Science.gov

Sample records for ge hf sn

  1. (29)Si, (47)Ti, (49)Ti and (195)Pt solid state MAS NMR spectroscopic investigations of ternary silicides TPtSi, germanides TPtGe (T = Ti, Zr, Hf) and stannide TiPtSn.

    PubMed

    Benndorf, Christopher; Eckert, Hellmut; Pöttgen, Rainer

    2016-05-10

    Eight ternary tetrelides TPtX (T = Ti, Zr, Hf; X = Si, Ge, Sn) were synthesized from the elements by arc-melting and subsequent annealing. TiPtSi, ZrPtSi, ZrPtGe, HfPtSi and HfPtGe crystallize with the orthorhombic TiNiSi type structure, in the space group Pnma. The structures of HfPtSi (a = 654.44(9), b = 387.97(6), c = 750.0(1) pm, wR2 = 0.0592, 411 F(2) values, 20 variables) and HfPtGe (a = 660.36(7), b = 395.18(4), c = 763.05(8) pm, wR2 = 0.0495, 430 F(2) values, 20 variables) were refined from single crystal X-ray diffractometer data. TiPtSn adopts the cubic MgAgAs type. TiPtGe is dimorphic with a TiNiSi type high-temperature modification which transforms to cubic LT-TiPtGe (MgAgAs type). All phases were investigated by high resolution (29)Si, (47)Ti, (49)Ti and (195)Pt solid state MAS NMR spectroscopy. In the cubic compounds, the (47/49)Ti NMR signals are easily detected owing to the absence of quadrupolar broadening effects. The (195)Pt resonances of the orthorhombic compounds are characterized by strongly negative isotropic Knight shifts and large Knight shift anisotropies, whereas positive isotropic Knight shifts and no anisotropies are observed for the cubic compounds. These results indicate that the phase transition in TiPtGe is associated with dramatic changes in the electronic properties. Within each group of isotypic compounds the isotropic (29)Si, (47/49)Ti and (195)Pt Knight shifts show systematic dependences on the transition metal or tetrel atomic number, suggesting that the numerical values are influenced by the electronegativities of the metallic (or metalloid) neighbours.

  2. Synthesis of Epitaxial Films Based on Ge-Si-Sn Materials with Ge/GeSn, Ge/GeSiSn, and GeSn/GeSiSn Heterojunctions

    NASA Astrophysics Data System (ADS)

    Timofeev, V. A.; Kokhanenko, A. P.; Nikiforov, A. I.; Mashanov, V. I.; Tuktamyshev, A. R.; Loshkarev, I. D.

    2015-11-01

    Results of investigations into the synthesis of heterostructures based on Ge-Si-Sn materials by the method of low-temperature molecular beam epitaxy are presented. The formation of epitaxial films during structure growth has been controlled by the reflection high-energy electron diffraction method. Films with Ge/GeSn, Ge/GeSiSn, and GeSn/GeSiSn heterojunctions are grown with Sn content changing from 2 to 10 % at temperatures in the interval 150-350°C. The stressed state, the composition, and the lattice parameter are studied by the x-ray diffraction method using Omega-scan curves and reciprocal space maps. A tensile strain in the Ge film during Ge/Ge0.9Sn0.1/Si structure growth has reached 0.86%.

  3. GeSn/SiGeSn photonic devices for mid-infrared applications: experiments and calculations

    NASA Astrophysics Data System (ADS)

    Han, Genquan; Zhang, Qingfang; Liu, Yan; Zhang, Chunfu; Hao, Yue

    2016-11-01

    In this work, a fully strained GeSn photodetector with Sn atom percent of 8% is fabricated on Ge buffer on Si(001) substrate. The wavelength λ of light signals with obvious optical response for Ge0.92Sn0.08 photodetector is extended to 2 μm. The impacts of compressive strain introduced during the epitaxial growth of GeSn on Ge/Si are studied by simulation. Besides, the tensile strain engineering of GeSn photonic devices is also investigated. Lattice-matched GeSn/SiGeSn double heterostructure light emitting diodes (LEDs) with Si3N4 tensile liner stressor are designed to promote the further mid-infrared applications of GeSn photonic devices. With the releasing of the residual stress in Si3N4 liner, a large biaxial tensile strain is induced in GeSn active layer. Under biaxial tensile strain, the spontaneous emission rate rsp and internal quantum efficiency ηIQE for GeSn/SiGeSn LED are significantly improved.

  4. Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Yi; Huang, Chih-Hsiung; Huang, Shih-Hsien; Chang, Chih-Chiang; Liu, C. W.; Huang, Yi-Chiau; Chung, Hua; Chang, Chorng-Ping

    2016-08-01

    Ge/strained GeSn/Ge quantum wells are grown on a 300 mm Si substrate by chemical vapor deposition. The direct bandgap emission from strained GeSn is observed in the photoluminescence spectra and is enhanced by Al2O3/SiO2 passivation due to the field effect. The electroluminescence of the direct bandgap emission of strained GeSn is also observed from the Ni/Al2O3/GeSn metal-insulator-semiconductor tunneling diodes. Electroluminescence is a good indicator of GeSn material quality, since defects in GeSn layers degrade the electroluminescence intensity significantly. At the accumulation bias, the holes in the Ni gate electrode tunnel to the strained n-type GeSn layer through the ultrathin Al2O3 and recombine radiatively with electrons. The emission wavelength of photoluminescence and electroluminescence can be tuned by the Sn content.

  5. Germanium-tin interdiffusion in strained Ge/GeSn multiple-quantum-well structure

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Dong, Yuan; Zhou, Qian; Tok, Eng Soon; Yeo, Yee-Chia

    2016-06-01

    The thermal stability and germanium-tin (Ge-Sn) interdiffusion properties were studied in epitaxial Ge/GeSn multiple-quantum-well (MQW) structure. No obvious interdiffusion was observed for annealing temperatures of 300 °C or below, while observable interdiffusion occurred for annealing temperatures of 380 °C and above. High-resolution x-ray diffraction was used to obtain the interdiffusion coefficient by analyzing the decrease rate of Ge/GeSn periodic satellite peaks. The interdiffusion coefficient is much higher, and the activation enthalpy of 1.21 eV is substantially lower in Ge/GeSn MQW structure than that previously reported in silicon-germanium (Si-Ge) systems. When the annealing temperature is increased to above 500 °C, Ge-Sn interdiffusion becomes severe. Some small pits appear on the surface, which should be related to Sn out-diffusion to the Ge cap layer, followed by Sn desorption from the top surface. This work provides insights into the Ge-Sn interdiffusion and Sn segregation behaviors in Ge/GeSn MQW structure, and the thermal budget that may be used for fabrication of devices comprising Ge/GeSn heterostructures.

  6. Process modules for GeSn nanoelectronics with high Sn-contents

    NASA Astrophysics Data System (ADS)

    Schulte-Braucks, C.; Glass, S.; Hofmann, E.; Stange, D.; von den Driesch, N.; Hartmann, J. M.; Ikonic, Z.; Zhao, Q. T.; Buca, D.; Mantl, S.

    2017-02-01

    This paper systematically studies GeSn n-FETs, from individual process modules to a complete device. High-k gate stacks and NiGeSn metallic contacts for source and drain are characterized in independent experiments. To study both direct and indirect bandgap semiconductors, a range of 0-14.5 at.% Sn-content GeSn alloys are investigated. Special emphasis is placed on capacitance-voltage (C-V) characteristics and Schottky-barrier optimization. GeSn n-FET devices are presented including temperature dependent I-V characteristics. Finally, as an important step towards implementing GeSn in tunnel-FETs, negative differential resistance in Ge0.87Sn0.13 tunnel-diodes is demonstrated at cryogenic temperatures. The present work provides a base for further optimization of GeSn FETs and novel tunnel FET devices.

  7. Infrared photoresponse of GeSn/n-Ge heterojunctions grown by molecular beam epitaxy.

    PubMed

    Kim, Sangcheol; Bhargava, Nupur; Gupta, Jay; Coppinger, Matthew; Kolodzey, James

    2014-05-05

    Heterojunction devices of Ge(1-x)Sn(x) / n-Ge were grown by solid source molecular beam epitaxy (MBE), and the mid-infrared (IR) photocurrent response was measured. With increasing Sn composition from 4% to 12%, the photocurrent spectra became red-shifted, suggesting that the bandgap of Ge(1-x)Sn(x) alloys was lowered compared to pure Ge. At a temperature of 100 K, the wavelengths of peak photocurrent were shifted from 1.42 µm for pure Ge (0% Sn) to 2.0 µm for 12% Sn. The bias dependence of the device response showed that the optimum reverse bias was > 0.5 volts for saturated photocurrent. The responsivity of the Ge(1-x)Sn(x) devices was estimated to be 0.17 A/W for 4% Sn. These results suggest that Ge(1-x)Sn(x) photodetectors may have practical applications in the near/mid IR wavelength regime.

  8. Ge interactions on HfO{sub 2} surfaces and kinetically driven patterning of Ge nanocrystals on HfO{sub 2}

    SciTech Connect

    Stanley, Scott K.; Joshi, Sachin V.; Banerjee, Sanjay K.; Ekerdt, John G.

    2006-01-15

    Germanium interactions are studied on HfO{sub 2} surfaces, which are prepared through physical vapor deposition (PVD) and by atomic layer deposition. X-ray photoelectron spectroscopy and temperature-programed desorption are used to follow the reactions of germanium on HfO{sub 2}. Germanium chemical vapor deposition at 870 K on HfO{sub 2} produces a GeO{sub x} adhesion layer, followed by growth of semiconducting Ge{sup 0}. PVD of 0.7 ML Ge (accomplished by thermally cracking GeH{sub 4} over a hot filament) also produces an initial GeO{sub x} layer, which is stable up to 800 K. PVD above 2.0 ML deposits semiconducting Ge{sup 0}. Temperature programed desorption experiments of {approx}1.0 ML Ge from HfO{sub 2} at 400-1100 K show GeH{sub 4} desorption below 600 K and GeO desorption above 850 K. These results are compared to Ge on SiO{sub 2} where GeO desorption is seen at 550 K. Exploiting the different reactivity of Ge on HfO{sub 2} and SiO{sub 2} allows a kinetically driven patterning scheme for high-density Ge nanoparticle growth on HfO{sub 2} surfaces that is demonstrated.

  9. Ge/GeSn heterostructures grown on Si (100) by molecular-beam epitaxy

    SciTech Connect

    Sadofyev, Yu. G. Martovitsky, V. P.; Bazalevsky, M. A.; Klekovkin, A. V.; Averyanov, D. V.; Vasil’evskii, I. S.

    2015-01-15

    The growth of GeSn layers by molecular-beam epitaxy on Si (100) wafers coated with a germanium buffer layer is investigated. The properties of the fabricated structures are controlled by reflection high-energy electron diffraction, atomic-force microscopy, X-ray diffractometry, Rutherford backscattering, and Raman scattering. It is shown that GeSn layers with thicknesses up to 0.5 μm and Sn molar fractions up to 0.073 manifest no sign of plastic relaxation upon epitaxy. The lattice constant of the GeSn layers within the growth plane is precisely the same as that of Ge. The effect of rapid thermal annealing on the conversion of metastable elastically strained GeSn layers into a plastically relaxed state is examined. Ge/GeSn quantum wells with Sn molar fraction up to 0.11 are obtained.

  10. Thermal Stability of Ge/GeSn Nanostructures Grown by MBE on (001) Si/Ge Virtual Wafers

    NASA Astrophysics Data System (ADS)

    Sadofyev, Yu. G.; Martovitsky, V. P.; Klekovkin, A. V.; Saraikin, V. V.; Vasil'evskii, I. S.

    A stack of five metastable 200-nm-thick elastically strained GeSn epitaxial layers separated by 20-nm-thick Ge spacers was grown on (001) Si/Ge virtual substrate by MBE. The molar fraction of Sn in different layers varied from 0.005 to 0.10, increasing with the layer distance from the Ge buffer. The phase separation of the GeSn alloy during postgrowth annealing takes place along with plastic relaxation. The phase separation begins well before the completion of the plastic relaxation process. The degree of phase separation at a given annealing temperature depends strongly on the Sn content in the GeSn alloy. The Sn released from the decomposed GeSn alloy predominantly accumulates as an amorphous layer on the surface of the sample.

  11. Electrical and Optical Characterization of Si-Ge-Sn

    DTIC Science & Technology

    2012-03-01

    found to be comparable to Ge, SiGeSn does appear to have promising uses as a photo- detector or solar cell . This is especially true if it possible...this type of efficiency , strain engineering had to be employed. Strain engineering can lead to several issues in making device quality structures...grown on Ge, Si, and GaAs substrates. Since Ge-Sn and Si-Ge-Sn are lattice matched [3] and have shown response in the entire telecom band [4], these all

  12. Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing

    SciTech Connect

    Tonkikh, Alexander A.; Eisenschmidt, Christian; Schmidt, Georg; Talalaev, Vadim G.; Zakharov, Nikolay D.; Werner, Peter; Schilling, Joerg

    2013-07-15

    A study of the bandgap character of compressively strained GeSn{sub 0.060-0.091}/Ge(001) quantum wells grown by molecular beam epitaxy is reported. The built-in strain in GeSn wells leads to an increased separation between L and {Gamma} conduction band minima. The prevalent indirect interband transitions in GeSn were probed by photoluminescence spectroscopy. As a result we could simulate the L-valley bowing parameter in GeSn alloys, b{sub L} = 0.80 {+-} 0.06 eV at 10 K. From this we conclude that even compressively strained GeSn/Ge(001) alloys could become direct band gap semiconductors at the Sn-fraction higher than 17.0 at. %.

  13. 70 °C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge

    SciTech Connect

    Toko, K. Oya, N.; Suemasu, T.; Saitoh, N.; Yoshizawa, N.

    2015-02-23

    Polycrystalline GeSn thin films are fabricated on insulating substrates at low temperatures by using Sn-induced crystallization of amorphous Ge (a-Ge). The Sn layer stacked on the a-Ge layer (100-nm thickness each) had two roles: lowering the crystallization temperature of a-Ge and composing GeSn. Slow annealing at an extremely low temperature of 70 °C allowed for a large-grained (350 nm) GeSn layer with a lattice constant of 0.590 nm, corresponding to a Sn composition exceeding 25%. The present investigation paves the way for advanced electronic optical devices integrated on a flexible plastic substrate as well as on a Si platform.

  14. Parametrized dielectric functions of amorphous GeSn alloys

    SciTech Connect

    D'Costa, Vijay Richard Wang, Wei; Yeo, Yee-Chia; Schmidt, Daniel

    2015-09-28

    We obtained the complex dielectric function of amorphous Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge{sub 0.75}Sn{sub 0.25} and Ge{sub 0.50}Sn{sub 0.50} alloys from literature. The compositional dependence of band gap energy E{sub g} and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  15. Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy

    SciTech Connect

    Oliveira, F.; Fischer, I. A.; Schulze, J.; Benedetti, A.; Zaumseil, P.; Cerqueira, M. F.; Vasilevskiy, M. I.; Stefanov, S.; Chiussi, S.

    2015-12-28

    We report on the fabrication and structural characterization of epitaxially grown ultra-thin layers of Sn on Ge virtual substrates (Si buffer layer overgrown by a 50 nm thick Ge epilayer followed by an annealing step). Samples with 1 to 5 monolayers of Sn on Ge virtual substrates were grown using solid source molecular beam epitaxy and characterized by atomic force microscopy. We determined the critical thickness at which the transition from two-dimensional to three-dimensional growth occurs. This transition is due to the large lattice mismatch between Ge and Sn (≈14.7%). By depositing Ge on top of Sn layers, which have thicknesses at or just below the critical thickness, we were able to fabricate ultra-narrow GeSn multi-quantum-well structures that are fully embedded in Ge. We report results on samples with one and ten GeSn wells separated by 5 and 10 nm thick Ge spacer layers that were characterized by high resolution transmission electron microscopy and X-ray diffraction. We discuss the structure and material intermixing observed in the samples.

  16. Band alignments at strained Ge1‑x Sn x /relaxed Ge1‑y Sn y heterointerfaces

    NASA Astrophysics Data System (ADS)

    Lan, H.-S.; Liu, C. W.

    2017-04-01

    Type-I, type-II, reverse type-I, and reverse type-II band alignments are found theoretically in strained Ge1‑x Sn x (0  ⩽  x  ⩽  0.3) grown on relaxed Ge1‑y Sn y substrates (0  ⩽  y  ⩽  0.3) using the model-solid theory. The prerequisite bandgaps, and energy difference between the top valence band edge and the average valence band position of GeSn are obtained by the nonlocal empirical pseudopotential method. For the indirect-gap (L valleys) Ge1‑x Sn x on relaxed Ge1‑y Sn y , the band alignments are type-I and reverse type-I under biaxial compressive strain (x  >  y) and biaxial tensile strain (x  <  y), respectively. For the direct-gap (Γ valley) Ge1‑x Sn x on relaxed Ge1‑y Sn y , the biaxial compressive strain yields type-I and type-II alignment, while the biaxial tensile strain yields reverse type-I and reverse type-II alignments.

  17. Raman spectral shift versus strain and composition in GeSn layers with 6%-15% Sn content

    NASA Astrophysics Data System (ADS)

    Gassenq, A.; Milord, L.; Aubin, J.; Pauc, N.; Guilloy, K.; Rothman, J.; Rouchon, D.; Chelnokov, A.; Hartmann, J. M.; Reboud, V.; Calvo, V.

    2017-03-01

    GeSn alloys are the subject of intense research activities as these group IV semiconductors present direct bandgap behaviors for high Sn contents. Today, the control of strain becomes an important challenge to improve GeSn devices. Strain micro-measurements are usually performed by Raman spectroscopy. However, different relationships linking the Raman spectral shifts to the built-in strain can be found in the literature. They were deduced from studies on low Sn content GeSn layers (i.e., xSn < 8%) or on GeSiSn layers. In this work, we have calibrated the GeSn Raman relationship for really high Sn content GeSn binaries (6 < xSn < 15%). We have used fully strained GeSn layers and fully relaxed GeSn under-etched microstructures to clearly differentiate the contributions of strain and chemical composition on the Ge-Ge Raman spectral shift. We have shown that the GeSn Raman-strain coefficient for high Sn contents is higher compared with that for pure Ge.

  18. Graphene contacts to a HfSe2/SnS2 heterostructure.

    PubMed

    Su, Shanshan; Das, Protik; Ge, Supeng; Lake, Roger K

    2017-02-14

    Two-dimensional (2D) heterostructures and all-2D contacts are of high interest for electronic device applications, and the SnS2/HfSe2 bilayer heterostructure with graphene contacts has some unique, advantageous properties. The SnS2/HfSe2 heterostructure is interesting because of the strong intermixing of the two conduction bands and the large work function of the SnS2. The band lineup of the well separated materials indicates a type II heterostructure, but the conduction band minimum of the SnS2/HfSe2 bilayer is a coherent superposition of the orbitals from the two layers with a spectral weight of 60% on the SnS2 and 40% on the HfSe2 for AA stacking. These relative weights can be either increased or reversed by an applied vertical field. A 3×3 supercell of graphene and a 2×2 supercell of SnS2/HfSe2 have a lattice mismatch of 0.1% and both the SnS2/HfSe2 conduction band at M and the graphene Dirac point at K are zone-folded to Γ. Placing graphene on the SnS2/HfSe2 bilayer results in large n-type charge transfer doping of the SnS2/HfSe2 bilayer, on the order of 10(13)/cm(2), and the charge transfer is accompanied by a negative Schottky barrier contact for electron injection from the graphene into the SnS2/HfSe2 bilayer conduction band. Binding energies and the anti-crossing gaps of the graphene and the SnS2/HfSe2 electronic bands both show that the coupling of graphene to the HfSe2 layer is significantly larger than its coupling to the SnS2 layer. A tunneling Hamiltonian estimate of the contact resistance of the graphene to the SnS2/HfSe2 heterostructure predicts an excellent low-resistance contact.

  19. Graphene contacts to a HfSe2/SnS2 heterostructure

    NASA Astrophysics Data System (ADS)

    Su, Shanshan; Das, Protik; Ge, Supeng; Lake, Roger K.

    2017-02-01

    Two-dimensional (2D) heterostructures and all-2D contacts are of high interest for electronic device applications, and the SnS2/HfSe2 bilayer heterostructure with graphene contacts has some unique, advantageous properties. The SnS2/HfSe2 heterostructure is interesting because of the strong intermixing of the two conduction bands and the large work function of the SnS2. The band lineup of the well separated materials indicates a type II heterostructure, but the conduction band minimum of the SnS2/HfSe2 bilayer is a coherent superposition of the orbitals from the two layers with a spectral weight of 60% on the SnS2 and 40% on the HfSe2 for AA stacking. These relative weights can be either increased or reversed by an applied vertical field. A 3 ×3 supercell of graphene and a 2 ×2 supercell of SnS2/HfSe2 have a lattice mismatch of 0.1% and both the SnS2/HfSe2 conduction band at M and the graphene Dirac point at K are zone-folded to Γ . Placing graphene on the SnS2/HfSe2 bilayer results in large n-type charge transfer doping of the SnS2/HfSe2 bilayer, on the order of 1013/cm2, and the charge transfer is accompanied by a negative Schottky barrier contact for electron injection from the graphene into the SnS2/HfSe2 bilayer conduction band. Binding energies and the anti-crossing gaps of the graphene and the SnS2/HfSe2 electronic bands both show that the coupling of graphene to the HfSe2 layer is significantly larger than its coupling to the SnS2 layer. A tunneling Hamiltonian estimate of the contact resistance of the graphene to the SnS2/HfSe2 heterostructure predicts an excellent low-resistance contact.

  20. Single layer of Ge quantum dots in HfO2 for floating gate memory capacitors.

    PubMed

    Lepadatu, A M; Palade, C; Slav, A; Maraloiu, A V; Lazanu, S; Stoica, T; Logofatu, C; Teodorescu, V S; Ciurea, M L

    2017-04-28

    High performance trilayer memory capacitors with a floating gate of a single layer of Ge quantum dots (QDs) in HfO2 were fabricated using magnetron sputtering followed by rapid thermal annealing (RTA). The layer sequence of the capacitors is gate HfO 2/floating gate of single layer of Ge QDs in HfO 2/tunnel HfO 2/p-Si wafers. Both Ge and HfO2 are nanostructured by RTA at moderate temperatures of 600-700 °C. By nanostructuring at 600 °C, the formation of a single layer of well separated Ge QDs with diameters of 2-3 nm at a density of 4-5 × 10(15) m(-2) is achieved in the floating gate (intermediate layer). The Ge QDs inside the intermediate layer are arranged in a single layer and are separated from each other by HfO2 nanocrystals (NCs) about 8 nm in diameter with a tetragonal/orthorhombic structure. The Ge QDs in the single layer are located at the crossing of the HfO2 NCs boundaries. In the intermediate layer, besides Ge QDs, a part of the Ge atoms is segregated by RTA at the HfO2 NCs boundaries, while another part of the Ge atoms is present inside the HfO2 lattice stabilizing the tetragonal/orthorhombic structure. The fabricated capacitors show a memory window of 3.8 ± 0.5 V and a capacitance-time characteristic with 14% capacitance decay in the first 3000-4000 s followed by a very slow capacitance decrease extrapolated to 50% after 10 years. This high performance is mainly due to the floating gate of a single layer of well separated Ge QDs in HfO2, distanced from the Si substrate by the tunnel oxide layer with a precise thickness.

  1. Chemical states and electronic structure of a HfO(-2) / Ge(001) interface

    SciTech Connect

    Seo, Kang-ill; McIntyre, Paul C.; Sun, Shiyu; Lee, Dong-Ick; Pianetta, Piero; Saraswat, Krishna C.; /Stanford U., Elect. Eng. Dept.

    2005-05-04

    We report the chemical bonding structure and valence band alignment at the HfO{sub 2}/Ge (001) interface by systematically probing various core level spectra as well as valence band spectra using soft x-rays at the Stanford Synchrotron Radiation Laboratory. We investigated the chemical bonding changes as a function of depth through the dielectric stack by taking a series of synchrotron photoemission spectra as we etched through the HfO{sub 2} film using a dilute HF-solution. We found that a very non-stoichiometric GeO{sub x} layer exists at the HfO{sub 2}/Ge interface. The valence band spectra near the Fermi level in each different film structure were carefully analyzed, and as a result, the valence band offset between Ge and GeO{sub x} was determined to be {Delta}E{sub v} (Ge-GeO{sub x}) = 2.2 {+-} 0.15 eV, and that between Ge and HfO{sub 2}, {Delta}E{sub v} (Ge-HfO{sub 2}) = 2.7 {+-} 0.15 eV.

  2. Chemically Resolved Structure of the Sn/Ge(111) Surface

    NASA Astrophysics Data System (ADS)

    Lee, Tien-Lin; Warren, Samantha; Cowie, Bruce C. C.; Zegenhagen, Jörg

    2006-02-01

    The structure and chemical states of the Sn/Ge(111) surface are characterized by x-ray standing waves combined with photoemission. For the room temperature 3×3 phase two chemical components, approximately 0.4 eV apart, are observed for both Sn 3d and 4d core levels. Our model-independent, x-ray standing wave analysis shows unambiguously that the two components originate from Sn adatoms located at two different heights separated vertically by 0.23 Å, in favor of a model composed of a fluctuating Sn layer. Contrary to the most accepted scenario, the stronger Sn 3d and 4d components, which appear at the lower binding-energy sides and account for 2/3 of the Sn adatoms, are identified to be associated with the higher Sn position, manifesting their filled valence state character.

  3. Lattice Thermal Conductivity of the Binary and Ternary Group-IV Alloys Si-Sn, Ge-Sn, and Si-Ge-Sn

    NASA Astrophysics Data System (ADS)

    Khatami, S. N.; Aksamija, Z.

    2016-07-01

    Efficient thermoelectric (TE) energy conversion requires materials with low thermal conductivity and good electronic properties. Si-Ge alloys, and their nanostructures such as thin films and nanowires, have been extensively studied for TE applications; other group-IV alloys, including those containing Sn, have not been given as much attention as TEs, despite their increasing applications in other areas including optoelectronics. We study the lattice thermal conductivity of binary (Si-Sn and Ge-Sn) and ternary (Si-Ge-Sn) alloys and their thin films in the Boltzmann transport formalisms, including a full phonon dispersion and momentum-dependent boundary-roughness scattering. We show that Si-Sn alloys have the lowest conductivity (3 W /mK ) of all the bulk alloys, more than 2 times lower than Si-Ge, attributed to the larger difference in mass between the two constituents. In addition, we demonstrate that thin films offer an additional reduction in thermal conductivity, reaching around 1 W /mK in 20-nm-thick Si-Sn, Ge-Sn, and ternary Si-Ge-Sn films, which is near the conductivity of amorphous SiO2 . We conclude that group-IV alloys containing Sn have the potential for high-efficiency TE energy conversion.

  4. Epitaxial Technologies for SiGeSn High Performance Optoelectronic Devices

    DTIC Science & Technology

    2015-04-29

    SiSn, GeSn, and SiGeSn on Si substrate has been demonstrated. Both SnCl4 and SnD4 are used as Sn precursors for GeSn and SiGeSn growth. So far 276...2014) 40 10 10 40 0 15 0 Number of round (Oct.~Dec. 2014) 5* 34 0 2 34 12 22 Number of round (Jan.~ Mar . 2015) 4** 0 0 43 5 0 0 Total Number...to Si substrate peak, while incorporating of Sn shifts the peak away from the Si substrate peak, which agrees well with theoretical study. Figure

  5. Energy band alignment of atomic layer deposited HfO{sub 2} oxide film on epitaxial (100)Ge, (110)Ge, and (111)Ge layers

    SciTech Connect

    Hudait, Mantu K.; Zhu Yan

    2013-03-21

    Crystallographically oriented epitaxial Ge layers were grown on (100), (110), and (111)A GaAs substrates by in situ growth process using two separate molecular beam epitaxy chambers. The band alignment properties of atomic layer hafnium oxide (HfO{sub 2}) film deposited on crystallographically oriented epitaxial Ge were investigated using x-ray photoelectron spectroscopy (XPS). Valence band offset, {Delta}E{sub v} values of HfO{sub 2} relative to (100)Ge, (110)Ge, and (111)Ge orientations were 2.8 eV, 2.28 eV, and 2.5 eV, respectively. Using XPS data, variation in valence band offset, {Delta}E{sub V}(100)Ge>{Delta}E{sub V}(111)Ge>{Delta}E{sub V}(110)Ge, was obtained related to Ge orientation. Also, the conduction band offset, {Delta}E{sub c} relation, {Delta}E{sub c}(110)Ge>{Delta}E{sub c}(111)Ge>{Delta}E{sub c}(100)Ge related to Ge orientations was obtained using the measured bandgap of HfO{sub 2} on each orientation and with the Ge bandgap of 0.67 eV. These band offset parameters for carrier confinement would offer an important guidance to design Ge-based p- and n-channel metal-oxide field-effect transistor for low-power application.

  6. Temperature dependence of the quadrupole interaction of69Ge Tl and113Sn Sn

    NASA Astrophysics Data System (ADS)

    Semmler, W.; Raghavan, P.; Senba, M.; Raghavan, R. S.

    1981-03-01

    The quadrupole interaction constants of69Ge T1 and113Sn Sn were measured by means of the perturbed angular distribution technique as a function of temperature in the range of 80K≦T≦508 K and 80K≦T≦480 K, respectively. Isomeric states in69Ge and113Sn were populated by the heavy ion reactions56Fe(16O, 2 p n) and100Mo(16O, 3 n) and recoil implanted into polycrystalline Tl- and single crystalline Sn-backings. In the case of113Sn Sn, where the quadrupole coupling is weak, a special single crystal geometry was employed to enhance the sensitivity of the measurement. Within the limits of the errors the temperature dependence for both systems follows the empirical T1.5-dependence. While a strong temperature dependence comparable to In In is observed for69Ge T1, that for113Sn Sn is weaker than expected. The strength of the temperature dependence for113Sn Sn does not agree with the predictions of a lattice vibration model proposed recently for the temperature dependence of the quadrupole interaction.

  7. Interface traps and dangling-bond defects in (100)Ge/HfO2

    NASA Astrophysics Data System (ADS)

    Afanas'ev, V. V.; Fedorenko, Y. G.; Stesmans, A.

    2005-07-01

    Combined electrical and electron spin resonance analysis reveals dramatic differences in the interface defect properties of the (100)Ge/GeOxNy/HfO2 and (100)Ge/GeO2 interfaces from the seemingly similar interfaces of (100)Si with the HfO2 and SiO2. No dangling bond centers associated with Ge crystal surface atoms are detected. Only paramagnetic defects in the near-interfacial Ge oxide or Ge (oxy)nitride layers are observed. In contrast to the amphoteric traps related to the dangling bonds (Pb-type centers) commonly observed at the silicon/insulator interfaces, the major component of the Ge/insulator interface trap spectrum comes from slow acceptor states which show no correlation with paramagnetic centers and are resistant to passivation by hydrogen.

  8. Hf{sub 3}Fe{sub 4}Sn{sub 4} and Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x}: Two stannide intermetallics with low-dimensional iron sublattices

    SciTech Connect

    Calta, Nicholas P.; Kanatzidis, Mercouri G.

    2016-04-15

    This article reports two new Hf-rich intermetallics synthesized using Sn flux: Hf{sub 3}Fe{sub 4}Sn{sub 4} and Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x}. Hf{sub 3}Fe{sub 4}Sn{sub 4} adopts an ordered variant the Hf{sub 3}Cu{sub 8} structure type in orthorhombic space group Pnma with unit cell edges of a=8.1143(5) Å, b=8.8466(5) Å, and c=10.6069(6) Å. Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x}, on the other hand, adopts a new structure type in Cmc2{sub 1} with unit cell edges of a=5.6458(3) Å, b=35.796(2) Å, and c=8.88725(9) Å for x=0. It exhibits a small amount of phase width in which Sn substitutes on one of the Fe sites. Both structures are fully three-dimensional and are characterized by pseudo one- and two-dimensional networks of Fe–Fe homoatomic bonding. Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x} exhibits antiferromagnetic order at T{sub N}=46(2) K and its electrical transport behavior indicates that it is a normal metal with phonon-dictated resistivity. Hf{sub 3}Fe{sub 4}Sn{sub 4} is also an antiferromagnet with a rather high ordering temperature of T{sub N}=373(5) K. Single crystal resistivity measurements indicate that Hf{sub 3}Fe{sub 4}Sn{sub 4} behaves as a Fermi liquid at low temperatures, indicating strong electron correlation. - Graphical abstract: Slightly different growth conditions in Sn flux produce two new intermetallic compounds: Hf{sub 3}Fe{sub 4}Sn{sub 4} and Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x}. - Highlights: • Single crystals of both Hf{sub 3}Fe{sub 4}Sn{sub 4} and Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x} were grown using Sn flux. • The crystal structures were determined using single crystal X-ray diffraction. • The Fe moments in Hf{sub 3}Fe{sub 4}Sn{sub 4} display AFM order below T{sub N}=373 K. • The Fe moments in Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x} display AFM order below T{sub N}=46 K.

  9. Interplay between relaxation and Sn segregation during thermal annealing of GeSn strained layers

    NASA Astrophysics Data System (ADS)

    Comrie, C. M.; Mtshali, C. B.; Sechogela, P. T.; Santos, N. M.; van Stiphout, K.; Loo, R.; Vandervorst, W.; Vantomme, A.

    2016-10-01

    The effect of thermal annealing on epitaxial GeSn (6.5% Sn) strained layers grown on Ge-buffered Si(100) wafers has been investigated using Rutherford backscattering spectrometry and X-ray diffraction to unambiguously determine the Sn substitutional content as well as the elastic strain in the layers. Vacuum annealing at temperatures below 400 °C for 20 min has no noticeable effect on the strain in the epitaxial layers. Once the temperature was raised above 400 °C, however, relaxation of the layer sets in and the GeSn layer has essentially completely relaxed following a 20 min anneal at 650 °C. Using Rutherford backscattering and channelling spectrometry to provide compositional information as a function of depth enables one to monitor the effect of the thermal anneal on the Sn distribution throughout the layer, and also to directly extract their substitutional fraction (i.e., their solubility in the lattice). The results obtained show that when the relaxation initially sets in both the Ge and the Sn remain firmly bound in substitutional lattice sites and it is only around 600 °C, and after substantial relaxation has taken place, that Sn is finally expelled from lattice sites and diffuses to the surface of the sample.

  10. Linear magnetoresistance and zero-field anomalies in HfNiSn single crystals

    NASA Astrophysics Data System (ADS)

    Steinke, Lucia; Kistner-Morris, Jedediah J.; Deng, Haiming; Geschwind, Gayle; Aronson, Meigan C.

    The Half-Heusler compound HfNiSn is probably best known as a candidate material for thermoelectric applications, and studies of its properties have mainly focused on polycrystalline samples and thin films. However, magnetotransport studies of HfNiSn show unusual transport properties like linear magnetoresistance (LMR), where single-crystalline samples of HfNiSn exhibit unexpected LMR at very low fields. In this work, we optimized the solution growth of HfNiSn to obtain high-quality single crystals, where electrical transport measurements show that it is a compensated semimetal below ~ 200 K, where the Hall voltage is zero. At higher temperatures, we see a finite Hall contribution from activated excess carriers. In the semimetallic regime, we observe transport anomalies like resistive signals that strongly depend on contact configuration, and LMR below 5 K. Both low-field DC and low frequency AC magntization measurements show pronounced diamagnetic behavior and the onset of paramagnetism below 4 K. High-frequency diamagnetic screening may be attributed to a decreased skin depth with decreased resistance, but this scenario seems unlikely in HfNiSn since the measured resistance increases steeply at the lowest temperatures This research was supported by the Army Research Office.

  11. Material gain engineering in GeSn/Ge quantum wells integrated with an Si platform

    PubMed Central

    Mączko, H. S.; Kudrawiec, R.; Gladysiewicz, M.

    2016-01-01

    It is shown that compressively strained Ge1−xSnx/Ge quantum wells (QWs) grown on a Ge substrate with 0.1 ≤ x ≤ 0.2 and width of 8 nm ≤ d ≤ 14 nm are a very promising gain medium for lasers integrated with an Si platform. Such QWs are type-I QWs with a direct bandgap and positive transverse electric mode of material gain, i.e. the modal gain. The electronic band structure near the center of Brillouin zone has been calculated for various Ge1−xSnx/Ge QWs with use of the 8-band kp Hamiltonian. To calculate the material gain for these QWs, occupation of the L valley in Ge barriers has been taken into account. It is clearly shown that this occupation has a lot of influence on the material gain in the QWs with low Sn concentrations (Sn < 15%) and is less important for QWs with larger Sn concentration (Sn > 15%). However, for QWs with Sn > 20% the critical thickness of a GeSn layer deposited on a Ge substrate starts to play an important role. Reduction in the QW width shifts up the ground electron subband in the QW and increases occupation of the L valley in the barriers instead of the Γ valley in the QW region. PMID:27686056

  12. Structural degradation of thin HfO2 film on Ge during the postdeposition annealing

    NASA Astrophysics Data System (ADS)

    Miyata, Noriyuki; Yasuda, Tetsuji; Abe, Yasuhiro

    2010-05-01

    Securing the thermal robustness of thin hafnium oxide (HfO2) film on the semiconductor surface is an important technical issue in the fabrication of the metal-oxide-semiconductor field-effect transistor devices, as the HfO2-based high-k gate stacks usually undergo high-temperature processes. In this study, the structural development of thin HfO2 film on a Ge surface during postdeposition annealing in an ultrahigh vacuum was examined to explore the origin for the initial degradation of thin HfO2 film. Void nucleation and subsequent two-dimensional void growth take place at 780-840 °C, while the chemical composition of the remaining Hf oxide is virtually stable. Both the void nucleation and growth processes show similar larger activation energy of about 10 eV. Based on the observed manner of void growth and the estimated activation energies, the authors propose that mass transport on the HfO2 surface is responsible for void nucleation in the HfO2 films on Ge. The authors also compare the present results with the previous studies on HfO2/Si structures, and suggest that similar surface process leads to the local Hf silicidation.

  13. Sn-enriched Ge/GeSn nanostructures grown by MBE on (001) GaAs and Si wafers

    SciTech Connect

    Sadofyev, Yu. G. Martovitsky, V. P.; Klekovkin, A. V.; Saraykin, V. V.; Vasil’evskii, I. S.

    2015-12-15

    Elastically stressed metastable GeSn layers with a tin molar fraction as large as 0.185 are grown on (001) Si and GaAs wafers covered with a germanium buffer layer. A set of wafers with a deviation angle in the range 0°–10° is used. It is established that the GeSn crystal undergoes monoclinic deformation with the angle β to 88° in addition to tetragonal deformation. Misorientation of the wafers surface results in increasing efficiency of the incorporation of tin adatoms into the GeSn crystal lattice. Phase separation in the solid solution upon postgrowth annealing of the structures begins long before the termination of plastic relaxation of elastic heteroepitaxial stresses. Tin released as a result of GeSn decomposition predominantly tends to be found on the surface of the sample. Manifestations of the brittle–plastic mechanism of the relaxation of stresses resulting in the occurrence of microcracks in the subsurface region of the structures under investigation are found.

  14. Doping and strain dependence of the electronic band structure in Ge and GeSn alloys

    NASA Astrophysics Data System (ADS)

    Xu, Chi; Gallagher, James; Senaratne, Charutha; Brown, Christopher; Fernando, Nalin; Zollner, Stefan; Kouvetakis, John; Menendez, Jose

    2015-03-01

    A systematic study of the effect of dopants and strain on the electronic structure of Ge and GeSn alloys is presented. Samples were grown by UHV-CVD on Ge-buffered Si using Ge3H8 and SnD4 as the sources of Ge and Sn, and B2H6/P(GeH3)3 as dopants. High-energy critical points in the joint-density of electronic states were studied using spectroscopic ellipsometry, which yields detailed information on the strain and doping dependence of the so-called E1, E1 +Δ1 , E0' and E2 transitions. The corresponding dependencies of the lowest direct band gap E0 and the fundamental indirect band gap Eindwere studied via room-T photoluminescence spectroscopy. Of particular interest for this work were the determination of deformation potentials, band gap renormalization effects, Burstein-Moss shifts due to the presence of carriers at band minima, and the dependence of other critical point parameters, such as amplitudes and phase angles, on the doping concentration. The selective blocking of transitions due to high doping makes it possible to investigate the precise k-space location of critical points. These studies are complemented with detailed band-structure calculations within a full-zone k-dot- p approach. Supported by AFOSR under DOD AFOSR FA9550-12-1-0208 and DOD AFOSR FA9550-13-1-0022.

  15. Giant Seebeck effect in Ge-doped SnSe

    PubMed Central

    Gharsallah, M.; Serrano-Sánchez, F.; Nemes, N. M.; Mompeán, F. J.; Martínez, J. L.; Fernández-Díaz, M. T.; Elhalouani, F.; Alonso, J. A.

    2016-01-01

    Thermoelectric materials may contribute in the near future as new alternative sources of sustainable energy. Unprecedented thermoelectric properties in p-type SnSe single crystals have been recently reported, accompanied by extremely low thermal conductivity in polycrystalline samples. In order to enhance thermoelectric efficiency through proper tuning of this material we report a full structural characterization and evaluation of the thermoelectric properties of novel Ge-doped SnSe prepared by a straightforward arc-melting method, which yields nanostructured polycrystalline samples. Ge does not dope the system in the sense of donating carriers, yet the electrical properties show a semiconductor behavior with resistivity values higher than that of the parent compound, as a consequence of nanostructuration, whereas the Seebeck coefficient is higher and thermal conductivity lower, favorable to a better ZT figure of merit. PMID:27251233

  16. Giant Seebeck effect in Ge-doped SnSe.

    PubMed

    Gharsallah, M; Serrano-Sánchez, F; Nemes, N M; Mompeán, F J; Martínez, J L; Fernández-Díaz, M T; Elhalouani, F; Alonso, J A

    2016-06-02

    Thermoelectric materials may contribute in the near future as new alternative sources of sustainable energy. Unprecedented thermoelectric properties in p-type SnSe single crystals have been recently reported, accompanied by extremely low thermal conductivity in polycrystalline samples. In order to enhance thermoelectric efficiency through proper tuning of this material we report a full structural characterization and evaluation of the thermoelectric properties of novel Ge-doped SnSe prepared by a straightforward arc-melting method, which yields nanostructured polycrystalline samples. Ge does not dope the system in the sense of donating carriers, yet the electrical properties show a semiconductor behavior with resistivity values higher than that of the parent compound, as a consequence of nanostructuration, whereas the Seebeck coefficient is higher and thermal conductivity lower, favorable to a better ZT figure of merit.

  17. Giant Seebeck effect in Ge-doped SnSe

    NASA Astrophysics Data System (ADS)

    Gharsallah, M.; Serrano-Sánchez, F.; Nemes, N. M.; Mompeán, F. J.; Martínez, J. L.; Fernández-Díaz, M. T.; Elhalouani, F.; Alonso, J. A.

    2016-06-01

    Thermoelectric materials may contribute in the near future as new alternative sources of sustainable energy. Unprecedented thermoelectric properties in p-type SnSe single crystals have been recently reported, accompanied by extremely low thermal conductivity in polycrystalline samples. In order to enhance thermoelectric efficiency through proper tuning of this material we report a full structural characterization and evaluation of the thermoelectric properties of novel Ge-doped SnSe prepared by a straightforward arc-melting method, which yields nanostructured polycrystalline samples. Ge does not dope the system in the sense of donating carriers, yet the electrical properties show a semiconductor behavior with resistivity values higher than that of the parent compound, as a consequence of nanostructuration, whereas the Seebeck coefficient is higher and thermal conductivity lower, favorable to a better ZT figure of merit.

  18. Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing

    NASA Astrophysics Data System (ADS)

    Mosleh, Aboozar; Alher, Murtadha; Cousar, Larry C.; Du, Wei; Ghetmiri, Seyed Amir; Al-Kabi, Sattar; Dou, Wei; Grant, Perry C.; Sun, Greg; Soref, Richard A.; Li, Baohua; Naseem, Hameed A.; Yu, Shui-Qing

    2016-04-01

    Buffer-free GeSn and SiGeSn films have been deposited on Si via a cold-wall, ultra-high vacuum chemical vapor deposition reactor using in situ gas mixing of deuterated stannane, silane and germane. Material characterization of the films using x-ray diffraction and transmission electron microscopy shows crystalline growth with an array of misfit dislocation formed at the Si substrate interface. Energy dispersive x-ray maps attained from the samples show uniform incorporation of the elements. The Z-contrast map of the high-angle annular dark-field of the film cross section shows uniform incorporation along the growth as well. Optical characterization of the GeSn films through photoluminescence technique shows reduction in the bandgap edge of the materials.

  19. Ge{sub 0.83}Sn{sub 0.17} p-channel metal-oxide-semiconductor field-effect transistors: Impact of sulfur passivation on gate stack quality

    SciTech Connect

    Lei, Dian; Wang, Wei; Gong, Xiao E-mail: yeo@ieee.org; Liang, Gengchiau; Yeo, Yee-Chia E-mail: yeo@ieee.org; Zhang, Zheng; Pan, Jisheng; Tok, Eng-Soon

    2016-01-14

    The effect of room temperature sulfur passivation of the surface of Ge{sub 0.83}Sn{sub 0.17} prior to high-k dielectric (HfO{sub 2}) deposition is investigated. X-ray photoelectron spectroscopy (XPS) was used to examine the chemical bonding at the interface of HfO{sub 2} and Ge{sub 0.83}Sn{sub 0.17}. Sulfur passivation is found to be effective in suppressing the formation of both Ge oxides and Sn oxides. A comparison of XPS results for sulfur-passivated and non-passivated Ge{sub 0.83}Sn{sub 0.17} samples shows that sulfur passivation of the GeSn surface could also suppress the surface segregation of Sn atoms. In addition, sulfur passivation reduces the interface trap density D{sub it} at the high-k dielectric/Ge{sub 0.83}Sn{sub 0.17} interface from the valence band edge to the midgap of Ge{sub 0.83}Sn{sub 0.17}, as compared with a non-passivated control. The impact of the improved D{sub it} is demonstrated in Ge{sub 0.83}Sn{sub 0.17} p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs). Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs with sulfur passivation show improved subthreshold swing S, intrinsic transconductance G{sub m,int}, and effective hole mobility μ{sub eff} as compared with the non-passivated control. At a high inversion carrier density N{sub inv} of 1 × 10{sup 13 }cm{sup −2}, sulfur passivation increases μ{sub eff} by 25% in Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs.

  20. Formation of GeSn alloy on Si(100) by low-temperature molecular beam epitaxy

    SciTech Connect

    Talochkin, A. B.; Mashanov, V. I.

    2014-12-29

    GeSn alloys grown on Si(100) by the low-temperature (100 °C) molecular beam epitaxy are studied using scanning tunneling microscopy and Raman spectroscopy. It is found that the effect of Sn as a surfactant modifies substantially the low-temperature growth mechanism of Ge on Si. Instead of the formation of small Ge islands surrounded by amorphous Ge, in the presence of Sn, the growth of pure Ge islands appears via the Stranski-Krastanov growth mode, and a partially relaxed Ge{sub 1−x}Sn{sub x} alloy layer with the high Sn-fraction up to 40 at. % is formed in the area between them. It is shown that the observed growth mode induced by high surface mobility of Sn and the large strain of the pseudomorphic state of Ge to Si ensures the minimum elastic-strain energy of the structure.

  1. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS

    NASA Astrophysics Data System (ADS)

    Fei, Ruixiang; Li, Wenbin; Li, Ju; Yang, Li

    2015-10-01

    We predict enormous, anisotropic piezoelectric effects in intrinsic monolayer group IV monochalcogenides (MX, M=Sn or Ge, X=Se or S), including SnSe, SnS, GeSe, and GeS. Using first-principle simulations based on the modern theory of polarization, we find that their piezoelectric coefficients are about one to two orders of magnitude larger than those of other 2D materials, such as MoS2 and GaSe, and bulk quartz and AlN which are widely used in industry. This enhancement is a result of the unique "puckered" C2v symmetry and electronic structure of monolayer group IV monochalcogenides. Given the achieved experimental advances in the fabrication of monolayers, their flexible character, and ability to withstand enormous strain, these 2D structures with giant piezoelectric effects may be promising for a broad range of applications such as nano-sized sensors, piezotronics, and energy harvesting in portable electronic devices.

  2. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS

    SciTech Connect

    Fei, Ruixiang; Yang, Li; Li, Wenbin; Li, Ju

    2015-10-26

    We predict enormous, anisotropic piezoelectric effects in intrinsic monolayer group IV monochalcogenides (MX, M=Sn or Ge, X=Se or S), including SnSe, SnS, GeSe, and GeS. Using first-principle simulations based on the modern theory of polarization, we find that their piezoelectric coefficients are about one to two orders of magnitude larger than those of other 2D materials, such as MoS{sub 2} and GaSe, and bulk quartz and AlN which are widely used in industry. This enhancement is a result of the unique “puckered” C{sub 2v} symmetry and electronic structure of monolayer group IV monochalcogenides. Given the achieved experimental advances in the fabrication of monolayers, their flexible character, and ability to withstand enormous strain, these 2D structures with giant piezoelectric effects may be promising for a broad range of applications such as nano-sized sensors, piezotronics, and energy harvesting in portable electronic devices.

  3. Current mechanism and band alignment of Al (Pt)/HfGdO/Ge capacitors

    NASA Astrophysics Data System (ADS)

    Junjun, Yuan; Zebo, Fang; Yanyan, Zhu; Bo, Yao; Shiyan, Liu; Gang, He; Yongsheng, Tan

    2016-03-01

    HfGdO high-k gate dielectric thin films were deposited on Ge substrates by radio-frequency magnetron sputtering. The current transport properties of Al(Pt)/HfGdO/Ge MOS structures were investigated at room temperature. The results show that the leakage currents are mainly induced by Frenkel-Poole emissions at a low electric field. At a high electric field, Fowler Nordheim tunneling dominates the current. The energy barriers were obtained by analyzing the Fowler Nordheim tunneling characteristics, which are 1.62 eV and 2.77 eV for Al/HfGdO and Pt/HfGdO, respectively. The energy band alignments for metal/HfGdO/Ge capacitors are summarized together with the results of current-voltage and the x-ray photoelectron spectroscopy. Project supported by the Natural Science Foundation of Shanghai (No. 15ZR1418700), the Natural Science Foundation of China (Nos. 51272159, 61405118), and the Natural Science Foundation of Zhejiang (Nos. LY15A040001, LQ13A040004).

  4. Pulse number controlled laser annealing for GeSn on insulator structure with high substitutional Sn concentration

    NASA Astrophysics Data System (ADS)

    Moto, Kenta; Matsumura, Ryo; Sadoh, Taizoh; Ikenoue, Hiroshi; Miyao, Masanobu

    2016-06-01

    Crystalline GeSn-on-insulator structures with high Sn concentration (>8%), which exceeds thermal equilibrium solid-solubility (˜2%) of Sn in Ge, are essential to achieve high-speed thin film transistors and high-efficiency optical devices. We investigate non-thermal equilibrium growth of Ge1-xSnx (0 ≤ x ≤ 0.2) on quartz substrates by using pulsed laser annealing (PLA). The window of laser fluence enabling complete crystallization without film ablation is drastically expanded (˜5 times) by Sn doping above 5% into Ge. Substitutional Sn concentration in grown layers is found to be increased with decreasing irradiation pulse number. This phenomenon can be explained on the basis of significant thermal non-equilibrium growth achieved by higher cooling rate after PLA with a lower pulse number. As a result, GeSn crystals with substitutional Sn concentration of ˜12% are realized at pulse irradiation of single shot for the samples with the initial Sn concentration of 15%. Raman spectroscopy and electron microscopy measurements reveal the high quality of the grown layer. This technique will be useful to fabricate high-speed thin film transistors and high-efficiency optical devices on insulating substrates.

  5. Observation of field emission from GeSn nanoparticles epitaxially grown on silicon nanopillar arrays

    NASA Astrophysics Data System (ADS)

    Di Bartolomeo, Antonio; Passacantando, Maurizio; Niu, Gang; Schlykow, Viktoria; Lupina, Grzegorz; Giubileo, Filippo; Schroeder, Thomas

    2016-12-01

    We apply molecular beam epitaxy to grow GeSn-nanoparticles on top of Si-nanopillars patterned onto p-type Si wafers. We use x-ray photoelectron spectroscopy to confirm a metallic behavior of the nanoparticle surface due to partial Sn segregation as well as the presence of a superficial Ge oxide. We report the observation of stable field emission (FE) current from the GeSn-nanoparticles, with turn on field of 65 {{V}} μ {{{m}}}-{{1}} and field enhancement factor β ˜ 100 at anode-cathode distance of ˜0.6 μm. We prove that FE can be enhanced by preventing GeSn nanoparticles oxidation or by breaking the oxide layer through electrical stress. Finally, we show that GeSn/p-Si junctions have a rectifying behavior.

  6. Defect-free high Sn-content GeSn on insulator grown by rapid melting growth

    PubMed Central

    Liu, Zhi; Cong, Hui; Yang, Fan; Li, Chuanbo; Zheng, Jun; Xue, Chunlai; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2016-01-01

    GeSn is an attractive semiconductor material for Si-based photonics. However, large lattice mismatch between GeSn and Si and the low solubility of Sn in Ge limit its development. In order to obtain high Sn-content GeSn on Si, it is normally grown at low temperature, which would lead to inevitable dislocations. Here, we reported a single-crystal defect-free graded GeSn on insulator (GSOI) stripes laterally grown by rapid melting growth (RMG). The Sn-content reaches to 14.2% at the end of the GSOI stripe. Transmission electron microscopy observation shows the GSOI stripe without stacking fault and dislocations. P-channel pseudo metal-oxide-semiconductor field effect transistors (MOSFETs) and metal-semiconductor-metal (MSM) Schottky junction photodetectors were fabricated on these GSOIs. Good transistor performance with a low field peak hole mobility of 402 cm2/Vs is obtained, which indicates a high-quality of this GSOI structure. Strong near-infrared and short-wave infrared optical absorption of the MSM photodetectors at 1550 nm and 2000 nm were observed. Owing to high Sn-content and defect-free, responsivity of 236 mA/W@-1.5 V is achieved at 1550 nm wavelength. In addition, responsivity reaches 154 mA/W@-1.5 V at 2000 nm with the optical absorption layer only 200 nm-thick, which is the highest value reported for GeSn junction photodetectors until now. PMID:27941825

  7. Defect-free high Sn-content GeSn on insulator grown by rapid melting growth

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Cong, Hui; Yang, Fan; Li, Chuanbo; Zheng, Jun; Xue, Chunlai; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2016-12-01

    GeSn is an attractive semiconductor material for Si-based photonics. However, large lattice mismatch between GeSn and Si and the low solubility of Sn in Ge limit its development. In order to obtain high Sn-content GeSn on Si, it is normally grown at low temperature, which would lead to inevitable dislocations. Here, we reported a single-crystal defect-free graded GeSn on insulator (GSOI) stripes laterally grown by rapid melting growth (RMG). The Sn-content reaches to 14.2% at the end of the GSOI stripe. Transmission electron microscopy observation shows the GSOI stripe without stacking fault and dislocations. P-channel pseudo metal-oxide-semiconductor field effect transistors (MOSFETs) and metal-semiconductor-metal (MSM) Schottky junction photodetectors were fabricated on these GSOIs. Good transistor performance with a low field peak hole mobility of 402 cm2/Vs is obtained, which indicates a high-quality of this GSOI structure. Strong near-infrared and short-wave infrared optical absorption of the MSM photodetectors at 1550 nm and 2000 nm were observed. Owing to high Sn-content and defect-free, responsivity of 236 mA/W@-1.5 V is achieved at 1550 nm wavelength. In addition, responsivity reaches 154 mA/W@-1.5 V at 2000 nm with the optical absorption layer only 200 nm-thick, which is the highest value reported for GeSn junction photodetectors until now.

  8. Synthesis and fundamental properties of stable Ph(3)SnSiH(3) and Ph(3)SnGeH(3) hydrides: model compounds for the design of Si-Ge-Sn photonic alloys.

    PubMed

    Tice, Jesse B; Chizmeshya, Andrew V G; Groy, Thomas L; Kouvetakis, John

    2009-07-06

    The compounds Ph(3)SnSiH(3) and Ph(3)SnGeH(3) (Ph = C(6)H(5)) have been synthesized as colorless solids containing Sn-MH(3) (M = Si, Ge) moieties that are stable in air despite the presence of multiple and highly reactive Si-H and Ge-H bonds. These molecules are of interest since they represent potential model compounds for the design of new classes of IR semiconductors in the Si-Ge-Sn system. Their unexpected stability and high solubility also makes them a safe, convenient, and potentially useful delivery source of -SiH(3) and -GeH(3) ligands in molecular synthesis. The structure and composition of both compounds has been determined by chemical analysis and a range of spectroscopic methods including multinuclear NMR. Single crystal X-ray structures were determined and indicated that both compounds condense in a Z = 2 triclinic (P1) space group with lattice parameters (a = 9.7754(4) A, b = 9.8008(4) A, c = 10.4093(5) A, alpha = 73.35(10)(o), beta = 65.39(10)(o), gamma = 73.18(10)(o)) for Ph(3)SnSiH(3) and (a = 9.7927(2) A, b = 9.8005(2) A, c = 10.4224(2) A, alpha = 74.01(3)(o), beta = 65.48(3)(o), gamma = 73.43(3)(o)) for Ph(3)SnGeH(3). First principles density functional theory simulations are used to corroborate the molecular structures of Ph(3)SnSiH(3) and Ph(3)SnGeH(3), gain valuable insight into the relative stability of the two compounds, and provide correlations between the Si-Sn and Ge-Sn bonds in the molecules and those in tetrahedral Si-Ge-Sn solids.

  9. Electrical characterization of SiGeSn grown on Ge substrate using ultra high vacuum chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ahoujja, Mo; Kang, S.; Hamilton, M.; Yeo, Y. K.; Kouvetakis, J.; Menendez, J.

    2012-02-01

    There has been recently considerable interest in growing SiyGe1-x-ySnx alloys for the fabrication of photonic devices that could be integrated with Si technologies. We report temperature dependent Hall (TDH) measurements of the hole concentration and mobility from high quality p-type doped Si0.08Ge0.90Sn0.02 layers grown on p-type doped Ge substrates using ultra high vacuum chemical vapor deposition. The TDH measurements show the hole sheet density remains constant at low temperatures before slightly decreasing and dipping at ˜ 125 K. It then exponentially increases with temperature due to the activation of shallow acceptors. At temperatures above ˜ 450 K, the hole sheet density increases sharply indicating the onset of intrinsic conduction in the SiGeSn and/or Ge layers. To extract the electrical properties of the SiGeSn layer alone, a parametric fit using a multi layer conducting model is applied to the measured hole concentration and mobility data. The analysis yields boron and gallium doping concentrations of 3x10^17 cm-3 and 1x10^18 cm-3 with activation energies of 10 meV and 11 meV for the SiGeSn layer and Ge substrate, respectively. Furthermore, a temperature independent hole sheet concentration of ˜5x10^15 cm-2 with a mobility of ˜250 cm^2/Vs, which is believed to be due to an interfacial layer between the SiGeSn layer and the Ge substrate, is also determined.

  10. Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys.

    PubMed

    Gandi, Appala Naidu; Schwingenschlögl, Udo

    2016-05-18

    We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit.

  11. GeSn-based p-i-n photodiodes with strained active layer on a Si wafer

    SciTech Connect

    Tseng, H. H.; Li, H.; Mashanov, V.; Yang, Y. J.; Cheng, H. H.; Chang, G. E.; Soref, R. A.; Sun, G.

    2013-12-02

    We report an investigation of GeSn-based p-i-n photodiodes with an active GeSn layer that is almost fully strained. The results show that (a) the response of the Ge/GeSn/Ge heterojunction photodiodes is stronger than that of the reference Ge-based photodiodes at photon energies above the 0.8 eV direct bandgap of bulk Ge (<1.55 μm), and (b) the optical response extends to lower energy regions (1.55–1.80 μm wavelengths) as characterized by the strained GeSn bandgap. A cusp-like spectral characteristic is observed for samples with high Sn contents, which is attributed to the significant strain-induced energy splitting of heavy and light hole bands. This work represents a step forward in developing GeSn-based infrared photodetectors.

  12. Growth and Optical Properties of Direct Band Gap Ge/Ge0.87Sn0.13 Core/Shell Nanowire Arrays.

    PubMed

    Assali, S; Dijkstra, A; Li, A; Koelling, S; Verheijen, M A; Gagliano, L; von den Driesch, N; Buca, D; Koenraad, P M; Haverkort, J E M; Bakkers, E P A M

    2017-03-08

    Group IV semiconductor optoelectronic devices are now possible by using strain-free direct band gap GeSn alloys grown on a Ge/Si virtual substrate with Sn contents above 9%. Here, we demonstrate the growth of Ge/GeSn core/shell nanowire arrays with Sn incorporation up to 13% and without the formation of Sn clusters. The nanowire geometry promotes strain relaxation in the Ge0.87Sn0.13 shell and limits the formation of structural defects. This results in room-temperature photoluminescence centered at 0.465 eV and enhanced absorption above 98%. Therefore, direct band gap GeSn grown in a nanowire geometry holds promise as a low-cost and high-efficiency material for photodetectors operating in the short-wave infrared and thermal imaging devices.

  13. Correlation of bandgap reduction with inversion response in (Si)GeSn/high-k/metal stacks.

    PubMed

    Schulte-Braucks, Christian; Narimani, Keyvan; Glass, Stefan; von den Driesch, Nils; Hartmann, Jean-Michel; Ikonic, Zoran; Afanas'ev, Valeri V; Zhao, Qing-Tai; Mantl, Siegfried; Buca, Dan

    2017-02-21

    The bandgap tunability of (Si)GeSn group IV semiconductors opens a new era in Si-technology. Depending on the Si/Sn contents, direct and indirect bandgaps in the range of 0.4 eV to 0.8 eV can be obtained, offering a broad spectrum of both photonic and low power electronic applications. In this work, we systematically studied capacitance-voltage characteristics of high-k/metal gate stacks formed on GeSn and SiGeSn alloys with Sn-contents ranging from 0 to 14 at.% and Si-contents from 0 to 10 at.% particularly focusing on the minority carrier inversion response. A clear correlation between the Sn-induced shrinkage of the bandgap energy and enhanced minority carrier response was confirmed using temperature and frequency dependent capacitance voltage-measurements, in good agreement with k.p theory predictions and photoluminescence measurements of the analyzed epilayers as reported earlier. The enhanced minority generation rate for higher Sn-contents can be firmly linked to the bandgap reduction in the GeSn epilayer without significant influence of substrate/interface effects. It thus offers a unique possibility to analyze intrinsic defects in (Si)GeSn epilayers. The extracted dominant defect level for minority carrier inversion lies approximately 0.4 eV above the valence band edge in the studied Sn-content range (0 to12.5 at.%). This finding is of critical importance since it shows that the presence of Sn by itself does not impair the minority carrier lifetime. Therefore, the continuous improvement of (Si)GeSn material quality should yield longer non-radiative recombination times which are required for the fabrication of efficient light detectors and to obtain room temperature lasing action.

  14. Development of Mid-infrared GeSn Light Emitting Diodes on a Silicon Substrate

    DTIC Science & Technology

    2015-04-22

    Final 3. DATES COVERED 13-01-2013 to 30-07-2014 4. TITLE AND SUBTITLE Development of Mid-infrared GeSn Light Emitting Diodes on a Silicon...to develop 1) direct-bandgap Sn-based group-IV material with very low defect densities and 2) a new type of Sn-based group-IV light - emitting diode ...infrared GeSn Light Emitting Diodes on a Silicon Substrate” 22/4/2015 PI and Co-PI information: - Name of Principal Investigators: Prof. H

  15. Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications

    NASA Astrophysics Data System (ADS)

    Al-Kabi, Sattar; Ghetmiri, Seyed Amir; Margetis, Joe; Du, Wei; Mosleh, Aboozar; Dou, Wei; Sun, Greg; Soref, Richard A.; Tolle, John; Li, Baohua; Mortazavi, Mansour; Naseem, Hameed A.; Yu, Shui-Qing

    2016-12-01

    Germanium-tin (GeSn) films with Sn compositions from 5% to 11% were grown on Ge-buffered Si using a reduced pressure chemical vapor deposition system with low-cost SnCl4 and GeH4 precursors. Material characterization showed that relaxed GeSn layers with thicknesses ranging from 400 nm to 1 μm were achieved. The strong photoluminescence (PL) intensity and the low defect density indicated very high material quality. In addition, temperature-dependent 10-300 K photoluminescence spectra showed that, due to strain relaxation of the material, the emission wavelength is longer than that of strained GeSn thin film samples ( t < 200 nm) having the same Sn composition. At 300 K, the PL peak at 2520 nm was observed from the sample with a 1- μm-thick GeSn layer and 11% Sn composition.

  16. Controlling the assembly of chalcogenide anions in ionic liquids: from binary Ge/Se through ternary Ge/Sn/Se to binary Sn/Se frameworks.

    PubMed

    Lin, Yumei; Massa, Werner; Dehnen, Stefanie

    2012-10-15

    Seven compounds with binary or ternary Ge/Se, Ge/Sn/Se, or Sn/Se anionic substructures crystallized upon the ionothermal reactions of [K(4)(H(2)O)(3)][Ge(4)Se(10)] with SnCl(4)·5H(2)O or SnCl(2) in [BMMIm][BF(4)] or [BMIm][BF(4)] (BMMIm=1-butyl-2,3-dimethyl-imidazolium, BMIm=1-butyl-3-methyl-imidazolium). The products were obtained by subtly varying the reaction conditions; the nature and amount of an additional amine was the most important parameter in the product selection and in determining the Sn/Ge ratio in the isolated products. The crystal structures of these chalcogenides were based on complex anions with unprecedented topologies that varied from discrete clusters (0D) through 1D chain structures or 2D layers to 3D frameworks. The architecture and composition of the title compounds were well reflected by their optical absorption behavior. Herein, we report a convenient approach for the generation of chalcogenidometallate phases with fine-tunable electronic properties in ionic liquids, which have been inaccessible by traditional methods.

  17. Metal-HfO{sub 2}-Ge capacitor: Its enhanced charge trapping properties with S-treated substrate and atomic-layer-deposited HfO{sub 2} layer

    SciTech Connect

    Park, In-Sung; Jung, Yong Chan; Seong, Sejong; Ahn, Jinho; Lee, Sung Bo

    2015-01-15

    The charge trapping properties of metal-HfO{sub 2}-Ge capacitor as a nonvolatile memory have been investigated with (NH{sub 4}){sub 2}S-treated Ge substrate and atomic-layer-deposited HfO{sub 2} layer. The interfacial layer generated by (NH{sub 4}){sub 2}S-treated Ge substrate reveals a trace of -S- bonding, very sharp interface edges, and smooth surface morphology. The Ru-HfO{sub 2}-Ge capacitor with (NH{sub 4}){sub 2}S-treated Ge substrate shows an enhanced interface state with little frequency dispersion, a lower leakage current, and very reliable properties with the enhanced endurance and retention than Ru-HfO{sub 2}-Ge capacitor with cyclic-cleaned Ge substrate.

  18. Synthesis of Ge1- x Sn x Alloy Thin Films Using Ion Implantation and Pulsed Laser Melting (II-PLM)

    NASA Astrophysics Data System (ADS)

    Bhatia, A.; Hlaing Oo, W. M.; Siegel, G.; Stone, P. R.; Yu, K. M.; Scarpulla, M. A.

    2012-05-01

    Ge1- x Sn x thin films are interesting for all-group-IV optoelectronics because of a crossover to a direct bandgap with dilute Sn alloying. However, Sn has vanishing room-temperature equilibrium solubility in Ge, making their synthesis very challenging. Herein, we report on our attempts to synthesize Ge1- x Sn x films on Ge (001) using ion implantation and pulsed laser melting (II-PLM). A maximum of 2 at.% Sn was incorporated with our experimental conditions in the samples as determined by Rutherford back scattering spectroscopy. A red-shift in the Ge optical phonon branch and increased absorption below the Ge bandgap with increasing Sn concentration indicate Sn-induced lattice- and band-structure changes after II-PLM. However, ion-channeling and electron microscopy show that the films are not of sufficient epitaxial quality for use in devices.

  19. Dispersion of nonresonant third-order nonlinearities in GeSiSn ternary alloys

    PubMed Central

    De Leonardis, Francesco; Troia, Benedetto; Soref, Richard A.; Passaro, Vittorio M. N.

    2016-01-01

    Silicon (Si), tin (Sn), and germanium (Ge) alloys have attracted research attention as direct band gap semiconductors with applications in electronics and optoelectronics. In particular, GeSn field effect transistors can exhibit very high performance in terms of power reduction and operating speed because of the high electron drift mobility, while the SiGeSn system can be constructed using CMOS-compatible techniques to realize lasers, LED, and photodetectors. The wide Si, Ge and Sn transparencies allow the use of binary and ternary alloys extended to mid-IR wavelengths, where nonlinearities can also be employed. However, neither theoretical or experimental predictions of nonlinear features in SiGeSn alloys are reported in the literature. For the first time, a rigorous and detailed physical investigation is presented to estimate the two photon absorption (TPA) coefficient and the Kerr refractive index for the SiGeSn alloy up to 12 μm. The TPA spectrum, the effective TPA wavelength cut-off, and the Kerr nonlinear refractive index have been determined as a function of alloy compositions. The promising results achieved can pave the way to the demonstration of on-chip nonlinear-based applications, including mid-IR spectrometer-on-a-chip, all-optical wavelength down/up-conversion, frequency comb generation, quantum-correlated photon-pair source generation and supercontinuum source creation, as well as Raman lasing. PMID:27622979

  20. Dispersion of nonresonant third-order nonlinearities in GeSiSn ternary alloys

    NASA Astrophysics Data System (ADS)

    de Leonardis, Francesco; Troia, Benedetto; Soref, Richard A.; Passaro, Vittorio M. N.

    2016-09-01

    Silicon (Si), tin (Sn), and germanium (Ge) alloys have attracted research attention as direct band gap semiconductors with applications in electronics and optoelectronics. In particular, GeSn field effect transistors can exhibit very high performance in terms of power reduction and operating speed because of the high electron drift mobility, while the SiGeSn system can be constructed using CMOS-compatible techniques to realize lasers, LED, and photodetectors. The wide Si, Ge and Sn transparencies allow the use of binary and ternary alloys extended to mid-IR wavelengths, where nonlinearities can also be employed. However, neither theoretical or experimental predictions of nonlinear features in SiGeSn alloys are reported in the literature. For the first time, a rigorous and detailed physical investigation is presented to estimate the two photon absorption (TPA) coefficient and the Kerr refractive index for the SiGeSn alloy up to 12 μm. The TPA spectrum, the effective TPA wavelength cut-off, and the Kerr nonlinear refractive index have been determined as a function of alloy compositions. The promising results achieved can pave the way to the demonstration of on-chip nonlinear-based applications, including mid-IR spectrometer-on-a-chip, all-optical wavelength down/up-conversion, frequency comb generation, quantum-correlated photon-pair source generation and supercontinuum source creation, as well as Raman lasing.

  1. SiGeSn Ternaries for Efficient Group IV Heterostructure Light Emitters.

    PubMed

    von den Driesch, Nils; Stange, Daniela; Wirths, Stephan; Rainko, Denis; Povstugar, Ivan; Savenko, Aleksei; Breuer, Uwe; Geiger, Richard; Sigg, Hans; Ikonic, Zoran; Hartmann, Jean-Michel; Grützmacher, Detlev; Mantl, Siegfried; Buca, Dan

    2017-02-03

    SiGeSn ternaries are grown on Ge-buffered Si wafers incorporating Si or Sn contents of up to 15 at%. The ternaries exhibit layer thicknesses up to 600 nm, while maintaining a high crystalline quality. Tuning of stoichiometry and strain, as shown by means of absorption measurements, allows bandgap engineering in the short-wave infrared range of up to about 2.6 µm. Temperature-dependent photoluminescence experiments indicate ternaries near the indirect-to-direct bandgap transition, proving their potential for ternary-based light emitters in the aforementioned optical range. The ternaries' layer relaxation is also monitored to explore their use as strain-relaxed buffers, since they are of interest not only for light emitting diodes investigated in this paper but also for many other optoelectronic and electronic applications. In particular, the authors have epitaxially grown a GeSn/SiGeSn multiquantum well heterostructure, which employs SiGeSn as barrier material to efficiently confine carriers in GeSn wells. Strong room temperature light emission from fabricated light emitting diodes proves the high potential of this heterostructure approach.

  2. Photoluminescence measurements of high Sn-content Ge1-ySny and Ge1 - x - ySixSny grown on Ge-buffered Si

    NASA Astrophysics Data System (ADS)

    Yeo, Yung Kee; Harris, Thomas R.; Wang, Buguo; Ryu, Mee-Yi; Kouvetakis, John

    2015-03-01

    The optical properties of newly developed, high Sn-content Ge1-ySny and Ge1 - x - ySixSny thin films grown on Ge-buffered Si have been characterized using temperature-dependent and laser power-dependent photoluminescence (PL) measurements. The results show two distinct PL peaks related to both the direct (Γ) and indirect (L) bandgap transitions. Furthermore, the measured separation energy between the direct and indirect bandgap related PL peaks for Ge0.948Sn0.052 sample is only about 30 meV compared to the value of 140 meV for bulk Ge. This study shows a very encouraging result toward producing Ge- and Si-based direct bandgap semiconductors, whose predicted indirect-to-direct bandgap crossover could be near 6% Sn. Clear competition between the two transitions is also observed as a function of temperature and laser power. Overall, this work represents an extensive PL characterization of Ge1-ySny and Ge1 - x - ySixSny materials over a wide compositional range and should be useful for the development of next-generation optoelectronic devices. Author to whom correspondence should be addressed. Electronic mail: thomas.harris.ctr@afit.edu

  3. Enhancement of carrier mobility in thin Ge layer by Sn co-doping

    NASA Astrophysics Data System (ADS)

    Prucnal, S.; Liu, F.; Berencén, Y.; Vines, L.; Bischoff, L.; Grenzer, J.; Andric, S.; Tiagulskyi, S.; Pyszniak, K.; Turek, M.; Drozdziel, A.; Helm, M.; Zhou, S.; Skorupa, W.

    2016-10-01

    We present the development, optimization and fabrication of high carrier mobility materials based on GeOI wafers co-doped with Sn and P. The Ge thin films were fabricated using plasma-enhanced chemical vapour deposition followed by ion implantation and explosive solid phase epitaxy, which is induced by millisecond flash lamp annealing. The influence of the recrystallization mechanism and co-doping of Sn on the carrier distribution and carrier mobility both in n-type and p-type GeOI wafers is discussed in detail. This finding significantly contributes to the state-of-the-art of high carrier mobility-GeOI wafers since the results are comparable with GeOI commercial wafers fabricated by epitaxial layer transfer or SmartCut technology.

  4. GeSn p-i-n photodetector for all telecommunication bands detection.

    PubMed

    Su, Shaojian; Cheng, Buwen; Xue, Chunlai; Wang, Wei; Cao, Quan; Xue, Haiyun; Hu, Weixuan; Zhang, Guangze; Zuo, Yuhua; Wang, Qiming

    2011-03-28

    Using a 820 nm-thick high-quality Ge0.97Sn0.03 alloy film grown on Si(001) by molecular beam epitaxy, GeSn p-i-n photodectectors have been fabricated. The detectors have relatively high responsivities, such as 0.52 A/W, 0.23 A/W, and 0.12 A/W at 1310 nm, 1540 nm, and 1640 nm, respectively, under a 1 V reverse bias. With a broad detection spectrum (800-1800 nm) covering the whole telecommunication windows and compatibility with conventional complementary metal-oxide-semiconductors (CMOS) technology, the GeSn devices are attractive for applications in both optical communications and optical interconnects.

  5. Multi-stacks of epitaxial GeSn self-assembled dots in Si: Structural analysis

    SciTech Connect

    Oliveira, F.; Fischer, I. A.; Schulze, J.; Benedetti, A.; Cerqueira, M. F.; Vasilevskiy, M. I.; Stefanov, S.; Chiussi, S.

    2015-03-28

    We report on the growth and structural and morphologic characterization of stacked layers of self-assembled GeSn dots grown on Si (100) substrates by molecular beam epitaxy at low substrate temperature T = 350 °C. Samples consist of layers (from 1 up to 10) of Ge{sub 0.96}Sn{sub 0.04} self-assembled dots separated by Si spacer layers, 10 nm thick. Their structural analysis was performed based on transmission electron microscopy, atomic force microscopy, and Raman scattering. We found that up to 4 stacks of dots could be grown with good dot layer homogeneity, making the GeSn dots interesting candidates for optoelectronic device applications.

  6. Phase separation of {beta}-Sn in strained, compositionally metastable Ge{sub 1{minus}x}Sn{sub x} alloys

    SciTech Connect

    Kriesel, J.W. |; Lee, S.M.

    1996-12-31

    A wide variety of scientific fields ranging from medicine to astronomy need sensitive, inexpensive far infrared (IR) photodetectors. Using rf sputtering and post-deposition annealing in a differential scanning calorimeter (DSC), the authors manufactured bulk (4,000 nm) films of crystalline Ge{sub 0.83}Sn{sub 0.17}. This Sn concentration is much greater than the solid solubility limit of Sn in Ge (x {le} 0.01). Continued annealing thermally induces Sn phase separation from the alloy, limiting the ultimate attainable grain size in the metastable crystals. The authors examine, here, the mechanisms and kinetics of the processes limiting the size of the Ge{sub 0.83}Sn{sub 0.17} polycrystals. From a combination of DSC, electron microprobe, and x-ray diffraction (XRD) measurements, they propose phase transformation mechanisms corresponding to crystallization of amorphous Ge{sub 0.83}Sn{sub 0.17}, crystallization of an as-yet unidentified phase of Sn, and phase separation of Sn from the Ge{sub 1{minus}x}Sn{sub x} crystals. They were unable to observe the unidentified phase of Sn in XRD, but the phase must be present in the material to account for the quantitative discrepancies (as much as 8 at.%) in Sn percentages determined from each of the DSC, XRD, and electron microprobe measurements. The models for the various transformation kinetics were corroborated by the subsequent phase-separated Sn melting behavior observed in the DSC: two Sn melting endotherms, one of which was 20--100 C lower than the bulk melting temperature of Sn. This depressed temperature endotherm they speculate represents liquefaction of nanometer-sized {beta}-Sn clusters.

  7. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Sun, Yan; Zhang, Yang; Shi, Wu-Jun; Parkin, Stuart S. P.; Yan, Binghai

    2017-01-01

    Recent experiments revealed that Mn3Sn and Mn3Ge exhibit a strong anomalous Hall effect at room temperature, provoking us to explore their electronic structures for topological properties. By ab initio band structure calculations, we have observed the existence of multiple Weyl points in the bulk and corresponding Fermi arcs on the surface, predicting antiferromagnetic Weyl semimetals in Mn3Ge and Mn3Sn. Here the chiral antiferromagnetism in the Kagome-type lattice structure is essential to determine the positions and numbers of Weyl points. Our work further reveals a new guiding principle to search for magnetic Weyl semimetals among materials that exhibit a strong anomalous Hall effect.

  8. Direct bandgap GeSn light emitting diodes for short-wave infrared applications grown on Si

    NASA Astrophysics Data System (ADS)

    von den Driesch, Nils; Stange, Daniela; Wirths, Stephan; Rainko, Denis; Mussler, Gregor; Stoica, Toma; Ikonic, Zoran; Hartmann, Jean-Michel; Grützmacher, Detlev; Mantl, Siegfried; Buca, Dan

    2016-03-01

    The experimental demonstration of fundamental direct bandgap, group IV GeSn alloys has constituted an important step towards realization of the last missing ingredient for electronic-photonic integrated circuits, i.e. the efficient group IV laser source. In this contribution, we present electroluminescence studies of reduced-pressure CVD grown, direct bandgap GeSn light emitting diodes (LEDs) with Sn contents up to 11 at.%. Besides homojunction GeSn LEDs, complex heterojunction structures, such as GeSn/Ge multi quantum wells (MQWs) have been studied. Structural and compositional investigations confirm high crystalline quality, abrupt interfaces and tailored strain of the grown structures. While also being suitable for light absorption applications, all devices show light emission in a narrow short-wave infrared (SWIR) range. Temperature dependent electroluminescence (EL) clearly indicates a fundamentally direct bandgap in the 11 at.% Sn sample, with room temperature emission at around 0.55 eV (2.25 µm). We have, however, identified some limitations of the GeSn/Ge MQW approach regarding emission efficiency, which can be overcome by introducing SiGeSn ternary alloys as quantum confinement barriers.

  9. Magnetic ordering of Hf3Ni2Si3-type {Sm, Tb, Er}3Co2Ge3 and {Tb, Ho}3Ni2Ge3 compounds

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Yapaskurt, V. O.; Nirmala, R.; Quezado, S.; Malik, S. K.; Mozharivskyj, Y.; Isnard, O.

    2017-02-01

    The magnetic ordering of Hf3Ni2Si3-type {Sm, Tb, Er}3Co2Ge3 and {Tb, Ho}3Ni2Ge3 compounds (space group Cmcm, oC32) was investigated via magnetization measurements and neutron diffraction study in a zero-applied field. {Sm, Tb, Er}3Co2Ge3 and Ho3Ni2Ge3 exhibit field sensitive complex antiferromagnetic orderings with TN=51 K, Tm=10 K for Sm3Co2Ge3, TN=34 K, Tm=13 K for Tb3Co2Ge3, TN=7 K for Er3Co2Ge3 and TN=11 K for Ho3Ni2Ge3. At 2 K and above the critical field of 5 kOe, 20 kOe, 4 kOe and 7 kOe for Sm3Co2Ge3, Tb3Co2Ge3, Er3Co2Ge3 and Ho3Ni2Ge3, respectively, saturation magnetizations per rare-earth atom are 6.5 μB for Tb3Co2Ge3, 7.0 μB for Er3Co2Ge3 and 8.0 μB for Ho3Ni2Ge3 in the field of 140 kOe, whereas magnetization of Sm3Co2Ge3 has an antiferromagnetic behaviour. The isothermal magnetic entropy change, ΔSm, indicates a field-induced ferromagnetic ordering in Sm3Co2Ge3, Tb3Co2Ge3, Er3Co2Ge3 and Ho3Ni2Ge3 with a maximal ΔSm value of -10.9 J/kg K for Ho3Ni2Ge3 at 11 K for a field change of 50 kOe. In a zero-applied magnetic field, below TN=33 K and down to TmND=15 K Tb3Ni2Ge3 shows an ac-antiferromagnetic ordering with the C2‧/c magnetic space group, a K0=[0, 0, 0] propagation vector and a aTb3Ni2Ge3×bTb3Ni2Ge3×cTb3Ni2Ge3 magnetic unit cell. Below TmND=15 K, its magnetic structure is a sum of the ac-antiferromagnetic component with the C2‧/c magnetic space group of the K0 vector and a sine-modulated a-antiferromagnetic component of the K1=[0, 0, ±1/3] propagation vector (the magnetic unit cell is aTb3Ni2Ge3×bTb3Ni2Ge3×3cTb3Ni2Ge3). The magnetic structure is made from the 'Tb2 - 2Tb1‧ clusters of the Tb1 8f and Tb2 4c sublattices with a dominant role of the Tb2 sublattices in the magnetic ordering of Tb3Ni2Ge3.

  10. HfO2 high-κ gate dielectrics on Ge (100) by atomic oxygen beam deposition

    NASA Astrophysics Data System (ADS)

    Dimoulas, A.; Mavrou, G.; Vellianitis, G.; Evangelou, E.; Boukos, N.; Houssa, M.; Caymax, M.

    2005-01-01

    Thin insulator films of the high-κ dielectric HfO2 are deposited on Ge(100) substrates by evaporating Hf in atomic oxygen beams after in situ thermal desorption of the native oxide in ultrahigh vacuum and subsequent treatment of the clean Ge surface in oxygen and nitrogen. It is shown that HfO2 forms atomically sharp interfaces with Ge and behaves as an excellent insulator with dielectric permittivity κ˜25, which is close to the expected bulk value. Very low equivalent oxide thickness of 0.75 (±0.1) nm with a low gate leakage current of ˜4.5×10-4A/cm2 at 1 V in accumulation is achieved. Strong frequency dispersion of the inversion capacitance and low frequency behavior of the high frequency capacitance-voltage curves is observed. This is attributed to a combined effect of a high generation rate of minority carriers due to impurity traps and the high intrinsic carrier concentration in Ge, which result in a short minority carrier response time.

  11. Features of the band structure and conduction mechanisms of n-HfNiSn semiconductor heavily Lu-doped

    SciTech Connect

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Kaczorowski, D.; Stadnyk, Yu. V.; Korzh, R. O.; Krayovskyy, V. Ya.; Kovbasyuk, T. M.

    2015-03-15

    The crystal and electronic structures, energy, kinetic, and magnetic characteristics of n-HfNiSn semiconductor heavily doped with a Lu acceptor impurity in the ranges T = 80–400 K and N{sub A}{sup Lu} ≈ 1.9 × 10{sup 20}−1.9 × 10{sup 21} cm{sup −3} (x = 0.01–0.10) at H ≤ 10 kG is studied. The nature of the structural-defect generation mechanism leading to changes in the band gap and the degree of semiconductor compensation is determined. Its essence is the simultaneous reduction and elimination of donor-type structural defects due to the displacement of ∼1% of Ni atoms from the Hf (4a) site, the generation of acceptor-type structural defects by substituting Ni atoms with Lu atoms at the 4c site, and the generation of donor-type defects such as vacancies at the Sn (4b) site. The results of calculations of the electronic structure of Hf{sub 1−x}Lu{sub x}NiSn are in agreement with experimental data. The results are discussed within the model of a heavily doped and compensated Shklovskii-Efros semiconductor.

  12. Features of the band structure and conduction mechanisms in the n-HfNiSn semiconductor heavily doped with Ru

    SciTech Connect

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Stadnyk, Yu. V.; Korzh, R. O.; Krayovskyy, V. Ya.; Horyn, A. M.

    2014-12-15

    The crystal and electronic structure and energy and kinetic properties of the n-HfNiSn semiconductor heavily doped with a Ru acceptor impurity are investigated in the temperature and Ru concentration ranges T = 80–400 K and N{sub A}{sup Ru} ≈ 9.5 × 10{sup 19}−5.7 × 10{sup 20} cm{sup −3} (x = 0–0.03), respectively. The mechanism of structural-defect generation is established, which changes the band gap and degree of compensation of the semiconductor and consists in the simultaneous concentration reduction and elimination of donor structural defects by means of the displacement of ∼1% of Ni atoms from the Hf (4a) positions, the generation of acceptor structural defects upon the substitution of Ru atoms for Ni atoms in the 4c positions, and the generation of donor defects in the form of vacancies in the Sn (4b) positions. The calculated electronic structure of HfNi{sub 1−x}Ru{sub x}Sn is consistent with the experiment. The results obtained are discussed within the Shklovsky-Efros model for a heavily doped and compensated semiconductor.

  13. Chemical Bonding Analysis as a Guide for the Preparation of New Compounds: The Case of VIrGe and HfPtGe.

    PubMed

    Bende, David; Wagner, Frank R; Sichevych, Olga; Grin, Yuri

    2017-01-24

    The chemical bonding of transition metal compounds with a MgAgAs-type of crystal structure is analyzed with quantum chemical position-space techniques. The observed trends in QTAIM Madelung energy and nearest neighbor electron sharing explain the occurrence of recently synthesized MgAgAs-type compounds, TiPtGe and TaIrGe, at the boundary to the TiNiSi-type crystal structure. These bonding indicators are used to identify favorable element combinations for new MgAgAs-type compounds. The new phases-the high-temperature VIrGe and the low-temperature HfPtGe-showing this type of crystal structure are prepared and characterized by powder X-ray diffraction and differential thermal analysis.

  14. Indium (In)- and tin (Sn)-based metal induced crystallization (MIC) on amorphous germanium (α-Ge)

    SciTech Connect

    Kang, Dong-Ho; Park, Jin-Hong

    2014-12-15

    Highlights: • In- and Sn-based MIC phenomenon on amorphous (α)-Ge is newly reported. • The In- and Sn-MIC phenomenon respectively started at 250 °C and 400 °C. • The Sn-MIC process presents higher sheet resistance and bigger crystal grains. - Abstract: In this paper, metal-induced crystallization (MIC) phenomenon on α-Ge by indium (In) and tin (Sn) are thoroughly investigated. In- and Sn-MIC process respectively started at 250 °C and 400 °C. Compared to the previously reported MIC samples including In-MIC, Sn-MIC process presented higher sheet resistance (similar to that of SPC) and bigger crystal grains above 50 nm (slightly smaller than that of SPC). According to SIMS analysis, Sn atoms diffused more slowly into Ge than In at 400 °C, providing lower density of heterogeneous nuclei induced by metals and consequently larger crystal grains.

  15. Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors

    NASA Astrophysics Data System (ADS)

    Morea, Matthew; Brendel, Corinna E.; Zang, Kai; Suh, Junkyo; Fenrich, Colleen S.; Huang, Yi-Chiau; Chung, Hua; Huo, Yijie; Kamins, Theodore I.; Saraswat, Krishna C.; Harris, James S.

    2017-02-01

    We study the effect of surface passivation on pseudomorphic multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors. A combination of ozone oxidation to form GeOx and GeSnOx on the surface of the diodes followed by atomic layer deposition of Al2O3 for protection of these native oxides provides reduced dark current. With a temperature-dependent investigation of dark current, we calculate the activation energy to be 0.26 eV at a bias of -0.1 V and 0.05 eV at -1 V for the sample passivated by this ozone method. Based on these activation energy results, we find that the current is less dominated by bulk tunneling at lower reverse bias values; hence, the effect of surface passivation is more noticeable with nearly an order-of-magnitude improvement in dark current for the ozone-passivated sample compared to control devices without the ozone treatment at a voltage of -0.1 V. Passivation also results in a significant enhancement of the responsivity, particularly for shorter wavelengths, with 26% higher responsivity at 1100 nm and 16% higher performance at 1300 nm.

  16. Non-equilibrium induction of tin in germanium: towards direct bandgap Ge(1-x)Sn(x) nanowires.

    PubMed

    Biswas, Subhajit; Doherty, Jessica; Saladukha, Dzianis; Ramasse, Quentin; Majumdar, Dipanwita; Upmanyu, Moneesh; Singha, Achintya; Ochalski, Tomasz; Morris, Michael A; Holmes, Justin D

    2016-04-20

    The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge(1-x)Sn(x) alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour-liquid-solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth.

  17. Spin-Diffusion Lengths in Ag(4%Sn) and Cu(2%Ge) alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Richard, Brandon; Fowler, Quinton; Loloee, Reza; Pratt, William, Jr.; Bass, Jack

    2008-03-01

    Alloying Ag with a little Sn, or Cu with a little Ge, greatly increases elastic scattering of electrons---i.e., greatly decreases the electron mean-free-path (mfp), but does not produce much spin-flipping---i.e., leaves the electron spin-diffusion length, l, relatively long. Thus, dilute AgSn and CuGe alloys were used to study effects of changing the mfp on current-perpendicular-to-plane (CPP) magnetoresistance [1] and current-induced magnetization switching (CIMS) [2], while leaving spin-flipping weak. Published transport data in dilute AgSn and CuGe alloys give only lower bounds for l [3-5]. We find l = 34 ± 4 nm for Ag(4%Sn) and l = 125 ± 10 nm for Cu(2%Ge). [1] K. Eid et al., J. Magn. Magn. Mat. 224, L205 (2001). [2] N. Theodoropoulou et al., Phys. Rev. B (rapid comm.) in press. [3] S.-F.Lee et al., J. Magn. Magn. Mat. 118, L1 (993). [4] J. Bass et al, Mat. Sci. and Eng. B31, 77 (1995). [5] J. Bass and W.P. Pratt Jr., J. Phys. Cond. Matt. 19, 183201 (2007).

  18. Formation of Ge-Sn nanodots on Si(100) surfaces by molecular beam epitaxy

    PubMed Central

    2011-01-01

    The surface morphology of Ge0.96Sn0.04/Si(100) heterostructures grown at temperatures from 250 to 450°C by atomic force microscopy (AFM) and scanning tunnel microscopy (STM) ex situ has been studied. The statistical data for the density of Ge0.96Sn0.04 nanodots (ND) depending on their lateral size have been obtained. Maximum density of ND (6 × 1011 cm-2) with the average lateral size of 7 nm can be obtained at 250°C. Relying on the reflection of high energy electron diffraction, AFM, and STM, it is concluded that molecular beam growth of Ge1-xSnx heterostructures with the small concentrations of Sn in the range of substrate temperatures from 250 to 450°C follows the Stranski-Krastanow mechanism. Based on the technique of recording diffractometry of high energy electrons during the process of epitaxy, the wetting layer thickness of Ge0.96Sn0.04 films is found to depend on the temperature of the substrate. PMID:21711584

  19. Electroluminescence from GeSn heterostructure pin diodes at the indirect to direct transition

    SciTech Connect

    Gallagher, J. D.; Menéndez, J.; Senaratne, C. L.; Sims, P.; Kouvetakis, J.; Aoki, T.

    2015-03-02

    The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400–600 nm) Ge{sub 1−y}Sn{sub y} i-layers spanning a broad compositional range below and above the crossover Sn concentration y{sub c} where the Ge{sub 1−y}Sn{sub y} alloy becomes a direct-gap material. These results are made possible by an optimized device architecture containing a single defected interface thereby mitigating the deleterious effects of mismatch-induced defects. The observed emission intensities as a function of composition show the contributions from two separate trends: an increase in direct gap emission as the Sn concentration is increased, as expected from the reduction and eventual reversal of the separation between the direct and indirect edges, and a parallel increase in non-radiative recombination when the mismatch strains between the structure components is partially relaxed by the generation of misfit dislocations. An estimation of recombination times based on the observed electroluminescence intensities is found to be strongly correlated with the reverse-bias dark current measured in the same devices.

  20. Self-assembled strained GeSiSn nanoscale structures grown by MBE on Si(100)

    NASA Astrophysics Data System (ADS)

    Nikiforov, A. I.; Timofeev, V. A.; Tuktamyshev, A. R.; Yakimov, A. I.; Mashanov, V. I.; Gutakovskii, A. K.

    2017-01-01

    Gradual relaxation of elastic deformations in a silicon layer at the growth of a covering layer on strained layers was established. The dependence of the thickness of a silicon film, where full elastic strain relaxation occurs, on the germanium layer thickness was determined. The dependence of the critical thickness of 2D-3D transition of temperature and composition of the GeSiSn film on Si(100) was studied. Regularities of the formation of multilayer structures on quantum wells comprising pseudomorphous GeSiSn layers without relaxed buffer layers but creating the structures directly on Si. A possibility of synthesizing multilayer structures by molecular beam epitaxy was shown, and the crystal lattice constants using the high-resolution transmission electron microscopy were determined. Based on multilayer GeSiSn/Si structures the p-i-n-diodes, which demonstrated the photoresponse increasing by several orders of magnitude compared to the Sn-free structures at an increase in the Sn content, were created.

  1. Tri-metallic deltahedral Zintl ions: experimental and theoretical studies of the novel dimer [(Sn6Ge2Bi)2]4-.

    PubMed

    Gillett-Kunnath, Miriam M; Muñoz-Castro, Alvaro; Sevov, Slavi C

    2012-04-11

    We report the synthesis, characterization, and computational rationalization of the first trimetallic deltahedral Zintl ions. The novel nine-atom clusters were structurally characterized as dimers of [(Sn(6)Ge(2)Bi)(2)](4-) with Ge-Ge intercluster bonds. They are synthesized either by reacting bimetallic clusters (Sn(9-x)Ge(x))(4-) with BiPh(3) or by direct extraction from precursors with nominal composition "K(4)Ge(4)Sn(4)Bi".

  2. Ge{sub 1-y}Sn{sub y} (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties

    SciTech Connect

    Senaratne, C. L.; Kouvetakis, J.; Gallagher, J. D.; Jiang, Liying; Smith, D. J.; Menéndez, J.; Aoki, Toshihiro

    2014-10-07

    Novel hydride chemistries are employed to deposit light-emitting Ge{sub 1-y}Sn{sub y} alloys with y ≤ 0.1 by Ultra-High Vacuum Chemical Vapor Deposition (UHV-CVD) on Ge-buffered Si wafers. The properties of the resultant materials are systematically compared with similar alloys grown directly on Si wafers. The fundamental difference between the two systems is a fivefold (and higher) decrease in lattice mismatch between film and virtual substrate, allowing direct integration of bulk-like crystals with planar surfaces and relatively low dislocation densities. For y ≤ 0.06, the CVD precursors used were digermane Ge₂H₆ and deuterated stannane SnD₄. For y ≥ 0.06, the Ge precursor was changed to trigermane Ge₃H₈, whose higher reactivity enabled the fabrication of supersaturated samples with the target film parameters. In all cases, the Ge wafers were produced using tetragermane Ge₄H₁₀ as the Ge source. The photoluminescence intensity from Ge{sub 1–y}Sn{sub y}/Ge films is expected to increase relative to Ge{sub 1–y}Sn{sub y}/Si due to the less defected interface with the virtual substrate. However, while Ge{sub 1–y}Sn{sub y}/Si films are largely relaxed, a significant amount of compressive strain may be present in the Ge{sub 1–y}Sn{sub y}/Ge case. This compressive strain can reduce the emission intensity by increasing the separation between the direct and indirect edges. In this context, it is shown here that the proposed CVD approach to Ge{sub 1–y}Sn{sub y}/Ge makes it possible to approach film thicknesses of about 1 μm, for which the strain is mostly relaxed and the photoluminescence intensity increases by one order of magnitude relative to Ge{sub 1–y}Sn{sub y}/Si films. The observed strain relaxation is shown to be consistent with predictions from strain-relaxation models first developed for the Si{sub 1–x}Ge{sub x}/Si system. The defect structure and atomic distributions in the films are studied in detail using advanced electron

  3. Si-Ge-Sn alloys with 1.0 eV gap for CPV multijunction solar cells

    SciTech Connect

    Roucka, Radek Clark, Andrew; Landini, Barbara

    2015-09-28

    Si-Ge-Sn ternary group IV alloys offer an alternative to currently used 1.0 eV gap materials utilized in multijunction solar cells. The advantage of Si-Ge-Sn is the ability to vary both the bandgap and lattice parameter independently. We present current development in fabrication of Si-Ge-Sn alloys with gaps in the 1.0 eV range. Produced material exhibits excellent structural properties, which allow for integration with existing III-V photovoltaic cell concepts. Time dependent room temperature photoluminescence data demonstrate that these materials have long carrier lifetimes. Absorption tunable by compositional changes is observed. As a prototype device set utilizing the 1 eV Si-Ge-Sn junction, single junction Si-Ge-Sn device and triple junction device with Si-Ge-Sn subcell have been fabricated. The resulting I-V and external quantum efficiency data show that the Si-Ge-Sn junction is fully functional and the performance is comparable to other 1.0 eV gap materials currently used.

  4. Room temperature lasing in GeSn alloys: A path to CMOS-compatible infrared lasers

    NASA Astrophysics Data System (ADS)

    Li, Zairui; Zhao, Yun; Gallagher, James; Menéndez, José; Kouvetakis, John; Agha, Imad; Mathews, Jay

    The semiconductor industry has been pushing silicon photonics development for many years, resulting in the realization of many CMOS-compatible optoelectronic devices. However, one challenge that has not been overcome is the development of Si-based lasers. Recently, GeSn alloys grown on Si have shown much promise in the field of infrared optoelectronics. These alloy films are compatible with CMOS processing, have band gaps in the infrared, and the band structure of GeSn can be tuned via Sn concentration to induce direct band gap emission. In this work, we report on room temperature lasing in optically-pumped waveguides fabricated from GeSn films grown epitaxially on Si(100) substrates. The waveguides were defined using standard UV photolithography and dry-etched in a Cl plasma. The end facets were mirror polished, and Al was deposited on one facet to enhance cavity quality. The waveguides were optically-pumped using a 976nm wavelength solid-state laser, and the corresponding emission was measured. The dependence of the emission power on the pump power shows a clear transition between spontaneous and stimulated emission, thereby demonstrating room temperature lasing.

  5. Low temperature formation of higher-k cubic phase HfO{sub 2} by atomic layer deposition on GeO{sub x}/Ge structures fabricated by in-situ thermal oxidation

    SciTech Connect

    Zhang, R.; Huang, P.-C.; Taoka, N.; Yokoyama, M.; Takenaka, M.; Takagi, S.

    2016-02-01

    We have demonstrated a low temperature formation (300 °C) of higher-k HfO{sub 2} using atomic layer deposition (ALD) on an in-situ thermal oxidation GeO{sub x} interfacial layer. It is found that the cubic phase is dominant in the HfO{sub 2} film with an epitaxial-like growth behavior. The maximum permittivity of 42 is obtained for an ALD HfO{sub 2} film on a 1-nm-thick GeO{sub x} form by the in-situ thermal oxidation. It is suggested from physical analyses that the crystallization of cubic phase HfO{sub 2} can be induced by the formation of six-fold crystalline GeO{sub x} structures in the underlying GeO{sub x} interfacial layer.

  6. Ferroelectric Properties of Pt/Pb5Ge3O11/Pt and Pt/Pb5Ge3O11/HfO2/Si Structures

    NASA Astrophysics Data System (ADS)

    Ohara, Shuichiro; Aizawa, Koji; Ishiwara, Hiroshi

    2005-09-01

    The ferroelectric properties of metal-ferroelectric-metal (MFM) capacitors with a Pt/Pb5Ge3O11(PGO)/Pt structure and metal-ferroelectric-insulator-semiconductor (MFIS) diodes with a Pt/PGO/HfO2/Si structure were investigated. C-axis-oriented PGO thin films were formed on both Pt/SiO2/Si and HfO2 (6 nm)/Si structures by a sol-gel method. Typical values of remanent polarization (2Pr), coercive field (2Ec), and dielectric constant in the MFM capacitors were 5.7 μC/cm2, 63 kV/cm, and 50, respectively, and the remanent polarization gradually increased with the switching pulses for up to 1 × 1010 cycles. It was also found that the memory window in the MFIS diodes with a 340-nm-thick PGO film was as large as 1.3 V.

  7. Ge2Sb2Te5/SnSe2 nanocomposite multilayer thin films for phase change memory application

    NASA Astrophysics Data System (ADS)

    Feng, Xiaoyi; Wen, Ting; Zhai, Jiwei; Lai, Tianshu; Wang, Changzhou; Song, Sannian; Song, Zhitang

    2014-10-01

    By nanocompositing Ge2Sb2Te5 and SnSe2, the electrical and thermal proprieties of Ge2Sb2Te5/SnSe2 multilayer films for phase change random access memory (PCRAM) are better than those of Ge2Sb2Te5 films. The crystallization temperature rises and can be controlled. The resistance gap can reach approximately five orders of magnitude to ensure high data reliability. The activity energy (Ea) is more than 2.60 eV and the temperature for 10 year data retention reach 110 °C. The analysis of both XRD patterns and TEM images confirmed the reversible phase change transition between amorphous and crystalline state in Ge2Sb2Te5/SnSe2 nanocomposite multilayer films. According to transient photoreflectance traces, the speed of crystallization process was about 33 ns. Among different Ge2Sb2Te5/SnSe2 multilayer films, the film constitute of [Ge2Sb2Te5 (4 nm)/SnSe2(10 nm)]7 showed better properties and was manufactured by CMOS technology to phase change memory (PCM) cells. This result revealed that the Ge2Sb2Te5/SnSe2 nanocomposite multilayer film is a promising phase change material.

  8. Theoretical electric dipole moments of SiH, GeH and SnH

    NASA Technical Reports Server (NTRS)

    Pettersson, L. G. M.; Langhoff, S. R.

    1986-01-01

    Accurate theoretical dipole moments have been computed for the X2Pi ground states of Si(-)H(+) (0.118 D), Ge(+)H(-) (0.085 D), and Sn(+)H(-) (0.357 D). The trend down the periodic table is regular and follows that expected from the electronegativities of the group IV atoms. The dipole moment of 1.24 + or - 0.1 D for GeH recently derived by Brown, Evenson and Sears (1985) from the relative intensities of electric and magnetic dipole transitions in the 10-micron spectrum of the X2Pi state is seriously questioned.

  9. Theoretical Electric Dipole Moments of SiH, GeH and SnH

    NASA Technical Reports Server (NTRS)

    Pettersson, Lars G. M.; Langhoff, Stephen R.

    1986-01-01

    Accurate theoretical dipole moments (mu(sub c) have been computed for the X(exp 2)Pi ground states of Si(-)H(+)(0.118 D), Ge(+)H(-)(0.085 D) and Sn(+)H(-)(0.357 D). The trend down the periodic table is regular and follows that expected from the electronegativities of the group IV atoms. The dipole moment of 1.24 +/- 0.1 D for GeH recently derived by Brown, Evenson and Sears from the relative intensities of electric and magnetic dipole transitions in the 10 microns spectrum of the X(exp 2)Pi state is seriously questioned.

  10. Thermal expansivity of Ge{sub 1-y}Sn{sub y} alloys

    SciTech Connect

    Roucka, R.; Fang, Y.-Y.; Kouvetakis, J.; Chizmeshya, A. V. G.; Menendez, J.

    2010-06-15

    The temperature dependence of the lattice parameter of Ge{sub 1-y}Sn{sub y} alloys deposited on Si substrates has been determined from an analysis of their x-ray reciprocal-space maps. It is found that over the range 0Ge and {alpha}-Sn are nearly the same. Alternative interpolation formulas based on a Debye model and a mixed Debye-Einstein model of the phonon structure are tested and it is found that they also fail to explain the observed increase in thermal expansivity.

  11. Theoretical analysis of performance enhancement in GeSn/SiGeSn light-emitting diode enabled by Si3N4 liner stressor technique.

    PubMed

    Zhang, Qingfang; Liu, Yan; Han, Genquan; Shao, Yao; Gao, Xi; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2016-12-01

    We comprehensively investigate the energy band diagrams, carrier distribution, spontaneous emission rate rsp, and the internal quantum efficiency ηIQE in the lattice-matched GeSn/SiGeSn double heterostructure light-emitting diode (LED) wrapped in a Si3N4 liner stressor. The large tensile strain introduced into the device by the expansion of the Si3N4 liner is characterized by numerical simulation. A lower Sn composition required for the indirect to direct bandgap transition and a higher ratio of the electron occupation probability in the Γ conduction valley are achieved in the tensile strained GeSn/SiGeSn LED in comparison with the relaxed device. Analytical calculation shows that the tensile strained LED wrapped in the Si3N4 liner stressor exhibits the improved rsp and ηIQE compared to the relaxed device. rsp and ηIQE also can be enhanced by increasing Sn composition, carrier injection density, and n-type doping concentration in the GeSn active layer.

  12. Formation of non-substitutional β-Sn defects in Ge{sub 1−x}Sn{sub x} alloys

    SciTech Connect

    Fuhr, J. D.; Ventura, C. I.; Barrio, R. A.

    2013-11-21

    Although group IV semiconductor alloys are expected to form substitutionally, in Ge{sub 1−x}Sn{sub x} this is true only for low concentrations (x < 0.13). The use of these alloys as a narrow gap semiconductor depends on the ability to produce samples with the high quality required for optoelectronic device applications. In a previous paper, we proposed the existence of a non-substitutional complex defect (β-Sn), consisting of a single Sn atom in the center of a Ge divacancy, which may account for the segregation of Sn at large x. Afterwards, the existence of this defect was confirmed experimentally. In this paper we study the local environment and the interactions of the substitutional defect (α-Sn), the vacancy in Ge, and the β-Sn defect by performing extensive numerical ab initio calculations. Our results confirm that a β-Sn defect can be formed by natural diffusion of a vacancy around the substitutional α-Sn defect, since the energy barrier for the process is very small.

  13. The interaction between divacancies and shallow dopants in irradiated Ge:Sn

    SciTech Connect

    Khirunenko, L. I.; Pomozov, Yu. V.; Sosnin, M. G.; Abrosimov, N. V.; Riemann, H.

    2014-02-21

    It has been found that upon annealing of irradiated Ge doped with gallium and Sn simultaneously with disappearance of divacancies V{sub 2}{sup 0} the appearance of the new absorption spectrum consisting of sharp lines was observed. The spectrum is identical to the absorption spectrum of gallium. It is shown that the defect, to which the new spectrum corresponds, has hydrogen-like properties. The distances between the lines in the spectrum are in good agreement with those predicted by effective-mass theory. The appearance of Fano resonance in the continuum region in addition to intracenter transitions of the defect was detected. The defect found is identified as SnV{sub 2}{sup 0}Ga. The binding energy for the ground state of the SnV{sub 2}{sup 0}Ga centers has been estimated.

  14. Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe by solid-liquid-coexisting annealing of a-GeSn/c-Si structures

    SciTech Connect

    Sadoh, Taizoh Chikita, Hironori; Miyao, Masanobu; Matsumura, Ryo

    2015-09-07

    Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe on Si substrates is strongly desired to realize advanced electronic and optical devices, which can be merged onto Si large-scale integrated circuits (LSI). To achieve this, annealing characteristics of a-GeSn/c-Si structures are investigated under wide ranges of the initial Sn concentrations (0%–26%) and annealing conditions (300–1000 °C, 1 s–48 h). Epitaxial growth triggered by SiGe mixing is observed after annealing, where the annealing temperatures necessary for epitaxial growth significantly decrease with increasing initial Sn concentration and/or annealing time. As a result, Ge-rich (∼80%) SiGe layers with Sn concentrations of ∼2% are realized by ultra-low temperature annealing (300 °C, 48 h) for a sample with the initial Sn concentration of 26%. The annealing temperature (300 °C) is in the solid-liquid coexisting temperature region of the phase diagram for Ge-Sn system. From detailed analysis of crystallization characteristics and composition profiles in grown layers, it is suggested that SiGe mixing is generated by a liquid-phase reaction even at ultra-low temperatures far below the melting temperature of a-GeSn. This ultra-low-temperature growth technique of Ge-rich SiGe on Si substrates is expected to be useful to realize next-generation LSI, where various multi-functional devices are integrated on Si substrates.

  15. The Double-peaked SN 2013ge: A Type Ib/c SN with an Asymmetric Mass Ejection or an Extended Progenitor Envelope

    NASA Astrophysics Data System (ADS)

    Drout, M. R.; Milisavljevic, D.; Parrent, J.; Margutti, R.; Kamble, A.; Soderberg, A. M.; Challis, P.; Chornock, R.; Fong, W.; Frank, S.; Gehrels, N.; Graham, M. L.; Hsiao, E.; Itagaki, K.; Kasliwal, M.; Kirshner, R. P.; Macomb, D.; Marion, G. H.; Norris, J.; Phillips, M. M.

    2016-04-01

    We present extensive multiwavelength (radio to X-ray) observations of the Type Ib/c supernova (SN Ib/c) SN 2013ge from -13 to +457 days relative to maximum light, including a series of optical spectra and Swift UV-optical photometry beginning 2-4 days post-explosion. This data set makes SN 2013ge one of the best-observed normal SNe Ib/c at early times—when the light curve is particularly sensitive to the progenitor configuration and mixing of radioactive elements—and reveals two distinct light curve components in the UV bands. The first component rises over 4-5 days and is visible for the first week post-explosion. Spectra of the first component have blue continua and show a plethora of moderately high velocity (˜15,000 km s-1) but narrow (˜3500 km s-1) spectroscopic features, indicating that the line-forming region is restricted. The explosion parameters estimated for the bulk explosion ({M}{{ej}} ˜ 2-3 {M}⊙ ; {E}{{K}} ˜ (1-2) × 1051 erg) are standard for SNe Ib/c, and there is evidence for weak He features at early times—in an object that would have otherwise been classified as Type Ic. In addition, SN 2013ge exploded in a low-metallicity environment (˜0.5 {Z}⊙ ), and we have obtained some of the deepest radio and X-ray limits for an SN Ib/c to date, which constrain the progenitor mass-loss rate to be \\dot{M} < 4 × 10-6 {M}⊙ yr-1. We are left with two distinct progenitor scenarios for SN 2013ge, depending on our interpretation of the early emission. If the first component is cooling envelope emission, then the progenitor of SN 2013ge either possessed an extended (≳30 {R}⊙ ) envelope or ejected a portion of its envelope in the final ≲ 1 yr before core collapse. Alternatively, if the first component is due to outwardly mixed 56Ni, then our observations are consistent with the asymmetric ejection of a distinct clump of nickel-rich material at high velocities. Current models for the collision of an SN shock with a binary companion cannot

  16. Effects of Sn Substitution on Thermoelectric Properties of Ge4SbTe5

    NASA Astrophysics Data System (ADS)

    Williams, Jared B.; Mather, Spencer; Morelli, Donald T.

    2016-02-01

    Phase-change materials are identified by their ability to rapidly alternate between amorphous and crystalline phases upon heating, exhibiting large contrast in the optical/electrical properties of the respective phases. Such materials are primarily used in memory storage applications, but recently they have also been identified as potential thermoelectric materials. Many of the phase-change materials studied today can be found on the pseudobinary (GeTe)1- x (Sb2Te3) x tie-line. Ge4SbTe5, a single-phase compound just off of the (GeTe)1- x (Sb2Te3) x tie-line, forms in a metastable rocksalt crystal structure at room temperature. It has been found that stoichiometric and undoped Ge4SbTe5 exhibits thermal conductivity of ~1.2 W/m-K at high temperature and a dramatic decrease in electrical resistivity at 623 K due to a structural phase transition, which leads to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. Introducing point defects via isoelectronic substitutions can be an effective means of reducing thermal conductivity and enhancing thermoelectric performance. We present a study of the effects of Sn substitution for Ge on the electrical and thermal transport properties of Ge4SbTe5.

  17. Electronic band structure trends of perovskite halides: Beyond Pb and Sn to Ge and Si

    NASA Astrophysics Data System (ADS)

    Huang, Ling-yi; Lambrecht, Walter R. L.

    2016-05-01

    The trends in electronic band structure are studied in the cubic A B X3 halide perovskites for A =Cs ; B =Pb , Sn, Ge, Si; and X =I , Br, Cl. The gaps are found to decrease from Pb to Sn and from Ge to Si, but increase from Sn to Ge. The trend is explained in terms of the atom s levels of the group-IV element and the atomic sizes which changes the amount of hybridization with X -p and hence the valence bandwidth. Along the same series spin-orbit coupling also decreases and this tends to increase the gap because of the smaller splitting of the conduction band minimum. Both effects compensate each other to a certain degree. The trend with halogens is to reduce the gap from Cl to I, i.e., with decreasing electronegativity. The role of the tolerance factor in avoiding octahedron rotations and octahedron edge sharing is discussed. The Ge containing compounds have tolerance factor t >1 and hence do not show the series of octahedral rotation distortions and the existence of edge-sharing octahedral phases known for Pb and Sn-based compounds, but rather a rhombohedral distortion. CsGeI3 is found to have a suitable gap for photovoltaics both in its cubic (high-temperature) and rhombohedral (low-temperature) phases. The structural stability of the materials in the different phases is also discussed. We find the rhombohedral phase to have lower total energy and slightly larger gaps but to present a less significant distortion of the band structure than the edge-sharing octahedral phases, such as the yellow phase in CsSnI3. The corresponding silicon based compounds have not yet been synthesized and therefore our estimates are less certain but indicate a small gap for cubic CsSiI3 and CsSiBr3 of about 0.2 ±0.2 eV and 0.8 ±0.6 eV for CsSiCl3. The intrinsic stability of the Si compounds is discussed.

  18. Electrical and structural properties of group-4 transition-metal nitride (TiN, ZrN, and HfN) contacts on Ge

    SciTech Connect

    Yamamoto, Keisuke; Nakashima, Hiroshi; Noguchi, Ryutaro; Wang, Dong; Mitsuhara, Masatoshi; Nishida, Minoru; Hara, Toru

    2015-09-21

    Electrical and structural properties were investigated for group-4 transition-metal nitride contacts on Ge (TiN/Ge, ZrN/Ge, and HfN/Ge), which were prepared by direct sputter depositions using nitride targets. These contacts could alleviate the intrinsic Fermi-level pinning (FLP) position toward the conduction band edge. It was revealed that this phenomenon is induced by an amorphous interlayer (a-IL) containing nitrogen atoms at the nitride/Ge interfaces. The strength of FLP alleviation positively depended on the thickness of a-IL. TiN/Ge and ZrN/Ge contacts with ∼2 nm-thick a-ILs showed strong FLP alleviations with hole barrier heights (Φ{sub BP}) in the range of 0.52–56 eV, and a HfN/Ge contact with an ∼1 nm-thick a-IL showed a weaker one with a Φ{sub BP} of 0.39 eV. However, TaN/Ge contact without a-IL did not show such FLP alleviation. Based on the results of depth distributions for respective elements, we discussed the formation kinetics of a-ILs at TiN/Ge and ZrN/Ge interfaces. Finally, we proposed an interfacial dipole model to explain the FLP alleviation.

  19. Large grain growth of Ge-rich Ge{sub 1−x}Sn{sub x} (x ≈ 0.02) on insulating surfaces using pulsed laser annealing in flowing water

    SciTech Connect

    Kurosawa, Masashi; Taoka, Noriyuki; Nakatsuka, Osamu; Zaima, Shigeaki; Ikenoue, Hiroshi

    2014-02-10

    We investigate Sn incorporation effects on the growth characteristics of Ge-rich Ge{sub 1−x}Sn{sub x} (x < 0.02) on SiO{sub 2} crystallized by pulsed laser annealing (PLA) in air and water. Despite the very low Sn content of 2%, Sn atoms within the GeSn layers play a role in preventing ablation and aggregation of the layers during these PLA. Raman and electron backscatter diffraction measurements demonstrate achievement of large-grain (∼800 nmϕ) growth of Ge{sub 0.98}Sn{sub 0.02} polycrystals by using PLA in water. These polycrystals also show a tensile-strain of ∼0.68%. This result opens up the possibility for developing GeSn-based devices fabricated on flexible substrates as well as Si platforms.

  20. Distribution of free carriers near heavily-doped epitaxial surfaces of n-type Ge(100) upon HF and HCl treatments

    SciTech Connect

    Park, S. J.; Bolotov, L.; Uchida, N.; Tada, T.

    2015-10-15

    Carrier distributions near n-type epitaxially-grown Ge(100) surfaces with high impurity concentrations (1 × 10{sup 20} cm{sup −3}) were studied using high resolution electron energy loss spectroscopy (HREELS) upon surface treatments in aqueous solutions of HF and HCl. After surface treatments with HCl and HF, the molecular vibration modes distinctly showed either chloride or hydride terminations of Ge surfaces with negligible oxidation. The free-carrier concentration profile was inferred from the conduction band plasmon measurements as a function of the incident electron energies employing a dielectric theory simulation with a 4-layer structure and an effective electron mass of 0.02m{sub 0}. A carrier-free layer of 40 and 24 Å were derived for HCl- and HF-treated Ge(100), respectively. The surface band bending was estimated to be 0.32 eV for HF-treated Ge. HCl-treated Ge surfaces showed a band bending of 0.91 eV attributed to the strong effect of the surface Cl-Ge dipole.

  1. Sn-induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity

    NASA Astrophysics Data System (ADS)

    Ko, Young-Dae; Kang, Jin-Gu; Lee, Gwang-Hee; Park, Jae-Gwan; Park, Kyung-Soo; Jin, Yun-Ho; Kim, Dong-Wan

    2011-08-01

    We herein present the synthesis of germanium (Ge) nanowires on Au-catalyzed low-temperature substrates using a simple thermal Ge/Sn co-evaporation method. Incorporation of a low-melting point metal (Sn) enables the efficient delivery of Ge vapor to the substrate, even at a source temperature below 600 °C. The as-synthesized nanowires were found to be a core/shell heterostructure, exhibiting a uniform single crystalline Ge sheathed within a thin amorphous germanium suboxide (GeOx) layer. Furthermore, these high-density Ge nanowires grown directly on metal current collectors can offer good electrical connection and easy strain relaxation due to huge volume expansion during Li ion insertion/extraction. Therefore, the self-supported Ge nanowire electrodes provided excellent large capacity with little fading upon cycling (a capacity of ~900 mA h g-1 at 1C rate).We herein present the synthesis of germanium (Ge) nanowires on Au-catalyzed low-temperature substrates using a simple thermal Ge/Sn co-evaporation method. Incorporation of a low-melting point metal (Sn) enables the efficient delivery of Ge vapor to the substrate, even at a source temperature below 600 °C. The as-synthesized nanowires were found to be a core/shell heterostructure, exhibiting a uniform single crystalline Ge sheathed within a thin amorphous germanium suboxide (GeOx) layer. Furthermore, these high-density Ge nanowires grown directly on metal current collectors can offer good electrical connection and easy strain relaxation due to huge volume expansion during Li ion insertion/extraction. Therefore, the self-supported Ge nanowire electrodes provided excellent large capacity with little fading upon cycling (a capacity of ~900 mA h g-1 at 1C rate). Electronic supplementary information (ESI) available: Binary phase diagram of Ge-Sn, SEM images of Ge nanowires grown at various source temperatures, typical TEM image and EDS intensity profile of Ge nanowires, HAADF STEM image and EDS intensity profile of

  2. The correlation of electrical conductivity with the microstructure of Ge2Sb2Te5 thin films alloyed with Sn

    NASA Astrophysics Data System (ADS)

    Yin, Qixun; Chen, Leng

    2017-01-01

    In this research, the effects of Sn alloying on structure transformation and electrical characteristics of Ge2Sb2Te5 (GST) thin films were studied. It was discovered that the SnTe phase formed in GST thin films when Sn content exceeded 26 at%, and the addition of Sn atoms expanded the lattice parameter, as a result of atomic radii difference between Ge and Sn atoms. Furthermore, temperature dependent sheet resistance measurements on the GST:Sn thin films were performed for the electrical characteristics to be studied. Sn substitution fraction of 16 at% was discovered to maximize the crystallization temperature of GST thin films. Compared to the GST thin films, crystallization temperature difference and lower amorphous resistance of the GST:Sn thin films were mainly due to lower bonding energy of Sn–Te. Moreover, the amorphous conductivity activation energies (E σ) corresponding to different grain sizes were calculated with the Arrhenius equation. The E σ value of GST:Sn thin films decreased significantly as the Sn content increased due to grain size effects, which appears to improve the temperature stability of conductivity of phase change memory.

  3. Electronic Transport Properties of New 2-D Materials GeH and NaSn2As2

    NASA Astrophysics Data System (ADS)

    He, Bin; Cultrara, Nicholas; Arguilla, Maxx; Goldberger, Joshua; Heremans, Joseph

    2-D materials potentially have superior thermoelectric properties compared to traditional 3-D materials due to their layered structure. Here we present electrical and thermoelectric transport properties of 2 types of 2-D materials, GeH and NaSn2As2. GeH is a graphane analog which is prepared using chemical exfoliation of CaGe2 crystals. Intrinsic GeH is proven to be a highly resistive material at room temperature. Resistance and Seebeck coefficient of Ga doped GeH are measured in a cryostat with a gating voltage varying from -100V to 100V. NaSn2As2 is another 2-D system, with Na atom embedded between nearly-2D Sn-As layers. Unlike GeH, NaSn2As2 is a metal based of Hall measurements, with p-type behavior, and with van der Pauw resistances on the order of 5m Ω/square. Thermoelectric transport properties of NaSn2As2 will be reported. This work is support by the NSF EFRI-2DARE project EFRI-1433467.

  4. Insights into thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks and their suppressed reaction with atomically thin AlO{sub x} interlayers

    SciTech Connect

    Ogawa, Shingo; Asahara, Ryohei; Minoura, Yuya; Hosoi, Takuji Shimura, Takayoshi; Watanabe, Heiji; Sako, Hideki; Kawasaki, Naohiko; Yamada, Ichiko; Miyamoto, Takashi

    2015-12-21

    The thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that {sup 18}O-tracers composing the GeO{sub 2} underlayers diffuse within the HfO{sub 2} overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO{sub 2} also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO{sub 2} surfaces, and the reaction was further enhanced at high temperatures with the assistance of GeO desorption. A technique to insert atomically thin AlO{sub x} interlayers between the HfO{sub 2} and GeO{sub 2} layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks.

  5. Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors

    DTIC Science & Technology

    2016-05-16

    subsequently implemented this structure on a GeSn p-i-n photodiode. Following the deposition of a gold thin film, the nanoholes are milled using a focused...Tsai at Academia Sinica. The beam currents and accelerating voltages are 40 pA and 30 keV, respectively. The target diameter and period of nanoholes ...comparison. One as is (control sample) without any metal on top, another with gold film but no pattern, the third with the gold film with 2D nanohole

  6. First-principles calculations of Mg2X (X = Si, Ge, Sn) semiconductors with the calcium fluorite structure

    NASA Astrophysics Data System (ADS)

    Sandong, Guo

    2015-05-01

    The electronic structures of Mg2X (X = Si, Ge, Sn) have been calculated by using generalized gradient approximation, various screened hybrid functionals, as well as Tran and Blaha's modified Becke and Johnson exchange potential. It was found that the Tran and Blaha's modified Becke and Johnson exchange potential provides a more realistic description of the electronic structures and the optical properties of Mg2X (X = Si, Ge, Sn) than else exchange-correlation potential, and the theoretical gaps and dielectric functions of Mg2X (X = Si, Ge, Sn) are quite compatible with the experimental data. The elastic properties of Mg2X (X = Si, Ge, Sn) have also been studied in detail with the generalized gradient approximation, including bulk modulus, shear modulus, Young's modulus, Poisson's ratio, sound velocities, and Debye temperature. The phonon dispersions of Mg2X (X = Si, Ge, Sn) have been calculated within the generalized gradient approximation, suggesting no structural instability, and the measurable phonon heat capacity as a function of the temperature has been also calculated. Project supported by the Fundamental Research Funds for the Central Universities (No. 2013QNA32) and the National Natural Science Foundation of China (No. 11404391).

  7. Structure and magnetism in strained Ge{sub 1-x-y}Sn{sub x}Mn{sub y} films grown on Ge(001) by low temperature molecular beam epitaxy

    SciTech Connect

    Prestat, E.; Barski, A.; Bellet-Amalric, E.; Morel, R.; Tainoff, D.; Jain, A.; Porret, C.; Bayle-Guillemaud, P.; Jamet, M.; Jacquot, J.-F.

    2013-07-01

    In this letter, we study the structural and magnetic properties of Ge{sub 1-x-y}Sn{sub x}Mn{sub y} films grown on Ge(001) by low temperature molecular beam epitaxy using X-ray diffraction, high resolution transmission electron microscopy, and superconducting quantum interference device. Like in Mn doped Ge films, Mn atoms diffuse during the growth and aggregate into vertically aligned Mn-rich nanocolumns of a few nanometers in diameter. Transmission electron microscopy observations in plane view clearly indicate that the Sn incorporation is not uniform with concentration in Mn rich vertical nanocolumns lower than the detection limit of electron energy loss spectroscopy. The matrix exhibits a GeSn solid solution while there is a Sn-rich GeSn shell around GeMn nanocolumns. The magnetization in Ge{sub 1-x-y}Sn{sub x}Mn{sub y} layers is higher than in Ge{sub 1-x}Mn{sub x} films. This magnetic moment enhancement in Ge{sub 1-x-y}Sn{sub x}Mn{sub y} is probably related to the modification of the electronic structure of Mn atoms in the nanocolumns by the Sn-rich shell, which is formed around the nanocolumns.

  8. Lithium-stuffed diamond polytype Zn-Tt structures (Tt = Sn, Ge): the two lithium-zinc-tetrelides Li3Zn2Sn4 and Li2ZnGe3.

    PubMed

    Stegmaier, Saskia; Fässler, Thomas F

    2013-03-18

    In view of the search for alternative structures for Li ion battery materials and electron-poor framework semiconductors for thermoelectric applications, the systems Li-Zn-Tt with Tt = Ge or Sn were investigated. Li3Zn2Sn4 and Li2ZnGe3 were obtained by high-temperature syntheses from the elements. The crystal structures of both phases were determined with single-crystal X-ray diffraction methods and the electronic structure of Li3Zn2Sn4 was analyzed by means of DFT calculations (TB-LMTO-ASA). Both phases show diamond polytype analogous Zn-Tt networks with tetrahedrally four-coordinated Zn and Tt atoms. The new phase Li3Zn2Sn4 crystallizes in space group P6(3)/mmc (No. 194) with lattice parameters a = 4.528(1) Å and c = 22.119(2) Å. Zn and Sn atoms are fully ordered on three sites that constitute a 6H diamond polytype like network. Li2ZnGe3 is also described in space group P6(3)/mmc (No. 194) with lattice parameters a = 4.167(1) Å and c = 6.754(1) Å. The Zn-Ge substructure is a hexagonal diamond (2H polytype) like network. The existence of such a Ge-rich Li-Zn-Ge phase has already been reported, but a full structure determination has not yet been published. No indication for an ordering of Zn and Ge atoms on different sites could be deduced from the X-ray diffraction data. Band structure calculations for Li3Zn2Sn4 indicate that the phase is metallic, with the Fermi level at the flank of a pseudogap in the density of states curve. The topological analysis of the electron localization function (ELF) shows covalent Sn-Sn bonding and lone pair like valence basins for the Sn atoms. Concerning the appearance of the lone pair like ELF basins, a strong influence of the basis set for Li that is employed in the calculations is found.

  9. Molecular epitaxy of pseudomorphic Ge1-y Sn y (y = 0.06-0.17) structures and devices on Si/Ge at ultra-low temperatures via reactions of Ge4H10 and SnD4

    NASA Astrophysics Data System (ADS)

    Wallace, P. M.; Senaratne, C. L.; Xu, Chi; Sims, P. E.; Kouvetakis, J.; Menéndez, J.

    2017-02-01

    A low-pressure CVD technique was specifically developed to prepare a new class of pseudomorphic Ge1-y Sn y layers, with an Sn content up to 17% on Ge-buffered Si(100) wafers. The growth is conducted via reactions of SnD4 and the recently deployed Ge4H10 custom precursor, whose large molecular weight and enhanced reactivity enables depositions at unprecedented ultra-low temperatures (150 °C-200 °C), and at pressures akin to those typically employed in solid/gas-source MBE. The thicknesses of the layers far exceed the critical limits predicted by thermodynamic considerations and are either comparable to, or larger than, those observed for MBE-grown samples. This is validated by modeling of the thickness versus the composition for the fully strained and partially relaxed alloys produced in this work relative to the MBE and CVD-grown analogs reported in the literature. Furthermore, the practical relevance of the technique was demonstrated by creating highly doped n-type alloys, which were then used as active layers to fabricate degenerate pn junctions. It was also found that the strained films gradually relax with increasing thickness, providing new types of strain-free material with enhanced optical quality relative to those produced by standard CVD methods, as evidenced by the photoluminescence studies. The strain relaxation mechanism appears to be similar to that observed in CVD-grown samples, with no sign of epitaxial breakdown or precipitous degradation of the bulk crystallinity or surface morphology, in spite of the low growth temperatures employed. Finally, we note that this method represents the first example of a chemically driven route that delivers materials with the desirable properties afforded by MBE, while offering the potential for those practical applications inherent to large-scale CVD.

  10. Production of the 178m2Hf isomer using a 4.5-GeV electron accelerator

    NASA Astrophysics Data System (ADS)

    Karamian, S. A.; Carroll, J. J.; Adam, J.; Demekhina, N. A.

    2004-09-01

    High-productivity methods are required for the accumulation of long-lived isomers in amounts that are sufficient for the creation of experimental targets. A tantalum sample was activated with the Yerevan synchrotron using 4.5-GeV bremsstrahlung and the presence of 178m2Hf was detected with good statistical accuracy by γ-activity measurements. The integrated and mean cross-section values were deduced from the experiment. The isomer-to-ground-state ratio was then estimated and compared with that known for the p+ Ta reaction studied at 660 MeV. In the present experiment, both converter and target were relatively thin for better definition of the experimental conditions. However, an assembly designed for high-productivity irradiations should be thick and then the converter can also serve as the target sample when irradiated with a high-energy electron beam. The optimization of the isomer production was solved analytically and the largest estimated yield was determined as calibrated to the experimental yield. The maximum yield of 178m2Hf was found to be of about 3×109 nuclei/s using an electron beam current of 100 μA. This is lower than the yield achieved with proton beams, although for a practical comparison the total cost and radiation safety conditions should be considered. The present results provide a basis for numerical estimations.

  11. Diaminogermylene and diaminostannylene derivatives of gold(I): novel AuM and AuM2 (M = Ge, Sn) complexes.

    PubMed

    Cabeza, Javier A; Fernández-Colinas, José M; García-Álvarez, Pablo; Polo, Diego

    2012-03-19

    The reactions of [AuCl(THT)] (THT = tetrahydrothiophene) with 1 equiv of the group 14 diaminometalenes M(HMDS)(2) [M = Ge, Sn; HMDS = N(SiMe(3))(2)] lead to [Au{MCl(HMDS)(2)}(THT)] [M = Ge (1), Sn (2)], which contain a metalate(II) ligand that arises from insertion of the corresponding M(HMDS)(2) reagent into the Au-Cl bond of the gold(I) reagent. While compound 1 reacts with more Ge(HMDS)(2) to give the germanate-germylene derivative [Au{GeCl(HMDS)(2)}{Ge(HMDS)(2)}] (3), which results from substitution of Ge(HMDS)(2) for the THT ligand of 1, an analogous treatment of compound 2 with Sn(HMDS)(2) gives the stannate-stannylene derivative [Au{SnCl(HMDS)(2)}{Sn(HMDS)(2)(THT)}] (4), which has a THT ligand attached to the stannylene tin atom and which, in solution at room temperature, participates in a dynamic process that makes its two Sn(HMDS)(2) fragments equivalent (on the NMR time scale). A similar dynamic process has not been observed for the AuGe(2) compound 3 or for the AuSn(2) derivatives [Au{SnR(HMDS)(2)}{Sn(HMDS)(2)(THT)}] [R = Bu (5), HMDS (6)], which have been prepared by treating complex 4 with LiR. The structures of compounds 1 and 3-6 have been determined by X-ray diffraction.

  12. Density functional theory study of stable configurations of substitutional and interstitial C and Sn atoms in Si and Ge crystals

    NASA Astrophysics Data System (ADS)

    Koyama, Hiroki; Sueoka, Koji

    2017-04-01

    Group IV semiconductor compounds, e.g., Si and Ge containing substitutional C (Cs) and/or Sn (Sns) atoms (mono-doping and co-doping) with contents of several % are attracting attention for application to solar cells because they are good for the environment and have an affinity with Si materials. In this study, we evaluate the stable configurations of C and/or Sn atoms in Si (Ge) crystals with a focus on the formation of interstitial C (Ci) atoms by means of density functional theory calculations. The Hakoniwa method proposed by Kamiyama et al. (2016) is applied to a 64-atom supercell to obtain the thermal equilibrium ratio of Ci to the total C atoms. The results of the analysis are fourfold. First, the isolated Cs atom is stabler than the isolated Ci atom in both Si and Ge crystals, and it is stabler in Si than in Ge. The isolated Sns atom is much stabler that Sni as well, but it is stabler in Ge than Si. Second, a Ci atom is formed in a [0 0 1] oriented Ci-Cs pair in Ge crystals with the ratio of 7.7% to total C atoms at 450 °C when the concentration of uniformly distributed C atoms is about 3%. Third, the difference of the formation energy of Ci and Cs in Si decreases to about 0.3 eV with an increase in the concentration of uniformly distributed C atoms up to 6%. Fourth, the co-doping of C and Sn suppresses the formation of Ci atoms in Si and Ge crystals. The results obtained here are useful for the prediction of possible atomic configurations of C and/or Sn in Si and Ge for solar cell application.

  13. Ab initio phonon properties of half-Heusler NiTiSn, NiZrSn and NiHfSn.

    PubMed

    Andrea, Luc; Hug, Gilles; Chaput, Laurent

    2015-10-28

    A theoretical investigation of phonon properties from first-principles calculations is carried out for the half-Heusler compounds NiXSn, [Formula: see text], Zr and Hf. The crystal structures are optimised via ab initio calculations within the framework of density functional theory. The phonon properties are retrieved from harmonic and anharmonic interatomic force constants calculations using the finite size displacements method and many-body perturbation theory. A solution to the linearized phonon Boltzmann transport equation is then used to compute the ab initio thermal conductivities. For X   =   Ti, Zr and Hf, we found 15.4, 13.3 and 15.8 W m(-1) K(-1) at 300 K, respectively. Thanks to a spectral analysis of the velocities and lifetimes we were able appreciate the differences in the thermal conductivities between the three compounds under study. Our results provide insights to understand the behaviour of the thermal conductivity and therefore to improve the thermoelectric figure of merit for such materials.

  14. Vibrational properties of the gallium monohydrides SrGaGeH, BaGaSiH, BaGaGeH, and BaGaSnH

    SciTech Connect

    Evans, Michael J.; Lee, Myeong H.; Holland, Gregory P.; Daemen, Luke L.; Sankey, Otto F.; Haeussermann, Ulrich

    2009-08-15

    Vibrational properties of the gallium monohydrides SrGaGeH, BaGaSiH, BaGaGeH, and BaGaSnH (AeGaTtH) have been investigated by means of inelastic neutron scattering (INS) and first principles calculations. The compounds contain separated Ga-H units being part of a two dimensional polyanionic layer, [TtGaH]{sup 2-} (Tt=Si, Ge, Sn). The INS spectra show internal Ga-H bending and stretching modes at frequencies around 900 and 1200 cm{sup -1}, respectively. While the stretching mode is virtually invariant with respect to the variable chemical environment of the Ga-H unit, the bending mode frequency varies and is highest for BaGaSiH and lowest for BaGaSnH. The stretching mode is a direct measure of the Ga-H bond strength, whereas the bending mode reflects indirectly the strength of alkaline earth metal-hydrogen interaction. Accordingly, the terminal Ga-H bond in solid state AeGaTtH is distinct, but-compared to molecular gallium hydrides-very weak. - Graphical abstract: Vibrational properties of the gallium monohydrides SrGaGeH, BaGaSiH, BaGaGeH, and BaGaSnH have been investigated and revealed Ga-H stretching mode frequencies around 1200 cm{sup -1}. This implies that the terminal Ga-H bond in solid state polyanionic gallium hydrides is very weak compared to molecular gallium hydride species.

  15. Effect of hafnium doping on density of states in dual-target magnetron co-sputtering HfZnSnO thin film transistors

    SciTech Connect

    Huang, Chuan-Xin; Li, Jun Fu, Yi-Zhou; Jiang, Xue-Yin; Zhang, Jian-Hua; Zhang, Zhi-Lin

    2015-11-23

    This study investigates the effect of hafnium doping on the density of states (DOSs) in HfZnSnO thin film transistors fabricated by dual-target magnetron co-sputtering system. The DOSs is extracted by temperature-dependent field-effect measurements, and they decrease from 1.1 × 10{sup 17} to 4.6 × 10{sup 16 }eV/cm{sup 3} with increasing the hafnium concentrations. The behavior of DOSs for the increasing hafnium concentration HfZnSnO thin film transistors can be confirmed by both the reduction of ΔV{sub T} under bias stress and the trapping charges calculated by capacitance voltage measurements. It suggests that the reduction in DOSs due to the hafnium doping is closely related with the bias stability and thermal stability.

  16. The impact of ultrathin Al2O3 films on the electrical response of p-Ge/Al2O3/HfO2/Au MOS structures

    NASA Astrophysics Data System (ADS)

    Botzakaki, M. A.; Skoulatakis, G.; Kennou, S.; Ladas, S.; Tsamis, C.; Georga, S. N.; Krontiras, C. A.

    2016-09-01

    It is well known that the most critical issue in Ge CMOS technology is the successful growth of high-k gate dielectrics on Ge substrates. The high interface quality of Ge/high-k dielectric is connected with advanced electrical responses of Ge based MOS devices. Following this trend, atomic layer deposition deposited ultrathin Al2O3 and HfO2 films were grown on p-Ge. Al2O3 acts as a passivation layer between p-Ge and high-k HfO2 films. An extensive set of p-Ge/Al2O3/HfO2 structures were fabricated with Al2O3 thickness ranging from 0.5 nm to 1.5 nm and HfO2 thickness varying from 2.0 nm to 3.0 nm. All structures were characterized by x-ray photoelectron spectroscopy (XPS) and AFM. XPS analysis revealed the stoichiometric growth of both films in the absence of Ge sub-oxides between p-Ge and Al2O3 films. AFM analysis revealed the growth of smooth and cohesive films, which exhibited minimal roughness (~0.2 nm) comparable to that of clean bare p-Ge surfaces. The electrical response of all structures was analyzed by C-V, G-V, C-f, G-f and J-V characteristics, from 80 K to 300 K. It is found that the incorporation of ultrathin Al2O3 passivation layers between p-Ge and HfO2 films leads to superior electrical responses of the structures. All structures exhibit well defined C-V curves with parasitic effects, gradually diminishing and becoming absent below 170 K. D it values were calculated at each temperature, using both Hill-Coleman and Conductance methods. Structures of p-Ge/0.5 nm Al2O3/2.0 nm HfO2/Au, with an equivalent oxide thickness (EOT) equal to 1.3 nm, exhibit D it values as low as ~7.4  ×  1010 eV-1 cm-2. To our knowledge, these values are among the lowest reported. J-V measurements reveal leakage currents in the order of 10-1 A cm-2, which are comparable to previously published results for structures with the same EOT. A complete mapping of the energy distribution of D its into the energy bandgap of p-Ge, from the valence band

  17. Infrared Polarizer Fabrication by Imprinting on Sb-Ge-Sn-S Chalcogenide Glass

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Tani, Kunihiko; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2012-01-01

    We fabricated infrared wire-grid polarizers consisting of a 500-nm pitch Al grating on a low toxic chalcogenide glass (Sb-Ge-Sn-S system) using the direct imprinting of subwavelength grating followed by a deposition of Al metal by thermal evaporation. To fabricate the subwavelength grating on a chalcogenide glass more easily, the sharp grating was formed on the mold surface. The fabricated polarizer with Al thickness of 130 nm exhibited a polarization function with a transverse magnetic transmittance greater than 60% in the 5-9 µm wavelength range, and an extinction ratio greater than 20 dB in 3.5-11 µm wavelength range. The extinction ratio of the element with Al wires of 180-nm thickness reached 27 dB at 5.4-µm wavelength. The polarizer can be fabricated at lower costs and simpler fabrication processes compared to conventional infrared polarizers.

  18. Structural defect generation and band-structure features in the HfNi{sub 1−x}Co{sub x}Sn semiconductor

    SciTech Connect

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Stadnyk, Yu. V.; Krayovskyy, V. Ya.; Kaczorowski, D.; Nakonechnyy, I. N.; Goryn, A. M.

    2015-08-15

    The crystal and electronic structure and magnetic, energy, and kinetic properties of the n-HfNiSn semiconductor heavily doped with the Co acceptor impurity (HfNi{sub 1−x}Co{sub x}Sn) are investigated in the temperature and Co concentration ranges T = 80–400 K and N{sub A}{sup Co} ≈ 9.5 × 10{sup 19}-5.7 × 10{sup 21} cm{sup −3} (x = 0.005–0.30), respectively, and under magnetic field H ≤ 10 kOe. It is established that the degree of compensation of the semiconductor changes due to transformation of the crystal structure upon doping, which leads to the generation of acceptor and donor structural defects. The calculated electronic structure is consistent with the experiment; the HfNi{sub 1−x}Co{sub x}Sn semiconductor is shown to be a promising thermoelectric material. The results obtained are discussed within the Shklovsky-Efros model for a heavily doped and compensated semiconductor.

  19. Critical thickness for strain relaxation of Ge{sub 1−x}Sn{sub x} (x ≤ 0.17) grown by molecular beam epitaxy on Ge(001)

    SciTech Connect

    Wang, Wei; Zhou, Qian; Dong, Yuan; Yeo, Yee-Chia; Tok, Eng Soon

    2015-06-08

    We investigated the critical thickness (h{sub c}) for plastic relaxation of Ge{sub 1−x}Sn{sub x} grown by molecular beam epitaxy. Ge{sub 1−x}Sn{sub x} films with various Sn mole fraction x (x ≤ 0.17) and different thicknesses were grown on Ge(001). The strain relaxation of Ge{sub 1−x}Sn{sub x} films and the h{sub c} were investigated by high-resolution x-ray diffraction and reciprocal space mapping. It demonstrates that the measured h{sub c} values of Ge{sub 1−x}Sn{sub x} layers are as much as an order of magnitude larger than that predicted by the Matthews and Blakeslee (M-B) model. The People and Bean (P-B) model was also used to predict the h{sub c} values in Ge{sub 1−x}Sn{sub x}/Ge system. The measured h{sub c} values for various Sn content follow the trend, but slightly larger than that predicted by the P-B model.

  20. Electronic structure of SnxGe1-x alloys for small Sn compositions: Unusual structural and electronic properties

    NASA Astrophysics Data System (ADS)

    Chibane, Y.; Ferhat, M.

    2010-03-01

    The full potential augmented plane wave plus local orbital method using the local density approximation within the framework of density functional theory is applied to investigate structural, electronic, and thermodynamic properties of SnxGe1-x alloys for small Sn compositions (x =0.0625, 0.125, 0.1875, and 0.25). For the structural properties, we found strong deviation from Vegard's law for the variation in the lattice parameter, moreover, this deviation is found positive as found experimentally. This feature is in direct contrast with conventional IV-IV alloys, were the deviation of the variation in the lattice parameter from Vegard's law is generally weak and negative. The calculated bond lengths of Sn-Ge, also show significant departures of bond lengths from the virtual crystal approximation (VCA). The calculations confirm a strong band gap reduction in Ge. For small Sn incorporation, the calculated optical band gap bowing (i.e., bowing of the direct band gap) is found strongly composition dependent. For small Sn composition (x =0.0625), we found a strong optical band gap bowing of 2.9 eV, in very good agreement with the measured values at low Sn composition of 2.8 eV of [He and Atwater, Phys. Rev. Lett. 79, 1937 (1997)] and 2.84 eV of Pérez Ladrón de Guevara et al. [Appl. Phys. Lett. 91, 161909 (2007)]. For small composition regime (0Sn atoms, we notice that the clustering has a strong influence on the direct band gap; the maximal (minimal) Sn-clustered configurations have the highest (lowest) band gap. From a detailed analysis of the physical origin of the optical band gap bowing, we found that the relative contribution of the three components [volume deformation (VD

  1. Germylenes and stannylenes stabilized within N2PE rings (E = Ge or Sn): combined experimental and theoretical study.

    PubMed

    Vrána, Jan; Ketkov, Sergey; Jambor, Roman; Růžička, Aleš; Lyčka, Antonín; Dostál, Libor

    2016-06-21

    The deprotonation of aminophosphanes PhP(NHR)2 (R = t-Bu or Dip; Dip = 2,6-i-Pr2C6H3) and t-BuP(NHDip)2 using n-BuLi gave, depending on the stoichiometry, both the dilithium compounds {[PhP(Nt-Bu)2]Li2}2 (), [PhP(Nt-Bu)(NDip)]Li2·(Et2O) (), [t-BuP(NDip)2]Li2·(Et2O)2 () and [t-BuP(NDip)2]Li2·(tmeda)2 (), and the monolithium compounds [PhP(NHt-Bu)(NR)]Li·(tmeda) (R = t-Bu , Dip ) and [t-BuP(NHDip)(NDip)]Li·(tmeda) (). Treatment of , and with GeCl2·dioxane or SnCl2 in a 1 : 1 stoichiometric ratio gave the corresponding tetrylenes [PhP(Nt-Bu)2]E (E = Ge , Sn ), [PhP(Nt-Bu)(NDip)]Ge () and [t-BuP(NDip)2]E (E = Ge , Sn ). The heteroleptic germylene [Ph(H)P(Nt-Bu)2]GeCl () was obtained by the reaction of the monolithium compound [PhP(NHt-Bu)(Nt-Bu)]Li·(tmeda) () with GeCl2·dioxane in a 1 : 1 stoichiometric ratio, as a result of a spontaneous NH → PH tautomeric shift in the ligand backbone. In contrast, an analogous reaction with SnCl2 produced only stannylene along with the PhP(NHt-Bu)2 starting material, suggesting scrambling of the ligands rather than a NH → PH tautomeric shift. Finally, heating in solution led to P-C bond cleavage and formation of the bis(imino)phosphide [DipNPNDip]Li·(tmeda) (). The reaction of with GeCl2·dioxane, SnCl2 or PbCl2 in a 2 : 1 stoichiometric ratio yielded the unprecedented tetrylenes [DipNPNDip]2E (E = Ge , Sn and Pb ), in which the tetrylene center is incorporated within two N2PE rings. Treatment of the monolithium compound with n-BuLi and K (or KC8) gave [t-BuNPNt-Bu]Li·(tmeda) () and{[t-BuNPNt-Bu]K(tmeda)}2 (), respectively. In contrast to the reaction with , similar reactions of with GeCl2·dioxane and SnCl2 resulted in the known compounds cis-[P(μ-Nt-Bu)2P(t-BuN)2]E (E = Ge, Sn); evidently the t-Bu groups do not provide sufficient steric shielding to protect the bis(imino)phosphide backbone as in the case of . The bonding situation in a set of selected compounds (, ) has been subjected to a theoretical

  2. Ge{sub 1−x−y}Si{sub x}Sn{sub y} light emitting diodes on silicon for mid-infrared photonic applications

    SciTech Connect

    Gallagher, J. D.; Xu, C.; Menéndez, J.; Senaratne, C. L.; Wallace, P. M.; Kouvetakis, J.; Aoki, T.

    2015-10-07

    This paper reports initial the demonstration of prototype Ge{sub 1−x−y}Si{sub x}Sn{sub y} light emitting diodes with distinct direct and indirect edges and high quality I-V characteristics. The devices are fabricated on Si (100) wafers in heterostructure pin geometry [n-Ge/i-Ge{sub 1−x−y}Si{sub x}Sn{sub y}/p-Ge(Sn/Si)] using ultra low-temperature (T < 300 °C) depositions of the highly reactive chemical sources Si{sub 4}H{sub 10}, Ge{sub 4}H{sub 10}, Ge{sub 3}H{sub 8}, and SnD{sub 4}. The Sn content in the i-Ge{sub 1−x−y}Si{sub x}Sn{sub y} layer was varied from ∼3.5% to 11%, while the Si content was kept constant near 3%. The Si/Sn amounts in the p-layer were selected to mitigate the lattice mismatch so that the top interface grows defect-free, thereby reducing the deleterious effects of mismatch-induced dislocations on the optical/electrical properties. The spectral responsivity plots of the devices reveal sharp and well-defined absorption edges that systematically red-shift in the mid-IR from 1750 to 2100 nm with increasing Sn content from 3.5% to 11%. The electroluminescence spectra reveal strong direct-gap emission peaks and weak lower energy shoulders attributed to indirect gaps. Both peaks in a given spectrum red-shift with increasing Sn content and their separation decreases as the material approaches direct gap conditions in analogy with binary Ge{sub 1−y}Sn{sub y} counterparts. These findings-combined with the enhanced thermal stability of Ge{sub 1−x−y}Si{sub x}Sn{sub y} relative to Ge{sub 1−y}Sn{sub y} and the observation that ternary alloy disorder does not adversely affect the emission properties—indicate that Ge{sub 1−x−y}Si{sub x}Sn{sub y} may represent a practical target system for future generations of group-IV light sources on Si.

  3. Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Dou, Wei; Ghetmiri, Seyed Amir; Al-Kabi, Sattar; Mosleh, Aboozar; Zhou, Yiyin; Alharthi, Bader; Du, Wei; Margetis, Joe; Tolle, John; Kuchuk, Andrian; Benamara, Mourad; Li, Baohua; Naseem, Hameed A.; Mortazavi, Mansour; Yu, Shui-Qing

    2016-12-01

    This paper reports the study of Ge0.95Sn0.05/Ge0.91Sn0.09/Ge0.95Sn0.05 single quantum well (SQW) and double quantum wells (DQWs). The quantum well (QW) structures were grown on Ge buffered Si substrates using an industrial standard reduced-pressure chemical vapor deposition system. Pseudomorphically grown structures were observed using x-ray diffraction measurements. Defect-free interfaces between each layer were revealed using cross-sectional transmission electron microscopy. Atomic-scale high-resolution transmission electron microscopy and Fourier transform patterns exhibited the high crystalline quality of QWs. Temperature-dependent photoluminescence (PL) was performed, and the emission peaks attributed to the QW region were identified. The dominant optical transition changed from direct bandgap transition at 300 K to indirect bandgap transition at 10 K. Theoretical calculation showed the type-I band alignment for the QWs. Moreover, the Γ and L valley electron distributions and non-radiative lifetimes were evaluated, which further explained the PL characteristics of the QW samples.

  4. Magnetic structures and physical properties of Tm3Cu4Ge4 and Tm3Cu4Sn4.

    PubMed

    Baran, S; Kaczorowski, D; Szytuła, A; Gil, A; Hoser, A

    2013-02-13

    Tm(3)Cu(4)Ge(4) crystallizes in the orthorhombic Gd(3)Cu(4)Ge(4)-type crystal structure (space group Immm) whereas Tm(3)Cu(4)Sn(4) crystallizes in a distorted variant of this structure (monoclinic space group C2/m). The compounds were studied by means of neutron diffraction, specific heat, electrical resistivity and magnetic measurements. Analysis of experimental data revealed the presence of an antiferromagnetic order below 2.8 K in both compounds. In Tm(3)Cu(4)Ge(4) the magnetic unit cell is doubled in respect to the crystal unit cell and the magnetic structure can be described by a propagation vector k = [0, 1/2, 0]. A larger magnetic unit cell was found in Tm(3)Cu(4)Sn(4), given by a propagation vector k = [1/2, 1/2, 0] (for simplicity the orthorhombic description is used for both the germanide and the stannide). Close to 2 K, in each compound an incommensurate antiferromagnetic order develops. This low-temperature magnetic phase is characterized by a propagation vector k = [1/4, 0, k(z)], where k(z) is close to 0.49 and 0.47 in Tm(3)Cu(4)Ge(4) and Tm(3)Cu(4)Sn(4), respectively. The antiferromagnetic phase transitions are clearly seen in the bulk magnetic and specific heat data of both compounds.

  5. Effect of SnI2 on the thermal and optical properties of Ge-Se-Te glasses

    NASA Astrophysics Data System (ADS)

    Wang, Guoxiang; Nie, Qiuhua; Shen, Xiang; Wang, Xunsi; Chen, Fen; Dai, Shixun; Xu, Tiefeng

    2012-07-01

    A systematic series of (Ge20Se15Te65)1-x-(SnI2)x (x = 0, 0.05, 0.1, 0.15) chalcogenide glasses have been prepared. The amorphous nature can be confirmed by XRD and SEM. With the SnI2 content increasing, the indirect optical band gaps are decreased from 0.662 to 0.622 eV according to Tauc laws. The introduction of SnI2 makes the glasses much easier to prepare and more stable against crystallization, making them drawable as optical fibers. The highest ΔT (130 °C) value for (Ge20Se15Te65)0.9-(SnI2)0.1 glass composition can be obtained. A slight red-shifting of the long-wavelength cutting-off edge from 18.4 to 19.4 μm was shown and it seems that SnI2 in these glasses offers the improvement in the far-infrared properties.

  6. All-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayers fabricated by Sn-induced low-temperature epitaxy

    SciTech Connect

    Kawano, M.; Ikawa, M.; Arima, K.; Yamada, S.; Kanashima, T.; Hamaya, K.

    2016-01-28

    We demonstrate low-temperature growth of all-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayer structures by developing Sn-induced surfactant-mediated molecular beam epitaxy (SMBE) of Ge on Co{sub 2}FeSi. Despite the growth of a semiconductor on a metal, we verify that the inserted Sn monolayers between Ge and Co{sub 2}FeSi enable to promote the 2D epitaxial growth of Ge up to 5 nm at a T{sub G} of 250 °C. An understanding of the mechanism of the Sn-induced SMBE leads to the achievement of all-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayer structures with spin-valve-like magnetization reversals. This study will open a way for vertical-type and high-performance Ge-based spintronics devices.

  7. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes.

    PubMed

    Zhu, Yun Guang; Wang, Ye; Han, Zhao Jun; Shi, Yumeng; Wong, Jen It; Huang, Zhi Xiang; Ostrikov, Kostya Ken; Yang, Hui Ying

    2014-12-21

    The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO(2)(GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.

  8. 125Te NMR chemical-shift trends in PbTe-GeTe and PbTe-SnTe alloys.

    PubMed

    Njegic, B; Levin, E M; Schmidt-Rohr, K

    2013-01-01

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in (125)Te NMR chemical shift due to bonding to dopant or "solute" atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the (125)Te NMR chemical shifts in PbTe-based alloys, Pb1-xGexTe and Pb1-xSnxTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS (125)Te NMR spectra. A simple linear trend in chemical shifts with the number of Pb neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the (125)Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.

  9. The effect of Ge, Si and Sn phthalocyanine photosensitizers on cell proliferation and viability of human oesophageal carcinoma cells.

    PubMed

    Seotsanyana-Mokhosi, Itumeleng; Kresfelder, Tina; Abrahamse, Heidi; Nyokong, Tebello

    2006-04-03

    The photodynamic activity of water soluble mixed sulfonated metallophthalocyanines complexes: GePcSmix, SnPcSmix and SiPcSmix on human oesophageal carcinoma (SNO) cells are reported, and compared with the activity of the unmetallated H2PcSmix and of the newly synthesized water soluble adjacently substituted binaphthalo phthalocyanine (complex 3). The alkaline phosphate (ALP) showed damage to the cell membrane in the presence of complex 3 without irradiation. The GePcSmix complex caused a relatively large increase in inflammation and a high intracellular ATP.

  10. Ordered Structures and Thermoelectric Properties of MNiSn (M = Ti, Zr, Hf)-Based Half-Heusler Compounds Affected by Close Relationship with Heusler Compounds

    NASA Astrophysics Data System (ADS)

    Kimura, Yoshisato; Chai, Yaw-Wang

    2015-01-01

    Half-Heusler compounds are excellent thermoelectric materials. A characteristic of the half-Heusler-type ordered structure is the vacancy site that occupies one-fourth of all the lattice points. Therefore, a half-Heusler ABX phase (where A and B are typically transition metal elements, such as Ti, Zr, and Hf, and X represents a half-metal element such as Sn or Sb) has a crystallographically close relationship with a Heusler AB2X phase in the sense that the vacancy site in the half-Heusler phase is filled with B atoms in the Heusler phase. The thermoelectric properties are improved or affected by point lattice defects related to the vacancy site and the B site, such as the antisite atom B in the vacancy site, vacancies in the B site, and vacancy-site occupancy by quaternary C atoms. A modulated-like nanostructure due to point defects regarding vacancies and Ni atoms is formed for an instance in ZrNiSn alloys even close to the stoichiometric composition. Ni-rich nanoclusters are locally formed by excessive Ni antisite atoms in the vacancy site, which work as precursors of Heusler precipitates (TiNi2Sn, ZrNi2Sn, and so forth). The vacancy-site occupation in ZrNiSn with Co and Ir results in the drastic conversion of thermoelectric properties from n type to p type, and the effective reduction of the lattice thermal conductivity.

  11. Investigation of half-metallicity of GeKMg and SnKMg by Using mBJ potential method

    NASA Astrophysics Data System (ADS)

    Malsawmtluanga, T.; Vanlalruata, Benjamin; Thapa, R. K.

    2016-10-01

    The electronic structures, magnetic properties and half-metallicity of GeKMg and SnKMg half- Heusler compounds have been investigated by the first- principles calculations based on the density functional theory. The spin-polarized calculations using full-potential linearized augmented plane-wave (FP-LAPW) method was utilized for the study of the compounds. The modified Becke-Johnson (mBJ) exchange potential was employed for a better description of the half metallic response of the two compounds. We have found that GeKMg and SnKMg alloys are half-metallic ferromagnets with the magnetic moment of 1 μB per formula unit at equilibrium lattice constant.

  12. Tetrel bond of pseudohalide anions with XH3F (X = C, Si, Ge, and Sn) and its role in SN2 reaction

    NASA Astrophysics Data System (ADS)

    Liu, Mingxiu; Li, Qingzhong; Cheng, Jianbo; Li, Wenzuo; Li, Hai-Bei

    2016-12-01

    The complexes of XH3F⋯ N3-/OCN-/SCN- (X = C, Si, Ge, and Sn) have been investigated at the MP2/aug-cc-pVTZ(PP) level. The σ-hole of X atom in XH3F acts as a Lewis acid forming a tetrel bond with pseudohalide anions. Interaction energies of these complexes vary from -8 to -50 kcal/mol, mainly depending on the nature of X and pseudohalide anions. Charge transfer from N/O/S lone pair to X-F and X-H σ* orbitals results in the stabilization of these complexes, and the former orbital interaction is responsible for the large elongation of X-F bond length and the remarkable red shift of its stretch vibration. The tetrel bond in the complexes of XH3F (X = Si, Ge, and Sn) exhibits a significant degree of covalency with XH3F distorted significantly in these complexes. A breakdown of the individual forces involved attributes the stability of the interaction to mainly electrostatic energy, with a relatively large contribution from polarization. The transition state structures that connect the two minima for CH3Br⋯ N3-complexhave been localized and characterized. The energetic, geometrical, and topological parameters of the complexes were analyzed in the different stages of the SN2 reaction N3- + CH3Br → Br- + CH3N3.

  13. Tetrel bond of pseudohalide anions with XH3F (X = C, Si, Ge, and Sn) and its role in SN2 reaction.

    PubMed

    Liu, Mingxiu; Li, Qingzhong; Cheng, Jianbo; Li, Wenzuo; Li, Hai-Bei

    2016-12-14

    The complexes of XH3F⋯N3(-)/OCN(-)/SCN(-) (X = C, Si, Ge, and Sn) have been investigated at the MP2/aug-cc-pVTZ(PP) level. The σ-hole of X atom in XH3F acts as a Lewis acid forming a tetrel bond with pseudohalide anions. Interaction energies of these complexes vary from -8 to -50 kcal/mol, mainly depending on the nature of X and pseudohalide anions. Charge transfer from N/O/S lone pair to X-F and X-H σ(*) orbitals results in the stabilization of these complexes, and the former orbital interaction is responsible for the large elongation of X-F bond length and the remarkable red shift of its stretch vibration. The tetrel bond in the complexes of XH3F (X = Si, Ge, and Sn) exhibits a significant degree of covalency with XH3F distorted significantly in these complexes. A breakdown of the individual forces involved attributes the stability of the interaction to mainly electrostatic energy, with a relatively large contribution from polarization. The transition state structures that connect the two minima for CH3Br⋯N3(-) complex have been localized and characterized. The energetic, geometrical, and topological parameters of the complexes were analyzed in the different stages of the SN2 reaction N3(-) + CH3Br → Br(-) + CH3N3.

  14. Fabrication of tensile-strained single-crystalline GeSn on transparent substrate by nucleation-controlled liquid-phase crystallization

    NASA Astrophysics Data System (ADS)

    Oka, Hiroshi; Amamoto, Takashi; Koyama, Masahiro; Imai, Yasuhiko; Kimura, Shigeru; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2017-01-01

    We developed a method of forming single-crystalline germanium-tin (GeSn) alloy on transparent substrates that is based on liquid-phase crystallization. By controlling and designing nucleation during the melting growth process, a highly tensile-strained single-crystalline GeSn layer was grown on a quartz substrate without using any crystal-seeds or catalysts. The peak field-effect hole mobility of 423 cm2/V s was obtained for a top-gate single-crystalline GeSn MOSFET on a quartz substrate with a Sn content of 2.6%, indicating excellent crystal quality and mobility enhancement due to Sn incorporation and tensile strain.

  15. Silver(i)-promoted insertion into X-H (X = Si, Sn, and Ge) bonds with N-nosylhydrazones.

    PubMed

    Liu, Zhaohong; Li, Qiangqiang; Yang, Yang; Bi, Xihe

    2017-02-21

    Silver(i)-promoted carbene insertion into X-H (X = Si, Sn, and Ge) bonds has been realized by using unstable diazo compounds, which are generated in situ from N-nosylhydrazones as carbene precursors. The reaction tolerates a wide range of functional groups and delivers a number of valuable silicon-containing compounds in very high yields (up to 96%). Moreover, organostannanes and organogermanes were as well effectively obtained in very good yields under optimal conditions.

  16. Electronic structure and magnetism of Ge(Sn)TMXTe1-X (TM = V, Cr, Mn): A first principles study

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Bose, S. K.; Kudrnovský, J.

    2016-12-01

    This work presents the results of first principles calculations of the electronic and magnetic properties of the compound SnTe and GeTe in zinc blende (ZB) and rock salt (RS) structures, doped with 3d transition metal V, Cr, and Mn. The present study, initiated from the viewpoint of potential application in spintronics, is motivated by our earlier work involving these two compounds, where the doping was limited to the Sn and Ge sublattices. In view of some discrepancies between our calculated results and the available experimental data, in this work we have examined the effect of the Te-sublattice doping. The case of Mn-doping, where the previous results of calculations seemed to differ most from the experimentally available data, is examined further by looking at the effect of Mn atoms partially occupying interstitial sites as well. From the standpoint of potential application in spintronics, we look for half-metallic (HM) states and tabulate their properties in both rock salt and zinc blende structures. ZB structure is found to be more conducive to HM state in general. Among the binary compounds we identify several HM candidates: VGe, VSn, MnGe, MnSn and MnTe at their equilibrium volumes and all in ZB structure. Estimates of the Curie temperature for the ferromagnetic compounds including the half-metals are presented. It is shown that despite the ferromagnetic (FM) nature of the Mn-Mn interaction for the Te-doped case, a simultaneous doping of both Ge(Sn)- and Te-sublattice with Mn atoms would leave the material predominantly antiferromagnetic (AFM).

  17. Physical Mechanism of Threshold Voltage Modulation by Ge Channel Ion Implantation in the TiN/HfO2 Gate Stack Systems

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yoshinori; Berliner, Nathaniel; Iijima, Ryosuke; Tai, Leo; Takayanagi, Mariko; Paruchuri, Vamsi

    2011-06-01

    We extensively investigated the physical origin of the threshold voltage VTH modulation by the Ge channel ion implantation (I/I) in HfO2/TiN/polycrystalline Si gate stack systems. The possible VTH modulation factors were carefully distinguished from each other by changing the channel dopant concentration and the thickness of the gate dielectric films. It was found that the changes in energy-band offset and dopant concentration in the channel region are minor factors of the VTH modulation. However, it was also found that ΔVTH is sensitive to the oxidation condition of the interfacial oxide layer; a longer oxidation induces a larger ΔVTH. From the X-ray spectroscopy, we found that a Ge pile-up at the interfacial layer/channel interface occurs, and that the VTH modulation range correlates well with the amount of piled-up Ge.

  18. Half-metallicity and magnetism of quaternary Heusler compounds CoRuTiZ (Z=Si, Ge, and Sn)

    NASA Astrophysics Data System (ADS)

    Bahramian, S.; Ahmadian, F.

    2017-02-01

    First-principle calculations based on the density functional theory for new quaternary Heusler compounds CoRuTiZ (Z=Si, Ge, and Sn) were performed. It was found that all three compounds were stable at YI structure in ferromagnetic state. The CoRuTiSi, CoRuTiGe, and CoRuTiSn were half-metal with integer magnetic moments of 1.00 μB per formula unit and half-metallic gaps of 0.13, 0.10, and 0.01 eV at their equilibrium volume, respectively. The density of states (DOSs) and band structures of these compounds were studied and the origin of half-metallicity was discussed. The CoRuTiSi, CoRuTiGe, and CoRuTiSn compounds showed half-metallic characteristics at lattice constants ranges of 5.77-6.36 Å, 5.66-6.16 Å, and 5.83-6.23 Å, indicating the lattice distortion did not affect the half-metallic properties of these compounds which makes them interesting materials in the spintronic field.

  19. Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation.

    PubMed

    Rausch, Elisabeth; Balke, Benjamin; Ouardi, Siham; Felser, Claudia

    2014-12-14

    A novel approach for optimization of the thermoelectric properties of p-type Heusler compounds with a C1b structure was investigated. A successful recipe for achieving intrinsic phase separation in the n-type material based on the TiNiSn system is isoelectronic partial substitution of Ti with its heavier homologues Zr and Hf. We applied this concept to the p-type system MCoSb0.8Sn0.2 by a systematic investigation of samples with different compositions at the Ti position (M = Ti, Zr, Hf, Ti0.5Zr0.5, Zr0.5Hf0.5, and Ti0.5Hf0.5). We thus achieved an approximately 40% reduction of the thermal conductivity and a maximum figure of merit ZT of 0.9 at 700 °C. This is a 80% improvement in peak ZT from 0.5 to 0.9 at 700 °C compared to the best published value of an ingot p-type half-Heusler compound. Thus far, comparable good thermoelectric p-type materials of this structure type have only been realized by a nanostructuring process via ball milling of premelted ingot samples followed by a rapid consolidation method, like hot pressing. The herein-presented simple arc-melting fabrication method reduces the fabrication time as compared to this multi-step nanostructuring process. The high mechanical stability of the Heusler compounds is favorable for the construction of thermoelectric modules. The Vickers hardness values are close to those of the n-type material, leading to good co-processability of both materials.

  20. In situ synchrotron based x-ray fluorescence and scattering measurements during atomic layer deposition: Initial growth of HfO2 on Si and Ge substrates

    NASA Astrophysics Data System (ADS)

    Devloo-Casier, K.; Dendooven, J.; Ludwig, K. F.; Lekens, G.; D'Haen, J.; Detavernier, C.

    2011-06-01

    The initial growth of HfO2 was studied by means of synchrotron based in situ x-ray fluorescence (XRF) and grazing incidence small angle x-ray scattering (GISAXS). HfO2 was deposited by atomic layer deposition (ALD) using tetrakis(ethylmethylamino)hafnium and H2O on both oxidized and H-terminated Si and Ge surfaces. XRF quantifies the amount of deposited material during each ALD cycle and shows an inhibition period on H-terminated substrates. No inhibition period is observed on oxidized substrates. The evolution of film roughness was monitored using GISAXS. A correlation is found between the inhibition period and the onset of surface roughness.

  1. Improved electrical properties of Ge metal-oxide-semiconductor capacitors with high-k HfO2 gate dielectric by using La2O3 interlayer sputtered with/without N2 ambient

    NASA Astrophysics Data System (ADS)

    Xu, H. X.; Xu, J. P.; Li, C. X.; Lai, P. T.

    2010-07-01

    The electrical properties of n-Ge metal-oxide-semiconductor (MOS) capacitors with HfO2/LaON or HfO2/La2O3 stacked gate dielectric (LaON or La2O3 as interlayer) are investigated. It is found that better electrical performances, including lower interface-state density, smaller gate leakage current, smaller capacitance equivalent thickness, larger k value, and negligible C-V frequency dispersion, can be achieved for the MOS device with LaON interlayer. The involved mechanism lies in that the LaON interlayer can effectively block the interdiffusions of Ge, O, and Hf, thus suppressing the growth of unstable GeOx interlayer and improving the dielectric/Ge interface quality.

  2. Low-temperature (˜180 °C) position-controlled lateral solid-phase crystallization of GeSn with laser-anneal seeding

    NASA Astrophysics Data System (ADS)

    Matsumura, Ryo; Chikita, Hironori; Kai, Yuki; Sadoh, Taizoh; Ikenoue, Hiroshi; Miyao, Masanobu

    2015-12-01

    To realize next-generation flexible thin-film devices, solid-phase crystallization (SPC) of amorphous germanium tin (GeSn) films on insulating substrates combined with seeds formed by laser annealing (LA) has been investigated. This technique enables the crystallization of GeSn at controlled positions at low temperature (˜180 °C) due to the determination of the starting points of crystallization by LA seeding and Sn-induced SPC enhancement. The GeSn crystals grown by SPC from LA seeds showed abnormal lateral profiles of substitutional Sn concentration. These lateral profiles are caused by the annealing time after crystallization being a function of distance from the LA seeds. This observation of a post-annealing effect also indicates that GeSn with a substitutional Sn concentration of up to ˜10% possesses high thermal stability. These results will facilitate the fabrication of next-generation thin-film devices on flexible plastic substrates with low softening temperatures (˜250 °C).

  3. Hydrogen-surfactant-mediated epitaxy of Ge1- x Sn x layer and its effects on crystalline quality and photoluminescence property

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Osamu; Fujinami, Shunsuke; Asano, Takanori; Koyama, Takeshi; Kurosawa, Masashi; Sakashita, Mitsuo; Kishida, Hideo; Zaima, Shigeaki

    2017-01-01

    The effect of hydrogen-surfactant-mediated molecular beam epitaxy (MBE) growth of Ge1- x Sn x layer on Ge(001) substrate on crystalline quality and photoluminescence (PL) property has been investigated. The effect of irradiation of atomic hydrogen (H) generated by dissociating molecular hydrogen (H2) were examined during the MBE growth. H irradiation significantly improves the surface morphology with the enhancement of the two-dimensional growth of the Ge1- x Sn x epitaxial layer. Enhanced diffuse scattering is observed in the X-ray diffraction profile, indicating a high density of point defects. In the PL spectrum of the H2-irradiated Ge1- x Sn x layer, two components are observed, suggesting the radiative recombination with both indirect and direct transitions, while one component related to the direct transition is observable in the H-irradiated sample. The postdeposition annealing in nitrogen ambient at as low as 220 °C decreases the PL intensity of the H-irradiated Ge1- x Sn x layer, although the intensity is recovered after annealing at 300 °C, suggesting the annihilation of point defects in the Ge1- x Sn x layer.

  4. Thermoelectric properties and electronic structure of substituted Heusler compounds: NiTi0.3-xScxZr0.35Hf0.35Sn

    NASA Astrophysics Data System (ADS)

    Ouardi, Siham; Fecher, Gerhard H.; Balke, Benjamin; Schwall, Michael; Kozina, Xeniya; Stryganyuk, Gregory; Felser, Claudia; Ikenaga, Eiji; Yamashita, Yoshiyuki; Ueda, Shigenori; Kobayashi, Keisuke

    2010-12-01

    The effect of Ti substitution by Sc on the thermoelectric properties of the Heusler compounds NiTi0.3-xScxZr0.35Hf0.35Sn (where 0Hf0.35Sn showed n-type conductivity with a Seebeck coefficient of -288 μV/K at 350 K, while under Sc substitution the system switched to p-type behavior. A maximum Seebeck coefficient of +230 μV/K (350 K) was obtained by 4% Sc substitution, which is the highest value for p-type thermoelectric compounds based on Heusler alloys. The electronic structure was studied by photoelectron spectroscopy excited by hard x-ray synchrotron radiation. Massive in gap states are observed for the parent compound. This proves that the electronic states close to the Fermi energy play a key role on the behavior of the transport properties. Especially, they are responsible for the high, negative Seebeck coefficient of the parent compound.

  5. n-type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation

    PubMed Central

    Liu, Weishu; Kim, Hee Seok; Chen, Shuo; Jie, Qing; Lv, Bing; Yao, Mengliang; Ren, Zhensong; Opeil, Cyril P.; Wilson, Stephen; Chu, Ching-Wu; Ren, Zhifeng

    2015-01-01

    Thermoelectric power generation is one of the most promising techniques to use the huge amount of waste heat and solar energy. Traditionally, high thermoelectric figure-of-merit, ZT, has been the only parameter pursued for high conversion efficiency. Here, we emphasize that a high power factor (PF) is equivalently important for high power generation, in addition to high efficiency. A new n-type Mg2Sn-based material, Mg2Sn0.75Ge0.25, is a good example to meet the dual requirements in efficiency and output power. It was found that Mg2Sn0.75Ge0.25 has an average ZT of 0.9 and PF of 52 μW⋅cm−1⋅K−2 over the temperature range of 25–450 °C, a peak ZT of 1.4 at 450 °C, and peak PF of 55 μW⋅cm−1⋅K−2 at 350 °C. By using the energy balance of one-dimensional heat flow equation, leg efficiency and output power were calculated with Th = 400 °C and Tc = 50 °C to be of 10.5% and 6.6 W⋅cm−2 under a temperature gradient of 150 °C⋅mm−1, respectively. PMID:25733845

  6. High carrier mobility of Sn-doped polycrystalline-Ge films on insulators by thickness-dependent low-temperature solid-phase crystallization

    NASA Astrophysics Data System (ADS)

    Sadoh, Taizoh; Kai, Yuki; Matsumura, Ryo; Moto, Kenta; Miyao, Masanobu

    2016-12-01

    To realize the advanced thin-film transistors (TFTs), high-carrier-mobility semiconductor films on insulator structures should be fabricated with low-temperature processing conditions (≤500 °C). To achieve this, we investigated the solid-phase crystallization of amorphous-GeSn films on insulating substrates under a wide range of Sn concentrations (0%-20%), film thicknesses (30-500 nm), and annealing temperatures (380-500 °C). Our results reveal that a Sn concentration close to the solid solubility of Sn in Ge (˜2%) is effective in increasing the grain-size of poly-GeSn. In addition, we discovered that the carrier mobility depends on the film thickness, where the mobilities are determined by the counterbalance between two different carrier scattering mechanisms. Here, vacancy-related defects dominate the carrier scattering near the insulating substrates (≤˜120 nm), and grain-size determined by bulk nucleation dominates the grain-boundary scattering of thick films (≥˜200 nm). Consequently, we obtained the maximum mobilities in samples with a Sn concentration of 2% and a film thickness of 200 nm. The effect of increasing the grain-size of poly-GeSn by lowering the annealing temperature was also clarified. By combining these results, a very high carrier mobility of 320 cm2/Vs was obtained at a low temperature of 380 °C. This mobility is about 2.5 times as high as previously reported data for Ge and GeSn films grown at low temperatures (≤500 °C). Our technique therefore opens up the possibility of high-speed TFTs for use in the next generation of electronics.

  7. First-principles study of structural, electronic and magnetic properties of AeX (Ae=Be, Mg, Sr, Ba; X=Si, Ge and Sn) compounds

    NASA Astrophysics Data System (ADS)

    Jaiganesh, G.; Kalpana, G.

    2013-01-01

    The first-principles study of the electronic structure and ferromagnetism of AeX (Ae=Be, Mg, Sr and Ba; X=Si, Ge and Sn) compounds have been performed in the ground-state CrB-type and hypothetical NaCl- and zinc blende-type structures by spin-polarization and non-spin-polarization calculations. The TBLMTO-ASA program was used for the purpose. In the CrB-type structure, all these compounds exhibit non-magnetic and metallic behavior. The calculations show that in the NaCl- and ZB-type structures BeSi, BeGe, BeSn, MgSi, MgGe and MgSn compounds are non-magnets whereas SrSi, SrGe, SrSn, BaSi, BaGe and BaSn compounds are ferromagnetic and metallic. Apart from this the ZB-type SrSi, SrGe, BaSi and BaGe compounds exhibit half-metallicity at their equilibrium volume with a magnetic moment of 2.0 μB per formula unit. However, ZB-type SrSn and BaSn compounds are found to exhibit half-metallic property under expansion of volume. The magnetism arises mainly from the anion p-like states and partial involvement of cation d-like states. The ground state properties like equilibrium lattice parameters, bulk modulus, cohesive energy, magnetic moment, spin-flip-gap and majority spin band gap are calculated and compared with available results. The band structure and density of states are also presented. These materials will be useful for the study of p-electron magnetism and in spintronic devices.

  8. Non-radiative recombination in Ge{sub 1−y}Sn{sub y} light emitting diodes: The role of strain relaxation in tuned heterostructure designs

    SciTech Connect

    Gallagher, J. D.; Xu, C.; Smith, D. J.; Menéndez, J.; Senaratne, C. L.; Sims, P.; Kouvetakis, J.; Aoki, T.

    2015-06-28

    This paper describes the properties of Ge{sub 1−y}Sn{sub y} light emitting diodes with a broad range of Sn concentrations (y = 0.0–0.11). The devices are grown upon Si(100) platforms using ultra-low temperature deposition of highly reactive Ge and Sn hydrides. The device fabrication adopts two new photodiode designs which lead to optimized performance and enables a systematic study of the effects of strain relaxation on emission efficiency. In contrast with n-Ge/i-Ge{sub 1−y}Sn{sub y}/p-Ge analogs, which in most cases contain two defected interfaces, our designs include a p-layer with composition Ge{sub 1−z}Sn{sub z} chosen to be z < y to facilitate light extraction, but with z close enough to y to guarantee no strain relaxation at the i/p interface. In addition, a Ge{sub 1−x}Sn{sub x} alloy is also used for the n layer, with compositions in the 0 ≤ x ≤ y range, so that defected and non-defected n/i interfaces can be studied. The electroluminescence spectra vs the Sn content y in the intrinsic layer of the diodes exhibit a monotonic shift in the emission wavelength from 1550 nm to 2500 nm. On the other hand, the emission intensities show a complex dependence that cannot be explained solely on the basis of Sn concentrations. Detailed theoretical modeling of these intensities makes it possible to extract recombination lifetimes that are found to be more than three times longer in samples in which strain relaxation has not occurred at the n-i interface, demonstrating the existence of a large non-radiative contribution from the relaxation defects. This finding is particularly significant for direct gap diodes with y > 0.09, for which it is practically impossible to avoid strain relaxation in n-Ge/i-Ge{sub 1−y}Sn{sub y}/p-Ge analogs. The new designs introduced here open the door to the fabrication of highly efficient electrically pumped systems for applications in future generations of integrated photonics.

  9. New members of the A2 M ‧ M2″ structure family (A=Ca, Sr, Yb, La; M ‧ = In , Sn , Pb; M ″ = Si , Ge)

    NASA Astrophysics Data System (ADS)

    Jehle, Michael; Dürr, Ines; Fink, Saskia; Lang, Britta; Langenmaier, Michael; Steckhan, Julia; Röhr, Caroline

    2015-01-01

    The new mixed tetrelides Sr2PbGe2 and Yb2SnGe2, several mixed Ca/Sr (AII) germanides A2II (Sn , Pb)Ge2 and two polymorphs of La2 InSi2 represent new members of the general structure family of ternary alkaline-earth/lanthanoid main group silicides/germanides A2 M ‧ M2″ (M ‧ = In , Sn , Pb ; M ″ = Si , Ge). All compounds were synthesized from melts of the elements and their crystal structures have been determined by means of single crystal X-ray diffraction. Sr2PbGe2 (Cmmm, a=402.36(11), b=1542.3(4), c=463.27(10) pm) crystallizes with the Mn2AlB2 -type structure. In exhibiting infinite planar Ge zig-zag chains, it represents one border of the compound series. The other borderline case, where only [Ge2 ] dumbbells are left as Ge building units, is represented by the Ca/Yb tin germanides Ca2SnGe2 and Yb2SnGe2 (Mo2FeB2 -type; P4/mbm, a=748.58(13)/740.27(7), c=445.59(8)/435.26(5) pm). In between these two border structures compounds with variable Si/Ge chain lengths could be obtained by varying the averaged size of the AII cations: Ca0.45Sr1.55PbGe2 (new structure type; Pbam, a=791.64(5), b=2311.2(2), c=458.53(3) pm) contains planar six-membered chain segments [Ge6 ]. Tetrameric pieces [Ge4 ] are the conspicuous structure elements in Ca1.16Sr0.84SnGe2 and La2 InSi2 (La2 InNi2 -type; Pbam, a=781.01(2)/762.01(13), b=1477.95(3)/1494.38(6), c=457.004(9)/442.1(3) pm). The tetragonal form of 'La2 In Si2‧ (exact composition: La2In1.07Si1.93, P4/mbm, a=1309.11(12), c=443.32(4) pm) also crystallizes in a new structure type, containing only [Si3 ] trimers as cutouts of the planar chains. In all structures the Si/Ge zig-zag chains/chain segments are connected by In/Sn/Pb atoms to form planar M layers, which are separated by pure A layers. Band structure calculations within the FP-LAPW DFT approach together with the Zintl formalism, extended by the presence of hypervalent bonding of the heavier M ‧ elements, give insight into the chemical bonding of this series of p

  10. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes

    NASA Astrophysics Data System (ADS)

    Zhu, Yun Guang; Wang, Ye; Han, Zhao Jun; Shi, Yumeng; Wong, Jen It; Huang, Zhi Xiang; Ostrikov, Kostya Ken; Yang, Hui Ying

    2014-11-01

    The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO2/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO2) and SnO2 nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO2(GeO2)0.13/G nanocomposites can deliver a capacity of 1200 mA h g-1 at a current density of 100 mA g-1, which is much higher than the traditional theoretical specific capacity of such nanocomposites (~702 mA h g-1). More importantly, the SnO2(GeO2)0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g-1 at a discharge current of 2000 mA g-1) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO2 and GeO2) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO2/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO2) and SnO2 nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO2(GeO2)0.13/G nanocomposites can deliver a capacity of 1200 mA h g-1 at a current density of 100 mA g-1, which is much higher than the traditional theoretical specific capacity of such nanocomposites (~702 mA h g-1). More importantly, the SnO2(GeO2)0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g-1 at a discharge current of 2000 mA g-1) and excellent long

  11. Growth and applications of GeSn-related group-IV semiconductor materials

    PubMed Central

    Zaima, Shigeaki; Nakatsuka, Osamu; Taoka, Noriyuki; Kurosawa, Masashi; Takeuchi, Wakana; Sakashita, Mitsuo

    2015-01-01

    We review the technology of Ge1−xSnx-related group-IV semiconductor materials for developing Si-based nanoelectronics. Ge1−xSnx-related materials provide novel engineering of the crystal growth, strain structure, and energy band alignment for realising various applications not only in electronics, but also in optoelectronics. We introduce our recent achievements in the crystal growth of Ge1−xSnx-related material thin films and the studies of the electronic properties of thin films, metals/Ge1−xSnx, and insulators/Ge1−xSnx interfaces. We also review recent studies related to the crystal growth, energy band engineering, and device applications of Ge1−xSnx-related materials, as well as the reported performances of electronic devices using Ge1−xSnx related materials. PMID:27877818

  12. Synthesis of mixed tin-ruthenium and tin-germanium-ruthenium carbonyl clusters from [Ru3(CO)12] and diaminometalenes (M = Sn, Ge).

    PubMed

    Cabeza, Javier A; García-Álvarez, Pablo; Polo, Diego

    2012-02-20

    Diaminostannylenes react with [Ru(3)(CO)(12)] without cluster fragmentation to give carbonyl substitution products regardless of the steric demand of the diaminostannylene reagent. Thus, the Sn(3)Ru(3) clusters [Ru(3){μ-Sn(NCH(2)(t)Bu)(2)C(6)H(4)}(3)(CO)(9)] (4) and [Ru(3){μ-Sn(HMDS)(2)}(3)(CO)(9)] (6) [HMDS = N(SiMe(3))(2)] have been prepared in good yields by treating [Ru(3)(CO)(12)] with an excess of the cyclic 1,3-bis(neo-pentyl)-2-stannabenzimidazol-2-ylidene and the acyclic and bulkier Sn(HMDS)(2), respectively, in toluene at 110 °C. The use of smaller amounts of Sn(HMDS)(2) (Sn/Ru(3) ratio = 2.5) in toluene at 80 °C afforded the Sn(2)Ru(3) derivative [Ru(3){μ-Sn(HMDS)(2)}(2)(μ-CO)(CO)(9)] (5). Compounds 5 and 6 represent the first structurally characterized diaminostannylene-ruthenium complexes. While a further treatment of 5 with Ge(HMDS)(2) led to a mixture of uncharacterized compounds, a similar treatment with the sterically alleviated diaminogermylene Ge(NCH(2)(t)Bu)(2)C(6)H(4) provided [Ru(3){μ-Sn(HMDS)(2)}(2){μ-Ge(NCH(2)(t)Bu)(2)C(6)H(4)}(CO)(9)] (7), which is a unique example of Sn(2)GeRu(3) cluster. All these reactions, coupled to a previous observation that [Ru(3)(CO)(12)] reacts with excess of Ge(HMDS)(2) to give the mononuclear complex [Ru{Ge(HMDS)(2)}(2)(CO)(3)] but triruthenium products with less bulky diaminogermylenes, indicate that, for reactions of [Ru(3)(CO)(12)] with diaminometalenes, both the volume of the diaminometalene and the size of its donor atom (Ge or Sn) are of key importance in determining the nuclearity of the final products.

  13. Electronic structure of transition metal-doped XNiSn and XCoSb (X = Hf,Zr) phases in the vicinity of the band gap

    NASA Astrophysics Data System (ADS)

    Simonson, J. W.; Poon, S. J.

    2008-06-01

    Half-Heusler alloys of the compositions X1-aAaNi1-bBbSn and X1-aAaCo1-bBbSb (X = Hf,Zr) were synthesized with transition metals (A, B) substituted at the X and Ni/Co sites with the values of a and b between 0 and 0.15. Thermopower and electrical resistivity measurements from room temperature to 1100 K were performed to investigate resultant modifications to the electronic band structure in the vicinity of the band gap. As a result of these substitutions, thermopower was typically reduced across the entire temperature spectrum, in some cases changing sign. In the case of XNiSn-type alloys, electrical resistivity curves were indicative of semiconducting behavior, except in the case of samples in which Sb was introduced to the Sn site as a dopant. XCoSb-type alloys, however, were found to exhibit metallic resistivity behavior for all substitutions investigated. Hall effect measurements were performed to confirm the dominant carrier type and carrier concentration. The effects of transition metal substitution on the locations of a dopant band and the pinned Fermi level were discussed in the light of recent first-principles electronic structure calculations for half-Heusler alloys. For some of the semiconducting alloys, the band gaps that were determined from the high temperature region of the resistivity curves were found to be in closer agreement with those obtained from calculations than previously reported.

  14. Preparation and characterizations of SnO2 nanopowder and spectroscopic (FT-IR, FT-Raman, UV-Visible and NMR) analysis using HF and DFT calculations.

    PubMed

    Ayeshamariam, A; Ramalingam, S; Bououdina, M; Jayachandran, M

    2014-01-24

    In this work, pure and singe phase SnO2 Nano powder is successfully prepared by simple sol-gel combustion route. The photo luminescence and XRD measurements are made and compared the geometrical parameters with calculated values. The FT-IR and FT-Raman spectra are recorded and the fundamental frequencies are assigned. The optimized parameters and the frequencies are calculated using HF and DFT (LSDA, B3LYP and B3PW91) theory in bulk phase of SnO2 and are compared with its Nano phase. The vibrational frequency pattern in nano phase gets realigned and the frequencies are shifted up to higher region of spectra when compared with bulk phase. The NMR and UV-Visible spectra are simulated and analyzed. Transmittance studies showed that the HOMO-LUMO band gap (Kubo gap) is reduced from 3.47 eV to 3.04 eV while it is heated up to 800°C. The Photoluminescence spectra of SnO2 powder showed a peak shift towards lower energy side with the change of Kubo gap from 3.73 eV to 3.229 eV for as-prepared and heated up to 800°C.

  15. Effects of Ge and Sn substitution on the metal-semiconductor transition and thermoelectric properties of Cu12Sb4S13 tetrahedrite.

    PubMed

    Kosaka, Yasufumi; Suekuni, Koichiro; Hashikuni, Katsuaki; Bouyrie, Yohan; Ohta, Michihiro; Takabatake, Toshiro

    2017-03-15

    The synthetic tetrahedrites Cu12-yTrySb4S13 (Tr: Mn, Fe, Co, Ni, Zn) have been extensively studied due to interest in metal-semiconductor transition as well as in superior thermoelectric performance. We have prepared Ge- and Sn-bearing tetrahedrites, Cu12-xMxSb4S13 (M = Ge, Sn; x ≤ 0.6), and investigated the effects of the substitutions on the phase transition and the thermoelectric properties. The substitutions of Ge and Sn for Cu suppress the metal-semiconductor transition and increase the electrical resistivity ρ and the positive thermopower S. This finding suggests that the phase transition is prevented by electron doping into the unoccupied states of the valence band. The variations of ρ, S, and magnetic susceptibility for the present systems correspond well with those for the system with Tr = Zn(2+), confirming the tetravalent states for Ge and Sn. The substitution of M(4+) for Cu(1+) decreases the power factor S(2)/ρ but enhances the dimensionless thermoelectric figure of merit ZT, due to reductions in both the charge carrier contribution and lattice contribution to the thermal conductivity. As a result, ZT has a maximum value of ∼0.65 at 665 K for x = 0.3-0.5 in Cu12-xMxSb4S13 with M = Ge and Sn.

  16. Orientation epitaxy of Ge1–xSnx films grown on single crystal CaF2 substrates

    SciTech Connect

    A. J. Littlejohn; Zhang, L. H.; Lu, T. -M.; Kisslinger, K.; and Wang, G. -C.

    2016-03-15

    Ge1–xSnx films were grown via physical vapor deposition below the crystallization temperature of Ge on single crystal (111) and (100) CaF2 substrates to assess the role of Sn alloying in Ge crystallization. By studying samples grown at several growth temperatures ranging from 250 °C to 400 °C we report temperature-dependent trends in several of the films' properties. X-ray diffraction theta vs. two-theta (θ/2θ) scans indicate single orientation Ge1–xSnx(111) films are grown on CaF2(111) substrates at each temperature, while a temperature-dependent superposition of (111) and (100) orientations are exhibited in films grown on CaF2(100) above 250 °C. This is the first report of (111) oriented Ge1–xSnx grown on a (100) oriented CaF2 substrate, which is successfully predicted by a superlattice area matching model. These results are confirmed by X-ray diffraction pole figure analysis. θ/2θ results indicate substitutional Sn alloying in each film of about 5%, corroborated by energy dispersive spectroscopy. In addition, morphological and electrical properties are measured by scanning electron microscopy, atomic force microscopy and Hall mobility measurements and are also shown to be dependent upon growth temperature.

  17. Effects of post-deposition annealing on crystalline state of GeSn thin films sputtered on Si substrate and its application to MSM photodetector

    NASA Astrophysics Data System (ADS)

    Mahmodi, H.; Hashim, M. R.

    2016-10-01

    Ge1-x Sn x alloy thin films were prepared by co-sputtering from Ge and Sn targets on a Si (100) substrate at room temperature, and were then heated at temperature ranging from 200 {}\\circ {{C}} to 500 {}\\circ {{C}} in N2 ambient to reduce the disorder and defects and increase the crystalline quality of the films. Images obtained by field emission scanning electron microscopy revealed that the as-grown and all annealed samples displayed a densely packed morphology. The atomic percent composition of Sn in the as-grown Ge1-x Sn x film is 5.7 at % . Energy-dispersive x-ray spectroscopy results showed Sn surface segregation after heat treatment, as the Sn composition is reduced to 3.3 at % for the film annealed at 500 {}\\circ C. The Raman analysis showed that the only observed phonon mode is attributed to Ge-Ge vibrations. The Raman spectra of as-sputtered and annealed films revealed their nanocrystalline-amorphous nature. The samples annealed at lower temperature exhibited higher phonon intensity, indicating the improvement of crystallinity of the film. The optoelectronic characteristics of fabricated metal-semiconductor-metal photodetectors on the annealed sample at 200 {}\\circ {{C}} and the as-sputtered sample were studied in the dark and under illumination. Compared with the as-sputtered one, the annealed sample showed lower dark current and higher current gain of 209. The results showed the potentiality of using the sputtering technique to produce GeSn layer for optoelectronics application.

  18. Atomic layer deposition of crystalline SrHfO{sub 3} directly on Ge (001) for high-k dielectric applications

    SciTech Connect

    McDaniel, Martin D.; Ngo, Thong Q.; Ekerdt, John G.; Hu, Chengqing; Jiang, Aiting; Yu, Edward T.; Lu, Sirong; Smith, David J.; Posadas, Agham; Demkov, Alexander A.

    2015-02-07

    The current work explores the crystalline perovskite oxide, strontium hafnate, as a potential high-k gate dielectric for Ge-based transistors. SrHfO{sub 3} (SHO) is grown directly on Ge by atomic layer deposition and becomes crystalline with epitaxial registry after post-deposition vacuum annealing at ∼700 °C for 5 min. The 2 × 1 reconstructed, clean Ge (001) surface is a necessary template to achieve crystalline films upon annealing. The SHO films exhibit excellent crystallinity, as shown by x-ray diffraction and transmission electron microscopy. The SHO films have favorable electronic properties for consideration as a high-k gate dielectric on Ge, with satisfactory band offsets (>2 eV), low leakage current (<10{sup −5} A/cm{sup 2} at an applied field of 1 MV/cm) at an equivalent oxide thickness of 1 nm, and a reasonable dielectric constant (k ∼ 18). The interface trap density (D{sub it}) is estimated to be as low as ∼2 × 10{sup 12 }cm{sup −2 }eV{sup −1} under the current growth and anneal conditions. Some interfacial reaction is observed between SHO and Ge at temperatures above ∼650 °C, which may contribute to increased D{sub it} value. This study confirms the potential for crystalline oxides grown directly on Ge by atomic layer deposition for advanced electronic applications.

  19. Thermal stability and relaxation mechanisms in compressively strained Ge0.94Sn0.06 thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Fleischmann, C.; Lieten, R. R.; Hermann, P.; Hönicke, P.; Beckhoff, B.; Seidel, F.; Richard, O.; Bender, H.; Shimura, Y.; Zaima, S.; Uchida, N.; Temst, K.; Vandervorst, W.; Vantomme, A.

    2016-08-01

    Strained Ge1-xSnx thin films have recently attracted a lot of attention as promising high mobility or light emitting materials for future micro- and optoelectronic devices. While they can be grown nowadays with high crystal quality, the mechanism by which strain energy is relieved upon thermal treatments remains speculative. To this end, we investigated the evolution (and the interplay) of composition, strain, and morphology of strained Ge0.94Sn0.06 films with temperature. We observed a diffusion-driven formation of Sn-enriched islands (and their self-organization) as well as surface depressions (pits), resulting in phase separation and (local) reduction in strain energy, respectively. Remarkably, these compositional and morphological instabilities were found to be the dominating mechanisms to relieve energy, implying that the relaxation via misfit generation and propagation is not intrinsic to compressively strained Ge0.94Sn0.06 films grown by molecular beam epitaxy.

  20. Effects of uniaxial strain on electron effective mass and tunneling capability of direct gap Ge{sub 1−x}Sn{sub x} alloys

    SciTech Connect

    Liu, Lei; Liang, Renrong Wang, Jing; Xu, Jun

    2016-01-15

    Direct gap Ge{sub 1−x}Sn{sub x} alloys under [100] and [110] uniaxial strain are comprehensively investigated by theoretical calculations using the nonlocal empirical pseudopotential method (EPM). It is shown that [100] uniaxial tensile strain aids indirect-to-direct gap transition in Ge{sub 1−x}Sn{sub x} alloys. The Γ electron effective mass along the optimal direction under [110] uniaxial strain is smaller than those under [100] uniaxial strain and (001) biaxial strain. Additionally, the direct tunneling gap is smallest along the strain-perpendicular direction under [110] uniaxial tensile strain, resulting in a maximum direct band-to-band tunneling generation rate. An optimal [110] uniaxial tensile strain is favorable for high-performance direct gap Ge{sub 1−x}Sn{sub x} electronic devices.

  1. Electronic and Optical Properties of Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) Antiperovskite Compounds

    NASA Astrophysics Data System (ADS)

    Iqbal, Samad; Murtaza, G.; Khenata, R.; Mahmood, Asif; Yar, Abdullah; Muzammil, M.; Khan, Matiullah

    2016-08-01

    The electronic and optical properties of cubic antiperovskites Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) were investigated by applying the full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) scheme based on density functional theory. Different exchange correlation potentials were adopted for the calculations. The results of band structure and density of states show that, by changing the central anion of Ca3MN, the nature of the materials change from metallic (Ca3GeN, Ca3SnN, Ca3PbN) to semiconducting with small band gaps (Ca3SbN and Ca3BiN) to insulating (Ca3PN and Ca3AsN). The optical properties such as dielectric function, absorption coefficient, optical conductivity, reflectivity and refractive indices have also been calculated. The results reveal that all the studied compounds are optically active in the visible and ultraviolet energy regions, and therefore can be effectively utilized for optoelectronic devices.

  2. Tuning Bandgap of p-Type Cu2Zn(Sn, Ge)(S, Se)4 Semiconductor Thin Films via Aqueous Polymer-Assisted Deposition.

    PubMed

    Yi, Qinghua; Wu, Jiang; Zhao, Jie; Wang, Hao; Hu, Jiapeng; Dai, Xiao; Zou, Guifu

    2017-01-18

    Bandgap engineering of kesterite Cu2Zn(Sn, Ge)(S, Se)4 with well-controlled stoichiometric composition plays a critical role in sustainable inorganic photovoltaics. Herein, a cost-effective and reproducible aqueous solution-based polymer-assisted deposition approach is developed to grow p-type Cu2Zn(Sn, Ge)(S, Se)4 thin films with tunable bandgap. The bandgap of Cu2Zn(Sn, Ge)(S, Se)4 thin films can be tuned within the range 1.05-1.95 eV using the aqueous polymer-assisted deposition by accurately controlling the elemental compositions. One of the as-grown Cu2Zn(Sn, Ge)(S, Se)4 thin films exhibits a hall coefficient of +137 cm(3)/C. The resistivity, concentration and carrier mobility of the Cu2ZnSn(S, Se)4 thin film are 3.17 ohm·cm, 4.5 × 10(16) cm(-3), and 43 cm(2)/(V·S) at room temperature, respectively. Moreover, the Cu2ZnSn(S, Se)4 thin film when used as an active layer in a solar cell leads to a power conversion efficiency of 3.55%. The facile growth of Cu2Zn(Sn, Ge)(S, Se)4 thin films in an aqueous system, instead of organic solvents, provides great promise as an environmental-friendly platform to fabricate a variety of single/multi metal chalcogenides for the thin film industry and solution-processed photovoltaic devices.

  3. Electronic structure and thermoelectric properties of (Mg2X)2 / (Mg2Y)2 (X, Y = Si, Ge, Sn) superlattices from first-principle calculations

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong

    2016-05-01

    To identify thermoelectric materials containing abundant, low-cost and non-toxic elements, we have studied the electronic structures and thermoelectric properties of (Mg2X)2/ (Mg2Y)2 (X, Y = Si, Ge, Sn) superlattices with state-of-the-art first-principles calculations using a modified Becke and Johnson (mBJ) exchange potential. Our results show that (Mg2Ge)2/ (Mg2Sn)2 and (Mg2Si)2/ (Mg2Sn)2 are semi-metals using mBJ plus spin-orbit coupling (mBJ + SOC), while (Mg2Si)2/ (Mg2Ge)2 is predicted to be a direct-gap semiconductor with a mBJ gap value of 0.46 eV and mBJ + SOC gap value of 0.44 eV. Thermoelectric properties are predicted by through solving the Boltzmann transport equations within the constant scattering time approximation. It is found that (Mg2Si)2/ (Mg2Ge)2 has a larger Seebeck coefficient and power factor than (Mg2Ge)2/ (Mg2Sn)2 and (Mg2Si)2/ (Mg2Sn)2 for both p-type and n-type doping. The detrimental influence of SOC on the power factor of p-type (Mg2X)2/ (Mg2Y)2 (X, Y = Si, Ge, Sn) is analyzed as a function of the carrier concentration, but there is a negligible SOC effect for n-type. These results can be explained by the influence of SOC on their valence and conduction bands near the Fermi level.

  4. Syntheses and structures of Sc2Nb(4–x)Sn5, YNb6Sn6, and ErNb6Sn5: exploratory studies in ternary rare-earth niobium stannides.

    PubMed

    Yue, Cheng-Yang; Lei, Xiao-Wu

    2012-02-20

    Three new rare-earth (RE) niobium stannides, namely, Sc(2)Nb(4-x)Sn(5) (x = 0.37, 0.52), YNb(6)Sn(6), and ErNb(6)Sn(5), have been obtained by reacting the mixture of corresponding pure elements at high temperature and structurally characterized by single-crystal X-ray diffraction studies. Sc(2)Nb(4-x)Sn(5) crystallizes in the orthorhombic space group Ibam (No. 72) and belongs to the V(6)Si(5) type. Its structure features a three-dimensional (3D) network composed of two-dimensionally (2D) corrugated [Nb(2)Sn(2)] and [Nb(2)Sn(3)] layers interconnected via Nb-Sn bonds, forming one type of one-dimensional (1D) narrow tunnels along the c axis occupied by Sc atoms. YNb(6)Sn(6) crystallizes in the hexagonal space group P6/mmm (No. 191) and adopts the HfFe(6)Ge(6) type, and ErNb(6)Sn(5) crystallizes in the trigonal space group R3m (No. 166) and belongs to the LiFe(6)Ge(5) type. Their structures both feature 3D networks based on 2D [Nb(3)Sn], [Sn(2)], and [RESn(2)] layers (RE = Y, Er). In YNb(6)Sn(6), one type of [Nb(3)Sn] layer is interconnected by [Sn(2)] and [YSn(2)] layers via Nb-Sn bonds to form a 3D network. However, in ErNb(6)Sn(5), two types of [Nb(3)Sn] layers are interlinked by [Sn(2)] and [ErSn(2)] layers via Nb-Sn bonds into a 3D framework. Electronic structure calculations and magnetic property measurements for "Sc(2)Nb(4)Sn(5)" and YNb(6)Sn(6) indicate that both compounds show semimetallic and temperature-independent diamagnetic behavior.

  5. HfO2 gate dielectric on Ge (1 1 1) with ultrathin nitride interfacial layer formed by rapid thermal NH3 treatment

    NASA Astrophysics Data System (ADS)

    Agrawal, Khushabu S.; Patil, Vilas S.; Khairnar, Anil G.; Mahajan, Ashok M.

    2016-02-01

    Interfacial properties of the ALD deposited HfO2 over the surface nitrided germanium substrate have been studied. The formation of GeON (∼1.7 nm) was confirmed by X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron spectroscopy (HRTEM) over the germanium surface. The effect of post deposition annealing temperature was investigated to study the interfacial and electrical properties of hafnium oxide/germanium oxynitride gate stacks. The high-k MOS devices with ultrathin GeON layer shows the good electrical characteristics including higher k value ∼18, smaller equivalent oxide thickness (EOT) around 1.5 nm and smaller hysteresis value less than 170 mV. The Qeff and Dit values are somewhat greater due to the (1 1 1) orientation of the germanium and may be due to the presence of nitrogen at the interface. The Fowler-Northeim (FN) tunneling of Ge MOS devices has been studied. The barrier height ΦB extracted from the plot is ∼1 eV.

  6. Lattice thermal conductivity of TixZryHf1 -x -yNiSn half-Heusler alloys calculated from first principles: Key role of nature of phonon modes

    NASA Astrophysics Data System (ADS)

    Eliassen, Simen N. H.; Katre, Ankita; Madsen, Georg K. H.; Persson, Clas; Løvvik, Ole Martin; Berland, Kristian

    2017-01-01

    In spite of their relatively high lattice thermal conductivity κℓ, the X NiSn (X =Ti , Zr, or Hf) half-Heusler compounds are good thermoelectric materials. Previous studies have shown that κℓ can be reduced by sublattice alloying on the X site. To cast light on how the alloy composition affects κℓ, we study this system using the phonon Boltzmann-transport equation within the relaxation time approximation in conjunction with density functional theory. The effect of alloying through mass-disorder scattering is explored using the virtual crystal approximation to screen the entire ternary TixZryHf1 -x -yNiSn phase diagram. The lowest lattice thermal conductivity is found for the TixHf1 -xNiSn compositions; in particular, there is a shallow minimum centered at Ti0.5Hf0.5NiSn with κℓ taking values between 3.2 and 4.1 W/mK when the Ti content varies between 20% and 80%. Interestingly, the overall behavior of mass-disorder scattering in this system can only be understood from a combination of the nature of the phonon modes and the magnitude of the mass variance. Mass-disorder scattering is not effective at scattering acoustic phonons of low energy. By using a simple model of grain boundary scattering, we find that nanostructuring these compounds can scatter such phonons effectively and thus further reduce the lattice thermal conductivity; for instance, Ti0.5Hf0.5NiSn with a grain size of L =100 nm experiences a 42% reduction of κℓ compared to that of the single crystal.

  7. GeP and (Ge{sub 1−x}Sn{sub x})(P{sub 1−y}Ge{sub y}) (x≈0.12, y≈0.05): Synthesis, structure, and properties of two-dimensional layered tetrel phosphides

    SciTech Connect

    Lee, Kathleen; Synnestvedt, Sarah; Bellard, Maverick; Kovnir, Kirill

    2015-04-15

    GeP and Sn-doped GeP were synthesized from elements in bismuth and tin flux, respectively. The layered crystal structures of these compounds were characterized by single crystal X-ray diffraction. Both phosphides crystallize in a GaTe structure type in the monoclinic space group C2/m (No. 12) with GeP: a=15.1948(7) Å, b=3.6337(2) Å, c=9.1941(4) Å, β=101.239(2)°; Ge{sub 0.93(3)}P{sub 0.95(1)}Sn{sub 0.12(3)}: a=15.284(9) Å, b=3.622(2) Å, c=9.207(5) Å, β=101.79(1)°. The crystal structure of GeP consists of 2-dimensional GeP layers held together by weak electron lone pair interactions between the phosphorus atoms that confine the layer. Each layer is built of Ge–Ge dumbbells surrounded by a distorted antiprism of phosphorus atoms. Sn-doped GeP has a similar structural motif, but with a significant degree of disorder emphasized by the splitting of all atomic positions. Resistivity measurements together with quantum-chemical calculations reveal semiconducting behavior for the investigated phosphides. - Graphical abstract: Layered phosphides GeP and Sn-doped GeP were synthesized from elements in bismuth and tin flux, respectively. The crystal structure of GeP consists of 2-dimensional GeP layers held together by weak electron lone pair interactions between the phosphorus atoms that confine the layer. Sn-doped GeP has a similar structural motif with a significant degree of disorder emphasized by the splitting of all atomic positions. Resistivity measurements together with quantum-chemical calculations reveal semiconducting behavior for the investigated phosphides. - Highlights: • GeP crystallizes in a layered crystal structure. • Doping of Sn into GeP causes large structural distortions. • GeP is narrow bandgap semiconductor. • Sn-doped GeP exhibits an order of magnitude higher resistivity due to disorder.

  8. First-principles study of defect formation in the photovoltaic semiconductors Cu2GeS3 and Cu2ZnGeS4 for comparison with Cu2SnS3, Cu2ZnSnS4, and CuInSe2

    NASA Astrophysics Data System (ADS)

    Nishihara, Hironori; Maeda, Tsuyoshi; Shigemi, Akio; Wada, Takahiro

    2017-04-01

    The formation energies of neutral Cu, Ge, and S vacancies in monoclinic Cu2GeS3 and those of neutral Cu, Zn, Ge, and S vacancies in kesterite-type Cu2ZnGeS4 were evaluated by first-principles pseudopotential calculations using plane-wave basis functions. The calculations were performed at typical points in a schematic ternary phase diagram of a Cu–Ge–S system for Cu2GeS3 and in Cu–(Zn1/2Ge1/2)–S and Cu29S16–ZnS–GeS2 pseudoternary phase diagrams for Cu2ZnGeS4. The results have been compared with those for Cu2SnS3, Cu2ZnSnS4, and CuInSe2 calculated with the same version of the CASTEP program code. The results indicate that Cu vacancies are easily formed in Cu2GeS3 and Cu2ZnGeS4 under the Cu-poor condition as in the cases of Cu2SnS3, Cu2ZnSnS4, and CuInSe2, suggesting that Cu2GeS3 and Cu2ZnGeS4 are also preferable p-type absorber materials for thin-film solar cells. Desirable preparation conditions of these thin films for photovoltaic application are discussed using the calculated formation energies of antisite defects.

  9. Role of Ge and Si substrates in higher-k tetragonal phase formation and interfacial properties in cyclical atomic layer deposition-anneal Hf1-xZrxO2/Al2O3 thin film stacks

    NASA Astrophysics Data System (ADS)

    Dey, Sonal; Tapily, Kandabara; Consiglio, Steven; Clark, Robert D.; Wajda, Cory S.; Leusink, Gert J.; Woll, Arthur R.; Diebold, Alain C.

    2016-09-01

    Using a five-step atomic layer deposition (ALD)-anneal (DADA) process, with 20 ALD cycles of metalorganic precursors followed by 40 s of rapid thermal annealing at 1073 K, we have developed highly crystalline Hf1-xZrxO2 (0 ≤ x ≤ 1) thin films (<7 nm) on ˜1 nm ALD Al2O3 passivated Ge and Si substrates for applications in higher-k dielectric metal oxide semiconductor field effect transistors below 10 nm technology node. By applying synchrotron grazing incidence x-ray d-spacing maps, x-ray photoelectron spectroscopy (XPS), and angle-resolved XPS, we have identified a monoclinic to tetragonal phase transition with increasing ZrO2 content, elucidated the role of the Ge vs Si substrates in complete tetragonal phase formation (CTPF), and determined the interfacial characteristics of these technologically relevant films. The ZrO2 concentration required for CTPF is lower on Ge than on Si substrates (x ˜ 0.5 vs. x ˜ 0.86), which we attribute as arising from the growth of an ultra-thin layer of metal germanates between the Hf1-xZrxO2 and Al2O3/Ge, possibly during the first deposition and annealing cycle. Due to Ge-induced tetragonal phase stabilization, the interfacial metal germanates could act as a template for the subsequent preferential growth of the tetragonal Hf1-xZrxO2 phase following bottom-up crystallization during the DADA ALD process. We surmise that the interfacial metal germanate layer also function as a diffusion barrier limiting excessive Ge uptake into the dielectric film. An ALD Al2O3 passivation layer of thickness ≥1.5 nm is required to minimize Ge diffusion for developing highly conformal and textured HfO2 based higher-k dielectrics on Ge substrates using the DADA ALD process.

  10. Theoretical investigation of Sn-doped Ge{sub 2}Sb{sub 2}Te{sub 5} alloy in crystalline phase

    SciTech Connect

    Singh, Janpreet; Tripathi, S. K.; Singh, Gurinder; Kaura, Aman

    2015-06-24

    Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) is technologically important for phase-change random access memory applications. It has been shown that the 2.2 atomic % doping of Sn weakens the Ge–Te bond strength while maintaining the symmetry of stable phase of GST. The influence of Sn doping upon the phase change characteristics of the crystalline GST alloy has been investigated by ab initio calculations. The lattice parameter, average interface distances between two adjacent (111) layers, equilibrium volume, metallic character and electrical resistance has been calculated for the stable phase of GST and Sn-doped GST.

  11. Pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} on amorphous dielectric layers towards monolithic 3D photonic integration

    SciTech Connect

    Li, Haofeng; Brouillet, Jeremy; Wang, Xiaoxin; Liu, Jifeng

    2014-11-17

    We demonstrate pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} crystallized on amorphous layers at <450 °C towards 3D Si photonic integration. We developed two approaches to seed the lateral single crystal growth: (1) utilize the Gibbs-Thomson eutectic temperature depression at the tip of an amorphous GeSn nanotaper for selective nucleation; (2) laser-induced nucleation at one end of a GeSn strip. Either way, the crystallized Ge{sub 0.89}Sn{sub 0.11} is dominated by a single grain >18 μm long that forms optoelectronically benign twin boundaries with others grains. These pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} patterns are suitable for monolithic 3D integration of active photonic devices on Si.

  12. Molecular approaches to p- and n-nanoscale doping of Ge 1-ySn y semiconductors: Structural, electrical and transport properties

    NASA Astrophysics Data System (ADS)

    Xie, Junqi; Tolle, J.; D'Costa, V. R.; Weng, C.; Chizmeshya, A. V. G.; Menendez, J.; Kouvetakis, J.

    2009-08-01

    We report the development of practical doping protocols via designer molecular sources to create n- and p-type doped Ge 1-ySn y layers grown directly upon Si(1 0 0). These materials will have applications in the fabrication of advanced PIN devices that are intended to extend the infrared optical response beyond that of Ge by utilizing the Sn composition as an additional design parameter. Highly controlled and efficient n-doping of single-layer structures is achieved using custom built P(GeH 3) 3 and As(GeH 3) 3, precursors containing preformed Ge-As and Ge-P near-tetrahedral bonding arrangements compatible with the structure of the host Ge-Sn lattice. Facile substitution and complete activation of the P and As atoms at levels ˜10 17-10 19 cm -3 is obtained via in situ depositions at low temperatures (350 °C). Acceptor doping is readily achieved using conventional diborane yielding carrier concentrations between 10 17-10 19 cm -3 under similar growth conditions. Full activation of the as-grown dopant concentrations is demonstrated by combined SIMS and Hall experiments, and corroborated using a contactless spectroscopic ellipsometry approach. RTA processing of the samples leads to a significant increase in carrier mobility comparable to that of bulk Ge containing similar doping levels. The alloy scattering contribution appears to be negligible for electron carrier concentrations beyond 10 19 cm -3 in n-type samples and hole concentrations beyond 10 18 cm -3 in p-type samples. A comparative study using the classical lower-order hydrides PH 3 and AsH 3 produced n-doped films with carrier densities (up to 9 × 10 19 cm -3) similar to those afforded by P(GeH 3) 3 and As(GeH 3) 3. However, early results indicate that the simpler PH 3 and AsH 3 sources yield materials with inferior morphology and microstructure. Calculations of surface energetics using bond enthalpies suggest that the latter massive compounds bind to the surface via strong Ge-Ge bonds and likely act as

  13. Theoretical investigations on vibrational properties and thermal conductivities of ternary antimonides TiXSb, ZrXSb and HfXSb (X = Si, Ge)

    NASA Astrophysics Data System (ADS)

    Deligoz, E.; Ozyar, U. F.; Ozisik, H. B.

    2016-06-01

    We have performed density functional calculations of the vibrational and thermodynamic properties of the ternary antimonides TiXSb, ZrXSb and HfXSb (X = Si, Ge). The direct method is used to calculate the phonon dispersion relation and phonon density of states for these compounds as well as their infrared and Raman active mode frequencies for the first time. Their dynamical stability is confirmed by phonon spectra. The lattice thermal conductivities of these compounds have been calculated from third-order force constants and plotted as a function of temperature. We have also evaluated the high temperature thermal conductivity by means of the Clarke's model and Cahill's model. Some selected thermodynamical properties, e.g. Gibbs free energy, entropy and heat capacity at constant volume are predicted theoretically and discussed. We have showed the relationships between thermodynamical properties and temperature. The numerical calculations reported in this paper were partially performed at Aksaray University, Science and Technology Application and Research Center.

  14. Tilting structures in inverse perovskites, M3TtO (M = Ca, Sr, Ba, Eu; Tt = Si, Ge, Sn, Pb).

    PubMed

    Nuss, Jürgen; Mühle, Claus; Hayama, Kyouhei; Abdolazimi, Vahideh; Takagi, Hidenori

    2015-06-01

    Single-crystal X-ray diffraction experiments were performed for a series of inverse perovskites, M3TtO (M = Ca, Sr, Ba, Eu; Tt = tetrel element: Si, Ge, Sn, Pb) in the temperature range 500-50 K. For Tt = Sn, Pb, they crystallize as an 'ideal' perovskite-type structure (Pm3m, cP5); however, all of them show distinct anisotropies of the displacement ellipsoids of the M atoms at room temperature. This behavior vanishes on cooling for M = Ca, Sr, Eu, and the structures can be regarded as `ideal' cubic perovskites at 50 K. The anisotropies of the displacement ellipsoids are much more enhanced in the case of the Ba compounds. Finally, their structures undergo a phase transition at ∼ 150 K. They change from cubic to orthorhombic (Ibmm, oI20) upon cooling, with slightly tilted OBa6 octahedra, and bonding angles O-Ba-O ≃ 174° (100 K). For the larger Ba(2+) cations, the structural changes are in agreement with smaller tolerance factors (t) as defined by Goldschmidt. Similar structural behavior is observed for Ca3TtO. Smaller Tt(4-) anions (Si, Ge) introduce reduced tolerance factors. Both compounds Ca3SiO and Ca3GeO with cubic structures at 500 K, change into orthorhombic (Ibmm) at room temperature. Whereby, Ca3SiO is the only representative within the M3TtO family where three polymorphs can be found within the temperature range 500-50 K: Pm3m-Ibmm-Pbnm. They show tiny differences in the tilting of the OCa6 octahedra, expressed by O-Ca-O bond angles of 180° (500 K), ∼ 174° (295 K) and 170° (100 K). For larger M (Sr, Eu, Ba), together with smaller Tt (Si, Ge) atoms, pronounced tilting of the OM6 octahedra, and bonding angles of O-M-O ≃ 160° (295 K) are observed. They crystallize in the anti-GdFeO3 type of structure (Pbnm, oP20), and no phase transitions occur between 500 and 50 K. The observed phase transitions are all accompanied by multiple twinning, in terms of pseudo-merohedry or reticular pseudo-merohedry.

  15. Performance enhancement in uniaxially tensile stressed GeSn n-channel fin tunneling field-effect transistor: Impact of stress direction

    NASA Astrophysics Data System (ADS)

    Wang, Hongjuan; Han, Genquan; Jiang, Xiangwei; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2017-04-01

    In this work, the boosting effect on the performance of GeSn n-channel fin tunneling FET (nFinTFET) enabled by uniaxial tensile stress is investigated theoretically. As the fin rotates within the (001) plane, the uniaxial tensile stress is always along its direction. The electrical characteristics of tensile-stressed GeSn nFinTFETs with point and line tunneling modes are computed utilizing the technology computer aided design (TCAD) simulator in which the dynamic nonlocal band-to-band tunneling (BTBT) algorithm is employed. In comparison with the relaxed devices, tensile-stressed GeSn nFinTFETs achieve a substantial enhancement in band-to-band tunneling generation rate (G BTBT) and on-state current I ON owing to the reduced bandgap E G induced by the tensile stress. Performance improvement of GeSn nFinTFETs induced by tensile stress demonstrates a strong dependence on channel direction and tunneling modes. Under the same magnitude of stress, line-nFinTFETs obtain a more pronounced I ON enhancement over the transistors with point tunneling mode.

  16. Electronic, structural, and magnetic properties of the quaternary Heusler alloy NiCoMnZ (Z=Al, Ge, and Sn)

    NASA Astrophysics Data System (ADS)

    Halder, Madhumita; Mukadam, M. D.; Suresh, K. G.; Yusuf, S. M.

    2015-03-01

    The electronic, magnetic, and structural properties of the Heusler alloys NiCoMnZ (Z=Al, Ge, and Sn) have been investigated both theoretically and experimentally. NiCoMnGe and NiCoMnSn have ordered cubic Heusler structure (with a possible disorder between Ni and Co), while NiCoMnAl has a B2 type disordered Heusler structure with random occupancy between Mn and Al atom at their crystallographic sites. Electronic structure calculation shows that NiCoMnGe and NiCoMnSn are normal ferromagnets, whereas NiCoMnAl is nearly half metallic (~100% spin polarization) in nature with its magnetic moment close to an integer value following the Slater-Pauling rule. Ab-initio calculations show ~56% and ~60% spin polarization for NiCoMnGe and NiCoMnSn, respectively. Magnetization measurements show all the three compounds have a high Curie temperature (>583 K).

  17. High-mobility two-dimensional electron gas in SrGeO3- and BaSnO3-based perovskite oxide heterostructures: an ab initio study.

    PubMed

    Wang, Yaqin; Tang, Wu; Cheng, Jianli; Nazir, Safdar; Yang, Kesong

    2016-11-23

    We explored the possibility of producing a high-mobility two-dimensional electron gas (2DEG) in the LaAlO3/SrGeO3 and LaGaO3/BaSnO3 heterostructures using first-principles electronic structure calculations. Our results show that the 2DEG occurs at n-type LaAlO3/SrGeO3 and LaGaO3/BaSnO3 interfaces. Compared to the prototype LaAlO3/SrTiO3, LaAlO3/SrGeO3 and LaGaO3/BaSnO3 systems yield comparable total interfacial charge carrier density but much lower electron effective mass (nearly half the value of LaAlO3/SrTiO3), thus resulting in about twice larger electron mobility and enhanced interfacial conductivity. This work demonstrates that SrGeO3 and BaSnO3 can be potential substrate materials to achieve a high-mobility 2DEG in the perovskite-oxide heterostructures.

  18. VizieR Online Data Catalog: Photometry of the Type Ib/c SN2013ge (Drout+, 2016)

    NASA Astrophysics Data System (ADS)

    Drout, M. R.; Milisavljevic, D.; Parrent, J.; Margutti, R.; Kamble, A.; Soderberg, A. M.; Challis, P.; Chornock, R.; Fong, W.; Frank, S.; Gehrels, N.; Graham, M. L.; Hsiao, E.; Itagaki, K.; Kasliwal, M.; Kirshner, R. P.; Macomb, D.; Marion, G. H.; Norris, J.; Phillips, M. M.

    2016-06-01

    We obtained UV and optical photometry of the Type Ib/c SN2013ge spanning 466 days. Data were obtained with the UV Optical Telescope (UVOT) on board Swift (w2, m2 , w1, u, b, and v bands; table1.dat), the 0.4 m telescope at the Challis Astronomical Observatory (CAO; B, V, R, and I bands; table2.dat), the 1.2m telescope plus KeplerCam CCD at the Fred Lawrence Whipple Observatory (FLWO; B, V, r, and i bands; table3.dat), the MMTCam instrument mounted on the 6.5 m MMT telescope, the Large Binocular Camera (LBC) mounted on the Large Binocular Telescope (LBT), and the Inamori-Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade (r, i, and z bands; table4.dat). (4 data files).

  19. Does a network structure exist in molecular liquid SnI4 and GeI4?

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahiro; Fuchizaki, Kazuhiro

    2017-04-01

    The existence of a network structure consisting of electrically neutral tetrahedral molecules in liquid SnI4 and GeI4 at ambient pressure was examined. The liquid structures employed for the examination were obtained from a reverse Monte Carlo analysis. The structures were physically interpreted by introducing an appropriate intermolecular interaction. A ‘bond’ was then defined as an intermolecular connection that minimizes the energy of intermolecular interaction. However, their ‘bond’ energy is too weak for the ‘bond’ and the resulting network structure to be defined statically. The vertex-to-edge orientation between the nearest molecules is so ubiquitous that almost all of the molecules in the system can take part in the network, which is reflected in the appearance of a prepeak in the structure factor.

  20. Characterization of optical constants and dispersion parameters of highly transparent Ge20Se76Sn4 amorphous thin film

    NASA Astrophysics Data System (ADS)

    Abd-Elrahman, M. I.; Hafiz, M. M.; Abdelraheem, A. M.; Abu-Sehly, A. A.

    2015-12-01

    Amorphous chalcogenide Ge20Se76Sn4 thin films of six different thicknesses (50-350 nm) are prepared by the thermal evaporation technique. Optical transmission and reflection spectra, in the wavelength range of the incident photons from 250 to 2500 nm, are used to study the effect of the film thickness on some optical properties. It is found that the effect of film thickness leads to increase in the absorption coefficient, refractive index, extinction coefficient and the width of the tails of localized states in the gap region. The decrease in optical band gap energy with increasing the film thickness is attributed to the formation of a band tail which narrows down the band gap. Dispersion analyses of refractive index reveal a decrease in the single-oscillator energy and an increase in the dispersion energy with increase in film thickness.

  1. Crystal structure, chemical bonding and magnetism studies for three quinary polar intermetallic compounds in the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 (x = 0.66, y = 0.03) and the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) (x = 0.66, 0.68; y = 0.13, 0.27) phases.

    PubMed

    Woo, Hyein; Jang, Eunyoung; Kim, Jin; Lee, Yunho; Kim, Jongsik; You, Tae-Soo

    2015-04-22

    Three quinary polar intermetallic compounds in the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 (x = 0.66, y = 0.03) and the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) (x = 0.66, 0.68; y = 0.13, 0.27) phases have been synthesized using the molten In-metal flux method, and the crystal structures are characterized by powder and single-crystal X-ray diffractions. Two orthorhombic structural types can be viewed as an assembly of polyanionic frameworks consisting of the In(Ge/Sn)4 tetrahedral chains, the bridging Ge2 dimers, either the annulene-like "12-membered rings" for the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 series or the cis-trans Ge/Sn-chains for the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) series, and several Eu/Ca-mixed cations. The most noticeable difference between two structural types is the amount and the location of the Sn-substitution for Ge: only a partial substitution (11%) occurs at the In(Ge/Sn)4 tetrahedron in the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 series, whereas both a complete and a partial substitution (up to 27%) are observed, respectively, at the cis-trans Ge/Sn-chain and at the In(Ge/Sn)4 tetrahedron in the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) series. A series of tight-binding linear muffin-tin orbital calculations is conducted to understand overall electronic structures and chemical bonding among components. Magnetic susceptibility measurement indicates a ferromagnetic ordering of Eu atoms below 5 K for Eu1.02(1)Ca1.98InGe2.87(1)Sn1.13.

  2. Chemical pressure effects on magnetism in the quantum spin liquid candidates Yb2X2O7 (X =Sn, Ti, Ge)

    NASA Astrophysics Data System (ADS)

    Dun, Z. L.; Lee, M.; Choi, E. S.; Hallas, A. M.; Wiebe, C. R.; Gardner, J. S.; Arrighi, E.; Freitas, R. S.; Arevalo-Lopez, A. M.; Attfield, J. P.; Zhou, H. D.; Cheng, J. G.

    2014-02-01

    The linear and nonlinear ac susceptibility measurements of Yb-pyrochlores, Yb2X2O7 (X =Sn, Ti, and Ge), show transitions with a ferromagnetic nature at 0.13 and 0.25 K for Yb2Sn2O7 and Yb2Ti2O7, respectively, and an antiferromagnetic ordering at 0.62 K for Yb2Ge2O7. These systematical results (i) provided information about the nature of the unconventional magnetic ground state in Yb2Ti2O7; (ii) realized a distinct antiferromagnetic ordering state in Yb2Ge2O7; and (iii) demonstrated that the application of chemical pressure through the series of Yb-pyrochlores can efficiently perturb the fragile quantum spin fluctuations of the Yb3+ ions and lead to very different magnetic ground states.

  3. Emission of forward neutrons by 158A GeV indium nuclei in collisions with Al, Cu, Sn and Pb

    NASA Astrophysics Data System (ADS)

    Karpechev, E. V.; Pshenichnov, I. A.; Karavicheva, T. L.; Kurepin, A. B.; Golubeva, M. B.; Guber, F. F.; Maevskaya, A. I.; Reshetin, A. I.; Tiflov, V. V.; Topilskaya, N. S.; Cortese, P.; Dellacasa, G.; Arnaldi, R.; De Marco, N.; Ferretti, A.; Gallio, M.; Musso, A.; Oppedisano, C.; Piccotti, A.; Scomparin, E.; Vercellin, E.; Cicalò, C.; Puddu, G.; Siddi, E.; Szymanski, P.; Efthymiopoulos, I.

    2014-01-01

    The cross sections of forward emission of one, two and three neutrons by 158A GeV 115In nuclei in collisions with Al, Cu, Sn and Pb targets are reported. The measurements were performed in the framework of the ALICE-LUMI experiment at the SPS facility at CERN. Various corrections accounting for the absorption of beam nuclei and produced neutrons in target material and surrounding air were introduced. The corrected cross section data are compared with the predictions of the RELDIS model for electromagnetic fragmentation of 115In in ultraperipheral collisions, as well as with the results of the abrasion-ablation model for neutron emission in hadronic interactions. The measured neutron emission cross sections well agree with the RELDIS results, with the exception of In-Al collisions where the measured cross sections are larger compared to RELDIS. This is attributed to a relatively large contribution of hadronic fragmentation of In on Al target with respect to electromagnetic fragmentation, in contrast to similar measurements performed earlier with 30A GeV 208Pb colliding with Al.

  4. Structure and stability of noble gas bound EX3+ compounds (E = C, Ge, Sn, Pb; X = H, F, Cl, Br).

    PubMed

    Pan, Sudip; Moreno, Diego; Ghosh, Sreyan; Chattaraj, Pratim K; Merino, Gabriel

    2016-01-15

    It has been analyzed at the MP2/def2-QZVPPD level whether EX3+ (E = C-Pb; X = H, F-Br) can bind noble gas atoms. Geometrical and electronic structures, dissociation energy values, thermochemical parameters, natural bond order, electron density, and energy decomposition analyses highlight the possibility of such noble gas bound EX3+ compounds. Except He and Ne, the other heavier congeners of this family make quite strong bonds with E. In fact, the dissociations of Ar-Rn bound analogues turn out to be endergonic in nature at 298 K, except in the cases of ArGe Cl3+, Ar/KrGeBr3+, and ArSnBr3+. GeH3+ and EF3+ (E = Ge-Pb) can even bind two Ng atoms with reasonably high dissociation energy. As the pz orbital of the E center in EX3+ plays a crucial role in its binding with the noble gas atoms, the effect of the π back-bonding causing X → E electron transfer ought to be properly understood. Due to the larger back-donation, the Ng binding ability of EX3+ gradually decreases along F to Br. EH2+ and the global minimum HE(+…) H2 (E = Sn, Pb) complexes are also able to bind Ar-Rn atoms quite effectively. The NgE bonds in Ar-Rn bound CH3+, GeH3+, and EF3+ (E = Ge-Pb) and Xe/RnE bonds in NgECl3+ and NgEBr3+ (E = Ge, Sn) are mainly of covalent type.

  5. Dielectric behavior of a-Sn-Se-Pb-Ge chalcogenide glass

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Modgil, Vivek; Choudhary, Shobhana; Nidhi, A. V.; Rangra, V. S.

    2015-05-01

    The bulk material Sn8Se74Pb18-xGex(7≤x≤11) has been prepared by melt quenching technique. The viterous and glassy nature have been confirmed by X-Ray Diffraction (XRD) and Differential Scanning Calorimetery (DSC) techniques respectively. The material exhibits the good thermal stability and high value of glass transition temperature. The dielectric behavior has been studied in frequency range 50Hz-1MHz, using pallet method. The universal dielectric behaviour of amorphous semiconductors has been observed for the glass system. The compositional dependence of dielectric behavior has also been observed.

  6. Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas

    NASA Astrophysics Data System (ADS)

    Margetis, J.; Mosleh, A.; Al-Kabi, S.; Ghetmiri, S. A.; Du, W.; Dou, W.; Benamara, M.; Li, B.; Mortazavi, M.; Naseem, H. A.; Yu, S.-Q.; Tolle, J.

    2017-04-01

    High quality, thick (up to 1.1 μm), strain relaxed GeSn alloys were grown on Ge-buffered Si (1 0 0) in an ASM Epsilon® chemical vapor deposition system using SnCl4 and low-cost commercial GeH4 precursors. The significance of surface chemistry in regards to growth rate and Sn-incorporation is discussed by comparing growth kinetics data in H2 and N2 carrier gas. The role of carrier gas is also explored in the suppression of Sn surface segregation and evolution of layer composition and strain profiles via secondary ion mass spectrometry and X-ray diffraction. Transmission electron microscopy revealed the spontaneous compositional splitting and formation of a thin intermediate layer in which dislocations are pinned. This intermediate layer enables the growth of a thick, strain relaxed, and defect-free epitaxial layer on its top. Last, we present photoluminescence results which indicate that both N2 and H2 growth methods produce optoelectronic device quality material.

  7. Effect of ion implantation energy for the synthesis of Ge nanocrystals in SiN films with HfO2/SiO2 stack tunnel dielectrics for memory application

    PubMed Central

    2011-01-01

    Ge nanocrystals (Ge-NCs) embedded in SiN dielectrics with HfO2/SiO2 stack tunnel dielectrics were synthesized by utilizing low-energy (≤5 keV) ion implantation method followed by conventional thermal annealing at 800°C, the key variable being Ge+ ion implantation energy. Two different energies (3 and 5 keV) have been chosen for the evolution of Ge-NCs, which have been found to possess significant changes in structural and chemical properties of the Ge+-implanted dielectric films, and well reflected in the charge storage properties of the Al/SiN/Ge-NC + SiN/HfO2/SiO2/Si metal-insulator-semiconductor (MIS) memory structures. No Ge-NC was detected with a lower implantation energy of 3 keV at a dose of 1.5 × 1016 cm-2, whereas a well-defined 2D-array of nearly spherical and well-separated Ge-NCs within the SiN matrix was observed for the higher-energy-implanted (5 keV) sample for the same implanted dose. The MIS memory structures implanted with 5 keV exhibits better charge storage and retention characteristics compared to the low-energy-implanted sample, indicating that the charge storage is predominantly in Ge-NCs in the memory capacitor. A significant memory window of 3.95 V has been observed under the low operating voltage of ± 6 V with good retention properties, indicating the feasibility of these stack structures for low operating voltage, non-volatile memory devices. PMID:21711708

  8. Crystal structure and magnetic properties of novel Hf{sub 3}Ni{sub 2}Si{sub 3}-type R{sub 3}Co{sub 2}Ge{sub 3} compounds (R=Y, Sm, Tb-Tm)

    SciTech Connect

    Morozkin, A.V.; Nirmala, R.; Yao, Jinlei; Mozharivskyj, Y.; Isnard, O.

    2012-12-15

    The novel R{sub 3}Co{sub 2}Ge{sub 3} compounds with R=Y, Sm, Tb-Tm adopt the Hf{sub 3}Ni{sub 2}Si{sub 3}-type structure (ordered variant of the Ca{sub 3}Ga{sub 5}-type one, space group Cmcm). Sm{sub 3}Co{sub 2}Ge{sub 3}, Tb{sub 3}Co{sub 2}Ge{sub 3}, Ho{sub 3}Co{sub 2}Ge{sub 3} and Er{sub 3}Co{sub 2}Ge{sub 3} undergo an antiferromagnetic-type ordering and Tb{sub 3}Co{sub 2}Ge{sub 3} demonstrates a field-sensitive magnetic behavior. Tm{sub 3}Co{sub 2}Ge{sub 3} is a pure paramagnet down to 5 K, whereas Y{sub 3}Co{sub 2}Ge{sub 3} demonstrates Pauli paramagnetism down to {approx}120 K. In zero applied field and between {approx}50 and {approx}15 K Tb{sub 3}Co{sub 2}Ge{sub 3} shows a non-collinear antiferromagnetic ordering with wave vectors K{sub 0}=[0, 0, 0] and K{sub 1}=[{+-}1/3, 0, 0] and a magnetic unit cell 3a{sub Tb{sub 3Co{sub 2Ge{sub 2}}}} Multiplication-Sign b{sub Tb{sub 3Co{sub 2Ge{sub 3}}}} Multiplication-Sign c{sub Tb{sub 3Co{sub 2Ge{sub 3}}}} , whereas below {approx}15 K it exhibits a complex antiferromagnetic ordering with K{sub 0}=[0, 0, 0], K{sub 1}=[{+-}1/3, 0, 0] and K{sub 2}=[1/2, 0, 0] wave vectors and magnetic unit cell 6a{sub Tb{sub 3Co{sub 2Ge{sub 2}}}} Multiplication-Sign b{sub Tb{sub 3Co{sub 2Ge{sub 2}}}} Multiplication-Sign c{sub Tb{sub 3Co{sub 2Ge{sub 2}}}}. - Graphical abstract: The Hf{sub 3}Ni{sub 2}Si{sub 3}-type {l_brace}Y, Sm, Gd-Tm{r_brace}{sub 3}Co{sub 2}Ge{sub 3} (space group Cmcm) demonstrate complex field sensitive antiferromagnetic ordering. The rare earth sublattice of 4d site plays crucial role in the magnetisation of R{sub 3}Co{sub 2}Ge{sub 3} compounds. Highlights: Black-Right-Pointing-Pointer The {l_brace}Y, Sm, Gd-Tm{r_brace}{sub 3}Co{sub 2}Ge{sub 3} adopts the Hf{sub 3}Ni{sub 2}Si{sub 3}-type structure (space group Cmcm). Black-Right-Pointing-Pointer They demonstrate complex field sensitive antiferromagnetic ordering. Black-Right-Pointing-Pointer The 4d site rare earth sublattice plays crucial role in the magnetism of R{sub 3

  9. Panoscopically optimized thermoelectric performance of a half-Heusler/full-Heusler based in situ bulk composite Zr(0.7)Hf(0.3)Ni(1+x)Sn: an energy and time efficient way.

    PubMed

    Bhardwaj, A; Chauhan, N S; Sancheti, Bhagyashree; Pandey, G N; Senguttuvan, T D; Misra, D K

    2015-11-28

    All scale hierarchical architecturing, matrix/inclusion band alignment and intra-matrix electronic structure engineering, the so called panoscopic approach for thermoelectric materials has been demonstrated to be an effective paradigm for optimizing high ZT. To achieve such hierarchically organized microstructures, composition engineering has been considered to be an efficient strategy. In this work, such a panoscopic concept has been extended to demonstrate for the first time in the case of half-Heusler based thermoelectric materials via a composition engineering route. A series of new off-stoichiometric n-type Zr0.7Hf0.3Ni1+xSn (0 ≤x≤ 0.10) HH compositions have been modified to derive HH(1 -x)/full-Heusler (FH)(x) composite with an all scale hierarchically modified microstructure with FH inclusions within the matrix to study the temperature dependent thermoelectric properties. The structural analysis employing XRD, FE-SEM and HR-TEM of these materials reveal a composite of HH and FH, with hierarchically organized microstructures. In such a submicron/nano-composite, the electronic properties are observed to be well optimized yielding a large power factor; α(2)σ (∼30.7 × 10(-4) W m(-1) K(-2) for Zr0.7Hf0.3Ni1.03Sn) and reduced thermal conductivity (∼2.4 W m(-1) K(-1) for Zr0.7Hf0.3Ni1.03Sn) yielding a high ZT∼ 0.96 at 773 K for composition Zr0.7Hf0.3Ni1.03Sn which is ∼250% larger than the normal HH Zr0.7Hf0.3NiSn (ZT∼ 0.27 at 773 K). The enhancement in ZT of these composites has been discussed in terms of primary electron filtering, electron injection and several phonon scattering mechanisms such as alloy scattering, point defect scattering, and grain boundary scattering. The Bergman and Fel model is used to calculate effective thermoelectric parameters of these composites for comparing the experimental results.

  10. Heat capacity and heat content measurements on binary compounds in the Ru-Si, Ru-Ge, and Ru-Sn systems

    SciTech Connect

    Kuntz, J.J.; Gachon, J.C.; Feschotte, P.; Perring, L. |

    1997-11-01

    Molar heat capacities of Ru{sub 0.5}Si{sub 0.5} Ru{sub 0.4}Si{sub 0.6}, Ru{sub 0.5}Ge{sub 0.5}, Ru{sub 0.4}Ge{sub 0.6}, Ru{sub 0.4}Sn{sub 0.6}, and Ru{sub 0.3}Sn{sub 0.7} were determined every 10 K by differential scanning calorimetry in the temperature range from 310 to 1080 K. The present results have been fitted by a polynomial function of temperature: C{sub p} = a+bT-cT{sup -2}. Heat contents of the six phases have been verified by drop calorimetry. Standard enthalpies of formation are given for the studied compounds.

  11. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Some Properties of Si, Ge, and α-Sn Using Pseudopotential Theory

    NASA Astrophysics Data System (ADS)

    Vyas, P. S.; Thakore, B. Y.; Gajjar, P. N.; Jani, A. R.

    2010-09-01

    The pseudopotential theory beyond second order with our well established single parametric model potential is employed to compute total crystal energy, static bulk modulus, energy band gap at the point X on the Jones-zone face and pressure-volume relation (equation of state under pressure) of Si, Ge and α-Sn using Nagy's static local field correction function. The results are compared with those obtained using few other local field correction functions. The present results of total energy are in good agreement with the experimental data. Bulk modulus calculated by Nagy's screening function is perfectly matching with the experimental results for Ge and α-Sn. Some deviation is found in the value of energy band gap.

  12. Effect of Sb addition on linear and non-linear optical properties of amorphous Ge-Se-Sn thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Navjeet; Sharma, Surbhi; Sarin, Amit; Kumar, Rajesh

    2016-01-01

    Optical characterization of amorphous thin films of Ge20Sn10Se70-xSbx (x = 0, 3, 6, 9, 12, 15) has been carried out. Thin films were deposited onto pre cleaned glass substrates using thermal evaporation technique. Transmission spectra of the films were recorded, for normal incidence, in range 400-2400 nm. Refractive index of the films was calculated using the envelope method by Swanepoel. Dispersion analysis has been carried out using single effective oscillator model. Other optical constants such as absorption coefficients, extinction coefficients have also been evaluated. Tauc plots were used to evaluate the optical band gap. The refractive index has been found to be increasing while the band gap decreases with increasing Sb concentration. The observed optical behavior of the films has been explained using chemical bond approach. Cohesive energy is found to be decreasing in the present work, which reflects that bond strength decreases with the increasing content of Sb. Non-linear optical parameters (i.e. n2 and χ(3)) have been derived from linear optical parameters (i.e. n, k, Eg). Observed changes in linear and non-linear parameters have been reported in this study.

  13. Large band gap quantum spin hall insulators of fluorinated Pb-X (X = C, Si, Ge, Sn)

    NASA Astrophysics Data System (ADS)

    Padilha, Jose Eduardo; Pontes, Renato Borges; Schmidt, Tome Mauro; Miwa, Roberto Hiroki; Fazzio, Adalberto

    The Quantum Spin Hall Insulating (QSHI) phase was first observed in the HgTe/CdTe quantum well structure. However, the observed band gap of 5 meV is too small for practical applications. Other materials have also been proposed for the observation of the QSHI phase, such as silicene, germanene, stanene, and its halogenated phases. The spin-orbit interaction is a key feature in topological insulators, raising the interest in heavy elements, such as Bismuth. In fact, Bi is responsible for the high spin-orbit coupling that drives the band inversion in Bi2 Se 3 andBi 2Te3. Another element that also has a large spin-orbit interaction is Lead (Pb). Here we present a set of 2D QSH insulators with a very large band gap based on fluorinated Pb-X (X= C, Si, Ge, Sn). First-principles phonon dispersion calculations indicate that these systems are structurally and mechanically stable. By performing DFT-based electronic structure calculations we show that 2D Pb-X functionalized with fluorine are topological insulators with very large band gaps (over 0.7 eV). Addtional calculations, for nanoribbons structures, show the presence of a Dirac cone at the center of the Brillouin zone. These results can establish a new route to the observation of QSHI phase at room temperature.

  14. Anharmonic properties in M g2X (X =C ,Si ,Ge ,Sn ,Pb ) from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Chernatynskiy, Aleksandr; Phillpot, Simon R.

    2015-08-01

    Thermal conductivity reduction is one of the potential routes to improve the performance of thermoelectric materials. However, detailed understanding of the thermal transport of many promising materials is still missing. In this paper, we employ electronic-structure calculations at the level of density functional theory to elucidate thermal transport properties of the M g2X (X =C , Si, Ge, Sn, and Pb) family of compounds, which includes M g2Si , a material already identified as a potential thermoelectric. All these materials crystallize into the same antifluorite structure. Systematic trends in the anharmonic properties of these materials are presented and examined. Our calculations indicate that the reduction in the group velocity is the main driver of the thermal conductivity trend in these materials, as the phonon lifetimes in these compounds are very similar. We also examine the limits of the applicability of perturbation theory to study the effect of point defects on thermal transport and find that it is in good agreement with experiment in a wide range of scattering parameter values. The thermal conductivity of the recently synthesized M g2C is computed and predicted to be 34 W/mK at 300 °C.

  15. X-ray absorption study of potential barrier effect in group 14 tetrachlorides (GeCl 4, SnCl 4) and group 15 trichlorides (PCl 3, AsCl 3)

    NASA Astrophysics Data System (ADS)

    Guillot, Florence; Dézarnaud-Dandine, Christine; Tronc, Michel

    1997-12-01

    Inner-shell excitation spectra of GeCl 4, SnCl 4, PCl 3 and AsCl 3 were obtained in gas phase at room temperature with a total ion-yield technique at the LURE Super ACO and DCI storage rings in Orsay. The inner-shell excitation spectra include Ge 2p, Sn 2p, P 1s, As 2p, and Cl 1s in GeCl 4, SnCl 4, PCl 3 and AsCl 3, respectively, and are interpreted in the framework of the potential barrier concept, according to electric dipole selection rules. The well-resolved below-edge features in the metal 2p excitation spectra of GeCl 4 and SnCl 4 show a similar shape. Moreover, complementary experimental results of ETS with the support of MS-X α calculations are reported and correlated with the C 1s, Si 2p, Ge 2p and Sn 2p term values of the lowest vacant orbitals for CCl 4, SiCl 4, GeCl 4 and SnCl 4, respectively, in order to study the trend of the stabilization energy of the various empty orbitals in the neutral and in the core ionized molecules. The P 1s spectrum of PCl 3 has been assigned and the As 2p spectrum of AsCl 3 compared with the published P 2p spectrum of PCl 3. The 1s excitation spectra of the chlorine ligand in the tetrachloride (GeCl 4, SnCl 4 and trichloride (PCl 3, AsCl 3) series are very sensitive to the change of symmetry and bonding. A linear correlation between (MCl) bond lenght (with M  Ge, Sn, P, As) and the energy of the Cl 1 s → σ ∗ (MCl) shape resonance observed above the Cl is ionization threshold has been obtained.

  16. Solvothermal synthesis, structure and physical properties of Cs[Cr(en)2MSe4] (M = Ge, Sn) with [MSe4](4-) tetrahedra as chelating ligand.

    PubMed

    Wang, Yingqi; Wang, Ruiqi; Liu, Qinglong; Lai, Xiaofang; Zhang, Xian; Chen, Haijie; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang

    2016-05-31

    Two chromium chalcogenide Cs[Cr(en)2GeSe4] () and Cs[Cr(en)2SnSe4] () have been synthesized by a solvothermal method. Both compounds crystallize in the monoclinic space group P21/n. The structures of the two compounds are characterized by isolated [Cr(en)2MSe4](-) clusters separated by Cs(+) ions. The optical properties of the two compounds were measured which indicate a similar band gap of 1.58 eV. DFT calculations demonstrated that the valance band maximum (VBM) consist of Cr 3d orbitals and Se 4p orbitals while the conductive band minimum (CBM) are composed of Cr 3d orbitals for both compounds, which explains their similar optical band gap energies. Both compounds possess paramagnetic behaviors with the effective magnetic moment of 3.97μB for Cs[Cr(en)2GeSe4] and 3.91μB for Cs[Cr(en)2SnSe4], respectively. Field-dependent magnetization measurements demonstrated their potential as magnetocaloric materials, with the magnetic entropy change of 11.6 J (kg K)(-1) for Cs[Cr(en)2GeSe4], and 14.2 J (kg K)(-1) for Cs[Cr(en)2SnSe4].

  17. First-principles study of new series of quaternary Heusler alloys CsSrCZ (Z=Si, Ge, Sn, P, As, and Sb)

    NASA Astrophysics Data System (ADS)

    Bouabça, A.; Rozale, H.; Amar, A.; Wang, X. T.; Sayade, A.; Chahed, A.

    2016-12-01

    The structural, electronic, magnetic, and thermal properties of new quaternary Heusler alloys CsSrCZ (Z=Si, Ge, Sn, P, As, and Sb) were investigated using the full-potential linearized augmented plane wave (FPLAPW) within the generalized gradient approximation (GGA) and GGA plus modified Becke and Johnson as the exchange correlation. The results showed that all Heusler compounds were stable in Type (I) structure. The CsSrCZ (Z=Si, Ge, Sn) compounds had a nearly HM characteristic, and CsSrCZ (Z=P, As, Sb) compounds were true half-metallic (HM) ferromagnets. The strong spin polarization of p orbital for C, Si, Ge, Sn, P, As, and Sb atoms is found to be the origin of ferromagnetic. The half-metallicity is preserved up to a lattice contraction of 3.45%, 1.69%, 1.69%, 7.16%, 7.16%, and 11.2% for all six quaternary Heusler compounds. We also investigated the thermal effects using the quasi-harmonic Debye model.

  18. Li4Ge2B as a new derivative of the Mo2B5 and Li5Sn2 structure types.

    PubMed

    Pavlyuk, Volodymyr; Ciesielski, Wojciech; Rozdzynska-Kielbik, Beata; Dmytriv, Grygoriy; Ehrenberg, Helmut

    2016-07-01

    Binary and multicomponent intermetallic compounds based on lithium and p-elements of Groups III-V of the Periodic Table are useful as modern electrode materials in lithium-ion batteries. However, the interactions between the components in the Li-Ge-B ternary system have not been reported. The structure of tetralithium digermanium boride, Li4Ge2B, exhibits a new structure type, in the noncentrosymmetric space group R3m, in which all the Li, Ge and B atoms occupy sites with 3m symmetry. The title structure is closely related to the Mo2B5 and Li5Sn2 structure types, which crystallize in the centrosymmetric space group R-3m. All the atoms in the title structure are coordinated by rhombic dodecahedra (coordination number = 14), similar to the atoms in related structures. According to electronic structure calculations using the tight-binding-linear muffin-tin orbital-atomic spheres approximation (TB-LMTO-ASA) method, strong covalent Ge-Ge and Ge-B interactions were established.

  19. A Stannyl-Decorated Zintl Ion [Ge18Pd3(Sn(i)Pr3)6](2-): Twinned Icosahedron with a Common Pd3-Face or 18-Vertex Hypho-Deltahedron with a Pd3-Triangle Inside.

    PubMed

    Perla, Luis G; Sevov, Slavi C

    2016-08-10

    We report the synthesis and characterization of the title anion which has a germanium/palladium cluster core of [Ge18Pd3] and six tri-isopropyl tin substituents. Its two Ge9-halves are the first examples of germanium deltahedra with three nonsilyl substituents, tri-isopropyl tin in this case. The new cluster is made by a reaction of an acetonitrile suspension of K4Ge9 with (i)Pr3SnCl that generates primarily tristannylated 9-atom clusters [Ge9{Sn(i)Pr3}3](-), followed by addition of Pd(PPh3)4 to the reaction mixture. It was structurally characterized by single-crystal X-ray diffraction in [K(222crypt)]2[Ge18Pd3{Sn(i)Pr3}6]·(i)Pr2O and was also confirmed in solution by ESI-MS and NMR. The new anion can be viewed both as a dimer of face-fused icosahedra (twinned icosahedron) with a common Pd3-face, i.e., [((i)Pr3Sn)3Ge9Pd3Ge9(Sn(i)Pr3)3](2-) that resembles but is not isoelectronic with the known borane version B21H18(-) or as a large hypho-deltahedron of 18 Ge-atoms with a triangle of Pd3 inside, i.e., [Pd3@Ge18(Sn(i)Pr3)6](2-). DFT calculations show a very large HOMO-LUMO gap of 2.42 eV.

  20. Hopping magnetotransport of the band-gap tuning Cu2Zn(Sn x Ge1-x )Se4 crystals

    NASA Astrophysics Data System (ADS)

    Lähderanta, E.; Hajdeu-Chicarosh, E.; Shakhov, M. A.; Guc, M.; Bodnar, I. V.; Arushanov, E.; Lisunov, K. G.

    2016-11-01

    Resistivity, ρ(T, x), of Cu2Zn(Sn x Ge1-x )Se4 (CZTGeSe) single crystals with x  =  0-1, investigated at temperatures between T ~ 10-320 K, exhibits an activated character within the whole temperature range, attaining a minimum at x  =  0.47. Magnetoresistance (MR) of CZTGeSe with x  =  0.26, 0.47 and 0.64 is positive (pMR) in all measured fields of B up to 20 T at any T between ~40-320 K, whereas MR of samples with x  =  0 and 1 contains a negative contribution (nMR). The dependence of ρ(T) at B  =  0 gives evidence for a nearest-neighbor hopping (NNH) conductivity in high-temperature intervals within T ~ 200-320 K depending on x, followed by the Mott variable-range hopping (VRH) charge transfer with lowering temperature. The pMR law of lnρ(B) \\propto B 2 is observed in both hopping conductivity regimes above, provided that the nMR contribution is absent or saturated. Analysis of the ρ(T) and MR data has yielded the values of the NNH activation energy and the VRH characteristic temperature, as well as those of the acceptor band width, the acceptor concentration, the localization radii of holes and the density of the localized states (DOS) at the Fermi level. All the parameters above exhibit a systematic non-monotonous dependence on x. Their extremums, lying close to x  =  0.64, correspond to the minimum of a lattice disorder along with the maximum of DOS and of the acceptor concentration, as well as a highest proximity to the metal-insulator transition.

  1. Designing novel Sn-Bi, Si-C and Ge-C nanostructures, using simple theoretical chemical similarities

    PubMed Central

    2011-01-01

    A framework of simple, transparent and powerful concepts is presented which is based on isoelectronic (or isovalent) principles, analogies, regularities and similarities. These analogies could be considered as conceptual extensions of the periodical table of the elements, assuming that two atoms or molecules having the same number of valence electrons would be expected to have similar or homologous properties. In addition, such similar moieties should be able, in principle, to replace each other in more complex structures and nanocomposites. This is only partly true and only occurs under certain conditions which are investigated and reviewed here. When successful, these concepts are very powerful and transparent, leading to a large variety of nanomaterials based on Si and other group 14 elements, similar to well known and well studied analogous materials based on boron and carbon. Such nanomaterias designed in silico include, among many others, Si-C, Sn-Bi, Si-C and Ge-C clusters, rings, nanowheels, nanorodes, nanocages and multidecker sandwiches, as well as silicon planar rings and fullerenes similar to the analogous sp2 bonding carbon structures. It is shown that this pedagogically simple and transparent framework can lead to an endless variety of novel and functional nanomaterials with important potential applications in nanotechnology, nanomedicine and nanobiology. Some of the so called predicted structures have been already synthesized, not necessarily with the same rational and motivation. Finally, it is anticipated that such powerful and transparent rules and analogies, in addition to their predictive power, could also lead to far-reaching interpretations and a deeper understanding of already known results and information. PMID:21711875

  2. Investigating the Structural, Thermal, and Electronic Properties of the Zircon-Type ZrSiO4, ZrGeO4 and HfSiO4 Compounds

    NASA Astrophysics Data System (ADS)

    Chiker, Fafa; Boukabrine, Fatiha; Khachai, H.; Khenata, R.; Mathieu, C.; Bin Omran, S.; Syrotyuk, S. V.; Ahmed, W. K.; Murtaza, G.

    2016-11-01

    In the present study, the structural, thermal, and electronic properties of some important orthosilicate dielectrics, such as the ZrSiO4, ZrGeO4, and HfSiO4 compounds, have been investigated theoretically with the use of first-principle calculations. We attribute the application of the modified Becke-Johnson exchange potential, which is basically an improvement over the local density approximation and the Perdew-Burke-Ernzerhof exchange-correlation functional, for a better description of the band gaps of the compounds. This resulted in a good agreement with our estimated values in comparison with the reported experimental data, specifically for the ZrSiO4, and HfSiO4 compounds. Conversely, for the ZrGeO4 compound, the calculated electronic band structure shows a direct band gap at the Γ point with the value of 5.79 eV. Furthermore, our evaluated thermal properties that are calculated by using the quasi-harmonic Debye model indicated that the volume variation with temperature is higher in the ZrGeO4 compound as compared to both the ZrSiO4 and HfSiO4 compounds, which is ascribed to the difference between the electron shells of the Si and Ge atoms. Therefore, these results also indicate that while the entropy ( S) and enthalpy ( U) parameters increase monotonically, the free energy ( G), in contrast, decreases monotonically with increasing temperature, respectively. Moreover, the pressure and temperature dependencies of the Debye temperature Θ, thermal expansion coefficient, and heat capacities C V were also predicted in our study.

  3. Thermal and electronic charge transport in bulk nanostructured Zr{sub 0.25}Hf{sub 0.75}NiSn composites with full-Heusler inclusions

    SciTech Connect

    Makongo, Julien P.A.; Misra, Dinesh K.; Salvador, James R.; Takas, Nathan J.; Wang, Guoyu; Shabetai, Michael R.; Pant, Aditya; Paudel, Pravin; Uher, Ctirad; Stokes, Kevin L.; Poudeu, Pierre F.P.

    2011-11-15

    Bulk Zr{sub 0.25}Hf{sub 075}NiSn half-Heusler (HH) nanocomposites containing various mole fractions of full-Heusler (FH) inclusions were prepared by solid state reaction of pre-synthesized HH alloy with elemental Ni at 1073 K. The microstructures of spark plasma sintered specimens of the HH/FH nanocomposites were investigated using transmission electron microscopy and their thermoelectric properties were measured from 300 K to 775 K. The formation of coherent FH inclusions into the HH matrix arises from solid-state Ni diffusion into vacant sites of the HH structure. HH(1-y)/FH(y) composites with mole fraction of FH inclusions below the percolation threshold, y{approx}0.2, show increased electrical conductivity, reduced Seebeck coefficient and increased total thermal conductivity arising from gradual increase in the carrier concentration for composites. A drastic reduction ({approx}55%) in {kappa}{sub l} was observed for the composite with y=0.6 and is attributed to enhanced phonon scattering due to mass fluctuations between FH and HH, and high density of HH/FH interfaces. - Graphical abstract: Large reduction in the lattice thermal conductivity of bulk nanostructured half-Heusler/full-Heusler (Zr{sub 0.25}Hf{sub 075}NiSn/ Zr{sub 0.25}Hf{sub 075}Ni{sub 2}Sn) composites, obtained by solid-state diffusion at 1073 K of elemental Ni into vacant sites of the half-Heusler structure, arising from the formation of regions of spinodally decomposed HH and FH phases with a spatial composition modulation of {approx}2 nm. Highlights: > Bulk composites from solid state transformation of half-Heusler matrix through Ni diffusion. > Formation of coherent phase boundaries between half-Heusler matrix and full-Heusler inclusion. > Alteration of thermal and electronic transports with increasing full-Heusler inclusion. > Enhanced phonon scattering at half-Heusler/ full-Heusler phase boundaries.

  4. Electronic band structure of compressively strained Ge{sub 1−x}Sn{sub x} with x < 0.11 studied by contactless electroreflectance

    SciTech Connect

    Zelazna, K.; Polak, M. P.; Scharoch, P.; Gladysiewicz, M.; Misiewicz, J.; Kudrawiec, R.; Serafinczuk, J.

    2015-04-06

    Contactless electroreflectance is applied to study direct optical transitions from the heavy hole, light hole, and spin-orbit split-off band to the conduction band in compressively strained Ge{sub 1−x}Sn{sub x} layers of various Sn concentrations at room temperature. It is shown that the energies of these transitions are in very good agreement with theoretical predictions, which take into account non-linear variation of bandgap and spin-orbit splitting plus the strain-related shifts obtained from the Bir-Pikus theory. The bowing parameter for the direct bandgap has been determined to be 1.8 ± 0.2 eV and agree with this one obtained within ab initio calculations, which is 1.97 eV (for indirect bandgap the bowing parameter is 0.26 eV)

  5. Hybrid surface roughening modes during low-temperature heteroepitaxy: Growth of fully-strained metastable Ge{sub 1-x}Sn{sub x} alloys on Ge(001)2x1

    SciTech Connect

    Desjardins, P.; Spila, T.; Guerdal, O.; Taylor, N.; Greene, J. E.

    1999-12-15

    Fully-strained single-crystal metastable Ge{sub 1-x}Sn{sub x} alloys were grown on Ge(001) up to their critical epitaxial thickness values t{sub epi}(x) in order to probe surface roughening pathways leading to heteroepitaxial breakdown during low-temperature molecular-beam epitaxy under large compressive strain. All films with x>0.09 have comparable roughnesses while films with x<0.09 are considerably rougher with larger lateral feature sizes. Roughening rates increase with increasing x for films with x>0.09 due to a new hybrid relaxation path which only becomes accessible under high strain as kinetic roughening provides surface oscillations on lateral length scales that allow bulk relaxation through strain-induced islanding at growth temperatures where it could not otherwise proceed. (c) 1999 The American Physical Society.

  6. Amino group combined P/Ge and P/Sn Lewis pairs: synthesis and dipolar addition reactions to alkyne and aldehyde molecules.

    PubMed

    Yu, Ying; Li, Jiancheng; Liu, Weiping; Ye, Qingsong; Zhu, Hongping

    2016-04-14

    Amino group combined P/Ge-based frustrated Lewis pairs (FLPs) Ph2PN(R)GeCl3 (R = 2,6-iPr2C6H3 (1), 2,4,6-Me3C6H2 (2), and C6H11 (3)) and Ph2PN(2,6-iPr2C6H3)GeMe3 (4) as well as P/Sn-based FLP Ph2PN(2,6-iPr2C6H3)SnMe3 (5) were prepared and utilized for reactions with alkyne and aldehyde molecules. Compounds 1-3 each reacted with MeO2CC[triple bond, length as m-dash]CCO2Me to give zwitterionic cyclic vinyls [Ph2PN(R)GeCl3](MeO2CC[double bond, length as m-dash]CCO2Me) (6-8) and compound 1 reacted with HC[triple bond, length as m-dash]CCO2Me to give the similar compound [Ph2PN(2,4,6-Me3C6H2)GeCl3](HC[double bond, length as m-dash]CCO2Me) (9). Compound 4 reacted with RC[triple bond, length as m-dash]CCO2Me to afford acyclic vinyls 2,6-iPr2C6H3N[double bond, length as m-dash]P(Ph2)C(R)[double bond, length as m-dash]C(CO2Me)GeMe3 (R = CO2Me (10), H (11)) and 5 reacted with MeO2CC[triple bond, length as m-dash]CCO2Me to give 2,6-iPr2C6H3N[double bond, length as m-dash]P(Ph2)C(CO2Me)[double bond, length as m-dash]C(CO2Me)SnMe3 (12). The reactions of 1 with CH3CH2CHO and 1,4-(CHO)2C6H4 were also investigated and yielded novel zwitterionic OCPNGe five-heteroatom cycles [Ph2PN(2,6-iPr2C6H3)GeCl3][CH(CH2CH3)O] (13) and [Ph2PN(2,6-iPr2C6H3)GeCl3][p-(OCH)C6H4CHO][Cl3GeN(2,6-iPr2C6H3)PPh2] (14). Compounds 1-14 were characterized by NMR ((1)H, (13)C, and (31)P) and CHN elemental analysis, of which 1, 7, and 10-14 were further studied by X-ray crystallography. The reactions of 4 (or 5) with RC[triple bond, length as m-dash]CCO2Me to produce 10-12 present a novel way of obtaining the germyl (or stannyl) and iminophosphoranyl co-substituted vinyls.

  7. Tetrel-hydride interaction between XH₃F (X = C, Si, Ge, Sn) and HM (M = Li, Na, BeH, MgH).

    PubMed

    Li, Qing-Zhong; Zhuo, Hong-Ying; Li, Hai-Bei; Liu, Zhen-Bo; Li, Wen-Zuo; Cheng, Jian-Bo

    2015-03-19

    A tetrel-hydride interaction was predicted and characterized in the complexes of XH3F···HM (X = C, Si, Ge, Sn; M = Li, Na, BeH, MgH) at the MP2/aug-cc-pVTZ level, where XH3F and HM are treated as the Lewis acid and base, respectively. This new interaction was analyzed in terms of geometrical parameters, interaction energies, and spectroscopic characteristics of the complexes. The strength of the interaction is essentially related to the nature of X and M groups, with both the larger atomic number of X and the increased reactivity of M giving rise to a stronger tetrel-hydride interaction. The tetrel-hydride interaction exhibits similar substituent effects to that of dihydrogen bonds, where the electron-donating CH3 and Li groups in the metal hydride strengthen the binding interactions. NBO analyses demonstrate that both BD(H-M) → BD*(X-F) and BD(H-M) → BD*(X-H) orbital interactions play the stabilizing role in the formation of the complex XH3F···HM (X = C, Si, Ge, and Sn; M = Li, Na, BeH, and MgH). The major contribution to the total interaction energy is electrostatic energy for all of the complexes, even though the dispersion/polarization parts are nonnegligible for the weak/strong tetrel-hydride interaction, respectively.

  8. First principle study of structural, electronic and magnetic properties of half-Heusler IrCrZ (Z=Ge, As, sn and sb) compounds

    NASA Astrophysics Data System (ADS)

    Allaf Behbahani, Marzieh; Moradi, Mahmood; Rostami, Mohammad; Davatolhagh, Saeed

    2016-05-01

    First-principle calculations based on the density functional theory for new half-Heusler IrCrZ (Z=Ge, As, Sn and Sb) alloys are performed. It is found that the half-Heusler IrCrGe and IrCrSn compounds have an antiferromagnetic ground state while the ferromagnetic state is more stable than the antiferromagnetic and non-magnetic states for both IrCrAs and IrCrSb compounds. IrCrAs and IrCrSb exhibit half-metallic property with integer magnetic moments of 2.00 μB per formula unit and half-metallic gaps of 0.28 and 0.27 eV at their equilibrium volume, respectively. In addition, the density of states (DOSs) and band structures of IrCrAs and IrCrSb compounds are studied and the origin of their half-metallic gaps are discussed in detail. The estimation of Curie temperatures of IrCrAs and IrCrSb compounds is performed within the mean field approximation (MFA). The Curie temperatures of IrCrAs and IrCrSb are estimated to be 1083 and 1470 K, respectively. The stability of the half-metallicity in IrCrAs and IrCrSb compounds with the variation of lattice constant are also investigated.

  9. Anomalous Hall effect and current spin polarization in Co2Fe X Heusler compounds (X =Al , Ga , In , Si , Ge , and Sn ): A systematic ab initio study

    NASA Astrophysics Data System (ADS)

    Huang, Hung-Lung; Tung, Jen-Chuan; Guo, Guang-Yu

    2015-04-01

    Co-based Heusler compounds are ferromagnetic with a high Curie temperature and a large magnetization density, and thus are promising for spintronic applications. In this paper, we perform a systematic ab initio study of two principal spin-related phenomena, namely, anomalous Hall effect and current spin polarization, in Co2-based Heusler compounds Co2Fe X (X =Al , Ga , In , Si , Ge , Sn ) in the cubic L2 1 structure within the density functional theory with the generalized gradient approximation (GGA). The accurate all-electron full-potential linearized augmented plane-wave method is used. First, we find that the spin polarization of the longitudinal current (PL) in Co2Fe X (X =Al , Ga , In , Al0.5Si0.5 , and Sn ) is ˜100 % even though that of the electronic states at the Fermi level (PD) is not. Further, the other compounds also have a high current spin polarization with PL>85 %. This indicates that all the Co2Fe X compounds considered are promising for spin-transport devices. Interestingly, PD is negative in Co2Fe X (X =Si , Ge , and Sn ), differing in sign from the PL as well as that from the transport experiments. Second, the calculated anomalous Hall conductivities (AHCs) are moderate, being within 200 S/cm, and agree well with the available experiments on a highly L2 1 ordered Co2FeSi specimen although they differ significantly from the reported experiments on other compounds where the B2 antisite disorders were present. Surprisingly, the AHC in Co2FeSi decreases and then changes sign when Si is replaced by Ge and finally by Sn. Third, the calculated total magnetic moments agree well with the corresponding experimental ones in all the studied compounds except Co2FeSi where a difference of 0.3 μB/f .u . exists. We also perform the GGA plus on-site Coulomb interaction U calculations in the GGA + U scheme. We find that including the U affects the calculated total magnetic moment, spin polarization and AHC significantly, and in most cases, unfortunately

  10. Elemental distribution and thermoelectric properties of layered tellurides 39R-M(0.067)Sb(0.667)Te(0.266) (M=Ge, Sn).

    PubMed

    Schneider, Matthias N; Fahrnbauer, Felix; Rosenthal, Tobias; Döblinger, Markus; Stiewe, Christian; Oeckler, Oliver

    2012-01-23

    The isostructural phases 39R-Ge(0.067)Sb(0.667)Te(0.266) (R3m, a=4.2649(1), c=75.061(2) Å) and 39R-Sn(0.067)Sb(0.667)Te(0.266) (R3m, a=4.2959(1), c=75.392(2) Å) were prepared by quenching stoichiometric melts of the pure elements and subsequent annealing at moderate temperatures. Their structures are comparable to "superlattices" synthesized by layer-by-layer deposition onto a substrate. These structures show no stacking disorder by electron microscopy. The structure of the metastable layered phases are similar to that of 39R-Sb(10)Te(3) (equivalent to Sb(0.769)Te(0.231)), which contains four A7 gray-arsenic-type layers of antimony alternating with Sb(2)Te(3) slabs. Joint refinements on single-crystal diffraction data using synchrotron radiation at several K edges were performed to enhance the scattering contrast. These refinements show that the elemental distributions at some atom positions are disordered whereas otherwise the structures are long-range ordered. The variation of the elemental concentration correlates with the variation in interatomic distance. Z-contrast scanning transmission electron microscopy (HAADF-STEM) on 39R-Ge(0.067)Sb(0.667)Te(0.266) confirms the presence of concentration gradients. The carrier-type of the isostructural metal (A7-type lamellae)-semiconductor heterostructures (Ge/Sn-doped Sb(2)Te(3) slabs) varies from n-type (Ge(0.067)Sb(0.667)Te(0.266)) to p-type (Sn(0.067)Sb(0.667)Te(0.266)). Although the absolute values of the Seebeck coefficient reached about 50-70 μV/K and the electrical conductivity is relatively high, the two isotypic phases exhibit a maximal thermoelectric figure of merit (ZT) of 0.06 at 400 °C as their thermal conductivity (κ≈8-9.5 W/mK at 400 °C) lies interestingly in between that of antimony and pure Sb(2)Te(3).

  11. Anomalous transport properties of the half-metallic ferromagnets Co₂TiSi, Co₂TiGe and Co₂TiSn.

    PubMed

    Barth, Joachim; Fecher, Gerhard H; Balke, Benjamin; Graf, Tanja; Shkabko, Andrey; Weidenkaff, Anke; Klaer, Peter; Kallmayer, Michael; Elmers, Hans-Joachim; Yoshikawa, Hideki; Ueda, Shigenori; Kobayashi, Keisuke; Felser, Claudia

    2011-09-28

    In this work, the theoretical and experimental investigations of Co₂TiZ (Z=Si, Ge or Sn) compounds are reported. Half-metallic ferromagnetism is predicted for all three compounds with only two bands crossing the Fermi energy in the majority channel. The magnetic moments fulfil the Slater-Pauling rule and the Curie temperatures are well above room temperature. All compounds show a metallic-like resistivity for low temperatures up to their Curie temperature, above the resistivity changes to semiconducting-like behaviour. A large negative magnetoresistance (MR) of 55 per cent is observed for Co₂TiSn at room temperature in an applied magnetic field of μ(0)H=4T, which is comparable to the large negative MRs of the manganites. The Seebeck coefficients are negative for all three compounds and reach their maximum values at their respective Curie temperatures and stay almost constant up to 950 K. The highest value achieved is -52 μVK(-1) for Co₂TiSn, which is large for a metal. The combination of half-metallicity and the constant large Seebeck coefficient over a wide temperature range makes these compounds interesting materials for thermoelectric applications and further spincaloric investigations.

  12. All-electron molecular Dirac-Hartree-Fock calculations - Properties of the XH4 and XH2 molecules and the reaction energy XH4 yields XH2 + H2, X = Si, Ge, Sn, Pb

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1992-01-01

    Relativistic corrections to a number of properties of the Group IV hydrides are calculated using the Dirac-Hartree-Fock method. The use of first-order perturbation theory is sufficient to obtain relativistic corrections for Ge, but the effects of spin-orbit interaction and other higher-order effects begin to show for Sn and become important for Pb. The energy of the reaction XH4 yields XH2 + H2 (X = Si, Ge, Sn, and Pb) is also calculated. The results are compared with relativistic effective core potential calculations, first-order perturbation theory calculations, and limited experimental data.

  13. Low-frequency noise in Si 0.7Ge 0.3 surface channel pMOSFETs with ALD HfO 2/Al 2O 3 gate dielectrics

    NASA Astrophysics Data System (ADS)

    von Haartman, M.; Wu, D.; Malm, B. G.; Hellström, P.-E.; Zhang, S.-L.; Östling, M.

    2004-12-01

    Low-frequency noise was characterized in Si0.7Ge0.3 surface channel pMOSFETs with ALD Al2O3/HfO2/Al2O3 stacks as gate dielectrics. The influences of surface treatment prior to ALD processing and thickness of the Al2O3 layer at the channel interface were investigated. The noise was of the 1/f type and could be modeled as a sum of a Hooge mobility fluctuation noise component and a number fluctuation noise component. Mobility fluctuation noise dominated the 1/f noise in strong inversion, but the number fluctuation noise component, mainly originating from traps in HfO2, also contributed closer to threshold and in weak inversion. The number fluctuation noise component was negligibly small in a device with a 2 nm thick Al2O3 layer at the SiGe channel interface, which reduced the average 1/f noise by a factor of two and decreased the device-to-device variations.

  14. New members of the A{sub 2}M′M{sub 2}{sup ″} structure family (A=Ca, Sr, Yb, La; M′=In,Sn,Pb; M″=Si,Ge)

    SciTech Connect

    Jehle, Michael; Dürr, Ines; Fink, Saskia; Lang, Britta; Langenmaier, Michael; Steckhan, Julia; Röhr, Caroline

    2015-01-15

    The new mixed tetrelides Sr{sub 2}PbGe{sub 2} and Yb{sub 2}SnGe{sub 2}, several mixed Ca/Sr (A{sup II}) germanides A{sub 2}{sup II}(Sn,Pb)Ge{sub 2} and two polymorphs of La{sub 2}InSi{sub 2} represent new members of the general structure family of ternary alkaline-earth/lanthanoid main group silicides/germanides A{sub 2}M′M{sub 2}{sup ″}(M′=In,Sn,Pb;M″=Si,Ge). All compounds were synthesized from melts of the elements and their crystal structures have been determined by means of single crystal X-ray diffraction. Sr{sub 2}PbGe{sub 2} (Cmmm, a=402.36(11), b=1542.3(4), c=463.27(10) pm) crystallizes with the Mn{sub 2}AlB{sub 2}-type structure. In exhibiting infinite planar Ge zig-zag chains, it represents one border of the compound series. The other borderline case, where only [Ge{sub 2}] dumbbells are left as Ge building units, is represented by the Ca/Yb tin germanides Ca{sub 2}SnGe{sub 2} and Yb{sub 2}SnGe{sub 2} (Mo{sub 2}FeB{sub 2}-type; P4/mbm, a=748.58(13)/740.27(7), c=445.59(8)/435.26(5) pm). In between these two border structures compounds with variable Si/Ge chain lengths could be obtained by varying the averaged size of the A{sup II} cations: Ca{sub 0.45}Sr{sub 1.55}PbGe{sub 2} (new structure type; Pbam, a=791.64(5), b=2311.2(2), c=458.53(3) pm) contains planar six-membered chain segments [Ge{sub 6}]. Tetrameric pieces [Ge{sub 4}] are the conspicuous structure elements in Ca{sub 1.16}Sr{sub 0.84}SnGe{sub 2} and La{sub 2}InSi{sub 2} (La{sub 2}InNi{sub 2}-type; Pbam, a=781.01(2)/762.01(13), b=1477.95(3)/1494.38(6), c=457.004(9)/442.1(3) pm). The tetragonal form of ’La{sub 2}InSi{sub 2}{sup ′} (exact composition: La{sub 2}In{sub 1.07}Si{sub 1.93}, P4/mbm, a=1309.11(12), c=443.32(4) pm) also crystallizes in a new structure type, containing only [Si{sub 3}] trimers as cutouts of the planar chains. In all structures the Si/Ge zig-zag chains/chain segments are connected by In/Sn/Pb atoms to form planar M layers, which are separated by pure A layers. Band

  15. Intermetallic compounds of the heaviest elements and their homologs: The electronic structure and bonding of MM', where M =Ge, Sn, Pb, and element 114, and M'=Ni, Pd, Pt, Cu, Ag, Au, Sn, Pb, and element 114

    NASA Astrophysics Data System (ADS)

    Pershina, V.; Anton, J.; Fricke, B.

    2007-10-01

    Fully relativistic (four-component) density-functional theory calculations were performed for intermetallic dimers MM', where M =Ge, Sn, Pb, and element 114, and M'=group 10 elements (Ni, Pd, and Pt) and group 11 elements (Cu, Ag, and Au). PbM and 114M, where M are group 14 elements, were also considered. The results have shown that trends in spectroscopic properties—atomization energies De, vibrational frequencies ωe, and bond lengths Re, as a function of M', are similar for compounds of Ge, Sn, Pb, and element 114, except for De of PbNi and 114Ni. They were shown to be determined by trends in the energies and space distribution of the valence ns(M ') atomic orbitals (AOs). According to the results, element 114 should form the weakest bonding with Ni and Ag, while the strongest with Pt due to the largest involvement of the 5d(Pt) AOs. In turn, trends in the spectroscopic properties of MM' as a function of M were shown to be determined by the behavior of the np1/2(M ) AOs. Overall, De of the element 114 dimers are about 1eV smaller and Re are about 0.2a.u. larger than those of the corresponding Pb compounds. Such a decrease in bonding of the element 114 dimers is caused by the large SO splitting of the 7p orbitals and a decreasing contribution of the relativistically stabilized 7p1/2(114) AO. On the basis of the calculated De for the dimers, adsorption enthalpies of element 114 on the corresponding metal surfaces were estimated: They were shown to be about 100-150kJ/mol smaller than those of Pb.

  16. The study of bonding in pyramidanes [(Me3Si)4C4]E (E = Ge, Sn, Pb) by optical (Raman, UV-vis) spectroscopy and quantum-chemical methods

    NASA Astrophysics Data System (ADS)

    Leites, Larissa A.; Aysin, Rinat R.; Bukalov, Sergey S.; Lee, Vladimir Ya.; Sugasawa, Hakura; Sekiguchi, Akira

    2017-02-01

    The nature of the apex-base bonds in organometallics of a novel class - pyramidanes [(Me3Si)4C4]E (E = Ge, Sn, Pb) was shown to be covalent but with a high degree of polarity on the basis of the Raman data and the results of QTAIM analysis. NICS data suggest three-dimensional aromaticity of the C4E pyramid.

  17. Direct ICP-MS determination of trace and ultratrace elements in geological materials after decomposition in a microwave oven. Part II. Quantitation of Ba, Cs, Ga, Hf, In, Mo, Nb, Pb, Rb, Sn, Sr, Ta and Tl.

    PubMed

    Gupta, J G; Bertrand, N B

    1995-12-01

    A new method has been developed for the rapid determination of traces of Ba, Cs, Ga, Hf, In, Mo, Nb, Pb, Rb, Sn, Sr, Ta and Tl in silicate rocks and lake, stream and river sediments. The method involved dissolution of samples in a microwave oven by heating in a pressure decomposition Teflon vessel with a mixture of HF + HNO(3) + HCl + H(3)BO(3) + EDTA followed by direct multielement determination using inductively coupled plasma-mass spectrometry (ICP MS ). The method is faster than conventional dissolution of samples by open vessel acid digestion and fusion and determination by instrumental methods. The accuracy and precision of the developed method were tested by replicate analyses of a number of international geochemical reference samples of established trace element contents. Satisfactory correlation with the "recommended" or "consensus" values was found and recoveries were in most cases 95-100%. New values for Ga, In, Nb and Tl in several international geochemical reference materials are first reported in this paper.

  18. Enhancement of thermoelectric figure-of-merit at low temperatures by titanium substitution for hafnium in n-type half-Heuslers Hf0.75-xTixZr0.25NiSn0.99Sb0.01

    SciTech Connect

    Joshi, Giri; Dahal, Tulashi; Chen, Shuo; Wang, Hengzhi Z; Shiomi, Junichiro; Chen, Gang; Ren, Zhifeng F.

    2012-08-08

    The effect of titanium (Ti) substitution for hafnium (Hf) on thermoelectric properties of (Hf, Zr)-based n-type half-Heuslers: Hf0.75-xTixZr0.25NiSn0.99Sb0.01, has been studied. The samples are made by arc melting followed by ball milling and hot pressing via the nanostructuring approach. A peak thermoelectric figure-of-merit (ZT) of ~1.0 is achieved at 500 °C in samples with a composition of Hf0.5Zr0.25Ti0.25NiSn0.99Sb0.01 due to a slight increase in carrier concentration and also a lower thermal conductivity caused by Ti. TheZT values below 500 °C of hot pressed Hf0.5Zr0.25Ti0.25NiSn0.99Sb0.01 samples are significantly higher than those of the same way prepared Hf0.75Zr0.25NiSn0.99Sb0.01samples at each temperature, which are very much desired for mid-range temperature applications such as waste heat recovery in automobiles.

  19. All-electron molecular Dirac-Hartree-Fock calculations - Properties of the group IV monoxides GeO, SnO, and PbO

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1993-01-01

    Dirac-Hartree-Fock calculations have been carried out on the ground states of the group IV monoxides GeO, SnO and PbO. Geometries, dipole moments and infrared data are presented. For comparison, nonrelativistic, first-order perturbation and relativistic effective core potential calculations have also been carried out. Where appropriate the results are compared with the experimental data and previous calculations. Spin-orbit effects are of great importance for PbO, where first-order perturbation theory including only the mass-velocity and Darwin terms is inadequate to predict the relativistic corrections to the properties. The relativistic effective core potential results show a larger deviation from the all-electron values than for the hydrides, and confirm the conclusions drawn on the basis of the hydride calculations.

  20. The excitation energies, ionization potentials, and oscillator strengths of neutral and ionized species of Uuq (Z=114) and the homolog elements Ge, Sn, and Pb.

    PubMed

    Yu, Y J; Dong, C Z; Li, J G; Fricke, B

    2008-03-28

    Multiconfiguration Dirac-Fock method is employed to calculate the excitation energies, ionization potentials, oscillator strengths, and radii for all neutral and up to four times ionized species of element Uuq, as well as the homolog elements Ge, Sn, and Pb. Using an extrapolative scheme, improved ionization potentials of Uuq were obtained with an uncertainty of less than 2000 cm(-1). Two relatively stronger resonance transitions are predicted for the element Uuq. In particular, the strongest line in Uuq, corresponding to the [6d(10)7s(2)7p(3/2)8s(1/2)](1)-->[6d(10)7s(2)7p(3/2)(2)](2) transition at 22 343 cm(-1), just lies in the prime energy region of experimental measurement.

  1. Configuration interaction study including the effects of spin-orbit coupling for the electronic states of the LiX molecules (X = C, Si, Ge, Sn)

    NASA Astrophysics Data System (ADS)

    Rai-Constapel, Vidisha; Liebermann, Heinz-Peter; Alekseyev, Aleksey B.; Buenker, Robert J.

    2011-03-01

    Ab initio multireference configuration interaction calculations including spin-orbit coupling effects have been carried out for four LiX molecules (X = C, Si, Ge and Sn). Potential energy curves of the ground and low-lying excited states have been obtained in each case as well as the corresponding spectroscopic constants. Transition moments have also been computed in order to give estimates of the radiative lifetimes of the excited states for each system. Trends in a variety of quantities such as T e values, spin-orbit splittings, equilibrium bond lengths and vibrational frequencies for this series of molecules are discussed in detail and comparison with the corresponding data reported earlier for the PbLi system is also made.

  2. MAX phase - Alumina composites via elemental and exchange reactions in the Tin+1ACn systems (A=Al, Si, Ga, Ge, In and Sn)

    NASA Astrophysics Data System (ADS)

    Cuskelly, Dylan; Richards, Erin; Kisi, Erich

    2016-05-01

    Extension of the aluminothermal exchange reaction synthesis of Mn+1AXn phases to systems where the element 'A' is not the reducing agent was investigated in systems TiO2-A-Al-C for A=Al, Si, Ga, Ge, In and Sn as well as Cr2O3-Ga-Al-C. MAX phase-Al2O3 composites were made in all systems except those with A=Ga or In. The effectiveness of conversion to MAX phases was generally in the range 63-96% without optimisation of starting ratios. Optimisation in the Ti-Si-C system gave a MAX phase component with >98% Ti3SiC2.

  3. Nonlinear structure-composition relationships in the Ge1-ySny/Si(100) (y<0.15) system

    SciTech Connect

    Beeler, R.; Roucka, R.; Chizmeshya, A. V. G.; Kouvetakis, J.; Menéndez, J.

    2011-07-26

    The compositional dependence of the cubic lattice parameter in Ge1-ySny alloys has been revisited. Large 1000-atom supercell ab initio simulations confirm earlier theoretical predictions that indicate a positive quadratic deviation from Vegard's law, albeit with a somewhat smaller bowing coefficient, θ = 0.047 Å, than found from 64-atom cell simulations (θ = 0.063 Å). On the other hand, measurements from an extensive set of alloy samples with compositions y < 0.15 reveal a negative deviation from Vegard's law. The discrepancy with earlier experimental data, which supported the theoretical results, is traced back to an unexpected compositional dependence of the residual strain after growth on Si substrates. The experimental bowing parameter for the relaxed lattice constant of the alloys is found to be θ = -0.066 Å. Possible reasons for the disagreement between theory and experiment are discussed in detail.

  4. All-electron molecular Dirac-Hartree-Fock calculations: Properties of the group IV monoxides GeO, SnO and PbO

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1991-01-01

    Dirac-Hartree-Fock calculations have been carried out on the ground states of the group IV monoxides GeO, SnO and PbO. Geometries, dipole moments and infrared data are presented. For comparison, nonrelativistic, first-order perturbation and relativistic effective core potential calculations have also been carried out. Where appropriate the results are compared with the experimental data and previous calculations. Spin-orbit effects are of great importance for PbO, where first-order perturbation theory including only the mass-velocity and Darwin terms is inadequate to predict the relativistic corrections to the properties. The relativistic effective core potential results show a larger deviation from the all-electron values than for the hydrides, and confirm the conclusions drawn on the basis of the hydride calculations.

  5. Electrophysical properties of (CdSe)/sub x/(Cu/sub 2/Ge(Sn)Se/sub 3/)/sub 1-x/

    SciTech Connect

    Dovletov, K.; Mkrtchyan, S.A.; Zhukov, E.G.; Melikdzhanyan, A.G.

    1987-10-01

    The temperature dependence of the electrical conductivity, Hall coefficient, thermo emf, and Hall mobility of the charge carriers in cadmium selenide and solid solutions based on it were studied for the temperature range 300-950/sup 0/K. The concentration of charge carriers increases with increase in the content of Cu/sub 2/GeSe/sub 3/ or Cu/sub 2/SnSe/sub 3/ at 300/sup 0/K, and this in turn leads to increased electrical conductivity in the solid solutions. The thermo emf and Hall mobility, however, decrease. The temperature dependence of the thermo emf, Hall coefficient, and Hall mobility in the solid solutions substantially differ from the analogous behavior in cadmium selenide.

  6. Vibrationally high-resolved electronic spectra of MCl2 (M = C, Si, Ge, Sn, Pb) and photoelectron spectra of MCl2-

    NASA Astrophysics Data System (ADS)

    Ran, Yibin; Pang, Min; Shen, Wei; Li, Ming; He, Rongxing

    2016-10-01

    We systematically studied the vibrational-resolved electronic spectra of group IV dichlorides using the Franck-Condon approximation combined with the Duschinsky and Herzberg-Teller effects in harmonic and anharmonic frameworks (only the simulation of absorption spectra includes the anharmonicity). Calculated results showed that the band shapes of simulated spectra are in accordance with those of the corresponding experimental or theoretical ones. We found that the symmetric bend mode in progression of absorption is the most active one, whereas the main contributor in photoelectron spectra is the symmetric stretching mode. Moreover, the Duschinsky and anharmonic effects exert weak influence on the absorption spectra, except for PbCl2 molecule. The theoretical insights presented in this work are significant in understanding the photophysical properties of MCl2 (M = C, Si, Ge, Sn, Pb) and studying the Herzberg-Teller and the anharmonic effects on the absorption spectra of new dichlorides of this main group.

  7. Studies on the local structures and spin Hamiltonian parameters for the rhombic Nb4+ centers in MO2 (M = Sn, Ti and Ge) crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Z.-H.; Wu, S.-Y.; Xu, P.; Li, L.-L.; Zhang, S.-X.

    2011-02-01

    The local structures and the spin Hamiltonian parameters for the substitutional Nb4+ centers in MO2 (M = Sn, Ti and Ge) crystals are theoretically studied using the perturbation formulas of these parameters for a 4d1 ion in a rhombically compressed octahedron. The above Nb4+ centers are found to experience the Jahn-Teller distortions, characteristic of the relative axial compressions (~ 0.01-0.02 Å) and the non-axial (planar) angular increases (~ 3°). As a result, the ligand octahedra are transformed from original elongation on host tetravalent cation sites to compression in the impurity centers, with additional non-axial distortions smaller than those in the hosts. The influences of the Jahn-Teller distortions and the ligand orbital contributions are also analyzed.

  8. Critical current density of Nb3Sn wires after irradiation with 65MeV and 24GeV protons

    NASA Astrophysics Data System (ADS)

    Spina, T.; Scheuerlein, C.; Richter, D.; Bottura, L.; Ballarino, A.; Flükiger, R.

    2014-05-01

    Industrial Nb3Sn wires with Ti and Ta additives (RRP process) and with Ta additives (PIT process) with a diameter of 1 mm have been irradiated at room temperature with protons of 65 MeV and of 24 GeV at various fluences up to 1×1021 p/m2. A steady increase of Jc vs. fluence was observed for all the wires up to the highest fluence. The observed increase of Jc at 4.2K in all wires was quite similar in spite of the very different proton energies. With increasing fluence. the radiation induced pinning force was found to increase. the enhancement Jc/Jco after 5.04×1020 p/m2 reaching 1.4 for Ta and 1.8 for Ti alloyed wires at 10T. The present results were quantitatively analysed by assuming a radiation induced point pinning mechanism in addition to grain boundary pinning. The results are compared with those of an ongoing neutron irradiation study undertaken on the same Nb3Sn wires in collaboration with the Atominstitut Vienna. Proton irradiation was found to produce considerably higher damage than neutron irradiation.

  9. Unraveling the origin of the relative stabilities of group 14 M2N2(2+) (M, N = C, Si, Ge, Sn, and Pb) isomer clusters.

    PubMed

    Díaz-Cervantes, Erik; Poater, Jordi; Robles, Juvencio; Swart, Marcel; Solà, Miquel

    2013-10-10

    We analyze the molecular structure, relative stability, and aromaticity of the lowest-lying isomers of group 14 M2N2(2+) (M and N = C, Si, and Ge) clusters. We use the gradient embedded genetic algorithm to make an exhaustive search for all possible isomers. Group 14 M2N2(2+) clusters are isoelectronic with the previously studied group 13 M2N2(2-) (M and N = B, Al, and Ga) clusters that includes Al4(2-), the archetypal all-metal aromatic molecule. In the two groups of clusters, the cyclic isomers present both σ- and π-aromaticity. However, at variance with group 13 M2N2(2-) clusters, the linear isomer of group 14 M2N2(2+) is the most stable for two of the clusters (C2Si2(2+) and C2Ge2(2+)) , and it is isoenergetic with the cyclic D(4h) isomer in the case of C4(2+). Energy decomposition analyses of the lowest-lying isomers and the calculated magnetic- and electronic-based aromaticity criteria of the cyclic isomers help to understand the nature of the bonding and the origin of the stability of the global minima. Finally, for completeness, we have also analyzed the structure and stability of the heavier Sn and Pb group 14 M2N2(2+) analogues.

  10. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 lead-free piezoelectric ceramics with high Curie temperature

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Che; Chao, Wei-Hsiang; Chu, Sheng-Yuan; Hong, Cheng-Shong; Weng, Chung-Ming; Su, Hsiu-Hsien

    2016-12-01

    In this work, the process of two-stage modifications for (Ba0.97Ca0.03)(Ti0.96Sn0.04-xHfx)O3 (BCTS4-100xH100x) ceramics was studied. The trade-off composition was obtained by Hf substitution for Sn and MnO2 doping (two-stage modification) which improves the temperature stability and piezoelectric properties. The phase structure ratio, microstructure, and dielectric, piezoelectric, ferroelectric, and temperature stability properties were systematically investigated. Results showed that BCTS4-100xH100x piezoelectric ceramics with x=0.035 had a relatively high Curie temperature (TC) of about 112 °C, a piezoelectric charge constant (d33) of 313 pC/N, an electromechanical coupling factor (kp) of 0.49, a mechanical quality factor (Qm) of 122, and a remnant polarization (Pr) of 19 μ C /cm2 . In addition, the temperature stability of the resonant frequency (fr), kp, and aging d33 could be tuned via Hf content. Good piezoelectric temperature stability (up to 110 °C) was found with x =0.035. BCTS0.5H3.5 + a mol% Mn (BCTSH + a Mn) piezoelectric ceramics with a = 2 had a high TC of about 123 °C, kp ˜ 0.39, d33 ˜ 230 pC/N, Qm ˜ 341, and high temperature stability due to the produced oxygen vacancies. This mechanism can be depicted using the complex impedance analysis associated with a valence compensation model on electric properties. Two-stage modification for lead-free (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 ceramics suitably adjusts the compositions for applications in piezoelectric motors and actuators.

  11. Origin of the granites and related Sn and Pb-Zn polymetallic ore deposits in the Pengshan district, Jiangxi Province, South China: constraints from geochronology, geochemistry, mineral chemistry, and Sr-Nd-Hf-Pb-S isotopes

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Jiang, Shao-Yong; Luo, Lan; Zhao, Kui-Dong; Ma, Liang

    2016-05-01

    The Pengshan Sn and Pb-Zn polymetallic deposits are located in the south margin of the Jiujiang-Ruichang (Jiurui) district of the Middle-Lower Yangtze River Metallogenic Belt in South China. Four large deposits include Huangjinwa, Zengjialong, Jianfengpo, and Zhangshiba, the former three are Sn-dominant deposits which occur as stratiform orebodies in the contact zones of the Pengshan granites and within the country rock strata, whereas Zhangshiba consists of stratiform Pb-Zn orebodies within the Precambrian metasedimentary strata. In this study, we present results on zircon U-Pb ages, major and trace elements, and mineral chemistry as well as Sr-Nd-Hf isotope data of the granites, Pb and S isotopes of both the Sn-dominant and Pb-Zn dominant deposits, and U-Pb dating of cassiterite from the Pengshan district. SHRIMP and LA-ICP-MS zircon U-Pb dating shows that the Pengshan granites were emplaced in the Early Cretaceous (129-128 Ma), which is in good agreement with the U-Pb dating (130-128 Ma) of cassiterite from the Jianfengpo Sn deposit. The Pengshan granites consist mainly of weakly peraluminous highly fractionated I-type affinity granitic rocks. Detailed elemental and isotopic data suggest that the granites formed by partial melting of Mesoproterozoic metamorphic basement materials with minor input of mantle-derived melts. The mineral chemistry of biotite demonstrates that the Pengshan granitic magma had a low oxygen fugacity, thereby precluding the tin dominantly partitioning into the rock-forming silicate minerals and favoring accumulation in the exsolved residual liquid during magma crystallization stages. Sulfur isotopes show a relatively heavy sulfur isotopic composition from 5.8 to 17.6 ‰, and no difference for sulfur isotopes between the Sn deposits (5.8-13.4 ‰, Huangjinwa, Zengjialong, Jianfengpo) and the Pb-Zn deposit (mostly 7.1-13.0 ‰, except for one 17.6 ‰, Zhangshiba). The sulfur isotope data of pyrite from the host sedimentary rocks show

  12. Origin of the granites and related Sn and Pb-Zn polymetallic ore deposits in the Pengshan district, Jiangxi Province, South China: constraints from geochronology, geochemistry, mineral chemistry, and Sr-Nd-Hf-Pb-S isotopes

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Jiang, Shao-Yong; Luo, Lan; Zhao, Kui-Dong; Ma, Liang

    2017-03-01

    The Pengshan Sn and Pb-Zn polymetallic deposits are located in the south margin of the Jiujiang-Ruichang (Jiurui) district of the Middle-Lower Yangtze River Metallogenic Belt in South China. Four large deposits include Huangjinwa, Zengjialong, Jianfengpo, and Zhangshiba, the former three are Sn-dominant deposits which occur as stratiform orebodies in the contact zones of the Pengshan granites and within the country rock strata, whereas Zhangshiba consists of stratiform Pb-Zn orebodies within the Precambrian metasedimentary strata. In this study, we present results on zircon U-Pb ages, major and trace elements, and mineral chemistry as well as Sr-Nd-Hf isotope data of the granites, Pb and S isotopes of both the Sn-dominant and Pb-Zn dominant deposits, and U-Pb dating of cassiterite from the Pengshan district. SHRIMP and LA-ICP-MS zircon U-Pb dating shows that the Pengshan granites were emplaced in the Early Cretaceous (129-128 Ma), which is in good agreement with the U-Pb dating (130-128 Ma) of cassiterite from the Jianfengpo Sn deposit. The Pengshan granites consist mainly of weakly peraluminous highly fractionated I-type affinity granitic rocks. Detailed elemental and isotopic data suggest that the granites formed by partial melting of Mesoproterozoic metamorphic basement materials with minor input of mantle-derived melts. The mineral chemistry of biotite demonstrates that the Pengshan granitic magma had a low oxygen fugacity, thereby precluding the tin dominantly partitioning into the rock-forming silicate minerals and favoring accumulation in the exsolved residual liquid during magma crystallization stages. Sulfur isotopes show a relatively heavy sulfur isotopic composition from 5.8 to 17.6 ‰, and no difference for sulfur isotopes between the Sn deposits (5.8-13.4 ‰, Huangjinwa, Zengjialong, Jianfengpo) and the Pb-Zn deposit (mostly 7.1-13.0 ‰, except for one 17.6 ‰, Zhangshiba). The sulfur isotope data of pyrite from the host sedimentary rocks show

  13. TbNb6Sn6: the first ternary compound from the rare earth–niobium–tin system

    PubMed Central

    Oshchapovsky, Igor; Pavlyuk, Volodymyr; Fässler, Thomas F.; Hlukhyy, Viktor

    2010-01-01

    The title compound, terbium hexa­niobium hexastannide, TbNb6Sn6, is the first ternary compound from the rare earth–niobium–tin system. It has the HfFe6Ge6 structure type, which can be analysed as an inter­growth of the Zr4Al3 and CaCu5 structures. All the atoms lie on special positions; their coordination geometries and site symmetries are: Tb (dodeca­hedron) 6/mmm; Nb (distorted icosa­hedron) 2mm; Sn (Frank–Caspar polyhedron, CN = 14–15) 6mm and m2; Sn (distorted icosa­hedron) m2. The structure contains a graphite-type Sn network, Kagome nets of Nb atoms, and Tb atoms alternating with Sn2 dumbbells in the channels. PMID:21589205

  14. The thermodynamic, electronic and magnetic properties of Ni2MnX (X=Ge, Sn, Sb) Heusler alloys: a quasi-hormonic Debye model and first principles study

    NASA Astrophysics Data System (ADS)

    Li, Jia; Zhang, Zhidong; Sun, Yubao; Zhang, Jian; Zhou, Guoxiang; Luo, Hongzhi; Liu, Guodong

    2013-01-01

    The thermodynamic, electronic and magnetic properties of Ni2MnX (X=Ge, Sn, Sb) Heusler alloys are investigated using the quasi-hormonic Debye model and the first principles calculation based on the density-functional-theory. The calculated results of the temperature dependent bulk modulus, coefficient of thermal expansion and the P-V relation for Ni2MnX (X=Ge, Sn, Sb) indicate that the bonding strength becomes stronger along the sequence of Ni2MnSb→Ni2MnSn→Ni2MnGe. The slower change trend of temperature dependent heat capacity of Ni2MnGe than that of Ni2MnSn and Ni2MnSb stems from the larger contribution of electronic heat capacity and smaller contribution of lattice heat capacity compared to the other two alloys. The ferromagnetic coupling order between the Ni and Mn is confirmed by our first principles calculations. The total moments in one primitive cell for the three alloys are all about 4.0 μB which are mainly carried by Mn atom with about 3.5 μB as can be seen from the magnetization density distribution.

  15. D3h [A-CE3-A]- (E = Al and Ga, A = Si, Ge, Sn, and Pb): A new class of hexatomic mono-anionic species with trigonal bipyramidal carbon

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Bo; Li, Yan-Qin; Bai, Hui; Lu, Hai-Gang; Li, Si-Dian; Zhai, Hua-Jin; Wang, Zhi-Xiang

    2014-03-01

    The non-classical trigonal bipyramidal carbon (TBPC) arrangement generally exists as transition states (TSs) in nucleophilic bimolecular substitution (SN2) reactions. Nevertheless, chemists have been curious about whether such a carbon bonding could be stable in equilibrium structures for decades. As the TBPC arrangement was normally realized as cationic species theoretically and experimentally, only one anionic example ([At-C(CN)3-At]-) was computationally devised. Herein, we report the design of a new class of anionic TBPC species by using the strategy similar to that for stabilizing the non-classical planar hypercoordinate carbon. When electron deficient Al and Ga were used as the equatorial ligands, eight D3h [A-CE3-A]- (E = Al and Ga, A = Si, Ge, Sn, and Pb) TBPC structures were found to be the energy minima rather than TSs at both the B3LYP and MP2 levels. Remarkably, the energetic results at the CCSD(T) optimization level further identify [Ge-CAl3-Ge]- and [Sn-CGa3-Sn]- even to be the global minima and [Si-CAl3-Si]- and [Ge-CGa3-Ge]- to be the local minima, only slightly higher than their global minima. The electronic structure analyses reveal that the substantial ionic C-E bonding, the peripheral E-A covalent bonding, and the axial mc-2e (multi center-two electrons) bonding play roles in stabilizing these TBPC structures. The structural simplicity and the high thermodynamic stability suggest that some of these species may be generated and captured in the gas phase. Furthermore, as mono-anionic species, their first vertical detachment energies are differentiable from those of their nearest isomers, which would facilitate their characterization via experiments such as the negative ion photoelectron spectroscopy.

  16. Gas chromatography mass spectrometry study of hydrogen deuterium exchange reactions of volatile hydrides of As, Sb, Bi, Ge and Sn in aqueous media

    NASA Astrophysics Data System (ADS)

    D'Ulivo, Alessandro; Mester, Zoltan; Meija, Juris; Sturgeon, Ralph E.

    2006-07-01

    The H-D exchange processes in MH n or MD n hydrides (M = As, Sb, Bi, n = 3; M = Ge, Sn, n = 4) taking place when they are in contact with H 2O or D 2O solution at different pH or pD values (interval of pH = [0,13]) have been investigated using gas chromatography-mass spectrometry (GC-MS). MH n or MD n compounds were injected into the headspace of reaction vials (4-12 ml) containing 1-2 ml of buffered solution maintained under stirring or shaking conditions. The isotopic composition of the gaseous phase hydrides/deuterides was determined at regular intervals in the range of time 0-15 min. The MH n or MD n compounds were synthesized in separate vials and their purity was checked separately before injection into the reaction vials. The mass spectra were deconvoluted in order to estimate the relative abundance of each species formed following the H-D exchange process (AsH nD 3- n , SbH nD 3- n, BiH nD 3- n, n = 0-3; GeH nD 4- n, SnH nD 4- n, n = 0-4) and the relative abundance of H and D. In the investigated pH (or pD) interval arsanes and stibanes undergo H-D exchange in alkaline media for pH > 7. No H-D exchange was detected for the other hydrides, where the prevailing process is their decomposition in the aqueous phase. A reaction model, based on the formation of protonated or deprotonated intermediates is proposed for H-D exchange of MH n or MD n compounds placed in contact with H 2O or D 2O at different pH or pD values. The H-D exchange in the already formed hydrides can be source of the interference in mechanistic studies on hydride formation performed using labeled reagents; no H-D exchange was detected within the following pH intervals that can be considered free from interference: arsanes pH = [0,7), stibanes pH = [0,7), bismuthanes, germanes and stannanes pH = [0,13].

  17. Optical investigations of InGaN heterostructures and GeSn nanocrystals for photonic and phononic applications: light emitting diodes and phonon cavities

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan din Ahmad

    InGaN heterostructures are at the core of blue light emitting diodes (LEDs) which are the basic building blocks for energy efficient and environment friendly modern white light generating sources. Through quantum confinement and electronic band structure tuning on the opposite end of the spectrum, Ge1-xSnx alloys have recently attracted significant interest due to its potential role as a silicon compatible infra-red (IR) optical material for photodetectors and LEDs owing to transition to direct bandgap with increasing Sn. This thesis is dedicated to establishing an understanding of the optical processes and carrier dynamics in InGaN heterostructures for achieving more efficient visible light emitters and terahertz generating nanocavities and in colloidal Ge1-xSnx quantum dots (QDs) for developing efficient silicon compatible optoelectronics. To alleviate the electron overflow, which through strong experimental evidence is revealed to be the dominating mechanism responsible for efficiency degradation at high injection in InGaN based blue LEDs, different strategies involving electron injectors and optimized active regions have been developed. Effectiveness of optimum electron injector (EI) layers in reducing electron overflow and increasing quantum efficiency of InGaN based LEDs was demonstrated by photoluminescence (PL) and electroluminescence spectroscopy along with numerical simulations. Increasing the two-layer EI thickness in double heterostructure LEDs substantially reduced the electron overflow and increased external quantum efficiency (EQE) by three fold. By incorporating delta p-doped InGaN barriers in multiple quantum well (MQW) LEDs, 20% enhancement in EQE was achieved due to improved hole injection without degrading the layer quality. Carrier diffusion length, an important physical parameter that directly affects the performance of optoelectronic devices, was measured in epitaxial GaN using PL spectroscopy. The obtained diffusion lengths at room

  18. Synthesis, crystal structure, electronic structure and electrical conductivity of La3GeSb0.31Se7 and La3SnFe0.61Se7

    NASA Astrophysics Data System (ADS)

    Assoud, Abdeljalil; Sankar, Cheriyedath Raj; Kleinke, Holger

    2014-12-01

    The selenides La3EM1-xSe7 (La6E2M2-xSe14) adopt the Ce6Al3.33S14 structure type. La3GeSb0.31Se7 and La3SnFe0.61Se7 crystallize in the non-centrosymmetric space group P63 with La replacing Ce in the 6c site, E = Ge or Sn replacing Al in the 2b site and M = Fe or Sb replacing the other, deficient Al site (2a). The structure contains La atoms in square antiprisms of Se atoms, isolated distorted [ESe4] tetrahedra, and face sharing distorted [MSe6] octahedra forming a linear chain along the c-axis with short M-M distances. Band structure calculations predict semiconducting character with different gaps, which was demonstrated by electrical conductivity measurements and reflected in their different colors.

  19. Electronic structures and magnetism in the Li2AgSb-type Heusler alloys, Zr2CoZ (Z=Al, Ga, In, Si, Ge, Sn, Pb, Sb): A first-principles study

    NASA Astrophysics Data System (ADS)

    Wang, X. T.; Cui, Y. T.; Liu, X. F.; Liu, G. D.

    2015-11-01

    The electronic and magnetic properties of Zr2CoZ (Z=Al, Ga, In, Si, Ge, Sn, Pb, and Sb) alloys with a Li2AgSb-type structure were investigated systematically using the first-principle calculations. Zr2CoZ (Z=Al, Ga, In, Si, Ge, Sn, and Pb) alloys are predicted to be half-metallic ferromagnets at their equilibrium lattice constants. The Zr2Co-based alloys have Mt (the total magnetic moment per unit cell) and Zt (the valence concentration) values following Slater-Pauling rule of Mt=Zt-18. The effects of lattice constants on the electronic and the magnetic properties are discussed in detail. Moreover, all the alloys investigated in this paper have a negative formation energy, which implies that they are thermodynamically stable.

  20. Effects of Rh on the thermoelectric performance of the p-type Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} half-Heusler alloys

    SciTech Connect

    Maji, Pramathesh; Takas, Nathan J.; Misra, Dinesh K.; Gabrisch, Heike; Stokes, Kevin; Poudeu, Pierre F.P.

    2010-05-15

    We show that Rh substitution at the Co site in Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} (0<=x<=1) half-Heusler alloys strongly reduces the thermal conductivity with a simultaneous, significant improvement of the power factor of the materials. Thermoelectric properties of hot-pressed pellets of several compositions with various Rh concentrations were investigated in the temperature range from 300 to 775 K. The Rh 'free' composition shows n-type conduction, while Rh substitution at the Co site drives the system to p-type semiconducting behavior. The lattice thermal conductivity of Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} alloys rapidly decreased with increasing Rh concentration and lattice thermal conductivity as low as 3.7 W/m*K was obtained at 300 K for Zr{sub 0.5}Hf{sub 0.5}RhSb{sub 0.99}Sn{sub 0.01}. The drastic reduction of the lattice thermal conductivity is attributed to mass fluctuation induced by the Rh substitution at the Co site, as well as enhanced phonon scattering at grain boundaries due to the small grain size of the synthesized materials. - Graphical abstract: Significant reduction of the lattice thermal conductivity with increasing Rh concentration in the p-type Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} half-Heusler materials prepared by solid state reaction at 1173 K.

  1. Optical spectra, electronic structure and aromaticity of benzannulated N-heterocyclic carbene and its analogues of the type C6H4(NR)2E: (E = Si, Ge, Sn, Pb).

    PubMed

    Aysin, Rinat R; Bukalov, Sergey S; Leites, Larissa A; Zabula, Alexander V

    2017-02-24

    A series of benzannulated N-heterocyclic compounds containing divalent 14 group atoms, C6H4(NR)2E(II), E = C, Si, Ge, Sn, Pb, have been studied by various experimental (vibrational and UV-vis spectroscopy) and theoretical (NICS, ISE, ACID) techniques. The methods used confirm 10 π-electron delocalization (aromaticity) in these heterocycles, however, the aromaticity sequences estimated by the criteria based on different physical properties do not coincide.

  2. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X=Si, Ge, or Sn)

    PubMed Central

    Chang, Guoqing; Xu, Su-Yang; Zheng, Hao; Singh, Bahadur; Hsu, Chuang-Han; Bian, Guang; Alidoust, Nasser; Belopolski, Ilya; Sanchez, Daniel S.; Zhang, Songtian; Lin, Hsin; Hasan, M. Zahid

    2016-01-01

    Topological semimetals (TSMs) including Weyl semimetals and nodal-line semimetals are expected to open the next frontier of condensed matter and materials science. Although the first inversion breaking Weyl semimetal was recently discovered in TaAs, its magnetic counterparts, i.e., the time-reversal breaking Weyl and nodal line semimetals, remain elusive. They are predicted to exhibit exotic properties distinct from the inversion breaking TSMs including TaAs. In this paper, we identify the magnetic topological semimetal states in the ferromagnetic half-metal compounds Co2TiX (X = Si, Ge, or Sn) with Curie temperatures higher than 350 K. Our first-principles band structure calculations show that, in the absence of spin-orbit coupling, Co2TiX features three topological nodal lines. The inclusion of spin-orbit coupling gives rise to Weyl nodes, whose momentum space locations can be controlled as a function of the magnetization direction. Our results not only open the door for the experimental realization of topological semimetal states in magnetic materials at room temperature, but also suggest potential applications such as unusual anomalous Hall effect in engineered monolayers of the Co2TiX compounds at high temperature. PMID:27974837

  3. Full potential calculation of electronic properties of rutile RO 2 (R=Si, Ge, Sn and Pb) compounds via modified Becke Johnson potential

    NASA Astrophysics Data System (ADS)

    Singh, Hardev; Singh, Mukhtiyar; Kumar, Sarvesh; Kashyap, Manish K.

    2011-10-01

    The electronic properties of RO 2 (R=Si, Ge, Sn and Pb; a group IVA element) compounds in rutile structure have been calculated using WIEN2k implementation of full potential linearized augmented plane wave (FPLAPW) method. The exchange and correlation (XC) effects are taken into account by an orbital independent modified Becke Johnson (MBJ) potential as coupled with Local Density Approximation (LDA) for all the compounds except for PbO 2 where only Generalized Gradient Approximation (GGA) is considered for the same. We predict a direct band gap in all these compounds with continuous decrease as the atomic size of IVA element increases such that there is an appearance of semimetallic band structure for the last compound, PbO 2. The largest band gap (7.66 eV) has been found for SiO 2, which governs its insulating nature. We observe that MBJLDA results for band gaps of these compounds are far better than those obtained using GGA and Engel-Vosko's GGA (EV-GGA). A very good agreement is observed between MBJLDA band gaps with corresponding experimental values as compared to other calculations. The electronic band structures are also analyzed in terms of contributions from various electrons.

  4. An assessment of DFT methods for predicting the thermochemistry of ion-molecule reactions of group 14 elements (Si, Ge, Sn).

    PubMed

    Ignatyev, Igor S; Montejo, Manuel; López González, Juan Jesús

    2013-12-01

    Experimental mass-spectrometry data on thermochemistry of methide transfer reactions (CH₃)₃M(+) + M'(CH₃)₄ ↔ M(CH₃)₄ + (CH₃)₃M'(+) (M, M' = Si, Ge or Sn) and the formation energy of the [(CH₃)₃Si-CH₃-Si(CH₃)₃](+) complex are used as benchmarks for DFT methods (B3LYP, BMK, M06L, and ωB97XD). G2 and G3 theory methods are also used for the prediction of thermochemical data. BMK, M06L, and ωB97XD methods give the best fit to experimental data (close to chemical accuracy) as well as to G2 and G3 results, while B3LYP demonstrates poor performance. From the first three methods M06L gives the best overall result. Structures and formation energies of intermediate "mixed" [(CH₃)₃M-CH₃- M'(CH₃)₃] complexes not observed in experiment are predicted. Their structures, better described as M(CH₃)₄ [M'(CH₃)₃](+) complexes, explain their fast decompositions.

  5. Phase stabilities of pyrite-related MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te): A systematic DFT study

    NASA Astrophysics Data System (ADS)

    Bachhuber, Frederik; Krach, Alexander; Furtner, Andrea; Söhnel, Tilo; Peter, Philipp; Rothballer, Jan; Weihrich, Richard

    2015-03-01

    Pyrite-type and related systems appear for a wide range of binary and ternary combinations of transition metals and main group elements that form Zintl type dumbbell anion units. Those representatives with 20 valence electrons exhibit an extraordinary structural flexibility and interesting properties as low-gap semiconductors or thermoelectric and electrode materials. This work is devoted to the systematic exploration of novel compounds within the class of MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te) by means of density functional calculations. Their preferred structures are predicted from an extended scheme of colored pyrites and marcasites. To determine their stabilities, competing binary MT2 and MCh2 boundary phases are taken into account as well as ternary M3T2Ch2 and M2T3Ch3 systems. Recently established stability diagrams are presented to account for MTCh ordering phenomena with a focus on a not-yet-reported ordering variant of the NiAs2 type. Due to the good agreement with experimental data available for several PtTCh systems, the predictions for the residual systems are considered sufficiently accurate.

  6. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X =Ge , Sn, Ga, Ir, Rh, and Pt)

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Sun, Yan; Yang, Hao; Železný, Jakub; Parkin, Stuart P. P.; Felser, Claudia; Yan, Binghai

    2017-02-01

    We have carried out a comprehensive study of the intrinsic anomalous Hall effect and spin Hall effect of several chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh and Pt) by ab initio band structure and Berry phase calculations. These studies reveal large and anisotropic values of both the intrinsic anomalous Hall effect and spin Hall effect. The Mn3X materials exhibit a noncollinear antiferromagnetic order which, to avoid geometrical frustration, forms planes of Mn moments that are arranged in a Kagome-type lattice. With respect to these Kagome planes, we find that both the anomalous Hall conductivity (AHC) and the spin Hall conductivity (SHC) are quite anisotropic for any of these materials. Based on our calculations, we propose how to maximize AHC and SHC for different materials. The band structures and corresponding electron filling, that we show are essential to determine the AHC and SHC, are compared for these different compounds. We point out that Mn3Ga shows a large SHC of about 600 (ℏ /e ) (Ωcm) -1 . Our work provides insights into the realization of strong anomalous Hall effects and spin Hall effects in chiral antiferromagnetic materials.

  7. Three-Dimensional Assignment of the Structures of Atomic Clusters: an Example of Au8M (M=Si, Ge, Sn) Anion Clusters

    PubMed Central

    Liu, Yi-Rong; Huang, Teng; Gai, Yan-Bo; Zhang, Yang; Feng, Ya-Juan; Huang, Wei

    2015-01-01

    Identification of different isomer structures of atomic and molecular clusters has long been a challenging task in the field of cluster science. Here we present a three-dimensional (3D) assignment method, combining the energy (1D) and simulated (2D) spectra to assure the assignment of the global minimum structure. This method is more accurate and convenient than traditional methods, which only consider the total energy and first vertical detachment energies (VDEs) of anion clusters. There are two prerequisites when the 3D assignment method is ultilized. First, a reliable global minimum search algorithm is necessary to explore enough valleys on the potential energy surface. Second, trustworthy simulated spectra are necessary, that is to say, spectra that are in quantitative agreement. In this paper, we demonstrate the validity of the 3D assignment method using Au8M− (M = Si, Ge, Sn) systems. Results from this study indicate that the global minimum structures of Au8Ge− and Au8Sn− clusters are different from those described in previous studies. PMID:26631620

  8. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X=Si, Ge, or Sn)

    NASA Astrophysics Data System (ADS)

    Chang, Guoqing; Xu, Su-Yang; Zheng, Hao; Singh, Bahadur; Hsu, Chuang-Han; Bian, Guang; Alidoust, Nasser; Belopolski, Ilya; Sanchez, Daniel S.; Zhang, Songtian; Lin, Hsin; Hasan, M. Zahid

    2016-12-01

    Topological semimetals (TSMs) including Weyl semimetals and nodal-line semimetals are expected to open the next frontier of condensed matter and materials science. Although the first inversion breaking Weyl semimetal was recently discovered in TaAs, its magnetic counterparts, i.e., the time-reversal breaking Weyl and nodal line semimetals, remain elusive. They are predicted to exhibit exotic properties distinct from the inversion breaking TSMs including TaAs. In this paper, we identify the magnetic topological semimetal states in the ferromagnetic half-metal compounds Co2TiX (X = Si, Ge, or Sn) with Curie temperatures higher than 350 K. Our first-principles band structure calculations show that, in the absence of spin-orbit coupling, Co2TiX features three topological nodal lines. The inclusion of spin-orbit coupling gives rise to Weyl nodes, whose momentum space locations can be controlled as a function of the magnetization direction. Our results not only open the door for the experimental realization of topological semimetal states in magnetic materials at room temperature, but also suggest potential applications such as unusual anomalous Hall effect in engineered monolayers of the Co2TiX compounds at high temperature.

  9. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X=Si, Ge, or Sn).

    PubMed

    Chang, Guoqing; Xu, Su-Yang; Zheng, Hao; Singh, Bahadur; Hsu, Chuang-Han; Bian, Guang; Alidoust, Nasser; Belopolski, Ilya; Sanchez, Daniel S; Zhang, Songtian; Lin, Hsin; Hasan, M Zahid

    2016-12-15

    Topological semimetals (TSMs) including Weyl semimetals and nodal-line semimetals are expected to open the next frontier of condensed matter and materials science. Although the first inversion breaking Weyl semimetal was recently discovered in TaAs, its magnetic counterparts, i.e., the time-reversal breaking Weyl and nodal line semimetals, remain elusive. They are predicted to exhibit exotic properties distinct from the inversion breaking TSMs including TaAs. In this paper, we identify the magnetic topological semimetal states in the ferromagnetic half-metal compounds Co2TiX (X = Si, Ge, or Sn) with Curie temperatures higher than 350 K. Our first-principles band structure calculations show that, in the absence of spin-orbit coupling, Co2TiX features three topological nodal lines. The inclusion of spin-orbit coupling gives rise to Weyl nodes, whose momentum space locations can be controlled as a function of the magnetization direction. Our results not only open the door for the experimental realization of topological semimetal states in magnetic materials at room temperature, but also suggest potential applications such as unusual anomalous Hall effect in engineered monolayers of the Co2TiX compounds at high temperature.

  10. Crystal structure and thermal expansion of the low- and high-temperature forms of BaM{sup IV}(PO{sub 4}){sub 2} compounds (M=Ti, Zr, Hf and Sn)

    SciTech Connect

    Bregiroux, D.; Popa, K.; Jardin, R.; Raison, P.E.; Wallez, G.; Quarton, M.; Brunelli, M.; Ferrero, C.; Caciuffo, R.

    2009-05-15

    The crystal structure of beta-BaZr(PO{sub 4}){sub 2}, archetype of the high-temperature forms of BaM(PO{sub 4}){sub 2} phosphates (with M=Ti, Zr, Hf and Sn), has been solved ab initio by Rietveld analysis from synchrotron X-ray powder diffraction data. The phase transition appears as a topotactic modification of the monoclinic (S.G. C2/m) lamellar alpha-structure into a trigonal one (S.G. P3-barm1) through a simple mechanism involving the unfolding of the [Zr(PO{sub 4}){sub 2}]{sub n}{sup 2-} layers. The thermal expansion is very anisotropic (e.g., -4.1

  11. D{sub 3h} [A-CE{sub 3}-A]{sup −} (E = Al and Ga, A = Si, Ge, Sn, and Pb): A new class of hexatomic mono-anionic species with trigonal bipyramidal carbon

    SciTech Connect

    Wu, Yan-Bo E-mail: zxwang@ucas.ac.cn; Li, Yan-Qin; Bai, Hui; Lu, Hai-Gang; Li, Si-Dian; Zhai, Hua-Jin; Wang, Zhi-Xiang E-mail: zxwang@ucas.ac.cn

    2014-03-14

    The non-classical trigonal bipyramidal carbon (TBPC) arrangement generally exists as transition states (TSs) in nucleophilic bimolecular substitution (S{sub N}2) reactions. Nevertheless, chemists have been curious about whether such a carbon bonding could be stable in equilibrium structures for decades. As the TBPC arrangement was normally realized as cationic species theoretically and experimentally, only one anionic example ([At-C(CN){sub 3}-At]{sup −}) was computationally devised. Herein, we report the design of a new class of anionic TBPC species by using the strategy similar to that for stabilizing the non-classical planar hypercoordinate carbon. When electron deficient Al and Ga were used as the equatorial ligands, eight D{sub 3h} [A-CE{sub 3}-A]{sup −} (E = Al and Ga, A = Si, Ge, Sn, and Pb) TBPC structures were found to be the energy minima rather than TSs at both the B3LYP and MP2 levels. Remarkably, the energetic results at the CCSD(T) optimization level further identify [Ge-CAl{sub 3}-Ge]{sup −} and [Sn-CGa{sub 3}-Sn]{sup −} even to be the global minima and [Si-CAl{sub 3}-Si]{sup −} and [Ge-CGa{sub 3}-Ge]{sup −} to be the local minima, only slightly higher than their global minima. The electronic structure analyses reveal that the substantial ionic C–E bonding, the peripheral E–A covalent bonding, and the axial mc-2e (multi center-two electrons) bonding play roles in stabilizing these TBPC structures. The structural simplicity and the high thermodynamic stability suggest that some of these species may be generated and captured in the gas phase. Furthermore, as mono-anionic species, their first vertical detachment energies are differentiable from those of their nearest isomers, which would facilitate their characterization via experiments such as the negative ion photoelectron spectroscopy.

  12. Phase stabilities of pyrite-related MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te): A systematic DFT study

    SciTech Connect

    Bachhuber, Frederik; Krach, Alexander; Furtner, Andrea; Söhnel, Tilo; Peter, Philipp; Rothballer, Jan; Weihrich, Richard

    2015-03-15

    Pyrite-type and related systems appear for a wide range of binary and ternary combinations of transition metals and main group elements that form Zintl type dumbbell anion units. Those representatives with 20 valence electrons exhibit an extraordinary structural flexibility and interesting properties as low-gap semiconductors or thermoelectric and electrode materials. This work is devoted to the systematic exploration of novel compounds within the class of MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te) by means of density functional calculations. Their preferred structures are predicted from an extended scheme of colored pyrites and marcasites. To determine their stabilities, competing binary MT{sub 2} and MCh{sub 2} boundary phases are taken into account as well as ternary M{sub 3}T{sub 2}Ch{sub 2} and M{sub 2}T{sub 3}Ch{sub 3} systems. Recently established stability diagrams are presented to account for MTCh ordering phenomena with a focus on a not-yet-reported ordering variant of the NiAs{sub 2} type. Due to the good agreement with experimental data available for several PtTCh systems, the predictions for the residual systems are considered sufficiently accurate. - Graphical abstract: Compositional and structural stability of MTCh compounds is investigated from first principle calculations. A conceptional approach is presented to study and predict novel stable and metastable compounds and structures of low gap semiconductors with TCh dumbbell units that are isoelectronic and structurally related to pyrite (FeS{sub 2}). - Highlights: • Study of compositional stability of MTCh vs. M{sub 3}T{sub 2}Ch{sub 2} and M{sub 2}T{sub 3}Ch{sub 3} compounds. • Study of structural stability of known and novel MTCh compounds. • Prediction of novel stable and metastable structures and compounds isoelectronic to pyrite, FeS{sub 2}.

  13. Ground state properties and thermoelectric behavior of Ru2VZ (Z=Si, ge, sn) half-metallic ferromagnetic full-Heusler compounds

    NASA Astrophysics Data System (ADS)

    Yalcin, Battal Gazi

    2016-06-01

    The ground state properties namely structural, mechanical, electronic and magnetic properties and thermoelectric behavior of Ru2VZ (Z=Si, Ge and Sn) half-metallic ferromagnetic full-Heusler compounds are systematically investigated. These compounds are ferromagnetic and crystallize in the Heusler type L21 structure (prototype: Cu2MnAl, Fm-3m 225). This result is confirmed for Ru2VSi and Ru2VSn by experimental work reported by Yin and Nash using high temperature direct reaction calorimetry. The studied materials are half-metallic ferromagnets with a narrow direct band gap in the minority spin channel that amounts to 31 meV, 66 meV and 14 meV for Ru2VSi, Ru2VGe, and Ru2VSn, respectively. The total spin magnetic moment (Mtot) of the considered compounds satisfies a Slater-Pauling type rule for localized magnetic moment systems (Mtot=(NV-24)μB), where NV=25 is the number of valence electrons in the primitive cell. The Curie temperature within the random phase approximation (RPA) is found to be 23 K, 126 K and 447 K for Ru2VSi, Ru2VGe and Ru2VSn, respectively. Semi-classical Boltzmann transport theories have been used to obtain thermoelectric constants, such as Seebeck coefficient (S), electrical (σ/τ) and thermal conductivity (κ/τ), power factor (PF) and the Pauli magnetic susceptibility (χ). ZTMAX values of 0.016 (350 K), 0.033 (380 K) and 0.063 (315 K) are achieved for Ru2VSi, Ru2VGe and Ru2VSn, respectively. It is expected that the obtained results might be a trigger in future experimentally interest in this type of full-Heusler compounds.

  14. The structural, electronic, magnetic and mechanical properties of quaternary Heusler alloys ZrTiCrZ (Z  =  Al, Ga, In, Si, Ge, Sn): a first-principles study

    NASA Astrophysics Data System (ADS)

    Yan, Peng-Li; Zhang, Jian-Min; Zhou, Bo; Xu, Ke-Wei

    2016-06-01

    The structural, electronic, magnetic and mechanical properties of the quaternary Heusler alloys ZrTiCrZ (Z  =  Al, Ga, In, Si, Ge, Sn) have been investigated firstly by using the first-principles calculations. The preferred configurations of the ZrTiCrZ alloys are all Y-type (I). At their equilibrium lattice constants, the ZrTiCrZ alloys are half-metallic (HM) ferrimagnets for Z  =  Al, Ga and In, while spin-gapless semiconductor (SGS) antiferromagnets (AFM) for Z  =  Si, Ge and Sn. The total magnetic moments {μt} of the ZrTiCrZ alloys are  -1 {μ\\text{B}}/\\text{f}\\text{.u}\\text{.} for Z  =  Al, Ga and In, while 0 {μ\\text{B}}/\\text{f}\\text{.u}\\text{.} for Z  =  Si, Ge and Sn, both linearly scaled with the total number of valence electrons {{Z}\\text{t}} by Slater-Pauling rule {μ\\text{t}}={{Z}\\text{t}}-18 . The elastic constants {{C}11} , {{C}12} and {{C}44} of the single crystal and the related elastic moduli G , B , E , \\upsilon and A of the polycrystalline aggregates are also calculated and used to study the mechanical stability of these alloys. Although the Curie temperatures {{T}\\text{C}} of the ZrTiCrZ alloys are overestimated by using the mean field approximation (MFA), they can be better estimated by including the exchange interactions. Finally, the HM stabilities as well as the total and atomic magnetic moments of the ZrTiCrZ alloys (Z  =  Al, Ga, In) under either hydrostatic strain or tetragonal strain are also discussed.

  15. All-electron molecular Dirac-Hartree-Fock calculations - The group IV tetrahydrides CH4, SiH4, GeH4, SnH4, and PbH4

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Taylor, Peter R.; Faegri, Knut, Jr.; Partridge, Harry

    1991-01-01

    A basis-set-expansion Dirac-Hartree-Fock program for molecules is described. Bond lengths and harmonic frequencies are presented for the ground states of the group 4 tetrahydrides, CH4, SiH4, GeH4, SnH4, and PbH4. The results are compared with relativistic effective core potential (RECP) calculations, first-order perturbation theory (PT) calculations and with experimental data. The bond lengths are well predicted by first-order perturbation theory for all molecules, but none of the RECP's considered provides a consistent prediction. Perturbation theory overestimates the relativistic correction to the harmonic frequencies; the RECP calculations underestimate the correction.

  16. Conventional and stuffed Bergman-type phases in the Na-Au-T (T = Ga, Ge, Sn) systems: syntheses, structures, coloring of cluster centers, and Fermi sphere-brillouin zone interactions.

    PubMed

    Lin, Qisheng; Smetana, Volodymyr; Miller, Gordon J; Corbett, John D

    2012-08-20

    Bergman-type phases in the Na-Au-T (T = Ga, Ge, and Sn) systems were synthesized by solid-state means and structurally characterized by single-crystal X-ray diffraction studies. Two structurally related (1/1) Bergman phases were found in the Na-Au-Ga system: (a) a conventional Bergman-type (CB) structure, Na(26)Au(x)Ga(54-x), which features empty innermost icosahedra, as refined with x = 18.1 (3), Im3, a = 14.512(2) Å, and Z = 2; (b) a stuffed Bergman-type (SB) structure, Na(26)Au(y)Ga(55-y), which contains Ga-centered innermost icosahedra, as refined with y = 36.0 (1), Im3, a = 14.597(2) Å, and Z = 2. Although these two subtypes have considerable phase widths along with respective tie lines at Na ≈ 32.5 and 32.1 atom %, they do not merge into a continuous solid solution. Rather, a quasicrystalline phase close to the Au-poor CB phase and an orthorhombic derivative near the Au-rich SB phase lie between them. In contrast, only Au-rich SB phases exist in the Ge and Sn systems, in which the innermost icosahedra are centered by Au rather than Ge or Sn. These were refined for Na(26)Au(40.93(5))Ge(14.07(5)) (Im3, a = 14.581(2) Å, and Z = 2) and Na(26)Au(39.83(6))Sn(15.17(6)) (Im3, a = 15.009(2) Å, and Z = 2), respectively. Occupations of the centers of Bergman clusters are rare. Such centering and coloring correlate with the sizes of the neighboring icosahedra, the size ratios between electropositive and electronegative components, and the values of the average valence electron count per atom (e/a). Theoretical calculations revealed that all of these phases are Hume-Rothery phases, with evident pseudogaps in the density of states curves that arise from the interactions between Fermi surface and Brillouin zone boundaries corresponding to a strong diffraction intensity.

  17. All-electron molecular Dirac-Hartree-Fock calculations: The group 4 tetrahydrides CH4, SiH4, GeH4, SnH4 and PbH4

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Taylor, Peter R.; Faegri, Knut, Jr.; Partridge, Harry

    1990-01-01

    A basis-set-expansion Dirac-Hartree-Fock program for molecules is described. Bond lengths and harmonic frequencies are presented for the ground states of the group 4 tetrahydrides, CH4, SiH4, GeH4, SnH4, and PbH4. The results are compared with relativistic effective core potential (RECP) calculations, first-order perturbation theory (PT) calculations and with experimental data. The bond lengths are well predicted by first-order perturbation theory for all molecules, but non of the RECP's considered provides a consistent prediction. Perturbation theory overestimates the relativistic correction to the harmonic frequencies; the RECP calculations underestimate the correction.

  18. Molecular structure of trichloroethenylgermane, CH2=CH-GeCl3, as studied by gas-phase electron diffraction. experimental determination of the barrier of internal rotation of the trichlorogermyl group supplemented with quantum chemical calculations on CH2=CH-MX3 (M = C, Si, Ge, Sn, and X = H, Cl).

    PubMed

    Samdal, Svein; Guillemin, Jean-Claude; Gundersen, Snefrid

    2010-06-03

    The molecular structure of trichloroethenylgermane, CH(2)=CH-GeCl(3), has been determined by electron diffraction and supported by quantum chemical calculations on CH(2)=CH-MX(3) (M = C, Si, Ge, Sn and X = H, Cl). An equilibrium syn conformation with C(s) symmetry is obtained both experimentally and theoretically where one of the Ge-Cl bonds eclipses the C=C bond. The barrier of internal rotation about the C-Ge bond is determined to be V(3) = 5.3(7) kJ mol(-1) using a dynamic model to simulate the internal motion. The most important structure parameters (estimated r(e)/A and angle/degree) are: r(C-Ge) = 1.911(5), r(C=C) = 1.345(5), r(Ge-Cl7) = 2.122(2), Ge = 120.4(5), Ge-Cl7 = 111.0(2), and Ge-Cl8) = 109.4(5) where the Cl7 atom is in the C=C-Ge plane and the Cl8 atom is out of the C=C-Ge plane. Uncertainties are estimated total standard deviations (sigma(tot)) given as: sigma(tot) = [sigma(2)(scale) + (2sigma(lsq))(2)](1/2) for bond lengths where sigma(scale) = 0.001r and sigma(lsq) is the least-squares standard deviation using a diagonal weight matrix and sigma(tot) = 2sigma(lsq) for the other parameters. The assignment of some of the fundamental frequencies has been discussed. The internal agreement between the calculated molecular geometry obtained from B3LYP and MP2(F) using the cc-pVQZ basis set and to the experimental geometry is not good, whereas the molecular geometry obtained from a CCSD/cc-pVTZ calculation is in very good agreement with experimental geometry. This investigation shows that the gas electron-diffraction method is capable of determining the rotational barrier for small suitable molecules with acceptable accuracy.

  19. Tunable electronic properties and low thermal conductivity in synthetic colusites Cu{sub 26−x}Zn{sub x}V{sub 2}M{sub 6}S{sub 32} (x ≤ 4, M = Ge, Sn)

    SciTech Connect

    Suekuni, K. Kim, F. S.; Takabatake, T.

    2014-08-14

    We have first synthesized Cu{sub 26−x}Zn{sub x}V{sub 2}M{sub 6}S{sub 32} (x ≤ 4, M = Ge, Sn) with the cubic colusite structure and measured the thermoelectric properties. For both M = Ge and Sn, the samples with x = 0 show moderately large thermopower of +27 μV/K at 300 K. The metallic conduction of p-type carriers and Pauli-paramagnetic behavior are consistent with the electron-deficient character expected from the formal charge Cu{sub 26}{sup 1+}V{sub 2}{sup 5+}M{sub 6}{sup 4+}S{sub 32}{sup 2−}. The substitution of Zn for Cu results in significant increases in both the electrical resistivity and thermopower. The resistivity of the samples with x = 4 displays a three-dimensional variable-range hopping behavior at low temperatures. These facts indicate that the doped electrons fill the unoccupied states in the valence band and thereby the Fermi level moves to the localized electronic states at the top of the band. The lattice thermal conductivity is as low as ∼1 W/Km at 300 K for all samples. The structural and thermoelectric properties of the colusites are discussed in comparison with those of doped tetrahedrite Cu{sub 12−x}Zn{sub x}Sb{sub 4}S{sub 13}.

  20. Quantifying hole mobility degradation in pMOSFETs with a strained-Si 0.7Ge 0.3 surface-channel under an ALD TiN/Al 2O 3/HfAlO x/Al 2O 3 gate stack

    NASA Astrophysics Data System (ADS)

    Persson, S.; Wu, D.; Hellström, P.-E.; Zhang, S.-L.; Östling, M.

    2004-05-01

    An appreciable mobility enhancement up to 35% is found in p-channel MOSFETs with a strained-Si 0.7Ge 0.3 surface-channel under an ALD TiN/Al 2O 3/HfAlO x/Al 2O 3 gate stack, as compared to a Si-channel reference transistor under an identical gate stack. A distorted effective mobility curve with a slow mobility roll-off at low vertical electric field is however extracted for the Si 0.7Ge 0.3 devices following the standard split- CV measurement procedure. A high density of interface traps on the order of 10 12 cm -2 eV -1 is found in these Si 0.7Ge 0.3 devices using charge-pumping measurements. Thus, this distortion is attributed partly to trapping of a significant fraction of the inversion carriers at the interface between the high- κ dielectrics and the Si 0.7Ge 0.3 channel, thus defeating the validity of the usual formulation for mobility extraction. By taking into account the trapped carriers that are detectable by the split- CV measurement but do not contribute to the drain conductance, a corrected effective mobility curve is obtained. The distortion of the effective mobility curve is nonetheless mainly due to mobility degradation as a result of Coulomb scattering of the mobile channel carriers by the charged interface defects, i.e. charged traps or trapped carriers that remain charged.

  1. Electronic structure of spinel-type nitride compounds Si3N4, Ge3N4, and Sn3N4 with tunable band gaps: application to light emitting diodes.

    PubMed

    Boyko, T D; Hunt, A; Zerr, A; Moewes, A

    2013-08-30

    In this Letter using experimental and theoretical methods, we show that the solid solutions of group 14 nitrides having spinel structure (γ-M3N4 where M=Si, Ge, Sn) exhibit mainly direct electronic band gaps with values that span the entire visible wavelength region, making these hard and thermally stable materials suitable for optoelectronic devices and, in particular, lighting applications. Using the simulated band structure, we also calculate the exciton binding energy. The combination of large exciton binding energies and the tunable electronic band gaps in the visible range makes these binary spinel nitrides and their solid solutions a new class of multifunctional materials with optoelectronic properties that can be engineered to suit the desired application.

  2. Hydrogen Impurity Effects. A5Tt3 Intermetallic Compounds between A=Ca, Sr, Ba, Eu and Tt=Si, Ge, Sn with Cr 5B 3-like Structures that are Stable Both as Binary and as Ternary Hydride and Fluoride Phases

    NASA Astrophysics Data System (ADS)

    Leon-Escamilla, E. Alejandro; Corbett, John D.

    2001-06-01

    All of the binary systems Ca, Sr, Ba, or Eu (A) with Tt (tetrel)=Si or Ge as well as Sr-Sn form both binary Cr5B3-type A5Tt3 phases and the corresponding ternary hydrides with stuffed Cr5B3- (Ca5Sn3F-) type structures. All of those tested, Ca-Si, Ba-Si, Ca-Ge, also yield the isotypic A5Tt3Fx phases. The tetragonal structures of Ca5Si3, Ca5Si3F0.42, Sr5Si3, Eu5Si3Hx, Ca5Ge3, Ca5Ge3Hx, Ca5Ge3F0.66(I4/mcm, No. 140) and of Ba5Si3F0.16 (P4/ncc, Ba5Si3-type) were refined from single-crystal X-ray diffraction data. The interstitial H, F atoms are bound in a constricted tetrahedral (A2+)4 cavity in the Cr5B3-type heavy atom structure, which can be described ideally as (A2+)5(Tt2)6-(Tt)4-. Many of 14 previous reports of the phases reported here were apparently hydrides according to lattice constant differences or, for Sr5Si3, the fractional coordinates of Sr2 about the tetrahedral site. An articulated model is developed that allows description of the relationship between the dimensions of the tetrahedral interstitial site and the cation cavity about Tt2 and for some matrix effects in this structure type. The model suggests limitations on the stability of these binary A5Tt3 compounds for the heavier tetrels, as observed. The resistivities of Ca5Ge3 and Ca5Ge3Hx are both characteristic of poor metals, and Pauli-like magnetic susceptibilities are exhibited by Ca5Ge3, Ca5Ge3Hx, Ca5Ge3F0.66, Sr5Ge3, and Sr5Sn3. The characteristic ideal Tt6-2 dimers are evidently not realistic descriptions for these phases; rather at least some of the π*4 electrons in the dimers are delocalized in a conduction band. This effect appears to be greater in two europium salts. Bond lengths of dimers in the Ca-Si and Ca-Ge families appear to shorten slightly in three instances of their oxidation to form the hydride or the fluoride, as might be expected.

  3. Morphotropy, isomorphism, and polymorphism of Ln{sub 2}M{sub 2}O{sub 7}-based (Ln = La-Lu, Y, Sc; M = Ti, Zr, Hf, Sn) oxides

    SciTech Connect

    Shlyakhtina, A. V.

    2013-07-15

    Structural studies of compounds of variable composition and measurements of their conductivity have made it possible to identify new oxygen-ion-conducting rare-earth pyrochlores, Ln{sub 2}Ti{sub 2}O{sub 7} (Ln = Dy-Lu) and Ln{sub 2}Hf{sub 2}O{sub 7} (Ln = Eu, Gd), with intrinsic high-temperature oxygen ion conductivity (up to 1.4 Multiplication-Sign 10{sup -2} S/cm at 800 Degree-Sign C). Twenty six systems have been studied, and more than 50 phases based on the Ln{sub 2}M{sub 2}O{sub 7} (Ln= La-Lu; M = Ti, Zr, Hf) oxides have been synthesized and shown to be potential oxygen ion conductors. The morphotropy and polymorphism of the Ln{sub 2}M{sub 2}O{sub 7} (Ln = La-Lu; M = Ti, Zr, Hf) rare-earth pyrochlores have been analyzed in detail for the first time. Thermodynamic and kinetic (growth-related) phase transitions have been classified with application to the pyrochlore family.

  4. Exploration of R2XM2 (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge): Structural Motifs, the novel Compound Gd2AlGe2 and Analysis of the U3Si2 and Zr3Al2 Structure Types

    SciTech Connect

    McWhorter, Sean William

    2006-01-01

    In the process of exploring and understanding the influence of crystal structure on the system of compounds with the composition Gd5(SixGe1-x)4 several new compounds were synthesized with different crystal structures, but similar structural features. In Gd5(SixGe1-x)4, the main feature of interest is the magnetocaloric effect (MCE), which allows the material to be useful in magnetic refrigeration applications. The MCE is based on the magnetic interactions of the Gd atoms in the crystal structure, which varies with x (the amount of Si in the compound). The crystal structure of Gd5(SixGe1-x)4 can be thought of as being formed from two 32434 nets of Gd atoms, with additional Gd atoms in the cubic voids and Si/Ge atoms in the trigonal prismatic voids. Attempts were made to substitute nonmagnetic atoms for magnetic Gd using In, Mg and Al. Gd2MgGe2 and Gd2InGe2 both possess the same 32434 nets of Gd atoms as Gd5(SixGe1-x)4, but these nets are connected differently, forming the Mo2FeB2 crystal structure. A search of the literature revealed that compounds with the composition R2XM2 (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge) crystallize in one of four crystal structures: the Mo2FeB2, Zr3Al2, Mn2AlB2 and W2CoB2 crystal structures. These crystal structures are described, and the relationships between them are highlighted. Gd2AlGe2 forms an entirely new crystal structure, and the details of its synthesis and characterization are given. Electronic structure calculations are performed to understand the nature of bonding in this compound and how

  5. Reaction Mechanism of the Symmetry-Forbidden [2+2] Addition of Ethylene and Acetylene to Amido-Substituted Digermynes and Distannynes Ph2N-EE-NPh2, (E = Ge, Sn): A Theoretical Study.

    PubMed

    Zhao, Lili; Jones, Cameron; Frenking, Gernot

    2015-08-24

    Quantum chemical calculations of reaction mechanisms for the formal [2+2] addition of ethylene and acetylene to the amido-substituted digermyne and distannyne Ph2N-EE-NPh2 (E = Ge, Sn) have been carried out by using density functional theory at the BP86/def2-TZVPP level. The nature and bonding situations were studied with the NBO method and with the charge and energy decomposition analysis EDA-NOCV. The addition of ethylene to Ph2N-EE-NPh2 takes place through an initial [2+1] addition to one metal atom and consecutive rearrangement to four-membered cyclic species, which feature a weak E-E bond. Rotation about the C-C bond with concomitant rupture of the E-E bond leads to the 1,2-disubstituted ethanes, which have terminal E(NPh2) groups. The overall reaction Ph2N-EE-NPh2+C2H4→(Ph2N)E-C2H4-E(NPh2) has very low activation barriers and is slightly exergonic for E = Ge but slightly endergonic for E = Sn. The analysis of the electronic structure shows that there is charge donation of nearly one electron to the ethylene moiety already in the first part of the reaction. The energy partitioning analysis suggests that the HOMO(Ph2N-EE-NPh2)→LUMO(C2H4) interaction has a similar strength as the HOMO(C2H4)→LUMO(Ph2N-EE-NPh2) interaction. The [2+2] addition of acetylene to Ph2N-EE-NPh2 also takes place through an initial [2+1] approach, which eventually leads to 1,2-disubstituted olefins (Ph2N)E-C2H2-E(NPh2). The formation of the energetically lowest lying conformations of cis-(Ph2N)E-C2H2-E(NPh2), which occurs with very low activation barriers, is clearly exergonic for the germanium and the tin compound. The trans-coordinated isomers of (Ph2N)E-C2H2-E(NPh2) are slightly lower in energy than the cis form but they are separated by a substantial energy barrier for the rotation about the C-C bond. The energy decomposition analysis indicates that the initial reaction takes place under formation of electron-sharing bonds between triplet fragments rather than HOMO

  6. Singlet-triplet energy differences in divalent five membered cyclic conjugated Arduengo-type carbenes XC2HN2M (M = C, Si, Ge, Sn, and Pb; X = F, Cl, Br, and I)

    NASA Astrophysics Data System (ADS)

    Vessally, Esmail; Dehbandi, Behnam; Ahmadi, Elaheh

    2016-09-01

    Singlet-triplet energy differences in Arduengo-type carbenes XC2HN2C compared and contrasted with their sila, germa, stana and plumba analogues; at B3LYP/6-311++G** level of theory. Free Gibbs energy differences between triplet (t) and singlet (s) states (Δ G(t-s)) change in the following order: plumbylenes > stannylenes > germylenes > silylenes > carbenes. The singlet states in XC2HN2C are generally more stable when the electron withdrawing groups such as-F was used at β-position. However, the singlet states in XC2N2HM (M = Si, Ge, Sn, and Pb) are generally more stable when the withdrawing groups such as-F was placed. The puckering energy is investigated for each the singlet and triplet states. The DFT calculations found the linear correlation to size of the group 14 divalent element (M), the ∠N-M-N angle, and the Δ(LUMO-HOMO) of XC2HN2M.

  7. Structure and vibrational dynamics of interfacial Sn layers in Sn/Si multilayers

    NASA Astrophysics Data System (ADS)

    Cuenya, B. Roldan; Keune, W.; Sturhahn, W.; Toellner, T. S.; Hu, M. Y.

    2001-12-01

    The structure and vibrational dynamics of room-temperature-grown nanoscale Sn/amorphous (a-)Si multilayers have been studied by x-ray diffraction, Raman scattering, 119Sn Mössbauer spectroscopy, and 119Sn nuclear-resonant inelastic x-ray scattering (NRIXS) of synchrotron radiation. With increasing Sn-layer thickness, the formation of β-Sn was observed, except at the Sn/Si interfaces, where a 10-Å-thick metastable pure amorphous-α-Sn-like layer remains stabilized. By means of NRIXS we have measured the Sn-projected vibrational density of states (VDOS) in these multilayers (in particular, at the interfaces), and in 500-Å-thick epitaxial α-Sn films on InSb(001) as a reference. Further, the Sn-specific Lamb-Mössbauer factor (f factor), mean kinetic energy per atom, mean atomic force constant, and vibrational entropy per atom were obtained. The VDOS of the amorphous-α-Sn-like interface layer is observed to be distinctly different from that of (bulk) α-Sn and β-Sn, and its prominent vibrational energies are found to scale with those of amorphous Ge and Si. The observed small difference in vibrational entropy (ΔS/kB=+0.17+/-0.05 per atom) between α-Sn and interfacial amorphous-α-like Sn does not account for the stability of the latter phase.

  8. First principle research of possible HM-AFM in double perovskites A2MoOsO6 and A2TcReO6 (A = Si, Ge, Sn, and Pb) with group IVA elements set on the A-site position

    NASA Astrophysics Data System (ADS)

    Fuh, Huei-Ru; Liu, Yun-Ping; Wang, Yin-Kuo

    2013-05-01

    We calculated electronic structures of double perovskite structures of A2MoOsO6 and A2TcReO6 (A = Si, Ge, Sn, and Pb) based on the density functional theory which was carried out with a full structural optimization using generalized gradient approximation and taking into account the correlation effect (GGA + U). In GGA calculation, Pb2TcReO6 shows a half-metallic antiferromagnet (HM-AFM) characteristic, whereas Sn2MoOsO6, Pb2MoOsO6, and Sn2TcReO6 are nearly HM-AFMs. With GGA + U calculation, Sn2MoOsO6 and Pb2MoOsO6 become stable HM-AFM, but Sn2TcReO6 and Pb2TcReO6 changes HM-AFM into an antiferromagnetic insulator. The p-d hybridization between B(B')d-Op and double exchange interaction is the mean reason to result in the half-metallic and compensated ferrimagnetic phase.

  9. Density functional study of S(N) 2 substitution reactions for CH(3) Cl + CX(1) X(2•-) (X(1) X(2) = HH, HF, HCl, HBr, HI, FF, ClCl, BrBr, and II).

    PubMed

    Liang, Jun-Xi; Geng, Zhi-Yuan; Wang, Yong-Cheng

    2012-03-05

    A systematic investigation on the S(N) 2 displacement reactions of nine carbene radical anions toward the substrate CH(3) Cl has been theoretically carried out using the popular density functional theory functional BHandHLYP level with different basis sets 6-31+G (d, p)/relativistic effective core potential (RECP), 6-311++G (d, p)/RECP, and aug-cc-pVTZ/RECP. The studied models are CX(1) X(2•-) + CH(3) Cl → X(2) X(1) CH(3) C(•) + Cl(-) , with CX(1) X(2•-) = CH(2) (•-) , CHF(•-) , CHCl(•-) , CHBr(•-) , CHI(•-) , CF(2) (•-) , CCl(2) (•-) , CBr(2) (•-) , and CI(2) (•-) . The main results are proposed as follows: (a) Based on natural bond orbital (NBO), proton affinity (PA), and ionization energy (IE) analysis, reactant CH(2) (•-) should be a strongest base among the anion-containing species (CX(1) X(2•-) ) and so more favorable nucleophile. (b) Regardless of frontside attacking pathway or backside one, the S(N) 2 reaction starts at an identical precomplex whose formation with no barrier. (c) The back-S(N) 2 pathway is much more preferred than the front-S(N) 2 one in terms of the energy gaps [ΔE cent≠(front)-ΔE cent≠(back)], steric demand, NBO population analysis. Thus, the back-S(N) 2 reaction was discussed in detail. On the one hand, based on the energy barriers (ΔE cent≠ and ΔE ovr≠) analysis, we have strongly affirmed that the stabilization of back attacking transition states (b-TSs) presents increase in the order: b-TS-CI(2) < b-TS-CBr(2) < b-TS-CCl(2) < b-TS-CHI < b-TS-CHBr < b-TS-CHCl < b-TS-CF(2) < b-TS-CHF < b-TS-CH(2) . On the other hand, depended on discussions of the correlations of ΔE ovr≠ with influence factors (PA, IE, bond order, and ΔE def≠), we have explored how and to what extent they affect the reactions. Moreover, we have predicted that the less size of substitution (α-atom) required for the gas-phase reaction with α-nucleophile is related to the α-effect and estimated that the reaction

  10. Large grain growth of Ge-rich Ge1-xSnx (x ≈ 0.02) on insulating surfaces using pulsed laser annealing in flowing water

    NASA Astrophysics Data System (ADS)

    Kurosawa, Masashi; Taoka, Noriyuki; Ikenoue, Hiroshi; Nakatsuka, Osamu; Zaima, Shigeaki

    2014-02-01

    We investigate Sn incorporation effects on the growth characteristics of Ge-rich Ge1-xSnx (x < 0.02) on SiO2 crystallized by pulsed laser annealing (PLA) in air and water. Despite the very low Sn content of 2%, Sn atoms within the GeSn layers play a role in preventing ablation and aggregation of the layers during these PLA. Raman and electron backscatter diffraction measurements demonstrate achievement of large-grain (˜800 nmϕ) growth of Ge0.98Sn0.02 polycrystals by using PLA in water. These polycrystals also show a tensile-strain of ˜0.68%. This result opens up the possibility for developing GeSn-based devices fabricated on flexible substrates as well as Si platforms.

  11. Centrifugal stretching along the ground state band of Hf168

    NASA Astrophysics Data System (ADS)

    Costin, A.; Reese, M.; Ai, H.; Casten, R. F.; Dusling, K.; Fitzpatrick, C. R.; Gürdal, G.; Heinz, A.; McCutchan, E. A.; Meyer, D. A.; Möller, O.; Petkov, P.; Pietralla, N.; Qian, J.; Rainovski, G.; Werner, V.

    2009-02-01

    The lifetimes of the Jπ=4+, 6+, 8+, and 10+ levels along the ground state band in Hf168 were measured by means of the recoil distance Doppler shift (RDDS) method using the New Yale Plunger Device (NYPD) and the SPEEDY detection array at Wright Nuclear Structure Laboratory of Yale University. Excited states in Hf168 were populated using the Sn124(Ti48,4n) fusion evaporation reaction. The new lifetime values are sufficiently precise to clearly prove the increase of quadrupole deformation as a function of angular momentum in the deformed nucleus Hf168. The data agree with the predictions from the geometrical confined β-soft (CBS) rotor model that involves centrifugal stretching in a soft potential.

  12. Pulsed inductive HF laser

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.; Demchuk, S. V.

    2016-03-01

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H2 - F2(NF3 or SF66) and He(Ne) - H2 - F2(NF3 or SF6) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% - 6%.

  13. Modern HF Communications.

    DTIC Science & Technology

    1983-05-01

    AD-A131 163 MODERN HF COUNICATIONS(U) ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT NEUILLY-SUR-SEINE (FRANCE) d AARONS ET AL. MAY 83 AGARD...NORTH ATLANTIC TREATY ORGANIZATION ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE L’ATLANTIQUE NORD) AGARD Lecture...other NATO bodies and to member nation-, in connection with research aind development problems in the aerospace field: Plros iding assistance to

  14. Exploring the Reactivity Trends in the E2 and SN2 Reactions of X(-) + CH3CH2Cl (X = F, Cl, Br, HO, HS, HSe, NH2 PH2, AsH2, CH3, SiH3, and GeH3).

    PubMed

    Wu, Xiao-Peng; Sun, Xiao-Ming; Wei, Xi-Guang; Ren, Yi; Wong, Ning-Bew; Li, Wai-Kee

    2009-06-09

    The reactivity order of 12 anions toward ethyl chloride has been investigated by using the G2(+) method, and the competitive E2 and SN2 reactions are discussed and compared. The reactions studied are X(-) + CH3CH2Cl → HX + CH2═CH2 + Cl(-) and X(-) + CH3CH2Cl → CH3CH2X + Cl(-), with X = F, Cl, Br, HO, HS, HSe, NH2 PH2, AsH2, CH3, SiH3, and GeH3. Our results indicate that there is no general and straightforward relationship between the overall barriers and the proton affinity (PA) of X(-); instead, discernible linear correlations only exist for the X's within the same group of the periodic table. Similar correlations are also found with the electronegativity of central atoms in X, deformation energy of the E2 transition state (TS), and the overall enthalpy of reaction. It is revealed that the electronegativity will significantly affect the barrier height, and a more electronegative X will stabilize the E2 and SN2 transition states. Multiple linear regression analysis shows that there is a reasonable linear correlation between E2 (or SN2) overall barriers and the linear combination of PA of X(-) and electronegativity of the central atom.

  15. Pulsed inductive HF laser

    SciTech Connect

    Razhev, A M; Kargapol'tsev, E S; Churkin, D S; Demchuk, S V

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  16. Investigation of Ge1-xSnx/Ge quantum-well structures as optical gain media

    NASA Astrophysics Data System (ADS)

    Sun, Li-Chou; Li, Hui; Cheng, H. H.; Chang, Guo-En

    2016-11-01

    An efficient Si-based laser is one of the most important components for photonic integrated circuits to break the bottleneck of data transport over optical networks. The main challenge is to create gain media based on group-IV semiconductors. Here we present an investigation of using low-dimensional Ge1-xSnx/Ge quantum-well (QW) structures pseudomorphically grown on Ge-buffered Si substrates as optical gain media for efficient Si-based lasers. Epitaxial growth of Ge1-xSnx/Ge QW structures on Ge-buffer Si substrate was carried out using low-temperature molecular beam epitaxy techniques. The light emission properties of the grown Ge1-xSnx/Ge QW structure were studied using photoluminescence spectroscopy, and clear redshifts of emission peaks were observed. Theoretical analysis of band structures indicates that Ge1-xSnx well sandwiched by Ge barriers can form type-I alignment at D point with a sufficient potential barrier height to confine carriers in the Ge1-xSnx well, thereby enhancing efficient electron-hole direct recombination. Our calculations also show that the energy difference between the lowest D-conduction subband and L conduction subband can be reduced with increasing Sn content, thereby enabling optical gain. These results suggest that Ge1-xSnx/Ge QW structures are promising for optical gain media to develop efficient Si-based light emitters.

  17. Discovery of Nuwaite, Ni6GeS2, a New Alteration Mineral in Allende

    NASA Astrophysics Data System (ADS)

    Ma, C.

    2015-07-01

    Nuwaite is likely the first solar mineral with high Ge, Sn and Te concentrations. It is a late-stage alteration product, probably derived from a sulfidation process, where Ni-Fe metals react with a low-temperature fluid enriched in S, Ge, Sn and Te.

  18. High-k perovskite gate oxide BaHfO3

    NASA Astrophysics Data System (ADS)

    Kim, Young Mo; Park, Chulkwon; Ha, Taewoo; Kim, Useong; Kim, Namwook; Shin, Juyeon; Kim, Youjung; Yu, Jaejun; Kim, Jae Hoon; Char, Kookrin

    2017-01-01

    We have investigated epitaxial BaHfO3 as a high-k perovskite dielectric. From x-ray diffraction measurement, we confirmed the epitaxial growth of BaHfO3 on BaSnO3 and MgO. We measured optical and dielectric properties of the BaHfO3 gate insulator; the optical bandgap, the dielectric constant, and the breakdown field. Furthermore, we fabricated a perovskite heterostructure field effect transistor using epitaxial BaHfO3 as a gate insulator and La-doped BaSnO3 as a channel layer on SrTiO3 substrate. To reduce the threading dislocations and enhance the electrical properties of the channel, an undoped BaSnO3 buffer layer was grown on SrTiO3 substrates before the channel layer deposition. The device exhibited a field effect mobility value of 52.7 cm2 V-1 s-1, a Ion/Ioff ratio higher than 107, and a subthreshold swing value of 0.80 V dec-1. We compare the device performances with those of other field effect transistors based on BaSnO3 channels and different gate oxides.

  19. HF mitigation via the Texaco-UOP HF additive technology

    SciTech Connect

    Sheckler, J.C.; Hammershaimb, H.U. ); Ross, L.J. ); Comey, K.R. III . Research and Development)

    1994-01-01

    Alkylation is one of the key processes used by refiners to produce high-octane gasoline. In the alkylation process, light olefins and isobutane are converted to alkylate, a high-octane, low-vapor-pressure, paraffinic gasoline-blending component. Because of its clean burning characteristics and ability to contribute to lower emissions, alkylate is a highly valued component in premium and reformulated gasolines. Alkylation process technology using hydrogen fluoride (HF) as a catalyst has been widely used for many years. Since the mid-1980s, a primary concern has been the tendency of HF to form an aerosol when HF is released to the atmosphere. Much effort has gone into the development of measures to ensure the safe handling of HF in the refinery environment. Texaco and UOP have under development an HF additive technology. The key to this technology is the discovery of a class of additives that form a complex with HF to significantly reduce the aerosol-forming tendency of the catalyst system and still maintain acceptable catalytic performance and product quality. The purpose of this paper is to provide an update on the development status of the Texaco-UOP HF additive technology. Aerosol reduction has been demonstrated in small-scale laboratory release tests as well as in larger scale wind tunnel release tests. The catalytic performance of the HF additive has been demonstrated in laboratory alkylation facilities and in a short-term experimental trial in a full-scale refinery unit. On the basis of the positive results obtained in the test program, a project is under way to implement the HF additive technology on a continuous basis in an existing Texaco alkylation unit by the third quarter of 1994.

  20. Quantum mechanical modeling for the GeX(2)/GeHX + GeH(4) reactions (X = H, F, Cl, and Br).

    PubMed

    Bundhun, Ashwini; Blowers, Paul; Ramasami, Ponnadurai; Schaefer, Henry F

    2010-04-01

    A systematic theoretical investigation was carried out to study the reactions of various germylenes with germane. Molecular structures of the reactants (GeX(2) and GeHX, where X = H, F, Cl and Br) plus GeH(4), transition states, and products have been optimized to understand the effects of halo-substituted germylenes. The basis set used is of double-zeta plus polarization quality with additional s- and p-type diffuse functions. Consistent with experiment, the theoretical gas-phase reaction GeH(2) + GeH(4) --> Ge(2)H(6) possesses a negative activation energy. The predicted activation energies reveal interesting trends for both mono- and di- halo-substituted germylenes, -1.5 [GeH(2)], +20.5 [GeHF], +59.9 [GeF(2)], +18.0 [GeHCl], +46.8 [GeCl(2)], +17.3 [GeHBr], and +42.9 kcal mol(-1) [GeBr(2)]. There is a noteworthy relationship between the activation energies and the singlet-triplet splittings of the divalent germylenes. We report for the first time rate constants for the transfer of hydrogen, evaluated using standard transition-state theory with tunneling corrections. These results are analyzed and compared to the available experimental and previous theoretical findings for the gas-phase reactions involving germylene derivatives and germanium analogues.

  1. Germanium oxide removal by citric acid and thiol passivation from citric acid-terminated Ge(100).

    PubMed

    Collins, Gillian; Aureau, Damien; Holmes, Justin D; Etcheberry, Arnaud; O'Dwyer, Colm

    2014-12-02

    Many applications of germanium (Ge) are underpinned by effective oxide removal and surface passivation. This important surface treatment step often requires H-X (X = Cl, Br, I) or HF etchants. Here, we show that aqueous citric acid solutions are effective in the removal of GeOx. The stability of citric acid-treated Ge(100) is compared to HF and HCl treated surfaces and analyzed by X-ray photoelectron spectroscopy. Further Ge surface passivation was investigated by thiolation using alkane monothiols and dithiols. The organic passivation layers show good stability with no oxide regrowth observed after 3 days of ambient exposure.

  2. Properties of slow traps of ALD Al2O3/GeOx/Ge nMOSFETs with plasma post oxidation

    NASA Astrophysics Data System (ADS)

    Ke, M.; Yu, X.; Chang, C.; Takenaka, M.; Takagi, S.

    2016-07-01

    The realization of Ge gate stacks with a small amount of slow trap density as well as thin equivalent oxide thickness and low interface state density (Dit) is a crucial issue for Ge CMOS. In this study, we examine the properties of slow traps, particularly the location of slow traps, of Al2O3/GeOx/n-Ge and HfO2/Al2O3/GeOx/n-Ge MOS interfaces with changing the process and structural parameters, formed by atomic layer deposition (ALD) of Al2O3 and HfO2/Al2O3 combined with plasma post oxidation. It is found that the slow traps can locate in the GeOx interfacial layer, not in the ALD Al2O3 layer. Furthermore, we study the time dependence of channel currents in the Ge n-MOSFETs with 5-nm-thick Al2O3/GeOx/Ge gate stacks, with changing the thickness of GeOx, in order to further clarify the position of slow traps. The time dependence of the current drift and the effective time constant of slow traps do not change among the MOSFETs with the different thickness GeOx, demonstrating that the slow traps mainly exist near the interfaces between Ge and GeOx.

  3. A simple method for preparation of pure (68) Ga-acetate precursor for formulation of radiopharmaceuticals: Physicochemical characteristics of the (68) Ga eluate of the SnO2 based-(68) Ge/(68) Ga column generator.

    PubMed

    Chattopadhyay, Sankha; Alam, Md Neyar; Smita, Madhu; Kumar, Umesh; Das, Sujata Saha; Barua, Luna

    2017-01-01

    Gallium-68 radioisotope is an excellent source in clinical positron emission tomography application due to its ease of availability from germanium-68 ((68) Ge)/gallium-68 ((68) Ga) generator having a shelf life of 1 year. In this paper, a modified method for purification of the primary eluate of (68) Ge-(68) Ga generator by using a small cation exchange resin (Dowex-50) column has been described. The breakthrough of (68) Ge before and after purification of (68) Ga eluate was 0.014% and 0.00027%, respectively. The average recovery yield of (68) Ga after purification was 84% ± 8.6% (SD, n = 335). The results of the physiochemical studies confirmed that the (68) Ga-acetate obtained is suitable for labeling of radiopharmaceuticals.

  4. Development of NTD Ge Sensors for Superconducting Bolometer

    NASA Astrophysics Data System (ADS)

    Garai, A.; Mathimalar, S.; Singh, V.; Dokania, N.; Nanal, V.; Pillay, R. G.; Ramakrishnan, S.; Shrivastava, A.; Jagadeesan, K. C.; Thakare, S. V.

    2016-08-01

    Neutron transmutation-doped (NTD) Ge sensors have been prepared by irradiating device-grade Ge with thermal neutrons at Dhruva reactor, BARC, Mumbai. These sensors are intended to be used for the study of neutrinoless double beta decay in ^{124}Sn with a superconducting Tin bolometer. Resistance measurements are performed on NTD Ge sensors in the temperature range 100-350 mK. The observed temperature dependence is found to be consistent with the variable-range hopping mechanism.

  5. Marburg Hemorrhagic Fever (Marburg HF)

    MedlinePlus

    ... The CDC Cancel Submit Search The CDC Marburg hemorrhagic fever (Marburg HF) Note: Javascript is disabled or is ... was first recognized in 1967, when outbreaks of hemorrhagic fever occurred simultaneously in laboratories in Marburg and Frankfurt, ...

  6. Structure and magnetism in strained Ge1-x-ySnxMny films grown on Ge(001) by low temperature molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Prestat, E.; Barski, A.; Bellet-Amalric, E.; Jacquot, J.-F.; Morel, R.; Tainoff, D.; Jain, A.; Porret, C.; Bayle-Guillemaud, P.; Jamet, M.

    2013-07-01

    In this letter, we study the structural and magnetic properties of Ge1-x-ySnxMny films grown on Ge(001) by low temperature molecular beam epitaxy using X-ray diffraction, high resolution transmission electron microscopy, and superconducting quantum interference device. Like in Mn doped Ge films, Mn atoms diffuse during the growth and aggregate into vertically aligned Mn-rich nanocolumns of a few nanometers in diameter. Transmission electron microscopy observations in plane view clearly indicate that the Sn incorporation is not uniform with concentration in Mn rich vertical nanocolumns lower than the detection limit of electron energy loss spectroscopy. The matrix exhibits a GeSn solid solution while there is a Sn-rich GeSn shell around GeMn nanocolumns. The magnetization in Ge1-x-ySnxMny layers is higher than in Ge1-xMnx films. This magnetic moment enhancement in Ge1-x-ySnxMny is probably related to the modification of the electronic structure of Mn atoms in the nanocolumns by the Sn-rich shell, which is formed around the nanocolumns.

  7. Synthesis and cyclic voltammetric studies of diiron complexes, ER2[(η5-C5H4)Fe(L2)Me]2 (E = C, Si, Ge, Sn; R = H, alkyl; L2 = diphosphine] and (η5-C5H5)Fe(L2)ER2Fc [Fc = (η5-C5H4)Fe(η5-C5H5)

    PubMed Central

    Kumar, Mukesh; Cervantes-Lee, Francisco; Pannell, Keith H.; Shao, Jianguo

    2009-01-01

    Summary The cyclic voltammetric studies on ER2[(η5-C5H4)Fe(L2)Me]2 (L2 = dppe; ER2 = CH2 (1a), SiMe2 (2a), GeMe2 (3a), SnMe2 (4a) revealed two well resolved reversible waves [1E1/2 = -0.33 V, 2E1/2 = -0.20 V (for 1a); 1E1/2 = -0.35 V, 2E1/2 = -0.21 V (for 2a);1E1/2 = -0.36 V, 2E1/2 = -0.23 V (for 3a);1E1/2 = -0.36 V, 2E1/2 = -0.22 V (for 4a)] in CH2Cl2 suggesting electronic communication between two iron centers which is seen for the first time in this family of organometallic complexes. The resolution between two reversible waves increases in the order of 1a < 2a < 3a < 4a; however, coordinating solvents such as pyridine, PhCN, DMSO and DMF decreased these interactions attributable to the stabilization of cationic species formed after the first oxidation. UV/Vis spectroelectrochemistry of 1a-4a revealed two distinct absorbance patterns for both redox processes and reflected the stepwise oxidation. Homobimetallic complexes containing ferrocenyl groups, (η5-C5H5)Fe(L2)ER2Fc [ER2 = none, L2 = cis-dppen (5a), ER2 = SiMe2, L2 = cis-dppen (6a), dppm (6b); ER2 = GeMe2, L2 = cis-dppen (7a), dppm (7b); ER2 = SntBu2, L2 = dmpe (8a); Fc = (η5-C5H4)Fe(η54-C5H5)] were prepared and studied in terms of electrochemistry. The cyclic voltammogram of 5a exhibited two well resolved one electron reversible waves at 1E1/2 = -0.21 V and 2E1/2 = 0.58 V corresponding to oxidation of the Fe(P-P) and Fc iron atoms respectively. Other complexes in this series (6a/6b, 7a/7b, 8a) containing direct Fe-E-Fc (E = Si, Ge and Sn) bridging units were not stable under electrochemical conditions and rupture of the Fe-E bonds was observed. PMID:19718238

  8. Stark shift of the absorption spectra in Ge/Ge1-xSnx/Ge type-I single QW cell for mid-wavelength infra-red modulators

    NASA Astrophysics Data System (ADS)

    Yahyaoui, N.; Sfina, N.; Lazzari, J.-L.; Bournel, A.; Said, M.

    2015-09-01

    For mid-wavelength infra-red (MWIR) modulation or detection applications, we propose α-Sn rich Ge/Ge1-xSnx/Ge a type-I single quantum wells (SQW) partially strain compensated on Ge1-ySny relaxed layers grown onto (0 0 1)-oriented Ge substrate. Such elementary cells with W-like potential profiles of conduction and valence bands have been modeled by solving the one-dimensional Schrödinger equation under an applied external electrical field. First, strain effects on electrons, heavy holes (hh) and light holes (lh) energy bands for strained/relaxed Ge1-xSnx/Ge1-ySny heterointerfaces are investigated using the model-solid theory in the whole ranges (0 ⩽ x, y ⩽ 1) of Sn compositions. From the obtained band-discontinuities, band gaps and effective masses, Ge1-ySny/Ge/Ge0.80Sn0.20/Ge/Ge1-ySny cells are computed as a function of the Ge0.80Sn0.20 well width for three compositions of the Ge1-ySny buffer layer (y = 0.05, 0.07 and 0.09) in order to get the optimum quantum confinement of electrons and holes levels while keeping a reasonable amount of averaged strain in the cell. The electric field effect on the absorption spectra is given. An absorption coefficient in the 6× to 3 × 103 cm-1 range is reasonably obtained for a SQW at room temperature with a rather large Stark shift of the direct transition between 0.46 and 0.38 eV (i.e., λ = 3.26-2.70 μm) at large external fields (50 kV/cm). These characteristics are attractive for the design of MWIR optical modulators.

  9. Ge1-xSnx alloys synthesized by ion implantation and pulsed laser melting

    NASA Astrophysics Data System (ADS)

    Gao, Kun; Prucnal, S.; Huebner, R.; Baehtz, C.; Skorupa, I.; Wang, Yutian; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2014-07-01

    The tunable bandgap and the high carrier mobility of Ge1-xSnx alloys stimulate a large effort for bandgap and strain engineering for Ge based materials using silicon compatible technology. In this Letter, we present the fabrication of highly mismatched Ge1-xSnx alloys by ion implantation and pulsed laser melting with Sn concentration ranging from 0.5 at. % up to 1.5 at. %. According to the structural investigations, the formed Ge1-xSnx alloys are monocrystalline with high Sn-incorporation rate. The shrinkage of the bandgap of Ge1-xSnx alloys with increasing Sn content is proven by the red-shift of the E1 and E1 + Δ1 critical points in spectroscopic ellipsometry. Our investigation provides a chip technology compatible route to prepare high quality monocrystalline Ge1-xSnx alloys.

  10. Pourous Si(x)Ge(1-x) Layers Within Single Crystals Of Si

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.; George, Thomas

    1994-01-01

    Layers of porous Si(x)Ge(1-x) buried within single crystals of Si formed by epitaxial growth of Si/Si(x)Ge(1-x)/Si structures followed by etching in solutions of HF:HNO3:H2O. Electroluminescence from these layers utilized in novel optoelectronic devices.

  11. Chemical Bonding, Interfaces and Defects in Hafnium Oxide/Germanium Oxynitride Gate Stacks on Ge (100)

    SciTech Connect

    Oshima, Yasuhiro; Sun, Yun; Kuzum, Duygu; Sugawara, Takuya; Saraswat, Krishna C.; Pianetta, Piero; McIntyre, Paul C.; /Stanford U., Materials Sci. Dept.

    2008-10-31

    Correlations among interface properties and chemical bonding characteristics in HfO{sub 2}/GeO{sub x}N{sub y}/Ge MIS stacks were investigated using in-situ remote nitridation of the Ge (100) surface prior to HfO{sub 2} atomic layer deposition (ALD). Ultra thin ({approx}1.1 nm), thermally stable and aqueous etch-resistant GeO{sub x}N{sub y} interfaces layers that exhibited Ge core level photoelectron spectra (PES) similar to stoichiometric Ge{sub 3}N{sub 4} were synthesized. To evaluate GeO{sub x}N{sub y}/Ge interface defects, the density of interface states (D{sub it}) was extracted by the conductance method across the band gap. Forming gas annealed (FGA) samples exhibited substantially lower D{sub it} ({approx} 1 x 10{sup 12} cm{sup -2} eV{sup -1}) than did high vacuum annealed (HVA) and inert gas anneal (IGA) samples ({approx} 1x 10{sup 13} cm{sup -2} eV{sup -1}). Germanium core level photoelectron spectra from similar FGA-treated samples detected out-diffusion of germanium oxide to the HfO{sub 2} film surface and apparent modification of chemical bonding at the GeO{sub x}N{sub y}/Ge interface, which is related to the reduced D{sub it}.

  12. Combined wet and dry cleaning of SiGe(001)

    SciTech Connect

    Park, Sang Wook; Kaufman-Osborn, Tobin; Kim, Hyonwoong; Siddiqui, Shariq; Sahu, Bhagawan; Yoshida, Naomi; Brandt, Adam; Kummel, Andrew C.

    2015-07-15

    Combined wet and dry cleaning via hydrofluoric acid (HF) and atomic hydrogen on Si{sub 0.6}Ge{sub 0.4}(001) surface was studied at the atomic level using ultrahigh vacuum scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and x-ray photoelectron spectroscopy to understand the chemical transformations of the surface. Aqueous HF removes native oxide, but residual carbon and oxygen are still observed on Si{sub 0.6}Ge{sub 0.4}(001) due to hydrocarbon contamination from post HF exposure to ambient. The oxygen contamination can be eliminated by shielding the sample from ambient via covering the sample in the HF cleaning solution until the sample is introduced to the vacuum chamber or by transferring the sample in an inert environment; however, both processes still leave carbon contaminant. Dry in-situ atomic hydrogen cleaning above 330 °C removes the carbon contamination on the surface consistent with a thermally activated atomic hydrogen reaction with surface hydrocarbon. A postdeposition anneal at 550 °C induces formation of an atomically flat and ordered SiGe surface observed by STM. STS verifies that the wet and dry cleaned surface has an unpinned Fermi level with no states between the conduction and valence band edge comparable to sputter cleaned SiGe surfaces.

  13. Probing the Interstellar Medium along the Lines of Sight to Supernovae SN 1994D and SN 1994I: Erratum

    NASA Astrophysics Data System (ADS)

    Ho, Luis C.; Filippenko, Alexei V.

    1996-06-01

    In the paper "Probing the Interstellar Medium along the Lines of Sight to Supernovae SN 1994D and SN 19941" by Luis C. Ho and Alexei V. Filippenko (ApJ, 444,165 [1995]; hereafter HF95), SN 1994D was assumed to be on the approaching side of its host galaxy, NGC 4526. The authors wish to correct this assumption. Long-slit optical spectra (resolution 6-7 A) obtained on 1994 March 18 UT with the 3 m Shane reflector at Lick Observatory exhibit Hα and [N II] λλ6548, 6583 emission lines that clearly show that SN 1994D is on the receding side of the galaxy, at a heliocentric velocity of ~850 km s^-1^ (The heliocentric systemic velocity of NGC 4526, measured at the nucleus, is ~620 km s^-1^, higher than the value of ~450 km s^-1^ often cited in the literature [e.g., the Revised Shapley-Ames Catalog of Bright Galaxies].) Thus, "system 6" in the high-resolution Keck spectrum of SN 1994D (Table 1 of HF95), at v = 709 km s^-1^, is almost certainly produced by gas in the outer regions of the gas/dust disk of NGC 4526, along the line of sight to the supernova (which is assumed to be within, or close to, the disk). Its velocity is not "anomalous," and it is unlikely to be of intergalactic origin, contrary to the previous conclusion of the paper. The revised value for the velocity of SN 1994D also suggests that systems 2-5 in Table 1 of HF95, all of which have heliocentric velocities in the range 200-250 km s^-1^, are not produced in the disk of NGC 4526; instead, they almost certainly correspond to "high-velocity clouds" (HVCs) associated with the Milky Way. Hence, they are similar to systems 3-5 along the line of sight to SN 1994I in M51 (HF95). In support of this, the authors note that Kumar & Thonnard (AJ, 88,260 [1983]) detect H I emission centered on heliocentric velocity 215 km s^-1^ at several different positions toward NGC 4526, in good agreement with the average velocity of the Na I absorption lines in our Keck spectrum; they conclude that the H I emission is produced

  14. SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} - two new Ae-Zn-Sn polar intermetallic compounds (Ae: alkaline earth metal)

    SciTech Connect

    Stegmaier, Saskia; Faessler, Thomas F.

    2012-08-15

    SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}, two closely related new polar intermetallic compounds, were obtained by high temperature reactions of the elements. Their crystal structures were determined with single crystal XRD methods, and their electronic structures were analyzed by means of DFT calculations. The Zn-Sn structure part of SrZn{sub 2}Sn{sub 2} comprises (anti-)PbO-like {l_brace}ZnSn{sub 4/4}{r_brace} and {l_brace}SnZn{sub 4/4}{r_brace} layers. Ca{sub 2}Zn{sub 3}Sn{sub 6} shows similar {l_brace}ZnSn{sub 4/4}{r_brace} layers and {l_brace}Sn{sub 4}Zn{r_brace} slabs constructed of a covalently bonded Sn scaffold capped by Zn atoms. For both phases, the two types of layers are alternatingly stacked and interconnected via Zn-Sn bonds. SrZn{sub 2}Sn{sub 2} adopts the SrPd{sub 2}Bi{sub 2} structure type, and Ca{sub 2}Zn{sub 3}Sn{sub 6} is isotypic to the R{sub 2}Zn{sub 3}Ge{sub 6} compounds (R=La, Ce, Pr, Nd). Band structure calculations indicate that both SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} are metallic. Analyses of the chemical bonding with the electron localization function (ELF) show lone pair like basins at Sn atoms and Zn-Sn bonding interactions between the layers for both title phases, and covalent Sn-Sn bonding within the {l_brace}Sn{sub 4}Zn{r_brace} layers of Ca{sub 2}Zn{sub 3}Sn{sub 6}. - Graphical abstract: Crystal structures of the new Ae-Zn-Sn polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Highlights: Black-Right-Pointing-Pointer New polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Black-Right-Pointing-Pointer Obtained by high temperature reactions of the elements. Black-Right-Pointing-Pointer Single crystal XRD structure determination and DFT electronic structure calculations. Black-Right-Pointing-Pointer Closely related crystal and electronic structures. Black-Right-Pointing-Pointer Metallic conductivity coexisting with lone pairs and covalent bonding

  15. Radio HF precursors of Earthquakes

    NASA Astrophysics Data System (ADS)

    Ruzhin, Yu.; Nomicos, C.; Vallianatos, F.; Shpakovsky, V.

    The high frequency (HF) earthquake electromagnetic precursors (40-55MHz band) were recorded by the four electromagnetic stations a few days (hours) prior the event associated with earthquakes with magnitude more than 5.0 at Crete Island. These experiments were performed continuously during 1998-2002 and specific peculiarities are found. This is underhorizon epicenter position for main part of events under question. Another unusual result is that such HF preseismic radio noise-like signals are responsible for seaquakes too. We made conclusion about developing of some thunderstorm-like charged clouds activity in atmosphere before the seismic event. As result of our analysis and interpretation of the available data of continuous observations on a network of Crete island we should state here, that in an atmosphere above the sea on the eve of earthquake at heights of 0.1-10 km the spatially distributed spots of sporadic charged clouds are occurred and the conditions for the electrical discharges in an atmosphere are created which can serve a source of HF radio-emission registered by Crete network. The atmosphere theory relations are used to model a corresponding to an anomalous event emissions generation observed on the Crete. The supposed mechanism of preseismic electricity generation is the model of convection carrier started in an atmosphere. It is governed by the horizontal gradient of air temperature. The occurrence of electrical charges in a surface of the sea and transportation them further on heights up to 10 km in our model occurs due to sporadic energy injections that allocated within bottom of the sea as gases and heat. The dimensions of width and height govern the size of atmosphere convection cells in the earthquake preparation area. These dimensions of the sporadic spots are close to 3 km each as it is derived from shadow geometry and spectral fluctuations of HF signal. Based on experience of Crete HF precursors observation the method for satellite mapping

  16. Centrifugal stretching along the ground state band of {sup 168}Hf

    SciTech Connect

    Costin, A.; Pietralla, N.; Reese, M.; Moeller, O.; Ai, H.; Casten, R. F.; Heinz, A.; McCutchan, E. A.; Meyer, D. A.; Qian, J.; Werner, V.; Dusling, K.; Fitzpatrick, C. R.; Guerdal, G.; Petkov, P.; Rainovski, G.

    2009-02-15

    The lifetimes of the J{sup {pi}}=4{sup +}, 6{sup +}, 8{sup +}, and 10{sup +} levels along the ground state band in {sup 168}Hf were measured by means of the recoil distance Doppler shift (RDDS) method using the New Yale Plunger Device (NYPD) and the SPEEDY detection array at Wright Nuclear Structure Laboratory of Yale University. Excited states in {sup 168}Hf were populated using the {sup 124}Sn({sup 48}Ti,4n) fusion evaporation reaction. The new lifetime values are sufficiently precise to clearly prove the increase of quadrupole deformation as a function of angular momentum in the deformed nucleus {sup 168}Hf. The data agree with the predictions from the geometrical confined {beta}-soft (CBS) rotor model that involves centrifugal stretching in a soft potential.

  17. Centrifugal stretching from lifetime measurements in the 170Hf ground state band

    NASA Astrophysics Data System (ADS)

    Smith, M. K.; Werner, V.; Terry, J. R.; Pietralla, N.; Petkov, P.; Berant, Z.; Casperson, R. J.; Heinz, A.; Henning, G.; Lüttke, R.; Qian, J.; Shoraka, B.; Rainovski, G.; Williams, E.; Winkler, R.

    2013-04-01

    Centrifugal stretching in the deformed rare-earth nucleus 170Hf is investigated using high-precision lifetime measurements, performed with the New Yale Plunger Device at Wright Nuclear Structure Laboratory, Yale University. Excited states were populated in the fusion-evaporation reaction 124Sn(50Ti,4n)170Hf at a beam energy of 195 MeV. Recoil distance doppler shift data were recorded for the ground state band through the J=16+ level. The measured B(E2) values and transition quadrupole moments improve on existing data and show increasing β deformation in the ground state band of 170Hf. The results are compared to descriptions by a rigid rotor and by the confined β-soft rotor model.

  18. Lifetime measurements of yrast states in {sup 162}Yb and {sup 166}Hf

    SciTech Connect

    McCutchan, E.A.; Casten, R.F.; Ai, H.; Amro, H.; Heinz, A.; Meyer, D.A.; Plettner, C.; Qian, J.; Ressler, J.J.; Werner, V.; Williams, E.; Winkler, R.; Zamfir, N.V.; Babilon, M.; Brenner, D.S.; Guerdal, G.; Hughes, R.O.; Thomas, N.J.

    2006-03-15

    Lifetime measurements of yrast levels in {sup 162}Yb and {sup 166}Hf were performed using the recoil distance Doppler-shift method in coincidence mode. Excited states in {sup 162}Yb and {sup 166}Hf were populated via the reactions {sup 116}Cd({sup 50}Ti, 4n) and {sup 122}Sn({sup 48}Ti, 4n), respectively. The resulting B(E2) values are compared with the X(5) critical point model predictions and interacting boson approximation (IBA) model calculations. The X(5) model provides a reasonable description of the yrast B(E2) values in {sup 166}Hf, whereas the IBA fails to reproduce the transition strengths from the higher spin levels. In {sup 162}Yb, some transitions agree with the X(5) predictions while others are more consistent with the predictions of the IBA or a deformed symmetric rotor.

  19. HfS, Hyperfine Structure Fitting Tool

    NASA Astrophysics Data System (ADS)

    Estalella, Robert

    2017-02-01

    Hyperfine Structure Fitting (HfS) is a tool to fit the hyperfine structure of spectral lines with multiple velocity components. The HfS_nh3 procedures included in HfS simultaneously fit the hyperfine structure of the NH3 (J, K) = (1, 1) and (2, 2) transitions, and perform a standard analysis to derive {T}{ex}, NH3 column density, {T}{rot}, and {T}{{k}}. HfS uses a Monte Carlo approach for fitting the line parameters. Special attention is paid to the derivation of the parameter uncertainties. HfS includes procedures that make use of parallel computing for fitting spectra from a data cube.

  20. The dipolar endofullerene HF@C60

    NASA Astrophysics Data System (ADS)

    Krachmalnicoff, Andrea; Bounds, Richard; Mamone, Salvatore; Alom, Shamim; Concistrè, Maria; Meier, Benno; Kouřil, Karel; Light, Mark E.; Johnson, Mark R.; Rols, Stéphane; Horsewill, Anthony J.; Shugai, Anna; Nagel, Urmas; Rõõm, Toomas; Carravetta, Marina; Levitt, Malcolm H.; Whitby, Richard J.

    2016-10-01

    The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report the encapsulation of hydrogen fluoride inside C60 using molecular surgery to give the endohedral fullerene HF@C60. The key synthetic step is the closure of the open fullerene cage with the escape of HF minimized. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large 1H-19F J coupling typical of an isolated species. The dipole moment of HF@C60 was estimated from the temperature dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole.

  1. The dipolar endofullerene HF@C60.

    PubMed

    Krachmalnicoff, Andrea; Bounds, Richard; Mamone, Salvatore; Alom, Shamim; Concistrè, Maria; Meier, Benno; Kouřil, Karel; Light, Mark E; Johnson, Mark R; Rols, Stéphane; Horsewill, Anthony J; Shugai, Anna; Nagel, Urmas; Rõõm, Toomas; Carravetta, Marina; Levitt, Malcolm H; Whitby, Richard J

    2016-10-01

    The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report the encapsulation of hydrogen fluoride inside C60 using molecular surgery to give the endohedral fullerene HF@C60. The key synthetic step is the closure of the open fullerene cage with the escape of HF minimized. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large (1)H-(19)F J coupling typical of an isolated species. The dipole moment of HF@C60 was estimated from the temperature dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole.

  2. Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1-xSnx nanowires

    NASA Astrophysics Data System (ADS)

    Biswas, Subhajit; Doherty, Jessica; Saladukha, Dzianis; Ramasse, Quentin; Majumdar, Dipanwita; Upmanyu, Moneesh; Singha, Achintya; Ochalski, Tomasz; Morris, Michael A.; Holmes, Justin D.

    2016-04-01

    The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge1-xSnx alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour-liquid-solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth.

  3. Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1−xSnx nanowires

    PubMed Central

    Biswas, Subhajit; Doherty, Jessica; Saladukha, Dzianis; Ramasse, Quentin; Majumdar, Dipanwita; Upmanyu, Moneesh; Singha, Achintya; Ochalski, Tomasz; Morris, Michael A.; Holmes, Justin D.

    2016-01-01

    The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge1−xSnx alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour–liquid–solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth. PMID:27095012

  4. Environmentally friendly HF (DF) lasers

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.

    2016-08-01

    Dedicated to the 100th anniversary of the birth of Academician A M Prokhorov, this paper reviews the physics of self-sustained volume discharge without preionization—self-initiated volume discharge (SIVD)—in the working mixtures of non-chain hydrofluoride HF (deuterofluoride (DF)) lasers. The dynamics of SIVD in discharge gaps with different geometries is thoroughly described. The mechanisms for the restriction of current density in a diffuse channel in electric discharges in SF6 and SF6 based mixtures (which determines whether SIVD is possible) are proposed and analyzed using simple models. The most probable mechanisms are the electron impact dissociation of SF6 and other mixture components, electron-ion recombination and electron attachment to vibrationally excited SF6 molecules. Starting from a comparative analysis of the rate coefficients of these processes, it is shown that electron-ion recombination is capable of compensating for electron detachment from negative ions via electron impact. It is also established that SIVD is not only observed in SF6, but also in other strongly electronegative gases. The factors that determine the uniformity of the active medium in non-chain HF (DF) lasers are analyzed. Some special features of non-chain HF (DF) lasers with different apertures operating are carefully examined. Consideration is given to the problem of increasing the aperture and discharge volume of non-chain HF (DF) lasers. Based on our experimental results, the possibility of increasing the energy of such lasers to ~1 kJ and above is shown.

  5. In-beam {gamma}-ray spectroscopy in the vicinity of {sup 100}Sn.

    SciTech Connect

    Seweryniak, D.

    1998-09-29

    In recent years, in-beam x-ray experiments supplied a vast amount of data on high-spin states in nuclei in the vicinity of {sup 100}Sn. The present contribution reviews spectroscopic information obtained recently for N {ge} 50 nuclei around {sup 100}Sn, with emphasis on isomer studies, and discusses selected results in the frame of the shell model.

  6. Ab-initio calculations on half-Heusler NiXSn (X = Zr, Hf) compounds: electronic and optical properties under pressure

    NASA Astrophysics Data System (ADS)

    Ozisik, H. B.; Ateser, E.; Ozisik, H.; Colakoglu, K.; Deligoz, E.

    2017-02-01

    In this study, we have investigated the electronic and optical properties of half-Heusler NiXSn (X = Zr, Hf) compounds under pressure by means of first principles calculations. The generalized gradient approximation is used to model exchange-correlation effects. We have estimated a transition from indirect band gap to direct band gap at 50 and 127 GPa for NiZrSn and NiHfSn, respectively. We have also plotted the static dielectric constant versus pressure for both compounds. The obtained results are in agreement with the available experimental and theoretical data.

  7. Dopant penetration studies through Hf silicate

    NASA Astrophysics Data System (ADS)

    Quevedo-Lopez, M. A.; Visokay, M. R.; Chambers, J. J.; Bevan, M. J.; LiFatou, A.; Colombo, L.; Kim, M. J.; Gnade, B. E.; Wallace, R. M.

    2005-02-01

    We present a study of the penetration of B, P, and As through Hf silicate (HfSixOy) and the effect of N incorporation in Hf silicate (HfSixOyNz) on dopant penetration from doped polycrystalline silicon capping layers. The extent of penetration through Hf silicate was found to be dependent upon the thermal annealing budget for each dopant investigated as follows: B(T⩾950°C/60s), P(T⩾1000°C/20s), and As (T⩾1050°C/60s). We propose that the enhanced diffusion observed for these dopants in HfSixOy, compared with that of SiO2 films, is related to grain boundary formation resulting from HfSixOy film crystallization. We also find that, as in the case of SiO2, N incorporation inhibits dopant (B, P, and As) diffusion through the Hf silicate and thus penetration into the underlying Si substrate. Only B penetration is clearly observed through HfSiON films for anneals at 1050 °C for durations of 10 s or longer. The calculated B diffusivity through the HfSixOyNz layer is D0=5.2×10-15cm2/s.

  8. Negative photoconductivity and memory effects of germanium nanocrystals embedded in HfO2 dielectric.

    PubMed

    Wang, Shiye; Liu, Weili; Zhang, Miao; Song, Zhitang; Lin, Chenglu; Dai, J Y; Lee, P F; Chan, H L W; Choy, C L

    2006-01-01

    A metal-insulator-semiconductor (MIS) structure containing an HfO2/SiO2 stack tunnel layer, isolated Germanium (Ge) nanocrystals, and an HfO2 capping layer, was obtained by an electron-beam evaporation method. A high-resolution transmission electron microscopy (HRTEM) study revealed that uniform and pronounced Ge nanocrystals had formed after annealing. Raman spectroscopy provided evidence for the formation of Ge-Ge bonds and the optimal annealing temperature for the crystallization ratio of the Ge. The electric properties of the MIS structure were characterized by capacitance-voltage (C-V) and current-voltage (I-V) measurements at room temperature. Negative photoconductivity was observed when the structure was under a forward bias, which screened the bias voltage, resulting in a decrease in the current at a given voltage and a negative shift in flat band voltage. A relatively high stored charge density of 3.27 x 10(12) cm 2 was also achieved.

  9. Radiation hardness of 3HF-tile/O2-WLS-fiber calorimeter

    SciTech Connect

    Han, S.W.; Hu, L.D.; Liu, N.Z.

    1993-11-01

    The radiation hardness of a 3HF-tile/O2-WLS-fiber calorimeter with two different tile/fiber patterns has been studied. Two calorimeter modules were irradiated up to 10 Mrad with the BEPC 1.3 GeV electron beam. The radiation damage of these modules is compared with our previous measurements from SCSN81-tile/BCF91A-WLS-fiber modules. The longitudinal damage profiles are fitted as a function of depth.

  10. Assessment of density functionals and paucity of non-covalent interactions in aminoylyne complexes of molybdenum and tungsten [(η(5)-C5H5)(CO)2M≡EN(SiMe3)(R)] (E = Si, Ge, Sn, Pb): a dispersion-corrected DFT study.

    PubMed

    Pandey, Krishna K; Patidar, Pankaj; Bariya, Pankaj K; Patidar, Sunil K; Vishwakarma, Ravi

    2014-07-14

    Electronic, molecular structure and bonding energy analyses of the metal-aminosilylyne, -aminogermylyne, -aminostannylyne and -aminoplumbylyne complexes [(η(5)-C5H5)(CO)2M[triple bond, length as m-dash]EN(SiMe3)(Ph)] (M = Mo, W) and [(η(5)-C5H5)(CO)2Mo[triple bond, length as m-dash]GeN(SiMe3)(Mes)] have been investigated at DFT, DFT-D3 and DFT-D3(BJ) levels using BP86, PBE, PW91, RPBE, TPSS and M06-L functionals. The performance of metaGGA functionals for the geometries of aminoylyne complexes is better than GGA functionals. Significant dispersion interactions between OH, EC(O) and EH pairs appeared in the dispersion-corrected geometries. The non-covalent distances of these interactions follow the order DFT > DFT-D3(BJ) > DFT-D3. The values of Nalewajski-Mrozek bond order (1.22-1.52) and Pauling bond order (2.23-2.59) of the optimized structures at BP86/TZ2P indicate the presence of multiple bonds between metal and E atoms. The overall electronic charges transfer from transition-metal fragments to ligands. The topological analysis based on QTAIM has been performed to determine the analogy of non-covalent interactions. The strength of M[triple bond, length as m-dash]EN(SiMe3)(R) bonds has been evaluated by energy decomposition analysis. The electrostatic interactions are almost equal to orbital interactions. The M ← E σ-donation is smaller than the M → E π-back donation. Upon going from E = Si to E = Pb, the M-E bond orders decrease as Si > Ge > Sn > Pb, consistent with the observed geometry trends. The M-E uncorrected bond dissociation energies vary with the density functionals as RPBE < BP86 < PBE < TPSS < PW91. The largest DFT-D3 dispersion corrections to the BDEs correspond to the BP86 functional, ranging between 5.6-8.1 kcal mol(-1), which are smaller than the DFT-D3(BJ) dispersion corrections (10.1-12.0 kcal mol(-1)). The aryl substituents on nitrogen have an insignificant effect on M-E-N bending. The bending of the M-E-N bond angle has been discussed

  11. Characterization of Ultrathin Ta-oxide Films Formed on Ge(100) by ALD and Layer-by-Layer Methods

    NASA Astrophysics Data System (ADS)

    Mishima, K.; Murakami, H.; Ohta, A.; Sahari, S. K.; Fujioka, T.; Higashi, S.; Miyazaki, S.

    2013-03-01

    Atomic layer deposition (ALD) and Layer-by-Layer deposition of Ta-oxide films on Ge(100) with using tris (tert-butoxy) (tert-butylimido) tantalum have been studied systematically. From the analysis of the chemical bonding features of the interface between TaOx and Ge(100) using x-ray photoelectron spectroscopy (XPS), Ge atom diffusion into the Ta oxide layer and resultant TaGexOy formation during deposition at temperatures higher than 200°C were confirmed. Also, we have demonstrated that nanometer-thick deposition of Tantalum oxide as an interfacial layer effectively suppresses the formation of GeOx in the HfO2 ALD on Ge. By the combination of TaOx pre-deposition on Ge(100) and subsequent ALD of HfO2, a capacitance equivalent thickness (CET) of 1.35 nm and relative dielectric constant of 23 were achieved.

  12. The study of multilayers Fe/Hf and Ni/Hf by slow positron beam technique

    NASA Astrophysics Data System (ADS)

    Tashiro, Mutsumi; Nakajyo, Terunobu; Murashige, Yusuke; Koizumi, Tomoya; Kanazawa, Ikuzo; Komori, Fumio; Soe, We-Hyo; Yamamoto, Ryoichi; Ito, Yasuo

    1997-05-01

    The S-parameters versus the incident positron energy are measured in the Ni/Hf multilayer, thin Hf film, thin Fe film and the bilayer Fe/Hf. We have analyzed the change in vacancy-type defects in these multilayers and thin films with the deposition temperature in the MBE system.

  13. First evidence of low energy enhancement in Ge isotopes

    NASA Astrophysics Data System (ADS)

    Renstrøm, T.; Nyhus, H.-T.; Utsunomiya, H.; Larsen, A. C.; Siem, S.; Guttormsen, M.; Filipescu, D. M.; Gheorghe, I.; Goriely, S.; Bernstein, L. A.; Bleuel, D. L.; Glodariu, T.; Görgen, A.; Hagen, T. W.; Lui, Y.-W.; Negi, D.; Ruud, I. E.; Şahin, E.; Schwengner, R.; Shima, T.; Takahisa, K.; Tesileanu, O.; Tornyi, T. G.; Tveten, G. M.; Wiedeking, M.

    2015-05-01

    The γ-strength functions and level densities of 73,74Ge have been extracted from particle-γ coincidence data using the Oslo method. In addition the γ-strength function of 74Ge above the neutron separation threshold, Sn = 10.196 MeV has been extracted from photoneutron measurements. When combined, these two experiments give a γ-strength function covering the energy range of ˜1-13 MeV for 74Ge. This thorough investigation of 74Ge is a part of an international campaign to study the previously reported low energy enhancement in this mass region in the γ-strength function from ˜3MeV towards lower γ energies. The obtained data show that both 73,74Ge display an increase in strength at low γ energies.

  14. Inorganic oxides with potential application in the preparation of a (68)Ge/(68)Ga generator system.

    PubMed

    Romero, E; Morcillo, M A

    2017-01-01

    The ion exchange properties of some tin and titanium oxides with potential application in the development of a (68)Ge/(68)Ga generator were determined. The best potential candidates, SnO2 and calcined SnO2, were further characterized by powder X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area analysis and its radiation stability was also determined. Two (68)Ge/(68)Ga pilot generators (1.85MBq) based on SnO2 and calcined SnO2 were developed and evaluated over 100 and 200 elution cycles respectively, using as eluent different concentrations of HCl. The generator based on calcined SnO2 showed higher (68)Ga elution yield and lower (68)Ge content in the eluate (75-80% and <3×10(-3)% respectively, 1-2M HCl) than the generator based on unheated SnO2 (60-65% and <1×10(-1)% respectively, 1-2M HCl). Nano-crystalline calcined SnO2 proved to be a promising sorbent; therefore it should be considered as an attractive candidate to develop (68)Ge/(68)Ga generators to produce gallium-68 for biomedical purposes.

  15. Black Silicon Germanium (SiGe) for Extended Wavelength Near Infrared Electro-optical Applications

    DTIC Science & Technology

    2010-05-01

    HF:H2O2: CH3COOH etchant. The etched surface was black, textured, and showed strong suppression of reflectivity and enhancement of absorption in the near...nano catalyst formation on the SiGe surface. ................3 Figure 2. Etch rate of Si1-xGex in HF:H2O2: CH3COOH (1:2:3...etched in solution of HF:H2O2: CH3COOH (1:2:3) with masking to find the etch rate. Care was takeN to wait 30 min prior to using this etchant. The etching

  16. Simulated characteristics of a heterojunction phototransistor with Ge1-xSnx alloy as base

    NASA Astrophysics Data System (ADS)

    Kumar, Dur Vesh; Pandey, Ankit Kumar; Basu, Rikmantra; Sharma, Anuj K.

    2016-12-01

    Groups III-V compound semiconductors and their alloys are the main photodetecting elements for the entire fiber optic telecommunication band. However, the recent successful growth of GeSnx alloy on Ge virtual substrates on Si platform makes the group IV alloys a potential competitor. GeSnx alloy shows direct band gap and has an absorption coefficient almost 10 times higher than that of Ge. The photonic devices are complementary metal-oxide-semiconductor compatible. We have considered an n-Ge/p+-GeSnx/n-GeSnx heterojunction phototransistor (HPT) and studied the variations of terminal currents by considering the Gummel Poon model of HPT, and values of optical and current gains, photocurrent, and responsivity have been obtained. The performance of the device as a photodetector at fiber optic communication wavelengths seems quite encouraging to justify the use of GeSn-based HPTs as a replacement of III-IV semiconductor-based photodetectors.

  17. Synthesis and photoluminescent properties of SnO-containing germanate and germanosilicate glasses

    NASA Astrophysics Data System (ADS)

    Chernov, A. I.; Denker, B. I.; Ermakov, R. P.; Galagan, B. I.; Iskhakova, L. D.; Sverchkov, S. E.; Velmiskin, V. V.; Dianov, E. M.

    2016-09-01

    Divalent tin-containing germanate glasses have demonstrated wide photoluminescence similar to that of tin silicate glasses discovered recently. In comparison with silicate glasses, the germanate glasses are characterized by longer emission lifetimes (145 ÷ 440 µs), emission peaking at 1.59 ÷ 1.64 µm and the absence of SnO disproportionation into SnO2 and Sn during glass synthesis. The potential fabrication of optical fiber via the SnC2O4 + GeO2 powder in silica tube method was demonstrated.

  18. Precise measurement of energies in 115Sn following the (n ,γ ) reaction

    NASA Astrophysics Data System (ADS)

    Urban, W.; Köster, U.; Jentschel, M.; Mutti, P.; Märkisch, B.; RzÄ ca-Urban, T.; Bernards, Ch.; Fransen, Ch.; Jolie, J.; Thomas, T.; Simpson, G. S.

    2016-07-01

    The first measurement of γ rays from the 114Sn(n ,γ ) reaction using cold neutrons, performed with an array of Ge detectors at the PF1B facility of the Institute Laue-Langevin in Grenoble, has provided the most accurate energy, Qβ=173 (12 ) eV, of β- decay of the 115In ground state to the first excited state in 115Sn. This is the lowest of all such energies in the known nuclear landscape. The accuracy of the neutron binding energy of 115Sn and the mass of 114Sn have been improved.

  19. Suppression of tin precipitation in SiSn alloy layers by implanted carbon

    SciTech Connect

    Gaiduk, P. I.; Lundsgaard Hansen, J. Nylandsted Larsen, A.

    2014-06-09

    By combining transmission electron microscopy and Rutherford backscattering spectrometry, we have identified carbon related suppression of dislocations and tin precipitation in supersaturated molecular-beam epitaxial grown SiSn alloy layers. Secondary ion mass spectrometry has exposed the accumulation of carbon in the SiSn layers after high temperature carbon implantation and high temperature thermal treatment. Strain-enhanced separation of point defects and formation of dopant-defect complexes are suggested to be responsible for the effects. The possibility for carbon assisted segregation-free high temperature growth of heteroepitaxial SiSn/Si and GeSn/Si structures is argued.

  20. A Systematic Study of the Optical and Electrical Properties of Ge1-ySny and Ge1-x-ySixSny Semiconductor Alloys

    DTIC Science & Technology

    2014-03-27

    doped with Ga acceptor atoms (p = 6 × 1017 cm−3), which are typically used as platforms for multijunction solar cells . One of the Ge0.90Si0.08Sn0.02...Si can also be used as buffer layers for the subsequent growth of either tensile-strained Ge layers or III-V compound semiconductors such as GaAs and...examine the entire growth process for Ge1-x-ySixSny and hopes to produce high-quality films grown on either Si, Ge, or GaAs substrates. The ternary is of

  1. Effect of metal oxide additions to quality on Ge/GeO2 interfaces

    NASA Astrophysics Data System (ADS)

    Li, Hongfei; Robertson, John; Okuno, Yasutoshi

    2016-10-01

    Alloying amorphous GeO2 with Y2O3 or related group IIIA oxides is known experimentally to improve its properties as a gate dielectric in field effect transistors. The mechanism of this is studied here by density functional calculations. The metal site coordination is found to be 6-7, by increasing the oxygen coordination to 3 or higher. The alloying is found to increase the bulk modulus. Alloying also increases the diffusion energy of the oxygen vacancies in GeO2 next to the metal and also increases the vacancy formation energy of oxygens that are second neighbors of the metal sites. In this way, a relatively small metal concentration can reduce the O vacancy diffusion rate and thereby the GeO evolution rate. Oxygen vacancies at the Ge/GeO2 interface next to a metal site are found to divide into two types, those which rebond across the vacancy (La, Hf) and those without rebonding (Y, Sc, Al), the latter being preferable as they do not give rise to interfacial gap states.

  2. Growth mechanism of Ge-doped CZTSSe thin film by sputtering method and solar cells.

    PubMed

    Li, Jinze; Shen, Honglie; Chen, Jieyi; Li, Yufang; Yang, Jiale

    2016-10-19

    Ge-doped CZTSSe thin films were obtained by covering a thin Ge layer on CZTS precursors, followed by a selenization process. The effect of the Ge layer thickness on the morphologies and structural properties of Ge-doped CZTSSe thin films were studied. It was found that Ge doping could promote grain growth to form a compact thin film. The lattice shrank in the top-half of the film due to the smaller atomic radius of Ge, leading to the formation of tensile stress. According to thermodynamic analysis, Sn was easier to be selenized than Ge. Thus, Ge preferred to remain on the surface and increased the surface roughness when the Ge layer was thin. CZTSe was easier to form than Ge-doped CZTSe, which caused difficulty in Ge doping. These results offered a theoretical and experimental guide for preparing Ge-doped CZTSSe thin films for the potential applications in low-cost solar cells. With a 10 nm Ge layer on the top of the precursor, the conversion efficiency of the solar cell improved to 5.38% with an open-circuit voltage of 403 mV, a short-circuit current density of 28.51 mA cm(-2) and a fill factor of 46.83% after Ge doping.

  3. Enhanced thermoelectric properties of n-type NbCoSn half-Heusler by improving phase purity

    NASA Astrophysics Data System (ADS)

    He, Ran; Huang, Lihong; Wang, Yumei; Samsonidze, Georgy; Kozinsky, Boris; Zhang, Qinyong; Ren, Zhifeng

    2016-10-01

    Here we report the thermoelectric properties of NbCoSn-based n-type half-Heuslers (HHs) that were obtained through arc melting, ball milling, and hot pressing process. With 10% Sb substitution at the Sn site, we obtained enhanced n-type properties with a maximum power factor reaching ˜35 μW cm-1 K-2 and figure of merit (ZT) value ˜0.6 in NbCoSn0.9Sb0.1. The ZT is doubled compared to the previous report. In addition, the specific power cost ( W-1) is decreased by ˜68% comparing to HfNiSn-based n-type HH because of the elimination of Hf.

  4. The Ho–Ni–Ge system: Isothermal section and new rare-earth nickel germanides

    SciTech Connect

    Morozkin, A.V.; Knotko, A.V.; Yapaskurt, V.O.; Yuan, Fang; Mozharivskyj, Y.; Pani, M.; Provino, A.; Manfrinetti, P.

    2015-05-15

    The Ho–Ni–Ge system has been investigated at 1070 K and up to ~60 at% Ho by X-ray diffraction and microprobe analyses. Besides the eight known compounds, HoNi{sub 5}Ge{sub 3} (YNi{sub 5}Si{sub 3}-type), HoNi{sub 2}Ge{sub 2} (CeAl{sub 2}Ga{sub 2}-type), Ho{sub 2}NiGe{sub 6} (Ce{sub 2}CuGe{sub 6}-type), HoNiGe{sub 3} (SmNiGe{sub 3}-type), HoNi{sub 0.2÷0.6}Ge{sub 2} (CeNiSi{sub 2}-type), Ho{sub 37÷34}Ni{sub 6÷24}Ge{sub 57÷42} (AlB{sub 2}-type), HoNiGe (TiNiSi-type), Ho{sub 3}NiGe{sub 2} (La{sub 3}NiGe{sub 2}-type), the ternary system contains four new compounds: Ho{sub 3}Ni{sub 11}Ge{sub 4} (Sc{sub 3}Ni{sub 11}Ge{sub 4}-type), HoNi{sub 3}Ge{sub 2} (ErNi{sub 3}Ge{sub 2}-type), Ho{sub 3}Ni{sub 2}Ge{sub 3} (Hf{sub 3}Ni{sub 2}Si{sub 3}-type) and ~Ho{sub 5}Ni{sub 2}Ge{sub 3} (unknown structure). Quasi-binary solid solutions were observed at 1070 K for Ho{sub 2}Ni{sub 17}, HoNi{sub 5}, HoNi{sub 7}, HoNi{sub 3}, HoNi{sub 2}, HoNi and Ho{sub 2}Ge{sub 3}, but no detectable solubility was found for the other binary compounds in the Ho–Ni–Ge system. Based on the magnetization measurements, the HoNi{sub 5}Ge{sub 3}, HoNi{sub 3}Ge{sub 2} and Ho{sub 3}Ni{sub 11}Ge{sub 4} (and isostructural (Tb, Dy){sub 3}Ni{sub 11}Ge{sub 4}) compounds have been found to show paramagnetic behavior down to 5 K, whereas Ho{sub 3}Ni{sub 2}Ge{sub 3} exhibits an antiferromagnetic transition at ~7 K. Additionally, the crystal structure of the new isostructural phases (Y, Yb)Ni{sub 3}Ge{sub 2} (ErNi{sub 3}Ge{sub 2}-type), Er{sub 3}Ni{sub 11}Ge{sub 4} (Sc{sub 3}Ni{sub 11}Ge{sub 4}-type) and (Y, Tb, Dy, Er, Tm){sub 3}Ni{sub 2}Ge{sub 3} (Hf{sub 3}Ni{sub 2}Si{sub 3}-type) has been also investigated. - Graphical abstract: The Ho–Ni–Ge system has been investigated at 1070 K and up to ~60 at.% Ho by X-ray and microprobe analyses. Besides the eight known compounds, i.e. HoNi{sub 5}Ge{sub 3} (YNi{sub 5}Si{sub 3}-type), HoNi{sub 2}Ge{sub 2} (CeAl{sub 2}Ga{sub 2}-type), Ho{sub 2}NiGe{sub 6} (Ce{sub 2

  5. Zintl layer formation during perovskite atomic layer deposition on Ge (001).

    PubMed

    Hu, Shen; Lin, Edward L; Hamze, Ali K; Posadas, Agham; Wu, HsinWei; Smith, David J; Demkov, Alexander A; Ekerdt, John G

    2017-02-07

    Using in situ X-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and density functional theory, we analyzed the surface core level shifts and surface structure during the initial growth of ABO3 perovskites on Ge (001) by atomic layer deposition, where A = Ba, Sr and B = Ti, Hf, Zr. We find that the initial dosing of the barium- or strontium-bis(triisopropylcyclopentadienyl) precursors on a clean Ge surface produces a surface phase that has the same chemical and structural properties as the 0.5-monolayer Ba Zintl layer formed when depositing Ba by molecular beam epitaxy. Similar binding energy shifts are found for Ba, Sr, and Ge when using either chemical or elemental metal sources. The observed germanium surface core level shifts are consistent with the flattening of the initially tilted Ge surface dimers using both molecular and atomic metal sources. Similar binding energy shifts and changes in dimer tilting with alkaline earth metal adsorption are found with density functional theory calculations. High angle angular dark field scanning transmission microscopy images of BaTiO3, SrZrO3, SrHfO3, and SrHf0.55Ti0.45O3 reveal the location of the Ba (or Sr) atomic columns between the Ge dimers. The results imply that the organic ligands dissociate from the precursor after precursor adsorption on the Ge surface, producing the same Zintl template critical for perovskite growth on Group IV semiconductors during molecular beam epitaxy.

  6. Zintl layer formation during perovskite atomic layer deposition on Ge (001)

    NASA Astrophysics Data System (ADS)

    Hu, Shen; Lin, Edward L.; Hamze, Ali K.; Posadas, Agham; Wu, HsinWei; Smith, David J.; Demkov, Alexander A.; Ekerdt, John G.

    2017-02-01

    Using in situ X-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and density functional theory, we analyzed the surface core level shifts and surface structure during the initial growth of ABO3 perovskites on Ge (001) by atomic layer deposition, where A = Ba, Sr and B = Ti, Hf, Zr. We find that the initial dosing of the barium- or strontium-bis(triisopropylcyclopentadienyl) precursors on a clean Ge surface produces a surface phase that has the same chemical and structural properties as the 0.5-monolayer Ba Zintl layer formed when depositing Ba by molecular beam epitaxy. Similar binding energy shifts are found for Ba, Sr, and Ge when using either chemical or elemental metal sources. The observed germanium surface core level shifts are consistent with the flattening of the initially tilted Ge surface dimers using both molecular and atomic metal sources. Similar binding energy shifts and changes in dimer tilting with alkaline earth metal adsorption are found with density functional theory calculations. High angle angular dark field scanning transmission microscopy images of BaTiO3, SrZrO3, SrHfO3, and SrHf0.55Ti0.45O3 reveal the location of the Ba (or Sr) atomic columns between the Ge dimers. The results imply that the organic ligands dissociate from the precursor after precursor adsorption on the Ge surface, producing the same Zintl template critical for perovskite growth on Group IV semiconductors during molecular beam epitaxy.

  7. Hypervalent Bismuthides La3MBi5 (M = Ti, Zr, Hf) and Related Antimonides: Absence of Superconductivity.

    PubMed

    Murakami, Taito; Yamamoto, Takafumi; Takeiri, Fumitaka; Nakano, Kousuke; Kageyama, Hiroshi

    2017-04-10

    We successfully synthesized the ternary bismuthides La3MBi5 (M = Ti, Zr, Hf). These compounds crystallize in the hexagonal Hf5Sn3Cu-anti type structure (space group: P63/mcm) consisting of face-sharing MBi6 octahedral chains and hypervalent Bi linear chains, both separated by La atoms. Magnetic susceptibility and electrical resistivity measurements revealed that all of the compounds, including the solid solution La3Ti(Bi1-xSbx)5, exhibit a Pauli paramagnetic behavior without any trace of superconductivity down to 1.85 K, as opposed to a recently reported 4 K superconductivity in La3TiSb5. The absence of superconductivity is supported by first-principles band calculations of La3TiBi5 and La3TiSb5 that demonstrate similar electronic structures with three-dimensional Fermi surfaces.

  8. From one to three dimensions: corrugated ∞(1)[NiGe] ribbons as a building block in alkaline earth metal Ae/Ni/Ge phases with crystal structure and chemical bonding in AeNiGe (Ae = Mg, Sr, Ba).

    PubMed

    Hlukhyy, Viktor; Siggelkow, Lisa; Fässler, Thomas F

    2013-06-17

    The new equiatomic nickel germanides MgNiGe, SrNiGe, and BaNiGe have been synthesized from the elements in sealed tantalum tubes using a high-frequency furnace. The compounds were investigated by X-ray diffraction both on powders and single crystals. MgNiGe crystallizes with TiNiSi-type structure, space group Pnma, Z = 4, a = 6.4742(2) Å, b = 4.0716(1) Å, c = 6.9426(2) Å, wR2 = 0.033, 305 F(2) values, 20 variable parameters. SrNiGe and BaNiGe are isotypic and crystallize with anti-SnFCl-type structure (Z = 4, Pnma) with a = 5.727(1) Å, b = 4.174(1) Å, c = 11.400(3) Å, wR2 = 0.078, 354 F(2) values, 20 variable parameters for SrNiGe, and a = 5.969(4) Å, b = 4.195(1) Å, c = 11.993(5) Å, wR2 = 0.048, 393 F(2) values, 20 variable parameters for BaNiGe. The increase of the cation size leads to a reduction of the dimensionality of the [NiGe] polyanions. In the MgNiGe structure the nickel and germanium atoms build a ∞(3)[NiGe] network with magnesium atoms in the channels. In SrNiGe and BaNiGe the ∞(1)[NiGe] ribbons are separated by strontium/barium atoms, whereas in the known CaNiGe structure the ribbons are fused to two-dimmensional atom slabs. The crystal chemistry and chemical bonding in AeNiGe (Ae = Mg, Ca, Sr, Ba) are discussed. The experimental results are reconciled with electronic structure calculations performed using the tight-binding linear muffin-tin orbital (TB-LMTO-ASA) method.

  9. EXAFS determination of Hf localization in HDDR Nd Fe B Hf alloys

    NASA Astrophysics Data System (ADS)

    Torres, C. E. Rodríguez; Fernández van Raap, M. B.; Sánchez, F. H.; Pasquevich, A. F.

    2005-05-01

    The local structure around Hf in Nd 15.78Fe 76.3-xHf xB 7.8 ( x=0.1 and 0.2) submitted to conventional and solid hydrogenation-disproportionation-desorption-recombination (HDDR) sequence was studied by extended X-ray absorption fine structure (EXAFS) in order to understand the relation between the presence of Hf and magnetic anisotropy found only in solid-HDDR samples. EXAFS results show that Hf is not in the Nd 2Fe 14B structure but incorporated into a local atomic arrangement (HfB ClNa-type) which is the same for as-cast, solid and conventional HDDR samples. It is concluded that the magnetic anisotropy induced by Hf addition to NdFeB alloys must be related to microstructural features.

  10. The influence of substitution of Co for Mn on magnetism of the HoMn 6-xCo xSn 6 compounds (0⩽ x⩽0.25)

    NASA Astrophysics Data System (ADS)

    Dincer, I.; Elerman, Y.; Duman, E.; Elmali, A.; Ehrenberg, H.; Fuess, H.

    2007-06-01

    We have studied the effects of Co substitution for Mn on the structure and magnetic properties of the HoMn 6-xCo xSn 6 compounds (0⩽ x⩽0.25) with HfFe 6Ge 6-type structure (space group P6/mmm) by X-ray powder diffraction and magnetization measurements. A monotonic decrease of the lattice parameters a and c is observed with increasing Co content. While the compounds with x=0 and 0.05 exhibit ferrimagnetism in the whole temperature range, the compounds with 0.1⩽ x⩽0.15 show ferrimagnetism, helimagnetism and re-entrant ferrimagnetism with decreasing temperature. For the compounds with x=0 and 0.05, the spin reorientation temperature is observed. A metamagnetic transition from helimagnetic magnetic ordering to ferrimagnetism is observed for the compounds with x=0.1 and 0.2. The results are summarized in the HoMn 6-xCo xSn 6 magnetic phase diagram.

  11. On the road to HF mitigation

    SciTech Connect

    Van Zele, R.L.; Diener, R. )

    1990-07-01

    Two components were investigated as a part of tests run by Industry Cooperative HF Mitigation/Assessment Program (ICHMAP). This paper discusses how the test program included a vapor barrier component and an ambient impact assessment component.

  12. Refiners discuss HF alkylation process and issues

    SciTech Connect

    Not Available

    1992-04-06

    Safety and oxygenate operations made HF alkylation a hot topic of discussion at the most recent National Petroleum Refiners Association annual question and answer session on refining and petrochemical technology. This paper provides answers to a variety of questions regarding the mechanical, process, and safety aspects of the HF alkylation process. Among the issues discussed were mitigation techniques, removal of oxygenates from alkylation unit feed, and amylene alkylation.

  13. On the road to HF mitigation

    SciTech Connect

    VanZele, R.L.; Diener, R. )

    1990-06-01

    The hazards of hydrogen fluoride (HF) have long been recognized and industry performance reflects sound operating practices. However, full-scale industry-sponsored HF release test conducted at the U.S. Department of Energy (DOE) test site in 1986 caused concern in view of HF's toxicity. Ambient impacts were greater than anticipated. And diking, a primary mitigation technique, proved ineffective for releases of pressurized superheated HF. In partial response to these new technical data, an ad-hoc three-component Industry Cooperative Hydrogen Fluoride Mitigation Assessment Program (ICHMAP) was begun in late 1987 to study and test techniques for mitigating accidental releases of HF and alkylation unit acid (AUA) and to enhance capabilities to estimate ambient impacts from such releases. AUA is a mixture of HF and hydrocarbons. The program's mitigation components have recently been completed while work on the impact assessment component is nearing completion. This article describes the program and summarizes the objective, scope of work, structure, and conclusions from the program's two mitigation components. In addition, the objectives and scope of work of the impact assessment components are described.

  14. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials.

    PubMed

    Xie, Hanhui; Wang, Heng; Fu, Chenguang; Liu, Yintu; Snyder, G Jeffrey; Zhao, Xinbing; Zhu, Tiejun

    2014-11-03

    The intrinsic structural disorder dramatically affects the thermal and electronic transport in semiconductors. Although normally considered an ordered compound, the half-Heusler ZrNiSn displays many transport characteristics of a disordered alloy. Similar to the (Zr,Hf)NiSn based solid solutions, the unsubstituted ZrNiSn compound also exhibits charge transport dominated by alloy scattering, as demonstrated in this work. The unexpected charge transport, even in ZrNiSn which is normally considered fully ordered, can be explained by the Ni partially filling interstitial sites in this half-Heusler system. The influence of the disordering and defects in crystal structure on the electron transport process has also been quantitatively analyzed in ZrNiSn1-xSbx with carrier concentration nH ranging from 5.0 × 10(19) to 2.3 × 10(21) cm(-3) by changing Sb dopant content. The optimized carrier concentration nH ≈ 3-4 × 10(20) cm(-2) results in ZT ≈ 0.8 at 875K. This work suggests that MNiSn (M = Hf, Zr, Ti) and perhaps most other half-Heusler thermoelectric materials should be considered highly disordered especially when trying to understand the electronic and phonon structure and transport features.

  15. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials

    PubMed Central

    Xie, Hanhui; Wang, Heng; Fu, Chenguang; Liu, Yintu; Snyder, G. Jeffrey; Zhao, Xinbing; Zhu, Tiejun

    2014-01-01

    The intrinsic structural disorder dramatically affects the thermal and electronic transport in semiconductors. Although normally considered an ordered compound, the half-Heusler ZrNiSn displays many transport characteristics of a disordered alloy. Similar to the (Zr,Hf)NiSn based solid solutions, the unsubstituted ZrNiSn compound also exhibits charge transport dominated by alloy scattering, as demonstrated in this work. The unexpected charge transport, even in ZrNiSn which is normally considered fully ordered, can be explained by the Ni partially filling interstitial sites in this half-Heusler system. The influence of the disordering and defects in crystal structure on the electron transport process has also been quantitatively analyzed in ZrNiSn1-xSbx with carrier concentration nH ranging from 5.0×1019 to 2.3×1021 cm−3 by changing Sb dopant content. The optimized carrier concentration nH ≈ 3–4×1020 cm−2 results in ZT ≈ 0.8 at 875K. This work suggests that MNiSn (M = Hf, Zr, Ti) and perhaps most other half-Heusler thermoelectric materials should be considered highly disordered especially when trying to understand the electronic and phonon structure and transport features. PMID:25363573

  16. Direct gap Ge1-ySny alloys: Fabrication and design of mid-IR photodiodes

    NASA Astrophysics Data System (ADS)

    Senaratne, C. L.; Wallace, P. M.; Gallagher, J. D.; Sims, P. E.; Kouvetakis, J.; Menéndez, J.

    2016-07-01

    Chemical vapor deposition methods were developed, using stoichiometric reactions of specialty Ge3H8 and SnD4 hydrides, to fabricate Ge1-ySny photodiodes with very high Sn concentrations in the 12%-16% range. A unique aspect of this approach is the compatible reactivity of the compounds at ultra-low temperatures, allowing efficient control and systematic tuning of the alloy composition beyond the direct gap threshold. This crucial property allows the formation of thick supersaturated layers with device-quality material properties. Diodes with composition up to 14% Sn were initially produced on Ge-buffered Si(100) featuring previously optimized n-Ge/i-Ge1-ySny/p-Ge1-zSnz type structures with a single defected interface. The devices exhibited sizable electroluminescence and good rectifying behavior as evidenced by the low dark currents in the I-V measurements. The formation of working diodes with higher Sn content up to 16% Sn was implemented by using more advanced n-Ge1-xSnx/i-Ge1-ySny/p-Ge1-zSnz architectures incorporating Ge1-xSnx intermediate layers (x ˜ 12% Sn) that served to mitigate the lattice mismatch with the Ge platform. This yielded fully coherent diode interfaces devoid of strain relaxation defects. The electrical measurements in this case revealed a sharp increase in reverse-bias dark currents by almost two orders of magnitude, in spite of the comparable crystallinity of the active layers. This observation is attributed to the enhancement of band-to-band tunneling when all the diode layers consist of direct gap materials and thus has implications for the design of light emitting diodes and lasers operating at desirable mid-IR wavelengths. Possible ways to engineer these diode characteristics and improve carrier confinement involve the incorporation of new barrier materials, in particular, ternary Ge1-x-ySixSny alloys. The possibility of achieving type-I structures using binary and ternary alloy combinations is discussed in detail, taking into account

  17. Thermoelectric properties of Co(x)Ni(4-x)Sb(12-y)Sn(y) ternary skutterudites

    NASA Technical Reports Server (NTRS)

    Mackey, Jon A.; Dynys, Frederick W.; Sehirlioglu, Alp

    2014-01-01

    Thermoelectric materials based on the skutterudite crystal structure have demonstrated enhanced performance (ZT greater than 1), along with good thermal stability and favorable mechanical properties. Binary skutterudites, with single and multiple fillers, have been intensively studied in recent years. Compared to binary skutterudites, the ternary systems have received less attention, e.g. Ni4Sb8Sn4. Ternary skutterudites are isoelectronic variants of binary skutterudites; cation substitutions appear to be isostructural to their binary analogues. In general, ternary skutterudites exhibit lower thermal conductivity. Ternary systems of Ni4Bi8Ge4, Ni4Sb8Ge4, and Ni4Sb8Sn4 were investigated using combined solidification and sintering steps. Skutterudite formation was not achieved in the Ni4Bi8Ge4 and Ni4Sb8Ge4 systems; skutterudite formation occurred in Ni4Sb8Sn4 system. P-type material was achieved by Co substitution for Ni. Thermoelectric properties were measured from 298 K to 673 K for Ni4Sb8Sn4, Ni4 Sb7Sn5 and Co2Ni2Sb7Sn5. N-type Ni4Sb8Sn4 exhibit the highest figure of merit of 0.1 at 523 K.

  18. HF Accelerated Electron Fluxes, Spectra, and Ionization

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert C.; Jensen, Joseph B.

    2015-10-01

    Wave particle interactions, an essential aspect of laboratory, terrestrial, and astrophysical plasmas, have been studied for decades by transmitting high power HF radio waves into Earth's weakly ionized space plasma, to use it as a laboratory without walls. Application to HF electron acceleration remains an active area of research (Gurevich in Usp Fizicheskikh Nauk 177(11):1145-1177, 2007) today. HF electron acceleration studies began when plasma line observations proved (Carlson et al. in J Atmos Terr Phys 44:1089-1100, 1982) that high power HF radio wave-excited processes accelerated electrons not to ~eV, but instead to -100 times thermal energy (10 s of eV), as a consequence of inelastic collision effects on electron transport. Gurevich et al (J Atmos Terr Phys 47:1057-1070, 1985) quantified the theory of this transport effect. Merging experiment with theory in plasma physics and aeronomy, enabled prediction (Carlson in Adv Space Res 13:1015-1024, 1993) of creating artificial ionospheres once ~GW HF effective radiated power could be achieved. Eventual confirmation of this prediction (Pedersen et al. in Geophys Res Lett 36:L18107, 2009; Pedersen et al. in Geophys Res Lett 37:L02106, 2010; Blagoveshchenskaya et al. in Ann Geophys 27:131-145, 2009) sparked renewed interest in optical inversion to estimate electron spectra in terrestrial (Hysell et al. in J Geophys Res Space Phys 119:2038-2045, 2014) and planetary (Simon et al. in Ann Geophys 29:187-195, 2011) atmospheres. Here we present our unpublished optical data, which combined with our modeling, lead to conclusions that should meaningfully improve future estimates of the spectrum of HF accelerated electron fluxes. Photometric imaging data can significantly improve detection of emissions near ionization threshold, and confirm depth of penetration of accelerated electrons many km below the excitation altitude. Comparing observed to modeled emission altitude shows future experiments need electron density profiles

  19. 'Pd20Sn13' revisited: crystal structure of Pd6.69Sn4.31.

    PubMed

    Klein, Wilhelm; Jin, Hanpeng; Hlukhyy, Viktor; Fässler, Thomas F

    2015-07-01

    The crystal structure of the title compound was previously reported with composition 'Pd20Sn13' [Sarah et al. (1981 ▸). Z. Metallkd, 72, 517-520]. For the original structure model, as determined from powder X-ray data, atomic coordinates from the isostructural compound Ni13Ga3Ge6 were transferred. The present structure determination, resulting in a composition Pd6.69Sn4.31, is based on single crystal X-ray data and includes anisotropic displacement parameters for all atoms as well as standard uncertainties for the atomic coordinates, leading to higher precision and accuracy for the structure model. Single crystals of the title compound were obtained via a solid-state reaction route, starting from the elements. The crystal structure can be derived from the AlB2 type of structure after removing one eighth of the atoms at the boron positions and shifting adjacent atoms in the same layer in the direction of the voids. One atomic site is partially occupied by both elements with a Pd:Sn ratio of 0.38 (3):0.62 (3). One Sn and three Pd atoms are located on special positions with site symmetry 2. (Wyckoff letter 3a and 3b).

  20. Low loss Co2Z hexaferrite with matched permeability and permittivity in HF and VHF bands

    NASA Astrophysics Data System (ADS)

    Zhang, Tianshui; Su, Hua; Tang, Xiaoli; Zhang, Huaiwu; Jing, Yulan; Li, Yuanxun

    2015-05-01

    Magneto-dielectric materials with matched permeability and permittivity have significant advantages for miniaturization and efficiency improvement of antennas. In this study, we adopted the Z-type hexaferrites in series (Ba0.5Sr0.5)3Co2Fe24O41+xSnO2 (where x=0, 0.1, 0.2, 0.4, and 0.6 wt%) to produce the magneto-dielectric material. It was found that moderate SnO2 could obviously enhance mass transfer and densification of the ferrites, while there was no significant increase in grain size, which favored to obtain low magnetic and dielectric losses. However, excessive SnO2 led to the appearance of Co2W phase and slight decrease of sintered density. The samples with 0.1 and 0.2 wt% SnO2 could obtain relatively high refractive index with real permeability and permittivity around 15. And the former presented the lowest magnetic and dielectric losses; the latter presented the best matched permeability and permittivity. Both of them are suitable for applications of antenna miniaturization between 3 and 300 MHz (HF and VHF bands).

  1. Magnetoelastic properties of substituted Er1-xGdxMn6Sn6 intermetallic system

    NASA Astrophysics Data System (ADS)

    Tabatabai Yazdi, Sh.; Tajabor, N.; Roknabadi, M. Rezaee; Behdani, M.; Pourarian, F.

    2014-06-01

    The forced magnetostriction of polycrystalline samples of Er1-xGdxMn6Sn6 (0≤x≤1) intermetallics with hexagonal HfFe6Ge6-type structure is investigated in the temperature range of 77-480 K. Gd substitution has a significant effect on interatomic distances and especially on inter-sublattice R-Mn couplings. The replacement of Er by Gd results in increasing the ordering temperature followed by reinforcement of the R-Mn coupling, as well as decreasing the magnetostriction values owing to the S-state character of Gd3+ ions. The results show that the contribution of Er sublattice to anisotropic magnetoelastic effects is positive, while that of Gd and Mn is negative. All the examined samples exhibit considerable magnetovolume anomalies at the ordering temperature (TC=338, 381, 412 and 434 K for the samples with x=0, 0.2, 0.6 and 1.0, respectively). While the unsubstituted sample exhibits metamagnetic transitions, Gd-contained compounds do not show this behavior, owing to the strong Gd-Mn coupling. The experimental results obtained are discussed in the framework of the two-magnetic sublattice by bearing in mind the lattice parameter dependence of the interlayer Mn-Mn exchange interaction in these layered compounds. From the temperature dependence of magnetostriction values and considering the magnetostriction equation for a hexagonal structure, we attempt to determine the signs of some of the magnetostriction constants for these compounds and the influence of Gd substitution on them.

  2. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Structural Feature and Solute Trapping of Rapidly Grown Ni3Sn Intermetallic Compound

    NASA Astrophysics Data System (ADS)

    Qin, Hai-Yan; Wang, Wei-Li; Wei, Bing-Bo

    2009-11-01

    The rapid dendritic growth of primary Ni3Sn phase in undercooled Ni-30.9%Sn-5%Ge alloy is investigated by using the glass fluxing technique. The dendritic growth velocity of Ni3Sn compound is measured as a function of undercooling, and a velocity of 2.47 m/s is achieved at the maximum undercooling of 251 K (0.17TL). The addition of the Ge element reduces its growth velocity as compared with the binary Ni75Sn25 alloy. During rapid solidification, the Ni3Sn compound behaves like a normal solid solution and it displays a morphological transition of “coarse dendrite-equiaxed grain-vermicular structure" with the increase of undercooling. Significant solute trapping of Ge atoms occurs in the whole undercooling range.

  3. First in-beam observation of excited states in {sup 156}{sub 72}Hf{sub 84} using the recoul-decay tagging method

    SciTech Connect

    Seweryniak, D.; Ahmad, H.; Amro, D.J.

    1996-12-31

    Excited states in the proton rich nuclide {sup 156}{sub 72}Hf{sub 84} were observed for the first time using the {sup 102}({sup 58}Ni, 2p2n){sup 156}Hf reaction at 270 MeV. Gamma rays were detected with the AYEBALL array of Compton suppressed Ge detectors, placed in front of the Fragment Mass Analyzer, and were assigned to individual reaction charmers using the Recoil-Decay Tagging Method. Prompt {gamma}-ray cascades were associated with the alpha decay of both the ground state and the 8{sup +} isomeric state in {sup 156}Hf. The level scheme constructed for {sup 156}Hf is compared with level schemes of lighter even-even N=84 isotones and is discussed within the framework of the Shell Model.

  4. Improved techniques for monitoring the HF spectrum

    NASA Astrophysics Data System (ADS)

    Giesbrecht, James E.; Clarke, Russell; Abbott, Derek

    2004-03-01

    A critical review of contemporary papers on modulation recognition, signal separation, and Single Station Location (SSL) is described in the context of High-Frequency (HF) radio-communications. High-frequency communications is undergoing resurgence despite advances in long-range satellite communication systems. Defense agencies are using the HF spectrum for backup communications as well as for spectrum surveillance applications. Spectrum management organizations are monitoring the HF spectrum to control and enforce licensing. This type of activity usually requires a system that is able to determine the location of a source of transmissions, separate valid signals from interferers and noise, and characterize signals-of-interest (SOI). The immediate aim is to show that commercial-off-the-shelf (COTS) equipment can be used to locate HF transmission sources, enhance SOIs and reject interference, and recognize signal types. The described work on single-station-location (SSL), signal separation, and modulation recognition is contributing to these goals. This paper describes the overall objectives and some of the disadvantages and benefits of various schemes for single-station-location (SSL), signal separation, and modulation recognition. It also proposes new approaches that may relieve shortcomings of existing methods -- including selection of benchmarks or modulations for various transmission scenarios and propagation modes, and use of multiple digital receivers or compression techniques to improve modulation recognition, signal separation, and location of HF emitters.

  5. Beta Decay of the Proton-Rich Nuclei 102Sn and 104Sn

    SciTech Connect

    Karny, M.; Batist, L.; Banu, A.; Becker, F.; Blazhev, A.; Brown, B. A.; Bruchle, W.; Doring, J.; Faestermann, T.; Gorska, M.; Grawe, H.; Janas, Z.; Jungclaus, A.; Kavatsyuk, M.; Kavatsyuk, O.; Kirchner, R.; La Commara, M.; Mandal, S.; Mazzocchi, C.; Miernik, K.; Mukha, I.; Muralithar, S.; Plettner, C.; Plochocki, A.; Roeckl, E.; Romoli, M.; Rykaczewski, Krzysztof Piotr; Schadel, M.; Schmidt, K.; Schwengner, R.; Zylicz, J.

    2006-01-01

    The {beta} decays of {sup 102}Sn and {sup 104}Sn were studied by using high-resolution germanium detectors as well as a Total Absorption Spectrometer (TAS). For {sup 104}Sn, with three new {beta}-delayed {gamma}-rays identified, the total Gamow-Teller strength (BGT) value of 2.7(3) was obtained. For {sup 102}Sn, the {gamma}-{gamma} coincidence data were collected for the first time, allowing us to considerably extend the decay scheme. This scheme was used to unfold the TAS data and to deduce a BGT value of 4.2(8) for this decay. This result is compared to shell model predictions, yielding a hindrance factor of 3.6(7) in agreement with those obtained previously for {sup 98}Cd and {sup 100}In. Together with the latter two, {sup 102}Sn completes the triplet of Z {le} 50, N {ge} 50 nuclei with two proton holes, one proton hole and one neutron particle, and two neutron particles with respect to the doubly magic {sup 100}Sn core.

  6. Reversible Li-Ion Conversion Reaction for a TixGe Alloy in a Ti/Ge Multilayer.

    PubMed

    Chen, Xiao; Fister, Tim T; Esbenshade, Jennifer; Shi, Bing; Hu, Xianyi; Wu, Jinsong; Gewirth, Andrew A; Bedzyk, Michael J; Fenter, Paul

    2017-03-08

    Group IV intermetallics electrochemically alloy with Li with stoichiometries as high as Li4.4M (M = Si, Ge, Sn, or Pb). This provides the second highest known specific capacity (after pure lithium metal) for lithium-ion batteries, but the dramatic volume change during cycling greatly limits their use as anodes in Li-ion batteries. We describe an approach to overcome this limitation by constructing electrodes using a Ge/Ti multilayer architecture. In operando X-ray reflectivity and ex situ transmission electron microscopy are used to characterize the heterolayer structure at various lithium stoichiometries along a lithiation/delithiation cycle. The as-deposited multilayer spontaneously forms a one-dimensional TixGe/Ti/TixGe core-shell planar structure embedded in a Ge matrix. The interfacial TixGe alloy is observed to be electrochemically active and exhibits reversible phase separation (i.e., a conversion reaction). Including the germanium components, the overall multilayer structure exhibits a 2.3-fold reversible vertical expansion and contraction and is shown to have improved capacity and capacity retention with respect to a Ge film with equivalent active material thickness.

  7. Astrophysical S factor for α capture on Sn117

    NASA Astrophysics Data System (ADS)

    Căta-Danil, I.; Filipescu, D.; Ivaşcu, M.; Bucurescu, D.; Zamfir, N. V.; Glodariu, T.; Stroe, L.; Căta-Danil, G.; GhiţĂ, D. G.; Mihai, C.; Suliman, G.; Sava, T.

    2008-09-01

    The cross sections of the Sn117(α,γ) Te121 and Sn117(α,p) Sb120 reactions have been measured in the effective center of mass energy from 11.5 to 14.6 MeV. Highly enriched self-supporting Sn117 (90%) foils were bombarded with an α beam delivered by the Bucharest IFIN-HH tandem accelerator. The induced activity of Te121 and Sb120 was measured with two large-volume high-purity Ge detectors in close geometry to maximize the detector efficiency. The experimental cross section and astrophysical S factor are compared with statistical model predictions for different global α-nucleus optical potentials.

  8. Adaptive tracking of narrowband HF channel response

    NASA Astrophysics Data System (ADS)

    Arikan, F.; Arikan, O.

    2003-12-01

    Estimation of channel impulse response constitutes a first step in computation of scattering function, channel equalization, elimination of multipath, and optimum detection and identification of transmitted signals through the HF channel. Due to spatial and temporal variations, HF channel impulse response has to be estimated adaptively. Based on developed state-space and measurement models, an adaptive Kalman filter is proposed to track the HF channel variation in time. Robust methods of initialization and adaptively adjusting the noise covariance in the system dynamics are proposed. In simulated examples under good, moderate and poor ionospheric conditions, it is observed that the adaptive Kalman filter based channel estimator provides reliable channel estimates and can track the variation of the channel in time with high accuracy.

  9. The ADMX-HF (High Frequency) Experiment

    NASA Astrophysics Data System (ADS)

    Lehnert, K. W.

    2013-04-01

    For many years, the Axion Dark Matter eXperiment (ADMX) has searched for dark-matter axions by their resonant conversion to photons in a high-Q microwave cavity embedded in a strong magnetic field; to date focusing on the ˜1 GHz range, or ma˜ few micro-eV. A second platform, ADMX-HF is now being constructed at Yale University which will focus on technology development and a first look at data in the ˜10 GHz range. Consisting of a 9T superconducting magnet (40 cm long x 14 cm diameter), a dilution refrigerator and a quantum-limited receiver based on Josephson Parametric Amplifiers (JPA) ADMX-HF is projected to achieve sensitivity within the axion model band, despite its smaller volume than ADMX. ADMX-HF is a collaboration of Yale, JILA/Colorado, UC Berkeley and LLNL, and by agreement will create a unified data set with ADMX.

  10. HF Radio Wave Production of Artificial Ionospheres

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert

    In 1993 it was predicted that artificial ionospheres would be produced by high power HF radio waves, once HF transmitters approached a GWatt ERP. When that threshold was very recently achieved, such production was indeed detected and published at two high latitude high power HF facilities. Here we review: the first-principles logic behind that prediction, which aspects of such production are critically dependent on magnetic latitude, and which aspects of such production depend only on physical parameters independent of latitude. These distinctions follow directly from decomposition of the problem of ionization production into its components of: radio-wave propagation, wave-particle interactions, electron transport, and quantitative elastic/inelastic cross-sections. We outline this analysis to show that, within the context of early observations, the production of ionization is inevitable, and only a question of competing instability thresholds, and scale of ionization production. This illustrates complimentary aeronomy and plasma physics to advance understanding of both.

  11. The two gap transitions in Ge1 -xSnx : Effect of non-substitutional complex defects

    NASA Astrophysics Data System (ADS)

    Querales-Flores, J. D.; Ventura, C. I.; Fuhr, J. D.; Barrio, R. A.

    2016-09-01

    The existence of non-substitutional β-Sn defects in Ge1 -xSnx alloys was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B 81, 155204 (2010)], which established that, although most Sn enters substitutionally (α-Sn) in the Ge lattice, a second significant fraction corresponds to the Sn-vacancy defect complex in the split-vacancy configuration (β-Sn), in agreement with our previous theoretical study [Ventura et al., Phys. Rev. B 79, 155202 (2009)]. Here, we present the electronic structure calculations for Ge1 -xSnx , including the substitutional α-Sn as well as the non-substitutional β-Sn defects. To include the presence of the non-substitutional complex defects in the electronic structure calculation for this multi-orbital alloy problem, we extended the approach for the purely substitutional alloy by Jenkins and Dow [Phys. Rev. B 36, 7994 (1987)]. We employed an effective substitutional two-site cluster equivalent to the real non-substitutional β-Sn defect, which was determined by a Green's functions calculation. We then calculated the electronic structure of the effective alloy purely in terms of substitutional defects, embedding the effective substitutional clusters in the lattice. Our results describe the two transitions of the fundamental gap of Ge1 -xSnx as a function of the total Sn-concentration: namely, from an indirect to a direct gap, first, and the metallization transition at a higher x. They also highlight the role of β-Sn in the reduction of the concentration range, which corresponds to the direct-gap phase of this alloy of interest for the optoelectronics applications.

  12. Liquidus Projections of Sn-Co-Ni and Sn-Rich Sn-Ag-Co-Ni Systems

    NASA Astrophysics Data System (ADS)

    Chen, Sinn-wen; Chen, Tung-Kai; Hsu, Chia-ming; Chang, Jui-shen; Pan, Kevin

    2014-07-01

    Alloys based on Sn and Sn-Ag are commonly used as Pb-free solders, and Ni is frequently used in barrier layers. Co has been studied as a possible alloying element in both solders and barrier layers. Thus, the Sn-Co-Ni and Sn-Ag-Co-Ni alloy systems are important for electronic soldering. Forty-nine Sn-Co-Ni alloys and 24 Sn-rich Sn-Ag-Co-Ni alloys were prepared. The primary solidification phases of these as-cast alloys were determined, and based on these results and the available phase diagrams of the constituent systems, the liquidus projections of Sn-Co-Ni ternary and Sn-Ag-Co-Ni quaternary systems at 90 at.% and 95 at.% Sn were determined. In the Sn-Co-Ni system, no ternary compound was found; (Ni,Co)3Sn2 and (Ni,Co) are continuous solid solutions, and there are eight kinds of primary solidification phases: Sn, CoSn3, CoSn2, CoSn, (Ni,Co)3Sn2, (Ni,Co), Ni3Sn, and Ni3Sn4. In the 90 at.% and 95 at.% Sn isoplethal sections of the Sn-Ag-Co-Ni liquidus projection, the primary solidification phases are CoSn2, CoSn, Ni3Sn4, and Ag3Sn.

  13. Removal of uranium from aqueous HF solutions

    DOEpatents

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  14. General concepts of modern HF communications

    NASA Astrophysics Data System (ADS)

    Aarons, Jules

    Both conceptual and hardware advancements have led to substantial systems developments in military HF communications; the former encompass coding and error correction techniques for security, in order to minimize propagation and interference, while the latter prominently include digital equipment permitting the selection of a frequency for a particular path and propagation mode, as well as modulation selection. Propagation-related advancements involve better statistical models as well as advancements in short-term forecasting methods responsive to changes in solar-geophysical parameters. Adaptive HF systems have been developed for meteor-scatter radio communications.

  15. Lifetime Measurements of ^170Hf and a test of the Confined Beta Soft Rotor Model

    NASA Astrophysics Data System (ADS)

    Smith, M. K.; Werner, V.; Heinz, A.; Terry, J. R.; Qian, J.; Winkler, R.; Casperson, R.; Williams, E.; Berant, Z.; L"Uttke, R.; Shoraka, B.; Henning, G.

    2009-10-01

    Significant deviations from rigid rotor model energy level predictions have been known to occur in rare earth nuclei. Recently, it was shown these deviations may be caused by centrifugal stretching effects within the nucleus [1]. New geometrical models have been proposed that account for centrifugal stretching, such as the confined beta soft model (CBS). We present the results from a high precision lifetime experiment performed with the New Yale Plunger Device at WNSL, Yale University. The ground state band of ^170Hf was measured through the J=12^+ level using the Recoil Distance Doppler Shift method. Excited states were populated in the ^124Sn(^50Ti,γ)^170Hf fusion evaporation reaction. Using the lifetimes, the B(E2) values and the quadrupole deformation parameter are determined. Centrifugal stretching is observed as an increased deviation in energy at higher spins in 170Hf. These results are compared to theoretical predictions from the CBS rotor model. Supported by grant DE-FG02-91ER40609.[4pt] [1] Costin et al, Phys.Rev. C 79, 024307 (2009)

  16. Low Temperature Silicon Surface Cleaning by HF Etching/Ultraviolet Ozone Cleaning (HF/UVOC) Method (I)—Optimization of the HF Treatment—

    NASA Astrophysics Data System (ADS)

    Suemitsu, Maki; Kaneko, Tetsuya; Miyamoto, Nobuo

    1989-12-01

    Several variations of fluoric acid (HF) treatments of silicon substrates were examined for their adaptability as a pretreatment method for a silicon epitaxy process. Treatments with and without distilled, deionized (DI) water rinse, of different HF concentrations, and of different methods of HF supply were tested and their residual carbonic impurity contents were measured using RHEED. As a result, HF treatments by themselves were found to be insufficient in passivating the surface dangling bonds irrespective of the method of HF supply: dipping into the solution or exposure to the vapor. The optimum procedure of HF treatment thus proposed is a succession of (a) HF dipping, (b) DI-water rinsing, (c) nitrogen-gas blowing, and (d) UV-ozone cleaning.

  17. Nanometer-scale crystallization of thin HfO2 films studied by HF-chemical etching

    NASA Astrophysics Data System (ADS)

    Fujii, Shinji; Miyata, Noriyuki; Migita, Shinji; Horikawa, Tsuyoshi; Toriumi, Akira

    2005-05-01

    We used a HF-chemical etching process to examine crystalline structures in thin HfO2 films grown by metal organic chemical vapor deposition at 350-550°C. Nanometer-scale crystalline HfO2 nuclei were identified from all the HfO2 films. The nucleus density exponentially increased with increasing deposition temperature, but the diameter of the nuclei did not depend on the deposition temperature. We propose that the crystallization of thin HfO2 film during growth proceeds in a patchwork process with the increase of the crystalline HfO2 nuclei.

  18. Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ahmadi, Elaheh; Koksaldi, Onur S.; Kaun, Stephen W.; Oshima, Yuichi; Short, Dane B.; Mishra, Umesh K.; Speck, James S.

    2017-04-01

    The Ge doping of β-Ga2O3(010) films was investigated using plasma-assisted molecular beam epitaxy as the growth method. The dependences of the amount of Ge incorporated on the substrate temperature, Ge-cell temperature, and growth regime were studied by secondary ion mass spectrometry. The electron concentration and mobility were investigated using Van der Pauw Hall patterns. Hall measurement confirmed that Ge acts as an n-dopant in β-Ga2O3(010) films. These results were compared with similar films doped by Sn. The Hall data showed an improved electron mobility for the same electron concentration when Ge is used instead of Sn as the dopant.

  19. Formation, crystalline structure, and optical properties of Ge1-x-ySnxCy ternary alloy layers

    NASA Astrophysics Data System (ADS)

    Yamaha, Takashi; Terasawa, Kengo; Oda, Hiroki; Kurosawa, Masashi; Takeuchi, Wakana; Taoka, Noriyuki; Nakatsuka, Osamu; Zaima, Shigeaki

    2015-04-01

    We have investigated the crystalline and optical properties of epitaxial layers of the ternary alloy Ge1-x-ySnxCy grown on a Si substrate. We achieved the formation of epitaxial Ge1-x-ySnxCy layers with a C content as high as 2% even with a high C incorporation efficiency. X-ray photoemission spectra and Raman scattering spectroscopy measurements revealed that C atoms preferentially bond with Sn atoms in the Ge matrix, which is considered to enhance C introduction into substitutional sites in Ge with local strain compensation. We also demonstrated the control of the energy bandgaps of epitaxial Ge1-x-ySnxCy layers by controlling Sn and C contents.

  20. Hf-W Chronology of CR Chondrites

    NASA Astrophysics Data System (ADS)

    Budde, G.; Kruijer, T. S.; Kleine, T.

    2017-02-01

    Hf-W systematics of CR chondrites define an age of 3.7 Ma after CAIs for CR chondrule formation. CR metal and silicates have complementary nucleosynthetic W and Mo isotope anomalies due to the uneven distribution of a presolar s-process carrier.

  1. Few-layer SnSe{sub 2} transistors with high on/off ratios

    SciTech Connect

    Pei, Tengfei; Bao, Lihong Wang, Guocai; Ma, Ruisong; Yang, Haifang; Li, Junjie; Gu, Changzhi; Du, Shixuan; Gao, Hong-jun; Pantelides, Sokrates

    2016-02-01

    We report few-layer SnSe{sub 2} field effect transistors (FETs) with high current on/off ratios. By trying different gate configurations, 300 nm SiO{sub 2} and 70 nm HfO{sub 2} as back gate only and 70 nm HfO{sub 2} as back gate combined with a top capping layer of polymer electrolyte, few-layer SnSe{sub 2} FET with a current on/off ratio of 10{sup 4} can be obtained. This provides a reliable solution for electrically modulating quasi-two-dimensional materials with high electron density (over 10{sup 13} cm{sup −2}) for field-effect transistor applications.

  2. SEMICONDUCTOR TECHNOLOGY: Wet etching characteristics of a HfSiON high-k dielectric in HF-based solutions

    NASA Astrophysics Data System (ADS)

    Yongliang, Li; Qiuxia, Xu

    2010-03-01

    The wet etching properties of a HfSiON high-k dielectric in HF-based solutions are investigated. HF-based solutions are the most promising wet chemistries for the removal of HfSiON, and etch selectivity of HF-based solutions can be improved by the addition of an acid and/or an alcohol to the HF solution. Due to densification during annealing, the etch rate of HfSiON annealed at 900 °C for 30 s is significantly reduced compared with as-deposited HfSiON in HF-based solutions. After the HfSiON film has been completely removed by HF-based solutions, it is not possible to etch the interfacial layer and the etched surface does not have a hydrophobic nature, since N diffuses to the interface layer or Si substrate formation of Si-N bonds that dissolves very slowly in HF-based solutions. Existing Si-N bonds at the interface between the new high-k dielectric deposit and the Si substrate may degrade the carrier mobility due to Coulomb scattering. In addition, we show that N2 plasma treatment before wet etching is not very effective in increasing the wet etch rate for a thin HfSiON film in our case.

  3. Synthesis, photocatalytic and antimicrobial properties of SnO2, SnS2 and SnO2/SnS2 nanostructure.

    PubMed

    Fakhri, Ali; Behrouz, Sajjad; Pourmand, Melika

    2015-08-01

    Nanoscale SnO2, SnS2 and SnO2/SnS2 were synthesized by hydrothermal treatment method and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH) and UV-vis spectra. The photocatalytic activity of SnO2, SnS2 and SnO2/SnS2 were tested with Enrofloxacin antibiotic. The tetragonal and hexagonal SnO2 and SnS2 phase was confirmed through XRD, respectively. The photocatalytic results indicated that the SnO2/SnS2 enhanced the photocatalytic activity and could be effectively used as photocatalyst for degradation of Enrofloxacin antibiotic pollutant. The results of antibacterial experiment under visible light irradiation demonstrate that the SnO2/SnS2 nanocomposite exhibit enhanced antibacterial efficiency compared with pure SnO2 and SnS2. The antifungal activity of the nanoscale SnO2, SnS2 and SnO2/SnS2 against Candida albicans was assessed using the disc-diffusion susceptibility tests. It was seen that the antifungal activity of SnO2/SnS2 nanocomposite is higher than the pure SnO2 and SnS2 toward pathogenic C. albicans.

  4. Type Ia supernova diversity: Studies of SN 2007qd, SN 2008Q and SN 2011fe

    NASA Astrophysics Data System (ADS)

    McClelland, Colin M.

    Type Ia supernovae (SN Ia) have proven to be incredibly useful as distance indicators and in nuclear astrophysics, but there remain many unanswered questions as to their nature. We examine three particular SN Ia at length in an attempt to provide constraints on both their theory and their application to cosmology. We first present SN 2007qd, one of the lowest-luminosity SN Ia ever discovered. It appears to belong to the SN 2002cx-like subclass of peculiar SN Ia. We observe and analyze the photospheric-phase spectra and photometry for this event and determine that, despite its extreme nature, it still appears to be a thermonuclear event rather than a core-collapse SN Ic. We also discover a possible relation between the luminosity and the low expansion velocities (2000˜7000 km/s) of similar events, and determine that they constitute a well-defined group of SN Ia. From the explosion kinematics and the content of the spectra, we argue that SN 2007qd was likely caused by a pure deflagration of a carbon and oxygen white dwarf. We then consider SN 2008Q, a SN Ia that exploded in the same early-type host galaxy as the peculiar SN 2000cx. This provided a chance for a direct comparison of two SN Ia at the same distance, extinction and host environment. We combine photometry from the ultraviolet through to the mid-infrared (MIR) and create a picture of how this SN evolved bolometrically over a span of two years. We discover that SN 2008Q was relatively bright in the ultraviolet, and characterize the possible existence of a class of SN Ia with similar UV excesses. We identify intrinsic differences between SN 2008Q and SN 2000cx, and discuss what this means for the variation in explosion and nebular physics in SN Ia events. We present next the mid-infrared and optical decay of SN 2011fe. This SN Ia exploded in the nearby galaxy M101, allowing observations of high signal-to-noise during the later phases. We examine this SN with Spitzer/IRAC MIR photometry and discover that the

  5. SnS2- Compared to SnO2-Stabilized S/C Composites toward High-Performance Lithium Sulfur Batteries.

    PubMed

    Li, Xiaona; Lu, Yue; Hou, Zhiguo; Zhang, Wanqun; Zhu, Yongchun; Qian, Yitai; Liang, Jianwen; Qian, Yitai

    2016-08-03

    The common sulfur/carbon (S/C) composite cathodes in lithium sulfur batteries suffer gradual capacity fading over long-term cycling incurred by the poor physical confinement of sulfur in a nonpolar carbon host. In this work, these issues are significantly relieved by introducing polar SnO2 or SnS2 species into the S/C composite. SnO2- or SnS2-stabilized sulfur in porous carbon composites (SnO2/S/C and SnS2/S/C) have been obtained through a baked-in-salt or sealed-in-vessel approach at 245 °C, starting from metallic tin (mp 231.89 °C), excess sulfur, and porous carbon. Both of the in situ-formed SnO2 and SnS2 in the two composites could ensure chemical interaction with lithium polysulfide (LiPS) intermediates proven by theoretical calculation. Compared to SnO2/S/C, the SnS2/S/C sample affords a more appropriate binding effect and shows lower charge transfer resistance, which is important for the efficient redox reaction of the adsorbed LiPS intermediates during cycling. When used as cathodes for Li-S batteries, the SnS2/S/C composite with sulfur loading of 78 wt % exhibits superior electrochemical performance. It delivers reversible capacities of 780 mAh g(-1) after 300 cycles at 0.5 C. When further coupled with a Ge/C anode, the full cell also shows good cycling stability and efficiency.

  6. Plasma-assisted low energy N2 implant for Vfb tuning of Ge gate stacks

    NASA Astrophysics Data System (ADS)

    Kothari, Shraddha; Joishi, Chandan; Nejad, Hasan; Variam, Naushad; Lodha, Saurabh

    2016-08-01

    This work reports Vfb tuning of TiN/HfO2 gate stacks on Ge using low energy plasma-assisted doping with N2 without significant impact on gate capacitance and gate/channel interface trap densities. As required for multi-VT Ge p-FinFETs, controlled change in effective work function up to 180 mV from the near midgap to the near valence band edge of Ge is demonstrated by varying implant dose and energy. Unlike Si gate stacks, increased gate leakage in implanted Ge gate stacks is shown to result from traps created in the HfO2 layer during the implant and exposed to channel carriers due to a low band offset GeO2 interfacial layer (IL). Recovery of gate leakage is demonstrated by substituting GeO2 with an Al2O3 IL. Further, a simple physical model is proposed to extract the work function and oxide charge components of the change in Vfb for varying implant doses and energies.

  7. SN Candidates from CRTS

    NASA Astrophysics Data System (ADS)

    Drake, A. J.; Mahabal, A. A.; Djorgovski, S. G.; Graham, M. J.; Williams, R.; Catelan, M.; Beshore, E. C.; Larson, S. M.; Boattini, A.; Gibbs, A.; Hill, R.; Kowalski, R.; Christensen, E.

    2009-02-01

    The Catalina Real-time Transient Survey has so far discovered over six hundred significant optical transients. Here we report on seven probable SN discoveries made with CSS images between UT dates Jan 20th and Feb 19th.

  8. Stellar Laboratories: New GeV and Ge VI Oscillator Strengths and their Validation in the Hot White Dwarf RE0503-289

    NASA Technical Reports Server (NTRS)

    Rauch, T.; Werner, K.; Biemont, E.; Quinet, P.; Kruk, J. W.

    2013-01-01

    State-of-the-art spectral analysis of hot stars by means of non-LTE model-atmosphere techniques has arrived at a high level of sophistication. The analysis of high-resolution and high-S/N spectra, however, is strongly restricted by the lack of reliable atomic data for highly ionized species from intermediate-mass metals to trans-iron elements. Especially data for the latter has only been sparsely calculated. Many of their lines are identified in spectra of extremely hot, hydrogen-deficient post-AGB stars. A reliable determination of their abundances establishes crucial constraints for AGB nucleosynthesis simulations and, thus, for stellar evolutionary theory. Aims. In a previous analysis of the UV spectrum of RE 0503-289, spectral lines of highly ionized Ga, Ge, As, Se, Kr, Mo, Sn, Te, I, and Xe were identified. Individual abundance determinations are hampered by the lack of reliable oscillator strengths. Most of these identified lines stem from Ge V. In addition, we identified Ge VI lines for the first time. We calculated Ge V and Ge VI oscillator strengths in order to reproduce the observed spectrum. Methods. We newly calculated Ge V and Ge VI oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our non-LTE stellar-atmosphere models for the analysis of the Ge IV-VI spectrum exhibited in high-resolution and high-S/N FUV (FUSE) and UV (ORFEUS/BEFS, IUE) observations of RE 0503-289. Results. In the UV spectrum of RE 0503-289, we identify four Ge IV, 37 Ge V, and seven Ge VI lines. Most of these lines are identified for the first time in any star. We can reproduce almost all Ge IV, GeV, and Ge VI lines in the observed spectrum of RE 0503-289 (T(sub eff) = 70 kK, log g = 7.5) at log Ge = -3.8 +/- 0.3 (mass fraction, about 650 times solar). The Ge IV/V/VI ionization equilibrium, that is a very sensitive T(sub eff) indicator, is reproduced well. Conclusions. Reliable measurements and calculations of atomic data are a

  9. A search for a heavy Majorana neutrino and a radiation damage simulation for the HF detector

    NASA Astrophysics Data System (ADS)

    Wetzel, James William

    A search for heavy Majorana neutrinos is performed using an event signature defined by two same-sign muons accompanied by two jets. This search is an extension of previous searches, (L3, DELPHI, CMS, ATLAS), using 19.7 fb -1 of data from the 2012 Large Hadron Collider experimental run collected by the Compact Muon Solenoid experiment. A mass window of 40-500 GeV/ c2 is explored. No excess events above Standard Model backgrounds is observed, and limits are set on the mixing element squared, |VmuN|2, as a function of Majorana neutFnrino mass. The Hadronic Forward (HF) Detector's performance will degrade as a function of the number of particles delivered to the detector over time, a quantity referred to as integrated luminosity and measured in inverse femtobarns (fb-1). In order to better plan detector upgrades, the CMS Forward Calorimetry Task Force (FCAL) group and the CMS Hadronic Calorimeter (HCAL) group have requested that radiation damage be simulated and the subsequent performance of the HF subdetector be studied. The simulation was implemented into both the CMS FastSim and CMS FullSim simulation packages. Standard calorimetry performance metrics were computed and are reported. The HF detector can expect to perform well through the planned delivery of 3000 fb-1.

  10. SN 2014bc, SN2014bi and SN 1981K not detected in radio

    NASA Astrophysics Data System (ADS)

    Bietenholz, Michael; Bartel, Norbert

    2014-08-01

    We report on 10 GHz Jansky Very Large Array radio observations of SN 2014bc (Psn J12185771+4718113; Smartt et al CBET #3877) and SN 2014bi (PSN J12060299+4729335; Kumar et al, CBET #3892), as well as SN 1981K.

  11. Source of Scatter in the Creep Lives of NiAl(Hf) Single Crystals Revealed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In recent years, there has been an increased emphasis in developing NiAl-based alloys for high- temperature applications in aircraft engines. In comparison to commercial superalloys, binary NiAl has a higher melting temperature, lower density, larger thermal conductivity, and better oxidation resistance. These properties make it a desirable material to replace superalloys as blades and vanes in aircraft engines. Despite this attractive combination of properties, binary NiAl cannot be used as a reliable structural material because of its low-temperature brittleness and poor high-temperature creep strength. GE Aircraft Engines in Cincinnati, Ohio, has recently developed NiAl(Hf) alloys that have creep strengths comparable to commercial superalloys while maintaining the other desirable properties of binary NiAl. The microstructures of these alloys consist of finely distributed G-phase (Ni_(16)Hf_(6)Si_(7)) precipitates, which strengthen the NiAl matrix. However, while the creep properties of these alloys were being evaluated, considerable scatter was observed in the creep lives of specimens tested under identical stress and temperature conditions. Although these alloys had nominally the same composition, the test specimens were obtained from four different ingots (A, B, C, and D) that had been heat treated under similar conditions. The NASA Lewis Research Center began the present study at the request of GE Aircraft Engines under a Space Act Agreement to identify the source of this scatter.

  12. The low-temperature form of calcium gold stannide, CaAuSn

    SciTech Connect

    Lin, Qisheng; Corbett, John D

    2014-07-19

    The EuAuGe-type CaAuSn phase has been synthesized and single-crystal X-ray diffraction analysis reveals that it has an ortho­rhom­bic symmetry (space group Imm2), with a = 4.5261 (7) Å, b = 7.1356 (11) Å and c = 7.8147 (11) Å. The structure features puckered layers that are connected by homoatomic Au-Au and Sn-Sn inter­layer bonds. This structure is one of the two parent structures of its high-temperature polymorph (ca 873 K), which is an inter­growth structure of the EuAuGe- and SrMgSi-type structures in a 2:3 ratio.

  13. Heterogeneous chemistry of HBr and HF

    SciTech Connect

    Hanson, D.R.; Ravishankara, A.R.

    1992-11-12

    The authors present information on heterogeneous chemistry of HF and HBr on glass and ice surfaces at a temperature of 200K. Their objective is to study whether heterogeneous reactions of these species could be important in the atmospheric chemistry occuring on NAT particles or cloud condensation nuclei, and be a contributor to ozone depletion. HF showed no significant uptake or reactions with ClONO{sub 2} or HOCl. HBr was found to adsorb on these surfaces, and did not exhibit saturation for even relative high concentrations. In addition it showed reactivity with ClONO{sub 2}, Cl{sub 2} and N{sub 2}O{sub 5} on ice surfaces.

  14. Materials performance in HF-alkylation units

    SciTech Connect

    Forsen, O.; Aromaa, J.; Somervuori, M.; Tavi, M.

    1995-11-01

    Materials selection in HF-alkylation units is mostly based on long time experience. The most widely used material in the Station units is standard carbon steel, because it is capable to form a thick protective FeF{sub 2} layer in concentrated or anhydrous hydrofluoric acid. The corrosion resistance decreases, when the acid is dilute (less than 64% HF) or the temperature is above 160F (70 C). The composition and metallurgical state are also suspected to affect the corrosion resistance of carbon steel. The effect of composition appears more complicated than believed, especially the A-106 specification on the total amount of Cr+Ni+Cu+Mo+V < 1% should be studied more closely from the corrosion point of view. Laboratory tests showed that the uniform corrosion rate may be 100 times higher in galvanic contact of two dissimilar steels. The effect of galvanic contacts can neither be excluded in the process equipment corrosion cases.

  15. Soft X-ray photoemission studies of Hf oxidation

    SciTech Connect

    Suzer, S.; Sayan, S.; Banaszak Holl, M.M.; Garfunkel, E.; Hussain, Z.; Hamdan, N.M.

    2002-02-01

    Soft X-Ray Photoemission Spectroscopy using surface sensitive Synchrotron Radiation has been applied to accurately determine the binding energy shifts and the valence band offset of the HfO2 grown on Hf metal. Charging of oxide films under x-rays (or other irradiation) is circumvented by controlled and sequential in-situ oxidation. Photoemission results show the presence of metallic Hf (from the substrate) with the 4f7/2 binding energy of 14.22 eV, fully oxidized Hf (from HfO2) with the 4f7/2 binding energy of 18.16 eV, and at least one clear suboxide peak. The position of the valence band of HfO2 with respect to the Hf(m) Fermi level is determined as 4.05 eV.

  16. Compact Reconfigurable HF-UHF Antennas

    DTIC Science & Technology

    2007-11-02

    7] P. J. Rainville, F. J. Harackewiez, Magnetic Tuning of a Microstrip Patch Antenna Fabricated on a Ferrite Film, IEEE Microwave and Guided Wave...Letters, 1992, Vol. 2 pp. 483-5. [8] R. K. Misra, S. S. Pattnaik, N. Das, Tuning of Microstrip Antenna on Ferrite Substrate, IEEE Transactions on...DATES COVERED Final , 01 June 1999 to 31 Dec., 2003 4. TITLE AND SUBTITLE Compact Reconfigurable HF-UHF antennas 5. FUNDING

  17. Improved HF Data Network Simulator. Volume 1

    DTIC Science & Technology

    1993-07-01

    flares - may cause HF blackouts, as can large terrestrial events such as volcanic eruptions and atomic explosions. The ionosphere exhibits a remarkable...of the earth interacts with the solar wind, causing rapid changes in the ionosphere that are made visible in part by the aurora borealis. The effects...backscatter - unpredictable changes in refraction from sporadic-E and F layers - excess path delays caused by non-great-circle modes propagating via

  18. Digitally Driven Antenna for HF Transmission

    DTIC Science & Technology

    2010-09-01

    ferrite -loaded loop as the receive antenna . The 1-MHz signal is clearly evident in the time-domain received signal on an oscilloscope, and also in the... MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 9, SEPTEMBER 2010 Digitally Driven Antenna for HF Transmission Steven D. Keller, Member, IEEE, W...MHz reference signal on the pulsewidth modulator as the transmitter and a highly inductive 470- H ferrite -loaded loop as the receive antenna . The 1-MHz

  19. SN Environments in LEGUS

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler D.; LEGUS Team

    2017-01-01

    From the LEGUS multi-band data we can analyze the stellar environments of recent supernovae (SNe), attempt to recover emission from the aging SNe, and search for light echoes around them. We can attempt to constrain the properties of the SN progenitor, based on age estimates for stellar populations in the immediate SN environments. The sites of 15 SNe of various types can be isolated in these images. I will briefly provide a summary of what we have learned about these SNe from their LEGUS environments. A few of these environments have been analyzed and published by other teams. In addition, two SNe occurred shortly after observations were made of two of the galaxies in our sample, NGC 4258 and NGC 1566. I will talk about the inferences we can make regarding the progenitors of these two core-collapse events. In general, the LEGUS dataset will be a valuable resource for identifying the progenitors of future SNe.

  20. Room temperature formation of Hf-silicate layer by pulsed laser deposition with Hf-Si-O ternary reaction control

    NASA Astrophysics Data System (ADS)

    Hotta, Yasushi; Ueoka, Satoshi; Yoshida, Haruhiko; Arafune, Koji; Ogura, Atsushi; Satoh, Shin-ichi

    2016-10-01

    We investigated the room temperature growth of HfO2 layers on Si substrates by pulsed laser deposition under ultra-high vacuum conditions. The laser fluence (LF) during HfO2 layer growth was varied as a growth parameter in the experiments. X-ray photoemission spectroscopy (XPS) was used to observe the interface chemical states of the HfO2/Si samples produced by various LFs. The XPS results indicated that an interface Hf-silicate layer formed, even at room temperature, and that the thickness of this layer increased with increasing pulsed LF. Additionally, Hf-Si bonds were increasingly formed at the interface when the LF was more than 2 J/cm2. This bond formation process was related to decomposition of HfO2 to its atomic states of Hf and O by multiphoton photochemical processes for bandgap excitation of the HfO2 polycrystalline target. However, the Hf-Si bond content of the interface Hf-silicate layer is controllable under high LF conditions. The results presented here represent a practical contribution to the development of room temperature processing of Hf-compound based devices.

  1. Band gap engineering of Si-Ge alloys for mid-temperature thermoelectric applications

    SciTech Connect

    Pulikkotil, J. J.; Auluck, S.

    2015-03-15

    The viability of Si-Ge alloys in thermoelectric applications lies in its high figure-of-merit, non-toxicity and earth-abundance. However, what restricts its wider acceptance is its operation temperature (above 1000 K) which is primarily due to its electronic band gap. By means of density functional theory calculations, we propose that iso-electronic Sn substitutions in Si-Ge can not only lower its operation to mid-temperature range but also deliver a high thermoelectric performance. While calculations find a near invariance in the magnitude of thermopower, empirical models indicate that the materials thermal conductivity would also reduce, thereby substantiating that Si-Ge-Sn alloys are promising mid-temperature thermoelectrics.

  2. Photo-induced potential barrier in As-Se-Ge films

    NASA Astrophysics Data System (ADS)

    Katyal, S. C.; Okano, S.; Suzuki, M.; Bando, T.

    1988-05-01

    Photo-excited effects in AsSeGe and AsSeGeSn amorphous films have been studied under illumination of different light sources. AsSeGe system exhibited rectifying characteristics under illumination of the light with hν > E g, while AsSeGeSn film did not show such phenomena. The illumination of the IR light along with the light of hν > E g weakened the rectification behavior. The photovoltage and I-V characteristics results suggest the existence of "photo-induced" potential barrier in AsSeGe system, which is considered to concern the creation and destruction of neutral defect states D°.

  3. Materials Data on HfSnRh2 (SG:225) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-08-27

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on HfSnPt (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on HfNi2Sn (SG:225) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Phase equilibria, formation, crystal and electronic structure of ternary compounds in Ti-Ni-Sn and Ti-Ni-Sb ternary systems

    SciTech Connect

    Romaka, V.V.; Rogl, P.; Romaka, L.; Stadnyk, Yu.; Melnychenko, N.; Grytsiv, A.; Falmbigl, M.; Skryabina, N.

    2013-01-15

    The phase equilibria of the Ti-Ni-Sn and Ti-Ni-Sb ternary systems have been studied in the whole concentration range by means of X-ray and EPM analyses at 1073 K and 873 K, respectively. Four ternary intermetallic compounds TiNiSn (MgAgAs-type), TiNi{sub 2-x}Sn (MnCu{sub 2}Al-type), Ti{sub 2}Ni{sub 2}Sn (U{sub 2}Pt{sub 2}Sn-type), and Ti{sub 5}NiSn{sub 3} (Hf{sub 5}CuSn{sub 3}-type) are formed in Ti-Ni-Sn system at 1073 K. The TiNi{sub 2}Sn stannide is characterized by homogeneity in the range of 50-47 at% of Ni. The Ti-Ni-Sb ternary system at 873 K is characterized by formation of three ternary intermetallic compounds, Ti{sub 0.8}NiSb (MgAgAs-type), Ti{sub 5}Ni{sub 0.45}Sb{sub 2.55} (W{sub 5}Si{sub 3}-type), and Ti{sub 5}NiSb{sub 3} (Hf{sub 5}CuSn{sub 3}-type). The solubility of Ni in Ti{sub 0.8}NiSb decreases number of vacancies in Ti site up to Ti{sub 0.91}Ni{sub 1.1}Sb composition. - Graphical abstract: Isothermal section of the Ti-Ni-Sn phase diagram and DOS distribution in hypothetical TiNi{sub 1+x}Sn solid solution. Highlights: Black-Right-Pointing-Pointer Ti-Ni-Sn phase diagram was constructed at 1073 K. Black-Right-Pointing-Pointer Four ternary compounds are formed: TiNiSn, TiNi{sub 2-x}Sn, Ti{sub 2}Ni{sub 2}Sn, and Ti{sub 5}NiSn{sub 3}. Black-Right-Pointing-Pointer Three ternary compounds exist in Ti-Ni-Sb system at 873 K. Black-Right-Pointing-Pointer The TiNi{sub 2}Sb compound is absent.

  7. Magnetic properties of Hf177 and Hf180 in the strong-coupling deformed model

    NASA Astrophysics Data System (ADS)

    Muto, S.; Stone, N. J.; Bingham, C. R.; Stone, J. R.; Walker, P. M.; Audi, G.; Gaulard, C.; Köster, U.; Nikolov, J.; Nishimura, K.; Ohtsubo, T.; Podolyak, Z.; Risegari, L.; Simpson, G. S.; Veskovic, M.; Walters, W. B.

    2014-04-01

    This paper reports NMR measurements of the magnetic dipole moments of two high-K isomers, the 37/2-, 51.4 m, 2740 keV state in Hf177 and the 8-, 5.5 h, 1142 keV state in Hf180 by the method of on-line nuclear orientation. Also included are results on the angular distributions of γ transitions in the decay of the Hf177 isotope. These yield high precision E2/M1 multipole mixing ratios for transitions in bands built on the 23/2+, 1.1 s, isomer at 1315 keV and on the 9/2+, 0.663 ns, isomer at 321 keV. The new results are discussed in the light of the recently reported finding of systematic dependence of the behavior of the gR parameter upon the quasiproton and quasineutron make up of high-K isomeric states in this region.

  8. Study of neutron-rich nuclei near doubly magic 132Sn

    NASA Astrophysics Data System (ADS)

    Sarkar, M. Saha; Sarkar, S.

    2012-06-01

    Large basis untruncated shell-model (SM) calculations have been done for nuclei with 50 ≤Z ≤56 and 82 ≤ N ≤ 88 in the π(gdsh) ⊗ ν (hf pi) valence space above the 132Sn core using both realistic CWG and empirical SMPN (1+2)-body Hamiltonians. These neutronrich nuclei lie on or close to the path of astrophysical r-process flow. Reasons behind the similarity and dissimilarity between the results using these two interactions have been discussed. The observation and prediction of unusually depressed first excited 2+1 states in even-A semi-magic Sn isotopes having N =84-88 and the possibility of a new magic number at N = 90 above 132Sn provide motivations for reviewing the problems related to the nuclear astrophysics in general.

  9. SN2-like reaction in hydrogen-bonded complexes: a theoretical study.

    PubMed

    Wang, Weizhou; Zhang, Yu; Huang, Kaixun

    2005-10-20

    S(N)2-like reactions in hydrogen-bonded complexes have been investigated in this paper at a correlated MP2(full)/6-311++G(3df,3pd) level, employing FH...NH(3)...HF and ClH...NH(3)...HCl as model systems. The unconventional F(Cl)-H...N noncovalent bond and the conventional F(Cl)-H...N hydrogen bond can coexist in one complex which is taken as the reactant of the S(N)2-like reaction. The S(N)2-like reaction occurs along with the inversion of NH(3) and the interconversion of the unconventional F(Cl)-H...N noncovalent bond and the conventional F(Cl)-H...N hydrogen bond. In comparison with that of the isolated NH(3), the inversion barriers of the two complexes both are significantly reduced. The effect of carbon nanotube confinement on the inversion barrier is also discussed.

  10. Yttrium passivation of defects in GeO2 and GeO2/Ge interfaces

    NASA Astrophysics Data System (ADS)

    Li, Hongfei; Robertson, John

    2017-01-01

    Alloying amorphous GeO2 with Y2O3 has been found experimentally to improve its chemical stability and electrical reliability as a gate dielectric in Ge-based field effect transistors. The mechanism is explained here based on density functional calculations. The GeO2 reliability problem is correlated with oxygen deficiency defects, which generate gap states near the band-edges of the underlying Ge. These can be passivated through Y doping. This shifts the defect gap state out of the gap up into the GeO2 conduction band, thus effectively passivating gap states in the GeO2 layer.

  11. LU-HF Age and Isotope Systematics of ALH84001

    NASA Technical Reports Server (NTRS)

    Righter, M.; Lapen, T. J.; Brandon, A. D.; Beard, B. L.; Shafer, J. T.; Peslier, A. H.

    2009-01-01

    Allan Hills (ALH) 84001 is an orthopyroxenite that is unique among the Martian meteorites in having the oldest inferred crystallization age (approx..4.5 to 4.0 Gyr) [e.g., 1-6 and references therein 7]. Its ancient origin makes this stone a critical constraint on early history of Mars, in particular the evolution of different planetary crust and mantle reservoirs. However, because there is significant variability in reported crystallization ages, determination of initial isotope compositions is imprecise making assessment of planetary reservoirs difficult. Here we report a new Lu-Hf mineral isochron age, initial Hf-176/Hf-177 isotope composition, and inferred Martian mantle source compositions for ALH84001 that place constraints on longlived source reservoirs for the enriched shergottite suite of Martian meteorites including Shergotty, Zagami, NWA4468, NWA856, RBT04262, LAR06319, and Los Angeles. Sm-Nd isotope analyses are under way for the same mineral aliquots analyzed for Lu-Hf. The Lu-Hf system was utilized because Lu and Hf are both lithophile and refractory and are not easily redistributed during short-lived thermal pulses associated with shock metamorphism. Moreover, chromite has relatively modest Hf concentrations with very low Lu/Hf ratios [9] yielding tight constraints on initial Hf-176/Hf-177 isotope compositions

  12. Ge1-ySny (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties

    NASA Astrophysics Data System (ADS)

    Senaratne, C. L.; Gallagher, J. D.; Jiang, Liying; Aoki, Toshihiro; Smith, D. J.; Menéndez, J.; Kouvetakis, J.

    2014-10-01

    Novel hydride chemistries are employed to deposit light-emitting Ge1-ySny alloys with y ≤ 0.1 by Ultra-High Vacuum Chemical Vapor Deposition (UHV-CVD) on Ge-buffered Si wafers. The properties of the resultant materials are systematically compared with similar alloys grown directly on Si wafers. The fundamental difference between the two systems is a fivefold (and higher) decrease in lattice mismatch between film and virtual substrate, allowing direct integration of bulk-like crystals with planar surfaces and relatively low dislocation densities. For y ≤ 0.06, the CVD precursors used were digermane Ge2H6 and deuterated stannane SnD4. For y ≥ 0.06, the Ge precursor was changed to trigermane Ge3H8, whose higher reactivity enabled the fabrication of supersaturated samples with the target film parameters. In all cases, the Ge wafers were produced using tetragermane Ge4H10 as the Ge source. The photoluminescence intensity from Ge1-ySny/Ge films is expected to increase relative to Ge1-ySny/Si due to the less defected interface with the virtual substrate. However, while Ge1-ySny/Si films are largely relaxed, a significant amount of compressive strain may be present in the Ge1-ySny/Ge case. This compressive strain can reduce the emission intensity by increasing the separation between the direct and indirect edges. In this context, it is shown here that the proposed CVD approach to Ge1-ySny/Ge makes it possible to approach film thicknesses of about 1 μm, for which the strain is mostly relaxed and the photoluminescence intensity increases by one order of magnitude relative to Ge1-ySny/Si films. The observed strain relaxation is shown to be consistent with predictions from strain-relaxation models first developed for the Si1-xGex/Si system. The defect structure and atomic distributions in the films are studied in detail using advanced electron-microscopy techniques, including aberration corrected STEM imaging and EELS mapping of the average diamond-cubic lattice.

  13. Materials Data on HfNiGe (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on HfGePt (SG:216) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-11

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on HfFeGe (SG:189) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Site Dependency of the High Conductivity of Ga 2 In 6 Sn 2 O 16 : The Role of the 7-Coordinate Site

    DOE PAGES

    Rickert, Karl; Huq, Ashfia; Lapidus, Saul H.; ...

    2015-11-11

    In 6-coordinated cation sites, we find that it is the fundamental building block of the most effective transparent conducting oxides. Ga2In6SnO16, however, maintains 4-, 6-, 7-, and 8-coordinated cation sites and still exhibits desirable transparency and high conductivity. To investigate the potential impact of these alternative sites, we partially replace the Sn in Ga2In6Sn2O16 with Ti, Zr, or Hf and use a combined approach of density functional theory-based calculations, X-ray diffraction, and neutron diffraction to establish that the substitution occurs preferentially on the 7-coordinate site. Conversely to Sn, the empty d orbitals of Ti, Zr, and Hf promote spd covalencymore » with the surrounding oxygen, which decreases the conductivity. Pairing the substitutional site preference with the magnitude of this decrease demonstrates that the 7-coordinate site is the V major contributor to conductivity. The optical band gaps, in contrast, are shown to be site-independent and composition-dependent. After all 7-coordinate Sn has been replaced, the continued substitution of Sn results in the formation of a 7-coordinate In antisite or replacement of 6-coordinate Sn, depending on the identity of the d(0) substitute.« less

  17. Effect of mixed Ge/Si cross-linking on the physical properties of amorphous Ge-Si-Te networks

    SciTech Connect

    Gunasekera, K.; Boolchand, P.; Micoulaut, M.

    2014-04-28

    Amorphous Ge{sub x}Si{sub x}Te{sub 1−2x} glasses are studied as a function of composition by a combination of experimental and theoretical methods, allowing for a full description of the network structure in relationship with physico-chemical properties. Calorimetric and thermal measurements reveal that such glasses display an anomalous behavior across a range of compositions x{sub c1}=7.5% and Ge, Si) are increased. The structural manifestation of these anomalies is understood from  {sup 119}Sn Mössbauer spectroscopy and First Principles Molecular Dynamics at selected compositions (Ge{sub 20}Te{sub 80}, Si{sub 20}Te{sub 80}, and Ge{sub 10}Si{sub 10}Te{sub 80}). The numerical models reveal the quite different roles played by the modifier or network cross-linker Ge or Si atoms, Si being more tetrahedral in sp{sup 3} geometry, whereas Mössbauer spectroscopy shows that the nature of chemical bonding is dramatically changed around x≃ 8%. The precise evolution of the local structure and chemical bonding ultimately allows understanding the origin of the intermediate phase in these complex tellurides.

  18. Improvement in C-V characteristics of Ge metal-oxide semiconductor capacitor by H2O2 incorporated HCl pretreatment

    NASA Astrophysics Data System (ADS)

    Kamata, Yoshiki; Ino, Tsunehiro; Koyama, Masato; Nishiyama, Akira

    2008-02-01

    Electrical characteristics of high-κ /Ge metal-oxide semiconductor (MOS) capacitors pretreated with HCl or HF solutions are investigated, including the effect of H2O2 incorporation. HCl treatment is more effective than HF treatment for decreasing equivalent oxide thickness. H2O2 incorporation into HCl solution leads to dramatic decrease in the capacitance at inversion side. We have confirmed that residual metal impurities are reduced below 1010atoms/cm2 on the Ge surface after pretreatment with mixed solution of HCl and H2O2. We conclude that decrease in metal impurities at Ge surface is responsible for the superior C-V characteristic of Ge MOS capacitor.

  19. Discovery of a Novel Sn(II)‐Based Oxide β‐SnMoO4 for Daylight‐Driven Photocatalysis

    PubMed Central

    Katayama, Shota; Komura, Takahiro; Hinuma, Yoyo; Yokoyama, Tomoyasu; Mibu, Ko; Oba, Fumiyasu

    2016-01-01

    Daylight‐driven photocatalysts have attracted much attention in the context of “green” technology. Although various active materials have been reported and their applications are rapidly increasing, many are discovered after enormous experimental efforts. Herein the discovery of a novel oxide photocatalyst, β‐SnMoO4, is demonstrated via a rational search of 3483 known and hypothetical compounds with various compositions and structures over the whole range of SnO‐MOq /2 (M: Ti, Zr, and Hf (q = 4); V, Nb, and Ta (q = 5); Cr, Mo, and W (q = 6)) pseudobinary systems. Screening using thermodynamic stability, band gap, and band‐edge positions by density functional theory calculations identifies β‐SnMoO4 as a potential target. Then a low temperature route is used to successfully synthesize the novel crystal, which is confirmed by X‐ray powder diffraction and Mössbauer spectroscopy. β‐SnMoO4 is active for the photocatalytic decomposition of a methylene blue solution under daylight and its activity is comparable to a known photocatalyst, β‐SnWO4. PMID:28105400

  20. High-aspect-ratio HfC nanobelts accompanied by HfC nanowires: Synthesis, characterization and field emission properties

    NASA Astrophysics Data System (ADS)

    Tian, Song; Zhang, Yulei; Ren, Jincui; Qiang, Xinfa; Zhang, Shouyang; Li, Hejun

    2017-04-01

    As a key refractory carbide, hafnium carbide (HfC) is commonly used as structural materials while the field emission (FE) application of HfC in the field of vacuum microelectronics is almost the only one for functional material purposes. Based on its outstanding physical and chemical characteristics, HfC is identified as a potential candidate with satisfactory mechanical properties and long-term and/or high-temperature FE stability for future applications in high-performance field emitters. However, the development of HfC in various FE applications is hindered because it is not facile to fabricate large-scale low-dimensional HfC field nanoemitters. Herein, High-aspect-ratio HfC nanobelts accompanied by HfC nanowires were synthesized on a large scale by a traditional and simple catalytic chemical vapor deposition (CVD) method. Classical vapor-liquid-solid (VLS) theory was employed to explain the growth of the HfC nanowires and nanobelts along axial direction. The thin HfO2 shell and thin C layer surrounding the nanostructures might give rise to the diameter fluctuation of HfC nanowires and the width increase of HfC nanobelts in lateral direction. Field emission results show that the high-aspect-ratio HfC nanobelts accompanied by the nanowires are promising field nanoemitters, which exhibit excellent field emission properties with a fairly low turn-on field of ∼1.5 V μm-1 and a low current fluctuation less than ∼10%. This suggests that HfC ceramics with high-aspect-ratio nanostructures are ideal cathode material for various field emission applications.

  1. Pirquitasite, Ag2ZnSnS4

    PubMed Central

    Schumer, Benjamin N.; Downs, Robert T.; Domanik, Kenneth J.; Andrade, Marcelo B; Origlieri, Marcus J.

    2013-01-01

    Pirquitasite, ideally Ag2ZnSnS4 (disilver zinc tin tetra­sulfide), exhibits tetra­gonal symmetry and is a member of the stannite group that has the general formula A2BCX 4, with A = Ag, Cu; B = Zn, Cd, Fe, Cu, Hg; C = Sn, Ge, Sb, As; and X = S, Se. In this study, single-crystal X-ray diffraction data are used to determine the structure of pirquitasite from a twinned crystal from the type locality, the Pirquitas deposit, Jujuy Province, Argentina, with anisotropic displacement parameters for all atoms, and a measured composition of (Ag1.87Cu0.13)(Zn0.61Fe0.36Cd0.03)SnS4. One Ag atom is located on Wyckoff site Wyckoff 2a (symmetry -4..), the other Ag atom is statistically disordered with minor amounts of Cu and is located on 2c (-4..), the (Zn, Fe, Cd) site on 2d (-4..), Sn on 2b (-4..), and S on general site 8g. This is the first determination of the crystal structure of pirquitasite, and our data indicate that the space group of pirquitasite is I-4, rather than I-42m as previously suggested. The structure was refined under consideration of twinning by inversion [twin ratio of the components 0.91 (6):0.09 (6)]. PMID:23424398

  2. Si/Ge intermixing during Ge Stranski–Krastanov growth

    PubMed Central

    Hoummada, Khalid; Ronda, Antoine; Mangelinck, Dominique; Berbezier, Isabelle

    2014-01-01

    Summary The Stranski–Krastanov growth of Ge islands on Si(001) has been widely studied. The morphology changes of Ge islands during growth, from nucleation to hut/island formation and growth, followed by hut-to-dome island transformation and dislocation nucleation of domes, have been well described, even at the atomic scale, using techniques such as scanning tunneling microscopy and transmission electron microscopy. Although it is known that these islands do not consist of pure Ge (due to Si/Ge intermixing), the composition of the Ge islands is not precisely known. In the present work, atom probe tomography was used to study the composition of buried dome islands at the atomic scale, in the three-dimensional space. The core of the island was shown to contain about 55 atom % Ge, while the Ge composition surrounding this core decreases rapidly in all directions in the islands to reach a Ge concentration of about 15 atom %. The Ge distribution in the islands follows a cylindrical symmetry and Ge segregation is observed only in the {113} facets of the islands. The Ge composition of the wetting layer is not homogeneous, varying from 5 to 30 atom %. PMID:25551065

  3. Isothermal section of the La-Mg-Sn system at 500 °C and crystal structure of the new ternary stannide LaMgSn2

    NASA Astrophysics Data System (ADS)

    De Negri, S.; Solokha, P.; Minetti, R.; Skrobańska, M.; Saccone, A.

    2017-04-01

    The 500 °C isothermal section of the La-Mg-Sn ternary system was established by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS) and powder X-ray diffraction (XRPD) on more than fifty alloys synthesized by induction melting and annealed. A few boundary binary compounds were found to dissolve the third element, forming ternary solid solutions, among which La(MgxSn1-x)3 (0≤x≤0.14, cP4-AuCu3) is the most extended. The existence and crystal structure of three ternary compounds were confirmed, and their homogeneity ranges at 500 °C determined: La3Mg4-xSn2+x (0.12≤x≤0.40, hP9-Zr3Cu4Si2), LaMg3-xSn2 (0.33≤x≤0.78, hP34-LaMg3-xGe2) and LaMgSn (oP12-TiNiSi). The crystal structures of two novel ternary stoichiometric compounds, found during this work, were determined from powder X-ray diffraction pattern analysis and refined using the Rietveld method: La6Mg23Sn (Fm 3 bar m , cF120-Zr6Zn23Si, a =1.47107(1) nm) and LaMgSn2 (I 4 bar 2 m , tI32-LaMgSn2, a =0.83325(3) nm, c =1.24385(5) nm). The latter is the first representative of a new structure type and can be presented as composed by a complex Mg-Sn network hosting the bigger La atoms.

  4. Spectroscopic ellipsometric characterization of Si/Si(1-x)Ge(x) strained-layer superlattices

    NASA Technical Reports Server (NTRS)

    Yao, H.; Woollam, J. A.; Wang, P. J.; Tejwani, M. J.; Alterovitz, S. A.

    1993-01-01

    Spectroscopic ellipsometry (SE) was employed to characterize Si/Si(1-x)Ge(x) strained-layer superlattices. An algorithm was developed, using the available optical constants measured at a number of fixed x values of Ge composition, to compute the dielectric function spectrum of Si(1-x)Ge(x) at an arbitrary x value in the spectral range 17 to 5.6 eV. The ellipsometrically determined superlattice thicknesses and alloy compositional fractions were in excellent agreement with results from high-resolution x ray diffraction studies. The silicon surfaces of the superlattices were subjected to a 9:1 HF cleaning prior to the SE measurements. The HF solution removed silicon oxides on the semiconductor surface, and terminated the Si surface with hydrogen-silicon bonds, which were monitored over a period of several weeks, after the HF cleaning, by SE measurements. An equivalent dielectric layer model was established to describe the hydrogen-terminated Si surface layer. The passivated Si surface remained unchanged for greater than 2 h, and very little surface oxidation took place even over 3 to 4 days.

  5. Low-energy enhancement in the γ -ray strength functions of Ge,7473

    NASA Astrophysics Data System (ADS)

    Renstrøm, T.; Nyhus, H.-T.; Utsunomiya, H.; Schwengner, R.; Goriely, S.; Larsen, A. C.; Filipescu, D. M.; Gheorghe, I.; Bernstein, L. A.; Bleuel, D. L.; Glodariu, T.; Görgen, A.; Guttormsen, M.; Hagen, T. W.; Kheswa, B. V.; Lui, Y.-W.; Negi, D.; Ruud, I. E.; Shima, T.; Siem, S.; Takahisa, K.; Tesileanu, O.; Tornyi, T. G.; Tveten, G. M.; Wiedeking, M.

    2016-06-01

    The γ -ray strength functions and level densities of Ge,7473 have been extracted up to the neutron-separation energy Sn from particle-γ coincidence data using the Oslo method. Moreover, the γ -ray strength function of 74Ge above Sn has been determined from photoneutron measurements; hence these two experiments cover the range of Eγ≈1 -13 MeV for 74Ge. The obtained data show that both Ge,7473 display an increase in strength at low γ energies. The experimental γ -ray strength functions are compared with M 1 strength functions deduced from average B (M 1 ) values calculated within the shell model for a large number of transitions. The observed low-energy enhancements in Ge,7473 are adopted in the calculations of the Ge,7372(n ,γ ) cross sections, where there are no direct experimental data. Calculated reaction rates for more neutron-rich germanium isotopes are shown to be strongly dependent on the presence of the low-energy enhancement.

  6. Physics of the Geospace Response to Powerful HF Radio Waves

    DTIC Science & Technology

    2012-10-31

    Final 3. DATES COVERED (From - To) 10.01.2009-09.30.2012 4. TITLE AND SUBTITLE Physics of the Geospace Response to Powerful HF Radio Waves...facility in Alaska under the 2010-2012 AFOSR task `Physics of the Geospace Response to Powerful HF Radio Waves’. A first-principle model of a HF-created...Boulder, CO. 3. Mishin, E., Effects of high-power high frequency radio waves on geospace , Boston University Center for Space Physics, 18 March

  7. Epitaxial Thin Films of Y doped HfO2

    NASA Astrophysics Data System (ADS)

    Serrao, Claudy; Khan, Asif; Ramamoorthy, Ramesh; Salahuddin, Sayeef

    Hafnium oxide (HfO2) is one of a few metal oxides that is thermodynamically stable on silicon and silicon oxide. There has been renewed interest in HfO2 due to the recent discovery of ferroelectricity and antiferroelectricity in doped HfO2. Typical ferroelectrics - such as strontium bismuth tantalate (SBT) and lead zirconium titanate (PZT) - contain elements that easily react with silicon and silicon oxide at elevated temperatures; therefore, such ferroelectrics are not suited for device applications. Meanwhile, ferroelectric HfO2 offers promise regarding integration with silicon. The stable phase of HfO2 at room temperature is monoclinic, but HfO2 can be stabilized in the tetragonal, orthorhombic or even cubic phase by suitable doping. We stabilized Y-doped HfO2 thin films using pulsed laser deposition. The strain state can be controlled using various perovskite substrates and controlled growth conditions. We report on Y-doped HfO2 domain structures from piezo-response force microscopy (PFM) and structural parameters via X-ray reciprocal space maps (RSM). We hope this work spurs further interest in strain-tuned ferroelectricity in doped HfO2.

  8. Mitigating Doppler shift effect in HF multitone data modem

    NASA Astrophysics Data System (ADS)

    Sonlu, Yasar

    1989-09-01

    Digital communications over High Frequency (HF) radio channels are getting important in recent years. Current HF requirements are for data transmission at rates 2.4 kbps or more to accommodate computer data links and digital secure voice. HF modems which were produced to meet these speeds are, serial modems and parallel modems. On the other hand, the HF sky-wave communication medium, the ionosphere, has some propagation problems such as multipath and Doppler shift. The effect of Doppler shift in a parallel modem which employs Differential Quadrature Phase Shift Keying (DQPSK) modulation is considered and a correction method to mitigate the Doppler Shift effect is introduced.

  9. HF-stabilization of plasma with sharp boundary

    NASA Astrophysics Data System (ADS)

    Kotelnikov, I. A.; Yakovchenko, S. G.

    The effect of HF natural oscillations of a plasma filament in a conducting cylindrical housing on the flute disturbance stability is investigated. Flute development leads to HF oscillation frequency (omega) variation connected with the energy W variation by the condition of constancy of the adiabatic invariant W/(omega) = const. The last is conserved owing to relative slow variations of flute disturbances. The adiabatic approximation used permits one to obtain simple criteria for flute instability stabilization by a HF field. HF oscillations of a plasma with a sharp boundary are considered.

  10. Improved interfacial and electrical properties of Ge MOS capacitor by using TaON/LaON dual passivation interlayer

    NASA Astrophysics Data System (ADS)

    Cheng, Z. X.; Xu, J. P.; Liu, L.; Huang, Y.; Lai, P. T.; Tang, W. M.

    2016-07-01

    The effects of TaON/LaON dual passivation interlayer on the interfacial and electrical properties of Ge metal-oxide-semiconductor (MOS) capacitor with HfO2 gate dielectric are investigated. As compared to its counterpart with only LaON as passivation interlayer, the formation of HfGeOx and LaHfOx, which would degrade the interfacial quality, is effectively suppressed due to the strong blocking role of the TaON barrier layer against Hf diffusion. As a result, excellent interfacial and electrical properties are achieved for the Ge MOS device with the TaON/LaON dual passivation interlayer: high k value (20.9), low interface-state density (5.32 × 1011 cm-2 eV-1) and oxide-charge density (-3.90 × 1012 cm-2), low gate leakage current density (1.77 × 10-4 A/cm2 at Vg = Vfb + 1 V), and high reliability under high-field stress.

  11. Phonons in Ge nanowires

    NASA Astrophysics Data System (ADS)

    Peelaers, H.; Partoens, B.; Peeters, F. M.

    2009-09-01

    The phonon spectra of thin freestanding, hydrogen passivated, Ge nanowires are calculated by ab initio techniques. The effect of confinement on the phonon modes as caused by the small diameters of the wires is investigated. Confinement causes a hardening of the optical modes and a softening of the longitudinal acoustic modes. The stability of the nanowires, undoped or doped with B or P atoms, is investigated using the obtained phonon spectra. All considered wires were stable, except for highly doped, very thin nanowires.

  12. The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film.

    PubMed

    Shimizu, Takao; Katayama, Kiliha; Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J; Sakata, Osami; Funakubo, Hiroshi

    2016-09-09

    Ferroelectricity and Curie temperature are demonstrated for epitaxial Y-doped HfO2 film grown on (110) yttrium oxide-stabilized zirconium oxide (YSZ) single crystal using Sn-doped In2O3 (ITO) as bottom electrodes. The XRD measurements for epitaxial film enabled us to investigate its detailed crystal structure including orientations of the film. The ferroelectricity was confirmed by electric displacement filed - electric filed hysteresis measurement, which revealed saturated polarization of 16 μC/cm(2). Estimated spontaneous polarization based on the obtained saturation polarization and the crystal structure analysis was 45 μC/cm(2). This value is the first experimental estimations of the spontaneous polarization and is in good agreement with the theoretical value from first principle calculation. Curie temperature was also estimated to be about 450 °C. This study strongly suggests that the HfO2-based materials are promising for various ferroelectric applications because of their comparable ferroelectric properties including polarization and Curie temperature to conventional ferroelectric materials together with the reported excellent scalability in thickness and compatibility with practical manufacturing processes.

  13. The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film

    NASA Astrophysics Data System (ADS)

    Shimizu, Takao; Katayama, Kiliha; Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J.; Sakata, Osami; Funakubo, Hiroshi

    2016-09-01

    Ferroelectricity and Curie temperature are demonstrated for epitaxial Y-doped HfO2 film grown on (110) yttrium oxide-stabilized zirconium oxide (YSZ) single crystal using Sn-doped In2O3 (ITO) as bottom electrodes. The XRD measurements for epitaxial film enabled us to investigate its detailed crystal structure including orientations of the film. The ferroelectricity was confirmed by electric displacement filed – electric filed hysteresis measurement, which revealed saturated polarization of 16 μC/cm2. Estimated spontaneous polarization based on the obtained saturation polarization and the crystal structure analysis was 45 μC/cm2. This value is the first experimental estimations of the spontaneous polarization and is in good agreement with the theoretical value from first principle calculation. Curie temperature was also estimated to be about 450 °C. This study strongly suggests that the HfO2-based materials are promising for various ferroelectric applications because of their comparable ferroelectric properties including polarization and Curie temperature to conventional ferroelectric materials together with the reported excellent scalability in thickness and compatibility with practical manufacturing processes.

  14. The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film

    PubMed Central

    Shimizu, Takao; Katayama, Kiliha; Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J.; Sakata, Osami; Funakubo, Hiroshi

    2016-01-01

    Ferroelectricity and Curie temperature are demonstrated for epitaxial Y-doped HfO2 film grown on (110) yttrium oxide-stabilized zirconium oxide (YSZ) single crystal using Sn-doped In2O3 (ITO) as bottom electrodes. The XRD measurements for epitaxial film enabled us to investigate its detailed crystal structure including orientations of the film. The ferroelectricity was confirmed by electric displacement filed – electric filed hysteresis measurement, which revealed saturated polarization of 16 μC/cm2. Estimated spontaneous polarization based on the obtained saturation polarization and the crystal structure analysis was 45 μC/cm2. This value is the first experimental estimations of the spontaneous polarization and is in good agreement with the theoretical value from first principle calculation. Curie temperature was also estimated to be about 450 °C. This study strongly suggests that the HfO2-based materials are promising for various ferroelectric applications because of their comparable ferroelectric properties including polarization and Curie temperature to conventional ferroelectric materials together with the reported excellent scalability in thickness and compatibility with practical manufacturing processes. PMID:27608815

  15. Hydrogen Sensor Based on Pd/GeO{sub 2} Using a Low Cost Electrochemical Deposition

    SciTech Connect

    Jawad, M. J.; Hashim, M. R.; Ali, N. K.

    2011-05-25

    This work reports on a synthesis of sub micron germanium dioxide (GeO{sub 2}) on porous silicon (PS) by electrochemical deposition. n-type Si (100) wafer was used to fabricate (PS) using conventional method of electrochemical etching in HF based solution. A GeCl{sub 4} was directly hydrolyzed by hydrogen peroxide to produce pure GeO{sub 2}, and then electrochemically deposited on PS. Followed by palladium (Pd) contact on GeO{sub 2} /PS was achieved by using RF sputtering technique. The grown GeO{sub 2} crystals were characterized using SEM and EDX. I-V characteristics of Pd/ GeO{sub 2} were recorded before and after hydrogen gas exposure as well as with different H{sub 2} concentrations and different applied temperatures. The sensitivity of Pd/ GeO{sub 2} also has been investigated it could be seen to increase significantly with increased hydrogen concentration while it decreased with increase temperature.

  16. Ferroelectricity of nondoped thin HfO2 films in TiN/HfO2/TiN stacks

    NASA Astrophysics Data System (ADS)

    Nishimura, Tomonori; Xu, Lun; Shibayama, Shigehisa; Yajima, Takeaki; Migita, Shinji; Toriumi, Akira

    2016-08-01

    We report on the impact of TiN interfaces on the ferroelectricity of nondoped HfO2. Ferroelectric properties of nondoped HfO2 in TiN/HfO2/TiN stacks are shown in capacitance-voltage and polarization-voltage characteristics. The Curie temperature is also estimated to be around 500 °C. The ferroelectricity of nondoped HfO2 clearly appears by thinning HfO2 film down to ˜35 nm. We directly revealed in thermal treatments that the ferroelectric HfO2 film on TiN was maintained by covering the top surface of HfO2 with TiN, while it was followed by a phase transition to the paraelectric phase in the case of the open surface of HfO2. Thus, it is concluded that the ferroelectricity in nondoped HfO2 in this study was mainly driven by both of top and bottom TiN interfaces.

  17. The crystal structure, electronic, and magnetic properties of NaPd{sub 3}Ge{sub 2}

    SciTech Connect

    Ali, Mazhar N.; Rohr, Fabian von; Campana, C.; Schilling, Andreas; Cava, R.J.

    2015-10-15

    Highlights: • Correct crystal structure of NaPd{sub 3}Ge{sub 2} is solved by single crystal X-ray diffraction. • NaPd{sub 3}Ge{sub 2} is found to crystallize in the ErRh{sub 3}Si{sub 2} structure type. • NaPd{sub 3}Si{sub 2}, NaPd{sub 3}Ge{sub 2} and NaPd{sub 3}Sn{sub 2} are found to be metals down to 2 K. • All three compounds show a weak diamagnetic response down to 2 K. • Trend of p-block atom dimer breaking as function of size. - Abstract: Crystals of NaPd{sub 3}X{sub 2}, (X = Si, Ge, Sn) were synthesized and their crystal structures investigated by single crystal X-ray diffraction. The previously reported structures of NaPd{sub 3}Si{sub 2} and NaPd{sub 3}Sn{sub 2} were confirmed. NaPd{sub 3}Ge{sub 2} was found to have a different unit cell from that originally reported; therefore the structure was solved. It is an orthorhombically distorted version of the hexagonal CeCo{sub 3}Be{sub 2}-type structure, in space group Imma, with cell parameters a = 7.244(1) Å, b = 9.938(1) Å, c = 5.767(2) Å. The originally reported cell is explained through triple twinning of the true cell. The structure of NaPd{sub 3}Ge{sub 2} fits the trend of decreasing X–X dimerization as a function of increasing period from Si–Sn. All three compounds are metals showing weak diamagnetism with increasing resistivity from NaPd{sub 3}Si{sub 2}–NaPd{sub 3}Sn{sub 2}; no superconductivity is observed down to 2 K.

  18. Characterization and control of ZnGeN2 cation lattice ordering

    NASA Astrophysics Data System (ADS)

    Blanton, Eric W.; He, Keliang; Shan, Jie; Kash, Kathleen

    2017-03-01

    ZnGeN2 and other heterovalent ternary semiconductors have important potential applications in optoelectronics, but ordering of the cation sublattice, which can affect the band gap, lattice parameters, and phonons, is not yet well understood. Here the effects of growth and processing conditions on the ordering of the ZnGeN2 cation sublattice were investigated using x-ray diffraction and Raman spectroscopy. Polycrystalline ZnGeN2 was grown by exposing solid Ge to Zn and NH3 vapors at temperatures between 758 °C and 914 °C. Crystallites tended to be rod-shaped, with growth rates higher along the c-axis. The degree of ordering, from disordered, wurtzite-like x-ray diffraction spectra to orthorhombic, with space group Pna21, increased with increasing growth temperature, as evidenced by the appearance of superstructure peaks and peak splittings in the diffraction patterns. Annealing disordered, low-temperature-grown ZnGeN2 at 850 °C resulted in increased cation ordering. Growth of ZnGeN2 on a liquid Sn-Ge-Zn alloy at 758 °C showed an increase in the tendency for cation ordering at a lower growth temperature, and resulted in hexagonal platelet-shaped crystals. The trends shown here may help to guide understanding of the synthesis and characterization of other heterovalent ternary nitride semiconductors as well as ZnGeN2.

  19. Hf isotope and concentration systematics of the Mariana arc

    NASA Astrophysics Data System (ADS)

    Tollstrup, D. L.; Gill, J. B.

    2004-12-01

    Negative Hf concentration anomalies are common but little-discussed geochemical features of island arcs. Because both light rare earth elements (LREE) and Hf may be mobile even in `fluid-dominated' island arcs, it is important to relate their isotopic and elemental ratios to models of slab-mantle mixing. We report new Hf isotope and trace element data for K-rich submarine basalts from the Kasuga seamounts located 10-20 km behind the volcanic front of the southern Northern Seamount Province (NSP) of the Mariana arc. These data, when combined with published data for other Mariana samples, span the full range from low-K tholeiites to high-K shoshonites. Rear-arc Kasuga seamounts seamounts of the NSP have lower 143Nd/144Nd and 176Hf/177Hf ratios than arc-front volcanoes of the Mariana Central Island Province (CIP). Within the CIP, Hf concentration anomalies correlate positively with 176Hf/177Hf ratios. Radiogenic Hf and little or no concentration anomalies characterize samples from fluid-dominated volcanoes (Guguan and Maug), whereas samples from sediment-melt dominated volcanoes (Anatahan and Sarigan) have less radiogenic Hf and larger concentration anomalies. Samples from the Kasuga and Hiyoshi seamounts have even larger negative concentration anomalies and less radiogenic Hf, although the two are not always correlated. These data are consistent with mixing between a depleted mantle and a partial melt of subducted sediment that is saturated with trace accessory phases including zircon, rutile, and monazite. A more volcaniclastic source is needed for the NSP than the CIP. Implications of these findings are three-fold. Partial melts of subducting sediment affect the HFSE and REE budgets of even fluid-dominated island arcs. Slab temperatures must be high enough for a peraluminous melt to be present, even where old, cold slabs are subducting. Refractory accessory phases have the potential to become exotic "nuggets" in the convecting mantle, potentially controlling the

  20. Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics

    NASA Astrophysics Data System (ADS)

    Hong, Won Sik; Oh, Chulmin; Kim, Mi-Song; Lee, Young Woo; Kim, Hui Joong; Hong, Sung Jae; Moon, Jeong Tak

    2016-12-01

    To suppress the bonding strength degradation of solder joints in automotive electronics, we proposed a mid-temperature quaternary Pb-free Sn-0.5Cu solder alloy with minor Pd, Al, Si and Ge alloying elements. We manufactured powders and solder pastes of Sn-0.5Cu-(0.01,0.03)Al-0.005Si-(0.006-0.007)Ge alloys ( T m = 230°C), and vehicle electronic control units used for a flame-retardant-4 printed circuit board with an organic solderability preservative finish were assembled by a reflow soldering process. To investigate the degradation properties of solder joints used in engine compartments, thermal cycling tests were conducted from -40°C to 125°C (10 min dwell) for 1500 cycles. We also measured the shear strength of the solder joints in various components and observed the microstructural evolution of the solder joints. Based on these results, intermetallic compound (IMC) growth at the solder joints was suppressed by minor Pd, Al and Si additions to the Sn-0.5Cu alloy. After 1500 thermal cycles, IMC layers thicknesses for 100 parts per million (ppm) and 300 ppm Al alloy additions were 6.7 μm and 10 μm, compared to the as-reflowed bonding thicknesses of 6 μm and 7 μm, respectively. Furthermore, shear strength degradation rates for 100 ppm and 300 ppm Al(Si) alloy additions were at least 19.5%-26.2%. The cause of the improvement in thermal cycling reliability was analyzed using the (Al,Cu)-Sn, Si-Sn and Al-Sn phases dispersed around the Cu6Sn5 intermetallic at the solder matrix and bonding interfaces. From these results, we propose the possibility of a mid-temperature Sn-0.5Cu(Pd)-Al(Si)-Ge Pb-free solder for automotive engine compartment electronics.

  1. In-beam studies of {sup 98}Cd and {sup 102}Sn

    SciTech Connect

    Lipoglavsek, M. |; Gorska, M.; Schubart, R.

    1996-12-31

    For the first time excited states of the neutron deficient nuclei {sup 98}Cd and {sup 102}Sn were identified using in-beam spectroscopy following fusion evaporation reactions. Half lives of long lived isomeric states in both nuclei were also measured. Due to very low cross sections for producing {sup 98}Cd and {sup 102}Sn with stable beams and targets, a special detector setup utilizing NORDBALL ancillary detectors and a recoil catcher device was used. High {gamma}-ray detection efficiency was achieved with two EUROBALL Ge cluster detectors.

  2. Electronic Structure and Defect Physics of Tin Sulfides: SnS, Sn2S3 , and Sn S2

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu; Burton, Lee A.; Walsh, Aron; Oba, Fumiyasu

    2016-07-01

    The tin sulfides SnS, Sn2S3 , and Sn S2 are investigated for a wide variety of applications such as photovoltaics, thermoelectrics, two-dimensional electronic devices, Li ion battery electrodes, and photocatalysts. For these applications, native point defects play important roles, but only those of SnS have been investigated theoretically in the literature. In this study, we consider the band structures, band-edge positions, and thermodynamical stability of the tin sulfides using a density functional that accounts for van der Waals corrections and the G W0 approximation. We revisit the point-defect properties, namely, electronic and atomic structures and energetics of defects, in SnS and newly examine those in Sn S2 and Sn2S3 with a comparison to those in SnS. We find that Sn S2 shows contrasting defect properties to SnS: Undoped SnS shows p -type behavior, whereas Sn S2 shows n type, which are mainly attributed to the tin vacancies and tin interstitials, respectively. We also find that the defect features in Sn2S3 can be described as a combination of those in SnS and Sn S2 , intrinsically Sn2S3 showing n -type behavior. However, the conversion to p type can be attained by doping with a large monovalent cation, namely, potassium. The ambipolar dopability, coupled with the earth abundance of its constituents, indicates great potential for electronic applications, including photovoltaics.

  3. Fractionation of Zr and Hf in surface processes

    SciTech Connect

    Chyi, L.L.; Garg, A.N.

    1985-01-01

    Zircons from a pegmatite near Tuxedo, North Carolina were crushed and treated with different reagents under different conditions. The treated and untreated samples were determined for Zr and Hf with radiochemical neutron activation analysis. Zircons treated with 50% sulfuric acid were having lowered Zr content and Zr/Hf ratio. The conclusions are that a portion of Zr and Hf in zircons is sensitive to leaching, and Zr appears to be selectively leached over Hf. The conclusions of this work support the observations of small dissolutions of Zr in both acidic podzolic soils and in alkaline laterites, of lower Zr content in soils on glacial drift, and of lower Zr/Hf ratios in loess deposits from various parts of the world. The fractionation of Zr and Hf in surface processes appears to be due to selective leaching. Weakening of Zr-O over Hf-O bonds in zircon by fission projectiles is postulated to be the viable process. The observed fractionation from leaching experiments suggest that areas receiving leachates such as swamps, lakes, and oceans should have high to very high Zr/Hf ratios preserved in rocks. High ratios are found in the Springfield (No. 9) Coal, the Green River Shale, and various limestones. High ratio is also found in orchard leaves, which grow by absorbing leachate from soil.

  4. Crystal structure of Si-doped HfO2

    NASA Astrophysics Data System (ADS)

    Zhao, Lili; Nelson, Matthew; Aldridge, Henry; Iamsasri, Thanakorn; Fancher, Chris M.; Forrester, Jennifer S.; Nishida, Toshikazu; Moghaddam, Saeed; Jones, Jacob L.

    2014-01-01

    Si-doped HfO2 was prepared by solid state synthesis of the starting oxides. Using Rietveld refinement of high resolution X-ray diffraction patterns, a substitutional limit of Si in HfO2 was determined as less than 9 at. %. A second phase was identified as Cristobalite (SiO2) rather than HfSiO4, the latter of which would be expected from existing SiO2-HfO2 phase diagrams. Crystallographic refinement with increased Si-dopant concentration in monoclinic HfO2 shows that c/b increases, while β decreases. The spontaneous strain, which characterizes the ferroelastic distortion of the unit cell, was calculated and shown to decrease with increasing Si substitution.

  5. Calculation of Electron Affinity and Partial Cross Sections of Hf^-

    NASA Astrophysics Data System (ADS)

    Pan, Lin; Beck, Donald

    2008-05-01

    We have calculated for the first time the electron affinity (EA) of Hf^-, using the relativistic configuration interaction method. Our calculations show Hf^- has only one bound state 5d^26s^26p J=5/2, which is a 6p attachment to the ground state of Hf I. By combining our valence stage result with the separate estimate for the modest core-valence contribution, the EA of Hf^- is about 0.114 eV. So far there have been only two experimental results [1,2] for the EA of Hf^-, but both gave only the limits. Our result falls within both of the limits. We also calculate the partial cross sections for photodetachment to the lower lying neutral thresholds. [1] M-J. Nadeau et al, Nucl. Instr. and Meth. B 123, 521 (1997) [2] Vernon T. Davis et al, Nucl. Instr. and Meth. B 241, 118 (2005)

  6. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn.

    PubMed

    Verissimo, Nathália C; Geilich, Benjamin M; Oliveira, Haroldo G; Caram, Rubens; Webster, Thomas J

    2015-12-01

    β-type Ti alloys containing Nb are exciting materials for numerous orthopedic and dental applications due to their exceptional mechanical properties. To improve their cytocompatibility properties (such as increasing bone growth and decreasing infection), the surfaces of such materials can be optimized by adding elements and/or nanotexturing through anodization. Because of the increasing prevalence of orthopedic implant infections, the objective of this in vitro study was to add Sn and create unique nanoscale surface features on β-type Ti alloys. Nanotubes and nanofeatures on Ti-35Nb and Ti-35Nb-4Sn alloys were created by anodization in a HF-based electrolyte and then heat treated in a furnace to promote amorphous structures and phases such as anatase, a mixture of anatase-rutile, and rutile. Samples were characterized by SEM, which indicated different morphologies dependent on the oxide content and method of modification. XPS experiments identified the oxide content which resulted in a phase transformation in the oxide layer formed onto Ti-35Nb and Ti-35Nb-4Sn alloys. Most importantly, regardless of the resulting nanostructures (nanotubes or nanofeatures) and crystalline phase, this study showed for the first time that adding Sn to β-type Ti alloys strongly decreased the adhesion of Staphylococcus aureus (S. aureus; a bacteria which commonly infects orthopedic implants leading to their failure). Thus, this study demonstrated that β-type Ti alloys with Nb and Sn have great promise to improve numerous orthopedic applications where infection may be a concern.

  7. Hf propagation through actively modified ionospheres

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.; Wolcott, J.H.; Simons, D.J. ); Warshaw, S.; Carlson, R. )

    1990-01-01

    We have developed a computer modeling capability to predict the effect of localized electron density perturbations created by chemical releases or high-power radio frequency heating upon oblique, one-hop hf propagation paths. We have included 3-d deterministic descriptions of the depleted or enhanced ionization, including formation, evolution, and drift. We have developed a homing ray trace code to calculate the path of energy propagation through the modified ionosphere in order to predict multipath effects. We also consider the effect of random index of refraction variations using a formalism to calculate the mutual coherence functions for spatial and frequency separations based upon a path integral solution of the parabolic wave equation for a single refracted path through an ionosphere which contains random electron density fluctuations. 5 refs., 8 figs.

  8. Time synchronisation of an HF radio modem

    NASA Astrophysics Data System (ADS)

    Clark, A. P.; McVerry, F.

    1982-12-01

    The present investigation is concerned with a technique for time synchronization which is of potential value in any application of time synchronization where an estimate of the sampled impulse response of a time-varying linear baseband channel is required but the particular phase of the sampling instants is hot important. The technique appears to be both simple and effective and to be capable of development into a useful practical system. Attention is given to the results of computer simulation tests which show the performance of the technique in a 9600 bit/s quadrature-amplitude-modulated (QAM) data-transmission system operating over a model of an HF radio link. The data-transmission system is considered along with the control of the sampling instants, and details concerning the computer simulation tests.

  9. Effect of mixed Ge/Si cross-linking on the physical properties of amorphous Ge-Si-Te networks

    NASA Astrophysics Data System (ADS)

    Gunasekera, K.; Boolchand, P.; Micoulaut, M.

    2014-04-01

    Amorphous GexSixTe1-2x glasses are studied as a function of composition by a combination of experimental and theoretical methods, allowing for a full description of the network structure in relationship with physico-chemical properties. Calorimetric and thermal measurements reveal that such glasses display an anomalous behavior across a range of compositions xc1=7.5% and Ge, Si) are increased. The structural manifestation of these anomalies is understood from 119Sn Mössbauer spectroscopy and First Principles Molecular Dynamics at selected compositions (Ge20Te80, Si20Te80, and Ge10Si10Te80). The numerical models reveal the quite different roles played by the modifier or network cross-linker Ge or Si atoms, Si being more tetrahedral in sp3 geometry, whereas Mössbauer spectroscopy shows that the nature of chemical bonding is dramatically changed around x ≃ 8%. The precise evolution of the local structure and chemical bonding ultimately allows understanding the origin of the intermediate phase in these complex tellurides.

  10. A global Ge isotope budget

    NASA Astrophysics Data System (ADS)

    Baronas, J. Jotautas; Hammond, Douglas E.; McManus, James; Wheat, C. Geoffrey; Siebert, Christopher

    2017-04-01

    We present measurements of Ge isotope composition and ancillary data for samples of river water, low- and high-temperature hydrothermal fluids, and seawater. The dissolved δ74Ge composition of analyzed rivers ranges from 2.0 to 5.6‰, which is significantly heavier than previously determined values for silicate rocks (δ74Ge = 0.4-0.7‰, Escoube et al., Geostand. Geoanal. Res., 36(2), 2012) from which dissolved Ge is primarily derived. An observed negative correlation between riverine Ge/Si and δ74Ge signatures suggests that the primary δ74Ge fractionation mechanism during rock weathering is the preferential incorporation of light isotopes into secondary weathering products. High temperature (>150 °C) hydrothermal fluids analyzed in this study have δ74Ge of 0.7-1.6‰, most likely fractionated during fluid equilibration with quartz in the reaction zone. Low temperature (25-63 °C) hydrothermal fluids are heavier (δ74Ge between 2.9‰ and 4.1‰) and most likely fractionated during Ge precipitation with hydrothermal clays. Seawater from the open ocean has a δ74Gesw value of 3.2 ± 0.4‰, and is indistinguishable among the different ocean basins at the current level of precision. This value should be regulated over time by the isotopic balance of Ge sources and sinks, and a new compilation of these fluxes is presented, along with their estimated isotopic compositions. Assuming steady-state, non-opal Ge sequestration during sediment authigenesis likely involves isotopic fractionation Δ74Gesolid-solution that is -0.6 ± 1.8‰.

  11. Mechanism of the Initial Oxidation of Hydrogen andHalogen Terminated Ge(111) Surfaces in Air

    SciTech Connect

    Sun, Shiyu; Sun, Yun; Liu, Zhi; Lee, Dong-Ick; Pianetta, Piero; /SLAC, SSRL

    2006-08-23

    The initial stage of the oxidation of Ge(111) surfaces etched by HF, HCl and HBr solutions is systematically studied using synchrotron radiation photoelectron spectroscopy (SR-PES). We perform controlled experiments to differentiate the effects of different oxidation factors. SR-PES results show that both moisture and oxygen contribute to the oxidation of the surfaces; however, they play different roles in the oxidation process. Moisture effectively replaces the hydrogen and halogen termination layers with hydroxyl (OH), but hardly oxidizes the surfaces further. On the other hand, dry oxygen does not replace the termination layers, but breaks the Ge-Ge back bonds and oxidizes the substrates with the aid of moisture. In addition, room light enhances the oxidation rate significantly.

  12. Ferroelectricity-modulated resistive switching in Pt/Si:HfO2/HfO2-x /Pt memory

    NASA Astrophysics Data System (ADS)

    Ran, Jiang; Xianghao, Du; Zuyin, Han

    2016-08-01

    It is investigated for the effect of a ferroelectric Si:HfO2 thin film on the resistive switching in a stacked Pt/Si:HfO2/highly-oxygen-deficient HfO2-x /Pt structure. Improved resistance performance was observed. It was concluded that the observed resistive switching behavior was related to the modulation of the width and height of a depletion barrier in the HfO2-x layer, which was caused by the Si:HfO2 ferroelectric polarization field effect. Reliable switching reproducibility and long data retention were observed in these memory cells, suggesting their great potential in non-volatile memories applications with full compatibility and simplicity. Project supported by the National Natural Science Foundation of China (No. 11374182), the Natural Science Foundation of Shandong Province (No. ZR2012FQ012), and the Jinan Independent Innovation Projects of Universities (No. 201303019).

  13. Phase stability, electronic structure and phonons in CsGeI3

    NASA Astrophysics Data System (ADS)

    Huang, Ling-Yi; Lambrecht, Walter

    Because Ge is smaller than Sn and Pb, CsGeI3 is promising to overcome the stability problems of the perovskite forms of CsSnI3 and CsPbI3 halides toward the denser yellow phase in which octahedra are edge as well as cornersharing in one dimensional chains. This phase has higher gaps and is unsuitable for photovoltaics. CsGeI3 and other trihalide germanates are found to exist in the cubic perovskite phase at high temperature but in a rhombohedral phase in which the Ge is displaced toward three of the halogen neighbors in its surrounding octahedron, accompanied by a rhombohedral distortion of the lattice vectors. We will present density functional total energy calculations and band structures obtained within the quasi-particle self-consistent GW method for both the cubic and rhombohedral phase of CsGeI3. For the latter, we find a gap of 1.6 eV in excellent agreement with recent experiments on its absorption edge. We will also present optical dielectric function and effective mass results for this material and discuss the trends for different types of distortions in halides depending on the chemical composition. The phonons at the Brillouin zone center are calculated and compared to experimental Raman spectra. NSF and DOE.

  14. Reactivity Studies on a Binuclear Ruthenium(0) Complex Equipped with a Bridging κ(2)N,Ge-Amidinatogermylene Ligand.

    PubMed

    Cabeza, Javier A; Fernández-Colinas, José M; García-Álvarez, Pablo; Pérez-Carreño, Enrique; Polo, Diego

    2015-05-18

    The amidinatogermylene-bridged diruthenium(0) complex [Ru2{μ-κ(2)Ge,N-Ge((i)Pr2bzam)(HMDS)}(CO)7] (2; (i)Pr2bzam = N,N'-bis(iso-propyl)benzamidinate; HMDS = N(SiMe3)2) reacted at room temperature with (t)BuNC and PMe3 to give [Ru2{μ-κ(2)Ge,N-Ge((i)Pr2bzam)(HMDS)}(L)(CO)6] (L = (t)BuNC, 3; PMe3, 4), which contain the new ligand in an axial position on the Ru atom that is not attached to the amidinato fragment. At 70 °C, 2 reacted with PPh3, PMe3, dppm, and dppe to give the equatorially substituted derivatives [Ru2{μ-κ(2)Ge,N-Ge((i)Pr2bzam)(HMDS)}(L)(CO)6] (L = PPh3, 5; PMe3, 6) and [Ru2{μ-κ(2)Ge,N-Ge((i)Pr2bzam)(HMDS)}(μ-κ(2)P,P'-L2)(CO)5] (L2 = dppm, 7; dppe, 8). HSiEt3 and HSnPh3 were oxidatively added to complex 2 at 70 °C, leading to the coordinatively unsaturated products [Ru2(ER3)(μ-H){μ-κ(2)Ge,N-Ge((i)Pr2bzam)(HMDS)}(CO)5] (ER3 = SiEt3, 9; SnPh3, 10), which easily reacted with (t)BuNC and CO to give the saturated derivatives [Ru2(ER3)(μ-H){μ-κ(2)Ge,N-Ge((i)Pr2bzam)(HMDS)}((t)BuNC)(CO)5] (ER3 = SiEt3, 11; SnPh3, 12) and [Ru2(ER3)(μ-H){μ-κ(2)Ge,N-Ge((i)Pr2bzam)(HMDS)}(CO)6] (ER3 = SiEt3, 13; SnPh3, 14), respectively. Compounds 9-14 have their ER3 group on the Ru atom that is not attached to the amidinato fragment. In contrast, the reaction of 2 with H2 at 70 °C led to the unsaturated tetranuclear complex [Ru4(μ-H)2{μ-κ(2)Ge,N-Ge((i)Pr2bzam)(HMDS)}2(CO)10] (15), which also reacted with (t)BuNC and CO to give the saturated derivatives [Ru4(μ-H)2{μ-κ(2)Ge,N-Ge((i)Pr2bzam)(HMDS)}2(L)2(CO)10] (L = (t)BuNC, 16; CO, 17). All tetraruthenium complexes contain an unbridged metal-metal connecting two germylene-bridged diruthenium units. Under CO atmosphere, complex 17 reverted to compound 2. All of the coordinatively unsaturated products (9, 10, and 15) have their unsaturation(s) located on the Ru atom(s) that is(are) attached to the amidinato fragment(s). In the absence of added reagents, the thermolysis of 2 in refluxing toluene led to [Ru4{

  15. Ligand Supported E3 Clusters (E = Si-Sn).

    PubMed

    Pan, Sudip; Saha, Ranajit; Osorio, Edison; Chattaraj, Pratim K; Frenking, Gernot; Merino, Gabriel

    2017-03-08

    The interaction among E3 (E = Si, Ge, Sn) clusters and different ligands (L) encompassing five carbon-based donors (cyclic (alkyl)(amino) carbene (cAAC), N-heterocyclic carbene (NHC), saturated NHC (SNHC), mesoionic carbenes (MIC1, and MIC2)), two nitrogen-based donors (trimethylamine and pyridine), and two phosphorous-based donors (phosphinine and trimethylphosphine) in E3(L)3 complexes is explored via density functional theory computations. Although all the carbenes form very strong bond with E3 clusters, cAAC makes the strongest bond with Si3 and Ge3 clusters, and MIC1 with Sn3 cluster. Nevertheless, other ligands bound complexes are also viable at room temperature. This finding indicates that experimentalists may make use of them to synthesize the desired clusters based on precursor availability. The nature of interaction in E-L bonds is analyzed through natural bond orbital analysis, energy decomposition analysis in combination with the natural orbital for chemical valence and adaptive natural density partitioning analysis. The L->E sigma-donation and L<-E pi-back-donation play important roles to make the favorable contacts between L and E3 clusters where the former is significantly more dominant over the latter.

  16. Hf-Nd isotope and trace element constraints on subduction inputs at island arcs: limitations of Hf anomalies as sediment input indicators

    NASA Astrophysics Data System (ADS)

    Handley, H. K.; Turner, S.; MacPherson, C.; Davidson, J. P.; Gertisser, R.

    2010-12-01

    New Nd-Hf isotope and trace element data for Javanese volcanoes are combined with recently published data to place constraints on subduction inputs at the Sunda arc in Indonesia and assess the value of Hf anomalies (expressed as Hf/Hf* and Sm/Hf ratios) as tracers of such inputs. Hf anomaly does not correlate with Hf isotope ratio in Javanese lavas however, Hf/Hf* and Sm/Hf ratios do correlate with SiO2. Contrary to previous work, we show that Hf anomaly variation may be controlled by fractionation of clinopyroxene and/or amphibole during magmatic differentiation and does not represent the magnitude or type of subduction input in some arcs. Correlation of Sm/Hf with indices of differentiation for other arcs (e.g. Vanuatu, New Britain, Mariana) suggests that differentiation control on Sm/Hf ratios of volcanic rocks may be a relatively common phenomenon. This study corroborates the use of Nd-Hf isotope co-variations in arc volcanic rocks to ascertain subduction input characteristics. The trajectories of regional volcano groups (East, Central and West Java) in Nd-Hf isotope space reveal heterogeneity in the subducted sediment input along Java, which reflects present-day spatial variations in sediment compositions on the down-going plate in the Java Trench.

  17. Large Nd-Hf isotopic decoupling in Himalayan River Sediments

    NASA Astrophysics Data System (ADS)

    Garcon, M.; Chauvel, C.; France-Lanord, C.

    2011-12-01

    Nd isotopic compositions of river sediments are widely used to trace sediment provenance in the Himalayan mountain range. In contrast, Hf isotopic compositions are not used even though they are excellent proxies to record the history of continental areas (Hawkesworth and Kemp, Chem. Geol. 226, 2006). Here, we focus on the Hf isotopic message carried by Himalayan river sediments and combine it to the more classical Nd isotopes to better understand the behavior of the two systems during erosion. We report Nd-Hf isotopic compositions of bedloads and suspended loads sampled at different depths in the Narayani River in Nepal (upstream of the Ganga floodplain), in the Ganga River in Bangladesh (downstream of the Ganga floodplain) and in the Yamuna River, a major tributary of the Ganga in India. Nd-Hf isotopic compositions of bedloads span a small range of values (-18< ɛNd <-16 and -30< ɛHf <-23) and lie next to the terrestrial array in a ɛHf vs. ɛNd diagram. Nd isotopic compositions are similar to those of the main Himalayan sources. By contrast, suspended loads have much more variable ratios (-19< ɛNd <-10 and -25< ɛHf <-7) and plot well above the terrestrial array in a ɛHf vs. ɛNd diagram. Like oceanic sediments, they are characterized by high ɛHf compared to their ɛNd. We explain this Nd-Hf decoupling by mineralogical sorting, a process that enriches bottom sediments in coarse and dense minerals, such as unradiogenic zircons, while the surface sediments are enriched in fine material with radiogenic Hf signatures. Bedloads and suspended loads, collected at the same sampling site at different depths in the Narayani and Ganga Rivers, share similar ɛNd. However, differences of about 5 ɛNd and 15 ɛHf units are observed between bedload and surface samples in the Yamuna River. In this river, both Nd and Hf isotopic ratios decrease from surface to bottom. We believe that part of the Hf isotopic variability is due to mineralogical sorting but the rest of it

  18. Power-Stepped HF Cross Modulation Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Greene, S.; Moore, R. C.; Langston, J. S.

    2013-12-01

    High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. In this paper, we apply experimental observations of HF cross-modulation to the related problem of ELF/VLF wave generation. HF cross-modulation measurements are used to evaluate the efficiency of ionospheric conductivity modulation during power-stepped modulated HF heating experiments. The results are compared to previously published dependencies of ELF/VLF wave amplitude on HF peak power. The experiments were performed during the March 2013 campaign at the High Frequency Active Auroral Research Program (HAARP) Observatory. HAARP was operated in a dual-beam transmission format: the first beam heated the ionosphere using sinusoidal amplitude modulation while the second beam broadcast a series of low-power probe pulses. The peak power of the modulating beam was incremented in 1-dB steps. We compare the minimum and maximum cross-modulation effect and the amplitude of the resulting cross-modulation waveform to the expected power-law dependence of ELF/VLF wave amplitude on HF power.

  19. Critical Questions about PARADIGM-HF and the Future.

    PubMed

    Chen, Chen-Huan

    2016-07-01

    Cardiovascular (CV) diseases in general and heart failure (HF) in particular are major contributors to death and morbidity and are also recognized as important drivers of health care expenditure. The PARADIGM-HF trial was a pivotal trial designed to compare the long-term effects of LCZ696 with enalapril in patients with symptomatic HF with reduced ejection fraction (HFrEF). This review article presents an in-depth view of the PARADIGM-HF trial and the implications of the results in the management of patients with HF and is based on peer reviewed manuscripts, editorials, perspectives and opinions written about the PARADIGM-HF trial. The article presents the key safety and efficacy results of the trial with specific emphasis on the clinical implications of these findings. The review highlights the highly statistically significant, 20% reduction in the primary composite endpoint of cardiovascular death or HF hospitalization, and a 16% reduction in the risk of death from any cause. It also provides an overview of the design, clinical findings, limitations and special areas of clinical interest. The review discusses the future of LCZ696 and additional trials that seek to answer questions in other sub-populations of patients with HF. The article reiterates what has been concluded by many experts in the field of HF- the introduction of LCZ696 into routine clinical care, while dependent on the regulatory approvals in various countries as well as acceptance by physicians, payers and patients, will change the treatment landscape for patients with HFrEF.

  20. Critical Questions about PARADIGM-HF and the Future

    PubMed Central

    Chen, Chen-Huan

    2016-01-01

    Cardiovascular (CV) diseases in general and heart failure (HF) in particular are major contributors to death and morbidity and are also recognized as important drivers of health care expenditure. The PARADIGM-HF trial was a pivotal trial designed to compare the long-term effects of LCZ696 with enalapril in patients with symptomatic HF with reduced ejection fraction (HFrEF). This review article presents an in-depth view of the PARADIGM-HF trial and the implications of the results in the management of patients with HF and is based on peer reviewed manuscripts, editorials, perspectives and opinions written about the PARADIGM-HF trial. The article presents the key safety and efficacy results of the trial with specific emphasis on the clinical implications of these findings. The review highlights the highly statistically significant, 20% reduction in the primary composite endpoint of cardiovascular death or HF hospitalization, and a 16% reduction in the risk of death from any cause. It also provides an overview of the design, clinical findings, limitations and special areas of clinical interest. The review discusses the future of LCZ696 and additional trials that seek to answer questions in other sub-populations of patients with HF. The article reiterates what has been concluded by many experts in the field of HF- the introduction of LCZ696 into routine clinical care, while dependent on the regulatory approvals in various countries as well as acceptance by physicians, payers and patients, will change the treatment landscape for patients with HFrEF. PMID:27471351

  1. Transionospheric HF Propagation Experiments at Auroral Latitudes

    NASA Astrophysics Data System (ADS)

    James, H. G.; Benson, R. F.

    2004-05-01

    High-frequency (HF) propagation experiments are planned as part of the Enhanced Polar Outflow Probe (ePOP) satellite mission to be launched for the Canadian Space Agency in 2007. Ground transmitters such as the CADI ionosondes and the SuperDARN radars will be operated collaboratively to emit waves for detection by the Radio Receiver Instrument of ePOP during passes in the vicinity. The scientific goals include improved understanding of F-region morphology and dynamics, wave scattering and microphysical plasma processes. Partly as preparation for ePOP, transionospheric HF propagation data recorded by the receivers of the ISIS-I and ISIS-II spacecraft are being analyzed. The measurements were made in spring-summer 1978. A ground transmitter was built in Ottawa especially for the project. Some of the ISIS data were obtained in digital form from http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html. These digital data are being surveyed in an attempt to establish repeatable propagation characteristics. From these characteristics, the goal is to understand the processes experienced by waves passing through the ionosphere. Several tens of ISIS-II passes recorded at a fixed frequency of 9.303 MHz have been examined. Swept-frequency ionograms interleaved with these fixed-frequency measurements allow two-dimensional electron density distributions to be modeled in altitude and latitude. Computer code has been developed for three-dimensional ray tracing. The computed latitudinal extent of the zone irradiated at the ISIS-II altitude is approximately as observed. Within this "iris" of accessibility, the peak intensity of waves recorded at the spacecraft is within about 10 dB of what is computed with a link calculation. This calculation is based on a model for the 1-kW transmitter, a radiant-transfer calculation that follows the focusing/defocusing of rays using a three-ray pencil between ground and the satellite, and the orientation of the sounder receiving dipole. Poleward

  2. Reduction of (68)Ge activity containing liquid waste from (68)Ga PET chemistry in nuclear medicine and radiopharmacy by solidification.

    PubMed

    de Blois, Erik; Chan, Ho Sze; Roy, Kamalika; Krenning, Eric P; Breeman, Wouter A P

    PET with (68)Ga from the TiO2- or SnO2- based (68)Ge/(68)Ga generators is of increasing interest for PET imaging in nuclear medicine. In general, radionuclidic purity ((68)Ge vs. (68)Ga activity) of the eluate of these generators varies between 0.01 and 0.001%. Liquid waste containing low amounts of (68)Ge activity is produced by eluting the (68)Ge/(68)Ga generators and residues from PET chemistry. Since clearance level of (68)Ge activity in waste may not exceed 10 Bq/g, as stated by European Directive 96/29/EURATOM, our purpose was to reduce (68)Ge activity in solution from >10 kBq/g to <10 Bq/g; which implies the solution can be discarded as regular waste. Most efficient method to reduce the (68)Ge activity is by sorption of TiO2 or Fe2O3 and subsequent centrifugation. The required 10 Bq per mL level of (68)Ge activity in waste was reached by Fe2O3 logarithmically, whereas with TiO2 asymptotically. The procedure with Fe2O3 eliminates ≥90% of the (68)Ge activity per treatment. Eventually, to simplify the processing a recirculation system was used to investigate (68)Ge activity sorption on TiO2, Fe2O3 or Zeolite. Zeolite was introduced for its high sorption at low pH, therefore (68)Ge activity containing waste could directly be used without further interventions. (68)Ge activity containing liquid waste at different HCl concentrations (0.05-1.0 M HCl), was recirculated at 1 mL/min. With Zeolite in the recirculation system, (68)Ge activity showed highest sorption.

  3. Control of the static and high-frequency magnetic properties of perpendicular anisotropic Co–HfN granular films through insertion of HfN interlayers

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Zhang, Yiwen; Ohnuma, Shigehiro; Kobayashi, Nobukiyo; Masumoto, Hiroshi

    2017-04-01

    We propose a multilayer granular structure wherein Hf–nitride (HfN) interlayers are inserted into Co–HfN granular films with perpendicular magnetic anisotropy (PMA) to control their static and high-frequency magnetic properties. The transition between soft ferromagnetic properties and PMA was achieved by varying the thickness of Co–HfN layers (2–30 nm) and HfN interlayers (1–4 nm). The resonance frequency of the Co–HfN (24 nm)/HfN films decreased from 2 to 0.9 GHz with increasing HfN interlayer thickness, owning to the separation of the columnar granules and reduced interlayer interaction between Co–HfN granular layers via a HfN interlayer.

  4. Structural and optical manipulation of colloidal Ge1-xSnx nanocrystals with experimentally synthesized sizes: Atomistic tight-binding theory

    NASA Astrophysics Data System (ADS)

    Sukkabot, Worasak

    2017-02-01

    Nontoxic, maintainable and cost-effective group IV semiconductors are gorgeous for an expansive range of electronic and optoelectronic applications, even though the presence of the indirect band gap obstructs the optical performance. However, band structures can be modified from indirect to direct band gaps by constructing the nanostructures or by alloying with tin (Sn) material. In the study presented here, I investigate the impact of ion-centred types, Sn compositions and dimensions on the electronic structures and optical properties in Ge1-xSnx diamond cubic nanocrystals of the experimentally synthesized Sn contents and diameters using the atomistic tight-binding theory (TB) in the conjunction with the configuration interaction description (CI). The analysis of the mechanism suggests that the physical properties are mainly sensitive with ion-centred types (anion (a) and cation (c)), Sn compositions and dimensions of Ge1-xSnx diamond cubic nanocrystals. The reduction of optical band gaps is reported with the increasing diameters and Sn alloying contents. The visible spectral range is obtained allowing for the applications in bio imaging and chemical sensing. The optical band gaps based on tight-binding calculations are in close agreement with the experimental data for Ge1-xSnx nanocrystals with diameter of 2.1 nm, while for Ge1-xSnx nanocrystals with diameter of 2.7 nm there is a discrepancy of 0.4 eV with experimental results and first-principles calculations. An improvement in the luminescence properties of such Ge1-xSnx nanocrystals becomes possible in the presence of the Sn contents. The electron-hole coulomb interaction is reduced with the increasing Sn components, while the electron-hole exchange interaction is increased with the increasing Sn contents. In addition, I have to point out an astonishing phenomenon, stokes shift and fine structure splitting, with the aim for the realization of the entangled source. The stokes shift and fine structure splitting

  5. Grindability of cast Ti-Hf alloys.

    PubMed

    Kikuchi, Masafumi; Takahashi, Masatoshi; Sato, Hideki; Okuno, Osamu; Nunn, Martha E; Okabe, Toru

    2006-04-01

    As part of our systematic studies characterizing the properties of titanium alloys, we investigated the grindability of a series of cast Ti-Hf alloys. Alloy buttons with hafnium concentrations up to 40 mass% were made using an argon-arc melting furnace. Each button was cast into a magnesia-based mold using a dental titanium casting machine; three specimens were made for each metal. Prior to testing, the hardened surface layer was removed. The specimens were ground at five different speeds for 1 min at 0.98 N using a carborundum wheel on an electric dental handpiece. Grindability was evaluated as the volume of metal removed per minute (grinding rate) and the volume ratio of metal removed compared to the wheel material lost (grinding ratio). The data were analyzed using ANOVA. A trend of increasing grindability was found with increasing amounts of hafnium, although there was no statistical difference in the grindability with increasing hafnium contents. We also found that hafnium may be used to harden or strengthen titanium without deteriorating the grindability.

  6. Ionospheric heating with oblique HF waves

    NASA Astrophysics Data System (ADS)

    Field, Edward C., Jr.; Bloom, Ron M.

    1990-10-01

    Calculations of ionospheric electron density perturbations and ground-level signal changes produce by intense oblique high frequency (HF) transmitters are presented. This analysis considers radio field focusing at caustics, the consequent joule-heating of the surrounding plasma, heat conduction, diffusion, and recombination processes: these being the effects of a powerful oblique 'modifying' wave. It neglects whatever plasma instabilities might occur. Then effects on a secondary 'test' wave that is propagated along the same path as the first are investigated. Calculations predict ground-level field-strength reductions of several dB in the test wave for modifying waves having ERP in the 85 to 90 dBW range. These field-strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The results are sensitive to the model ionosphere assumed, so future experiments should employ the widest possible range of frequencies and propagation conditions. An effective power of 90 dBW seems to be a sort of threshold that, if exceeded, results in substantial rather than small signal changes. The conclusions are based solely on joule-heating and subsequent defocusing of waves passing through caustic regions.

  7. Pulsed HF laser ablation of dentin

    NASA Astrophysics Data System (ADS)

    Papagiakoumou, Eirini I.; Papadopoulos, Dimitris N.; Makropoulou, Mersini I.; Khabbaz, Maruan G.; Serafetinides, Alexander A.

    2005-03-01

    The interaction of a TEA (Transversally Excited Atmospheric pressure) corona preionized oscillator double amplifier HF (hydrogen fluoride) laser beam with dentin tissue is reported. Pulses of 39 ns in the wavelength range of 2.65-3.35 μm and output energies in the range of 10-45 mJ, in a predominantly TEM00 beam were used to interact with dentin tissue. Ablation experiments were conducted with the laser beam directly focused on the tissue. Several samples of freshly extracted human teeth were used, cut longitudinally in facets of about 1mm thick and stored in phosphate buffered saline after being cleaned from the soft tissue remains. The experimental data (ablation thresholds, ablation rates) are discussed with respect to the ablation mechanism(s). Adequate tissue removal was observed and the ablation behavior was, in the greates part of the available fluences, almost linear. From the microscopic examination of teh samples, in a scanning electron microscope (SEM), the irradiated surfaces displayed oval craters (reflecting the laser beam shape) with absence of any melting or carbonization zone. It is suggested that the specific laser removes hard tissue by a combined photothermal and plasma mediated ablation mechanism, leaving a surface free from thermal damage and with a well-shaped crater.

  8. Site Dependency of the High Conductivity of Ga 2 In 6 Sn 2 O 16 : The Role of the 7-Coordinate Site

    SciTech Connect

    Rickert, Karl; Huq, Ashfia; Lapidus, Saul H.; Wustrow, Allison; Ellis, Donald E.; Poeppelmeier, Kenneth R.

    2015-11-11

    In 6-coordinated cation sites, we find that it is the fundamental building block of the most effective transparent conducting oxides. Ga2In6SnO16, however, maintains 4-, 6-, 7-, and 8-coordinated cation sites and still exhibits desirable transparency and high conductivity. To investigate the potential impact of these alternative sites, we partially replace the Sn in Ga2In6Sn2O16 with Ti, Zr, or Hf and use a combined approach of density functional theory-based calculations, X-ray diffraction, and neutron diffraction to establish that the substitution occurs preferentially on the 7-coordinate site. Conversely to Sn, the empty d orbitals of Ti, Zr, and Hf promote spd covalency with the surrounding oxygen, which decreases the conductivity. Pairing the substitutional site preference with the magnitude of this decrease demonstrates that the 7-coordinate site is the V major contributor to conductivity. The optical band gaps, in contrast, are shown to be site-independent and composition-dependent. After all 7-coordinate Sn has been replaced, the continued substitution of Sn results in the formation of a 7-coordinate In antisite or replacement of 6-coordinate Sn, depending on the identity of the d(0) substitute.

  9. Improvement of thermoelectric properties for half-Heusler TiNiSn by interstitial Ni defects

    SciTech Connect

    Hazama, Hirofumi; Matsubara, Masato; Asahi, Ryoji; Takeuchi, Tsunehiro

    2011-09-15

    We have synthesized off-stoichiometric Ti-Ni-Sn half-Heusler thermoelectrics in order to investigate the relation between randomly distributed defects and thermoelectric properties. A small change in the composition of Ti-Ni-Sn causes a remarkable change in the thermal conductivity. An excess content of Ni realizes a low thermal conductivity of 2.93 W/mK at room temperature while keeping a high power factor. The low thermal conductivity originates in the defects generated by an excess content of Ni. To investigate the detailed defect structure, we have performed first-principles calculations and compared with x ray photoemission spectroscopy measurement. Based on these analyses, we conclude that the excess Ni atoms randomly occupy the vacant sites in the half-Heusler structure, which play as phonon scattering centers, resulting in significant improvement of the figure of merit without any substitutions of expensive heavy elements, such as Zr and Hf.

  10. Low-Frequency Waves in HF Heating of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  11. 12. Hard HF transmitter antenna, view toward west. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Hard HF transmitter antenna, view toward west. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  12. 11. Hard HF receiver antenna, view towards east. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Hard HF receiver antenna, view towards east. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  13. Sequential sputtered Co-HfO2 granular films

    NASA Astrophysics Data System (ADS)

    Chadha, M.; Ng, V.

    2017-03-01

    A systematic study of magnetic, magneto-transport and micro-structural properties of Co-HfO2 granular films fabricated by sequential sputtering is presented. We demonstrate reduction in ferromagnetic-oxide formation by using HfO2 as the insulting matrix. Microstructure evaluation of the films showed that the film structure consisted of discrete hcp-Co grains embedded in HfO2 matrix. Films with varying compositions were prepared and their macroscopic properties were studied. We correlate the variation in these properties to the variation in film microstructure. Our study shows that Co-HfO2 films with reduced cobalt oxide and varying properties can be prepared using sequential sputtering technique.

  14. EPA study on HF acid could spell trouble for refiners

    SciTech Connect

    Lobsenz, G.

    1993-06-30

    Hydrofluoric acid, a highly toxic substance used at petroleum refineries, uranium fuel fabrication plants and many other industrial plants, could cause {open_quotes}severe impacts{close_quotes} more than six miles downwind of a worst-case accident, according to preliminary findings of an Environmental Protection Agency study. The study, also found that local governments and communities near some HF facilities were largely unaware of the serious risks posed by an HF release and the protective measures that were needed. HF is present at hundreds of industrial facilities nationwide, including petroleum refineries, where it is used to produce clean-burning gasoline, uranium fuel fabrication facilities and manufacturers of refrigerants, electronics, detergents and drugs. Among other issues, petroleum refiners are strongly concerned about suggestions from environmentalists that EPA consider requiring the industry to phase out HF alkylation units and replace them with an alternative process using sulfuric acid.

  15. Lu-Hf constraints on the evolution of lunar basalts

    NASA Technical Reports Server (NTRS)

    Fujimaki, H.; Tatsumoto, M.

    1984-01-01

    It is shown that a cumulate-remelting model best explains the recently acquired data on the Lu-Hf systematics of lunar mare basalts. The model is constructed using Lu and Hf concentration data and is strengthened by Hf isotopic evidence of Unruh et al. (1984). It is shown that the similarity in MgO/FeO ratios and Cr2O3 content in high-Ti and low-Ti basalts are not important constraints on lunar basalt petrogenesis. The model demonstrates that even the very low Ti or green glass samples are remelting products of a cumulate formed after at least 80-90 percent of the lunar magma ocean had solidified. In the model, all the mare basalts and green glasses were derived from 100-150 km depth in the lunar mantle. The Lu-Hf systematics of KREEP basalts clearly indicate that they would be the final residual liquid of the lunar magma ocean.

  16. Superconducting properties of the noncentrosymmetric superconductor Re6Hf

    NASA Astrophysics Data System (ADS)

    Singh, D.; Hillier, A. D.; Thamizhavel, A.; Singh, R. P.

    2016-08-01

    We report synthesis and detailed characterization of the noncentrosymmetric superconductor Re6Hf using powder x-ray diffraction (XRD), magnetization, transport, and thermodynamic measurements. XRD confirmed the noncentrosymmetric, α -Mn cubic structure in Re6Hf with the cubic cell parameter a =9.6850 (3 ) Å. Resistivity, DC, and AC magnetization measurements confirmed the type-II superconductivity in Re6Hf with the transition temperature Tconset˜5.96 K, having the lower critical field Hc 1(0 ) 5.6 mT and upper critical field Hc 2(0 ) 12.2 T. The electronic specific heat data fits well with the single-gap BCS model. The Sommerfeld coefficient (γ ) also shows linear relation with the magnetic field. All above results suggest s -wave superconductivity in Re6Hf .

  17. Theoretical Assessment of 178m2Hf De-Excitation

    SciTech Connect

    Hartouni, E P; Chen, M; Descalle, M A; Escher, J E; Loshak, A; Navratil, P; Ormand, W E; Pruet, J; Thompson, I J; Wang, T F

    2008-10-06

    This document contains a comprehensive literature review in support of the theoretical assessment of the {sup 178m2}Hf de-excitation, as well as a rigorous description of controlled energy release from an isomeric nuclear state.

  18. Spectroscopic constants and potential energy curves of HfH

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Das, Kalyan K.

    1991-01-01

    Complete active space multiconfiguration self-consistent field (CAS-MCSFC) followed by full second-roder CI (SOCI) and relativistic configuration interaction (RCI) including spin-orbit coupling calculations are carried out on 14 λ- s and 10 ω-ω states of HfH. The spectroscopic constants ( re, Te, ωe, μe, De) of these states are computed. The potential energy curves of these states are also reported. We find several electronic transitions in the IR-UV regions for HfH which are yet to be observed. The ground state of HfH is found to be a {3}/{2} state (82% 2Δ, 8% 2Π) with r e = 1.854 Å, ωe = 1704 cm -1 and μe = 0.66 D. The spin-orbit effects are found to be very significant for HfH.

  19. Structural distortion in RPt sub 2 Sn sub 2 compounds (R = rare earth)

    SciTech Connect

    Latroche, M.; Selsane, M.; Godart, C.; Schiffmacher, G. , 92 - Meudon-Bellevue ); Beyerman, W.P.; Thompson, J.D. )

    1991-01-01

    CeM{sub 2}X{sub 2} compounds (M-transition metals, X = Si, Ge, Sn) exhibit very exotic properties such as intermediate valence state, heavy fermion, magnetism, and superconductivity. Most of them crystallize in the ThCr{sub 2}Si{sub 2} type structure (14/nmm) while a few adopt the CeBe{sub 2}Ge{sub 2} primitive one (P4/nmmm). Among these compounds, CePt{sub 2}Sn{sub 2} has the heaviest known specific heat coefficient ({gamma} = 3.5 J/mol-K{sup 2}) and orders antiferromagnetically at T{sub N} = 0.88 K. Samples of CePt{sub 2}Sn{sub 2}, Ce{sub 0.e}La{sub 0.2}Pt{sub 2}Sn{sub 2}, and LaPt{sub 2}Sn{sub 2} have been studied by X-ray powder diffraction experiments including Rietveld calculations before and after annealing. As-cast samples can be indexed in the tetragonal primitive cell; however, re- examination of annealed samples (1 3 days at 800{degrees}C and 3 weeks at 700{degrees}C) reveals a monoclinic distortion of the lattice. Such a distortion has already been observed for CeNi{sub 2}Sn{sub 2}. Furthermore, our diffraction patterns show evidence for superlattice lines at twice the unit cell parameters, which was verified by transmission electron microscopy. Microprobes analysis on these samples show that the Pt sublattice is slightly substoichiometric (97.5%). Thus strains due to large atomic radii and ordering of Pt vacancies could be responsible for the monoclinic distortion and superlattice lines. 13 refs., 3 figs., 1 tab.

  20. Application of HF radar currents to oil spill modelling.

    PubMed

    Abascal, Ana J; Castanedo, Sonia; Medina, Raul; Losada, Inigo J; Alvarez-Fanjul, Enrique

    2009-02-01

    In this work, the benefits of high-frequency (HF) radar currents for oil spill modeling and trajectory analysis of floating objects are analyzed. The HF radar performance is evaluated by means of comparison between a drifter buoy trajectory and the one simulated using a Lagrangian trajectory model. A methodology to optimize the transport model performance and to calculate the search area of the predicted positions is proposed. This method is applied to data collected during the Galicia HF Radar Experience. This experiment was carried out to explore the capabilities of this technology for operational monitoring along the Spanish coast. Two long-range HF radar stations were installed and operated between November 2005 and February 2006 on the Galician coast. In addition, a drifter buoy was released inside the coverage area of the radar. The HF radar currents, as well as numerical wind data were used to simulate the buoy trajectory using the TESEO oil spill transport model. In order to evaluate the contribution of HF radar currents to trajectory analysis, two simulation alternatives were carried out. In the first one, wind data were used to simulate the motion of the buoy. In the second alternative, surface currents from the HF radar were also taken into account. For each alternative, the model was calibrated by means of the global optimization algorithm SCEM-UA (Shuffled Complex Evolution Metropolis) in order to obtain the probability density function of the model parameters. The buoy trajectory was computed for 24h intervals using a Monte Carlo approach based on the results provided in the calibration process. A bivariate kernel estimator was applied to determine the 95% confidence areas. The analysis performed showed that simulated trajectories integrating HF radar currents are more accurate than those obtained considering only wind numerical data. After a 24h period, the error in the final simulated position improves using HF radar currents. Averaging the

  1. Monolithically integrated Ge CMOS laser

    NASA Astrophysics Data System (ADS)

    Camacho-Aguilera, Rodolfo

    2014-02-01

    Ge-on-Si devices are explored for photonic integration. Through the development of better growth techniques, monolithic integration, laser design and prototypes, it was possible to probe Ge light emitters with emphasis on lasers. Preliminary worked shows thermal photonic behavior capable of enhancing lamination at high temperatures. Increase luminescence is observed up to 120°C from L-band contribution. Higher temperatures show contribution from Δ -band. The increase carrier thermal contribution suggests high temperature applications for Ge light emitters. A Ge electrically pumped laser was probed under 0.2% biaxial strain and doping concentration ~4.5×1019cm-3 n-type. Ge pnn lasers exhibit a gain >1000cm-1 with 8mW power output, presenting a spectrum range of over 200nm, making Ge the ideal candidate for Si photonics. Large temperatures fluctuations and process limit the present device. Theoretically a gain of >4000cm- gain is possible with a threshold of as low as 1kA/cm2. Improvements in Ge work

  2. Characterization of an HF-Pumped CO2 Laser.

    DTIC Science & Technology

    1981-10-01

    the 101 and 100 energy levels and lasing action is achieved at 4.3 microns. The results of a theoretical analysis and an experimental study are used...14 3 Predicted HF Power Pulse Shape .................. 30 4 Optical Pumping Schemes ......................... 31 5 CO2 Energy Level Diaqram...32 6 12C1802 Energy Level Diagram .................... 34 7 HF and CO2 Line Broadeninq ....................... 36 8 CO Absorption

  3. Propagation Impact on Modern HF (High Frequency) Communications System Design

    DTIC Science & Technology

    1986-03-01

    to 2.4 kbits/s and above - in the same way as with line circuits or other less dispersive media . However, as will be shown in Section 2, the capacity...time interval. (c) An assumption that HF communication can replace, or back-up, other types of less dispersive communication media and still...reliable. The following media may be considered for interconnection purposes: (a) HF skywave and surface-wave point-to-point links; (b) meteor

  4. Monitoring the HF spectrum in the presence of noise

    NASA Astrophysics Data System (ADS)

    Giesbrecht, James E.; Clarke, Russell; Abbott, Derek

    2004-05-01

    This paper reviews modulation recognition in the context of HF radio-communications. We investigate entropic distance measures and coherence measures for recognizing HF modulations. Preliminary results shown that it may be possible to identify a modulation and its transmit power level based on the entropic distance between it and another modulation. Coherence estimates may provide characteristic signatures that can be used to identify modulation types.

  5. PROTEUS-SN User Manual

    SciTech Connect

    Shemon, Emily R.; Smith, Micheal A.; Lee, Changho

    2016-02-16

    PROTEUS-SN is a three-dimensional, highly scalable, high-fidelity neutron transport code developed at Argonne National Laboratory. The code is applicable to all spectrum reactor transport calculations, particularly those in which a high degree of fidelity is needed either to represent spatial detail or to resolve solution gradients. PROTEUS-SN solves the second order formulation of the transport equation using the continuous Galerkin finite element method in space, the discrete ordinates approximation in angle, and the multigroup approximation in energy. PROTEUS-SN’s parallel methodology permits the efficient decomposition of the problem by both space and angle, permitting large problems to run efficiently on hundreds of thousands of cores. PROTEUS-SN can also be used in serial or on smaller compute clusters (10’s to 100’s of cores) for smaller homogenized problems, although it is generally more computationally expensive than traditional homogenized methodology codes. PROTEUS-SN has been used to model partially homogenized systems, where regions of interest are represented explicitly and other regions are homogenized to reduce the problem size and required computational resources. PROTEUS-SN solves forward and adjoint eigenvalue problems and permits both neutron upscattering and downscattering. An adiabatic kinetics option has recently been included for performing simple time-dependent calculations in addition to standard steady state calculations. PROTEUS-SN handles void and reflective boundary conditions. Multigroup cross sections can be generated externally using the MC2-3 fast reactor multigroup cross section generation code or internally using the cross section application programming interface (API) which can treat the subgroup or resonance table libraries. PROTEUS-SN is written in Fortran 90 and also includes C preprocessor definitions. The code links against the PETSc, METIS, HDF5, and MPICH libraries. It optionally links against the MOAB library and

  6. Temperature Dependence of Vibrational Relaxation from the Upper Vibrational Levels of HF and DF.

    DTIC Science & Technology

    1980-08-29

    dependent quenching rate coefficients for relaxation of HF(v) and DF(v) by HF(v = 0) and DF(v = 0). The temperature dependence is predicted to be...halide molecules. This theoretical study is the first in which the temperature dependence of the V to R rate coefficients for HF(v sub 1) + HF(v sub 2

  7. Molten Au/Ge alloy migration in Ge nanowires.

    PubMed

    Liu, Qian; Zou, Rujia; Wu, Jianghong; Xu, Kaibing; Lu, Aijiang; Bando, Yoshio; Golberg, Dmitri; Hu, Junqing

    2015-05-13

    Herein, we report time-resolved in situ transmission electron microscopy observation of Au particle melting at a Ge nanowire tip, subsequent forming of Au/Ge alloy liquid, and its migrating within the Ge nanowire. The migration direction and position of the Au/Ge liquid can be controlled by the applied voltage and the migration speed shows a linear deceleration in the nanowire. In a migration model proposed, the relevant dynamic mechanisms (electromigration, thermodiffusion, and viscous force, etc.) are discussed in detail. This work associated with the liquid mass transport in the solid nanowires should provide new insights into the crystal growth, interface engineering, and fabrication of the heterogeneous nanostructure-based devices.

  8. Uniaxially stressed Ge:Ga and Ge:Be

    SciTech Connect

    Dubon, O.D. Jr.

    1992-12-01

    The application of a large uniaxial stress to p-type Ge single crystals changes the character of both the valence band and the energy levels associated with the acceptors. Changes include the splitting of the fourfold degeneracy of the valence band top and the reduction of the ionization energy of shallow acceptors. In order to study the effect of uniaxial stress on transport properties of photoexcited holes, a variable temperature photo-Hall effect system was built in which stressed Ge:Ga and Ge:Be could be characterized. Results indicate that stress increases the lifetime and Hall mobility of photoexcited holes. These observations may help further the understanding of fundamental physical processes that affect the performance of stressed Ge photoconductors including the capture of holes by shallow acceptors.

  9. The isobutylene-isobutane alkylation process in liquid HF revisited.

    PubMed

    Esteves, P M; Araújo, C L; Horta, B A C; Alvarez, L J; Zicovich-Wilson, C M; Ramírez-Solís, A

    2005-07-07

    Details on the mechanism of HF catalyzed isobutylene-isobutane alkylation were investigated. On the basis of available experimental data and high-level quantum chemical calculations, a detailed reaction mechanism is proposed taking into account solvation effects of the medium. On the basis of our computational results, we explain why the density of the liquid media and stirring rates are the most important parameters to achieve maximum yield of alkylate, in agreement with experimental findings. The ab initio Car-Parrinello molecular dynamics calculations show that isobutylene is irreversibly protonated in the liquid HF medium at higher densities, leading to the ion pair formation, which is shown to be a minimum on the potential energy surface after optimization using periodic boundary conditions. The HF medium solvates preferentially the fluoride anion, which is found as solvated [FHF](-) or solvated F(-.)(HF)(3). On the other hand, the tert-butyl cation is weakly solvated, where the closest HF molecules appear at a distance of about 2.9 Angstrom with the fluorine termination of an HF chain.

  10. Thermal stability of HfO2 nanotube arrays

    SciTech Connect

    Qiu, Xiaofeng; Howe, Jane Y; Meyer III, Harry M; Tuncer, Enis; Paranthaman, Mariappan Parans

    2010-01-01

    Thermal stability of highly ordered hafnium oxide (HfO2) nanotube arrays prepared through an electrochemical anodization method in the presence of ammonium fluoride is investigated in a temperature range of room temperature to 900 C in flowing argon atmosphere. The formation of the HfO2 nanotube arrays was monitored by current density transient characteristics during anodization of hafnium metal foil. Morphologies of the as-grown and post-annealed HfO2 nanotube arrays were analyzed by powder Xray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Although monoclinic HfO2 is thermally stable up to 2000K in bulk, the morphology of HfO2 nanotube arrays degraded at 900 C. A detailed X-ray photoelectron spectroscopy (XPS) study revealed that the thermal treatment significantly impacted the composition and the chemical environment of the core elements (Hf and O), as well as F content coming from the electrolyte. Possible reasons for the degradation of the nanotube at high temperature were discussed based on XPS study and possible future improvements have also been suggested. Moreover, dielectric measurements were carried out on both the as-grown amorphous film and 500 C post-annealed crystalline film. This study will help us to understand the temperature impact on the morphology of nanotube arrays, which is important to its further applications at elevated temperatures.

  11. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada

    USGS Publications Warehouse

    Lowery, Claiborne L.E.; Miller, C.F.; Walker, B.A.; Wooden, J.L.; Mazdab, F.K.; Bea, F.

    2006-01-01

    Zirconium and Hf are nearly identical geochemically, and therefore most of the crust maintains near-chondritic Zr/Hf ratios of ???35-40. By contrast, many high-silica rhyolites and granites have anomalously low Zr/Hf (15-30). As zircon is the primary reservoir for both Zr and Hf and preferentially incorporates Zr, crystallization of zircon controls Zr/ Hf, imprinting low Zr/Hf on coexisting melt. Thus, low Zr/Hf is a unique fingerprint of effective magmatic fractionation in the crust. Age and compositional zonation in zircons themselves provide a record of the thermal and compositional histories of magmatic systems. High Hf (low Zr/ Hf) in zircon zones demonstrates growth from fractionated melt, and Ti provides an estimate of temperature of crystallization (TTiZ) (Watson and Harrison, 2005). Whole-rock Zr/Hf and zircon zonation in the Spirit Mountain batholith, Nevada, document repeated fractionation and thermal fluctuations. Ratios of Zr/Hf are ???30-40 for cumulates and 18-30 for high-SiO2 granites. In zircons, Hf (and U) are inversely correlated with Ti, and concentrations indicate large fluctuations in melt composition and TTiZ (>100??C) for individual zircons. Such variations are consistent with field relations and ion-probe zircon geochronology that indicate a >1 million year history of repeated replenishment, fractionation, and extraction of melt from crystal mush to form the low Zr/Hf high-SiO2 zone. ?? 2006 The Mineralogical Society.

  12. Global potential energy hypersurface for dynamical studies of energy transfer in HF--HF collisions

    SciTech Connect

    Redmon, M.J.; Binkley, J.S.

    1987-07-15

    The interaction energy of two HF molecules at 1332 individual points has been calculated with Moeller--Plesset (many--body) perturbation theory at the MP4-SDTQ level using a 6-311G** basis set. 293 of the points correspond to stretching of one HF molecule from its equilibrium geometry. No attempt was made to use a sufficiently fine grid to accurately describe the well region corresponding to hydrogen bonding. However, the location and minimum energy are consistent with experiment and other accurate theoretical results. An extensive global fit (rms error of 1 kcal/mol) is reported of 1319 points (below 10 eV of potential energy) using a modified London potential with corrections obtained using polynomials through four-body interactions. A model electrostatic potential represents the long-range interaction. In addition, the use of an expansion in products of three Legendre functions is discussed. It is shown that the latter approach, although accurately fitting the ab initio data, has difficulties interpolating in regions of the surface exhibiting diverse magnitudes of potential energy, and therefore must be used with caution. This surface should be useful for studies of T--V--R processes in this system.

  13. MOS Ge Diodes Based on High κ Gate Dielectrics Grown by MBE and ALD

    NASA Astrophysics Data System (ADS)

    Lee, Kun Yu; Lee, W. C.; Lin, T. D.; Lee, C. S.; Chang, Y. C.; Lee, Y. J.; Huang, M. L.; Wu, Y. D.; Hong, M.; Kwo, J.

    2007-03-01

    Germanium-based CMOS technology is gaining importance due to its high carrier mobility. In this work high κ gate-dielectrics, Al2O3, HfO2, Y2O3 and Ga2O3(Gd2O3) grown by MBE and ALD were investigated as passivation layers on n type Ge(100). Thermal stability of the MOS diodes was examined after various anneals. Prior to dielectric depositions surface pretreatments were applied to reduce the unwanted GeOx interfacial layer, and to improve electrical properties. Frequency dispersion of C-V curves was reduced by using a 350^oC preclean process, compared to the sample without precleaning. The leakage current density of ALD grown HfO2 (6.8nm) is 4.6×10-6 A/cm^2 with κ of 10.5. The improved CV curve was attributed to less GeOx formed at substrate and oxide interface, as confirmed by XPS analysis. However, with higher cleaning temperature over 400^oC, the CV curves showed additional inversion capacitance, possibly due to minority carriers from defect states near the interface.

  14. Role of Hf on Phase Formation in Ti45Zr(38-x)Hf(x)Ni17 Liquids and Solids

    NASA Technical Reports Server (NTRS)

    Wessels, V.; Sahu, K. K.; Gangopadhyay, A. K.; Huett, V. T.; Canepari, S.; Goldman, A. I.; Hyers, R. W.; Kramer, M. J.; Rogers, J. R.; Kelton, K. F.; Robinson, D.

    2008-01-01

    Hafnium and zirconium are very similar, with almost identical sizes and chemical bonding characteristics. However, they behave differently when alloyed with Ti and Ni. A sharp phase formation boundary near 18-21 at.% Hf is observed in rapidly-quenched and as-cast Ti45Zr38-xHfxNi17 alloys. Rapidly-quenched samples that contain less than 18 at.% Hf form the icosahedral quasicrystal phase, whiles samples containing more than 21 at.% form the 3/2 rational approximant phase. In cast alloys, a C14 structure is observed for alloys with Hf lower than the boundary concentration, while a large-cell (11.93 ) FCC Ti2Ni-type structure is found in alloys with Hf concentrations above the boundary. To better understand the role of Hf on phase formation, the structural evolution with supercooling and the solidification behavior of liquid Ti45Zr38-xHfxNi17 alloys (x=0, 12, 18, 21, 38) were studied using the Beamline Electrostatic Levitation (BESL) technique using 125keV x-rays on the 6ID-D beamline at the Advanced Photon Source, Argonne National Laboratory. For all liquids primary crystallization was to a BCC solid solution phase; interestly, an increase in Hf concentration leads to a decrease in the BCC lattice parameter in spite of the chemical similarity between Zr and Hf. A Reitveld analysis confirmed that as in the cast alloys, the secondary phase that formed was the C14 below the phase formation boundary and a Ti2Ni-type structure at higher Hf concentrations. Both the liquidus temperature and the reduced undercooling change sharply on traversing the phase formation boundary concentration, suggesting a change in the liquid structure. Structural information from a Honeycutt-Anderson index analysis of reverse Monte Carlo fits to the S(q) liquid data will be presented to address this issue.

  15. Ge/graded-SiGe multiplication layers for low-voltage and low-noise Ge avalanche photodiodes on Si

    NASA Astrophysics Data System (ADS)

    Miyasaka, Yuji; Hiraki, Tatsurou; Okazaki, Kota; Takeda, Kotaro; Tsuchizawa, Tai; Yamada, Koji; Wada, Kazumi; Ishikawa, Yasuhiko

    2016-04-01

    A new structure is examined for low-voltage and low-noise Ge-based avalanche photodiodes (APDs) on Si, where a Ge/graded-SiGe heterostructure is used as the multiplication layer of a separate-absorption-carrier-multiplication structure. The Ge/SiGe heterojunction multiplication layer is theoretically shown to be useful for preferentially enhancing impact ionization for photogenerated holes injected from the Ge optical-absorption layer via the graded SiGe, reflecting the valence band discontinuity at the Ge/SiGe interface. This property is effective not only for the reduction of operation voltage/electric field strength in Ge-based APDs but also for the reduction of excess noise resulting from the ratio of the ionization coefficients between electrons and holes being far from unity. Such Ge/graded-SiGe heterostructures are successfully fabricated by ultrahigh-vacuum chemical vapor deposition. Preliminary pin diodes having a Ge/graded-SiGe multiplication layer act reasonably as photodetectors, showing a multiplication gain larger than those for diodes without the Ge/SiGe heterojunction.

  16. Serpentinization Changes Nd, but not Hf Isotopes of Abyssal Peridotites

    NASA Astrophysics Data System (ADS)

    Bizimis, M.; Frisby, C. P.; Mallick, S.

    2015-12-01

    Serpentinization of the oceanic lithosphere is a known sink for fluid mobile elements (B, Cl, Li, Sr, etc.), while high field strength elements (HFSE: e.g., Hf, Zr, Ti, Nb) are thought to be unaffected by it. In contrast, the fate of REE during serpentinization is equivocal. Correlations between REE and HFSE concentrations in abyssal peridotites suggest control by magmatic processes (Niu, 2004, J. Pet), while some LREE enrichments in serpentinized peridotites compared to their clinopyroxene (cpx) and Nd, Sr isotope data (Delacour et al., 2008, Chem. Geol.) imply seawater-derived REE addition to the mantle protolith (Paulick et al., 2006, Chem. Geol). To further constrain peridotite-seawater interaction during serpentinization we compare bulk rock and cpx Hf and Nd isotope data in partially (up to ~70%) serpentinized abyssal peridotites (9-16°E South West Indian Ridge). We also present a new method that improves yields in Hf, Nd and Pb separations from depleted (<0.03 ppm Hf) ultramafic rocks, which includes coprecipitation of metals with Al-Fe hydroxides and ether-HCl liquid-liquid exchange for Fe removal. Nd isotopes in the bulk peridotite are up to 7ɛNd units less radiogenic than their cpx (i.e., the magmatic value) while Hf isotopes remain equal to cpx within 1 ɛHf. Melt-rock reaction by the local lavas cannot generate this decoupling. The largest Nd isotopic difference between cpx and bulk is seen in the most LREE-depleted samples, while refertilized samples show little change. Leaching experiments show that 30-60% of REE are mobilized from the rock, but >90% of Hf, Zr, Ti are retained in the residue. LA-ICPMS data shows that serpentine after olivine typically has higher LREE/HREE ratios than cpx, pronounced negative Ce anomalies, high U, Sr concentrations and low HFSE, unlike the coexisting cpx. These data are consistent with some seawater-derived LREE addition to peridotite during serpentinization, localized in the serpentine and other secondary phases

  17. Heats of formation of GeH 4, GeF 4 and Ge(CH 3) 4

    NASA Astrophysics Data System (ADS)

    Koizumi, Hideya; Dávalos, Juan Z.; Baer, Tomas

    2006-05-01

    The heats of formation of GeH 4, GeF 4, and Ge(CH 3) 4 are computed at CCSD(T) level of theory at the complete basis set limit. Relativistic effects, core valence correlation, spin orbit effect, and zero point energy are explicitly calculated in this study. Relativistic recoveries for these molecules are investigated with different size of correlation space. An unusually large relativistic effect is observed in GeF 4. Our best calculated geometries for GeH 4 and GeF 4 are in excellent agreement with the high precision experiments. Anharmonic correction to the zero point energy is significant for Ge(CH 3) 4. Our best calculated values for the 298 K heats of formation of GeH 4, GeF 4, and Ge(CH 3) 4 are 82, -1194, and -123 kJ/mol, respectively.

  18. Effect of Remote Oxygen Scavenging on Electrical Properties of Ge-Based Metal-Oxide-Semiconductor Capacitors

    NASA Astrophysics Data System (ADS)

    Fadida, Sivan; Nyns, Laura; Van Elshocht, Sven; Eizenberg, Moshe

    2017-01-01

    Remote oxygen scavenging has been studied in a metal/high- k dielectric/GeO2/Ge stack, where a thin Ti layer inserted into the metal/high- k dielectric interface serves as the scavenger. First, we established that remote oxygen scavenging indeed occurs specifically in the studied HfO2/Al2O3/GeO2/Ge stack. It was also established that the source for oxygen is decomposition of the GeO2 layer. Then, the effect of remote oxygen scavenging of the GeO2 layer on the electrical characteristics of the metal/oxide/Ge capacitors was investigated. The electrical properties were studied in comparison with identical gate stacks with a Pt electrode, before and after annealing. Although a decrease in effective oxide thickness was demonstrated as a result of this process, clear degradation of the interface electrical quality was observed after scavenging. Initiation of the scavenging process was witnessed upon deposition of Ti at room temperature, emphasizing that this process could not be controlled.

  19. Traditional applications and novel approaches in Lu-Hf geochronology

    NASA Astrophysics Data System (ADS)

    Herwartz, D.; Nagel, T. J.; Sandmann, S.; Vitale Brovarone, A.; Rexroth, S.; Rojas-Agramonte, Y.; Froitzheim, N.; Kröner, A.; Skublov, S. G.; Münker, C.

    2012-04-01

    Lutetium-Hf geochronology is currently becoming a routine method for dating metamorphism of garnet bearing rocks, such as eclogites. Prograde garnet growth ages are mostly preserved because blocking temperatures exceed 630 °C [1] and prograde Lu zoning patterns have even been observed in samples that were exposed to temperatures above 800 °C [2]. Here we discuss Lu-Hf ages from various eclogite localities, such as the Northern Tianshan, Kyrgyzstan (~ 470 Ma), the Kola Peninsula, Russia (~ 1900 Ma) [3], Cuba (~70 Ma and ~124 Ma), Alpine Corsica (~ 34 Ma) and the Tauern Window (~32.7 Ma). Age precisions are in the order of 0.1 to 1 % and all ages can be safely attributed to the timing of garnet growth. Some samples, however, contain two garnet populations which complicates Lu-Hf geochronology. In the Adula Nappe (Central Alps) relict garnet has survived a second orogenic cycle, including subduction to mantle depth. By carefully separating the two garnet populations present within the same eclogite sample we obtained a minimum Variscan age of 333 Ma and a maximum Alpine age of 38 Ma [4]. A similar relationship is now evident in samples from the Tauern Window (Eastern Alps), where only one population of garnet generation is visible macroscopically. However, few relics of Variscan garnet inside Alpine garnet are observed in electron microprobe element maps and are also evident from isotopic heterogeneity in 176Lu/177Hf vs. 176Hf/177Hf space. Garnet relics stemming from previous metamorphic events are frequently observed in HP units around the world and the Lu-Hf system is a promising tool to resolve the respective growth ages. Apart from garnet, lawsonite Lu-Hf geochronology was recently identified as a new tool to investigate subduction processes [5]. Here we present a lawsonite Lu-Hf isochron 37,6 ± 1.4 Ma (MSWD = 0.30; n =5) from a lawsonite blueschist from Alpine Corsica. The lawsonite slightly predates the timing of garnet growth (~34 Ma) in three eclogite

  20. Antiferromagnetic order in the pyrochlores R2Ge2O7 (R = Er, Yb)

    NASA Astrophysics Data System (ADS)

    Dun, Zhiling; Li, Xiang; Freitas, Rafael; Arrighi, Everton; Cruz, Clarina; Lee, Minseong; Choi, Eun Sang; Cao, Huibo; Silverstein, Harlyn; Wiebe, Chris; Chen, Jinguang; Zhou, Haidong

    Elastic neutron scattering, ac susceptibility, and specific heat experiments on the pyrochlores Er2Ge2O7 and Yb2Ge2O7 show that both systems are antiferromagnetically ordered in the Γ5 manifold. The ground state is a ψ3 phase for the Er sample and a ψ2 or ψ3 phase for the Yb sample, which suggests ``Order by Disorder''(ObD) physics. Furthermore, we unify the various magnetic ground states of all known R2X2O7 (R = Er, Yb, X = Sn, Ti, Ge) compounds through the enlarged XY type exchange interaction J+/- under chemical pressure. The mechanism for this evolution is discussed in terms of the phase diagram proposed in the theoretical study [Wong et al., Phys. Rev. B 88, 144402, (2013)].

  1. Antiferromagnetic order in the pyrochlores R2Ge2O7 (R =Er ,Yb )

    NASA Astrophysics Data System (ADS)

    Dun, Z. L.; Li, X.; Freitas, R. S.; Arrighi, E.; Dela Cruz, C. R.; Lee, M.; Choi, E. S.; Cao, H. B.; Silverstein, H. J.; Wiebe, C. R.; Cheng, J. G.; Zhou, H. D.

    2015-10-01

    Elastic neutron scattering, ac susceptibility, and specific heat experiments on the pyrochlores Er2Ge2O7 and Yb2Ge2O7 show that both systems are antiferromagnetically ordered in the Γ5 manifold. The ground state is a ψ3 phase for the Er sample and a ψ2 or ψ3 phase for the Yb sample, which suggests "Order by Disorder" physics. Furthermore, we unify the various magnetic ground states of all known R2X2O7 (R =Er , Yb; X =Sn , Ti, Ge) compounds through the enlarged X Y -type exchange interaction J± under chemical pressure. The mechanism for this evolution is discussed in terms of the phase diagram proposed in the theoretical study by Wong et al. [Phys. Rev. B 88, 144402 (2013), 10.1103/PhysRevB.88.144402].

  2. Hf-Nd isotope and trace element constraints on subduction inputs at island arcs: Limitations of Hf anomalies as sediment input indicators

    NASA Astrophysics Data System (ADS)

    Handley, Heather K.; Turner, Simon; Macpherson, Colin G.; Gertisser, Ralf; Davidson, Jon P.

    2011-04-01

    New Nd-Hf isotope and trace element data for Javanese volcanoes are combined with recently published data to place constraints on subduction inputs at the Sunda arc in Indonesia and assess the value of Hf anomalies (expressed as Hf/Hf* and Sm/Hf ratios) as tracers of such inputs. Hf anomaly does not correlate with Hf isotope ratio in Javanese lavas, however, Hf/Hf* and Sm/Hf ratios do correlate with SiO 2. Contrary to previous work, we show that Hf anomaly variation may be controlled by fractionation of clinopyroxene and/or amphibole during magmatic differentiation and does not represent the magnitude or type of subduction input in some arcs. Correlation of Sm/Hf with indices of differentiation for other arcs (e.g., Vanuatu, New Britain, and Mariana) suggests that differentiation control on Sm/Hf ratios in volcanic arc rocks may be a relatively common phenomenon. This study corroborates the use of Nd-Hf isotope co-variations in arc volcanic rocks to ascertain subduction input characteristics. The trajectories of regional volcano groups (East, Central and West Java) in Nd-Hf isotope space reveal heterogeneity in the subducted sediment input along Java, which reflects present-day spatial variations in sediment compositions on the down-going plate in the Java Trench. The high Sm/Hf ratio required in the sediment end-member for some Javanese basalts suggests that partial melting of subducted sediment occurs in the presence of residual zircon, and is inconsistent with residual monazite or allanite.

  3. Investigation and Development of Data-Driven D-Region Model for HF Systems Impacts

    NASA Technical Reports Server (NTRS)

    Eccles, J. V.; Rice, D.; Sojka, J. J.; Hunsucker, R. D.

    2002-01-01

    Space Environment Corporation (SEC) and RP Consultants (RPC) are to develop and validate a weather-capable D region model for making High Frequency (HF) absorption predictions in support of the HF communications and radar communities. The weather-capable model will assimilate solar and earth space observations from NASA satellites. The model will account for solar-induced impacts on HF absorption, including X-rays, Solar Proton Events (SPE's), and auroral precipitation. The work plan includes: I . Optimize D-region model to quickly obtain ion and electron densities for proper HF absorption calculations. 2. Develop indices-driven modules for D-region ionization sources for low, mid, & high latitudes including X-rays, cosmic rays, auroral precipitation, & solar protons. (Note: solar spectrum & auroral modules already exist). 3. Setup low-cost monitors of existing HF beacons and add one single-frequency beacon. 4. Use PENEX HF-link database with HF monitor data to validate D-region/HF absorption model using climatological ionization drivers. 5. Develop algorithms to assimilate NASA satellite data of solar, interplanetary, and auroral observations into ionization source modules. 6. Use PENEX HF-link & HF-beacon data for skill score comparison of assimilation versus climatological D-region/HF absorption model. Only some satellites are available for the PENEX time period, thus, HF-beacon data is necessary. 7. Use HF beacon monitors to develop HF-link data assimilation algorithms for regional improvement to the D-region/HF absorption model.

  4. Outstanding laser damage threshold in Li2MnGeS4 and tunable optical nonlinearity in diamond-like semiconductors.

    PubMed

    Brant, Jacilynn A; Clark, Daniel J; Kim, Yong Soo; Jang, Joon I; Weiland, Ashley; Aitken, Jennifer A

    2015-03-16

    The new Li2MnGeS4 and Li2CoSnS4 compounds result from employing a rational and simple design strategy that guides the discovery of diamond-like semiconductors (DLSs) with wide regions of optical transparency, high laser damage threshold, and efficient second-order optical nonlinearity. Single-crystal X-ray diffraction was used to solve and refine the crystal structures of Li2MnGeS4 and Li2CoSnS4, which crystallize in the noncentrosymmetric space groups Pna21 and Pn, respectively. Synchrotron X-ray powder diffraction (SXRPD) was used to assess the phase purity, and diffuse reflectance UV-vis-NIR spectroscopy was used to estimate the bandgaps of Li2MnGeS4 (Eg = 3.069(3) eV) and Li2CoSnS4 (Eg = 2.421(3) eV). In comparison with Li2FeGeS4, Li2FeSnS4, and Li2CoSnS4 DLSs, Li2MnGeS4 exhibits the widest region of optical transparency (0.60-25 μm) and phase matchability (≥1.6 μm). All four of the DLSs exhibit second-harmonic generation and are compared with the benchmark NLO material, AgGaSe2. Most remarkably, Li2MnGeS4 does not undergo two- or three-photon absorption upon exposure to a fundamental Nd:YAG beam (λ = 1.064 μm) and exhibits a laser damage threshold > 16 GW/cm(2).

  5. Liquidus projection of the Ag-Ba-Ge system and melting points of clathrate type-I compounds

    NASA Astrophysics Data System (ADS)

    Zeiringer, I.; Grytsiv, A.; Brož, P.; Rogl, P.

    2012-12-01

    The liquidus and solidus projection has been constructed for the Ag-Ba-Ge system up to 33.3 at% Ba, using electron micro probe analysis (EPMA), X-ray powder diffraction (XRD) and differential thermal analysis (DSC/DTA). Eight different primary crystallization regions were found: (Ge), Ba8AgxGe46-x-y□y (κI) (□ is a vacancy), Ba6AgxGe25-x (κIx), BaGe2, Ba(Ag1-xGex)2 (τ1), BaAg2-xGe2+x (τ2) BaAg5 and (Ag). The ternary invariant reactions have been determined for the region investigated and are the basis for a Schulz-Scheil diagram. The second part of this work provides a comprehensive compilation of melting points of ternary A8TxM46-x and quaternary (A=Sr, Ba, Eu; T=Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga; M=Si, Ge, Sn) clathrate type-I compounds and decomposition temperatures of inverse clathrate type-I Ge38{P,As,Sb}8{Cl,Br,I}8, Si46-xPxTey and tin based compounds.

  6. Complexities of Lu-Hf geochronology in convergent orogens

    NASA Astrophysics Data System (ADS)

    Mulcahy, S. R.; Vervoort, J. D.

    2015-12-01

    Subduction, terrane accretion, and arc magmatism leave a complex and sometimes incomplete record of metamorphism and deformation. The range of metamorphic temperatures and assemblages produced throughout the tectonic evolution of a single orogen often requires multiple isotopic systems to date distinct events. Lu-Hf geochronology, notably, has proven successful for dating metamorphism from a variety of bulk compositions spanning temperatures <350-850 C. We review the success of applying Lu-Hf geochronology in combination with other isotopic systems to date metamorphism from range of metamorphic conditions within convergent margins. We then discuss some complexities of Lu-Hf geochronology when dating samples with complicated metamorphic histories. Garnet and lawsonite isochrons often exhibit excess scatter (high MSWD's) that can be attributed to a number of factors: secondary mineral inclusions, prolonged garnet growth durations, disequilibrium at low temperatures, and polyphase metamorphic histories. Samples with high-Hf inclusions in isotopic equilibrium host phases can lead to decreased precision, but still produce meaningful ages. At high temperatures Lu-Hf ages may date peak metamorphism, cooling from peak temperatures, or result in spurious ages because of preferential retention of 176Hf over 176Lu in garnet. Despite these complexities, and perhaps because of them, new aspects of the metamorphic history may be revealed that are not readily recorded by other isotopic systems. Minerals other than garnet and lawsonite, particularly apatite, and perhaps epidote, offer exciting new possibilities for Lu-Hf geochronology. Careful fieldwork, detailed petrology and geochemistry, and collaborative efforts using multiple isotopic systems offer the best approach to solving tectonic problems in convergent orogens.

  7. High Frequency (HF) Radio Signal Amplitude Characteristics, HF Receiver Site Performance Criteria, and Expanding the Dynamic Range of HF Digital New Energy Receivers by Strong Signal Elimination

    DTIC Science & Technology

    1990-06-21

    COVERAGE PLAN AND ................................... 148 NOTCH FILTERING B. STRONG SIGNAL ELIMINATION SYSTEM ............................ 151 C... filters , and switching systems must process the entire HF spectrum without distortion. This means that designers must use special care to preserve...appear only at the antenna, impedance matching networks, filters , preamplifiers, and any superheterodyne initial stages. The RF Distribution System

  8. First-principles study of the Hf-based Heusler alloys: Hf2CoGa and Hf2CoIn

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Zhang, Jian-Min

    2017-01-01

    The electronic structures and magnetic properties of the new Heusler alloys Hf2CoGa and Hf2CoIn have been studied by using the first-principles projector augmented wave (PAW) potential within the generalized gradient approximation (GGA). Both Hf2CoGa and Hf2CoIn Heusler alloys have the half-metallic character and completely (100%) spin polarization at the Fermi level (EF) and the indirect band gaps of 0.733 eV and 0.654 eV, respectively, in the minority spin channel. The total magnetic moments μt are all 2μB per formula unit, linearly scaled with the total number of valence electrons (Zt) by μt=Zt-18 and the atomic magnetic moments have localized character due to less affected by deformations. The origin of the indirect band gaps for these two new Heusler alloys is well understood. These two new Heusler alloys are the ideal candidates for spintronic devices.

  9. Comparison of HfAlO, HfO2/Al2O3, and HfO2 on n-type GaAs using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lu, Bin; Lv, Hongliang; Zhang, Yuming; Zhang, Yimen; Liu, Chen

    2016-11-01

    Different high-permittivity (high-k) gate dielectric structures of HfO2, HfAlO, and HfO2/Al2O3 deposited on HF-etched n-GaAs using ALD have been investigated. It has been demonstrated that the stacked structure of HfO2/Al2O3 has the lowest interface state density of 8.12 × 1012eV-1 cm-2 due to the "self-cleaning" reaction process, but the sample of HfAlO shows much better frequency dispersion and much higher dielectric permittivity extracted from the C-V curves. The investigation reveals that the electrical properties of gate dielectrics are improved by introducing alumina into HfO2.

  10. HF omnidirectional spectral CW auroral radar (HF-OSCAR) at very high latitude. Part 1: Technique

    NASA Astrophysics Data System (ADS)

    Olesen, J. K.; Jacobsen, K. E.; Stauning, P.; Henriksen, S.

    1983-12-01

    An HF system for studies of very high latitude ionospheric irregularities was described. Radio aurora from field-aligned E-region irregularities of the Slant E Condition type were discussed. The complete system combines an ionosonde, a 12 MHz pulse radar and a 12 MHz bistatic CW Doppler-range set-up. The two latter units use alternately a 360 deg rotating Yagi antenna. High precision oscillators secure the frequency stability of the Doppler system in which the received signal is mixed down to a center frequency of 500 Hz. The Doppler shift range is max + or - 500 Hz. The received signal is recorded in analog form on magnetic tape and may be monitored visually and audibly. Echo range of the CW Doppler signal is obtained by a 150 Hz amplitude modulation of the transmitted signal and phase comparison with the backscattered signal.

  11. SAO RAS SN candidates classifications

    NASA Astrophysics Data System (ADS)

    Fatkhullin, T. A.; Moskvitin, A. S.

    2016-08-01

    We observed SN candidates (AT 2016eow, AT 2016enu and AT 2016enf) with the BTA/Scorpio-I on August, 4. Direct images in the R band and long-slit spectra in the range of 3600-7600AA (resolution FWHM = 10A) were obtained.

  12. Geochemistry of tin (Sn) in Chinese coals.

    PubMed

    Qu, Qinyuan; Liu, Guijian; Sun, Ruoyu; Kang, Yu

    2016-02-01

    Based on 1625 data collected from the published literature, the geochemistry of tin (Sn) in Chinese coals, including the abundance, distribution, modes of occurrence, genetic types and combustion behavior, was discussed to make a better understanding. Our statistic showed the average Sn of Chinese coal was 3.38 mg/kg, almost two times higher than the world. Among all the samples collected, Guangxi coals occupied an extremely high Sn enrichment (10.46 mg/kg), making sharp contrast to Xinjiang coals (0.49 mg/kg). Two modes of occurrence of Sn in Chinese coals were found, including sulfide-bounded Sn and clay-bounded Sn. In some coalfields, such as Liupanshui, Huayingshan and Haerwusu, a response between REEs distribution and Sn content was found which may caused by the transportation of Sn including clay minerals between coal seams. According to the responses reflecting on REEs patterns of each coalfield, several genetic types of Sn in coalfields were discussed. The enrichment of Sn in Guangxi coals probably caused by Sn-rich source rocks and multiple-stage hydrothermal fluids. The enriched Sn in western Guizhou coals was probably caused by volcanic ashes and sulfide-fixing mechanism. The depletion of Sn in Shengli coalfield, Inner Mongolia, may attribute to hardly terrigenous input and fluids erosion. As a relative easily volatilized element, the Sn-containing combustion by-products tended to be absorbed on the fine particles of fly ash. In 2012, the emission flux of Sn by Chinese coal combustion was estimated to be 0.90 × 10(9) g.

  13. Kinetic study of GeO disproportionation into a GeO{sub 2}/Ge system using x-ray photoelectron spectroscopy

    SciTech Connect

    Wang Shengkai; Liu Honggang; Toriumi, Akira

    2012-08-06

    GeO disproportionation into GeO{sub 2} and Ge is studied through x-ray photoelectron spectroscopy. Direct evidence for the reaction 2GeO {yields} GeO{sub 2} + Ge after annealing in ultra-high vacuum is presented. Activation energy for GeO disproportionation is found to be about 0.7 {+-} 0.2 eV through kinetic and thermodynamic calculations. A kinetic model of GeO disproportionation is established by considering oxygen transfer in the GeO network. The relationship between GeO disproportionation and GeO desorption induced by GeO{sub 2}/Ge interfacial reaction is discussed, and the apparent contradiction between GeO desorption via interfacial redox reaction and GeO disproportionation into Ge and GeO{sub 2} is explained by considering the oxygen vacancy.

  14. Developments in HF equipment and systems mobile and portable terminals

    NASA Astrophysics Data System (ADS)

    Wilson, Q. C.

    1986-03-01

    Before the advent of satellite platforms, sophisticated high frequency (HF) propagation and system research promised improved capability during disturbed ionospheric propagation conditions. However, satellite relays captured the imaginations and pocketbooks of the communications community in the mid-1960s. Consequently, extant HF systems aged while satellite systems were implemented. During peacetime, satellite systems transmit quality low data rate communications and navigation aids to mobile users, but there is now renewed interest in the low cost and survivability attributes of HF radio. At this time, when old HF prime systems need replacement for logistical reasons, the need for low cost communications that can survive jamming, nuclear effects, and space warfare is not satisfied. The HF renaissance is the response to this challenge. Logistical replacement procurements that provide new capabilities are redressing the attrition of vacuum-tube radio equipment over the last decade. Procuring organizations typically compile specifications comprising state-of-the-art and new capabilities offered by competing vendors. Integrated circuits, which include microprocessors, synthesizer ele ments, and other evolving components, have led to new circuit architectures. The first of the following three sections describes: Receivers; Transceivers and Antenna Couplers; Antenna Kits; and Audio Channel Peripherals.

  15. HF acid blends based on formation conditions eliminate precipitation problems

    SciTech Connect

    Gdanski, R.; Shuchart, C.

    1997-03-01

    Formulating HCl-HF acid blends based on the mineralogy and temperature of a formation can increase the success of hydrofluoric acid (HF) treatments. Sodium and potassium in the structures of formation minerals can cause precipitation and matrix plugging problems during acidizing. Slight modifications of the acid blend used in the treatment can help eliminate fluosilicate precipitation. Researchers recently conducted tests to determine how acid blends react in different formations under varying temperatures. The results of the tests indicate that the minimum HCl:HF ratio in an acid blend is 6-to-1, and the optimum ratio is 9-to-1. Regular mud acid (12% HCl-3% HF) has been used successfully for years to enhance production in sandstone formations. By the 1980s, operators began to vary the concentration of HF and HCl acids to solve excessive sanding problems in sandstone. The paper discusses treatment problems, formation characteristics, alumino-silicate scaling, research results, brine compatibility, optimum treatment, and acid volume guidelines.

  16. Direct bandgap cross-over point of Ge1-ySny grown on Si estimated through temperature-dependent photoluminescence studies

    NASA Astrophysics Data System (ADS)

    Harris, Thomas R.; Ryu, Mee-Yi; Yeo, Yung Kee; Wang, Buguo; Senaratne, C. L.; Kouvetakis, John

    2016-08-01

    Epitaxial Ge1-ySny (y = 0%-7.5%) alloys grown on either Si or Ge-buffered Si substrates by chemical vapor deposition were studied as a function of Sn content using temperature-dependent photoluminescence (PL). PL emission peaks from both the direct bandgap (Γ-valley) and the indirect bandgap (L-valley) to the valence band (denoted by ED and EID, respectively) were clearly observed at 125 and 175 K for most Ge1-ySny samples studied. At 300 K, however, all of the samples exhibited dominant ED emission with either very weak or no measureable EID emission. At 10 K, ED is dominant only for Ge1-ySny with y > 0.052. From the PL spectra taken at 125 and 175 K, the unstrained indirect and direct bandgap energies were calculated and are plotted as a function of Sn concentration, the results of which show that the indirect-to-direct bandgap transition occurs at ˜6.7% Sn. It is believed that the true indirect-to-direct bandgap cross-over of unstrained Ge1-ySny might also take place at about the same Sn content at room temperature. This observation suggests that these Ge1-ySny alloys could become very promising direct bandgap semiconductor materials, which will be very useful for the development of various new novel Si- and Ge-based infrared optoelectronic devices that can be fully integrated with current technology on a single Si chip.

  17. Evaporation Mechanism of Sn and SnS from Liquid Fe: Part III. Effect of C on Sn Removal

    NASA Astrophysics Data System (ADS)

    Jung, Sung-Hoon; Kang, Youn-Bae; Seo, Jeong-Do; Park, Joong-Kil; Choi, Joo

    2015-02-01

    To understand the effect of C on Sn evaporation from liquid iron in the view of ferrous scrap recycling, the evaporation of Sn from various liquid Fe-C-S-Sn alloys was experimentally investigated. A series of gas-liquid reactions was carried out at 1873 K (1600 °C) using an electromagnetic levitation melting technique, where mass transfers in gas phase and liquid phase did not significantly affect the reaction rate. It was found that CS2(g) is a major gas species evaporating from Fe-C-S alloy (initial S content [pct S]0: 0.028 to 0.502 mass pct), and Fe-C-S-Sn alloy ([pct S]0: 0.063 to 0.560 mass pct), thereby competing with SnS for S in the liquid alloy. A model equation for the evaporation rate of CS2(g) was established using the experimental data for the Fe-C-S alloys. The chemical reaction rate constant for the CS2(g) evaporation () was obtained as 4.24 × 10-12 m7 mol-2 s-1, and the residual rate constant () was 4.24 × 10-16 m7 mol-2 s-1, both at 1873 K (1600 °C). Roll of C on the evaporation of Sn in Fe-C-Sn alloy was confirmed to be the increase of activity coefficient of Sn. By taking into account (1) the evaporation of Sn(g), SnS(g), and CS2(g), and (2) the increasing activity coefficient of Sn and S by C, a comprehensive model for the evaporation rate of Sn and S in the Fe-C-Sn-S alloy was developed. The calculation results by the developed model in the present study showed good agreement with the experimental results. Some applications of the current model are presented in the view of increasing the Sn removal rate.

  18. Comprehensive study and design of scaled metal/high-k/Ge gate stacks with ultrathin aluminum oxide interlayers

    SciTech Connect

    Asahara, Ryohei; Hideshima, Iori; Oka, Hiroshi; Minoura, Yuya; Hosoi, Takuji Shimura, Takayoshi; Watanabe, Heiji; Ogawa, Shingo; Yoshigoe, Akitaka; Teraoka, Yuden

    2015-06-08

    Advanced metal/high-k/Ge gate stacks with a sub-nm equivalent oxide thickness (EOT) and improved interface properties were demonstrated by controlling interface reactions using ultrathin aluminum oxide (AlO{sub x}) interlayers. A step-by-step in situ procedure by deposition of AlO{sub x} and hafnium oxide (HfO{sub x}) layers on Ge and subsequent plasma oxidation was conducted to fabricate Pt/HfO{sub 2}/AlO{sub x}/GeO{sub x}/Ge stacked structures. Comprehensive study by means of physical and electrical characterizations revealed distinct impacts of AlO{sub x} interlayers, plasma oxidation, and metal electrodes serving as capping layers on EOT scaling, improved interface quality, and thermal stability of the stacks. Aggressive EOT scaling down to 0.56 nm and very low interface state density of 2.4 × 10{sup 11 }cm{sup −2}eV{sup −1} with a sub-nm EOT and sufficient thermal stability were achieved by systematic process optimization.

  19. SN 1961V: From Alpha to Omega?

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler D.; Filippenko, Alexei V.; Cenko, Bradley S.; Shields, Joseph C.

    2013-06-01

    The extraordinary object SN 1961V in NGC 1058 remains controversial to this day. It has long been considered the prototypical "supernova impostor," i.e., the giant eruption of a highly massive star with energetics that rival true supernovae. However, a number of arguments have been put forward that SN 1961V actually was a true SN, and that the explosion followed a sustained powerful outburst from its precursor star, much like the amazing SN 2009ip and other recent events. We will briefly discuss the debate that has roiled over SN 1961V, and we will also present evidence, including from new observations, which may indicate that the precursor has survived. Determining the true nature of SN 1961V will inform our understanding of the late stages of pre-SN evolution for the most massive stars.

  20. Nuclear Structure in 78Ge

    NASA Astrophysics Data System (ADS)

    Forney, Anne M.; Walters, W. B.; Sethi, J.; Chiara, C. J.; Harker, J.; Janssens, R. V. F.; Zhu, S.; Carpenter, M.; Alcorta, M.; Gürdal, G.; Hoffman, C. R.; Kay, B. P.; Kondev, F. G.; Lauristen, T.; Lister, C. J.; McCutchan, E. A.; Rogers, A. M.; Seweryniak, D.

    2017-01-01

    Owing to the importance of the structure of 76Ge in interpreting double β decay studies, the structures of adjacent nuclei have been of considerable interest. Recently reported features for the structures of 72,74,76Ge indicate both shape coexistence and triaxiality. New data for the excited states of 78Ge will be reported arising from Gammasphere studies of multinucleon transfer reactions between a 76Ge beam and thick heavy targets at the ATLAS facility at Argonne National Laboratory. The previously known yrast band is extended to higher spins, candidate levels for a triaxial sequence have been observed, and the associated staggering determined. The staggering in 78Ge found in this work is not in agreement with theoretical work. Candidates for negative-parity states and seniority-four states will be discussed. This material is based upon work supported by the U.S. DOE under DE-AC02-06CH11357 and DE-FG02-94ER40834. Resources of ANL's ATLAS setup, a DOE Office of Science user facility, were used.