pose changes and improve the accuracy of face recognition to certain extent.
Stochastic modelling of microstructure formation in solidification processes
NASA Astrophysics Data System (ADS)
Nastac, Laurentiu; Stefanescu, Doru M.
1997-07-01
To relax many of the assumptions used in continuum approaches, a general stochastic model has been developed. The stochastic model can be used not only for an accurate description of the fraction of solid evolution, and therefore accurate cooling curves, but also for simulation of microstructure formation in castings. The advantage of using the stochastic approach is to give a time- and space-dependent description of solidification processes. Time- and space-dependent processes can also be described by partial differential equations. Unlike a differential formulation which, in most cases, has to be transformed into a difference equation and solved numerically, the stochastic approach is essentially a direct numerical algorithm. The stochastic model is comprehensive, since the competition between various phases is considered. Furthermore, grain impingement is directly included through the structure of the model. In the present research, all grain morphologies are simulated with this procedure. The relevance of the stochastic approach is that the simulated microstructures can be directly compared with microstructures obtained from experiments. The computer becomes a `dynamic metallographic microscope'. A comparison between deterministic and stochastic approaches has been performed. An important objective of this research was to answer the following general questions: (1) `Would fully deterministic approaches continue to be useful in solidification modelling?' and (2) `Would stochastic algorithms be capable of entirely replacing purely deterministic models?'
Occupancy mapping and surface reconstruction using local Gaussian processes with Kinect sensors.
Kim, Soohwan; Kim, Jonghyuk
2013-10-01
Although RGB-D sensors have been successfully applied to visual SLAM and surface reconstruction, most of the applications aim at visualization. In this paper, we propose a noble method of building continuous occupancy maps and reconstructing surfaces in a single framework for both navigation and visualization. Particularly, we apply a Bayesian nonparametric approach, Gaussian process classification, to occupancy mapping. However, it suffers from high-computational complexity of O(n(3))+O(n(2)m), where n and m are the numbers of training and test data, respectively, limiting its use for large-scale mapping with huge training data, which is common with high-resolution RGB-D sensors. Therefore, we partition both training and test data with a coarse-to-fine clustering method and apply Gaussian processes to each local clusters. In addition, we consider Gaussian processes as implicit functions, and thus extract iso-surfaces from the scalar fields, continuous occupancy maps, using marching cubes. By doing that, we are able to build two types of map representations within a single framework of Gaussian processes. Experimental results with 2-D simulated data show that the accuracy of our approximated method is comparable to previous work, while the computational time is dramatically reduced. We also demonstrate our method with 3-D real data to show its feasibility in large-scale environments.
Modeling and Properties of Nonlinear Stochastic Dynamical System of Continuous Culture
NASA Astrophysics Data System (ADS)
Wang, Lei; Feng, Enmin; Ye, Jianxiong; Xiu, Zhilong
The stochastic counterpart to the deterministic description of continuous fermentation with ordinary differential equation is investigated in the process of glycerol bio-dissimilation to 1,3-propanediol by Klebsiella pneumoniae. We briefly discuss the continuous fermentation process driven by three-dimensional Brownian motion and Lipschitz coefficients, which is suitable for the factual fermentation. Subsequently, we study the existence and uniqueness of solutions for the stochastic system as well as the boundedness of the Two-order Moment and the Markov property of the solution. Finally stochastic simulation is carried out under the Stochastic Euler-Maruyama method.
NASA Astrophysics Data System (ADS)
Albert, Carlo; Ulzega, Simone; Stoop, Ruedi
2016-04-01
Measured time-series of both precipitation and runoff are known to exhibit highly non-trivial statistical properties. For making reliable probabilistic predictions in hydrology, it is therefore desirable to have stochastic models with output distributions that share these properties. When parameters of such models have to be inferred from data, we also need to quantify the associated parametric uncertainty. For non-trivial stochastic models, however, this latter step is typically very demanding, both conceptually and numerically, and always never done in hydrology. Here, we demonstrate that methods developed in statistical physics make a large class of stochastic differential equation (SDE) models amenable to a full-fledged Bayesian parameter inference. For concreteness we demonstrate these methods by means of a simple yet non-trivial toy SDE model. We consider a natural catchment that can be described by a linear reservoir, at the scale of observation. All the neglected processes are assumed to happen at much shorter time-scales and are therefore modeled with a Gaussian white noise term, the standard deviation of which is assumed to scale linearly with the system state (water volume in the catchment). Even for constant input, the outputs of this simple non-linear SDE model show a wealth of desirable statistical properties, such as fat-tailed distributions and long-range correlations. Standard algorithms for Bayesian inference fail, for models of this kind, because their likelihood functions are extremely high-dimensional intractable integrals over all possible model realizations. The use of Kalman filters is illegitimate due to the non-linearity of the model. Particle filters could be used but become increasingly inefficient with growing number of data points. Hamiltonian Monte Carlo algorithms allow us to translate this inference problem to the problem of simulating the dynamics of a statistical mechanics system and give us access to most sophisticated methods that have been developed in the statistical physics community over the last few decades. We demonstrate that such methods, along with automated differentiation algorithms, allow us to perform a full-fledged Bayesian inference, for a large class of SDE models, in a highly efficient and largely automatized manner. Furthermore, our algorithm is highly parallelizable. For our toy model, discretized with a few hundred points, a full Bayesian inference can be performed in a matter of seconds on a standard PC.
Identification of hydraulic conductivity structure in sand and gravel aquifers: Cape Cod data set
Eggleston, J.R.; Rojstaczer, S.A.; Peirce, J.J.
1996-01-01
This study evaluates commonly used geostatistical methods to assess reproduction of hydraulic conductivity (K) structure and sensitivity under limiting amounts of data. Extensive conductivity measurements from the Cape Cod sand and gravel aquifer are used to evaluate two geostatistical estimation methods, conditional mean as an estimate and ordinary kriging, and two stochastic simulation methods, simulated annealing and sequential Gaussian simulation. Our results indicate that for relatively homogeneous sand and gravel aquifers such as the Cape Cod aquifer, neither estimation methods nor stochastic simulation methods give highly accurate point predictions of hydraulic conductivity despite the high density of collected data. Although the stochastic simulation methods yielded higher errors than the estimation methods, the stochastic simulation methods yielded better reproduction of the measured In (K) distribution and better reproduction of local contrasts in In (K). The inability of kriging to reproduce high In (K) values, as reaffirmed by this study, provides a strong instigation for choosing stochastic simulation methods to generate conductivity fields when performing fine-scale contaminant transport modeling. Results also indicate that estimation error is relatively insensitive to the number of hydraulic conductivity measurements so long as more than a threshold number of data are used to condition the realizations. This threshold occurs for the Cape Cod site when there are approximately three conductivity measurements per integral volume. The lack of improvement with additional data suggests that although fine-scale hydraulic conductivity structure is evident in the variogram, it is not accurately reproduced by geostatistical estimation methods. If the Cape Cod aquifer spatial conductivity characteristics are indicative of other sand and gravel deposits, then the results on predictive error versus data collection obtained here have significant practical consequences for site characterization. Heavily sampled sand and gravel aquifers, such as Cape Cod and Borden, may have large amounts of redundant data, while in more common real world settings, our results suggest that denser data collection will likely improve understanding of permeability structure.
Shiau, LieJune; Schwalger, Tilo; Lindner, Benjamin
2015-06-01
We study the spike statistics of an adaptive exponential integrate-and-fire neuron stimulated by white Gaussian current noise. We derive analytical approximations for the coefficient of variation and the serial correlation coefficient of the interspike interval assuming that the neuron operates in the mean-driven tonic firing regime and that the stochastic input is weak. Our result for the serial correlation coefficient has the form of a geometric sequence and is confirmed by the comparison to numerical simulations. The theory predicts various patterns of interval correlations (positive or negative at lag one, monotonically decreasing or oscillating) depending on the strength of the spike-triggered and subthreshold components of the adaptation current. In particular, for pure subthreshold adaptation we find strong positive ISI correlations that are usually ascribed to positive correlations in the input current. Our results i) provide an alternative explanation for interspike-interval correlations observed in vivo, ii) may be useful in fitting point neuron models to experimental data, and iii) may be instrumental in exploring the role of adaptation currents for signal detection and signal transmission in single neurons.
Active Brownian motion models and applications to ratchets
NASA Astrophysics Data System (ADS)
Fiasconaro, A.; Ebeling, W.; Gudowska-Nowak, E.
2008-10-01
We give an overview over recent studies on the model of Active Brownian Motion (ABM) coupled to reservoirs providing free energy which may be converted into kinetic energy of motion. First, we present an introduction to a general concept of active Brownian particles which are capable to take up energy from the source and transform part of it in order to perform various activities. In the second part of our presentation we consider applications of ABM to ratchet systems with different forms of differentiable potentials. Both analytical and numerical evaluations are discussed for three cases of sinusoidal, staircaselike and Mateos ratchet potentials, also with the additional loads modelled by tilted potential structure. In addition, stochastic character of the kinetics is investigated by considering perturbation by Gaussian white noise which is shown to be responsible for driving the directionality of the asymptotic flux in the ratchet. This stochastically driven directionality effect is visualized as a strong nonmonotonic dependence of the statistics of the right versus left trajectories of motion leading to a net current of particles. Possible applications of the ratchet systems to molecular motors are also briefly discussed.
Finite Element Aircraft Simulation of Turbulence
NASA Technical Reports Server (NTRS)
McFarland, R. E.
1997-01-01
A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.
Electron beam cooling in intense focussed laser pulses
NASA Astrophysics Data System (ADS)
Yoffe, Samuel R.; Noble, Adam; Macleod, Alexander J.; Jaroszynski, Dino A.
2017-05-01
In the coming years, a new generation of high-power laser facilities (such as the Extreme Light Infrastructure) will become operational, for which it is important to understand how the interaction with intense laser pulses affects the bulk properties of relativistic electron bunches. At such high field intensities, we expect both radiation reaction and quantum effects to have a dominant role to play in determining the dynamics. The reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction has been shown to occur equally in the longitudinal and transverse directions, whereas this symmetry is broken when the theory is extended to approximate certain quantum effects. The reduction in longitudinal cooling suggests that the effects of radiation reaction could be better observed in measurements of the transverse distribution, which for real-world laser pulses motivates the investigation of the angular dependence of the interaction. Using a stochastic single-photon emission model with a (Gaussian beam) focussed pulse, we find strong angular dependence of the stochastic heating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsiang, J.-T., E-mail: cosmology@gmail.com; Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan; Hu, B.L.
2015-11-15
The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculatingmore » the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics. -- Highlights: •Nonequilibrium steady state (NESS) for interacting quantum many-body systems. •Derivation of stochastic equations for quantum oscillator chain with two heat baths. •Explicit calculation of the energy flow from one bath to the chain to the other bath. •Power balance relation shows the existence of NESS insensitive to initial conditions. •Functional method as a viable platform for issues in quantum thermodynamics.« less
Stochastic static fault slip inversion from geodetic data with non-negativity and bound constraints
NASA Astrophysics Data System (ADS)
Nocquet, J.-M.
2018-07-01
Despite surface displacements observed by geodesy are linear combinations of slip at faults in an elastic medium, determining the spatial distribution of fault slip remains a ill-posed inverse problem. A widely used approach to circumvent the illness of the inversion is to add regularization constraints in terms of smoothing and/or damping so that the linear system becomes invertible. However, the choice of regularization parameters is often arbitrary, and sometimes leads to significantly different results. Furthermore, the resolution analysis is usually empirical and cannot be made independently of the regularization. The stochastic approach of inverse problems provides a rigorous framework where the a priori information about the searched parameters is combined with the observations in order to derive posterior probabilities of the unkown parameters. Here, I investigate an approach where the prior probability density function (pdf) is a multivariate Gaussian function, with single truncation to impose positivity of slip or double truncation to impose positivity and upper bounds on slip for interseismic modelling. I show that the joint posterior pdf is similar to the linear untruncated Gaussian case and can be expressed as a truncated multivariate normal (TMVN) distribution. The TMVN form can then be used to obtain semi-analytical formulae for the single, 2-D or n-D marginal pdf. The semi-analytical formula involves the product of a Gaussian by an integral term that can be evaluated using recent developments in TMVN probabilities calculations. Posterior mean and covariance can also be efficiently derived. I show that the maximum posterior (MAP) can be obtained using a non-negative least-squares algorithm for the single truncated case or using the bounded-variable least-squares algorithm for the double truncated case. I show that the case of independent uniform priors can be approximated using TMVN. The numerical equivalence to Bayesian inversions using Monte Carlo Markov chain (MCMC) sampling is shown for a synthetic example and a real case for interseismic modelling in Central Peru. The TMVN method overcomes several limitations of the Bayesian approach using MCMC sampling. First, the need of computer power is largely reduced. Second, unlike Bayesian MCMC-based approach, marginal pdf, mean, variance or covariance are obtained independently one from each other. Third, the probability and cumulative density functions can be obtained with any density of points. Finally, determining the MAP is extremely fast.
NASA Astrophysics Data System (ADS)
Wu, Zhenkun; Gu, Yuzong
2016-12-01
The propagation of two-dimensional beams is analytically and numerically investigated in strongly nonlocal nonlinear media (SNNM) based on the ABCD matrix. The two-dimensional beams reported in this paper are described by the product of the superposition of generalized Laguerre-Gaussian (LG), Hermite-Gaussian (HG), Bessel-Gaussian (BG), and circular Airy (CA) beams, carrying an orbital angular momentum (OAM). Owing to OAM and the modulation of SNNM, we find that the propagation of these two-dimensional beams exhibits complete rotation and periodic inversion: the spatial intensity profile first extends and then diminishes, and during the propagation the process repeats to form a breath-like phenomenon.
Randomized central limit theorems: A unified theory
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Klafter, Joseph
2010-08-01
The central limit theorems (CLTs) characterize the macroscopic statistical behavior of large ensembles of independent and identically distributed random variables. The CLTs assert that the universal probability laws governing ensembles’ aggregate statistics are either Gaussian or Lévy, and that the universal probability laws governing ensembles’ extreme statistics are Fréchet, Weibull, or Gumbel. The scaling schemes underlying the CLTs are deterministic—scaling all ensemble components by a common deterministic scale. However, there are “random environment” settings in which the underlying scaling schemes are stochastic—scaling the ensemble components by different random scales. Examples of such settings include Holtsmark’s law for gravitational fields and the Stretched Exponential law for relaxation times. In this paper we establish a unified theory of randomized central limit theorems (RCLTs)—in which the deterministic CLT scaling schemes are replaced with stochastic scaling schemes—and present “randomized counterparts” to the classic CLTs. The RCLT scaling schemes are shown to be governed by Poisson processes with power-law statistics, and the RCLTs are shown to universally yield the Lévy, Fréchet, and Weibull probability laws.
Perdikaris, Paris; Karniadakis, George Em
2016-05-01
We present a computational framework for model inversion based on multi-fidelity information fusion and Bayesian optimization. The proposed methodology targets the accurate construction of response surfaces in parameter space, and the efficient pursuit to identify global optima while keeping the number of expensive function evaluations at a minimum. We train families of correlated surrogates on available data using Gaussian processes and auto-regressive stochastic schemes, and exploit the resulting predictive posterior distributions within a Bayesian optimization setting. This enables a smart adaptive sampling procedure that uses the predictive posterior variance to balance the exploration versus exploitation trade-off, and is a key enabler for practical computations under limited budgets. The effectiveness of the proposed framework is tested on three parameter estimation problems. The first two involve the calibration of outflow boundary conditions of blood flow simulations in arterial bifurcations using multi-fidelity realizations of one- and three-dimensional models, whereas the last one aims to identify the forcing term that generated a particular solution to an elliptic partial differential equation. © 2016 The Author(s).
Valuing options in shot noise market
NASA Astrophysics Data System (ADS)
Laskin, Nick
2018-07-01
A new exactly solvable option pricing model has been introduced and elaborated. It is assumed that a stock price follows a Geometric shot noise process. An arbitrage-free integro-differential option pricing equation has been obtained and solved. The new Greeks have been analytically calculated. It has been shown that in diffusion approximation the developed option pricing model incorporates the well-known Black-Scholes equation and its solution. The stochastic dynamic origin of the Black-Scholes volatility has been uncovered. To model the observed market stock price patterns consisting of high frequency small magnitude and low frequency large magnitude jumps, the superposition of two Geometric shot noises has been implemented. A new generalized option pricing equation has been obtained and its exact solution was found. Merton's jump-diffusion formula for option price was recovered in diffusion approximation. Despite the non-Gaussian nature of probability distributions involved, the new option pricing model has the same degree of analytical tractability as the Black-Scholes model and the Merton jump-diffusion model. This attractive feature allows one to derive exact formulas to value options and option related instruments in the market with jump-like price patterns.
Perdikaris, Paris; Karniadakis, George Em
2016-01-01
We present a computational framework for model inversion based on multi-fidelity information fusion and Bayesian optimization. The proposed methodology targets the accurate construction of response surfaces in parameter space, and the efficient pursuit to identify global optima while keeping the number of expensive function evaluations at a minimum. We train families of correlated surrogates on available data using Gaussian processes and auto-regressive stochastic schemes, and exploit the resulting predictive posterior distributions within a Bayesian optimization setting. This enables a smart adaptive sampling procedure that uses the predictive posterior variance to balance the exploration versus exploitation trade-off, and is a key enabler for practical computations under limited budgets. The effectiveness of the proposed framework is tested on three parameter estimation problems. The first two involve the calibration of outflow boundary conditions of blood flow simulations in arterial bifurcations using multi-fidelity realizations of one- and three-dimensional models, whereas the last one aims to identify the forcing term that generated a particular solution to an elliptic partial differential equation. PMID:27194481
ERIC Educational Resources Information Center
Weiss, Charles J.
2017-01-01
An introduction to digital stochastic simulations for modeling a variety of physical and chemical processes is presented. Despite the importance of stochastic simulations in chemistry, the prevalence of turn-key software solutions can impose a layer of abstraction between the user and the underlying approach obscuring the methodology being…
Forecasting financial asset processes: stochastic dynamics via learning neural networks.
Giebel, S; Rainer, M
2010-01-01
Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.
A Bernoulli Gaussian Watermark for Detecting Integrity Attacks in Control Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weerakkody, Sean; Ozel, Omur; Sinopoli, Bruno
We examine the merit of Bernoulli packet drops in actively detecting integrity attacks on control systems. The aim is to detect an adversary who delivers fake sensor measurements to a system operator in order to conceal their effect on the plant. Physical watermarks, or noisy additive Gaussian inputs, have been previously used to detect several classes of integrity attacks in control systems. In this paper, we consider the analysis and design of Gaussian physical watermarks in the presence of packet drops at the control input. On one hand, this enables analysis in a more general network setting. On the othermore » hand, we observe that in certain cases, Bernoulli packet drops can improve detection performance relative to a purely Gaussian watermark. This motivates the joint design of a Bernoulli-Gaussian watermark which incorporates both an additive Gaussian input and a Bernoulli drop process. We characterize the effect of such a watermark on system performance as well as attack detectability in two separate design scenarios. Here, we consider a correlation detector for attack recognition. We then propose efficiently solvable optimization problems to intelligently select parameters of the Gaussian input and the Bernoulli drop process while addressing security and performance trade-offs. Finally, we provide numerical results which illustrate that a watermark with packet drops can indeed outperform a Gaussian watermark.« less
BACKWARD ESTIMATION OF STOCHASTIC PROCESSES WITH FAILURE EVENTS AS TIME ORIGINS1
Gary Chan, Kwun Chuen; Wang, Mei-Cheng
2011-01-01
Stochastic processes often exhibit sudden systematic changes in pattern a short time before certain failure events. Examples include increase in medical costs before death and decrease in CD4 counts before AIDS diagnosis. To study such terminal behavior of stochastic processes, a natural and direct way is to align the processes using failure events as time origins. This paper studies backward stochastic processes counting time backward from failure events, and proposes one-sample nonparametric estimation of the mean of backward processes when follow-up is subject to left truncation and right censoring. We will discuss benefits of including prevalent cohort data to enlarge the identifiable region and large sample properties of the proposed estimator with related extensions. A SEER–Medicare linked data set is used to illustrate the proposed methodologies. PMID:21359167
Itô and Stratonovich integrals on compound renewal processes: the normal/Poisson case
NASA Astrophysics Data System (ADS)
Germano, Guido; Politi, Mauro; Scalas, Enrico; Schilling, René L.
2010-06-01
Continuous-time random walks, or compound renewal processes, are pure-jump stochastic processes with several applications in insurance, finance, economics and physics. Based on heuristic considerations, a definition is given for stochastic integrals driven by continuous-time random walks, which includes the Itô and Stratonovich cases. It is then shown how the definition can be used to compute these two stochastic integrals by means of Monte Carlo simulations. Our example is based on the normal compound Poisson process, which in the diffusive limit converges to the Wiener process.
NASA Astrophysics Data System (ADS)
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-08-01
This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.
On the application of Rice's exceedance statistics to atmospheric turbulence.
NASA Technical Reports Server (NTRS)
Chen, W. Y.
1972-01-01
Discrepancies produced by the application of Rice's exceedance statistics to atmospheric turbulence are examined. First- and second-order densities from several data sources have been measured for this purpose. Particular care was paid to each selection of turbulence that provides stationary mean and variance over the entire segment. Results show that even for a stationary segment of turbulence, the process is still highly non-Gaussian, in spite of a Gaussian appearance for its first-order distribution. Data also indicate strongly non-Gaussian second-order distributions. It is therefore concluded that even stationary atmospheric turbulence with a normal first-order distribution cannot be considered a Gaussian process, and consequently the application of Rice's exceedance statistics should be approached with caution.
Edge detection - Image-plane versus digital processing
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.; Fales, Carl L.; Park, Stephen K.; Triplett, Judith A.
1987-01-01
To optimize edge detection with the familiar Laplacian-of-Gaussian operator, it has become common to implement this operator with a large digital convolution mask followed by some interpolation of the processed data to determine the zero crossings that locate edges. It is generally recognized that this large mask causes substantial blurring of fine detail. It is shown that the spatial detail can be improved by a factor of about four with either the Wiener-Laplacian-of-Gaussian filter or an image-plane processor. The Wiener-Laplacian-of-Gaussian filter minimizes the image-gathering degradations if the scene statistics are at least approximately known and also serves as an interpolator to determine the desired zero crossings directly. The image-plane processor forms the Laplacian-of-Gaussian response by properly combining the optical design of the image-gathering system with a minimal three-by-three lateral-inhibitory processing mask. This approach, which is suggested by Marr's model of early processing in human vision, also reduces data processing by about two orders of magnitude and data transmission by up to an order of magnitude.
Adiabatic reduction of a model of stochastic gene expression with jump Markov process.
Yvinec, Romain; Zhuge, Changjing; Lei, Jinzhi; Mackey, Michael C
2014-04-01
This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription considered as a jump Markov process. In this model, the process of gene expression with auto-regulation is described by fast/slow dynamics. The production of mRNA is assumed to follow a compound Poisson process occurring at a rate depending on protein levels (the phenomena called bursting in molecular biology) and the production of protein is a linear function of mRNA numbers. When the dynamics of mRNA is assumed to be a fast process (due to faster mRNA degradation than that of protein) we prove that, with appropriate scalings in the burst rate, jump size or translational rate, the bursting phenomena can be transmitted to the slow variable. We show that, depending on the scaling, the reduced equation is either a stochastic differential equation with a jump Poisson process or a deterministic ordinary differential equation. These results are significant because adiabatic reduction techniques seem to have not been rigorously justified for a stochastic differential system containing a jump Markov process. We expect that the results can be generalized to adiabatic methods in more general stochastic hybrid systems.