Geant4 Modifications for Accurate Fission Simulations
NASA Astrophysics Data System (ADS)
Tan, Jiawei; Bendahan, Joseph
Monte Carlo is one of the methods to simulate the generation and transport of radiation through matter. The most widely used radiation simulation codes are MCNP and Geant4. The simulation of fission production and transport by MCNP has been thoroughly benchmarked. There is an increasing number of users that prefer using Geant4 due to the flexibility of adding features. However, it has been found that Geant4 does not have the proper fission-production cross sections and does not produce the correct fission products. To achieve accurate results for studies in fissionable material applications, Geant4 was modified to correct these inaccuracies and to add new capabilities. The fission model developed by the Lawrence Livermore National Laboratory was integrated into the neutron-fission modeling package. The photofission simulation capability was enabled using the same neutron-fission library under the assumption that nuclei fission in the same way, independent of the excitation source. The modified fission code provides the correct multiplicity of prompt neutrons and gamma rays, and produces delayed gamma rays and neutrons with time and energy dependencies that are consistent with ENDF/B-VII. The delayed neutrons are now directly produced by a custom package that bypasses the fragment cascade model. The modifications were made for U-235, U-238 and Pu-239 isotopes; however, the new framework allows adding new isotopes easily. The SLAC nuclear data library is used for simulation of isotopes with an atomic number above 92 because it is not available in Geant4. Results of the modified Geant4.10.1 package of neutron-fission and photofission for prompt and delayed radiation are compared with ENDFB-VII and with results produced with the original package.
Analysis Tools in Geant4 10.2 and 10.3
NASA Astrophysics Data System (ADS)
Hřivnáčová, I.; Barrand, G.
2017-10-01
A new analysis category based on g4tools was added in Geant4 release 9.5 (2011). The aim was to provide users with a lightweight analysis tool available as part of the Geant4 installation without the need to link to an external analysis package. It has progressively been included in all Geant4 examples. Frequent questions in the Geant4 users forum show its increasing popularity in the Geant4 users community. In this presentation, we will give a brief overview of g4tools and the analysis category. We report on new developments since our CHEP 2013 contribution as well as mention upcoming new features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, José A. M., E-mail: joadiazme@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co
2016-07-07
The deposited energy and dose distribution of beams of protons and carbon over a head are simulated using the free tool package Geant4 and the data analysis package ROOT-C++. The present work shows a methodology to understand the microscopical process occurring in a session of hadron-therapy using advance simulation tools.
Improvements in simulation of multiple scattering effects in ATLAS fast simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basalaev, A. E., E-mail: artem.basalaev@cern.ch
Fast ATLAS Tracking Simulation (Fatras) package was verified on single layer geometry with respect to full simulation with GEANT4. Fatras hadronic interactions and multiple scattering simulation were studied in comparison with GEANT4. Disagreement was found in multiple scattering distributions of primary charged particles (μ, π, e). A new model for multiple scattering simulation was implemented in Fatras. The model was based on R. Frühwirth’s mixture models. New model was tested on single layer geometry and a good agreement with GEANT4 was achieved. Also a comparison of reconstructed tracks’ parameters was performed for Inner Detector geometry, and Fatras with new multiplemore » scattering model proved to have better agreement with GEANT4. New model of multiple scattering was added as a part of Fatras package in the development release of ATLAS software—ATHENA.« less
Integration of g4tools in Geant4
NASA Astrophysics Data System (ADS)
Hřivnáčová, Ivana
2014-06-01
g4tools, that is originally part of the inlib and exlib packages, provides a very light and easy to install set of C++ classes that can be used to perform analysis in a Geant4 batch program. It allows to create and manipulate histograms and ntuples, and write them in supported file formats (ROOT, AIDA XML, CSV and HBOOK). It is integrated in Geant4 through analysis manager classes, thus providing a uniform interface to the g4tools objects and also hiding the differences between the classes for different supported output formats. Moreover, additional features, such as for example histogram activation or support for Geant4 units, are implemented in the analysis classes following users requests. A set of Geant4 user interface commands allows the user to create histograms and set their properties interactively or in Geant4 macros. g4tools was first introduced in the Geant4 9.5 release where its use was demonstrated in one basic example, and it is already used in a majority of the Geant4 examples within the Geant4 9.6 release. In this paper, we will give an overview and the present status of the integration of g4tools in Geant4 and report on upcoming new features.
NASA Astrophysics Data System (ADS)
Morozov, A.; Heindl, T.; Skrobol, C.; Wieser, J.; Krücken, R.; Ulrich, A.
2008-07-01
Electron beams with particle energy of ~10 keV were sent through 300 nm thick ceramic (Si3N4 + SiO2) foils and the resulting electron energy distribution functions were recorded using a retarding grid technique. The results are compared with Monte Carlo simulations performed with two publicly available packages, Geant4 and Casino v2.42. It is demonstrated that Geant4, unlike Casino, provides electron energy distribution functions very similar to the experimental distributions. Both simulation packages provide a quite precise average energy of transmitted electrons: we demonstrate that the maximum uncertainty of the calculated values of the average energy is 6% for Geant4 and 8% for Casino, taking into account all systematic uncertainties and the discrepancies in the experimental and simulated data.
NASA Astrophysics Data System (ADS)
Ivantchenko, Vladimir
Geant4 is a toolkit for Monte Carlo simulation of particle transport originally developed for applications in high-energy physics with the focus on experiments at the Large Hadron Collider (CERN, Geneva). The transparency and flexibility of the code has spread its use to other fields of research, e.g. radiotherapy and space science. The tool provides possibility to simulate complex geometry, transportation in electric and magnetic fields and variety of physics models of interaction of particles with media. Geant4 has been used for simulation of radiation effects for number of space missions. Recent upgrades of the toolkit released in December 2009 include new model for ion electronic stopping power based on the revised version of ICRU'73 Report increasing accuracy of simulation of ion transport. In the current work we present the status of Geant4 electromagnetic package for simulation of particle energy loss, ranges and transmission. This has a direct implication for simulation of ground testing setups at existing European facilities and for simulation of radiation effects in space. A number of improvements were introduced for electron and proton transport, followed by a thorough validation. It was the aim of the present study to validate the range against reference data from the United States National Institute of Standards and Technologies (NIST) ESTAR, PSTAR and ASTAR databases. We compared Geant4 and NIST ranges of electrons using different Geant4 models. The best agreement was found for Penelope, except at very low energies in heavy materials, where the Standard package gave better results. Geant4 proton ranges in water agreed with NIST within 1 The validation of the new ion model is performed against recent data on Bragg peak position in water. The data from transmission of carbon ions via various absorbers following Bragg peak in water demonstrate that the new Geant4 model significantly improves precision of ion range. The absolute accuracy of ion range achieved is on level of 1
Geant4 hadronic physics validation with ATLAS Tile Calorimeter test-beam data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexa, C.; Constantinescu, S.; Dita, S.
We present comparison studies between Geant4 shower packages and ATLAS Tile Calorimeter test-beam data collected at CERN in H8 beam line at the SPS. Emphasis is put on hadronic physics lists and data concerning differences between Tilecal response to pions and protons of same energy. The ratio between the pure hadronic fraction of pion and the pure hadronic fraction of proton F{sub h}{sup {pi}}/F{sub h}{sup p} was estimated with Tilecal test-beam data and compared with Geant4 simulations.
Simulations of neutron transport at low energy: a comparison between GEANT and MCNP.
Colonna, N; Altieri, S
2002-06-01
The use of the simulation tool GEANT for neutron transport at energies below 20 MeV is discussed, in particular with regard to shielding and dose calculations. The reliability of the GEANT/MICAP package for neutron transport in a wide energy range has been verified by comparing the results of simulations performed with this package in a wide energy range with the prediction of MCNP-4B, a code commonly used for neutron transport at low energy. A reasonable agreement between the results of the two codes is found for the neutron flux through a slab of material (iron and ordinary concrete), as well as for the dose released in soft tissue by neutrons. These results justify the use of the GEANT/MICAP code for neutron transport in a wide range of applications, including health physics problems.
CAD-based Automatic Modeling Method for Geant4 geometry model Through MCAM
NASA Astrophysics Data System (ADS)
Wang, Dong; Nie, Fanzhi; Wang, Guozhong; Long, Pengcheng; LV, Zhongliang; LV, Zhongliang
2014-06-01
Geant4 is a widely used Monte Carlo transport simulation package. Before calculating using Geant4, the calculation model need be established which could be described by using Geometry Description Markup Language (GDML) or C++ language. However, it is time-consuming and error-prone to manually describe the models by GDML. Automatic modeling methods have been developed recently, but there are some problem existed in most of present modeling programs, specially some of them were not accurate or adapted to specifically CAD format. To convert the GDML format models to CAD format accurately, a Geant4 Computer Aided Design (CAD) based modeling method was developed for automatically converting complex CAD geometry model into GDML geometry model. The essence of this method was dealing with CAD model represented with boundary representation (B-REP) and GDML model represented with constructive solid geometry (CSG). At first, CAD model was decomposed to several simple solids which had only one close shell. And then the simple solid was decomposed to convex shell set. Then corresponding GDML convex basic solids were generated by the boundary surfaces getting from the topological characteristic of a convex shell. After the generation of these solids, GDML model was accomplished with series boolean operations. This method was adopted in CAD/Image-based Automatic Modeling Program for Neutronics & Radiation Transport (MCAM), and tested with several models including the examples in Geant4 install package. The results showed that this method could convert standard CAD model accurately, and can be used for Geant4 automatic modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genser, Krzysztof; Hatcher, Robert; Perdue, Gabriel
2016-11-10
The Geant4 toolkit is used to model interactions between particles and matter. Geant4 employs a set of validated physics models that span a wide range of interaction energies. These models are tuned to cover a large variety of possible applications. This raises the critical question of what uncertainties are associated with the Geant4 physics model, or group of models, involved in a simulation project. To address the challenge, we have designed and implemented a comprehen- sive, modular, user-friendly software toolkit that allows the variation of one or more parameters of one or more Geant4 physics models involved in simulation studies.more » It also enables analysis of multiple variants of the resulting physics observables of interest in order to estimate the uncertain- ties associated with the simulation model choices. Key functionalities of the toolkit are presented in this paper and are illustrated with selected results.« less
Creation of a Geant4 Muon Tomography Package for Imaging of Nuclear Fuel in Dry Cask Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsoukalas, Lefteri H.
2016-03-01
This is the final report of the NEUP project “Creation of a Geant4 Muon Tomography Package for Imaging of Nuclear Fuel in Dry Cask Storage”, DE-NE0000695. The project started on December 1, 2013 and this report covers the period December 1, 2013 through November 30, 2015. The project was successfully completed and this report provides an overview of the main achievements, results and findings throughout the duration of the project. Additional details can be found in the main body of this report and on the individual Quarterly Reports and associated Deliverables of the project, uploaded in PICS-NE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genser, Krzysztof; Hatcher, Robert; Kelsey, Michael
The Geant4 simulation toolkit is used to model interactions between particles and matter. Geant4 employs a set of validated physics models that span a wide range of interaction energies. These models rely on measured cross-sections and phenomenological models with the physically motivated parameters that are tuned to cover many application domains. To study what uncertainties are associated with the Geant4 physics models we have designed and implemented a comprehensive, modular, user-friendly software toolkit that allows the variation of one or more parameters of one or more Geant4 physics models involved in simulation studies. It also enables analysis of multiple variantsmore » of the resulting physics observables of interest in order to estimate the uncertainties associated with the simulation model choices. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. exible run-time con gurable work ow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented in this paper and illustrated with selected results.« less
Development of a software package for solid-angle calculations using the Monte Carlo method
NASA Astrophysics Data System (ADS)
Zhang, Jie; Chen, Xiulian; Zhang, Changsheng; Li, Gang; Xu, Jiayun; Sun, Guangai
2014-02-01
Solid-angle calculations play an important role in the absolute calibration of radioactivity measurement systems and in the determination of the activity of radioactive sources, which are often complicated. In the present paper, a software package is developed to provide a convenient tool for solid-angle calculations in nuclear physics. The proposed software calculates solid angles using the Monte Carlo method, in which a new type of variance reduction technique was integrated. The package, developed under the environment of Microsoft Foundation Classes (MFC) in Microsoft Visual C++, has a graphical user interface, in which, the visualization function is integrated in conjunction with OpenGL. One advantage of the proposed software package is that it can calculate the solid angle subtended by a detector with different geometric shapes (e.g., cylinder, square prism, regular triangular prism or regular hexagonal prism) to a point, circular or cylindrical source without any difficulty. The results obtained from the proposed software package were compared with those obtained from previous studies and calculated using Geant4. It shows that the proposed software package can produce accurate solid-angle values with a greater computation speed than Geant4.
Maigne, L; Perrot, Y; Schaart, D R; Donnarieix, D; Breton, V
2011-02-07
The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV.
Monte Carlo simulation of a photodisintegration of 3 H experiment in Geant4
NASA Astrophysics Data System (ADS)
Gray, Isaiah
2013-10-01
An upcoming experiment involving photodisintegration of 3 H at the High Intensity Gamma-Ray Source facility at Duke University has been simulated in the software package Geant4. CAD models of silicon detectors and wire chambers were imported from Autodesk Inventor using the program FastRad and the Geant4 GDML importer. Sensitive detectors were associated with the appropriate logical volumes in the exported GDML file so that changes in detector geometry will be easily manifested in the simulation. Probability distribution functions for the energy and direction of outgoing protons were generated using numerical tables from previous theory, and energies and directions were sampled from these distributions using a rejection sampling algorithm. The simulation will be a useful tool to optimize detector geometry, estimate background rates, and test data analysis algorithms. This work was supported by the Triangle Universities Nuclear Laboratory REU program at Duke University.
Geomega: MEGAlib's Uniform Geometry and Detector Description Tool for Geant3, MGGPOD, and Geant4
NASA Astrophysics Data System (ADS)
Zoglauer, Andreas C.; Andritschke, R.; Schopper, F.; Wunderer, C. B.
2006-09-01
The Medium Energy Gamma-ray Astronomy library MEGAlib is a set of software tools for the analysis of low to medium energy gamma-ray telescopes, especially Compton telescopes. It comprises all necessary data analysis steps from simulation/measurements via event reconstruction to image reconstruction and enables detailed performance assessments. In the energy range of Compton telescopes (with energy deposits from a few keV up to hundreds of MeV), the Geant Monte-Carlo software packages (Geant3 with its MGGPOD extension as well as Geant4) are widely used. Since each tool has its unique advantages, MEGAlib contains a geometry and detector description library, called Geomega, which allows to use those tools in a uniform way. It incorporates the versatile 3D display facilities available within the ROOT libraries. The same geometry, material, trigger, and detector description can be used for all simulation tools as well as for the later event analysis in the MEGAlib framework. This is done by converting the MEGAlib geometry into the Geant3 or MGGPOD format or directly linking the Geomega library into Geant4. The geometry description can handle most (and can be extended to handle all) volumes common to Geant3, Geant4 and ROOT. In Geomega a list of features is implemented which are especially useful for optimizing detector geometries: It allows to define constants, can handle mathematical operations, enables volume scaling, checks for overlaps of detector volumes, does mass calculations, etc. Used in combination with MEGAlib, Geomega enables discretization, application of detector noise, thresholds, various trigger conditions, defective pixels, etc. The highly modular and completely object-oriented library is written in C++ and based on ROOT. It has been originally developed for the tracking Compton scattering and Pair creation telescope MEGA and has been successfully applied to a wide variety of telescopes, such as ACT, NuSTAR, or GRI.
GePEToS: A Geant4 Monte Carlo Simulation Package for Positron Emission Tomography
NASA Astrophysics Data System (ADS)
Jan, S.; Collot, J.; Gallin-Martel, M.-L.; Martin, P.; Mayet, F.; Tournefier, E.
2005-02-01
GePEToS is a simulation framework developed over the last few years for assessing the instrumental performance of future positron emission tomography (PET) scanners. It is based on Geant4, written in object-oriented C++ and runs on Linux platforms. The validity of GePEToS has been tested on the well-known Siemens ECAT EXACT HR+ camera. The results of two application examples are presented: the design optimization of a liquid Xe /spl mu/PET camera dedicated to small animal imaging as well as the evaluation of the effect of a strong axial magnetic field on the image resolution of a Concorde P4 /spl mu/PET camera.
GE781: a Monte Carlo package for fixed target experiments
NASA Astrophysics Data System (ADS)
Davidenko, G.; Funk, M. A.; Kim, V.; Kuropatkin, N.; Kurshetsov, V.; Molchanov, V.; Rud, S.; Stutte, L.; Verebryusov, V.; Zukanovich Funchal, R.
The Monte Carlo package for the fixed target experiment B781 at Fermilab, a third generation charmed baryon experiment, is described. This package is based on GEANT 3.21, ADAMO database and DAFT input/output routines.
Slimani, Faiçal A A; Hamdi, Mahdjoub; Bentourkia, M'hamed
2018-05-01
Monte Carlo (MC) simulation is widely recognized as an important technique to study the physics of particle interactions in nuclear medicine and radiation therapy. There are different codes dedicated to dosimetry applications and widely used today in research or in clinical application, such as MCNP, EGSnrc and Geant4. However, such codes made the physics easier but the programming remains a tedious task even for physicists familiar with computer programming. In this paper we report the development of a new interface GEANT4 Dose And Radiation Interactions (G4DARI) based on GEANT4 for absorbed dose calculation and for particle tracking in humans, small animals and complex phantoms. The calculation of the absorbed dose is performed based on 3D CT human or animal images in DICOM format, from images of phantoms or from solid volumes which can be made from any pure or composite material to be specified by its molecular formula. G4DARI offers menus to the user and tabs to be filled with values or chemical formulas. The interface is described and as application, we show results obtained in a lung tumor in a digital mouse irradiated with seven energy beams, and in a patient with glioblastoma irradiated with five photon beams. In conclusion, G4DARI can be easily used by any researcher without the need to be familiar with computer programming, and it will be freely available as an application package. Copyright © 2018 Elsevier Ltd. All rights reserved.
SU-C-BRC-06: OpenCL-Based Cross-Platform Monte Carlo Simulation Package for Carbon Ion Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, N; Tian, Z; Pompos, A
2016-06-15
Purpose: Monte Carlo (MC) simulation is considered to be the most accurate method for calculation of absorbed dose and fundamental physical quantities related to biological effects in carbon ion therapy. Its long computation time impedes clinical and research applications. We have developed an MC package, goCMC, on parallel processing platforms, aiming at achieving accurate and efficient simulations for carbon therapy. Methods: goCMC was developed under OpenCL framework. It supported transport simulation in voxelized geometry with kinetic energy up to 450 MeV/u. Class II condensed history algorithm was employed for charged particle transport with stopping power computed via Bethe-Bloch equation. Secondarymore » electrons were not transported with their energy locally deposited. Energy straggling and multiple scattering were modeled. Production of secondary charged particles from nuclear interactions was implemented based on cross section and yield data from Geant4. They were transported via the condensed history scheme. goCMC supported scoring various quantities of interest e.g. physical dose, particle fluence, spectrum, linear energy transfer, and positron emitting nuclei. Results: goCMC has been benchmarked against Geant4 with different phantoms and beam energies. For 100 MeV/u, 250 MeV/u and 400 MeV/u beams impinging to a water phantom, range difference was 0.03 mm, 0.20 mm and 0.53 mm, and mean dose difference was 0.47%, 0.72% and 0.79%, respectively. goCMC can run on various computing devices. Depending on the beam energy and voxel size, it took 20∼100 seconds to simulate 10{sup 7} carbons on an AMD Radeon GPU card. The corresponding CPU time for Geant4 with the same setup was 60∼100 hours. Conclusion: We have developed an OpenCL-based cross-platform carbon MC simulation package, goCMC. Its accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon therapy.« less
NASA Astrophysics Data System (ADS)
Sihver, L.; Matthiä, D.; Koi, T.; Mancusi, D.
2008-10-01
Radiation exposure of aircrew is more and more recognized as an occupational hazard. The ionizing environment at standard commercial aircraft flight altitudes consists mainly of secondary particles, of which the neutrons give a major contribution to the dose equivalent. Accurate estimations of neutron spectra in the atmosphere are therefore essential for correct calculations of aircrew doses. Energetic solar particle events (SPE) could also lead to significantly increased dose rates, especially at routes close to the North Pole, e.g. for flights between Europe and USA. It is also well known that the radiation environment encountered by personnel aboard low Earth orbit (LEO) spacecraft or aboard a spacecraft traveling outside the Earth's protective magnetosphere is much harsher compared with that within the atmosphere since the personnel are exposed to radiation from both galactic cosmic rays (GCR) and SPE. The relative contribution to the dose from GCR when traveling outside the Earth's magnetosphere, e.g. to the Moon or Mars, is even greater, and reliable and accurate particle and heavy ion transport codes are essential to calculate the radiation risks for both aircrew and personnel on spacecraft. We have therefore performed calculations of neutron distributions in the atmosphere, total dose equivalents, and quality factors at different depths in a water sphere in an imaginary spacecraft during solar minimum in a geosynchronous orbit. The calculations were performed with the GEANT4 Monte Carlo (MC) code using both the binary cascade (BIC) model, which is part of the standard GEANT4 package, and the JQMD model, which is used in the particle and heavy ion transport code PHITS GEANT4.
Accelerated Monte Carlo Simulation on the Chemical Stage in Water Radiolysis using GPU
Tian, Zhen; Jiang, Steve B.; Jia, Xun
2018-01-01
The accurate simulation of water radiolysis is an important step to understand the mechanisms of radiobiology and quantitatively test some hypotheses regarding radiobiological effects. However, the simulation of water radiolysis is highly time consuming, taking hours or even days to be completed by a conventional CPU processor. This time limitation hinders cell-level simulations for a number of research studies. We recently initiated efforts to develop gMicroMC, a GPU-based fast microscopic MC simulation package for water radiolysis. The first step of this project focused on accelerating the simulation of the chemical stage, the most time consuming stage in the entire water radiolysis process. A GPU-friendly parallelization strategy was designed to address the highly correlated many-body simulation problem caused by the mutual competitive chemical reactions between the radiolytic molecules. Two cases were tested, using a 750 keV electron and a 5 MeV proton incident in pure water, respectively. The time-dependent yields of all the radiolytic species during the chemical stage were used to evaluate the accuracy of the simulation. The relative differences between our simulation and the Geant4-DNA simulation were on average 5.3% and 4.4% for the two cases. Our package, executed on an Nvidia Titan black GPU card, successfully completed the chemical stage simulation of the two cases within 599.2 s and 489.0 s. As compared with Geant4-DNA that was executed on an Intel i7-5500U CPU processor and needed 28.6 h and 26.8 h for the two cases using a single CPU core, our package achieved a speed-up factor of 171.1-197.2. PMID:28323637
Accelerated Monte Carlo simulation on the chemical stage in water radiolysis using GPU
NASA Astrophysics Data System (ADS)
Tian, Zhen; Jiang, Steve B.; Jia, Xun
2017-04-01
The accurate simulation of water radiolysis is an important step to understand the mechanisms of radiobiology and quantitatively test some hypotheses regarding radiobiological effects. However, the simulation of water radiolysis is highly time consuming, taking hours or even days to be completed by a conventional CPU processor. This time limitation hinders cell-level simulations for a number of research studies. We recently initiated efforts to develop gMicroMC, a GPU-based fast microscopic MC simulation package for water radiolysis. The first step of this project focused on accelerating the simulation of the chemical stage, the most time consuming stage in the entire water radiolysis process. A GPU-friendly parallelization strategy was designed to address the highly correlated many-body simulation problem caused by the mutual competitive chemical reactions between the radiolytic molecules. Two cases were tested, using a 750 keV electron and a 5 MeV proton incident in pure water, respectively. The time-dependent yields of all the radiolytic species during the chemical stage were used to evaluate the accuracy of the simulation. The relative differences between our simulation and the Geant4-DNA simulation were on average 5.3% and 4.4% for the two cases. Our package, executed on an Nvidia Titan black GPU card, successfully completed the chemical stage simulation of the two cases within 599.2 s and 489.0 s. As compared with Geant4-DNA that was executed on an Intel i7-5500U CPU processor and needed 28.6 h and 26.8 h for the two cases using a single CPU core, our package achieved a speed-up factor of 171.1-197.2.
Accelerated Monte Carlo simulation on the chemical stage in water radiolysis using GPU.
Tian, Zhen; Jiang, Steve B; Jia, Xun
2017-04-21
The accurate simulation of water radiolysis is an important step to understand the mechanisms of radiobiology and quantitatively test some hypotheses regarding radiobiological effects. However, the simulation of water radiolysis is highly time consuming, taking hours or even days to be completed by a conventional CPU processor. This time limitation hinders cell-level simulations for a number of research studies. We recently initiated efforts to develop gMicroMC, a GPU-based fast microscopic MC simulation package for water radiolysis. The first step of this project focused on accelerating the simulation of the chemical stage, the most time consuming stage in the entire water radiolysis process. A GPU-friendly parallelization strategy was designed to address the highly correlated many-body simulation problem caused by the mutual competitive chemical reactions between the radiolytic molecules. Two cases were tested, using a 750 keV electron and a 5 MeV proton incident in pure water, respectively. The time-dependent yields of all the radiolytic species during the chemical stage were used to evaluate the accuracy of the simulation. The relative differences between our simulation and the Geant4-DNA simulation were on average 5.3% and 4.4% for the two cases. Our package, executed on an Nvidia Titan black GPU card, successfully completed the chemical stage simulation of the two cases within 599.2 s and 489.0 s. As compared with Geant4-DNA that was executed on an Intel i7-5500U CPU processor and needed 28.6 h and 26.8 h for the two cases using a single CPU core, our package achieved a speed-up factor of 171.1-197.2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.
Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ~10^7, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon.
Low-energy electron dose-point kernel simulations using new physics models implemented in Geant4-DNA
NASA Astrophysics Data System (ADS)
Bordes, Julien; Incerti, Sébastien; Lampe, Nathanael; Bardiès, Manuel; Bordage, Marie-Claude
2017-05-01
When low-energy electrons, such as Auger electrons, interact with liquid water, they induce highly localized ionizing energy depositions over ranges comparable to cell diameters. Monte Carlo track structure (MCTS) codes are suitable tools for performing dosimetry at this level. One of the main MCTS codes, Geant4-DNA, is equipped with only two sets of cross section models for low-energy electron interactions in liquid water (;option 2; and its improved version, ;option 4;). To provide Geant4-DNA users with new alternative physics models, a set of cross sections, extracted from CPA100 MCTS code, have been added to Geant4-DNA. This new version is hereafter referred to as ;Geant4-DNA-CPA100;. In this study, ;Geant4-DNA-CPA100; was used to calculate low-energy electron dose-point kernels (DPKs) between 1 keV and 200 keV. Such kernels represent the radial energy deposited by an isotropic point source, a parameter that is useful for dosimetry calculations in nuclear medicine. In order to assess the influence of different physics models on DPK calculations, DPKs were calculated using the existing Geant4-DNA models (;option 2; and ;option 4;), newly integrated CPA100 models, and the PENELOPE Monte Carlo code used in step-by-step mode for monoenergetic electrons. Additionally, a comparison was performed of two sets of DPKs that were simulated with ;Geant4-DNA-CPA100; - the first set using Geant4‧s default settings, and the second using CPA100‧s original code default settings. A maximum difference of 9.4% was found between the Geant4-DNA-CPA100 and PENELOPE DPKs. Between the two Geant4-DNA existing models, slight differences, between 1 keV and 10 keV were observed. It was highlighted that the DPKs simulated with the two Geant4-DNA's existing models were always broader than those generated with ;Geant4-DNA-CPA100;. The discrepancies observed between the DPKs generated using Geant4-DNA's existing models and ;Geant4-DNA-CPA100; were caused solely by their different cross sections. The different scoring and interpolation methods used in CPA100 and Geant4 to calculate DPKs showed differences close to 3.0% near the source.
Simulation loop between cad systems, GEANT-4 and GeoModel: Implementation and results
NASA Astrophysics Data System (ADS)
Sharmazanashvili, A.; Tsutskiridze, Niko
2016-09-01
Compare analysis of simulation and as-built geometry descriptions of detector is important field of study for data_vs_Monte-Carlo discrepancies. Shapes consistency and detalization is not important while adequateness of volumes and weights of detector components are essential for tracking. There are 2 main reasons of faults of geometry descriptions in simulation: (1) Difference between simulated and as-built geometry descriptions; (2) Internal inaccuracies of geometry transformations added by simulation software infrastructure itself. Georgian Engineering team developed hub on the base of CATIA platform and several tools enabling to read in CATIA different descriptions used by simulation packages, like XML->CATIA; VP1->CATIA; Geo-Model->CATIA; Geant4->CATIA. As a result it becomes possible to compare different descriptions with each other using the full power of CATIA and investigate both classes of reasons of faults of geometry descriptions. Paper represents results of case studies of ATLAS Coils and End-Cap toroid structures.
Background and imaging simulations for the hard X-ray camera of the MIRAX mission
NASA Astrophysics Data System (ADS)
Castro, M.; Braga, J.; Penacchioni, A.; D'Amico, F.; Sacahui, R.
2016-07-01
We report the results of detailed Monte Carlo simulations of the performance expected both at balloon altitudes and at the probable satellite orbit of a hard X-ray coded-aperture camera being developed for the Monitor e Imageador de RAios X (MIRAX) mission. Based on a thorough mass model of the instrument and detailed specifications of the spectra and angular dependence of the various relevant radiation fields at both the stratospheric and orbital environments, we have used the well-known package GEANT4 to simulate the instrumental background of the camera. We also show simulated images of source fields to be observed and calculated the detailed sensitivity of the instrument in both situations. The results reported here are especially important to researchers in this field considering that we provide important information, not easily found in the literature, on how to prepare input files and calculate crucial instrumental parameters to perform GEANT4 simulations for high-energy astrophysics space experiments.
The simulation of the LANFOS-H food radiation contamination detector using Geant4 package
NASA Astrophysics Data System (ADS)
Piotrowski, Lech Wiktor; Casolino, Marco; Ebisuzaki, Toshikazu; Higashide, Kazuhiro
2015-02-01
Recent incident in the Fukushima power plant caused a growing concern about the radiation contamination and resulted in lowering the Japanese limits for the permitted amount of 137Cs in food to 100 Bq/kg. To increase safety and ease the concern we are developing LANFOS (Large Food Non-destructive Area Sampler)-a compact, easy to use detector for assessment of radiation in food. Described in this paper LANFOS-H has a 4 π coverage to assess the amount of 137Cs present, separating it from the possible 40K food contamination. Therefore, food samples do not have to be pre-processed prior to a test and can be consumed after measurements. It is designed for use by non-professionals in homes and small institutions such as schools, showing safety of the samples, but can be also utilized by specialists providing radiation spectrum. Proper assessment of radiation in food in the apparatus requires estimation of the γ conversion factor of the detectors-how many γ photons will produce a signal. In this paper we show results of the Monte Carlo estimation of this factor for various approximated shapes of fish, vegetables and amounts of rice, performed with Geant4 package. We find that the conversion factor combined from all the detectors is similar for all food types and is around 37%, varying maximally by 5% with sample length, much less than for individual detectors. The different inclinations and positions of samples in the detector introduce uncertainty of 1.4%. This small uncertainty validates the concept of a 4 π non-destructive apparatus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karagoz, Muge
1998-01-01
In order to investigate the possibility of the construction of a sample PET coincidence unit in our HEP laboratory, a setup with two face to face PMTs and two 2x8 Csi(Tl) scintillator matrices has been constructed. In this setup, 1-D projections of a pointlike 22 Na positron source at different angles have been measured. Using these projections a 2-D image has been formed. Monte Carlo studies of this setup have been implemented using the detector simulation tool in CERN program library, GEANT. Again with GEANT a sample human body is created to study the effects of proton therapy. Utilization ofmore » the simulation as a pretherapy tool is also investigated.« less
Incerti, S; Kyriakou, I; Bernal, M A; Bordage, M C; Francis, Z; Guatelli, S; Ivanchenko, V; Karamitros, M; Lampe, N; Lee, S B; Meylan, S; Min, C H; Shin, W G; Nieminen, P; Sakata, D; Tang, N; Villagrasa, C; Tran, H; Brown, J M C
2018-06-14
This Special Report presents a description of Geant4-DNA user applications dedicated to the simulation of track structures (TS) in liquid water and associated physical quantities (e.g. range, stopping power, mean free path…). These example applications are included in the Geant4 Monte Carlo toolkit and are available in open access. Each application is described and comparisons to recent international recommendations are shown (e.g. ICRU, MIRD), when available. The influence of physics models available in Geant4-DNA for the simulation of electron interactions in liquid water is discussed. Thanks to these applications, the authors show that the most recent sets of physics models available in Geant4-DNA (the so-called "option4″ and "option 6″ sets) enable more accurate simulation of stopping powers, dose point kernels and W-values in liquid water, than the default set of models ("option 2″) initially provided in Geant4-DNA. They also serve as reference applications for Geant4-DNA users interested in TS simulations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Mapping the Damping Dynamics of Mega-Ampere Electron Pulses Inside a Solid
NASA Astrophysics Data System (ADS)
Shaikh, Moniruzzaman; Lad, Amit D.; Birindelli, Gabriele; Pepitone, Kevin; Jha, Jagannath; Sarkar, Deep; Tata, Sheroy; Chatterjee, Gourab; Dey, Indranuj; Jana, Kamalesh; Singh, Prashant K.; Tikhonchuk, Vladimir T.; Rajeev, P. P.; Kumar, G. Ravindra
2018-02-01
We report the lifetime of intense-laser (2 ×1019 W /cm2 ) generated relativistic electron pulses in solids by measuring the time evolution of their Cherenkov emission. Using a picosecond resolution optical Kerr gating technique, we demonstrate that the electrons remain relativistic as long as 50 picoseconds—more than 1000 times longer than the incident light pulse. Numerical simulations of the propagation of relativistic electrons and the emitted Cherenkov radiation with Monte Carlo geant4 package reproduce the striking experimental findings.
Geant4 hadronic physics for space radiation environment.
Ivantchenko, Anton V; Ivanchenko, Vladimir N; Molina, Jose-Manuel Quesada; Incerti, Sebastien L
2012-01-01
To test and to develop Geant4 (Geometry And Tracking version 4) Monte Carlo hadronic models with focus on applications in a space radiation environment. The Monte Carlo simulations have been performed using the Geant4 toolkit. Binary (BIC), its extension for incident light ions (BIC-ion) and Bertini (BERT) cascades were used as main Monte Carlo generators. For comparisons purposes, some other models were tested too. The hadronic testing suite has been used as a primary tool for model development and validation against experimental data. The Geant4 pre-compound (PRECO) and de-excitation (DEE) models were revised and improved. Proton, neutron, pion, and ion nuclear interactions were simulated with the recent version of Geant4 9.4 and were compared with experimental data from thin and thick target experiments. The Geant4 toolkit offers a large set of models allowing effective simulation of interactions of particles with matter. We have tested different Monte Carlo generators with our hadronic testing suite and accordingly we can propose an optimal configuration of Geant4 models for the simulation of the space radiation environment.
Comparison of GEANT4 very low energy cross section models with experimental data in water.
Incerti, S; Ivanchenko, A; Karamitros, M; Mantero, A; Moretto, P; Tran, H N; Mascialino, B; Champion, C; Ivanchenko, V N; Bernal, M A; Francis, Z; Villagrasa, C; Baldacchin, G; Guèye, P; Capra, R; Nieminen, P; Zacharatou, C
2010-09-01
The GEANT4 general-purpose Monte Carlo simulation toolkit is able to simulate physical interaction processes of electrons, hydrogen and helium atoms with charge states (H0, H+) and (He0, He+, He2+), respectively, in liquid water, the main component of biological systems, down to the electron volt regime and the submicrometer scale, providing GEANT4 users with the so-called "GEANT4-DNA" physics models suitable for microdosimetry simulation applications. The corresponding software has been recently re-engineered in order to provide GEANT4 users with a coherent and unique approach to the simulation of electromagnetic interactions within the GEANT4 toolkit framework (since GEANT4 version 9.3 beta). This work presents a quantitative comparison of these physics models with a collection of experimental data in water collected from the literature. An evaluation of the closeness between the total and differential cross section models available in the GEANT4 toolkit for microdosimetry and experimental reference data is performed using a dedicated statistical toolkit that includes the Kolmogorov-Smirnov statistical test. The authors used experimental data acquired in water vapor as direct measurements in the liquid phase are not yet available in the literature. Comparisons with several recommendations are also presented. The authors have assessed the compatibility of experimental data with GEANT4 microdosimetry models by means of quantitative methods. The results show that microdosimetric measurements in liquid water are necessary to assess quantitatively the validity of the software implementation for the liquid water phase. Nevertheless, a comparison with existing experimental data in water vapor provides a qualitative appreciation of the plausibility of the simulation models. The existing reference data themselves should undergo a critical interpretation and selection, as some of the series exhibit significant deviations from each other. The GEANT4-DNA physics models available in the GEANT4 toolkit have been compared in this article to available experimental data in the water vapor phase as well as to several published recommendations on the mass stopping power. These models represent a first step in the extension of the GEANT4 Monte Carlo toolkit to the simulation of biological effects of ionizing radiation.
The Geant4 physics validation repository
NASA Astrophysics Data System (ADS)
Wenzel, H.; Yarba, J.; Dotti, A.
2015-12-01
The Geant4 collaboration regularly performs validation and regression tests. The results are stored in a central repository and can be easily accessed via a web application. In this article we describe the Geant4 physics validation repository which consists of a relational database storing experimental data and Geant4 test results, a java API and a web application. The functionality of these components and the technology choices we made are also described.
The Geant4 physics validation repository
Wenzel, H.; Yarba, J.; Dotti, A.
2015-12-23
The Geant4 collaboration regularly performs validation and regression tests. The results are stored in a central repository and can be easily accessed via a web application. In this article we describe the Geant4 physics validation repository which consists of a relational database storing experimental data and Geant4 test results, a java API and a web application. Lastly, the functionality of these components and the technology choices we made are also described
Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4
NASA Astrophysics Data System (ADS)
Schümann, J.; Paganetti, H.; Shin, J.; Faddegon, B.; Perl, J.
2012-06-01
A key task within all Monte Carlo particle transport codes is ‘navigation’, the calculation to determine at each particle step what volume the particle may be leaving and what volume the particle may be entering. Navigation should be optimized to the specific geometry at hand. For patient dose calculation, this geometry generally involves voxelized computed tomography (CT) data. We investigated the efficiency of navigation algorithms on currently available voxel geometry parameterizations in the Monte Carlo simulation package Geant4: G4VPVParameterisation, G4VNestedParameterisation and G4PhantomParameterisation, the last with and without boundary skipping, a method where neighboring voxels with the same Hounsfield unit are combined into one larger voxel. A fourth parameterization approach (MGHParameterization), developed in-house before the latter two parameterizations became available in Geant4, was also included in this study. All simulations were performed using TOPAS, a tool for particle simulations layered on top of Geant4. Runtime comparisons were made on three distinct patient CT data sets: a head and neck, a liver and a prostate patient. We included an additional version of these three patients where all voxels, including the air voxels outside of the patient, were uniformly set to water in the runtime study. The G4VPVParameterisation offers two optimization options. One option has a 60-150 times slower simulation speed. The other is compatible in speed but requires 15-19 times more memory compared to the other parameterizations. We found the average CPU time used for the simulation relative to G4VNestedParameterisation to be 1.014 for G4PhantomParameterisation without boundary skipping and 1.015 for MGHParameterization. The average runtime ratio for G4PhantomParameterisation with and without boundary skipping for our heterogeneous data was equal to 0.97: 1. The calculated dose distributions agreed with the reference distribution for all but the G4PhantomParameterisation with boundary skipping for the head and neck patient. The maximum memory usage ranged from 0.8 to 1.8 GB depending on the CT volume independent of parameterizations, except for the 15-19 times greater memory usage with the G4VPVParameterisation when using the option with a higher simulation speed. The G4VNestedParameterisation was selected as the preferred choice for the patient geometries and treatment plans studied.
The simulation library of the Belle II software system
NASA Astrophysics Data System (ADS)
Kim, D. Y.; Ritter, M.; Bilka, T.; Bobrov, A.; Casarosa, G.; Chilikin, K.; Ferber, T.; Godang, R.; Jaegle, I.; Kandra, J.; Kodys, P.; Kuhr, T.; Kvasnicka, P.; Nakayama, H.; Piilonen, L.; Pulvermacher, C.; Santelj, L.; Schwenker, B.; Sibidanov, A.; Soloviev, Y.; Starič, M.; Uglov, T.
2017-10-01
SuperKEKB, the next generation B factory, has been constructed in Japan as an upgrade of KEKB. This brand new e+ e- collider is expected to deliver a very large data set for the Belle II experiment, which will be 50 times larger than the previous Belle sample. Both the triggered physics event rate and the background event rate will be increased by at least 10 times than the previous ones, and will create a challenging data taking environment for the Belle II detector. The software system of the Belle II experiment is designed to execute this ambitious plan. A full detector simulation library, which is a part of the Belle II software system, is created based on Geant4 and has been tested thoroughly. Recently the library has been upgraded with Geant4 version 10.1. The library is behaving as expected and it is utilized actively in producing Monte Carlo data sets for various studies. In this paper, we will explain the structure of the simulation library and the various interfaces to other packages including geometry and beam background simulation.
Monte Carlo Shower Counter Studies
NASA Technical Reports Server (NTRS)
Snyder, H. David
1991-01-01
Activities and accomplishments related to the Monte Carlo shower counter studies are summarized. A tape of the VMS version of the GEANT software was obtained and installed on the central computer at Gallaudet University. Due to difficulties encountered in updating this VMS version, a decision was made to switch to the UNIX version of the package. This version was installed and used to generate the set of data files currently accessed by various analysis programs. The GEANT software was used to write files of data for positron and proton showers. Showers were simulated for a detector consisting of 50 alternating layers of lead and scintillator. Each file consisted of 1000 events at each of the following energies: 0.1, 0.5, 2.0, 10, 44, and 200 GeV. Data analysis activities related to clustering, chi square, and likelihood analyses are summarized. Source code for the GEANT user subprograms and data analysis programs are provided along with example data plots.
Bernal, M A; Bordage, M C; Brown, J M C; Davídková, M; Delage, E; El Bitar, Z; Enger, S A; Francis, Z; Guatelli, S; Ivanchenko, V N; Karamitros, M; Kyriakou, I; Maigne, L; Meylan, S; Murakami, K; Okada, S; Payno, H; Perrot, Y; Petrovic, I; Pham, Q T; Ristic-Fira, A; Sasaki, T; Štěpán, V; Tran, H N; Villagrasa, C; Incerti, S
2015-12-01
Understanding the fundamental mechanisms involved in the induction of biological damage by ionizing radiation remains a major challenge of today's radiobiology research. The Monte Carlo simulation of physical, physicochemical and chemical processes involved may provide a powerful tool for the simulation of early damage induction. The Geant4-DNA extension of the general purpose Monte Carlo Geant4 simulation toolkit aims to provide the scientific community with an open source access platform for the mechanistic simulation of such early damage. This paper presents the most recent review of the Geant4-DNA extension, as available to Geant4 users since June 2015 (release 10.2 Beta). In particular, the review includes the description of new physical models for the description of electron elastic and inelastic interactions in liquid water, as well as new examples dedicated to the simulation of physicochemical and chemical stages of water radiolysis. Several implementations of geometrical models of biological targets are presented as well, and the list of Geant4-DNA examples is described. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Allowing for crystalline structure effects in Geant4
Bagli, Enrico; Asai, Makoto; Dotti, Andrea; ...
2017-03-24
In recent years, the Geant4 toolkit for the Monte Carlo simulation of radiation with matter has seen large growth in its divers user community. A fundamental aspect of a successful physics experiment is the availability of a reliable and precise simulation code. Geant4 currently does not allow for the simulation of particle interactions with anything other than amorphous matter. To overcome this limitation, the GECO (GEant4 Crystal Objects) project developed a general framework for managing solid-state structures in the Geant4 kernel and validate it against experimental data. As a result, accounting for detailed geometrical structures allows, for example, simulation ofmore » diffraction from crystal planes or the channeling of charged particle.« less
Multiple Coulomb scattering in thin silicon
NASA Astrophysics Data System (ADS)
Berger, N.; Buniatyan, A.; Eckert, P.; Förster, F.; Gredig, R.; Kovalenko, O.; Kiehn, M.; Philipp, R.; Schöning, A.; Wiedner, D.
2014-07-01
We present a measurement of multiple Coulomb scattering of 1 to 6 GeV/c electrons in thin (50-140 μm) silicon targets. The data were obtained with the EUDET telescope Aconite at DESY and are compared to parametrisations as used in the Geant4 software package. We find good agreement between data and simulation in the scattering distribution width but large deviations in the shape of the distribution. In order to achieve a better description of the shape, a new scattering model based on a Student's t distribution is developed and compared to the data.
GEANT4 and Secondary Particle Production
NASA Technical Reports Server (NTRS)
Patterson, Jeff
2004-01-01
GEANT 4 is a Monte Carlo tool set developed by the High Energy Physics Community (CERN, SLAC, etc) to perform simulations of complex particle detectors. GEANT4 is the ideal tool to study radiation transport and should be applied to space environments and the complex geometries of modern day spacecraft.
Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies
Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.; ...
2018-06-20
Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less
Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.
Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less
Enger, Shirin A; Munck af Rosenschöld, Per; Rezaei, Arash; Lundqvist, Hans
2006-02-01
GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.
A tool to convert CAD models for importation into Geant4
NASA Astrophysics Data System (ADS)
Vuosalo, C.; Carlsmith, D.; Dasu, S.; Palladino, K.; LUX-ZEPLIN Collaboration
2017-10-01
The engineering design of a particle detector is usually performed in a Computer Aided Design (CAD) program, and simulation of the detector’s performance can be done with a Geant4-based program. However, transferring the detector design from the CAD program to Geant4 can be laborious and error-prone. SW2GDML is a tool that reads a design in the popular SOLIDWORKS CAD program and outputs Geometry Description Markup Language (GDML), used by Geant4 for importing and exporting detector geometries. Other methods for outputting CAD designs are available, such as the STEP format, and tools exist to convert these formats into GDML. However, these conversion methods produce very large and unwieldy designs composed of tessellated solids that can reduce Geant4 performance. In contrast, SW2GDML produces compact, human-readable GDML that employs standard geometric shapes rather than tessellated solids. This paper will describe the development and current capabilities of SW2GDML and plans for its enhancement. The aim of this tool is to automate importation of detector engineering models into Geant4-based simulation programs to support rapid, iterative cycles of detector design, simulation, and optimization.
SU-E-T-565: RAdiation Resistance of Cancer CElls Using GEANT4 DNA: RACE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perrot, Y; Payno, H; Delage, E
2014-06-01
Purpose: The objective of the RACE project is to develop a comparison between Monte Carlo simulation using the Geant4-DNA toolkit and measurements of radiation damage on 3D melanoma and chondrosarcoma culture cells coupled with gadolinium nanoparticles. We currently expose the status of the developments regarding simulations. Methods: Monte Carlo studies are driven using the Geant4 toolkit and the Geant4-DNA extension. In order to model the geometry of a cell population, the opensource CPOP++ program is being developed for the geometrical representation of 3D cell populations including a specific cell mesh coupled with a multi-agent system. Each cell includes cytoplasm andmore » nucleus. The correct modeling of the cell population has been validated with confocal microscopy images of spheroids. The Geant4 Livermore physics models are used to simulate the interactions of a 250 keV X-ray beam and the production of secondaries from gadolinium nanoparticles supposed to be fixed on the cell membranes. Geant4-DNA processes are used to simulate the interactions of charged particles with the cells. An atomistic description of the DNA molecule, from PDB (Protein Data Bank) files, is provided by the so-called PDB4DNA Geant4 user application we developed to score energy depositions in DNA base pairs and sugar-phosphate groups. Results: At the microscopic level, our simulations enable assessing microscopic energy distribution in each cell compartment of a realistic 3D cell population. Dose enhancement factors due to the presence of gadolinium nanoparticles can be estimated. At the nanometer scale, direct damages on nuclear DNA are also estimated. Conclusion: We successfully simulated the impact of direct radiations on a realistic 3D cell population model compatible with microdosimetry calculations using the Geant4-DNA toolkit. Upcoming validation and the future integration of the radiochemistry module of Geant4-DNA will propose to correlate clusters of ionizations with in vitro experiments. All those developments will be released publicly. This work was supported by grants from Plan Cancer 2009-2013 French national initiative managed by INSERM (Institut National de la Sante et de la Recherche Medicale)« less
Comparison of CdZnTe neutron detector models using MCNP6 and Geant4
NASA Astrophysics Data System (ADS)
Wilson, Emma; Anderson, Mike; Prendergasty, David; Cheneler, David
2018-01-01
The production of accurate detector models is of high importance in the development and use of detectors. Initially, MCNP and Geant were developed to specialise in neutral particle models and accelerator models, respectively; there is now a greater overlap of the capabilities of both, and it is therefore useful to produce comparative models to evaluate detector characteristics. In a collaboration between Lancaster University, UK, and Innovative Physics Ltd., UK, models have been developed in both MCNP6 and Geant4 of Cadmium Zinc Telluride (CdZnTe) detectors developed by Innovative Physics Ltd. Herein, a comparison is made of the relative strengths of MCNP6 and Geant4 for modelling neutron flux and secondary γ-ray emission. Given the increasing overlap of the modelling capabilities of MCNP6 and Geant4, it is worthwhile to comment on differences in results for simulations which have similarities in terms of geometries and source configurations.
Tavakoli, Mohammad Bagher; Mohammadi, Mohammad Mehdi; Reiazi, Reza; Jabbari, Keyvan
2015-01-01
Geant4 is an open source simulation toolkit based on C++, which its advantages progressively lead to applications in research domains especially modeling the biological effects of ionizing radiation at the sub-cellular scale. However, it was shown that Geant4 does not give a reasonable result in the prediction of antiproton dose especially in Bragg peak. One of the reasons could be lack of reliable physic model to predict the final states of annihilation products like pions. Considering the fact that most of the antiproton deposited dose is resulted from high-LET nuclear fragments following pion interaction in surrounding nucleons, we reproduced depth dose curves of most probable energy range of pions and neutron particle using Geant4. We consider this work one of the steps to understand the origin of the error and finally verification of Geant4 for antiproton tracking. Geant4 toolkit version 9.4.6.p01 and Fluka version 2006.3 were used to reproduce the depth dose curves of 220 MeV pions (both negative and positive) and 70 MeV neutrons. The geometry applied in the simulations consist a 20 × 20 × 20 cm3 water tank, similar to that used in CERN for antiproton relative dose measurements. Different physic lists including Quark-Gluon String Precompound (QGSP)_Binary Cascade (BIC)_HP, the recommended setting for hadron therapy, were used. In the case of pions, Geant4 resulted in at least 5% dose discrepancy between different physic lists at depth close to the entrance point. Even up to 15% discrepancy was found in some cases like QBBC compared to QGSP_BIC_HP. A significant difference was observed in dose profiles of different Geant4 physic list at small depths for a beam of pions. In the case of neutrons, large dose discrepancy was observed when LHEP or LHEP_EMV lists were applied. The magnitude of this dose discrepancy could be even 50% greater than the dose calculated by LHEP (or LHEP_EMV) at larger depths. We found that effect different Geant4 physic list in reproducing depth dose profile of the beam of pions was not negligible. Because the discrepancies were pronounced in smaller depth and also regarding the contribution of pions in deposited dose of a beam of antiproton, further investigation on choosing most suitable and accurate physic list for this purpose should be done. Furthermore, this study showed careful attention must be paid to choose the appropriate Geant4 physic list for neutron tracking depending to the applications criteria. We failed to find any agreement between results from Geant4 and Fluka to reproduce depth dose profile of pion with the energy range used in this study. PMID:26120569
NASA Astrophysics Data System (ADS)
Iwai, Go
2015-12-01
We describe the development of an environment for Geant4 consisting of an application and data that provide users with a more efficient way to access Geant4 applications without having to download and build the software locally. The environment is platform neutral and offers the users near-real time performance. In addition, the environment consists of data and Geant4 libraries built using low-level virtual machine (LLVM) tools which can produce bitcode that can be embedded in HTML and accessed via a browser. The bitcode is downloaded to the local machine via the browser and can then be configured by the user. This approach provides a way of minimising the risk of leaking potentially sensitive data used to construct the Geant4 model and application in the medical domain for treatment planning. We describe several applications that have used this approach and compare their performance with that of native applications. We also describe potential user communities that could benefit from this approach.
Arce, Pedro; Lagares, Juan Ignacio
2018-01-25
We have verified the GAMOS/Geant4 simulation model of a 6 MV VARIAN Clinac 2100 C/D linear accelerator by the procedure of adjusting the initial beam parameters to fit the percentage depth dose and cross-profile dose experimental data at different depths in a water phantom. Thanks to the use of a wide range of field sizes, from 2 × 2 cm 2 to 40 × 40 cm 2 , a small phantom voxel size and high statistics, fine precision in the determination of the beam parameters has been achieved. This precision has allowed us to make a thorough study of the different physics models and parameters that Geant4 offers. The three Geant4 electromagnetic physics sets of models, i.e. Standard, Livermore and Penelope, have been compared to the experiment, testing the four different models of angular bremsstrahlung distributions as well as the three available multiple-scattering models, and optimizing the most relevant Geant4 electromagnetic physics parameters. Before the fitting, a comprehensive CPU time optimization has been done, using several of the Geant4 efficiency improvement techniques plus a few more developed in GAMOS.
Geant4-DNA: overview and recent developments
NASA Astrophysics Data System (ADS)
Štěpán, Václav
Space travel and high altitude flights are inherently associated with prolonged exposure to cosmic and solar radiation. Understanding and simulation of radiation action on cellular and subcellular level contributes to precise assessment of the associated health risks and remains a challenge of today’s radiobiology research. The Geant4-DNA project (http://geant4-dna.org) aims at developing an experimentally validated simulation platform for modelling of the damage induced by ionizing radiation at DNA level. The platform is based on the Geant4 Monte Carlo simulation toolkit. This project extends specific functionalities of Geant4 in following areas: The step-by-step single scattering modelling of elementary physical interactions of electrons, protons, alpha particles and light ions with liquid water and DNA bases, for the so-called “physical” stage. The modelling of the “physico-chemical and chemical” stages corresponding to the production, the diffusion, the chemical reactions occurring between chemical species produced by water radiolysis, and to the radical attack on the biological targets. Physical and chemical stage simulations are combined with biological target models on several scales, from DNA double helix, through nucleosome, to chromatin segments and cell geometries. In addition, data mining clustering algorithms have been developed and optimised for the purpose of DNA damage scoring in simulated tracks. Experimental measurements on pBR322 plasmid DNA are being carried out in order to validate the Geant4-DNA models. The plasmid DNA has been irradiated in dry conditions by protons with energies from 100 keV to 30 MeV and in aqueous conditions, with and without scavengers, by 30 MeV protons, 290 MeV/u carbon and 500 MeV/u iron ions. Agarose gel electrophoresis combined with enzymatic treatment has been used to measure the resulting DNA damage. An overview of the developments undertaken by the Geant4-DNA collaboration including a description of software already available for download, as well as future perspectives, will be presented, on behalf of the Geant4-DNA Collaboration.
Famulari, Gabriel; Pater, Piotr; Enger, Shirin A
2017-07-07
The aim of this study was to calculate microdosimetric distributions for low energy electrons simulated using the Monte Carlo track structure code Geant4-DNA. Tracks for monoenergetic electrons with kinetic energies ranging from 100 eV to 1 MeV were simulated in an infinite spherical water phantom using the Geant4-DNA extension included in Geant4 toolkit version 10.2 (patch 02). The microdosimetric distributions were obtained through random sampling of transfer points and overlaying scoring volumes within the associated volume of the tracks. Relative frequency distributions of energy deposition f(>E)/f(>0) and dose mean lineal energy ([Formula: see text]) values were calculated in nanometer-sized spherical and cylindrical targets. The effects of scoring volume and scoring techniques were examined. The results were compared with published data generated using MOCA8B and KURBUC. Geant4-DNA produces a lower frequency of higher energy deposits than MOCA8B. The [Formula: see text] values calculated with Geant4-DNA are smaller than those calculated using MOCA8B and KURBUC. The differences are mainly due to the lower ionization and excitation cross sections of Geant4-DNA for low energy electrons. To a lesser extent, discrepancies can also be attributed to the implementation in this study of a new and fast scoring technique that differs from that used in previous studies. For the same mean chord length ([Formula: see text]), the [Formula: see text] calculated in cylindrical volumes are larger than those calculated in spherical volumes. The discrepancies due to cross sections and scoring geometries increase with decreasing scoring site dimensions. A new set of [Formula: see text] values has been presented for monoenergetic electrons using a fast track sampling algorithm and the most recent physics models implemented in Geant4-DNA. This dataset can be combined with primary electron spectra to predict the radiation quality of photon and electron beams.
Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B.; Parodi, Katia; Jia, Xun
2017-01-01
Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV/u. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e., carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case 3 × 107 carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10%) isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate 107 carbons was 9.9–125 sec, 2.5–50 sec and 60–612 sec on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy. PMID:28140352
NASA Astrophysics Data System (ADS)
Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B.; Parodi, Katia; Jia, Xun
2017-05-01
Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u-1. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case 3× {{10}7} carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate {{10}7} carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.
Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B; Parodi, Katia; Jia, Xun
2017-05-07
Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u -1 . Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case [Formula: see text] carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate [Formula: see text] carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.
Modeling the relativistic runaway electron avalanche and the feedback mechanism with GEANT4
Skeltved, Alexander Broberg; Østgaard, Nikolai; Carlson, Brant; Gjesteland, Thomas; Celestin, Sebastien
2014-01-01
This paper presents the first study that uses the GEometry ANd Tracking 4 (GEANT4) toolkit to do quantitative comparisons with other modeling results related to the production of terrestrial gamma ray flashes and high-energy particle emission from thunderstorms. We will study the relativistic runaway electron avalanche (RREA) and the relativistic feedback process, as well as the production of bremsstrahlung photons from runaway electrons. The Monte Carlo simulations take into account the effects of electron ionization, electron by electron (Møller), and electron by positron (Bhabha) scattering as well as the bremsstrahlung process and pair production, in the 250 eV to 100 GeV energy range. Our results indicate that the multiplication of electrons during the development of RREAs and under the influence of feedback are consistent with previous estimates. This is important to validate GEANT4 as a tool to model RREAs and feedback in homogeneous electric fields. We also determine the ratio of bremsstrahlung photons to energetic electrons Nγ/Ne. We then show that the ratio has a dependence on the electric field, which can be expressed by the avalanche time τ(E) and the bremsstrahlung coefficient α(ε). In addition, we present comparisons of GEANT4 simulations performed with a “standard” and a “low-energy” physics list both validated in the 1 keV to 100 GeV energy range. This comparison shows that the choice of physics list used in GEANT4 simulations has a significant effect on the results. Key Points Testing the feedback mechanism with GEANT4 Validating the GEANT4 programming toolkit Study the ratio of bremsstrahlung photons to electrons at TGF source altitude PMID:26167437
GEANT4 distributed computing for compact clusters
NASA Astrophysics Data System (ADS)
Harrawood, Brian P.; Agasthya, Greeshma A.; Lakshmanan, Manu N.; Raterman, Gretchen; Kapadia, Anuj J.
2014-11-01
A new technique for distribution of GEANT4 processes is introduced to simplify running a simulation in a parallel environment such as a tightly coupled computer cluster. Using a new C++ class derived from the GEANT4 toolkit, multiple runs forming a single simulation are managed across a local network of computers with a simple inter-node communication protocol. The class is integrated with the GEANT4 toolkit and is designed to scale from a single symmetric multiprocessing (SMP) machine to compact clusters ranging in size from tens to thousands of nodes. User designed 'work tickets' are distributed to clients using a client-server work flow model to specify the parameters for each individual run of the simulation. The new g4DistributedRunManager class was developed and well tested in the course of our Neutron Stimulated Emission Computed Tomography (NSECT) experiments. It will be useful for anyone running GEANT4 for large discrete data sets such as covering a range of angles in computed tomography, calculating dose delivery with multiple fractions or simply speeding the through-put of a single model.
Othman, M A R; Cutajar, D L; Hardcastle, N; Guatelli, S; Rosenfeld, A B
2010-09-01
Monte Carlo simulations of the energy response of a conventionally packaged single metal-oxide field effect transistors (MOSFET) detector were performed with the goal of improving MOSFET energy dependence for personal accident or military dosimetry. The MOSFET detector packaging was optimised. Two different 'drop-in' design packages for a single MOSFET detector were modelled and optimised using the GEANT4 Monte Carlo toolkit. Absorbed photon dose simulations of the MOSFET dosemeter placed in free-air response, corresponding to the absorbed doses at depths of 0.07 mm (D(w)(0.07)) and 10 mm (D(w)(10)) in a water equivalent phantom of size 30 x 30 x 30 cm(3) for photon energies of 0.015-2 MeV were performed. Energy dependence was reduced to within + or - 60 % for photon energies 0.06-2 MeV for both D(w)(0.07) and D(w)(10). Variations in the response for photon energies of 15-60 keV were 200 and 330 % for D(w)(0.07) and D(w)(10), respectively. The obtained energy dependence was reduced compared with that for conventionally packaged MOSFET detectors, which usually exhibit a 500-700 % over-response when used in free-air geometry.
GEANT4 and PHITS simulations of the shielding of neutrons from the 252Cf source
NASA Astrophysics Data System (ADS)
Shin, Jae Won; Hong, Seung-Woo; Bak, Sang-In; Kim, Do Yoon; Kim, Chong Yeal
2014-09-01
Monte Carlo simulations are performed by using the GEANT4 and the PHITS for studying the neutron-shielding abilities of several materials, such as graphite, iron, polyethylene, NS-4-FR and KRAFTON-HB. As a neutron source, 252Cf is considered. For the Monte Carlo simulations by using the GEANT4, high precision (G4HP) models with the G4NDL 4.2 based on ENDF/B-VII data are used. For the simulations by using the PHITS, the JENDL-4.0 library is used. The neutron-dose-equivalent rates with or without five different shielding materials are estimated and compared with the experimental values. The differences between the shielding abilities calculated by using the GEANT4 with the G4NDL 4.2 and the PHITS with the JENDL-4.0 are found not to be significant for all the cases considered in this work. The neutron-dose-equivalent rates obtained by using the GEANT4 and the PHITS are compared with experimental data and other simulation results. Our neutron-dose-equivalent rates agree well with the experimental dose-equivalent rates, within 20% errors, except for polyethylene. For polyethylene, the discrepancies between our calculations and the experiments are less than 40%, as observed in other simulation results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Laura; Genser, Krzysztof; Hatcher, Robert
Geant4 is the leading detector simulation toolkit used in high energy physics to design detectors and to optimize calibration and reconstruction software. It employs a set of carefully validated physics models to simulate interactions of particles with matter across a wide range of interaction energies. These models, especially the hadronic ones, rely largely on directly measured cross-sections and phenomenological predictions with physically motivated parameters estimated by theoretical calculation or measurement. Because these models are tuned to cover a very wide range of possible simulation tasks, they may not always be optimized for a given process or a given material. Thismore » raises several critical questions, e.g. how sensitive Geant4 predictions are to the variations of the model parameters, or what uncertainties are associated with a particular tune of a Geant4 physics model, or a group of models, or how to consistently derive guidance for Geant4 model development and improvement from a wide range of available experimental data. We have designed and implemented a comprehensive, modular, user-friendly software toolkit to study and address such questions. It allows one to easily modify parameters of one or several Geant4 physics models involved in the simulation, and to perform collective analysis of multiple variants of the resulting physics observables of interest and comparison against a variety of corresponding experimental data. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. flexible run-time configurable workflow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented and illustrated with results obtained with Geant4 key hadronic models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyriakou, I., E-mail: ikyriak@cc.uoi.gr; Šefl, M.; Department of Dosimetry and Application of Ionizing Radiation, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 115 19 Prague
The most recent release of the open source and general purpose Geant4 Monte Carlo simulation toolkit (Geant4 10.2 release) contains a new set of physics models in the Geant4-DNA extension for improving the modelling of low-energy electron transport in liquid water (<10 keV). This includes updated electron cross sections for excitation, ionization, and elastic scattering. In the present work, the impact of these developments to track-structure calculations is examined for providing the first comprehensive comparison against the default physics models of Geant4-DNA. Significant differences with the default models are found for the average path length and penetration distance, as well asmore » for dose-point-kernels for electron energies below a few hundred eV. On the other hand, self-irradiation absorbed fractions for tissue-like volumes and low-energy electron sources (including some Auger emitters) reveal rather small differences (up to 15%) between these new and default Geant4-DNA models. The above findings indicate that the impact of the new developments will mainly affect those applications where the spatial pattern of interactions and energy deposition of very-low energy electrons play an important role such as, for example, the modelling of the chemical and biophysical stage of radiation damage to cells.« less
Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA.
Bordage, M C; Bordes, J; Edel, S; Terrissol, M; Franceries, X; Bardiès, M; Lampe, N; Incerti, S
2016-12-01
A new alternative set of elastic and inelastic cross sections has been added to the very low energy extension of the Geant4 Monte Carlo simulation toolkit, Geant4-DNA, for the simulation of electron interactions in liquid water. These cross sections have been obtained from the CPA100 Monte Carlo track structure code, which has been a reference in the microdosimetry community for many years. They are compared to the default Geant4-DNA cross sections and show better agreement with published data. In order to verify the correct implementation of the CPA100 cross section models in Geant4-DNA, simulations of the number of interactions and ranges were performed using Geant4-DNA with this new set of models, and the results were compared with corresponding results from the original CPA100 code. Good agreement is observed between the implementations, with relative differences lower than 1% regardless of the incident electron energy. Useful quantities related to the deposited energy at the scale of the cell or the organ of interest for internal dosimetry, like dose point kernels, are also calculated using these new physics models. They are compared with results obtained using the well-known Penelope Monte Carlo code. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
WinTRAX: A raytracing software package for the design of multipole focusing systems
NASA Astrophysics Data System (ADS)
Grime, G. W.
2013-07-01
The software package TRAX was a simulation tool for modelling the path of charged particles through linear cylindrical multipole fields described by analytical expressions and was a development of the earlier OXRAY program (Grime and Watt, 1983; Grime et al., 1982) [1,2]. In a 2005 comparison of raytracing software packages (Incerti et al., 2005) [3], TRAX/OXRAY was compared with Geant4 and Zgoubi and was found to give close agreement with the more modern codes. TRAX was a text-based program which was only available for operation in a now rare VMS workstation environment, so a new program, WinTRAX, has been developed for the Windows operating system. This implements the same basic computing strategy as TRAX, and key sections of the code are direct translations from FORTRAN to C++, but the Windows environment is exploited to make an intuitive graphical user interface which simplifies and enhances many operations including system definition and storage, optimisation, beam simulation (including with misaligned elements) and aberration coefficient determination. This paper describes the program and presents comparisons with other software and real installations.
Vilches, M; García-Pareja, S; Guerrero, R; Anguiano, M; Lallena, A M
2009-09-01
In this work, recent results from experiments and simulations (with EGSnrc) performed by Ross et al. [Med. Phys. 35, 4121-4131 (2008)] on electron scattering by foils of different materials and thicknesses are compared to those obtained using several Monte Carlo codes. Three codes have been used: GEANT (version 3.21), Geant4 (version 9.1, patch03), and PENELOPE (version 2006). In the case of PENELOPE, mixed and fully detailed simulations have been carried out. Transverse dose distributions in air have been obtained in order to compare with measurements. The detailed PENELOPE simulations show excellent agreement with experiment. The calculations performed with GEANT and PENELOPE (mixed) agree with experiment within 3% except for the Be foil. In the case of Geant4, the distributions are 5% narrower compared to the experimental ones, though the agreement is very good for the Be foil. Transverse dose distribution in water obtained with PENELOPE (mixed) is 4% wider than those calculated by Ross et al. using EGSnrc and is 1% narrower than the transverse dose distributions in air, as considered in the experiment. All the codes give a reasonable agreement (within 5%) with the experimental results for all the material and thicknesses studied.
Geant4 simulations of a wide-angle x-ray focusing telescope
NASA Astrophysics Data System (ADS)
Zhao, Donghua; Zhang, Chen; Yuan, Weimin; Zhang, Shuangnan; Willingale, Richard; Ling, Zhixing
2017-06-01
The rapid development of X-ray astronomy has been made possible by widely deploying X-ray focusing telescopes on board many X-ray satellites. Geant4 is a very powerful toolkit for Monte Carlo simulations and has remarkable abilities to model complex geometrical configurations. However, the library of physical processes available in Geant4 lacks a description of the reflection of X-ray photons at a grazing incident angle which is the core physical process in the simulation of X-ray focusing telescopes. The scattering of low-energy charged particles from the mirror surfaces is another noteworthy process which is not yet incorporated into Geant4. Here we describe a Monte Carlo model of a simplified wide-angle X-ray focusing telescope adopting lobster-eye optics and a silicon detector using the Geant4 toolkit. With this model, we simulate the X-ray tracing, proton scattering and background detection. We find that: (1) the effective area obtained using Geant4 is in agreement with that obtained using Q software with an average difference of less than 3%; (2) X-rays are the dominant background source below 10 keV; (3) the sensitivity of the telescope is better by at least one order of magnitude than that of a coded mask telescope with the same physical dimensions; (4) the number of protons passing through the optics and reaching the detector by Firsov scattering is about 2.5 times that of multiple scattering for the lobster-eye telescope.
Military Curricula for Vocational & Technical Education. Programmer/Analyst 4-4.
ERIC Educational Resources Information Center
Department of the Army, Washington, DC.
This program of instruction and various instructional materials for a secondary-postsecondary level course for programmer/analysts is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The eight-week, three-section course is designed to…
Calculation of electron Dose Point Kernel in water with GEANT4 for medical application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guimaraes, C. C.; Sene, F. F.; Martinelli, J. R.
2009-06-03
The rapid insertion of new technologies in medical physics in the last years, especially in nuclear medicine, has been followed by a great development of faster Monte Carlo algorithms. GEANT4 is a Monte Carlo toolkit that contains the tools to simulate the problems of particle transport through matter. In this work, GEANT4 was used to calculate the dose-point-kernel (DPK) for monoenergetic electrons in water, which is an important reference medium for nuclear medicine. The three different physical models of electromagnetic interactions provided by GEANT4 - Low Energy, Penelope and Standard - were employed. To verify the adequacy of these models,more » the results were compared with references from the literature. For all energies and physical models, the agreement between calculated DPKs and reported values is satisfactory.« less
Electron backscattering simulation in Geant4
NASA Astrophysics Data System (ADS)
Dondero, Paolo; Mantero, Alfonso; Ivanchencko, Vladimir; Lotti, Simone; Mineo, Teresa; Fioretti, Valentina
2018-06-01
The backscattering of electrons is a key phenomenon in several physics applications which range from medical therapy to space including AREMBES, the new ESA simulation framework for radiation background effects. The importance of properly reproducing this complex interaction has grown considerably in the last years and the Geant4 Monte Carlo simulation toolkit, recently upgraded to the version 10.3, is able to comply with the AREMBES requirements in a wide energy range. In this study a validation of the electron Geant4 backscattering models is performed with respect to several experimental data. In addition a selection of the most recent validation results on the electron scattering processes is also presented. Results of our analysis show a good agreement between simulations and data from several experiments, confirming the Geant4 electron backscattering models to be robust and reliable up to a few tens of electronvolts.
NASA Astrophysics Data System (ADS)
Incerti, S.; Barberet, Ph.; Dévès, G.; Michelet, C.; Francis, Z.; Ivantchenko, V.; Mantero, A.; El Bitar, Z.; Bernal, M. A.; Tran, H. N.; Karamitros, M.; Seznec, H.
2015-09-01
The general purpose Geant4 Monte Carlo simulation toolkit is able to simulate radiative and non-radiative atomic de-excitation processes such as fluorescence and Auger electron emission, occurring after interaction of incident ionising radiation with target atomic electrons. In this paper, we evaluate the Geant4 modelling capability for the simulation of fluorescence spectra induced by 1.5 MeV proton irradiation of thin high-Z foils (Fe, GdF3, Pt, Au) with potential interest for nanotechnologies and life sciences. Simulation results are compared to measurements performed at the Centre d'Etudes Nucléaires de Bordeaux-Gradignan AIFIRA nanobeam line irradiation facility in France. Simulation and experimental conditions are described and the influence of Geant4 electromagnetic physics models is discussed.
NASA Astrophysics Data System (ADS)
Alexander, Frauke; Villagrasa, Carmen; Rabus, Hans; Wilkens, Jan J.
2015-09-01
The BioQuaRT project within the European Metrology Research Programme aims at correlating ion track structure characteristics with the biological effects of radiation and develops measurement and simulation techniques for determining ion track structure on different length scales from about 2 nm to about 10 μm. Within this framework, we investigate methods to translate track-structure quantities derived on a nanometre scale to macroscopic dimensions. Input data sets were generated by simulations of ion tracks of protons and carbon ions in liquid water using the Geant 4 Monte Carlo toolkit with the Geant4-DNA processes. Based on the energy transfer points - recorded with nanometre resolution - we investigated parametrisations of overall properties of ion track structure. Three different track structure parametrisations have been developed using the distances to the 10 next neighbouring ionisations, the radial energy distribution and ionisation cluster size distributions. These parametrisations of nanometric track structure build a basis for deriving biologically relevant mean values which are essential in the clinical situation where each voxel is exposed to a mixed radiation field. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.
NASA Astrophysics Data System (ADS)
Huyan, X.; Naviliat-Cuncic, O.; Voytas, P.; Chandavar, S.; Hughes, M.; Minamisono, K.; Paulauskas, S. V.
2018-01-01
The yield of photons produced by electrons slowing down in CsI and NaI was studied with four electromagnetic physics constructors included in the Geant4 toolkit. The subsequent absorption of photons in detector geometries used for measurements of the β spectrum shape was also studied with a focus on the determination of the absorption fraction. For electrons with energies in the range 0.5-4 MeV, the relative photon yields determined with the four Geant4 constructors differ at the level of 10-2 in amplitude and the relative absorption fractions differ at the level of 10-4 in amplitude. The differences among constructors enabled the estimation of the sensitivity to Geant4 simulations for the measurement of the β energy spectrum shape in 6He decay using a calorimetric technique with ions implanted in the active volume of detectors. The size of the effect associated with photons escaping the detectors was quantified in terms of a slope which, on average, is respectively - 5 . 4 %/MeV and - 4 . 8 %/MeV for the CsI and NaI geometries. The corresponding relative uncertainties as determined from the spread of results obtained with the four Geant4 constructors are 0.0067 and 0.0058.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, J; Park, S; Jeong, J
Purpose: In particle therapy and radiobiology, the investigation of mechanisms leading to the death of target cancer cells induced by ionising radiation is an active field of research. Recently, several studies based on Monte Carlo simulation codes have been initiated in order to simulate physical interactions of ionising particles at cellular scale and in DNA. Geant4-DNA is the one of them; it is an extension of the general purpose Geant4 Monte Carlo simulation toolkit for the simulation of physical interactions at sub-micrometre scale. In this study, we present Geant4-DNA Monte Carlo simulations for the prediction of DNA strand breakage usingmore » a geometrical modelling of DNA structure. Methods: For the simulation of DNA strand breakage, we developed a specific DNA geometrical structure. This structure consists of DNA components, such as the deoxynucleotide pairs, the DNA double helix, the nucleosomes and the chromatin fibre. Each component is made of water because the cross sections models currently available in Geant4-DNA for protons apply to liquid water only. Also, at the macroscopic-scale, protons were generated with various energies available for proton therapy at the National Cancer Center, obtained using validated proton beam simulations developed in previous studies. These multi-scale simulations were combined for the validation of Geant4-DNA in radiobiology. Results: In the double helix structure, the deposited energy in a strand allowed to determine direct DNA damage from physical interaction. In other words, the amount of dose and frequency of damage in microscopic geometries was related to direct radiobiological effect. Conclusion: In this report, we calculated the frequency of DNA strand breakage using Geant4- DNA physics processes for liquid water. This study is now on-going in order to develop geometries which use realistic DNA material, instead of liquid water. This will be tested as soon as cross sections for DNA material become available in Geant4-DNA.« less
NASA Technical Reports Server (NTRS)
Suh, Jong-ook
2013-01-01
The Xilinx Virtex 4QV and 5QV (V4 and V5) are next-generation field-programmable gate arrays (FPGAs) for space applications. However, there have been concerns within the space community regarding the non-hermeticity of V4/V5 packages; polymeric materials such as the underfill and lid adhesive will be directly exposed to the space environment. In this study, reliability concerns associated with the non-hermeticity of V4/V5 packages were investigated by studying properties and behavior of the underfill and the lid adhesvie materials used in V4/V5 packages.
The ATLAS Simulation Infrastructure
Aad, G.; Abbott, B.; Abdallah, J.; ...
2010-09-25
The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, andmore » the validation of the simulated output against known physics processes.« less
GEANT4 Simulation of Hadronic Interactions at 8-GeV/C to 10-GeV/C: Response to the HARP-CDP Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzhinsky, V.; /Dubna, JINR /CERN; Apostolakis, J.
2011-11-21
The results of the HARP-CDP group on the comparison of GEANT4 Monte Carlo predictions versus experimental data are discussed. It is shown that the problems observed by the group are caused by an incorrect implementation of old features at the programming level, and by a lack of the nucleon Fermi motion in the simulation of quasielastic scattering. These drawbacks are not due to the physical models used. They do not manifest themselves in the most important applications of the GEANT4 toolkit.
Geant4 Computing Performance Benchmarking and Monitoring
Dotti, Andrea; Elvira, V. Daniel; Folger, Gunter; ...
2015-12-23
Performance evaluation and analysis of large scale computing applications is essential for optimal use of resources. As detector simulation is one of the most compute intensive tasks and Geant4 is the simulation toolkit most widely used in contemporary high energy physics (HEP) experiments, it is important to monitor Geant4 through its development cycle for changes in computing performance and to identify problems and opportunities for code improvements. All Geant4 development and public releases are being profiled with a set of applications that utilize different input event samples, physics parameters, and detector configurations. Results from multiple benchmarking runs are compared tomore » previous public and development reference releases to monitor CPU and memory usage. Observed changes are evaluated and correlated with code modifications. Besides the full summary of call stack and memory footprint, a detailed call graph analysis is available to Geant4 developers for further analysis. The set of software tools used in the performance evaluation procedure, both in sequential and multi-threaded modes, include FAST, IgProf and Open|Speedshop. In conclusion, the scalability of the CPU time and memory performance in multi-threaded application is evaluated by measuring event throughput and memory gain as a function of the number of threads for selected event samples.« less
Simulation of orientational coherent effects via Geant4
NASA Astrophysics Data System (ADS)
Bagli, E.; Asai, M.; Brandt, D.; Dotti, A.; Guidi, V.; Verderi, M.; Wright, D.
2017-10-01
Simulation of orientational coherent effects via Geant4 beam manipulation of high-and very-high-energy particle beams is a hot topic in accelerator physics. Coherent effects of ultra-relativistic particles in bent crystals allow the steering of particle trajectories thanks to the strong electrical field generated between atomic planes. Recently, a collimation experiment with bent crystals was carried out at the CERN-LHC, paving the way to the usage of such technology in current and future accelerators. Geant4 is a widely used object-oriented tool-kit for the Monte Carlo simulation of the interaction of particles with matter in high-energy physics. Moreover, its areas of application include also nuclear and accelerator physics, as well as studies in medical and space science. We present the first Geant4 extension for the simulation of orientational effects in straight and bent crystals for high energy charged particles. The model allows the manipulation of particle trajectories by means of straight and bent crystals and the scaling of the cross sections of hadronic and electromagnetic processes for channeled particles. Based on such a model, an extension of the Geant4 toolkit has been developed. The code and the model have been validated by comparison with published experimental data regarding the deflection efficiency via channeling and the variation of the rate of inelastic nuclear interactions.
Sakata, Dousatsu; Kyriakou, Ioanna; Okada, Shogo; Tran, Hoang N; Lampe, Nathanael; Guatelli, Susanna; Bordage, Marie-Claude; Ivanchenko, Vladimir; Murakami, Koichi; Sasaki, Takashi; Emfietzoglou, Dimitris; Incerti, Sebastien
2018-05-01
Gold nanoparticles (GNPs) are known to enhance the absorbed dose in their vicinity following photon-based irradiation. To investigate the therapeutic effectiveness of GNPs, previous Monte Carlo simulation studies have explored GNP dose enhancement using mostly condensed-history models. However, in general, such models are suitable for macroscopic volumes and for electron energies above a few hundred electron volts. We have recently developed, for the Geant4-DNA extension of the Geant4 Monte Carlo simulation toolkit, discrete physics models for electron transport in gold which include the description of the full atomic de-excitation cascade. These models allow event-by-event simulation of electron tracks in gold down to 10 eV. The present work describes how such specialized physics models impact simulation-based studies on GNP-radioenhancement in a context of x-ray radiotherapy. The new discrete physics models are compared to the Geant4 Penelope and Livermore condensed-history models, which are being widely used for simulation-based NP radioenhancement studies. An ad hoc Geant4 simulation application has been developed to calculate the absorbed dose in liquid water around a GNP and its radioenhancement, caused by secondary particles emitted from the GNP itself, when irradiated with a monoenergetic electron beam. The effect of the new physics models is also quantified in the calculation of secondary particle spectra, when originating in the GNP and when exiting from it. The new physics models show similar backscattering coefficients with the existing Geant4 Livermore and Penelope models in large volumes for 100 keV incident electrons. However, in submicron sized volumes, only the discrete models describe the high backscattering that should still be present around GNPs at these length scales. Sizeable differences (mostly above a factor of 2) are also found in the radial distribution of absorbed dose and secondary particles between the new and the existing Geant4 models. The degree to which these differences are due to intrinsic limitations of the condensed-history models or to differences in the underling scattering cross sections requires further investigation. Improved physics models for gold are necessary to better model the impact of GNPs in radiotherapy via Monte Carlo simulations. We implemented discrete electron transport models for gold in Geant4 that is applicable down to 10 eV including the modeling of the full de-excitation cascade. It is demonstrated that the new model has a significant positive impact on particle transport simulations in gold volumes with submicron dimensions compared to the existing Livermore and Penelope condensed-history models of Geant4. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Miloichikova, I. A.; Bespalov, V. I.; Krasnykh, A. A.; Stuchebrov, S. G.; Cherepennikov, Yu. M.; Dusaev, R. R.
2018-04-01
Simulation by the Monte Carlo method is widely used to calculate the character of ionizing radiation interaction with substance. A wide variety of programs based on the given method allows users to choose the most suitable package for solving computational problems. In turn, it is important to know exactly restrictions of numerical systems to avoid gross errors. Results of estimation of the feasibility of application of the program PCLab (Computer Laboratory, version 9.9) for numerical simulation of the electron energy distribution absorbed in beryllium, aluminum, gold, and water for industrial, research, and clinical beams are presented. The data obtained using programs ITS and Geant4 being the most popular software packages for solving the given problems and the program PCLab are presented in the graphic form. A comparison and an analysis of the results obtained demonstrate the feasibility of application of the program PCLab for simulation of the absorbed energy distribution and dose of electrons in various materials for energies in the range 1-20 MeV.
Monte-Carlo Application for Nondestructive Nuclear Waste Analysis
NASA Astrophysics Data System (ADS)
Carasco, C.; Engels, R.; Frank, M.; Furletov, S.; Furletova, J.; Genreith, C.; Havenith, A.; Kemmerling, G.; Kettler, J.; Krings, T.; Ma, J.-L.; Mauerhofer, E.; Neike, D.; Payan, E.; Perot, B.; Rossbach, M.; Schitthelm, O.; Schumann, M.; Vasquez, R.
2014-06-01
Radioactive waste has to undergo a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Within the quality checking of radioactive waste packages non-destructive assays are required to characterize their radio-toxic and chemo-toxic contents. The Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety of the Forschungszentrum Jülich develops in the framework of cooperation nondestructive analytical techniques for the routine characterization of radioactive waste packages at industrial-scale. During the phase of research and development Monte Carlo techniques are used to simulate the transport of particle, especially photons, electrons and neutrons, through matter and to obtain the response of detection systems. The radiological characterization of low and intermediate level radioactive waste drums is performed by segmented γ-scanning (SGS). To precisely and accurately reconstruct the isotope specific activity content in waste drums by SGS measurement, an innovative method called SGSreco was developed. The Geant4 code was used to simulate the response of the collimated detection system for waste drums with different activity and matrix configurations. These simulations allow a far more detailed optimization, validation and benchmark of SGSreco, since the construction of test drums covering a broad range of activity and matrix properties is time consuming and cost intensive. The MEDINA (Multi Element Detection based on Instrumental Neutron Activation) test facility was developed to identify and quantify non-radioactive elements and substances in radioactive waste drums. MEDINA is based on prompt and delayed gamma neutron activation analysis (P&DGNAA) using a 14 MeV neutron generator. MCNP simulations were carried out to study the response of the MEDINA facility in terms of gamma spectra, time dependence of the neutron energy spectrum, neutron flux distribution. The validation of the measurements simulations with Mont-Carlo transport codes for the design, optimization and data analysis of further P&DGNAA facilities is performed in collaboration with LMN CEA Cadarache. The performance of the prompt gamma neutron activation analysis (PGNAA) for the nondestructive determination of actinides in small samples is investigated. The quantitative determination of actinides relies on the precise knowledge of partial neutron capture cross sections. Up to today these cross sections are not very accurate for analytical purpose. The goal of the TANDEM (Trans-uranium Actinides' Nuclear Data - Evaluation and Measurement) Collaboration is the evaluation of these cross sections. Cross sections are measured using prompt gamma activation analysis facilities in Budapest and Munich. Geant4 is used to optimally design the detection system with Compton suppression. Furthermore, for the evaluation of the cross sections it is strongly needed to correct the results to the self-attenuation of the prompt gammas within the sample. In the framework of cooperation RWTH Aachen University, Forschungszentrum Jülich and the Siemens AG will study the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA). The system is based on a 14 MeV neutron source and an advanced detector system (a-Si flat panel) linked to an exclusive converter/scintillator for fast neutrons. For shielding and radioprotection studies the codes MCNPX and Geant4 were used. The two codes were benchmarked in processing time and accuracy in the neutron and gamma fluxes. Also the detector response was simulated with Geant4 to optimize components of the system.
NASA Astrophysics Data System (ADS)
Hartling, K.; Ciungu, B.; Li, G.; Bentoumi, G.; Sur, B.
2018-05-01
Monte Carlo codes such as MCNP and Geant4 rely on a combination of physics models and evaluated nuclear data files (ENDF) to simulate the transport of neutrons through various materials and geometries. The grid representation used to represent the final-state scattering energies and angles associated with neutron scattering interactions can significantly affect the predictions of these codes. In particular, the default thermal scattering libraries used by MCNP6.1 and Geant4.10.3 do not accurately reproduce the ENDF/B-VII.1 model in simulations of the double-differential cross section for thermal neutrons interacting with hydrogen nuclei in a thin layer of water. However, agreement between model and simulation can be achieved within the statistical error by re-processing ENDF/B-VII.I thermal scattering libraries with the NJOY code. The structure of the thermal scattering libraries and sampling algorithms in MCNP and Geant4 are also reviewed.
Nuclear spectroscopy with Geant4. The superheavy challenge
NASA Astrophysics Data System (ADS)
Sarmiento, Luis G.
2016-12-01
The simulation toolkit Geant4 was originally developed at CERN for high-energy physics. Over the years it has been established as a swiss army knife not only in particle physics but it has seen an accelerated expansion towards nuclear physics and more recently to medical imaging and γ- and ion- therapy to mention but a handful of new applications. The validity of Geant4 is vast and large across many particles, ions, materials, and physical processes with typically various different models to choose from. Unfortunately, atomic nuclei with atomic number Z > 100 are not properly supported. This is likely due to the rather novelty of the field, its comparably small user base, and scarce evaluated experimental data. To circumvent this situation different workarounds have been used over the years. In this work the simulation toolkit Geant4 will be introduced with its different components and the effort to bring the software to the heavy and superheavy region will be described.
Modeling proton and alpha elastic scattering in liquid water in Geant4-DNA
NASA Astrophysics Data System (ADS)
Tran, H. N.; El Bitar, Z.; Champion, C.; Karamitros, M.; Bernal, M. A.; Francis, Z.; Ivantchenko, V.; Lee, S. B.; Shin, J. I.; Incerti, S.
2015-01-01
Elastic scattering of protons and alpha (α) particles by water molecules cannot be neglected at low incident energies. However, this physical process is currently not available in the "Geant4-DNA" extension of the Geant4 Monte Carlo simulation toolkit. In this work, we report on theoretical differential and integral cross sections of the elastic scattering process for 100 eV-1 MeV incident protons and for 100 eV-10 MeV incident α particles in liquid water. The calculations are performed within the classical framework described by Everhart et al., Ziegler et al. and by the ICRU 49 Report. Then, we propose an implementation of the corresponding classes into the Geant4-DNA toolkit for modeling the elastic scattering of protons and α particles. Stopping powers as well as ranges are also reported. Then, it clearly appears that the account of the elastic scattering process in the slowing-down of the charged particle improves the agreement with the existing data in particular with the ICRU recommendations.
SU-E-I-77: X-Ray Coherent Scatter Diffraction Pattern Modeling in GEANT4.
Kapadia, A; Samei, E; Harrawood, B; Sahbaee, P; Chawla, A; Tan, Z; Brady, D
2012-06-01
To model X-ray coherent scatter diffraction patterns in GEANT4 for simulating experiments involving material detection through diffraction pattern measurement. Although coherent scatter cross-sections are modeled accurately in GEANT4, diffraction patterns for crystalline materials are not yet included. Here we describe our modeling of crystalline diffraction patterns in GEANT4 for specific materials and the validation of the results against experimentally measured data. Coherent scatter in GEANT4 is currently based on Hubbell's non-relativistic form factor tabulations from EPDL97. We modified the form-factors by introducing an interference function that accounts for the angular dependence between the Rayleigh-scattered photons and the photon wavelength. The modified form factors were used to replace the inherent form-factors in GEANT4. The simulation was tested using monochromatic and polychromatic x-ray beams (separately) incident on objects containing one or more elements with modified form-factors. The simulation results were compared against the experimentally measured diffraction images of corresponding objects using an in-house x-ray diffraction imager for validation. The comparison was made using the following metrics: number of diffraction rings, radial distance, absolute intensity, and relative intensity. Sharp diffraction pattern rings were observed in the monochromatic simulations at locations consistent with the angular dependence of the photon wavelength. In the polychromatic simulations, the diffraction patterns exhibited a radial blur consistent with the energy spread of the polychromatic spectrum. The simulated and experimentally measured patterns showed identical numbers of rings with close agreement in radial distance, absolute and relative intensities (barring statistical fluctuations). No significant change was observed in the execution time of the simulations. This work demonstrates the ability to model coherent scatter diffraction in GEANT4 in an accurate and efficient manner without compromising the accuracy or runtime of the simulation. This work was supported by the Department of Homeland Security under grant DHS (BAA 10-01 F075), and by the Department of Defense under award W81XWH-09-1-0066. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Soti, G.; Wauters, F.; Breitenfeldt, M.; Finlay, P.; Kraev, I. S.; Knecht, A.; Porobić, T.; Zákoucký, D.; Severijns, N.
2013-11-01
Geant4 simulations play a crucial role in the analysis and interpretation of experiments providing low energy precision tests of the Standard Model. This paper focuses on the accuracy of the description of the electron processes in the energy range between 100 and 1000 keV. The effect of the different simulation parameters and multiple scattering models on the backscattering coefficients is investigated. Simulations of the response of HPGe and passivated implanted planar Si detectors to β particles are compared to experimental results. An overall good agreement is found between Geant4 simulations and experimental data.
Geant4 Developments for the Radon Electric Dipole Moment Search at TRIUMF
NASA Astrophysics Data System (ADS)
Rand, E. T.; Bangay, J. C.; Bianco, L.; Dunlop, R.; Finlay, P.; Garrett, P. E.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Wong, J.
2011-09-01
An experiment is being developed at TRIUMF to search for a time-reversal violating electric dipole moment (EDM) in odd-A isotopes of Rn. Extensive simulations of the experiment are being performed with GEANT4 to study the backgrounds and sensitivity of the proposed measurement technique involving the detection of γ rays emitted following the β decay of polarized Rn nuclei. GEANT4 developments for the RnEDM experiment include both realistic modelling of the detector geometry and full tracking of the radioactive β, γ, internal conversion, and x-ray processes, including the γ-ray angular distributions essential for measuring an atomic EDM.
Use of SRIM and Garfield with Geant4 for the characterization of a hybrid 10B/3He neutron detector
NASA Astrophysics Data System (ADS)
van der Ende, B. M.; Rand, E. T.; Erlandson, A.; Li, L.
2018-06-01
This paper describes a method for more complete neutron detector characterization using Geant4's Monte Carlo methods for characterizing overall detector response rate and Garfield interfaced with SRIM for the simulation of the detector's raw pulses, as applied to a hybrid 10B/3He detector. The Geant4 models characterizing the detector's interaction with a 252Cf point source and parallel beams of mono-energetic neutrons (assuming ISO 8529 reference energy values) compare and agree well with calibrated 252Cf measurements to within 6.4%. Validated Geant4 model outputs serve as input to Garfield+SRIM calculations to provide meaningful pulse height spectra. Modifications to Garfield for this work were necessary to account for simultaneous tracking of electrons resulting from proton and triton reaction products from a single 3He neutron capture event, and it was further necessary to interface Garfield with the energy loss, range, and straggling calculations provided by SRIM. Individual raw pulses generated by Garfield+SRIM are also observed to agree well with experimentally measured raw pulses from the detector.
Military Curricula for Vocational & Technical Education. Communications Computer Programmer, 4-2.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
These student materials--study guides, handouts (some are manuals), a workbook, and programmed texts--for a secondary-postsecondary-level course for communications computer programmer are one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. A…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; et al.
A Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ~10^7, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon. These results rely on the accurate simulation of the detector response to the liquid argon scintillation, its ionization, andmore » electron-ion recombination processes. This work provides a complete overview of the DarkSide Monte Carlo and of its performance, with a particular focus on PARIS, the custom-made liquid argon response model.« less
NASA Astrophysics Data System (ADS)
Incerti, S.; Suerfu, B.; Xu, J.; Ivantchenko, V.; Mantero, A.; Brown, J. M. C.; Bernal, M. A.; Francis, Z.; Karamitros, M.; Tran, H. N.
2016-04-01
A revised atomic deexcitation framework for the Geant4 general purpose Monte Carlo toolkit capable of simulating full Auger deexcitation cascades was implemented in June 2015 release (version 10.2 Beta). An overview of this refined framework and testing of its capabilities is presented for the irradiation of gold nanoparticles (NP) with keV photon and MeV proton beams. The resultant energy spectra of secondary particles created within and that escape the NP are analyzed and discussed. It is anticipated that this new functionality will improve and increase the use of Geant4 in the medical physics, radiobiology, nanomedicine research and other low energy physics fields.
New estimates of extensive-air-shower energies on the basis of signals in scintillation detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anyutin, N. V.; Dedenko, L. G., E-mail: ddn@dec1.sinp.msu.ru; Roganova, T. M.
New formulas for estimating the energy of inclined extensive air showers (EASs) on the basis of signals in detectors by means of an original method and detailed tables of signals induced in scintillation detectors by photons, electrons, positrons, and muons and calculated with the aid of the GEANT4 code package were proposed in terms of the QGSJETII-04, EPOS LHC, and GHEISHA models. The parameters appearing in the proposed formulas were calculated by employing the CORSIKA code package. It is shown that, for showers of zenith angles in the range of 20◦–45◦, the standard constant-intensity-cut method, which is used to interpretmore » data from the Yakutsk EAS array, overestimates the shower energy by a factor of 1.2 to 1.5. It is proposed to employ the calculated VEM (Vertical Equivalent Muon) signal units of 10.8 and 11.4 MeV for, respectively, ground-based and underground scintillation detectors and to take into account the dependence of signals on the azimuthal angle of the detector position and fluctuations in the development of showers.« less
An implementation of discrete electron transport models for gold in the Geant4 simulation toolkit
NASA Astrophysics Data System (ADS)
Sakata, D.; Incerti, S.; Bordage, M. C.; Lampe, N.; Okada, S.; Emfietzoglou, D.; Kyriakou, I.; Murakami, K.; Sasaki, T.; Tran, H.; Guatelli, S.; Ivantchenko, V. N.
2016-12-01
Gold nanoparticle (GNP) boosted radiation therapy can enhance the biological effectiveness of radiation treatments by increasing the quantity of direct and indirect radiation-induced cellular damage. As the physical effects of GNP boosted radiotherapy occur across energy scales that descend down to 10 eV, Monte Carlo simulations require discrete physics models down to these very low energies in order to avoid underestimating the absorbed dose and secondary particle generation. Discrete physics models for electron transportation down to 10 eV have been implemented within the Geant4-DNA low energy extension of Geant4. Such models allow the investigation of GNP effects at the nanoscale. At low energies, the new models have better agreement with experimental data on the backscattering coefficient, and they show similar performance for transmission coefficient data as the Livermore and Penelope models already implemented in Geant4. These new models are applicable in simulations focussed towards estimating the relative biological effectiveness of radiation in GNP boosted radiotherapy applications with photon and electron radiation sources.
Modeling the Martian neutron and gamma-ray leakage fluxes using Geant4
NASA Astrophysics Data System (ADS)
Pirard, Benoit; Desorgher, Laurent; Diez, Benedicte; Gasnault, Olivier
A new evaluation of the Martian neutron and gamma-ray (continuum and line) leakage fluxes has been performed using the Geant4 code. Even if numerous studies have recently been carried out with Monte Carlo methods to characterize planetary radiation environments, only a few however have been able to reproduce in detail the neutron and gamma-ray spectra observed in orbit. We report on the efforts performed to adapt and validate the Geant4-based PLAN- ETOCOSMICS code for use in planetary neutron and gamma-ray spectroscopy data analysis. Beside the advantage of high transparency and modularity common to Geant4 applications, the new code uses reviewed nuclear cross section data, realistic atmospheric profiles and soil layering, as well as specific effects such as gravity acceleration for low energy neutrons. Results from first simulations are presented for some Martian reference compositions and show a high consistency with corresponding neutron and gamma-ray spectra measured on board Mars Odyssey. Finally we discuss the advantages and perspectives of the improved code for precise simulation of planetary radiation environments.
GEANT4-based full simulation of the PADME experiment at the DAΦNE BTF
NASA Astrophysics Data System (ADS)
Leonardi, E.; Kozhuharov, V.; Raggi, M.; Valente, P.
2017-10-01
A possible solution to the dark matter problem postulates that dark particles can interact with Standard Model particles only through a new force mediated by a “portal”. If the new force has a U(1) gauge structure, the “portal” is a massive photon-like vector particle, called dark photon or A‧. The PADME experiment at the DAΦNE Beam-Test Facility (BTF) in Frascati is designed to detect dark photons produced in positron on fixed target annihilations decaying to dark matter (e+e-→γA‧) by measuring the final state missing mass. The experiment will be composed of a thin active diamond target where a 550 MeV positron beam will impinge to produce e+e- annihilation events. The surviving beam will be deflected with a magnet while the photons produced in the annihilation will be measured by a calorimeter composed of BGO crystals. To reject the background from Bremsstrahlung gamma production, a set of segmented plastic scintillator vetoes will be used to detect positrons exiting the target with an energy lower than that of the beam, while a fast small angle calorimeter will be used to reject the e+e-→γγ(γ) background. To optimize the experimental layout in terms of signal acceptance and background rejection, the full layout of the experiment was modelled with the GEANT4 simulation package. In this paper we will describe the details of the simulation and report on the results obtained with the software.
Abdalaoui Slimani, Faical Alaoui; Bentourkia, M'hamed
2018-01-01
There are several computer programs or combination of programs for radiation tracking and other information in tissues by using Monte Carlo simulation [1]. Among these are GEANT4 [2] programs provided as classes that can be incorporated in C++ codes to achieve different tasks in radiation interactions with matter. GEANT4 made the physics easier but requires often a long learning-curve that implies a good knowledge of C++ and the Geant4 architecture. GAMOS [3], the Geant4-based Architecture for Medicine-Oriented Simulations, facilitates the use of Geant4 by providing a script language that covers almost all the needs of a radiotherapy simulation but it is obviously out of reach of biological researchers. The aim of the present work was to report the design and development of a Graphical User Interface (GUI) for absorbed dose calculation and for particle tracking in humans, small animals and phantoms. The GUI is based on the open source GEANT4 for the physics of particle interactions, on the QT cross-platform application for combining programming commands and for display. The calculation of the absorbed dose can be performed based on 3D CT images in DICOM format, from images of phantoms or from solid volumes that can be made from any pure or composite material to be specified by its molecular formulas. The GUI has several menus relative to the emitting source which can have different shapes, positions, energy as mono- or poly-energy such as X-ray spectra; the types of particles and particle interactions; energy deposition and absorbed dose; and the output results as histograms. In conclusion, the GUI we developed can be easily used by any researcher without the need to be familiar with computer programming, and it will be freely proposed as an open source. Copyright © 2017.
Software aspects of the Geant4 validation repository
NASA Astrophysics Data System (ADS)
Dotti, Andrea; Wenzel, Hans; Elvira, Daniel; Genser, Krzysztof; Yarba, Julia; Carminati, Federico; Folger, Gunter; Konstantinov, Dmitri; Pokorski, Witold; Ribon, Alberto
2017-10-01
The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientific Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER is easily accessible via a web application. In addition, a web service allows for programmatic access to the repository to extract records in JSON or XML exchange formats. In this article, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.
Software Aspects of the Geant4 Validation Repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dotti, Andrea; Wenzel, Hans; Elvira, Daniel
2016-01-01
The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientic Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER is easily accessible via a web application. In addition, a web service allows for programmatic access to the repository to extract records in JSON or XML exchange formats. In this article, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.
ERIC Educational Resources Information Center
Riggi, Simone; La Rocca, Paola; Riggi, Francesco
2011-01-01
GEANT4 simulations of the processes affecting the transport and collection of optical photons generated inside a scintillation detector were carried out, with the aim to complement the educational material offered by textbooks to third-year physics undergraduates. Two typical situations were considered: a long scintillator strip with and without a…
Allison, J.; Amako, K.; Apostolakis, J.; ...
2016-07-01
Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection. Over the past several years, major changes have been made to the toolkit in order to accommodate the needs of these user communities, and to efficiently exploit the growth of computing power made available by advances in technology. In conclusion, the adaptation of Geant4 to multithreading, advances in physics, detector modeling and visualization, extensions tomore » the toolkit, including biasing and reverse Monte Carlo, and tools for physics and release validation are discussed here.« less
Incerti, S.; Suerfu, B.; Xu, J.; ...
2016-02-16
We report that a revised atomic deexcitation framework for the Geant4 general purpose Monte Carlo toolkit capable of simulating full Auger deexcitation cascades was implemented in June 2015 release (version 10.2 Beta). An overview of this refined framework and testing of its capabilities is presented for the irradiation of gold nanoparticles (NP) with keV photon and MeV proton beams. The resultant energy spectra of secondary particles created within and that escape the NP are analyzed and discussed. It is anticipated that this new functionality will improve and increase the use of Geant4 in the medical physics, radiobiology, nanomedicine research andmore » other low energy physics fields.« less
Simulation of argon response and light detection in the DarkSide-50 dual phase TPC
NASA Astrophysics Data System (ADS)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; de Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Vincenzi, M.; Derbin, A. V.; De Rosa, G.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, An.; James, I.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Longo, G.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Martoff, C. J.; Meyers, P. D.; Milincic, R.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Sablone, D.; Sands, W.; Sanfilippo, S.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Yang, C.; Ye, Z.; Zhu, C.; Zuzel, G.
2017-10-01
A Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ~107, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon. These results rely on the accurate simulation of the detector response to the liquid argon scintillation, its ionization, and electron-ion recombination processes. This work provides a complete overview of the DarkSide Monte Carlo and of its performance, with a particular focus on PARIS, the custom-made liquid argon response model.
NASA Astrophysics Data System (ADS)
van den Akker, Mary Evelyn
Radon is considered the second-leading cause of lung cancer after smoking. Epidemiological studies have been conducted in miner cohorts as well as general populations to estimate the risks associated with high and low dose exposures. There are problems with extrapolating risk estimates to low dose exposures, mainly that the dose-response curve at low doses is not well understood. Calculated dosimetric quantities give average energy depositions in an organ or a whole body, but morphological features of an individual can affect these values. As opposed to human phantom models, Computed Tomography (CT) scans provide unique, patient-specific geometries that are valuable in modeling the radiological effects of the short-lived radon progeny sources. Monte Carlo particle transport code Geant4 was used with the CT scan data to model radon inhalation in the main bronchial bifurcation. The equivalent dose rates are near the lower bounds of estimates found in the literature, depending on source volume. To complement the macroscopic study, simulations were run in a small tissue volume in Geant4-DNA toolkit. As an expansion of Geant4 meant to simulate direct physical interactions at the cellular level, the particle track structure of the radon progeny alphas can be analyzed to estimate the damage that can occur in sensitive cellular structures like the DNA molecule. These estimates of DNA double strand breaks are lower than those found in Geant4-DNA studies. Further refinements of the microscopic model are at the cutting edge of nanodosimetry research.
Air shower simulation for background estimation in muon tomography of volcanoes
NASA Astrophysics Data System (ADS)
Béné, S.; Boivin, P.; Busato, E.; Cârloganu, C.; Combaret, C.; Dupieux, P.; Fehr, F.; Gay, P.; Labazuy, P.; Laktineh, I.; Lénat, J.-F.; Miallier, D.; Mirabito, L.; Niess, V.; Portal, A.; Vulpescu, B.
2013-01-01
One of the main sources of background for the radiography of volcanoes using atmospheric muons comes from the accidental coincidences produced in the muon telescopes by charged particles belonging to the air shower generated by the primary cosmic ray. In order to quantify this background effect, Monte Carlo simulations of the showers and of the detector are developed by the TOMUVOL collaboration. As a first step, the atmospheric showers were simulated and investigated using two Monte Carlo packages, CORSIKA and GEANT4. We compared the results provided by the two programs for the muonic component of vertical proton-induced showers at three energies: 1, 10 and 100 TeV. We found that the spatial distribution and energy spectrum of the muons were in good agreement for the two codes.
Three-dimensional Image Reconstruction in J-PET Using Filtered Back-projection Method
NASA Astrophysics Data System (ADS)
Shopa, R. Y.; Klimaszewski, K.; Kowalski, P.; Krzemień, W.; Raczyński, L.; Wiślicki, W.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Hiesmayr, B.; Jasińska, B.; Kisielewska-Kamińska, D.; Korcyl, G.; Kozik, T.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Niedźwiecki, S.; Pałka, M.; Rudy, Z.; Sharma, N. G.; Sharma, S.; Silarski, M.; Skurzok, M.; Wieczorek, A.; Zgardzińska, B.; Zieliński, M.; Moskal, P.
We present a method and preliminary results of the image reconstruction in the Jagiellonian PET tomograph. Using GATE (Geant4 Application for Tomographic Emission), interactions of the 511 keV photons with a cylindrical detector were generated. Pairs of such photons, flying back-to-back, originate from e+e- annihilations inside a 1-mm spherical source. Spatial and temporal coordinates of hits were smeared using experimental resolutions of the detector. We incorporated the algorithm of the 3D Filtered Back Projection, implemented in the STIR and TomoPy software packages, which differ in approximation methods. Consistent results for the Point Spread Functions of ~5/7,mm and ~9/20, mm were obtained, using STIR, for transverse and longitudinal directions, respectively, with no time of flight information included.
Comparison of Geant4-DNA simulation of S-values with other Monte Carlo codes
NASA Astrophysics Data System (ADS)
André, T.; Morini, F.; Karamitros, M.; Delorme, R.; Le Loirec, C.; Campos, L.; Champion, C.; Groetz, J.-E.; Fromm, M.; Bordage, M.-C.; Perrot, Y.; Barberet, Ph.; Bernal, M. A.; Brown, J. M. C.; Deleuze, M. S.; Francis, Z.; Ivanchenko, V.; Mascialino, B.; Zacharatou, C.; Bardiès, M.; Incerti, S.
2014-01-01
Monte Carlo simulations of S-values have been carried out with the Geant4-DNA extension of the Geant4 toolkit. The S-values have been simulated for monoenergetic electrons with energies ranging from 0.1 keV up to 20 keV, in liquid water spheres (for four radii, chosen between 10 nm and 1 μm), and for electrons emitted by five isotopes of iodine (131, 132, 133, 134 and 135), in liquid water spheres of varying radius (from 15 μm up to 250 μm). The results have been compared to those obtained from other Monte Carlo codes and from other published data. The use of the Kolmogorov-Smirnov test has allowed confirming the statistical compatibility of all simulation results.
Cosmogenic activation of germanium used for tonne-scale rare event search experiments
NASA Astrophysics Data System (ADS)
Wei, W.-Z.; Mei, D.-M.; Zhang, C.
2017-11-01
We report a comprehensive study of cosmogenic activation of germanium used for tonne-scale rare event search experiments. The germanium exposure to cosmic rays on the Earth's surface are simulated with and without a shielding container using Geant4 for a given cosmic muon, neutron, and proton energy spectrum. The production rates of various radioactive isotopes are obtained for different sources separately. We find that fast neutron induced interactions dominate the production rate of cosmogenic activation. Geant4-based simulation results are compared with the calculation of ACTIVIA and the available experimental data. A reasonable agreement between Geant4 simulations and several experimental data sets is presented. We predict that cosmogenic activation of germanium can set limits to the sensitivity of the next generation of tonne-scale experiments.
Study of low energy neutron beam formation based on GEANT4 simulations
NASA Astrophysics Data System (ADS)
Avagyan, R.; Avetisyan, R.; Ivanyan, V.; Kerobyan, I.
2017-07-01
The possibility of obtaining thermal/epithermal energy neutron beams using external protons from cyclotron C18/18 is studied based on GEANT4 simulations. This study will be the basis of the Beam Shaped Assembly (BSA) development for future Boron Neutron Capture Therapy (BNCT). Proton induced reactions on 9Be target are considered as a neutron source, and dependence of neutron yield on target thickness is investigated. The problem of reducing the ratio of gamma to neutron yields by inserting a lead sheet after the beryllium target is studied as well. By GEANT4 modeling the optimal thicknesses of 9Be target and lead absorber are determined and the design characteristics of beam shaping assembly, including the materials and thicknesses of reflector and moderator are considered.
Simulation of Radiation Damage to Neural Cells with the Geant4-DNA Toolkit
NASA Astrophysics Data System (ADS)
Bayarchimeg, Lkhagvaa; Batmunkh, Munkhbaatar; Belov, Oleg; Lkhagva, Oidov
2018-02-01
To help in understanding the physical and biological mechanisms underlying effects of cosmic and therapeutic types of radiation on the central nervous system (CNS), we have developed an original neuron application based on the Geant4 Monte Carlo simulation toolkit, in particular on its biophysical extension Geant4-DNA. The applied simulation technique provides a tool for the simulation of physical, physico-chemical and chemical processes (e.g. production of water radiolysis species in the vicinity of neurons) in realistic geometrical model of neural cells exposed to ionizing radiation. The present study evaluates the microscopic energy depositions and water radiolysis species yields within a detailed structure of a selected neuron taking into account its soma, dendrites, axon and spines following irradiation with carbon and iron ions.
Application of TDCR-Geant4 modeling to standardization of 63Ni.
Thiam, C; Bobin, C; Chauvenet, B; Bouchard, J
2012-09-01
As an alternative to the classical TDCR model applied to liquid scintillation (LS) counting, a stochastic approach based on the Geant4 toolkit is presented for the simulation of light emission inside the dedicated three-photomultiplier detection system. To this end, the Geant4 modeling includes a comprehensive description of optical properties associated with each material constituting the optical chamber. The objective is to simulate the propagation of optical photons from their creation in the LS cocktail to the production of photoelectrons in the photomultipliers. First validated for the case of radionuclide standardization based on Cerenkov emission, the scintillation process has been added to a TDCR-Geant4 modeling using the Birks expression in order to account for the light-emission nonlinearity owing to ionization quenching. The scintillation yield of the commercial Ultima Gold LS cocktail has been determined from double-coincidence detection efficiencies obtained for (60)Co and (54)Mn with the 4π(LS)β-γ coincidence method. In this paper, the stochastic TDCR modeling is applied for the case of the standardization of (63)Ni (pure β(-)-emitter; E(max)=66.98 keV) and the activity concentration is compared with the result given by the classical model. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Guerrero, C.; Quesada, J. M.; Meo, S. Lo; Massimi, C.; Barbagallo, M.; Colonna, N.; Mancussi, D.; Mingrone, F.; Sabaté-Gilarte, M.; Vannini, G.; Vlachoudis, V.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Bečvář, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; Gómez-Hornillos, M. B.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Saxena, A.; Schillebeeckx, P.; Schumann, D.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Valenta, S.; Variale, V.; Vaz, P.; Ventura, A.; Vlastou, R.; Wallner, A.; Warren, S.; Woods, P. J.; Wright, T.; Žugec, P.
2017-09-01
Monte Carlo (MC) simulations are an essential tool to determine fundamental features of a neutron beam, such as the neutron flux or the γ-ray background, that sometimes can not be measured or at least not in every position or energy range. Until recently, the most widely used MC codes in this field had been MCNPX and FLUKA. However, the Geant4 toolkit has also become a competitive code for the transport of neutrons after the development of the native Geant4 format for neutron data libraries, G4NDL. In this context, we present the Geant4 simulations of the neutron spallation target of the n_TOF facility at CERN, done with version 10.1.1 of the toolkit. The first goal was the validation of the intra-nuclear cascade models implemented in the code using, as benchmark, the characteristics of the neutron beam measured at the first experimental area (EAR1), especially the neutron flux and energy distribution, and the time distribution of neutrons of equal kinetic energy, the so-called Resolution Function. The second goal was the development of a Monte Carlo tool aimed to provide useful calculations for both the analysis and planning of the upcoming measurements at the new experimental area (EAR2) of the facility.
Modeling of microporous silicon betaelectric converter with 63Ni plating in GEANT4 toolkit*
NASA Astrophysics Data System (ADS)
Zelenkov, P. V.; Sidorov, V. G.; Lelekov, E. T.; Khoroshko, A. Y.; Bogdanov, S. V.; Lelekov, A. T.
2016-04-01
The model of electron-hole pairs generation rate distribution in semiconductor is needed to optimize the parameters of microporous silicon betaelectric converter, which uses 63Ni isotope radiation. By using Monte-Carlo methods of GEANT4 software with ultra-low energy electron physics models this distribution in silicon was calculated and approximated with exponential function. Optimal pore configuration was estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, J; Coss, D; McMurry, J
Purpose: To evaluate the efficiency of multithreaded Geant4 (Geant4-MT, version 10.0) for proton Monte Carlo dose calculations using a high performance computing facility. Methods: Geant4-MT was used to calculate 3D dose distributions in 1×1×1 mm3 voxels in a water phantom and patient's head with a 150 MeV proton beam covering approximately 5×5 cm2 in the water phantom. Three timestamps were measured on the fly to separately analyze the required time for initialization (which cannot be parallelized), processing time of individual threads, and completion time. Scalability of averaged processing time per thread was calculated as a function of thread number (1,more » 100, 150, and 200) for both 1M and 50 M histories. The total memory usage was recorded. Results: Simulations with 50 M histories were fastest with 100 threads, taking approximately 1.3 hours and 6 hours for the water phantom and the CT data, respectively with better than 1.0 % statistical uncertainty. The calculations show 1/N scalability in the event loops for both cases. The gains from parallel calculations started to decrease with 150 threads. The memory usage increases linearly with number of threads. No critical failures were observed during the simulations. Conclusion: Multithreading in Geant4-MT decreased simulation time in proton dose distribution calculations by a factor of 64 and 54 at a near optimal 100 threads for water phantom and patient's data respectively. Further simulations will be done to determine the efficiency at the optimal thread number. Considering the trend of computer architecture development, utilizing Geant4-MT for radiotherapy simulations is an excellent cost-effective alternative for a distributed batch queuing system. However, because the scalability depends highly on simulation details, i.e., the ratio of the processing time of one event versus waiting time to access for the shared event queue, a performance evaluation as described is recommended.« less
Investigation of OPET Performance Using GATE, a Geant4-Based Simulation Software.
Rannou, Fernando R; Kohli, Vandana; Prout, David L; Chatziioannou, Arion F
2004-10-01
A combined optical positron emission tomography (OPET) system is capable of both optical and PET imaging in the same setting, and it can provide information/interpretation not possible in single-mode imaging. The scintillator array here serves the dual function of coupling the optical signal from bioluminescence/fluorescence to the photodetector and also of channeling optical scintillations from the gamma rays. We report simulation results of the PET part of OPET using GATE, a Geant4 simulation package. The purpose of this investigation is the definition of the geometric parameters of the OPET tomograph. OPET is composed of six detector blocks arranged in a hexagonal ring-shaped pattern with an inner radius of 15.6 mm. Each detector consists of a two-dimensional array of 8 × 8 scintillator crystals each measuring 2 × 2 × 10 mm(3). Monte Carlo simulations were performed using the GATE software to measure absolute sensitivity, depth of interaction, and spatial resolution for two ring configurations, with and without gantry rotations, two crystal materials, and several crystal lengths. Images were reconstructed with filtered backprojection after angular interleaving and transverse one-dimensional interpolation of the sinogram. We report absolute sensitivities nearly seven times that of the prototype microPET at the center of field of view and 2.0 mm tangential and 2.3 mm radial resolutions with gantry rotations up to an 8.0 mm radial offset. These performance parameters indicate that the imaging spatial resolution and sensitivity of the OPET system will be suitable for high-resolution and high-sensitivity small-animal PET imaging.
Investigation of neutron interactions with Ge detectors
NASA Astrophysics Data System (ADS)
Baginova, Miloslava; Vojtyla, Pavol; Povinec, Pavel P.
2018-07-01
Interactions of neutrons with a high-purity germanium detector were studied experimentally and by simulations using the GEANT4 tool. Elastic and inelastic scattering of fast neutrons as well as neutron capture on Ge nuclei were observed. Peaks induced by inelastic scattering of neutrons on 70Ge, 72Ge, 73Ge, 74Ge and 76Ge were well visible in the γ-ray spectra. In addition, peaks due to inelastic scattering of neutrons on copper and lead nuclei, including the well-known peak of 208Pb at 2614.51 keV, were detected. The GEANT4 simulations showed that the simulated spectrum was in a good agreement with the experimental one. Differences between the simulated and the measured spectra were due to the high γ-ray intensity of the used neutron source, physics implemented in GEANT4 and contamination of the neutron source.
BRDF profile of Tyvek and its implementation in the Geant4 simulation toolkit.
Nozka, Libor; Pech, Miroslav; Hiklova, Helena; Mandat, Dusan; Hrabovsky, Miroslav; Schovanek, Petr; Palatka, Miroslav
2011-02-28
Diffuse and specular characteristics of the Tyvek 1025-BL material are reported with respect to their implementation in the Geant4 Monte Carlo simulation toolkit. This toolkit incorporates the UNIFIED model. Coefficients defined by the UNIFIED model were calculated from the bidirectional reflectance distribution function (BRDF) profiles measured with a scatterometer for several angles of incidence. Results were amended with profile measurements made by a profilometer.
Geant4 models for simulation of hadron/ion nuclear interactions at moderate and low energies.
NASA Astrophysics Data System (ADS)
Ivantchenko, Anton; Ivanchenko, Vladimir; Quesada, Jose-Manuel; Wright, Dennis
The Geant4 toolkit is intended for Monte Carlo simulation of particle transport in media. It was initially designed for High Energy Physics purposes such as experiments at the Large Hadron Collider (LHC) at CERN. The toolkit offers a set of models allowing effective simulation of cosmic ray interactions with different materials. For moderate and low energy hadron/ion interactions with nuclei there are a number of competitive models: Binary and Bertini intra-nuclear cascade models, quantum molecular dynamic model (QMD), INCL/ABLA cascade model, and Chiral Invariant Phase Space Decay model (CHIPS). We report the status of these models for the recent version of Geant4 (release 9.3, December 2009). The Bertini cascade in-ternal cross sections were upgraded. The native Geant4 precompound and deexcitation models were used in the Binary cascade and QMD. They were significantly improved including emis-sion of light fragments, the Fermi break-up model, the General Evaporation Model (GEM), the multi-fragmentation model, and the fission model. Comparisons between model predictions and data for thin target experiments for neutron, proton, light ions, and isotope production are presented and discussed. The focus of these validations is concentrated on target materials important for space missions.
Rohling, Heide; Sihver, Lembit; Priegnitz, Marlen; Enghardt, Wolfgang; Fiedler, Fine
2013-09-21
For quality assurance in particle therapy, a non-invasive, in vivo range verification is highly desired. Particle therapy positron-emission-tomography (PT-PET) is the only clinically proven method up to now for this purpose. It makes use of the β(+)-activity produced during the irradiation by the nuclear fragmentation processes between the therapeutic beam and the irradiated tissue. Since a direct comparison of β(+)-activity and dose is not feasible, a simulation of the expected β(+)-activity distribution is required. For this reason it is essential to have a quantitatively reliable code for the simulation of the yields of the β(+)-emitting nuclei at every position of the beam path. In this paper results of the three-dimensional Monte-Carlo simulation codes PHITS, GEANT4, and the one-dimensional deterministic simulation code HIBRAC are compared to measurements of the yields of the most abundant β(+)-emitting nuclei for carbon, lithium, helium, and proton beams. In general, PHITS underestimates the yields of positron-emitters. With GEANT4 the overall most accurate results are obtained. HIBRAC and GEANT4 provide comparable results for carbon and proton beams. HIBRAC is considered as a good candidate for the implementation to clinical routine PT-PET.
NASA Astrophysics Data System (ADS)
Rohling, Heide; Sihver, Lembit; Priegnitz, Marlen; Enghardt, Wolfgang; Fiedler, Fine
2013-09-01
For quality assurance in particle therapy, a non-invasive, in vivo range verification is highly desired. Particle therapy positron-emission-tomography (PT-PET) is the only clinically proven method up to now for this purpose. It makes use of the β+-activity produced during the irradiation by the nuclear fragmentation processes between the therapeutic beam and the irradiated tissue. Since a direct comparison of β+-activity and dose is not feasible, a simulation of the expected β+-activity distribution is required. For this reason it is essential to have a quantitatively reliable code for the simulation of the yields of the β+-emitting nuclei at every position of the beam path. In this paper results of the three-dimensional Monte-Carlo simulation codes PHITS, GEANT4, and the one-dimensional deterministic simulation code HIBRAC are compared to measurements of the yields of the most abundant β+-emitting nuclei for carbon, lithium, helium, and proton beams. In general, PHITS underestimates the yields of positron-emitters. With GEANT4 the overall most accurate results are obtained. HIBRAC and GEANT4 provide comparable results for carbon and proton beams. HIBRAC is considered as a good candidate for the implementation to clinical routine PT-PET.
GEANT4 Tuning For pCT Development
NASA Astrophysics Data System (ADS)
Yevseyeva, Olga; de Assis, Joaquim T.; Evseev, Ivan; Schelin, Hugo R.; Paschuk, Sergei A.; Milhoretto, Edney; Setti, João A. P.; Díaz, Katherin S.; Hormaza, Joel M.; Lopes, Ricardo T.
2011-08-01
Proton beams in medical applications deal with relatively thick targets like the human head or trunk. Thus, the fidelity of proton computed tomography (pCT) simulations as a tool for proton therapy planning depends in the general case on the accuracy of results obtained for the proton interaction with thick absorbers. GEANT4 simulations of proton energy spectra after passing thick absorbers do not agree well with existing experimental data, as showed previously. Moreover, the spectra simulated for the Bethe-Bloch domain showed an unexpected sensitivity to the choice of low-energy electromagnetic models during the code execution. These observations were done with the GEANT4 version 8.2 during our simulations for pCT. This work describes in more details the simulations of the proton passage through aluminum absorbers with varied thickness. The simulations were done by modifying only the geometry in the Hadrontherapy Example, and for all available choices of the Electromagnetic Physics Models. As the most probable reasons for these effects is some specific feature in the code, or some specific implicit parameters in the GEANT4 manual, we continued our study with version 9.2 of the code. Some improvements in comparison with our previous results were obtained. The simulations were performed considering further applications for pCT development.
NASA Astrophysics Data System (ADS)
Gherghel-Lascu, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2015-02-01
In previous studies of KASCADE-Grande data, a Monte Carlo simulation code based on the GEANT3 program has been developed to describe the energy deposited by EAS particles in the detector stations. In an attempt to decrease the simulation time and ensure compatibility with the geometry description in standard KASCADE-Grande analysis software, several structural elements have been neglected in the implementation of the Grande station geometry. To improve the agreement between experimental and simulated data, a more accurate simulation of the response of the KASCADE-Grande detector is necessary. A new simulation code has been developed based on the GEANT4 program, including a realistic geometry of the detector station with structural elements that have not been considered in previous studies. The new code is used to study the influence of a realistic detector geometry on the energy deposited in the Grande detector stations by particles from EAS events simulated by CORSIKA. Lateral Energy Correction Functions are determined and compared with previous results based on GEANT3.
NASA Astrophysics Data System (ADS)
Kovalev, I. V.; Sidorov, V. G.; Zelenkov, P. V.; Khoroshko, A. Y.; Lelekov, A. T.
2015-10-01
To optimize parameters of beta-electrical converter of isotope Nickel-63 radiation, model of the distribution of EHP generation rate in semiconductor must be derived. By using Monte-Carlo methods in GEANT4 system with ultra-low energy electron physics models this distribution in silicon calculated and approximated with Gauss function. Maximal efficient isotope layer thickness and maximal energy efficiency of EHP generation were estimated.
Calculation of Coincidence Summing Correction Factors for an HPGe detector using GEANT4.
Giubrone, G; Ortiz, J; Gallardo, S; Martorell, S; Bas, M C
2016-07-01
The aim of this paper was to calculate the True Coincidence Summing Correction Factors (TSCFs) for an HPGe coaxial detector in order to correct the summing effect as a result of the presence of (88)Y and (60)Co in a multigamma source used to obtain a calibration efficiency curve. Results were obtained for three volumetric sources using the Monte Carlo toolkit, GEANT4. The first part of this paper deals with modeling the detector in order to obtain a simulated full energy peak efficiency curve. A quantitative comparison between the measured and simulated values was made across the entire energy range under study. The True Summing Correction Factors were calculated for (88)Y and (60)Co using the full peak efficiencies obtained with GEANT4. This methodology was subsequently applied to (134)Cs, and presented a complex decay scheme. Copyright © 2016 Elsevier Ltd. All rights reserved.
Extension of PENELOPE to protons: simulation of nuclear reactions and benchmark with Geant4.
Sterpin, E; Sorriaux, J; Vynckier, S
2013-11-01
Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4. PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac-Hartree-Fock-Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer-Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for (1)H and ICRU 63 data for (12)C, (14)N, (16)O, (31)P, and (40)Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth-dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth-dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone. For simulations with EM collisions only, integral depth-dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth-dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth-dose distributions). The agreement is much better with FLUKA, with deviations within 3%/3 mm. When nuclear interactions were turned on, agreement (within 6% before the Bragg-peak) between PENH and Geant4 was consistent with uncertainties on nuclear models and cross sections, whatever the material simulated (water, muscle, or bone). A detailed and flexible description of nuclear reactions has been implemented in the PENH extension of PENELOPE to protons, which utilizes a mixed-simulation scheme for both elastic and inelastic EM collisions, analogous to the well-established algorithm for electrons/positrons. PENH is compatible with all current main programs that use PENELOPE as the MC engine. The nuclear model of PENH is realistic enough to give dose distributions in fair agreement with those computed by Geant4.
Guan, Fada; Peeler, Christopher; Bronk, Lawrence; Geng, Changran; Taleei, Reza; Randeniya, Sharmalee; Ge, Shuaiping; Mirkovic, Dragan; Grosshans, David; Mohan, Radhe; Titt, Uwe
2015-01-01
Purpose: The motivation of this study was to find and eliminate the cause of errors in dose-averaged linear energy transfer (LET) calculations from therapeutic protons in small targets, such as biological cell layers, calculated using the geant 4 Monte Carlo code. Furthermore, the purpose was also to provide a recommendation to select an appropriate LET quantity from geant 4 simulations to correlate with biological effectiveness of therapeutic protons. Methods: The authors developed a particle tracking step based strategy to calculate the average LET quantities (track-averaged LET, LETt and dose-averaged LET, LETd) using geant 4 for different tracking step size limits. A step size limit refers to the maximally allowable tracking step length. The authors investigated how the tracking step size limit influenced the calculated LETt and LETd of protons with six different step limits ranging from 1 to 500 μm in a water phantom irradiated by a 79.7-MeV clinical proton beam. In addition, the authors analyzed the detailed stochastic energy deposition information including fluence spectra and dose spectra of the energy-deposition-per-step of protons. As a reference, the authors also calculated the averaged LET and analyzed the LET spectra combining the Monte Carlo method and the deterministic method. Relative biological effectiveness (RBE) calculations were performed to illustrate the impact of different LET calculation methods on the RBE-weighted dose. Results: Simulation results showed that the step limit effect was small for LETt but significant for LETd. This resulted from differences in the energy-deposition-per-step between the fluence spectra and dose spectra at different depths in the phantom. Using the Monte Carlo particle tracking method in geant 4 can result in incorrect LETd calculation results in the dose plateau region for small step limits. The erroneous LETd results can be attributed to the algorithm to determine fluctuations in energy deposition along the tracking step in geant 4. The incorrect LETd values lead to substantial differences in the calculated RBE. Conclusions: When the geant 4 particle tracking method is used to calculate the average LET values within targets with a small step limit, such as smaller than 500 μm, the authors recommend the use of LETt in the dose plateau region and LETd around the Bragg peak. For a large step limit, i.e., 500 μm, LETd is recommended along the whole Bragg curve. The transition point depends on beam parameters and can be found by determining the location where the gradient of the ratio of LETd and LETt becomes positive. PMID:26520716
Extension of PENELOPE to protons: Simulation of nuclear reactions and benchmark with Geant4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterpin, E.; Sorriaux, J.; Vynckier, S.
2013-11-15
Purpose: Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4.Methods: PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac–Hartree–Fock–Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer–Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for {sup 1}H and ICRUmore » 63 data for {sup 12}C, {sup 14}N, {sup 16}O, {sup 31}P, and {sup 40}Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth–dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth–dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone.Results: For simulations with EM collisions only, integral depth–dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth–dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth–dose distributions). The agreement is much better with FLUKA, with deviations within 3%/3 mm. When nuclear interactions were turned on, agreement (within 6% before the Bragg-peak) between PENH and Geant4 was consistent with uncertainties on nuclear models and cross sections, whatever the material simulated (water, muscle, or bone).Conclusions: A detailed and flexible description of nuclear reactions has been implemented in the PENH extension of PENELOPE to protons, which utilizes a mixed-simulation scheme for both elastic and inelastic EM collisions, analogous to the well-established algorithm for electrons/positrons. PENH is compatible with all current main programs that use PENELOPE as the MC engine. The nuclear model of PENH is realistic enough to give dose distributions in fair agreement with those computed by Geant4.« less
Validation of a small-animal PET simulation using GAMOS: a GEANT4-based framework
NASA Astrophysics Data System (ADS)
Cañadas, M.; Arce, P.; Rato Mendes, P.
2011-01-01
Monte Carlo-based modelling is a powerful tool to help in the design and optimization of positron emission tomography (PET) systems. The performance of these systems depends on several parameters, such as detector physical characteristics, shielding or electronics, whose effects can be studied on the basis of realistic simulated data. The aim of this paper is to validate a comprehensive study of the Raytest ClearPET small-animal PET scanner using a new Monte Carlo simulation platform which has been developed at CIEMAT (Madrid, Spain), called GAMOS (GEANT4-based Architecture for Medicine-Oriented Simulations). This toolkit, based on the GEANT4 code, was originally designed to cover multiple applications in the field of medical physics from radiotherapy to nuclear medicine, but has since been applied by some of its users in other fields of physics, such as neutron shielding, space physics, high energy physics, etc. Our simulation model includes the relevant characteristics of the ClearPET system, namely, the double layer of scintillator crystals in phoswich configuration, the rotating gantry, the presence of intrinsic radioactivity in the crystals or the storage of single events for an off-line coincidence sorting. Simulated results are contrasted with experimental acquisitions including studies of spatial resolution, sensitivity, scatter fraction and count rates in accordance with the National Electrical Manufacturers Association (NEMA) NU 4-2008 protocol. Spatial resolution results showed a discrepancy between simulated and measured values equal to 8.4% (with a maximum FWHM difference over all measurement directions of 0.5 mm). Sensitivity results differ less than 1% for a 250-750 keV energy window. Simulated and measured count rates agree well within a wide range of activities, including under electronic saturation of the system (the measured peak of total coincidences, for the mouse-sized phantom, was 250.8 kcps reached at 0.95 MBq mL-1 and the simulated peak was 247.1 kcps at 0.87 MBq mL-1). Agreement better than 3% was obtained in the scatter fraction comparison study. We also measured and simulated a mini-Derenzo phantom obtaining images with similar quality using iterative reconstruction methods. We concluded that the overall performance of the simulation showed good agreement with the measured results and validates the GAMOS package for PET applications. Furthermore, its ease of use and flexibility recommends it as an excellent tool to optimize design features or image reconstruction techniques.
Han, Min Cheol; Yeom, Yeon Soo; Lee, Hyun Su; Shin, Bangho; Kim, Chan Hyeong; Furuta, Takuya
2018-05-04
In this study, the multi-threading performance of the Geant4, MCNP6, and PHITS codes was evaluated as a function of the number of threads (N) and the complexity of the tetrahedral-mesh phantom. For this, three tetrahedral-mesh phantoms of varying complexity (simple, moderately complex, and highly complex) were prepared and implemented in the three different Monte Carlo codes, in photon and neutron transport simulations. Subsequently, for each case, the initialization time, calculation time, and memory usage were measured as a function of the number of threads used in the simulation. It was found that for all codes, the initialization time significantly increased with the complexity of the phantom, but not with the number of threads. Geant4 exhibited much longer initialization time than the other codes, especially for the complex phantom (MRCP). The improvement of computation speed due to the use of a multi-threaded code was calculated as the speed-up factor, the ratio of the computation speed on a multi-threaded code to the computation speed on a single-threaded code. Geant4 showed the best multi-threading performance among the codes considered in this study, with the speed-up factor almost linearly increasing with the number of threads, reaching ~30 when N = 40. PHITS and MCNP6 showed a much smaller increase of the speed-up factor with the number of threads. For PHITS, the speed-up factors were low when N = 40. For MCNP6, the increase of the speed-up factors was better, but they were still less than ~10 when N = 40. As for memory usage, Geant4 was found to use more memory than the other codes. In addition, compared to that of the other codes, the memory usage of Geant4 more rapidly increased with the number of threads, reaching as high as ~74 GB when N = 40 for the complex phantom (MRCP). It is notable that compared to that of the other codes, the memory usage of PHITS was much lower, regardless of both the complexity of the phantom and the number of threads, hardly increasing with the number of threads for the MRCP.
Telescope performance and image simulations of the balloon-borne coded-mask protoMIRAX experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penacchioni, A. V., E-mail: ana.penacchioni@inpe.br; Braga, J., E-mail: joao.braga@inpe.br; Castro, M. A., E-mail: manuel.castro@inpe.br
2015-12-17
In this work we present the results of imaging simulations performed with the help of the GEANT4 package for the protoMIRAX hard X-ray balloon experiment. The instrumental background was simulated taking into account the various radiation components and their angular dependence, as well as a detailed mass model of the experiment. We modelled the meridian transits of the Crab Nebula and the Galactic Centre (CG) region during balloon flights in Brazil (∼ −23° of latitude and an altitude of ∼40 km) and introduced the correspondent spectra as inputs to the imaging simulations. We present images of the Crab and ofmore » three sources in the GC: 1E 1740.7-2942, GRS 1758-258 and GX 1+4. The results show that the protoMIRAX experiment is capable of making spectral and timing observations of bright hard X-ray sources as well as important imaging demonstrations that will contribute to the design of the MIRAX satellite mission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanehira, T; Sutherland, K; Matsuura, T
Purpose: To evaluate density inhomogeneities which can effect dose distributions for real-time image gated spot-scanning proton therapy (RGPT), a dose calculation system, using treatment planning system VQA (Hitachi Ltd., Tokyo) spot position data, was developed based on Geant4. Methods: A Geant4 application was developed to simulate spot-scanned proton beams at Hokkaido University Hospital. A CT scan (0.98 × 0.98 × 1.25 mm) was performed for prostate cancer treatment with three or four inserted gold markers (diameter 1.5 mm, volume 1.77 mm3) in or near the target tumor. The CT data was read into VQA. A spot scanning plan was generatedmore » and exported to text files, specifying the beam energy and position of each spot. The text files were converted and read into our Geant4-based software. The spot position was converted into steering magnet field strength (in Tesla) for our beam nozzle. Individual protons were tracked from the vacuum chamber, through the helium chamber, steering magnets, dose monitors, etc., in a straight, horizontal line. The patient CT data was converted into materials with variable density and placed in a parametrized volume at the isocenter. Gold fiducial markers were represented in the CT data by two adjacent voxels (volume 2.38 mm3). 600,000 proton histories were tracked for each target spot. As one beam contained about 1,000 spots, approximately 600 million histories were recorded for each beam on a blade server. Two plans were considered: two beam horizontal opposed (90 and 270 degree) and three beam (0, 90 and 270 degree). Results: We are able to convert spot scanning plans from VQA and simulate them with our Geant4-based code. Our system can be used to evaluate the effect of dose reduction caused by gold markers used for RGPT. Conclusion: Our Geant4 application is able to calculate dose distributions for spot scanned proton therapy.« less
Pater, P; Bernal, M; Naqa, I El; Seuntjens, J
2012-06-01
To validate and scrutinize published DNA strand break data with Geant4-DNA and a probabilistic model. To study the impact of source size, electronic equilibrium and secondary electron tracking cutoff on direct relative biological effectiveness (DRBE). Geant4 (v4.9.5) was used to simulate a cylindrical region of interest (ROI) with r = 15 nm and length = 1.05 mm, in a slab of liquid water of 1.06 g/cm 3 density. The ROI was irradiated with mono-energetic photons, with a uniformly distributed volumetric isotropic source (0.28, 1.5 keV) or a plane beam (0.662, 1.25 MeV), of variable size. Electrons were tracked down to 50 or 10 eV, with G4-DNA processes and energy transfer greater than 10.79 eV was scored. Based on volume ratios, each scored event had a 0.0388 probability of happening on either DNA helix (break). Clusters of at least one break on each DNA helix within 3.4 nm were found using a DBSCAN algorithm and categorized as double strand breaks (DSB). All other events were categorized as single strand breaks (SSB). Geant4-DNA is able to reproduce strand break yields previously published. Homogeneous irradiation conditions should be present throughout the ROI for DRBE comparisons. SSB yields seem slightly dependent on the primary photon energy. DRBEs show a significant increasing trend for lower energy incident photons. A lower electron cutoff produces higher SSB yields, but decreases the SSB/DSB yields ratio. The probabilistic and geometrical DNA models can predict equivalent results. Using Geant4, we were able to reproduce previously published results on the direct strand break yields of photon and study the importance of irradiation conditions. We also show an ascending trend for DRBE with lower incident photon energies. A probabilistic model coupled with track structure analysis can be used to simulate strand break yields. NSERC, CIHR. © 2012 American Association of Physicists in Medicine.
Optimization of 6LiF:ZnS(Ag) scintillator light yield using GEANT4
NASA Astrophysics Data System (ADS)
Yehuda-Zada, Y.; Pritchard, K.; Ziegler, J. B.; Cooksey, C.; Siebein, K.; Jackson, M.; Hurlbut, C.; Kadmon, Y.; Cohen, Y.; Ibberson, R. M.; Majkrzak, C. F.; Maliszewskyj, N. C.; Orion, I.; Osovizky, A.
2018-06-01
A new cold neutron detector has been developed at the NIST Center for Neutron Research (NCNR) for the CANDoR (Chromatic Analysis Neutron Diffractometer or Reflectometer) project. Geometric and performance constraints dictate that this detector be exceptionally thin (∼ 2 mm). For this reason, the design of the detector consists of a 6LiF:ZnS(Ag) scintillator with embedded wavelength shifting (WLS) fibers. We used the GEANT4 package to simulate neutron capture and light transport in the detector to optimize the composition and arrangement of materials to satisfy the competing requirements of high neutron capture probability and light production and transport. In the process, we have developed a method for predicting light collection and total neutron detection efficiency for different detector configurations. The simulation was performed by adjusting crucial parameters such as the scintillator stoichiometry, light yield, component grain size, WLS fiber geometry, and reflectors at the outside edges of the scintillator volume. Three different detector configurations were fabricated and their test results were correlated with the simulations. Through this correlation we have managed to find a common photon threshold for the different detector configurations which was then used to simulate and predict the efficiencies for many other detector configurations. New detectors that have been fabricated based on simulation results yielding the desired sensitivity of 90% for 3.27 meV (5 Å) cold neutrons. The simulation has proven to be a useful tool by dramatically reducing the development period and the required number of detector prototypes. It can be used to test new designs with different thicknesses and different target neutron energies.
NEPP Update of Independent Single Event Upset Field Programmable Gate Array Testing
NASA Technical Reports Server (NTRS)
Berg, Melanie; Label, Kenneth; Campola, Michael; Pellish, Jonathan
2017-01-01
This presentation provides a NASA Electronic Parts and Packaging (NEPP) Program update of independent Single Event Upset (SEU) Field Programmable Gate Array (FPGA) testing including FPGA test guidelines, Microsemi RTG4 heavy-ion results, Xilinx Kintex-UltraScale heavy-ion results, Xilinx UltraScale+ single event effect (SEE) test plans, development of a new methodology for characterizing SEU system response, and NEPP involvement with FPGA security and trust.
Calculation of self–shielding factor for neutron activation experiments using GEANT4 and MCNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero–Barrientos, Jaime, E-mail: jaromero@ing.uchile.cl; Universidad de Chile, DFI, Facultad de Ciencias Físicas Y Matemáticas, Avenida Blanco Encalada 2008, Santiago; Molina, F.
2016-07-07
The neutron self–shielding factor G as a function of the neutron energy was obtained for 14 pure metallic samples in 1000 isolethargic energy bins from 1·10{sup −5}eV to 2·10{sup 7}eV using Monte Carlo simulations in GEANT4 and MCNP6. The comparison of these two Monte Carlo codes shows small differences in the final self–shielding factor mostly due to the different cross section databases that each program uses.
Monte Carlo simulations in Nuclear Medicine
NASA Astrophysics Data System (ADS)
Loudos, George K.
2007-11-01
Molecular imaging technologies provide unique abilities to localise signs of disease before symptoms appear, assist in drug testing, optimize and personalize therapy, and assess the efficacy of treatment regimes for different types of cancer. Monte Carlo simulation packages are used as an important tool for the optimal design of detector systems. In addition they have demonstrated potential to improve image quality and acquisition protocols. Many general purpose (MCNP, Geant4, etc) or dedicated codes (SimSET etc) have been developed aiming to provide accurate and fast results. Special emphasis will be given to GATE toolkit. The GATE code currently under development by the OpenGATE collaboration is the most accurate and promising code for performing realistic simulations. The purpose of this article is to introduce the non expert reader to the current status of MC simulations in nuclear medicine and briefly provide examples of current simulated systems, and present future challenges that include simulation of clinical studies and dosimetry applications.
Measurement of antiproton annihilation on Cu, Ag and Au with emulsion films
NASA Astrophysics Data System (ADS)
Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Huse, T.; Kawada, J.; Kellerbauer, A.; Kimura, M.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Rienaecker, B.; RØhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Vamosi, S.; Vladymyrov, M.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.
2017-04-01
The characteristics of low energy antiproton annihilations on nuclei (e.g. hadronization and product multiplicities) are not well known, and Monte Carlo simulation packages that use different models provide different descriptions of the annihilation events. In this study, we measured the particle multiplicities resulting from antiproton annihilations on nuclei. The results were compared with predictions obtained using different models in the simulation tools GEANT4 and FLUKA. For this study, we exposed thin targets (Cu, Ag and Au) to a very low energy antiproton beam from CERN's Antiproton Decelerator, exploiting the secondary beamline available in the AEgIS experimental zone. The antiproton annihilation products were detected using emulsion films developed at the Laboratory of High Energy Physics in Bern, where they were analysed at the automatic microscope facility. The fragment multiplicity measured in this study is in good agreement with results obtained with FLUKA simulations for both minimally and heavily ionizing particles.
Ozdemir, F B; Selcuk, A B; Ozkorucuklu, S; Alpat, A B; Ozdemir, T; Ӧzek, N
2018-05-01
In this study, high-precision radiation detector (HIPRAD), a new-generation semiconductor microstrip detector, was used for detecting radon (Rn-222) activity. The aim of this study was to detect radon (Rn-222) activity experimentally by measuring the energy of particles in this detector. Count-ADC channel, eta-charge, and dose-response values were experimentally obtained using HIPRAD. The radon simulation in the radiation detector was theoretically performed using the Geant4 software package. The obtained radioactive decay, energy generation, energy values, and efficiency values of the simulation were plotted using the root program. The new-generation radiation detector proved to have 95% reliability according to the obtained dose-response graphs. The experimental and simulation results were found to be compatible with each other and with the radon decays and literature studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio
NASA Astrophysics Data System (ADS)
Ramos-Méndez, J.; Perl, J.; Schuemann, J.; McNamara, A.; Paganetti, H.; Faddegon, B.
2018-05-01
Simulation of water radiolysis and the subsequent chemistry provides important information on the effect of ionizing radiation on biological material. The Geant4 Monte Carlo toolkit has added chemical processes via the Geant4-DNA project. The TOPAS tool simplifies the modeling of complex radiotherapy applications with Geant4 without requiring advanced computational skills, extending the pool of users. Thus, a new extension to TOPAS, TOPAS-nBio, is under development to facilitate the configuration of track-structure simulations as well as water radiolysis simulations with Geant4-DNA for radiobiological studies. In this work, radiolysis simulations were implemented in TOPAS-nBio. Users may now easily add chemical species and their reactions, and set parameters including branching ratios, dissociation schemes, diffusion coefficients, and reaction rates. In addition, parameters for the chemical stage were re-evaluated and updated from those used by default in Geant4-DNA to improve the accuracy of chemical yields. Simulation results of time-dependent and LET-dependent primary yields Gx (chemical species per 100 eV deposited) produced at neutral pH and 25 °C by short track-segments of charged particles were compared to published measurements. The LET range was 0.05–230 keV µm‑1. The calculated Gx values for electrons satisfied the material balance equation within 0.3%, similar for protons albeit with long calculation time. A smaller geometry was used to speed up proton and alpha simulations, with an acceptable difference in the balance equation of 1.3%. Available experimental data of time-dependent G-values for agreed with simulated results within 7% ± 8% over the entire time range; for over the full time range within 3% ± 4% for H2O2 from 49% ± 7% at earliest stages and 3% ± 12% at saturation. For the LET-dependent Gx, the mean ratios to the experimental data were 1.11 ± 0.98, 1.21 ± 1.11, 1.05 ± 0.52, 1.23 ± 0.59 and 1.49 ± 0.63 (1 standard deviation) for , , H2, H2O2 and , respectively. In conclusion, radiolysis and subsequent chemistry with Geant4-DNA has been successfully incorporated in TOPAS-nBio. Results are in reasonable agreement with published measured and simulated data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Fada; Peeler, Christopher; Taleei, Reza
Purpose: The motivation of this study was to find and eliminate the cause of errors in dose-averaged linear energy transfer (LET) calculations from therapeutic protons in small targets, such as biological cell layers, calculated using the GEANT 4 Monte Carlo code. Furthermore, the purpose was also to provide a recommendation to select an appropriate LET quantity from GEANT 4 simulations to correlate with biological effectiveness of therapeutic protons. Methods: The authors developed a particle tracking step based strategy to calculate the average LET quantities (track-averaged LET, LET{sub t} and dose-averaged LET, LET{sub d}) using GEANT 4 for different tracking stepmore » size limits. A step size limit refers to the maximally allowable tracking step length. The authors investigated how the tracking step size limit influenced the calculated LET{sub t} and LET{sub d} of protons with six different step limits ranging from 1 to 500 μm in a water phantom irradiated by a 79.7-MeV clinical proton beam. In addition, the authors analyzed the detailed stochastic energy deposition information including fluence spectra and dose spectra of the energy-deposition-per-step of protons. As a reference, the authors also calculated the averaged LET and analyzed the LET spectra combining the Monte Carlo method and the deterministic method. Relative biological effectiveness (RBE) calculations were performed to illustrate the impact of different LET calculation methods on the RBE-weighted dose. Results: Simulation results showed that the step limit effect was small for LET{sub t} but significant for LET{sub d}. This resulted from differences in the energy-deposition-per-step between the fluence spectra and dose spectra at different depths in the phantom. Using the Monte Carlo particle tracking method in GEANT 4 can result in incorrect LET{sub d} calculation results in the dose plateau region for small step limits. The erroneous LET{sub d} results can be attributed to the algorithm to determine fluctuations in energy deposition along the tracking step in GEANT 4. The incorrect LET{sub d} values lead to substantial differences in the calculated RBE. Conclusions: When the GEANT 4 particle tracking method is used to calculate the average LET values within targets with a small step limit, such as smaller than 500 μm, the authors recommend the use of LET{sub t} in the dose plateau region and LET{sub d} around the Bragg peak. For a large step limit, i.e., 500 μm, LET{sub d} is recommended along the whole Bragg curve. The transition point depends on beam parameters and can be found by determining the location where the gradient of the ratio of LET{sub d} and LET{sub t} becomes positive.« less
Gracanin, V; Guatelli, S; Prokopovich, D; Rosenfeld, A B; Berry, A
2017-01-01
The Bonner Sphere Spectrometer (BSS) system is a well-established technique for neutron dosimetry that involves detection of thermal neutrons within a range of hydrogenous moderators. BSS detectors are often used to perform neutron field surveys in order to determine the ambient dose equivalent H*(10) and estimate health risk to personnel. There is a potential limitation of existing neutron survey techniques, since some detectors do not consider the direction of the neutron field, which can result in overly conservative estimates of dose in neutron fields. This paper shows the development of a Geant4 simulation application to characterise a prototype neutron detector based on three orthogonal 3 He tubes inside a single HDPE sphere built at the Australian Nuclear Science and Technology Organisation (ANSTO). The Geant4 simulation has been validated with respect to experimental measurements performed with an Am-Be source. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hankins, J. D.
1979-01-01
Additional developmental work on the existing programmable electronic controller and hydronic package for use with solar heating and cooling systems is summarized. The controller/hydronics subsystems passed all acceptance tests and performance criteria. The subsystems were shown marketable for public use.
Geant4 simulation of ion chambers response to 60Co spectrum of LNMRI/IRD Shepherd 81-14D Radiator
NASA Astrophysics Data System (ADS)
Queiroz Filho, P. P.; Da Silva, C. N. M.
2018-03-01
The National Ionizing Radiation Metrology Laboratory of the Radioprotection and Dosimetry Institute (LNMRI / IRD) has recently acquired a Shepherd 81-14D Radiator. In this work we simulate, using Geant4, the behavior with the inverse square law radiation for 3 models of PTW spherical chambers used in radioprotection, a relevant information to planning the measurements. We did the corrections for the attenuation and scattering in the air for each distance, where we used the 60Co spectrum simulated previously.
The GeantV project: Preparing the future of simulation
Amadio, G.; J. Apostolakis; Bandieramonte, M.; ...
2015-12-23
Detector simulation is consuming at least half of the HEP computing cycles, and even so, experiments have to take hard decisions on what to simulate, as their needs greatly surpass the availability of computing resources. New experiments still in the design phase such as FCC, CLIC and ILC as well as upgraded versions of the existing LHC detectors will push further the simulation requirements. Since the increase in computing resources is not likely to keep pace with our needs, it is therefore necessary to explore innovative ways of speeding up simulation in order to sustain the progress of High Energymore » Physics. The GeantV project aims at developing a high performance detector simulation system integrating fast and full simulation that can be ported on different computing architectures, including CPU accelerators. After more than two years of R&D the project has produced a prototype capable of transporting particles in complex geometries exploiting micro-parallelism, SIMD and multithreading. Portability is obtained via C++ template techniques that allow the development of machine- independent computational kernels. Furthermore, a set of tables derived from Geant4 for cross sections and final states provides a realistic shower development and, having been ported into a Geant4 physics list, can be used as a basis for a direct performance comparison.« less
GEANT4 simulation of cyclotron radioisotope production in a solid target.
Poignant, F; Penfold, S; Asp, J; Takhar, P; Jackson, P
2016-05-01
The use of radioisotopes in nuclear medicine is essential for diagnosing and treating cancer. The optimization of their production is a key factor in maximizing the production yield and minimizing the associated costs. An efficient approach to this problem is the use of Monte Carlo simulations prior to experimentation. By predicting isotopes yields, one can study the isotope of interest expected activity for different energy ranges. One can also study the target contamination with other radioisotopes, especially undesired radioisotopes of the wanted chemical element which are difficult to separate from the irradiated target and might result in increasing the dose when delivering the radiopharmaceutical product to the patient. The aim of this work is to build and validate a Monte Carlo simulation platform using the GEANT4 toolkit to model the solid target system of the South Australian Health and Medical Research Institute (SAHMRI) GE Healthcare PETtrace cyclotron. It includes a GEANT4 Graphical User Interface (GUI) where the user can modify simulation parameters such as the energy, shape and current of the proton beam, the target geometry and material, the foil geometry and material and the time of irradiation. The paper describes the simulation and presents a comparison of simulated and experimental/theoretical yields for various nuclear reactions on an enriched nickel 64 target using the GEANT4 physics model QGSP_BIC_AllHP, a model recently developed to evaluate with high precision the interaction of protons with energies below 200MeV available in Geant4 version 10.1. The simulation yield of the (64)Ni(p,n)(64)Cu reaction was found to be 7.67±0.074 mCi·μA(-1) for a target energy range of 9-12MeV. Szelecsenyi et al. (1993) gives a theoretical yield of 6.71mCi·μA(-1) and an experimental yield of 6.38mCi·μA(-1). The (64)Ni(p,n)(64)Cu cross section obtained with the simulation was also verified against the yield predicted from the nuclear database TENDL and compared to experimental yield obtained from literature. Copyright © 2016 Associazione Italiana di Fisica Medica. All rights reserved.
Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio.
Ramos-Méndez, J; Perl, J; Schuemann, J; McNamara, A; Paganetti, H; Faddegon, B
2018-05-17
Simulation of water radiolysis and the subsequent chemistry provides important information on the effect of ionizing radiation on biological material. The Geant4 Monte Carlo toolkit has added chemical processes via the Geant4-DNA project. The TOPAS tool simplifies the modeling of complex radiotherapy applications with Geant4 without requiring advanced computational skills, extending the pool of users. Thus, a new extension to TOPAS, TOPAS-nBio, is under development to facilitate the configuration of track-structure simulations as well as water radiolysis simulations with Geant4-DNA for radiobiological studies. In this work, radiolysis simulations were implemented in TOPAS-nBio. Users may now easily add chemical species and their reactions, and set parameters including branching ratios, dissociation schemes, diffusion coefficients, and reaction rates. In addition, parameters for the chemical stage were re-evaluated and updated from those used by default in Geant4-DNA to improve the accuracy of chemical yields. Simulation results of time-dependent and LET-dependent primary yields G x (chemical species per 100 eV deposited) produced at neutral pH and 25 °C by short track-segments of charged particles were compared to published measurements. The LET range was 0.05-230 keV µm -1 . The calculated G x values for electrons satisfied the material balance equation within 0.3%, similar for protons albeit with long calculation time. A smaller geometry was used to speed up proton and alpha simulations, with an acceptable difference in the balance equation of 1.3%. Available experimental data of time-dependent G-values for [Formula: see text] agreed with simulated results within 7% ± 8% over the entire time range; for [Formula: see text] over the full time range within 3% ± 4%; for H 2 O 2 from 49% ± 7% at earliest stages and 3% ± 12% at saturation. For the LET-dependent G x , the mean ratios to the experimental data were 1.11 ± 0.98, 1.21 ± 1.11, 1.05 ± 0.52, 1.23 ± 0.59 and 1.49 ± 0.63 (1 standard deviation) for [Formula: see text], [Formula: see text], H 2 , H 2 O 2 and [Formula: see text], respectively. In conclusion, radiolysis and subsequent chemistry with Geant4-DNA has been successfully incorporated in TOPAS-nBio. Results are in reasonable agreement with published measured and simulated data.
NASA Astrophysics Data System (ADS)
Jansson, K.; Gustavsson, C.; Al-Adili, A.; Hjalmarsson, A.; Andersson-Sundén, E.; Prokofiev, A. V.; Tarrío, D.; Pomp, S.
2015-09-01
Measurements of neutron-induced fission cross-sections and light-ion production are planned in the energy range 1-40 MeV at the upcoming Neutrons For Science (NFS) facility. In order to prepare our detector setup for the neutron beam with continuous energy spectrum, a simulation software was written using the Geant4 toolkit for both measurement situations. The neutron energy range around 20 MeV is troublesome when it comes to the cross-sections used by Geant4 since data-driven cross-sections are only available below 20 MeV but not above, where they are based on semi-empirical models. Several customisations were made to the standard classes in Geant4 in order to produce consistent results over the whole simulated energy range. Expected uncertainties are reported for both types of measurements. The simulations have shown that a simultaneous precision measurement of the three standard cross-sections H(n,n), 235U(n,f) and 238U(n,f) relative to each other is feasible using a triple layered target. As high resolution timing detectors for fission fragments we plan to use Parallel Plate Avalanche Counters (PPACs). The simulation results have put some restrictions on the design of these detectors as well as on the target design. This study suggests a fissile target no thicker than 2 μm (1.7 mg/cm2) and a PPAC foil thickness preferably less than 1 μm. We also comment on the usability of Geant4 for simulation studies of neutron reactions in this energy range.
Tavakoli, Mohammad Bagher; Reiazi, Reza; Mohammadi, Mohammad Mehdi; Jabbari, Keyvan
2015-01-01
After proposing the idea of antiproton cancer treatment in 1984 many experiments were launched to investigate different aspects of physical and radiobiological properties of antiproton, which came from its annihilation reactions. One of these experiments has been done at the European Organization for Nuclear Research known as CERN using the antiproton decelerator. The ultimate goal of this experiment was to assess the dosimetric and radiobiological properties of beams of antiprotons in order to estimate the suitability of antiprotons for radiotherapy. One difficulty on this way was the unavailability of antiproton beam in CERN for a long time, so the verification of Monte Carlo codes to simulate antiproton depth dose could be useful. Among available simulation codes, Geant4 provides acceptable flexibility and extensibility, which progressively lead to the development of novel Geant4 applications in research domains, especially modeling the biological effects of ionizing radiation at the sub-cellular scale. In this study, the depth dose corresponding to CERN antiproton beam energy by Geant4 recruiting all the standard physics lists currently available and benchmarked for other use cases were calculated. Overall, none of the standard physics lists was able to draw the antiproton percentage depth dose. Although, with some models our results were promising, the Bragg peak level remained as the point of concern for our study. It is concluded that the Bertini model with high precision neutron tracking (QGSP_BERT_HP) is the best to match the experimental data though it is also the slowest model to simulate events among the physics lists.
Comparison of the thermal neutron scattering treatment in MCNP6 and GEANT4 codes
NASA Astrophysics Data System (ADS)
Tran, H. N.; Marchix, A.; Letourneau, A.; Darpentigny, J.; Menelle, A.; Ott, F.; Schwindling, J.; Chauvin, N.
2018-06-01
To ensure the reliability of simulation tools, verification and comparison should be made regularly. This paper describes the work performed in order to compare the neutron transport treatment in MCNP6.1 and GEANT4-10.3 in the thermal energy range. This work focuses on the thermal neutron scattering processes for several potential materials which would be involved in the neutron source designs of Compact Accelerator-based Neutrons Sources (CANS), such as beryllium metal, beryllium oxide, polyethylene, graphite, para-hydrogen, light water, heavy water, aluminium and iron. Both thermal scattering law and free gas model, coming from the evaluated data library ENDF/B-VII, were considered. It was observed that the GEANT4.10.03-patch2 version was not able to account properly the coherent elastic process occurring in crystal lattice. This bug is treated in this work and it should be included in the next release of the code. Cross section sampling and integral tests have been performed for both simulation codes showing a fair agreement between the two codes for most of the materials except for iron and aluminium.
Paternò, Gianfranco; Cardarelli, Paolo; Contillo, Adriano; Gambaccini, Mauro; Taibi, Angelo
2018-01-01
Advanced applications of digital mammography such as dual-energy and tomosynthesis require multiple exposures and thus deliver higher dose compared to standard mammograms. A straightforward manner to reduce patient dose without affecting image quality would be removal of the anti-scatter grid, provided that the involved reconstruction algorithms are able to take the scatter figure into account [1]. Monte Carlo simulations are very well suited for the calculation of X-ray scatter distribution and can be used to integrate such information within the reconstruction software. Geant4 is an open source C++ particle tracking code widely used in several physical fields, including medical physics [2,3]. However, the coherent scattering cross section used by the standard Geant4 code does not take into account the influence of molecular interference. According to the independent atomic scattering approximation (the so-called free-atom model), coherent radiation is indistinguishable from primary radiation because its angular distribution is peaked in the forward direction. Since interference effects occur between x-rays scattered by neighbouring atoms in matter, it was shown experimentally that the scatter distribution is affected by the molecular structure of the target, even in amorphous materials. The most important consequence is that the coherent scatter distribution is not peaked in the forward direction, and the position of the maximum is strongly material-dependent [4]. In this contribution, we present the implementation of a method to take into account inter-atomic interference in small-angle coherent scattering in Geant4, including a dedicated data set of suitable molecular form factor values for several materials of clinical interest. Furthermore, we present scatter images of simple geometric phantoms in which the Rayleigh contribution is rigorously evaluated. Copyright © 2017.
A hadron-nucleus collision event generator for simulations at intermediate energies
NASA Astrophysics Data System (ADS)
Ackerstaff, K.; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Diehl, O.; Dohrmann, F.; Drüke, V.; Eisenhardt, S.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Filges, D.; Fritz, S.; Gasthuber, M.; Gebel, R.; Greiff, J.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; von Przewoski, B.; Rohdjeß, H.; Rosendaal, D.; Roß, U.; von Rossen, P.; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Scobel, W.; Sterzenbach, G.; Theis, D.; Weber, J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA-Collaboration
2002-10-01
Several available codes for hadronic event generation and shower simulation are discussed and their predictions are compared to experimental data in order to obtain a satisfactory description of hadronic processes in Monte Carlo studies of detector systems for medium energy experiments. The most reasonable description is found for the intra-nuclear-cascade (INC) model of Bertini which employs microscopic description of the INC, taking into account elastic and inelastic pion-nucleon and nucleon-nucleon scattering. The isobar model of Sternheimer and Lindenbaum is used to simulate the inelastic elementary collisions inside the nucleus via formation and decay of the Δ33-resonance which, however, limits the model at higher energies. To overcome this limitation, the INC model has been extended by using the resonance model of the HADRIN code, considering all resonances in elementary collisions contributing more than 2% to the total cross-section up to kinetic energies of 5 GeV. In addition, angular distributions based on phase shift analysis are used for elastic nucleon-nucleon as well as elastic and charge exchange pion-nucleon scattering. Also kaons and antinucleons can be treated as projectiles. Good agreement with experimental data is found predominantly for lower projectile energies, i.e. in the regime of the Bertini code. The original as well as the extended Bertini model have been implemented as shower codes into the high energy detector simulation package GEANT-3.14, allowing now its use also in full Monte Carlo studies of detector systems at intermediate energies. The GEANT-3.14 here have been used mainly for its powerful geometry and analysing packages due to the complex EDDA detector system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amadio, G.; et al.
An intensive R&D and programming effort is required to accomplish new challenges posed by future experimental high-energy particle physics (HEP) programs. The GeantV project aims to narrow the gap between the performance of the existing HEP detector simulation software and the ideal performance achievable, exploiting latest advances in computing technology. The project has developed a particle detector simulation prototype capable of transporting in parallel particles in complex geometries exploiting instruction level microparallelism (SIMD and SIMT), task-level parallelism (multithreading) and high-level parallelism (MPI), leveraging both the multi-core and the many-core opportunities. We present preliminary verification results concerning the electromagnetic (EM) physicsmore » models developed for parallel computing architectures within the GeantV project. In order to exploit the potential of vectorization and accelerators and to make the physics model effectively parallelizable, advanced sampling techniques have been implemented and tested. In this paper we introduce a set of automated statistical tests in order to verify the vectorized models by checking their consistency with the corresponding Geant4 models and to validate them against experimental data.« less
Modelling PET radionuclide production in tissue and external targets using Geant4
NASA Astrophysics Data System (ADS)
Amin, T.; Infantino, A.; Lindsay, C.; Barlow, R.; Hoehr, C.
2017-07-01
The Proton Therapy Facility in TRIUMF provides 74 MeV protons extracted from a 500 MeV H- cyclotron for ocular melanoma treatments. During treatment, positron emitting radionuclides such as 1C, 15O and 13N are produced in patient tissue. Using PET scanners, the isotopic activity distribution can be measured for in-vivo range verification. A second cyclotron, the TR13, provides 13 MeV protons onto liquid targets for the production of PET radionuclides such as 18F, 13N or 68Ga, for medical applications. The aim of this work was to validate Geant4 against FLUKA and experimental measurements for production of the above-mentioned isotopes using the two cyclotrons. The results show variable degrees of agreement. For proton therapy, the proton-range agreement was within 2 mm for 11C activity, whereas 13N disagreed. For liquid targets at the TR13 the average absolute deviation ratio between FLUKA and experiment was 1.9±2.7, whereas the average absolute deviation ratio between Geant4 and experiment was 0. 6±0.4. This is due to the uncertainties present in experimentally determined reaction cross sections.
GEANT4 benchmark with MCNPX and PHITS for activation of concrete
NASA Astrophysics Data System (ADS)
Tesse, Robin; Stichelbaut, Frédéric; Pauly, Nicolas; Dubus, Alain; Derrien, Jonathan
2018-02-01
The activation of concrete is a real problem from the point of view of waste management. Because of the complexity of the issue, Monte Carlo (MC) codes have become an essential tool to its study. But various codes or even nuclear models exist in MC. MCNPX and PHITS have already been validated for shielding studies but GEANT4 is also a suitable solution. In these codes, different models can be considered for a concrete activation study. The Bertini model is not the best model for spallation while BIC and INCL model agrees well with previous results in literature.
Fast Simulation of the Impact Parameter Calculation of Electrons through Pair Production
NASA Astrophysics Data System (ADS)
Bang, Hyesun; Kweon, MinJung; Huh, Kyoung Bum; Pachmayer, Yvonne
2018-05-01
A fast simulation method is introduced that reduces tremendously the time required for the impact parameter calculation, a key observable in physics analyses of high energy physics experiments and detector optimisation studies. The impact parameter of electrons produced through pair production was calculated considering key related processes using the Bethe-Heitler formula, the Tsai formula and a simple geometric model. The calculations were performed at various conditions and the results were compared with those from full GEANT4 simulations. The computation time using this fast simulation method is 104 times shorter than that of the full GEANT4 simulation.
Detailed measurements of shower properties in a high granularity digital electromagnetic calorimeter
NASA Astrophysics Data System (ADS)
van der Kolk, N.
2018-03-01
The MAPS (Monolithic Active Pixel Sensors) prototype of the proposed ALICE Forward Calorimeter (FoCal) is the highest granularity electromagnetic calorimeter, with 39 million pixels with a size of 30 × 30 μm2. Particle showers can be studied with unprecedented detail with this prototype. Electromagnetic showers at energies between 2 GeV and 244 GeV have been studied and compared with GEANT4 simulations. Simulation models can be tested in more detail than ever before and the differences observed between FoCal data and GEANT4 simulations illustrate that improvements in electromagnetic models are still possible.
Development of a silicon diode detector for skin dosimetry in radiotherapy.
Vicoroski, Nikolina; Espinoza, Anthony; Duncan, Mitchell; Oborn, Bradley M; Carolan, Martin; Metcalfe, Peter; Menichelli, David; Perevertaylo, Vladimir L; Lerch, Michael L F; Rosenfeld, Anatoly B; Petasecca, Marco
2017-10-01
The aim of in vivo skin dosimetry was to measure the absorbed dose to the skin during radiotherapy, when treatment planning calculations cannot be relied on. It is of particularly importance in hypo-fractionated stereotactic modalities, where excessive dose can lead to severe skin toxicity. Currently, commercial diodes for such applications are with water equivalent depths ranging from 0.5 to 0.8 mm. In this study, we investigate a new detector for skin dosimetry based on a silicon epitaxial diode, referred to as the skin diode. The skin diode is manufactured on a thin epitaxial layer and packaged using the "drop-in" technology. It was characterized in terms of percentage depth dose, dose linearity, and dose rate dependence, and benchmarked against the Attix ionization chamber. The response of the skin diode in the build-up region of the percentage depth dose (PDD) curve of a 6 MV clinical photon beam was investigated. Geant4 radiation transport simulations were used to model the PDD in order to estimate the water equivalent measurement depth (WED) of the skin diode. Measured output factors using the skin diode were compared with the MOSkin detector and EBT3 film at 10 cm depth and at surface at isocenter of a water equivalent phantom. The intrinsic angular response of the skin diode was also quantified in charge particle equilibrium conditions (CPE) and at the surface of a solid water phantom. Finally, the radiation hardness of the skin diode up to an accumulated dose of 80 kGy using photons from a Co-60 gamma source was evaluated. The PDD curve measured with the skin diode was within 0.5% agreement of the equivalent Geant4 simulated curve. When placed at the phantom surface, the WED of the skin diode was estimated to be 0.075 ± 0.005 mm from Geant4 simulations and was confirmed using the response of a corrected Attix ionization chamber placed at water equivalent depth of 0.075 mm, with the measurement agreement to within 0.3%. The output factor measurements at 10 cm depth were within 2% of those measured with film and the MOSkin detector down to a field size of 2 × 2 cm 2 . The dose-response for all detector samples was linear and with a repeatability within 0.2%. The skin diode intrinsic angular response showed a maximum deviation of 8% at 90 degrees and from 0 to 60 degree is less than 5%. The radiation sensitivity reduced by 25% after an accumulated dose of 20 kGy but after was found to stabilize. At 60 kGy total accumulated dose the response was within 2% of that measured at 20 kGy total accumulated dose. This work characterizes an innovative detector for in vivo and real-time skin dose measurements that is based on an epitaxial silicon diode combined with the Centre for Medical Radiation Physics (CMRP) "drop-in" packaging technology. The skin diode proved to have a water equivalent depth of measurement of 0.075 ± 0.005 mm and the ability to measure doses accurately relative to reference detectors. © 2017 American Association of Physicists in Medicine.
Effect of the multiple scattering of electrons in Monte Carlo simulation of LINACS.
Vilches, Manuel; García-Pareja, Salvador; Guerrero, Rafael; Anguiano, Marta; Lallena, Antonio M
2008-01-01
Results obtained from Monte Carlo simulations of the transport of electrons in thin slabs of dense material media and air slabs with different widths are analyzed. Various general purpose Monte Carlo codes have been used: PENELOPE, GEANT3, GEANT4, EGSNRC, MCNPX. Non-negligible differences between the angular and radial distributions after the slabs have been found. The effects of these differences on the depth doses measured in water are also discussed.
Monte Carlo Simulations and Generation of the SPI Response
NASA Technical Reports Server (NTRS)
Sturner, S. J.; Shrader, C. R.; Weidenspointner, G.; Teegarden, B. J.; Attie, D.; Diehl, R.; Ferguson, C.; Jean, P.; vonKienlin, A.
2003-01-01
In this paper we discuss the methods developed for the production of the INTEGRAL/SPI instrument response. The response files were produced using a suite of Monte Carlo simulation software developed at NASA/GSFC based on the GEANT-3 package available from CERN. The production of the INTEGRAL/SPI instrument response also required the development of a detailed computer mass model for SPI. We discuss our extensive investigations into methods to reduce both the computation time and storage requirements for the SPI response. We also discuss corrections to the simulated response based on our comparison of ground and inflight calibration data with MGEANT simulation.
Monte Carlo Simulations and Generation of the SPI Response
NASA Technical Reports Server (NTRS)
Sturner, S. J.; Shrader, C. R.; Weidenspointner, G.; Teegarden, B. J.; Attie, D.; Cordier, B.; Diehl, R.; Ferguson, C.; Jean, P.; vonKienlin, A.
2003-01-01
In this paper we discuss the methods developed for the production of the INTEGRAL/SPI instrument response. The response files were produced using a suite of Monte Carlo simulation software developed at NASA/GSFC based on the GEANT-3 package available from CERN. The production of the INTEGRAL/SPI instrument response also required the development of a detailed computer mass model for SPI. We discuss ow extensive investigations into methods to reduce both the computation time and storage requirements for the SPI response. We also discuss corrections to the simulated response based on our comparison of ground and infiight Calibration data with MGEANT simulations.
Modeling of a cyclotron target for the production of 11C with Geant4.
Chiappiniello, Andrea; Zagni, Federico; Infantino, Angelo; Vichi, Sara; Cicoria, Gianfranco; Morigi, Maria Pia; Marengo, Mario
2018-04-12
In medical cyclotron facilities, 11C is produced according to the 14N(p,α)11C reaction and widely employed in studies of prostate and brain cancers by Positron Emission Tomography. It is known from literature [1] that the 11C-target assembly shows a reduction in efficiency during time, meaning a decrease of activity produced at the end of bombardment. This effect might depend on aspects still not completely known. Possible causes of the loss of performance of the 11C-target assembly were addressed by Monte Carlo simulations. Geant4 was used to model the 11C-target assembly of a GE PETtrace cyclotron. The physical and transport parameters to be used in the energy range of medical applications were extracted from literature data and 11C routine productions. The Monte Carlo assessment of 11C saturation yield was performed varying several parameters such as the proton energy and the angle of the target assembly with respect to the proton beam. The estimated 11C saturation yield is in agreement with IAEA data at the energy of interest, while is about the 35% greater than experimental value. A more comprehensive modeling of the target system, including thermodynamic effect, is required. The energy absorbed in the inner layer of the target chamber was up to 46.5 J/mm2 under typical irradiation conditions. This study shows that Geant4 is potentially a useful tool to design and optimize targetry for PET radionuclide productions. Tests to choose the Geant4 physics libraries should be performed before using this tool with different energies and materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation.
Schumann, A; Petzoldt, J; Dendooven, P; Enghardt, W; Golnik, C; Hueso-González, F; Kormoll, T; Pausch, G; Roemer, K; Fiedler, F
2015-05-21
Irradiation with protons and light ions offers new possibilities for tumor therapy but has a strong need for novel imaging modalities for treatment verification. The development of new detector systems, which can provide an in vivo range assessment or dosimetry, requires an accurate knowledge of the secondary radiation field and reliable Monte Carlo simulations. This paper presents multiple measurements to characterize the prompt γ-ray emissions during proton irradiation and benchmarks the latest Geant4 code against the experimental findings. Within the scope of this work, the total photon yield for different target materials, the energy spectra as well as the γ-ray depth profile were assessed. Experiments were performed at the superconducting AGOR cyclotron at KVI-CART, University of Groningen. Properties of the γ-ray emissions were experimentally determined. The prompt γ-ray emissions were measured utilizing a conventional HPGe detector system (Clover) and quantitatively compared to simulations. With the selected physics list QGSP_BIC_HP, Geant4 strongly overestimates the photon yield in most cases, sometimes up to 50%. The shape of the spectrum and qualitative occurrence of discrete γ lines is reproduced accurately. A sliced phantom was designed to determine the depth profile of the photons. The position of the distal fall-off in the simulations agrees with the measurements, albeit the peak height is also overestimated. Hence, Geant4 simulations of prompt γ-ray emissions from irradiation with protons are currently far less reliable as compared to simulations of the electromagnetic processes. Deviations from experimental findings were observed and quantified. Although there has been a constant improvement of Geant4 in the hadronic sector, there is still a gap to close.
Opticks : GPU Optical Photon Simulation for Particle Physics using NVIDIA® OptiX™
NASA Astrophysics Data System (ADS)
C, Blyth Simon
2017-10-01
Opticks is an open source project that integrates the NVIDIA OptiX GPU ray tracing engine with Geant4 toolkit based simulations. Massive parallelism brings drastic performance improvements with optical photon simulation speedup expected to exceed 1000 times Geant4 when using workstation GPUs. Optical photon simulation time becomes effectively zero compared to the rest of the simulation. Optical photons from scintillation and Cherenkov processes are allocated, generated and propagated entirely on the GPU, minimizing transfer overheads and allowing CPU memory usage to be restricted to optical photons that hit photomultiplier tubes or other photon detectors. Collecting hits into standard Geant4 hit collections then allows the rest of the simulation chain to proceed unmodified. Optical physics processes of scattering, absorption, scintillator reemission and boundary processes are implemented in CUDA OptiX programs based on the Geant4 implementations. Wavelength dependent material and surface properties as well as inverse cumulative distribution functions for reemission are interleaved into GPU textures providing fast interpolated property lookup or wavelength generation. Geometry is provided to OptiX in the form of CUDA programs that return bounding boxes for each primitive and ray geometry intersection positions. Some critical parts of the geometry such as photomultiplier tubes have been implemented analytically with the remainder being tessellated. OptiX handles the creation and application of a choice of acceleration structures such as boundary volume hierarchies and the transparent use of multiple GPUs. OptiX supports interoperation with OpenGL and CUDA Thrust that has enabled unprecedented visualisations of photon propagations to be developed using OpenGL geometry shaders to provide interactive time scrubbing and CUDA Thrust photon indexing to enable interactive history selection.
Accelerating navigation in the VecGeom geometry modeller
NASA Astrophysics Data System (ADS)
Wenzel, Sandro; Zhang, Yang; pre="for the"> VecGeom Developers, 2017-10-01 The VecGeom geometry library is a relatively recent effort aiming to provide a modern and high performance geometry service for particle detector simulation in hierarchical detector geometries common to HEP experiments. One of its principal targets is the efficient use of vector SIMD hardware instructions to accelerate geometry calculations for single track as well as multi-track queries. Previously, excellent performance improvements compared to Geant4/ROOT could be reported for elementary geometry algorithms at the level of single shape queries. In this contribution, we will focus on the higher level navigation algorithms in VecGeom, which are the most important components as seen from the simulation engines. We will first report on our R&D effort and developments to implement SIMD enhanced data structures to speed up the well-known “voxelised” navigation algorithms, ubiquitously used for particle tracing in complex detector modules consisting of many daughter parts. Second, we will discuss complementary new approaches to improve navigation algorithms in HEP. These ideas are based on a systematic exploitation of static properties of the detector layout as well as automatic code generation and specialisation of the C++ navigator classes. Such specialisations reduce the overhead of generic- or virtual function based algorithms and enhance the effectiveness of the SIMD vector units. These novel approaches go well beyond the existing solutions available in Geant4 or TGeo/ROOT, achieve a significantly superior performance, and might be of interest for a wide range of simulation backends (GeantV, Geant4). We exemplify this with concrete benchmarks for the CMS and ALICE detectors.
NEST: a comprehensive model for scintillation yield in liquid xenon
Szydagis, M.; Barry, N.; Kazkaz, K.; ...
2011-10-03
Here, a comprehensive model for explaining scintillation yield in liquid xenon is introduced. We unify various definitions of work function which abound in the literature and incorporate all available data on electron recoil scintillation yield. This results in a better understanding of electron recoil, and facilitates an improved description of nuclear recoil. An incident gamma energy range of O(1 keV) to O(1 MeV) and electric fields between 0 and O(10 kV/cm) are incorporated into this heuristic model. We show results from a Geant4 implementation, but because the model has a few free parameters, implementation in any simulation package should bemore » simple. We use a quasi-empirical approach, with an objective of improving detector calibrations and performance verification. The model will aid in the design and optimization of future detectors. This model is also easy to extend to other noble elements. In this paper we lay the foundation for an exhaustive simulation code which we call NEST (Noble Element Simulation Technique).« less
Studies of the Low-energy Gamma Background
NASA Astrophysics Data System (ADS)
Bikit, K.; Mrđa, D.; Bikit, I.; Slivka, J.; Veskovic, M.; Knezevic, D.
The investigations of contribution to the low-energy part of background gamma spectrum (below 100 keV) and knowing detection efficiency for this region are important for both, a fundamental, as well as for applied research. In this work, the components contributing to the low-energy region of background gamma spectrum for shielded detector are analyzed, including the production and spectral distribution of muon-induced continuous low-energy radiation in the vicinity of high-purity germanium detector.In addition, the detection efficiency for low energy gamma region is determined using the GEANT 4 simulation package. This technique offers excellent opportunity to predict the detection response in mentioned region. Unfortunately, the frequently weakly known dead layer thickness on the surface of the extended-range detector, as well as some processes which are not incorporated in simulation (e.g. charge collection from detector active volume) may limit the reliability of simulation technique. Thus, the 14, 17, 21, 26, 33, 59.5 keV transitions in the calibrated 241Am point source were used to check the simulated efficiencies.
Fast Photon Monte Carlo for Water Cherenkov Detectors
NASA Astrophysics Data System (ADS)
Latorre, Anthony; Seibert, Stanley
2012-03-01
We present Chroma, a high performance optical photon simulation for large particle physics detectors, such as the water Cerenkov far detector option for LBNE. This software takes advantage of the CUDA parallel computing platform to propagate photons using modern graphics processing units. In a computer model of a 200 kiloton water Cerenkov detector with 29,000 photomultiplier tubes, Chroma can propagate 2.5 million photons per second, around 200 times faster than the same simulation with Geant4. Chroma uses a surface based approach to modeling geometry which offers many benefits over a solid based modelling approach which is used in other simulations like Geant4.
NASA Astrophysics Data System (ADS)
McMullen, Timothy; Liyanage, Nilanga; Xiong, Weizhi; Zhao, Zhiwen
2017-01-01
Our research has focused on simulating the response of a Gas Electron Multiplier (GEM) detector using computational methods. GEM detectors provide a cost effective solution for radiation detection in high rate environments. A detailed simulation of GEM detector response to radiation is essential for the successful adaption of these detectors to different applications. Using Geant4 Monte Carlo (GEMC), a wrapper around Geant4 which has been successfully used to simulate the Solenoidal Large Intensity Device (SoLID) at Jefferson Lab, we are developing a simulation of a GEM chamber similar to the detectors currently used in our lab. We are also refining an object-oriented digitization program, which translates energy deposition information from GEMC into electronic readout which resembles the readout from our physical detectors. We have run the simulation with beta particles produced by the simulated decay of a 90Sr source, as well as with a simulated bremsstrahlung spectrum. Comparing the simulation data with real GEM data taken under similar conditions is used to refine the simulation parameters. Comparisons between results from the simulations and results from detector tests will be presented.
N values estimation based on photon flux simulation with Geant4 toolkit.
Sun, Z J; Danjaji, M; Kim, Y
2018-06-01
N values are routinely introduced in photon activation analysis (PAA) as the ratio of special activities of product nuclides to compare the relative intensities of different reaction channels. They determine the individual activities of each radioisotope and the total activity of the sample, which are the primary concerns of radiation safety. Traditionally, N values are calculated from the gamma spectroscopy in real measurements by normalizing the activities of individual nuclides to the reference reaction [ 58 Ni(γ, n) 57 Ni] of the nickel monitor simultaneously irradiated in photon activation. Is it possible to use photon flux simulated by Monte Carlo software to calculate N values even before the actual irradiation starts? This study has applied Geant4 toolkit, a popular platform of simulating the passage of particles through matter, to generate photon flux in the samples. Assisted with photonuclear cross section from IAEA database, it is feasible to predict N values in different experimental setups for simulated target material. We have validated of this method and its consistency with Geant4. Results also show that N values are highly correlated with the beam parameters of incoming electrons and the setup of the electron-photon converter. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aboulbanine, Zakaria; El Khayati, Naïma
2018-04-01
The use of phase space in medical linear accelerator Monte Carlo (MC) simulations significantly improves the execution time and leads to results comparable to those obtained from full calculations. The classical representation of phase space stores directly the information of millions of particles, producing bulky files. This paper presents a virtual source model (VSM) based on a reconstruction algorithm, taking as input a compressed file of roughly 800 kb derived from phase space data freely available in the International Atomic Energy Agency (IAEA) database. This VSM includes two main components; primary and scattered particle sources, with a specific reconstruction method developed for each. Energy spectra and other relevant variables were extracted from IAEA phase space and stored in the input description data file for both sources. The VSM was validated for three photon beams: Elekta Precise 6 MV/10 MV and a Varian TrueBeam 6 MV. Extensive calculations in water and comparisons between dose distributions of the VSM and IAEA phase space were performed to estimate the VSM precision. The Geant4 MC toolkit in multi-threaded mode (Geant4-[mt]) was used for fast dose calculations and optimized memory use. Four field configurations were chosen for dose calculation validation to test field size and symmetry effects, , , and for squared fields, and for an asymmetric rectangular field. Good agreement in terms of formalism, for 3%/3 mm and 2%/3 mm criteria, for each evaluated radiation field and photon beam was obtained within a computation time of 60 h on a single WorkStation for a 3 mm voxel matrix. Analyzing the VSM’s precision in high dose gradient regions, using the distance to agreement concept (DTA), showed also satisfactory results. In all investigated cases, the mean DTA was less than 1 mm in build-up and penumbra regions. In regards to calculation efficiency, the event processing speed is six times faster using Geant4-[mt] compared to sequential Geant4, when running the same simulation code for both. The developed VSM for 6 MV/10 MV beams widely used, is a general concept easy to adapt in order to reconstruct comparable beam qualities for various linac configurations, facilitating its integration for MC treatment planning purposes.
NASA Astrophysics Data System (ADS)
Lund, Matthew Lawrence
The space radiation environment is a significant challenge to future manned and unmanned space travels. Future missions will rely more on accurate simulations of radiation transport in space through spacecraft to predict astronaut dose and energy deposition within spacecraft electronics. The International Space Station provides long-term measurements of the radiation environment in Low Earth Orbit (LEO); however, only the Apollo missions provided dosimetry data beyond LEO. Thus dosimetry analysis for deep space missions is poorly supported with currently available data, and there is a need to develop dosimetry-predicting models for extended deep space missions. GEANT4, a Monte Carlo Method, provides a powerful toolkit in C++ for simulation of radiation transport in arbitrary media, thus including the spacecraft and space travels. The newest version of GEANT4 supports multithreading and MPI, resulting in faster distributive processing of simulations in high-performance computing clusters. This thesis introduces a new application based on GEANT4 that greatly reduces computational time using Kingspeak and Ember computational clusters at the Center for High Performance Computing (CHPC) to simulate radiation transport through full spacecraft geometry, reducing simulation time to hours instead of weeks without post simulation processing. Additionally, this thesis introduces a new set of detectors besides the historically used International Commission of Radiation Units (ICRU) spheres for calculating dose distribution, including a Thermoluminescent Detector (TLD), Tissue Equivalent Proportional Counter (TEPC), and human phantom combined with a series of new primitive scorers in GEANT4 to calculate dose equivalence based on the International Commission of Radiation Protection (ICRP) standards. The developed models in this thesis predict dose depositions in the International Space Station and during the Apollo missions showing good agreement with experimental measurements. From these models the greatest contributor to radiation dose for the Apollo missions was from Galactic Cosmic Rays due to the short time within the radiation belts. The Apollo 14 dose measurements were an order of magnitude higher compared to other Apollo missions. The GEANT4 model of the Apollo Command Module shows consistent doses due to Galactic Cosmic Rays and Radiation Belts for all missions, with a small variation in dose distribution across the capsule. The model also predicts well the dose depositions and equivalent dose values in various human organs for the International Space Station or Apollo Command Module.
Yang, R; Zelyak, O; Fallone, B G; St-Aubin, J
2018-01-30
Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.
NASA Astrophysics Data System (ADS)
Yang, R.; Zelyak, O.; Fallone, B. G.; St-Aubin, J.
2018-02-01
Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.
Modeling spallation reactions in tungsten and uranium targets with the Geant4 toolkit
NASA Astrophysics Data System (ADS)
Malyshkin, Yury; Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter
2012-02-01
We study primary and secondary reactions induced by 600 MeV proton beams in monolithic cylindrical targets made of natural tungsten and uranium by using Monte Carlo simulations with the Geant4 toolkit [1-3]. Bertini intranuclear cascade model, Binary cascade model and IntraNuclear Cascade Liège (INCL) with ABLA model [4] were used as calculational options to describe nuclear reactions. Fission cross sections, neutron multiplicity and mass distributions of fragments for 238U fission induced by 25.6 and 62.9 MeV protons are calculated and compared to recent experimental data [5]. Time distributions of neutron leakage from the targets and heat depositions are calculated. This project is supported by Siemens Corporate Technology.
NASA Astrophysics Data System (ADS)
SU, J.; Sagdeev, R.; Usikov, D.; Chin, G.; Boyer, L.; Livengood, T. A.; McClanahan, T. P.; Murray, J.; Starr, R. D.
2013-12-01
Introduction: The leakage flux of lunar neutrons produced by precipitation of galactic cosmic ray (GCR) particles in the upper layer of the lunar regolith and measured by orbital instruments such as the Lunar Exploration Neutron Detector (LEND) is investigated by Monte Carlo simulation. Previous Monte Carlo (MC) simulations have been used to investigate neutron production and leakage from the lunar surface to assess the elemental composition of lunar soil [1-6] and its effect on the leakage neutron flux. We investigate effects on the emergent flux that depend on the physical distribution of hydrogen within the regolith. We use the software package GEANT4 [7] to calculate neutron production from spallation by GCR particles [8,9] in the lunar soil. Multiple layers of differing hydrogen/water at different depths in the lunar regolith model are introduced to examine enhancement or suppression of leakage neutron flux. We find that the majority of leakage thermal and epithermal neutrons are produced in 25 cm to 75 cm deep from the lunar surface. Neutrons produced in the shallow top layer retain more of their original energy due to fewer scattering interactions and escape from the lunar surface mostly as fast neutrons. This provides a diagnostic tool in interpreting leakage neutron flux enhancement or suppression due to hydrogen concentration distribution in lunar regolith. We also find that the emitting angular distribution of thermal and epithermal leakage neutrons can be described by cos3/2(theta) where the fast neutrons emitting angular distribution is cos(theta). The energy sensitivity and angular response of the LEND detectors SETN and CSETN are investigated using the leakage neutron spectrum from GEANT4 simulations. A simplified LRO model is used to benchmark MCNPX[10] and GEANT4 on CSETN absolute count rate corresponding to neutron flux from bombardment of 120MV solar potential GCR particles on FAN lunar soil. We are able to interpret the count rates of SETN and CSETN from the leakage neutron spectrum, emission angle, detector energy sensitivity and angular response. Reference: [1] W. C. Feldman, et al., Science 4 September 1998: Vol. 281 no. 5382 pp. 1496-1500. [2] Gasnault, O., et al., (2000) J. Geophys. Res., 105(E2), 4263-4271. [3] Little, R. C., et al. (2003), J. Geophys. Res., 108(E5), 5046. [4] McKinney et al., (2006), J. Geophys. Res., 111, E06004. [5] Lawrence et al., (2006), J. Geophys. Res., 111, E08001. [6] Looper et al, (2013), Space Weather, VOL. 11, 142-152. [7] J. Allison, et al, (2006) IEEE TRANS. ON NUCL SCI, VOL. 53, NO. 1. [8] J. Masarik and R. Reedy (1996), J. Geophys. Res., 101, 18,891-18,912. [9] P. O'Neil (2010) IEEE Trans. Nucl. Sci., 57(6), 3148-3153. [10] D. Pelowitz, (2005), Rep. LA-CP-05-0369, LANL, Los Alamos, NM.
A Geant Study of the Scintillating Optical Fiber (SOFCAL) Cosmic Ray Detector
NASA Technical Reports Server (NTRS)
Munroe, Ray B., Jr.
1998-01-01
Recent energy measurements by balloon-borne passive emulsion chambers indicate that the flux ratios of protons to helium nuclei and of protons to all heavy nuclei decrease as the primary cosmic ray energy per nucleon increases above approx. 200 GeV/n, and suggest a "break" in the proton spectrum between 200 GeV and 5 TeV. However, these passive emulsion chambers are limited to a lower energy threshold of approx. 5 TeV/n, and cannot fully explore this energy regime. Because cosmic ray flux and composition details may be significant to acceleration models, a hybrid detector system called the Scintillating Optical Fiber Calorimeter (SOFCAL) has been designed and flown. SOFCAL incorporates both conventional passive emulsion chambers and an active calorimeter utilizing scintillating plastic fibers as detectors. These complementary types of detectors allow the balloon-borne SOFCAL experiment to measure the proton and helium spectra from approx. 400 GeV/n to approx. 20 TeV. The fundamental purpose of this study is to use the GEANT simulation package to model the hadronic and electromagnetic shower evolution of cosmic rays incident on the SOFCAL detector. This allows the interpretation of SOFCAL data in terms of charges and primary energies of cosmic rays, thus allowing the determinations of cosmic ray flux and composition as functions of primary energy.
ERIC Educational Resources Information Center
Day, A. C.
1975-01-01
ALLC members are divided here into pure linguists, pure programmers, and linguist programmers. Five computer languages and the use of packages and coders are discussed briefly. It is suggested that the pure programmers are best able to help the pure linguists with their programming problems. (RM)
[Youth health care: much prevention for little money].
Verloove-Vanhorick, S P; Verkerk, P H; van Leerdam, F J M; Reijneveld, S A; Hirasing, R A
2003-05-10
As part of government policy, the 'Youth healthcare' prevention programme is offered free of charge to all children aged 0 to 19 years who are resident in the Netherlands. It consists of a programme of primary prevention (including vaccinations, information and advice) and secondary prevention (screening, surveillance, early diagnosis) and individual prevention and care. Many elements from the programme package have been shown to have a favourable cost-effectiveness relationship, in terms of health benefits and financially. Other elements have a social priority. The present government expenditure for the total youth healthcare package is about 380 million euros per year, that is 1900 euros per child. In terms of conditions prevented or years of life gained, this is cheaper than accepted prevention programmes for adults. The present approach can only be maintained and strengthened, if the expenditure is increased so that new programme elements can be investigated and--if found effective--implemented.
Studying the response of a plastic scintillator to gamma rays using the Geant4 Monte Carlo code.
Ghadiri, Rasoul; Khorsandi, Jamshid
2015-05-01
To determine the gamma ray response function of an NE-102 scintillator and to investigate the gamma spectra due to the transport of optical photons, we simulated an NE-102 scintillator using Geant4 code. The results of the simulation were compared with experimental data. Good consistency between the simulation and data was observed. In addition, the time and spatial distributions, along with the energy distribution and surface treatments of scintillation detectors, were calculated. This simulation makes us capable of optimizing the photomultiplier tube (or photodiodes) position to yield the best coupling to the detector. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simulating Terrestrial Gamma-ray Flashes using SWORD (Invited)
NASA Astrophysics Data System (ADS)
Gwon, C.; Grove, J.; Dwyer, J. R.; Mattson, K.; Polaski, D.; Jackson, L.
2013-12-01
We report on simulations of the relativistic feedback discharges involved with the production of terrestrial gamma-ray flashes (TGFs). The simulations were conducted using Geant4 using the SoftWare for the Optimization of Radiation Detectors (SWORD) framework. SWORD provides a graphical interface for setting up simulations in select high-energy radiation transport engines. Using Geant4, we determine avalanche length, the energy spectrum of the electrons and gamma-rays as they leave the field region, and the feedback factor describing the degree to which the production of energetic particles is self-sustaining. We validate our simulations against previous work in order to determine the reliability of our results. This work is funded by the Office of Naval Research.
Monte-Carlo Geant4 numerical simulation of experiments at 247-MeV proton microscope
NASA Astrophysics Data System (ADS)
Kantsyrev, A. V.; Skoblyakov, A. V.; Bogdanov, A. V.; Golubev, A. A.; Shilkin, N. S.; Yuriev, D. S.; Mintsev, V. B.
2018-01-01
A radiographic facility for an investigation of fast dynamic processes with areal density of targets up to 5 g/cm2 is under development on the basis of high-current proton linear accelerator at the Institute for Nuclear Research (Troitsk, Russia). A virtual model of the proton microscope developed in a software toolkit Geant4 is presented in the article. Fullscale Monte-Carlo numerical simulation of static radiographic experiments at energy of a proton beam 247 MeV was performed. The results of simulation of proton radiography experiments with static model of shock-compressed xenon are presented. The results of visualization of copper and polymethyl methacrylate step wedges static targets also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Womersley, J.; DiGiacomo, N.; Killian, K.
1990-04-01
Detailed detector design has traditionally been divided between engineering optimization for structural integrity and subsequent physicist evaluation. The availability of CAD systems for engineering design enables the tasks to be integrated by providing tools for particle simulation within the CAD system. We believe this will speed up detector design and avoid problems due to the late discovery of shortcomings in the detector. This could occur because of the slowness of traditional verification techniques (such as detailed simulation with GEANT). One such new particle simulation tool is described. It is being used with the I-DEAS CAD package for SSC detector designmore » at Martin-Marietta Astronautics and is to be released through the SSC Laboratory.« less
Detector Simulations with DD4hep
NASA Astrophysics Data System (ADS)
Petrič, M.; Frank, M.; Gaede, F.; Lu, S.; Nikiforou, N.; Sailer, A.
2017-10-01
Detector description is a key component of detector design studies, test beam analyses, and most of particle physics experiments that require the simulation of more and more different detector geometries and event types. This paper describes DD4hep, which is an easy-to-use yet flexible and powerful detector description framework that can be used for detector simulation and also extended to specific needs for a particular working environment. Linear collider detector concepts ILD, SiD and CLICdp as well as detector development collaborations CALICE and FCal have chosen to adopt the DD4hep geometry framework and its DDG4 pathway to Geant4 as its core simulation and reconstruction tools. The DDG4 plugins suite includes a wide variety of input formats, provides access to the Geant4 particle gun or general particles source and allows for handling of Monte Carlo truth information, eg. by linking hits and the primary particle that caused them, which is indispensable for performance and efficiency studies. An extendable array of segmentations and sensitive detectors allows the simulation of a wide variety of detector technologies. This paper shows how DD4hep allows to perform complex Geant4 detector simulations without compiling a single line of additional code by providing a palette of sub-detector components that can be combined and configured via compact XML files. Simulation is controlled either completely via the command line or via simple Python steering files interpreted by a Python executable. It also discusses how additional plugins and extensions can be created to increase the functionality.
A Geant4 evaluation of the Hornyak button and two candidate detectors for the TREAT hodoscope
NASA Astrophysics Data System (ADS)
Fu, Wenkai; Ghosh, Priyarshini; Harrison, Mark J.; McGregor, Douglas S.; Roberts, Jeremy A.
2018-05-01
The performance of traditional Hornyak buttons and two proposed variants for fast-neutron hodoscope applications was evaluated using Geant4. The Hornyak button is a ZnS(Ag)-based device previously deployed at the Idaho National Laboratory's TRansient REActor Test Facility (better known as TREAT) for monitoring fast neutrons emitted during pulsing of fissile fuel samples. Past use of these devices relied on pulse-shape discrimination to reduce the significant levels of background Cherenkov radiation. Proposed are two simple designs that reduce the overall light guide mass (here, polymethyl methacrylate or PMMA), employ silicon photomultipliers (SiPMs), and can be operated using pulse-height discrimination alone to eliminate background noise to acceptable levels. Geant4 was first used to model a traditional Hornyak button, and for assumed, hodoscope-like conditions, an intrinsic efficiency of 0.35% for mono-directional fission neutrons was predicted. The predicted efficiency is in reasonably good agreement with experimental data from the literature and, hence, served to validate the physics models and approximations employed. Geant4 models were then developed to optimize the materials and geometries of two alternatives to the Hornyak button, one based on a homogeneous mixture of ZnS(Ag) and PMMA, and one based on alternating layers of ZnS(Ag) and PMMA oriented perpendicular to the incident neutron beam. For the same radiation environment, optimized, 5-cm long (along the beam path) devices of the homogeneous and layered designs were predicted to have efficiencies of approximately 1.3% and 3.3%, respectively. For longer devices, i.e., lengths larger than 25 cm, these efficiencies were shown to peak at approximately 2.2% and 5.9%, respectively. Moreover, both designs were shown to discriminate Cherenkov noise intrinsically by using an appropriate pulse-height discriminator level, i.e., pulse-shape discrimination is not needed for these devices.
TOPAS Tool for Particle Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Joseph
2013-05-30
TOPAS lets users simulate the passage of subatomic particles moving through any kind of radiation therapy treatment system, can import a patient geometry, can record dose and other quantities, has advanced graphics, and is fully four-dimensional (3D plus time) to handle the most challenging time-dependent aspects of modern cancer treatments.TOPAS unlocks the power of the most accurate particle transport simulation technique, the Monte Carlo (MC) method, while removing the painstaking coding work such methods used to require. Research physicists can use TOPAS to improve delivery systems towards safer and more effective radiation therapy treatments, easily setting up and running complexmore » simulations that previously used to take months of preparation. Clinical physicists can use TOPAS to increase accuracy while reducing side effects, simulating patient-specific treatment plans at the touch of a button. TOPAS is designed as a user code layered on top of the Geant4 Simulation Toolkit. TOPAS includes the standard Geant4 toolkit, plus additional code to make Geant4 easier to control and to extend Geant4 functionality. TOPAS aims to make proton simulation both reliable and repeatable. Reliable means both accurate physics and a high likelihood to simulate precisely what the user intended to simulate, reducing issues of wrong units, wrong materials, wrong scoring locations, etc. Repeatable means not just getting the same result from one simulation to another, but being able to easily restore a previously used setup and reducing sources of error when a setup is passed from one user to another. TOPAS control system incorporates key lessons from safety management, proactively removing possible sources of user error such as line-ordering mistakes In control files. TOPAS has been used to model proton therapy treatment examples including the UCSF eye treatment head, the MGH stereotactic alignment in radiosurgery treatment head and the MGH gantry treatment heads in passive scattering and scanning modes, and has demonstrated dose calculation based on patient-specific CT data.« less
SU-E-T-22: A Deterministic Solver of the Boltzmann-Fokker-Planck Equation for Dose Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, X; Gao, H; Paganetti, H
2015-06-15
Purpose: The Boltzmann-Fokker-Planck equation (BFPE) accurately models the migration of photons/charged particles in tissues. While the Monte Carlo (MC) method is popular for solving BFPE in a statistical manner, we aim to develop a deterministic BFPE solver based on various state-of-art numerical acceleration techniques for rapid and accurate dose calculation. Methods: Our BFPE solver is based on the structured grid that is maximally parallelizable, with the discretization in energy, angle and space, and its cross section coefficients are derived or directly imported from the Geant4 database. The physical processes that are taken into account are Compton scattering, photoelectric effect, pairmore » production for photons, and elastic scattering, ionization and bremsstrahlung for charged particles.While the spatial discretization is based on the diamond scheme, the angular discretization synergizes finite element method (FEM) and spherical harmonics (SH). Thus, SH is used to globally expand the scattering kernel and FFM is used to locally discretize the angular sphere. As a Result, this hybrid method (FEM-SH) is both accurate in dealing with forward-peaking scattering via FEM, and efficient for multi-energy-group computation via SH. In addition, FEM-SH enables the analytical integration in energy variable of delta scattering kernel for elastic scattering with reduced truncation error from the numerical integration based on the classic SH-based multi-energy-group method. Results: The accuracy of the proposed BFPE solver was benchmarked against Geant4 for photon dose calculation. In particular, FEM-SH had improved accuracy compared to FEM, while both were within 2% of the results obtained with Geant4. Conclusion: A deterministic solver of the Boltzmann-Fokker-Planck equation is developed for dose calculation, and benchmarked against Geant4. Xiang Hong and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less
A Geant4 evaluation of the Hornyak button and two candidate detectors for the TREAT hodoscope
Fu, Wenkai; Ghosh, Priyarshini; Harrison, Mark; ...
2018-02-05
The performance of traditional Hornyak buttons and two proposed variants for fast-neutron hodoscope applications was evaluated using Geant4. The Hornyak button is a ZnS(Ag)-based device previously deployed at the Idaho National Laboratory's TRansient REActor Test Facility (better known as TREAT) for monitoring fast neutrons emitted during pulsing of fissile fuel samples. Past use of these devices relied on pulse-shape discrimination to reduce the significant levels of background Cherenkov radiation. Proposed are two simple designs that reduce the overall light guide mass (here, polymethyl methacrylate or PMMA), employ silicon photomultipliers (SiPMs), and can be operated using pulse-height discrimination alone to eliminatemore » background noise to acceptable levels. Geant4 was first used to model a traditional Hornyak button, and for assumed, hodoscope-like conditions, an intrinsic efficiency of 0.35% for mono-directional fission neutrons was predicted. The predicted efficiency is in reasonably good agreement with experimental data from the literature and, hence, served to validate the physics models and approximations employed. Geant4 models were then developed to optimize the materials and geometries of two alternatives to the Hornyak button, one based on a homogeneous mixture of ZnS(Ag) and PMMA, and one based on alternating layers of ZnS(Ag) and PMMA oriented perpendicular to the incident neutron beam. For the same radiation environment, optimized, 5-cm long (along the beam path) devices of the homogeneous and layered designs were predicted to have efficiencies of approximately 1.3% and 3.3%, respectively. For longer devices, i.e., lengths larger than 25 cm, these efficiencies were shown to peak at approximately 2.2% and 5.9%, respectively. Furthermore, both designs were shown to discriminate Cherenkov noise intrinsically by using an appropriate pulse-height discriminator level, i.e., pulse-shape discrimination is not needed for these devices.« less
Calibration of the radiation monitor onboard Akebono using Geant4
NASA Astrophysics Data System (ADS)
Asai, Keiko; Takashima, Takeshi; Koi, Tatsumi; Nagai, Tsugunobu
Natural high-energy electrons and protons (keV-MeV) in the space contaminate the data re-ciprocally. In order to calibrate the energy ranges and to remove data contamination on the radiation monitor (RDM) onboard the Japanese satellite, Akebono (EXOS-D), the detector is investigated using the Geant4 simulation toolkit of computational particle tracing. The semi-polar orbiting Akebono, launched in February 1989, is active now. This satellite has been observed the space environment at altitudes of several thousands km. The RDM instrument onboard Akebono monitors energetic particles in the Earth's radiation belt and gives important data accumulated for about two solar cycles. The data from RDM are for electrons in three energy channels of 0.3 MeV, protons in three energy channels of ¿ 30 MeV, and alpha particles in one energy channels of 15-45 MeV. The energy ranges are however based on information of about 20 years ago so that the data seem to include some errors actuary. In addition, these data include contamination of electrons and protons reciprocally. Actuary it is noticed that the electron data are contaminated by the solar protons but unknown quantitative amount of the contamination. Therefore we need data calibration in order to correct the energy ranges and to remove data contamination. The Geant4 simulation gives information of trajectories of incident and secondary particles whose are interacted with materials. We examine the RDM monitor using the Geant4 simulation. We find from the results that relativistic electrons of MeV behave quite complicatedly because of particle-material interaction in the instrument. The results indicate that efficiencies of detection and contamination are dependent on energy. This study compares the electron data from Akebono RDM with the simultaneous observation of CRRES and tries to lead the values of correction for each of the energy channels.
Aboulbanine, Zakaria; El Khayati, Naïma
2018-04-13
The use of phase space in medical linear accelerator Monte Carlo (MC) simulations significantly improves the execution time and leads to results comparable to those obtained from full calculations. The classical representation of phase space stores directly the information of millions of particles, producing bulky files. This paper presents a virtual source model (VSM) based on a reconstruction algorithm, taking as input a compressed file of roughly 800 kb derived from phase space data freely available in the International Atomic Energy Agency (IAEA) database. This VSM includes two main components; primary and scattered particle sources, with a specific reconstruction method developed for each. Energy spectra and other relevant variables were extracted from IAEA phase space and stored in the input description data file for both sources. The VSM was validated for three photon beams: Elekta Precise 6 MV/10 MV and a Varian TrueBeam 6 MV. Extensive calculations in water and comparisons between dose distributions of the VSM and IAEA phase space were performed to estimate the VSM precision. The Geant4 MC toolkit in multi-threaded mode (Geant4-[mt]) was used for fast dose calculations and optimized memory use. Four field configurations were chosen for dose calculation validation to test field size and symmetry effects, [Formula: see text] [Formula: see text], [Formula: see text] [Formula: see text], and [Formula: see text] [Formula: see text] for squared fields, and [Formula: see text] [Formula: see text] for an asymmetric rectangular field. Good agreement in terms of [Formula: see text] formalism, for 3%/3 mm and 2%/3 mm criteria, for each evaluated radiation field and photon beam was obtained within a computation time of 60 h on a single WorkStation for a 3 mm voxel matrix. Analyzing the VSM's precision in high dose gradient regions, using the distance to agreement concept (DTA), showed also satisfactory results. In all investigated cases, the mean DTA was less than 1 mm in build-up and penumbra regions. In regards to calculation efficiency, the event processing speed is six times faster using Geant4-[mt] compared to sequential Geant4, when running the same simulation code for both. The developed VSM for 6 MV/10 MV beams widely used, is a general concept easy to adapt in order to reconstruct comparable beam qualities for various linac configurations, facilitating its integration for MC treatment planning purposes.
MCNPX simulation of proton dose distribution in homogeneous and CT phantoms
NASA Astrophysics Data System (ADS)
Lee, C. C.; Lee, Y. J.; Tung, C. J.; Cheng, H. W.; Chao, T. C.
2014-02-01
A dose simulation system was constructed based on the MCNPX Monte Carlo package to simulate proton dose distribution in homogeneous and CT phantoms. Conversion from Hounsfield unit of a patient CT image set to material information necessary for Monte Carlo simulation is based on Schneider's approach. In order to validate this simulation system, inter-comparison of depth dose distributions among those obtained from the MCNPX, GEANT4 and FLUKA codes for a 160 MeV monoenergetic proton beam incident normally on the surface of a homogeneous water phantom was performed. For dose validation within the CT phantom, direct comparison with measurement is infeasible. Instead, this study took the approach to indirectly compare the 50% ranges (R50%) along the central axis by our system to the NIST CSDA ranges for beams with 160 and 115 MeV energies. Comparison result within the homogeneous phantom shows good agreement. Differences of simulated R50% among the three codes are less than 1 mm. For results within the CT phantom, the MCNPX simulated water equivalent Req,50% are compatible with the CSDA water equivalent ranges from the NIST database with differences of 0.7 and 4.1 mm for 160 and 115 MeV beams, respectively.
Technical and Regulatory Considerations in Using Freight Containers as Industrial Packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawk, Mark B; Opperman, Erich; Natali, Ronald
2008-01-01
The US Department of Energy (DOE), Office of Environmental Management (EM), is actively pursuing activities to reduce the radiological risk and clean up the environmental legacy of the nation's nuclear weapons programmes. The EM has made significant progress in recent years in the clean-up and closure of sites and is also focusing on longer term activities necessary for the completion of the clean-up programme. The packaging and transportation of contaminated demolition debris and low level waste materials in a safe and cost effective manner are essential in completing this mission. Toward this end, the US Department of Transportation's Final Rulemore » on Hazardous Materials Regulation issued on 26 January 2004, included a new provision authorising the use of freight containers (e.g. 20 and 40 ft ISO containers) as industrial packages type 2 or 3. This paper will discuss the technical and regulatory considerations in using these newly authorised and large packages for the packaging and transportation of low level waste materials.« less
On Designing Lightweight Threads for Substrate Software
NASA Technical Reports Server (NTRS)
Haines, Matthew
1997-01-01
Existing user-level thread packages employ a 'black box' design approach, where the implementation of the threads is hidden from the user. While this approach is often sufficient for application-level programmers, it hides critical design decisions that system-level programmers must be able to change in order to provide efficient service for high-level systems. By applying the principles of Open Implementation Analysis and Design, we construct a new user-level threads package that supports common thread abstractions and a well-defined meta-interface for altering the behavior of these abstractions. As a result, system-level programmers will have the advantages of using high-level thread abstractions without having to sacrifice performance, flexibility or portability.
SUTIL: system utilities routines programmer's reference manual
NASA Technical Reports Server (NTRS)
Harper, D.
1976-01-01
A package of FORTRAN callable subroutines which allows efficient communication of data between users and programs is described. Proper utilization of the SUTIL package to reduce program core requirements and expedite program development is emphasized.
Software packager user's guide
NASA Technical Reports Server (NTRS)
Callahan, John R.
1995-01-01
Software integration is a growing area of concern for many programmers and software managers because the need to build new programs quickly from existing components is greater than ever. This includes building versions of software products for multiple hardware platforms and operating systems, building programs from components written in different languages, and building systems from components that must execute on different machines in a distributed network. The goal of software integration is to make building new programs from existing components more seamless -- programmers should pay minimal attention to the underlying configuration issues involved. Libraries of reusable components and classes are important tools but only partial solutions to software development problems. Even though software components may have compatible interfaces, there may be other reasons, such as differences between execution environments, why they cannot be integrated. Often, components must be adapted or reimplemented to fit into another application because of implementation differences -- they are implemented in different programming languages, dependent on different operating system resources, or must execute on different physical machines. The software packager is a tool that allows programmers to deal with interfaces between software components and ignore complex integration details. The packager takes modular descriptions of the structure of a software system written in the package specification language and produces an integration program in the form of a makefile. If complex integration tools are needed to integrate a set of components, such as remote procedure call stubs, their use is implied by the packager automatically and stub generation tools are invoked in the corresponding makefile. The programmer deals only with the components themselves and not the details of how to build the system on any given platform.
Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity
NASA Astrophysics Data System (ADS)
Sarmiento, L. G.; Rudolph, D.
2016-07-01
With the aid of a novel combination of existing equipment - JYFLTRAP and the TASISpec decay station - it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the Iπ = 19/2-, 3174-keV isomer in the N = Z - 1 nucleus 53Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into "open quantum systems". The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.
GEANT4 simulations of a novel 3He-free thermalization neutron detector
NASA Astrophysics Data System (ADS)
Mazzone, A.; Finocchiaro, P.; Lo Meo, S.; Colonna, N.
2018-05-01
A novel concept for 3He-free thermalization detector is here investigated by means of GEANT4 simulations. The detector is based on strips of solid-state detectors with 6Li deposit for neutron conversion. Various geometrical configurations have been investigated in order to find the optimal solution, in terms of value and energy dependence of the efficiency for neutron energies up to 10 MeV. The expected performance of the new detector are compared with those of an optimized thermalization detector based on standard 3He tubes. Although an 3He-based detector is superior in terms of performance and simplicity, the proposed solution may become more appealing in terms of costs in case of shortage of 3He supply.
Input comparison of radiogenic neutron estimates for ultra-low background experiments
NASA Astrophysics Data System (ADS)
Cooley, J.; Palladino, K. J.; Qiu, H.; Selvi, M.; Scorza, S.; Zhang, C.
2018-04-01
Ultra-low-background experiments address some of the most important open questions in particle physics, cosmology and astrophysics: the nature of dark matter, whether the neutrino is its own antiparticle, and does the proton decay. These rare event searches require well-understood and minimized backgrounds. Simulations are used to understand backgrounds caused by naturally occurring radioactivity in the rock and in every piece of shielding and detector material used in these experiments. Most important are processes like spontaneous fission and (α,n) reactions in material close to the detectors that can produce neutrons. A comparison study of the (α,n) reactions between two dedicated software packages is detailed. The cross section libraries, neutron yields, and spectra from the Mei-Zhang-Hime and the SOURCES-4A codes are presented. The resultant yields and spectra are used as inputs to direct dark matter detector toy models in GEANT4, to study the impact of their differences on background estimates and fits. Although differences in neutron yield calculations up to 50% were seen, there was no systematic difference between the Mei-Hime-Zhang and SOURCES-4A results. Neutron propagation simulations smooth differences in spectral shape and yield, and both tools were found to meet the broad requirements of the low-background community.
The British Airways Employee Assistance Programme: a community response to a company's problems.
Smith, K G; McKee, A D
1992-02-01
Employee Assistance Programmes have developed since the early 1940s, particularly in North America, and are now part of many UK companies benefits packages for their staff (particularly in North America). This article details the development, philosophy, structure and practice of the British Airways Employee Assistance Programme.
Item Response Data Analysis Using Stata Item Response Theory Package
ERIC Educational Resources Information Center
Yang, Ji Seung; Zheng, Xiaying
2018-01-01
The purpose of this article is to introduce and review the capability and performance of the Stata item response theory (IRT) package that is available from Stata v.14, 2015. Using a simulated data set and a publicly available item response data set extracted from Programme of International Student Assessment, we review the IRT package from…
Ogawara, R; Ishikawa, M
2016-07-01
The anode pulse of a photomultiplier tube (PMT) coupled with a scintillator is used for pulse shape discrimination (PSD) analysis. We have developed a novel emulation technique for the PMT anode pulse based on optical photon transport and a PMT response function. The photon transport was calculated using Geant4 Monte Carlo code and the response function with a BC408 organic scintillator. The obtained percentage RMS value of the difference between the measured and simulated pulse with suitable scintillation properties using GSO:Ce (0.4, 1.0, 1.5 mol%), LaBr3:Ce and BGO scintillators were 2.41%, 2.58%, 2.16%, 2.01%, and 3.32%, respectively. The proposed technique demonstrates high reproducibility of the measured pulse and can be applied to simulation studies of various radiation measurements.
Li, Renzhong; Ruan, Yunzhou; Sun, Qiang; Wang, Xiexiu; Chen, Mingting; Zhang, Hui; Zhao, Yanlin; Zhao, Jin; Chen, Cheng; Xu, Caihong; Su, Wei; Pang, Yu; Cheng, Jun; Chi, Junying; Wang, Qian; Fu, Yunting; Huan, Shitong; Wang, Lixia; Wang, Yu; Chin, Daniel P
2015-04-01
China has a quarter of all patients with multidrug-resistant tuberculosis (MDRTB) worldwide, but less than 5% are in quality treatment programmes. In a before-and-after study we aimed to assess the effect of a comprehensive programme to provide universal access to diagnosis, treatment, and follow-up for MDRTB in four Chinese cities (population 18 million). We designated city-level hospitals in each city to diagnose and treat MDRTB. All patients with smear-positive pulmonary tuberculosis diagnosed in Center for Disease Control (CDC) clinics and hospitals were tested for MDRTB with molecular and conventional drug susceptibility tests. Patients were treated with a 24 month treatment package for MDRTB based on WHO guidelines. Outpatients were referred to the CDC for directly observed therapy. We capped total treatment package cost at US$4644. Insurance reimbursement and project subsidies limited patients' expenses to 10% of charges for services within the package. We compared data from a 12 month programme period (2011) to those from a retrospective survey of all patients with MDRTB diagnosed in the same cities during a baseline period (2006-09). 243 patients were diagnosed with MDRTB or rifampicin-resistant tuberculosis during the 12 month programme period compared with 92 patients (equivalent to 24 per year) during the baseline period. 172 (71%) of 243 individuals were enrolled in the programme. Time from specimen collection for resistance testing to treatment initiation decreased by 90% (from median 139 days [IQR 69-207] to 14 days [10-21]), the proportion of patients who started on appropriate drug regimen increased 2·7 times (from nine [35%] of 26 patients treated to 166 [97%] of 172), and follow-up by the CDC after initial hospitalisation increased 24 times (from one [4%] of 23 patients to 163 [99%] of 164 patients). 6 months after starting treatment, the proportion of patients remaining on treatment increased ten times (from two [8%] of 26 patients to 137 [80%] of 172), and 116 (67%) of 172 patients in the programme period had negative cultures or clinical-radiographic improvement. Patients' expenses for hospital admission after MDRTB diagnosis decreased by 78% (from $796 to $174), reducing the ratio of patients' expenses to annual household income from 17·6% to 3·5% (p<0·0001 for all comparisons between baseline and programme periods). However, 36 (15%) patients did not start or had to discontinue treatment in the programme period because of financial difficulties. This comprehensive programme substantially increased access to diagnosis, quality treatment, and affordable treatment for MDRTB. The programme could help China to achieve universal access to MDRTB care but greater financial risk protection for patients is needed. Bill & Melinda Gates Foundation. Copyright © 2015 Li et al. Open Access article distributed under the terms of CC BY-NC-ND. Published by .. All rights reserved.
Management of cosmic radiation exposure for aircraft crew in Japan.
Yasuda, Hiroshi; Sato, Tatsuhiko; Yonehara, Hidenori; Kosako, Toshiso; Fujitaka, Kazunobu; Sasaki, Yasuhito
2011-07-01
The International Commission on Radiological Protection has recommended that cosmic radiation exposure of crew in commercial jet aircraft be considered as occupational exposure. In Japan, the Radiation Council of the government has established a guideline that requests domestic airlines to voluntarily keep the effective dose of cosmic radiation for aircraft crew below 5 mSv y(-1). The guideline also gives some advice and policies regarding the method of cosmic radiation dosimetry, the necessity of explanation and education about this issue, a way to view and record dose data, and the necessity of medical examination for crew. The National Institute of Radiological Sciences helps the airlines to follow the guideline, particularly for the determination of aviation route doses by numerical simulation. The calculation is performed using an original, easy-to-use program package called 'JISCARD EX' coupled with a PHITS-based analytical model and a GEANT4-based particle tracing code. The new radiation weighting factors recommended in 2007 are employed for effective dose determination. The annual individual doses of aircraft crew were estimated using this program.
Corporate ergonomics programme at BCM Airdrie. Boots Contract Manufacturing.
Smyth, Joanne
2003-01-01
The production processes at the BCM Airdrie site range from manual loading tasks in the manufacturing areas to high frequency packaging assembly tasks on the production lines. Both are jobs that are known to carry risk to musculoskeletal health, so an ergonomist was appointed to design and co-ordinate an ergonomics programme for the site to control these risks. This paper details the programme that has evolved to proactively manage musculoskeletal risks in the design of both new and existing equipment and processes. The ergonomics procedures described primarily involve the engineers from all areas of the factory, and the process for ergonomics involvement with engineering design projects is described. Shop-floor personnel involvement is considered to be an essential part of the programme and 'Ergonomics Champions' are being trained on the packing lines to monitor the risks that are sometimes introduced with the different designs of product packaging.
The graphics and data acquisition software package
NASA Technical Reports Server (NTRS)
Crosier, W. G.
1981-01-01
A software package was developed for use with micro and minicomputers, particularly the LSI-11/DPD-11 series. The package has a number of Fortran-callable subroutines which perform a variety of frequently needed tasks for biomedical applications. All routines are well documented, flexible, easy to use and modify, and require minimal programmer knowledge of peripheral hardware. The package is also economical of memory and CPU time. A single subroutine call can perform any one of the following functions: (1) plot an array of integer values from sampled A/D data, (2) plot an array of Y values versus an array of X values; (3) draw horizontal and/or vertical grid lines of selectable type; (4) annotate grid lines with user units; (5) get coordinates of user controlled crosshairs from the terminal for interactive graphics; (6) sample any analog channel with program selectable gain; (7) wait a specified time interval, and (8) perform random access I/O of one or more blocks of a sequential disk file. Several miscellaneous functions are also provided.
Analysis of GEANT4 Physics List Properties in the 12 GeV MOLLER Simulation Framework
NASA Astrophysics Data System (ADS)
Haufe, Christopher; Moller Collaboration
2013-10-01
To determine the validity of new physics beyond the scope of the electroweak theory, nuclear physicists across the globe have been collaborating on future endeavors that will provide the precision needed to confirm these speculations. One of these is the MOLLER experiment - a low-energy particle experiment that will utilize the 12 GeV upgrade of Jefferson Lab's CEBAF accelerator. The motivation of this experiment is to measure the parity-violating asymmetry of scattered polarized electrons off unpolarized electrons in a liquid hydrogen target. This measurement would allow for a more precise determination of the electron's weak charge and weak mixing angle. While still in its planning stages, the MOLLER experiment requires a detailed simulation framework in order to determine how the project should be run in the future. The simulation framework for MOLLER, called ``remoll'', is written in GEANT4 code. As a result, the simulation can utilize a number of GEANT4 coded physics lists that provide the simulation with a number of particle interaction constraints based off of different particle physics models. By comparing these lists with one another using the data-analysis application ROOT, the most optimal physics list for the MOLLER simulation can be determined and implemented. This material is based upon work supported by the National Science Foundation under Grant No. 714001.
Raisali, Gholamreza; Mirzakhanian, Lalageh; Masoudi, Seyed Farhad; Semsarha, Farid
2013-01-01
In this work the number of DNA single-strand breaks (SSB) and double-strand breaks (DSB) due to direct and indirect effects of Auger electrons from incorporated (123)I and (125)I have been calculated by using the Geant4-DNA toolkit. We have performed and compared the calculations for several cases: (125)I versus (123)I, source positions and direct versus indirect breaks to study the capability of the Geant4-DNA in calculations of DNA damage yields. Two different simple geometries of a 41 base pair of B-DNA have been simulated. The location of (123)I has been considered to be in (123)IdUrd and three different locations for (125)I. The results showed that the simpler geometry is sufficient for direct break calculations while indirect damage yield is more sensitive to the helical shape of DNA. For (123)I Auger electrons, the average number of DSB due to the direct hits is almost twice the DSB due to the indirect hits. Furthermore, a comparison between the average number of SSB or DSB caused by Auger electrons of (125)I and (123)I in (125)IdUrd and (123)IdUrd shows that (125)I is 1.5 times more effective than (123)I per decay. The results are in reasonable agreement with previous experimental and theoretical results which shows the applicability of the Geant-DNA toolkit in nanodosimetry calculations which benefits from the open-source accessibility with the advantage that the DNA models used in this work enable us to save the computational time. Also, the results showed that the simpler geometry is suitable for direct break calculations, while for the indirect damage yield, the more precise model is preferred.
Geant4 calculations for space radiation shielding material Al2O3
NASA Astrophysics Data System (ADS)
Capali, Veli; Acar Yesil, Tolga; Kaya, Gokhan; Kaplan, Abdullah; Yavuz, Mustafa; Tilki, Tahir
2015-07-01
Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV - 1 GeV using GEANT4 calculation code.
DoSSiER: Database of scientific simulation and experimental results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Hans; Yarba, Julia; Genser, Krzystof
The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientific Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER can be easily accessed via a web application. In addition, a web service allows for programmatic access to the repository to extract records in json or xml exchange formats. In this paper, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.
DoSSiER: Database of scientific simulation and experimental results
Wenzel, Hans; Yarba, Julia; Genser, Krzystof; ...
2016-08-01
The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientific Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER can be easily accessed via a web application. In addition, a web service allows for programmatic access to the repository to extract records in json or xml exchange formats. In this paper, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.
Comparing Geant4 hadronic models for the WENDI-II rem meter response function.
Vanaudenhove, T; Dubus, A; Pauly, N
2013-01-01
The WENDI-II rem meter is one of the most popular neutron dosemeters used to assess a useful quantity of radiation protection, namely the ambient dose equivalent. This is due to its high sensitivity and its energy response that approximately follows the conversion function between neutron fluence and ambient dose equivalent in the range of thermal to 5 GeV. The simulation of the WENDI-II response function with the Geant4 toolkit is then perfectly suited to compare low- and high-energy hadronic models provided by this Monte Carlo code. The results showed that the thermal treatment of hydrogen in polyethylene for neutron <4 eV has a great influence over the whole detector range. Above 19 MeV, both Bertini Cascade and Binary Cascade models show a good correlation with the results found in the literature, while low-energy parameterised models are not suitable for this application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawara, R.; Ishikawa, M., E-mail: masayori@med.hokudai.ac.jp
The anode pulse of a photomultiplier tube (PMT) coupled with a scintillator is used for pulse shape discrimination (PSD) analysis. We have developed a novel emulation technique for the PMT anode pulse based on optical photon transport and a PMT response function. The photon transport was calculated using Geant4 Monte Carlo code and the response function with a BC408 organic scintillator. The obtained percentage RMS value of the difference between the measured and simulated pulse with suitable scintillation properties using GSO:Ce (0.4, 1.0, 1.5 mol%), LaBr{sub 3}:Ce and BGO scintillators were 2.41%, 2.58%, 2.16%, 2.01%, and 3.32%, respectively. The proposedmore » technique demonstrates high reproducibility of the measured pulse and can be applied to simulation studies of various radiation measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, A; Chen, Y; Ahmad, S
Purpose: Proton therapy exhibits several advantages over photon therapy due to depth-dose distributions from proton interactions within the target material. However, uncertainties associated with protons beam range in the patient limit the advantage of proton therapy applications. To quantify beam range, positron-emitting nuclei (PEN) and prompt gamma (PG) techniques have been developed. These techniques use de-excitation photons to describe the location of the beam in the patient. To develop a detector system for implementing the PG technique for range verification applications in proton therapy, we studied the yields, energy and angular distributions of the secondary particles emitted from a PMMAmore » phantom. Methods: Proton pencil beams of various energies incident onto a PMMA phantom with dimensions of 5 x 5 x 50 cm3 were used for simulation with the Geant4 toolkit using the standard electromagnetic packages as well as the packages based on the binary-cascade nuclear model. The emitted secondary particles are analyzed . Results: For 160 MeV incident protons, the yields of secondary neutrons and photons per 100 incident protons were ~6 and ~15 respectively. Secondary photon energy spectrum showed several energy peaks in the range between 0 and 10 MeV. The energy peaks located between 4 and 6 MeV were attributed to originate from direct proton interactions with 12C (~ 4.4 MeV) and 16O (~ 6 MeV), respectively. Most of the escaping secondary neutrons were found to have energies between 10 and 100 MeV. Isotropic emissions were found for lower energy neutrons (<10 MeV) and photons for all energies, while higher energy neutrons were emitted predominantly in the forward direction. The yields of emitted photons and neutrons increased with the increase of incident proton energies. Conclusions: A detector system is currently being developed incorporating the yields, energy and angular distributions of secondary particles from proton interactions obtained from this study.« less
COST-ENLIGHT strategic workshop on hadron (particle) therapy, CERN, Geneva, 3-4 May 2007.
Taylor, R E
2008-03-01
This meeting was convened by COST (Co-operation in the Field of Scientific and Technical Research) and ENLIGHT (European Network for Research in Light-Ion Hadron Therapy) to review the current status of hadron therapy in Europe. The aims were to increase awareness of hadron therapy within the scientific community, to produce a document outlining the present and future prospects for this treatment modality and to bring together hadron therapy scientists and clinicians. Proton therapy offers the potential for therapeutic gain from dose distribution advantages when compared with photon therapy. Carbon ion therapy, by nature of its higher linear energy transfer (LET) and relative biological effectiveness (RBE), may further improve local control. A further potential benefit of carbon ion therapy is the ability to deliver hypofractionated radiotherapy. A further aim of this meeting was to commence preparation of a programme of work packages with a view to submitting an application for European Union funding within the FP7 programme. This comprises a series of seven work packages, which will be a focus for European collaboration.
NASA Astrophysics Data System (ADS)
Malz, Stefan; Goettel, Benjamin; Eisenbeis, Joerg; Boes, Florian; Grzyb, Janusz; Vazquez, Pedro Rodriguez; Zwick, Thomas; Pfeiffer, Ullrich R.
2017-09-01
This paper reports on the research activities during the first phase of the project Real100G.RF, which is part of the German Research Foundation (DFG) priority programm SPP1655. The project's main objective is to research silicon-based wireless communication above 200 GHz to enable data rates in excess of 100 gigabit per second (Gbps). To that end, this paper presents a fully packaged 240 GHz RF transmitter front-end with power combining antenna in 0.13 μm SiGe technology. The design of circuit building blocks, passives, antenna and high-speed packaging is discussed. Communication measurements show data rates of 8 Gbps with an EVM of 12.4% using 16-QAM, 24 Gbps with 26.5% EVM using QPSK and 30 Gbps with 27.9% EVM using 8-PSK.
ERIC Educational Resources Information Center
Quinn, Mark; Carr, Alan; Carroll, Louise; O'Sullivan, David
2007-01-01
Background: This study aimed to evaluate the effectiveness of the Parents Plus programme with families of pre-school children with developmental disabilities and significant behavioural problems in the Irish health service. The Parents Plus programme is a group-based parent training package involving video modelling, which was designed to be…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souris, K; Lee, J; Sterpin, E
2014-06-15
Purpose: Recent studies have demonstrated the capability of graphics processing units (GPUs) to compute dose distributions using Monte Carlo (MC) methods within clinical time constraints. However, GPUs have a rigid vectorial architecture that favors the implementation of simplified particle transport algorithms, adapted to specific tasks. Our new, fast, and multipurpose MC code, named MCsquare, runs on Intel Xeon Phi coprocessors. This technology offers 60 independent cores, and therefore more flexibility to implement fast and yet generic MC functionalities, such as prompt gamma simulations. Methods: MCsquare implements several models and hence allows users to make their own tradeoff between speed andmore » accuracy. A 200 MeV proton beam is simulated in a heterogeneous phantom using Geant4 and two configurations of MCsquare. The first one is the most conservative and accurate. The method of fictitious interactions handles the interfaces and secondary charged particles emitted in nuclear interactions are fully simulated. The second, faster configuration simplifies interface crossings and simulates only secondary protons after nuclear interaction events. Integral depth-dose and transversal profiles are compared to those of Geant4. Moreover, the production profile of prompt gammas is compared to PENH results. Results: Integral depth dose and transversal profiles computed by MCsquare and Geant4 are within 3%. The production of secondaries from nuclear interactions is slightly inaccurate at interfaces for the fastest configuration of MCsquare but this is unlikely to have any clinical impact. The computation time varies between 90 seconds for the most conservative settings to merely 59 seconds in the fastest configuration. Finally prompt gamma profiles are also in very good agreement with PENH results. Conclusion: Our new, fast, and multi-purpose Monte Carlo code simulates prompt gammas and calculates dose distributions in less than a minute, which complies with clinical time constraints. It has been successfully validated with Geant4. This work has been financialy supported by InVivoIGT, a public/private partnership between UCL and IBA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yepes, P; Mirkovic, D; Mohan, R
Purpose: To determine the suitability of fast Monte Carlo techniques for dose calculation in particle therapy based on track-repeating algorithm for Intensity Modulated Proton Therapy, IMPT. The application of this technique will make possible detailed retrospective studies of large cohort of patients, which may lead to a better determination of Relative Biological Effects from the analysis of patient data. Methods: A cohort of six head-and-neck patients treated at the University of Texas MD Anderson Cancer Center with IMPT were utilized. The dose distributions were calculated with the standard Treatment Plan System, TPS, MCNPX, GEANT4 and FDC, a fast track-repeating algorithmmore » for proton therapy for the verification and the patient plans. FDC is based on a GEANT4 database of trajectories of protons in a water. The obtained dose distributions were compared to each other utilizing the g-index criteria for 3mm-3% and 2mm-2%, for the maximum spatial and dose differences. The γ-index was calculated for voxels with a dose at least 10% of the maximum delivered dose. Dose Volume Histograms are also calculated for the various dose distributions. Results: Good agreement between GEANT4 and FDC is found with less than 1% of the voxels with a γ-index larger than 1 for 2 mm-2%. The agreement between MCNPX with FDC is within the requirements of clinical standards, even though it is slightly worse than the comparison with GEANT4.The comparison with TPS yielded larger differences, what is also to be expected because pencil beam algorithm do not always performed well in highly inhomogeneous areas like head-and-neck. Conclusion: The good agreement between a track-repeating algorithm and a full Monte Carlo for a large cohort of patients and a challenging, site like head-and-neck, opens the path to systematic and detailed studies of large cohorts, which may yield better understanding of biological effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englbrecht, F; Parodi, K; Trinkl, S
2016-06-15
Purpose: To simulate secondary neutron radiation-fields produced at different positions during phantom irradiation inside a scanning proton therapy gantry treatment room. Further, to identify origin, energy distribution and angular emission as function of proton beam energy. Methods: GEANT4 and FLUKA Monte-Carlo codes were used to model the relevant parts of the treatment room in a gantry-equipped pencil beam scanning proton therapy facility including walls, floor, metallic gantry-components, patient table and the homogeneous PMMA target. The proton beams were modeled based on experimental beam ranges in water and spot shapes in air. Neutron energy spectra were simulated at 0°, 45°, 90°more » and 135° relative to the beam axis at 2m distance from isocenter, as well as 11×11 cm2 fields for 75MeV, 140MeV, 200MeV and for 118MeV with 5cm PMMA range-shifter. The total neutron energy distribution was recorded for these four positions and proton energies. Additionally, the room-components generating secondary neutrons in the room and their contributions to the total spectrum were identified and quantified. Results: FLUKA and GEANT4 simulated neutron spectra showed good general agreement in the whole energy range of 10{sup −}9 to 10{sup 2} MeV. Comparison of measured spectra with the simulated contributions of the various room components helped to limit the complexity of the room model, by identifying the dominant contributions to the secondary neutron spectrum. The iron of the bending magnet and counterweight were identified as sources of secondary evaporation-neutrons, which were lacking in simplified room models. Conclusion: Thorough Monte-Carlo simulations have been performed to complement Bonner-sphere spectrometry measurements of secondary neutrons in a clinical proton therapy treatment room. Such calculations helped disentangling the origin of secondary neutrons and their dominant contributions to measured spectra, besides providing a useful validation of widely used Monte-Carlo packages in comparison to experimental data. Cluster of Excellence of the German Research Foundation (DFG) “Munich-Centre for Advanced Photonics (MAP)”.« less
HIGH-RESOLUTION L(Y)SO DETECTORS USING PMT-QUADRANT-SHARING FOR HUMAN & ANIMAL PET CAMERAS
Ramirez, Rocio A.; Liu, Shitao; Liu, Jiguo; Zhang, Yuxuan; Kim, Soonseok; Baghaei, Hossain; Li, Hongdi; Wang, Yu; Wong, Wai-Hoi
2009-01-01
We developed high resolution L(Y)SO detectors for human and animal PET applications using Photomultiplier-quadrant-sharing (PQS) technology. The crystal sizes were 1.27 × 1.27 × 10 mm3 for the animal PQS-blocks and 3.25 × 3.25 × 20 mm3 for human ones. Polymer mirror film patterns (PMR) were placed between crystals as reflector. The blocks were assembled together using optical grease and wrapped by Teflon tape. The blocks were coupled to regular round PMT’s of 19/51 mm in PQS configuration. List-mode data of Ga-68 source (511 KeV) were acquired with our high yield pileup-event recovery (HYPER) electronics and data acquisition software. The high voltage bias was 1100V. Crystal decoding maps and individual crystal energy resolutions were extracted from the data. To investigate the potential imaging resolution of the PET cameras with these blocks, we used GATE (Geant4 Application for Tomographic Emission) simulation package. GATE is a GEANT4 based software toolkit for realistic simulation of PET and SPECT systems. The packing fractions of these blocks were found to be 95.6% and 98.2%. From the decoding maps, all 196 and 225 crystals were clearly identified. The average energy resolutions were 14.0% and 15.6%. For small animal PET systems, the detector ring diameter was 16.5 cm with an axial field of view (AFOV) of 11.8 cm. The simulation data suggests that a reconstructed radial (tangential) spatial resolution of 1.24 (1.25) mm near the center is potentially achievable. For the wholebody human PET systems, the detector ring diameter was 86 cm. The simulation data suggests that a reconstructed radial (tangential) spatial resolution of 3.09(3.38) mm near the center is potentially achievable. From this study we can conclude that PQS design could achieve high spatial resolutions and excellent energy resolutions on human and animal PET systems with substantially lower production costs and inexpensive readout devices. PMID:19946463
GEMPAK5. Part 2: GEMPLT programmer's guide, version 5.0
NASA Technical Reports Server (NTRS)
Desjardins, Mary L.; Brill, Keith F.; Schotz, Steven S.
1991-01-01
GEMPAK is a general meteorological software package used to analyze and display conventional meteorological data as well as satellite derived parameters. The GEMPAK Programmer's Guide describes the subroutines which can be used in the GEMPAK graphics and transformation subsystem, GEMPLT.
Importance Sampling Variance Reduction in GRESS ATMOSIM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakeford, Daniel Tyler
This document is intended to introduce the importance sampling method of variance reduction to a Geant4 user for application to neutral particle Monte Carlo transport through the atmosphere, as implemented in GRESS ATMOSIM.
NASA Astrophysics Data System (ADS)
Esfandi, F.; Saramad, S.
2015-07-01
In this work, a new generation of scintillator based X-ray imagers based on ZnO nanowires in Anodized Aluminum Oxide (AAO) nanoporous template is characterized. The optical response of ordered ZnO nanowire arrays in porous AAO template under low energy X-ray illumination is simulated by the Geant4 Monte Carlo code and compared with experimental results. The results show that for 10 keV X-ray photons, by considering the light guiding properties of zinc oxide inside the AAO template and suitable selection of detector thickness and pore diameter, the spatial resolution less than one micrometer and the detector detection efficiency of 66% are accessible. This novel nano scintillator detector can have many advantages for medical applications in the future.
NASA Astrophysics Data System (ADS)
Palit, Sourav; Chakrabarti, Sandip Kumar; Pal, Sujay; Basak, Tamal
Extra ionization by X-rays during solar flares affects VLF signal propagation through D-region ionosphere. Ionization produced in the lower ionosphere due to X-ray spectra of solar flares are simulated with an efficient detector simulation program, GEANT4. The balancing between the ionization and loss processes, causing the lower ionosphere to settle back to its undisturbed state is handled with a simple chemical model consisting of four broad species of ion densities. Using the electron densities, modified VLF signal amplitude is then computed with LWPC code. VLF signal along NWC (Australia) to IERC/ICSP (India) propagation path is examined during a M and a X-type solar flares and observational deviations are compared with simulated results. The agreement is found to be excellent.
Geant4 Predictions of Energy Spectra in Typical Space Radiation Environment
NASA Technical Reports Server (NTRS)
Sabra, M. S.; Barghouty, A. F.
2014-01-01
Accurate knowledge of energy spectra inside spacecraft is important for protecting astronauts as well as sensitive electronics from the harmful effects of space radiation. Such knowledge allows one to confidently map the radiation environment inside the vehicle. The purpose of this talk is to present preliminary calculations for energy spectra inside a spherical shell shielding and behind a slab in typical space radiation environment using the 3D Monte-Carlo transport code Geant4. We have simulated proton and iron isotropic sources and beams impinging on Aluminum and Gallium arsenide (GaAs) targets at energies of 0.2, 0.6, 1, and 10 GeV/u. If time permits, other radiation sources and beams (_, C, O) and targets (C, Si, Ge, water) will be presented. The results are compared to ground-based measurements where available.
GEANT 4 simulation of (99)Mo photonuclear production in nanoparticles.
Dikiy, N P; Dovbnya, A N; Fedorchenko, D V; Khazhmuradov, M A
2016-08-01
GEANT 4 Monte-Carlo simulation toolkit is used to study the kinematic recoil method of (99)Mo photonuclear production. Simulation for bremsstrahlung photon spectrum with maximum photon energy 30MeV showed that for MoO3 nanoparticle escape fraction decreases from 0.24 to 0.08 when nanoparticle size increases from 20nm to 80nm. For the natural molybdenum and pure (100)Mo we obtained the lower values: from 0.17 to 0.05. The generation of accompanying molybdenum nuclei is significantly lower for pure (100)Mo and is about 3.6 nuclei per single (99)Mo nucleus, while natural molybdenum nanoparticle produce about 48 accompanying nuclei. Also, we have shown that for high-energy photons escape fraction of (99)Mo decreases, while production of unwanted molybdenum isotopes is significantly higher. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Geant4 model of backscatter security imaging systems
NASA Astrophysics Data System (ADS)
Leboffe, Eric Matthew
The operating characteristics of x ray security scanner systems that utilize backscatter signal in order to distinguish person borne threats have never been made fully available to the general public. By designing a model using Geant4, studies can be performed which will shed light on systems such as security scanners and allow for analysis of the performance and safety of the system without access to any system data. Despite the fact that the systems are no longer in use at airports in the United States, the ability to design and validate detector models and phenomena is an important capability that can be applied to many current real world applications. The model presented provides estimates for absorbed dose, effective dose and dose depth distribution that are comparable to previously published work and explores imaging capabilities for the system embodiment modeled.
Performance profiling for brachytherapy applications
NASA Astrophysics Data System (ADS)
Choi, Wonqook; Cho, Kihyeon; Yeo, Insung
2018-05-01
In many physics applications, a significant amount of software (e.g. R, ROOT and Geant4) is developed on novel computing architectures, and much effort is expended to ensure the software is efficient in terms of central processing unit (CPU) time and memory usage. Profiling tools are used during the evaluation process to evaluate the efficiency; however, few such tools are able to accommodate low-energy physics regions. To address this limitation, we developed a low-energy physics profiling system in Geant4 to profile the CPU time and memory of software applications in brachytherapy applications. This paper describes and evaluates specific models that are applied to brachytherapy applications in Geant4, such as QGSP_BIC_LIV, QGSP_BIC_EMZ, and QGSP_BIC_EMY. The physics range in this tool allows it to be used to generate low energy profiles in brachytherapy applications. This was a limitation in previous studies, which caused us to develop a new profiling tool that supports profiling in the MeV range, in contrast to the TeV range that is supported by existing high-energy profiling tools. In order to easily compare the profiling results between low-energy and high-energy modes, we employed the same software architecture as that in the SimpliCarlo tool developed at the Fermilab National Accelerator Laboratory (FNAL) for the Large Hadron Collider (LHC). The results show that the newly developed profiling system for low-energy physics (less than MeV) complements the current profiling system used for high-energy physics (greater than TeV) applications.
Theirrattanakul, Sirichai; Prelas, Mark
2017-09-01
Nuclear batteries based on silicon carbide betavoltaic cells have been studied extensively in the literature. This paper describes an analysis of design parameters, which can be applied to a variety of materials, but is specific to silicon carbide. In order to optimize the interface between a beta source and silicon carbide p-n junction, it is important to account for the specific isotope, angular distribution of the beta particles from the source, the energy distribution of the source as well as the geometrical aspects of the interface between the source and the transducer. In this work, both the angular distribution and energy distribution of the beta particles are modeled using a thin planar beta source (e.g., H-3, Ni-63, S-35, Pm-147, Sr-90, and Y-90) with GEANT4. Previous studies of betavoltaics with various source isotopes have shown that Monte Carlo based codes such as MCNPX, GEANT4 and Penelope generate similar results. GEANT4 is chosen because it has important strengths for the treatment of electron energies below one keV and it is widely available. The model demonstrates the effects of angular distribution, the maximum energy of the beta particle and energy distribution of the beta source on the betavoltaic and it is useful in determining the spatial profile of the power deposition in the cell. Copyright © 2017. Published by Elsevier Ltd.
Teaching Science and Mathematics Subjects Using the Excel Spreadsheet Package
ERIC Educational Resources Information Center
Ibrahim, Dogan
2009-01-01
The teaching of scientific subjects usually require laboratories where students can put the theory they have learned into practice. Traditionally, electronic programmable calculators, dedicated software, or expensive software simulation packages, such as MATLAB have been used to simulate scientific experiments. Recently, spreadsheet programs have…
Description of the IV + V System Software Package.
ERIC Educational Resources Information Center
Microcomputers for Information Management: An International Journal for Library and Information Services, 1984
1984-01-01
Describes the IV + V System, a software package designed by the Institut fur Maschinelle Dokumentation for the United Nations General Information Programme and UNISIST to support automation of local information and documentation services. Principle program features and functions outlined include input/output, databank, text image, output, and…
GEMPAK5. Part 1: GEMPAK5 programmer's guide, version 5.0
NASA Technical Reports Server (NTRS)
Desjardins, Mary L.; Brill, Keith F.; Schotz, Steven S.
1991-01-01
GEMPAK is a general meteorological software package used to analyze and display conventional meteorological data as well as satellite derived parameters. The Programmer's Guide describes the subroutines which can be used to build new GEMPAK programs. Part 1 contains GEMPAK subroutines.
Faye, Sophie; Cico, Altea; Gueye, Alioune Badara; Baruwa, Elaine; Johns, Benjamin; Ndiop, Médoune; Alilio, Martin
2018-04-10
Senegal's National Malaria Control Programme (NMCP) implements control interventions in the form of targeted packages: (1) scale-up for impact (SUFI), which includes bed nets, intermittent preventive treatment in pregnancy, rapid diagnostic tests, and artemisinin combination therapy; (2) SUFI + reactive case investigation (focal test and treat); (3) SUFI + indoor residual spraying (IRS); (4) SUFI + seasonal malaria chemoprophylaxis (SMC); and, (5) SUFI + SMC + IRS. This study estimates the cost effectiveness of each of these packages to provide the NMCP with data for improving allocative efficiency and programmatic decision-making. This study is a retrospective analysis for the period 2013-2014 covering all 76 Senegal districts. The yearly implementation cost for each intervention was estimated and the information was aggregated into a package cost for all covered districts. The change in the burden of malaria associated with each package was estimated using the number of disability adjusted life-years (DALYs) averted. The cost effectiveness (cost per DALY averted) was then calculated for each package. The cost per DALY averted ranged from $76 to $1591 across packages. Using World Health Organization standards, 4 of the 5 packages were "very cost effective" (less than Senegal's GDP per capita). Relative to the 2 other packages implemented in malaria control districts, the SUFI + SMC package was the most cost-effective package at $76 per DALY averted. SMC seems to make IRS more cost effective: $582 per DALY averted for SUFI + IRS compared with $272 for the SUFI + IRS + SMC package. The SUFI + focal test and treat, implemented in malaria elimination districts, had a cost per DALY averted of $1591 and was only "cost-effective" (less than three times Senegal's per capita GDP). Senegal's choice of deploying malaria interventions by packages seems to be effectively targeting high burden areas with a wide range of interventions. However, not all districts showed the same level of performance, indicating that efficiency gains are still possible.
[Potential lowering of sepsis-related mortality via screening and implementation of guidelines].
van Zanten, Arthur R H; Arbous, M Sesmu; Brinkman, Sylvia
2014-01-01
The incidence of sepsis continues to increase. However, over the past decade marked reductions in sepsis-related in-hospital mortality have been reported. Large variations in the presentation and severity of illness may be encountered in ICU patients with severe sepsis, which might preclude the success of screening and guideline programmes. However, the authors of this article were able to prove that a national programme involving screening and a package of interventions did lower relative in-hospital mortality by 16.7% over 3.5 years in 52 participating hospitals in the Netherlands. In-hospital mortality did not change in 30 non-participating hospitals. Therefore, the authors recommend implementing updated guidelines, sepsis quality indicators and programmes with a package of interventions to further reduce sepsis mortality. Furthermore, additional research on long term consequences in sepsis survivors is warranted.
Interactive Visualization of Assessment Data: The Software Package Mondrian
ERIC Educational Resources Information Center
Unlu, Ali; Sargin, Anatol
2009-01-01
Mondrian is state-of-the-art statistical data visualization software featuring modern interactive visualization techniques for a wide range of data types. This article reviews the capabilities, functionality, and interactive properties of this software package. Key features of Mondrian are illustrated with data from the Programme for International…
Vector-matrix-quaternion, array and arithmetic packages: All HAL/S functions implemented in Ada
NASA Technical Reports Server (NTRS)
Klumpp, Allan R.; Kwong, David D.
1986-01-01
The HAL/S avionics programmers have enjoyed a variety of tools built into a language tailored to their special requirements. Ada is designed for a broader group of applications. Rather than providing built-in tools, Ada provides the elements with which users can build their own. Standard avionic packages remain to be developed. These must enable programmers to code in Ada as they have coded in HAL/S. The packages under development at JPL will provide all of the vector-matrix, array, and arithmetic functions described in the HAL/S manuals. In addition, the linear algebra package will provide all of the quaternion functions used in Shuttle steering and Galileo attitude control. Furthermore, using Ada's extensibility, many quaternion functions are being implemented as infix operations; equivalent capabilities were never implemented in HAL/S because doing so would entail modifying the compiler and expanding the language. With these packages, many HAL/S expressions will compile and execute in Ada, unchanged. Others can be converted simply by replacing the implicit HAL/S multiply operator with the Ada *. Errors will be trapped and identified. Input/output will be convenient and readable.
Programming Programmable Logic Controller. High-Technology Training Module.
ERIC Educational Resources Information Center
Lipsky, Kevin
This training module on programming programmable logic controllers (PLC) is part of the memory structure and programming unit used in a packaging systems equipment control course. In the course, students assemble, install, maintain, and repair industrial machinery used in industry. The module contains description, objectives, content outline,…
GeantV: from CPU to accelerators
NASA Astrophysics Data System (ADS)
Amadio, G.; Ananya, A.; Apostolakis, J.; Arora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Sehgal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.
2016-10-01
The GeantV project aims to research and develop the next-generation simulation software describing the passage of particles through matter. While the modern CPU architectures are being targeted first, resources such as GPGPU, Intel© Xeon Phi, Atom or ARM cannot be ignored anymore by HEP CPU-bound applications. The proof of concept GeantV prototype has been mainly engineered for CPU's having vector units but we have foreseen from early stages a bridge to arbitrary accelerators. A software layer consisting of architecture/technology specific backends supports currently this concept. This approach allows to abstract out the basic types such as scalar/vector but also to formalize generic computation kernels using transparently library or device specific constructs based on Vc, CUDA, Cilk+ or Intel intrinsics. While the main goal of this approach is portable performance, as a bonus, it comes with the insulation of the core application and algorithms from the technology layer. This allows our application to be long term maintainable and versatile to changes at the backend side. The paper presents the first results of basket-based GeantV geometry navigation on the Intel© Xeon Phi KNC architecture. We present the scalability and vectorization study, conducted using Intel performance tools, as well as our preliminary conclusions on the use of accelerators for GeantV transport. We also describe the current work and preliminary results for using the GeantV transport kernel on GPUs.
NASA Astrophysics Data System (ADS)
DiJulio, D. D.; Cooper-Jensen, C. P.; Llamas-Jansa, I.; Kazi, S.; Bentley, P. M.
2018-06-01
A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying B4C grain sizes, were exposed to a 2 Å neutron beam at the R2D2 test beamline at the Institute for Energy Technology located in Kjeller, Norway. The direct and scattered neutrons were detected with a neutron detector placed behind the concrete blocks and the results were compared to Geant4 simulations. The particle self-shielding effect was included in the Geant4 simulations by calculating effective neutron cross-sections during the Monte-Carlo simulation process. It is shown that this method well reproduces the measured results. Our results show that shielding calculations for low-energy neutrons using such materials would lead to an underestimate of the shielding required for a certain design scenario if the particle self-shielding effect is not included in the calculations.
Development and evaluation of a wheelchair service provision training of trainers programme
2017-01-01
Background In many countries, availability of basic training and continued professional development programmes in wheelchair services is limited. Therefore, many health professionals lack access to formal training opportunities and new approaches to improve wheelchair service provision. To address this need, the World Health Organization (WHO) developed the WHO Wheelchair Service Training of Trainers Programme (WSTPt), aiming to increase the number of trainers who are well prepared to deliver the WHO Wheelchair Service Training Packages. Despite these efforts, there was no recognised method to prepare trainers to facilitate these training programmes in a standardised manner. Objectives To understand if the WSTPt is an effective mechanism to train aspiring wheelchair service provision trainers. Method An action research study was conducted using a mixed-methods approach to data collection and analysis to integrate feedback from questionnaires and focus groups from three WHO WSTPt pilots. Results Trainees were satisfied with the WHO WSTPt and the iterative process appears to have helped to improve each subsequent pilot and the final training package. Conclusion The WHO WSTPt is an effective mechanism to train wheelchair service provision trainers. This programme has potential to increase the number of trainees and may increase the number of qualified service providers. PMID:28936423
NASA Astrophysics Data System (ADS)
Neuer, Marcus J.
2013-11-01
A technique for the spectral identification of strontium-90 is shown, utilising a Maximum-Likelihood deconvolution. Different deconvolution approaches are discussed and summarised. Based on the intensity distribution of the beta emission and Geant4 simulations, a combined response matrix is derived, tailored to the β- detection process in sodium iodide detectors. It includes scattering effects and attenuation by applying a base material decomposition extracted from Geant4 simulations with a CAD model for a realistic detector system. Inversion results of measurements show the agreement between deconvolution and reconstruction. A detailed investigation with additional masking sources like 40K, 226Ra and 131I shows that a contamination of strontium can be found in the presence of these nuisance sources. Identification algorithms for strontium are presented based on the derived technique. For the implementation of blind identification, an exemplary masking ratio is calculated.
Simulation of nanoparticle-mediated near-infrared thermal therapy using GATE
Cuplov, Vesna; Pain, Frédéric; Jan, Sébastien
2017-01-01
Application of nanotechnology for biomedicine in cancer therapy allows for direct delivery of anticancer agents to tumors. An example of such therapies is the nanoparticle-mediated near-infrared hyperthermia treatment. In order to investigate the influence of nanoparticle properties on the spatial distribution of heat in the tumor and healthy tissues, accurate simulations are required. The Geant4 Application for Emission Tomography (GATE) open-source simulation platform, based on the Geant4 toolkit, is widely used by the research community involved in molecular imaging, radiotherapy and optical imaging. We present an extension of GATE that can model nanoparticle-mediated hyperthermal therapy as well as simple heat diffusion in biological tissues. This new feature of GATE combined with optical imaging allows for the simulation of a theranostic scenario in which the patient is injected with theranostic nanosystems that can simultaneously deliver therapeutic (i.e. hyperthermia therapy) and imaging agents (i.e. fluorescence imaging). PMID:28663855
Validation of GEANT4 Monte Carlo models with a highly granular scintillator-steel hadron calorimeter
NASA Astrophysics Data System (ADS)
Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Uzhinskiy, V.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Dauncey, P. D.; Magnan, A.-M.; Bartsch, V.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Götze, M.; Hartbrich, O.; Sauer, J.; Weber, S.; Zeitnitz, C.
2013-07-01
Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel absorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8 GeV to 100 GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated.
Quantum-state-selective decay spectroscopy of 213Ra
NASA Astrophysics Data System (ADS)
Lorenz, Ch.; Sarmiento, L. G.; Rudolph, D.; Ward, D. E.; Block, M.; Heßberger, F. P.; Ackermann, D.; Andersson, L.-L.; Cortés, M. L.; Droese, C.; Dworschak, M.; Eibach, M.; Forsberg, U.; Golubev, P.; Hoischen, R.; Kojouharov, I.; Khuyagbaatar, J.; Nesterenko, D.; Ragnarsson, I.; Schaffner, H.; Schweikhard, L.; Stolze, S.; Wenzl, J.
2017-09-01
An experimental scheme combining the mass resolving power of a Penning trap with contemporary decay spectroscopy has been established at GSI Darmstadt. The Universal Linear Accelerator (UNILAC) at GSI Darmstadt provided a 48Ca beam impinging on a thin 170Er target foil. Subsequent to velocity filtering of reaction products in the Separator for Heavy Ion reaction Products (SHIP), the nuclear ground state of the 5 n evaporation channel 213Ra was mass-selected in SHIPTRAP, and the 213Ra ions were finally transferred into an array of silicon strip detectors surrounded by large composite germanium detectors. Based on comprehensive geant4 simulations and supported by theoretical calculations, the spectroscopic results call for a revision of the decay path of 213Ra, thereby exemplifying the potential of a combination of a mass-selective Penning trap device with a dedicated nuclear decay station and contemporary geant4 simulations.
Development and validation of a GEANT4 radiation transport code for CT dosimetry
Carver, DE; Kost, SD; Fernald, MJ; Lewis, KG; Fraser, ND; Pickens, DR; Price, RR; Stabin, MG
2014-01-01
We have created a radiation transport code using the GEANT4 Monte Carlo toolkit to simulate pediatric patients undergoing CT examinations. The focus of this paper is to validate our simulation with real-world physical dosimetry measurements using two independent techniques. Exposure measurements were made with a standard 100-mm CT pencil ionization chamber, and absorbed doses were also measured using optically stimulated luminescent (OSL) dosimeters. Measurements were made in air, a standard 16-cm acrylic head phantom, and a standard 32-cm acrylic body phantom. Physical dose measurements determined from the ionization chamber in air for 100 and 120 kVp beam energies were used to derive photon-fluence calibration factors. Both ion chamber and OSL measurement results provide useful comparisons in the validation of our Monte Carlo simulations. We found that simulated and measured CTDI values were within an overall average of 6% of each other. PMID:25706135
Development and validation of a GEANT4 radiation transport code for CT dosimetry.
Carver, D E; Kost, S D; Fernald, M J; Lewis, K G; Fraser, N D; Pickens, D R; Price, R R; Stabin, M G
2015-04-01
The authors have created a radiation transport code using the GEANT4 Monte Carlo toolkit to simulate pediatric patients undergoing CT examinations. The focus of this paper is to validate their simulation with real-world physical dosimetry measurements using two independent techniques. Exposure measurements were made with a standard 100-mm CT pencil ionization chamber, and absorbed doses were also measured using optically stimulated luminescent (OSL) dosimeters. Measurements were made in air with a standard 16-cm acrylic head phantom and with a standard 32-cm acrylic body phantom. Physical dose measurements determined from the ionization chamber in air for 100 and 120 kVp beam energies were used to derive photon-fluence calibration factors. Both ion chamber and OSL measurement results provide useful comparisons in the validation of the Monte Carlo simulations. It was found that simulated and measured CTDI values were within an overall average of 6% of each other.
Design of Cherenkov bars for the optical part of the time-of-flight detector in Geant4.
Nozka, L; Brandt, A; Rijssenbeek, M; Sykora, T; Hoffman, T; Griffiths, J; Steffens, J; Hamal, P; Chytka, L; Hrabovsky, M
2014-11-17
We present the results of studies devoted to the development and optimization of the optical part of a high precision time-of-flight (TOF) detector for the Large Hadron Collider (LHC). This work was motivated by a proposal to use such a detector in conjunction with a silicon detector to tag and measure protons from interactions of the type p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The fast timing detector uses fused silica (quartz) bars that emit Cherenkov radiation as a relativistic particle passes through and the emitted Cherenkov photons are detected by, for instance, a micro-channel plate multi-anode Photomultiplier Tube (MCP-PMT). Several possible designs are implemented in Geant4 and studied for timing optimization as a function of the arrival time, and the number of Cherenkov photons reaching the photo-sensor.
Development and application of CATIA-GDML geometry builder
NASA Astrophysics Data System (ADS)
Belogurov, S.; Berchun, Yu; Chernogorov, A.; Malzacher, P.; Ovcharenko, E.; Schetinin, V.
2014-06-01
Due to conceptual difference between geometry descriptions in Computer-Aided Design (CAD) systems and particle transport Monte Carlo (MC) codes direct conversion of detector geometry in either direction is not feasible. The paper presents an update on functionality and application practice of the CATIA-GDML geometry builder first introduced at CHEP2010. This set of CATIAv5 tools has been developed for building a MC optimized GEANT4/ROOT compatible geometry based on the existing CAD model. The model can be exported via Geometry Description Markup Language (GDML). The builder allows also import and visualization of GEANT4/ROOT geometries in CATIA. The structure of a GDML file, including replicated volumes, volume assemblies and variables, is mapped into a part specification tree. A dedicated file template, a wide range of primitives, tools for measurement and implicit calculation of parameters, different types of multiple volume instantiation, mirroring, positioning and quality check have been implemented. Several use cases are discussed.
Upgrades for the CMS simulation
Lange, D. J.; Hildreth, M.; Ivantchenko, V. N.; ...
2015-05-22
Over the past several years, the CMS experiment has made significant changes to its detector simulation application. The geometry has been generalized to include modifications being made to the CMS detector for 2015 operations, as well as model improvements to the simulation geometry of the current CMS detector and the implementation of a number of approved and possible future detector configurations. These include both completely new tracker and calorimetry systems. We have completed the transition to Geant4 version 10, we have made significant progress in reducing the CPU resources required to run our Geant4 simulation. These have been achieved throughmore » both technical improvements and through numerical techniques. Substantial speed improvements have been achieved without changing the physics validation benchmarks that the experiment uses to validate our simulation application for use in production. As a result, we will discuss the methods that we implemented and the corresponding demonstrated performance improvements deployed for our 2015 simulation application.« less
ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.
Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L
2012-06-07
Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.
Full Geant4 and FLUKA simulations of an e-LINAC for its use in particle detectors performance tests
NASA Astrophysics Data System (ADS)
Alpat, B.; Pilicer, E.; Servoli, L.; Menichelli, M.; Tucceri, P.; Italiani, M.; Buono, E.; Di Capua, F.
2012-03-01
In this work we present the results of full Geant4 and FLUKA simulations and comparison with dosimetry data of an electron LINAC of St. Maria Hospital located in Terni, Italy. The facility is being used primarily for radiotherapy and the goal of the present study is the detailed investigation of electron beam parameters to evaluate the possibility to use the e-LINAC (during time slots when it is not used for radiotherapy) to test the performance of detector systems, in particular those designed to operate in space. The critical beam parameters are electron energy, profile and flux available at the surface of device to be tested. The present work aims to extract these parameters from dosimetry calibration data available at the e-LINAC. The electron energy ranges from 4 MeV to 20 MeV. The dose measurements have been performed by using an Advanced Markus Chamber which has a small sensitive volume.
NASA Astrophysics Data System (ADS)
Yu, L.; Terashima, S.; Ong, H. J.; Chan, P. Y.; Tanihata, I.; Iwamoto, C.; Tran, D. T.; Tamii, A.; Aoi, N.; Fujioka, H.; Gey, G.; Sakaguchi, H.; Sakaue, A.; Sun, B. H.; Tang, T. L.; Wang, T. F.; Watanabe, Y. N.; Zhang, G. X.
2017-09-01
A new type of neutron detector, named Stack Structure Solid organic Scintillator (S4), consisting of multi-layer plastic scintillators with capability to suppress low-energy γ rays under high-counting rate has been constructed and tested. To achieve n- γ discrimination, we exploit the difference in the ranges of the secondary charged particles produced by the interactions of neutrons and γ rays in the scintillator material. The thickness of a plastic scintillator layer was determined based on the results of Monte Carlo simulations using the Geant4 toolkit. With layer thicknesses of 5 mm, we have achieved a good separation between neutrons and γ rays at 5 MeVee threshold setting. We have also determined the detection efficiencies using monoenergetic neutrons at two energies produced by the d + d → n+3He reaction. The results agree well with the Geant4 simulations implementing the Li e ̀ge Intranuclear Cascade hadronic model (INCL++) and the high-precision model of low-energy neutron interactions (NeutronHP).
A portable system for characterizing wildland fire behavior
Bret Butler; D. Jimenez; J. Forthofer; K. Shannon; Paul Sopko
2010-01-01
A field deployable system for quantifying energy and mass transport in wildland fires is described. The system consists of two enclosures: The first is a sensor/data logger combination package that allows characterization of convective/radiant energy transport in fires. This package contains batteries, a programmable data logger, sensors, and other electronics. The...
Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab: an update on PR12-16-001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battaglieri, M.
This document is an update to the proposal PR12-16-001 Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab submitted to JLab-PAC44 in 2016 reporting progress in addressing questions raised regarding the beam-on backgrounds. The concerns are addressed by adopting a new simulation tool, FLUKA, and planning measurements of muon fluxes from the dump with its existing shielding around the dump. First, we have implemented the detailed BDX experimental geometry into a FLUKA simulation, in consultation with experts from the JLab Radiation Control Group. The FLUKA simulation has been compared directly to our GEANT4 simulations and shown to agreemore » in regions of validity. The FLUKA interaction package, with a tuned set of biasing weights, is naturally able to generate reliable particle distributions with very small probabilities and therefore predict rates at the detector location beyond the planned shielding around the beam dump. Second, we have developed a plan to conduct measurements of the muon ux from the Hall-A dump in its current configuration to validate our simulations.« less
Development of a Computing Cluster At the University of Richmond
NASA Astrophysics Data System (ADS)
Carbonneau, J.; Gilfoyle, G. P.; Bunn, E. F.
2010-11-01
The University of Richmond has developed a computing cluster to support the massive simulation and data analysis requirements for programs in intermediate-energy nuclear physics, and cosmology. It is a 20-node, 240-core system running Red Hat Enterprise Linux 5. We have built and installed the physics software packages (Geant4, gemc, MADmap...) and developed shell and Perl scripts for running those programs on the remote nodes. The system has a theoretical processing peak of about 2500 GFLOPS. Testing with the High Performance Linpack (HPL) benchmarking program (one of the standard benchmarks used by the TOP500 list of fastest supercomputers) resulted in speeds of over 900 GFLOPS. The difference between the maximum and measured speeds is due to limitations in the communication speed among the nodes; creating a bottleneck for large memory problems. As HPL sends data between nodes, the gigabit Ethernet connection cannot keep up with the processing power. We will show how both the theoretical and actual performance of the cluster compares with other current and past clusters, as well as the cost per GFLOP. We will also examine the scaling of the performance when distributed to increasing numbers of nodes.
Comparison of Monte Carlo simulated and measured performance parameters of miniPET scanner
NASA Astrophysics Data System (ADS)
Kis, S. A.; Emri, M.; Opposits, G.; Bükki, T.; Valastyán, I.; Hegyesi, Gy.; Imrek, J.; Kalinka, G.; Molnár, J.; Novák, D.; Végh, J.; Kerek, A.; Trón, L.; Balkay, L.
2007-02-01
In vivo imaging of small laboratory animals is a valuable tool in the development of new drugs. For this purpose, miniPET, an easy to scale modular small animal PET camera has been developed at our institutes. The system has four modules, which makes it possible to rotate the whole detector system around the axis of the field of view. Data collection and image reconstruction are performed using a data acquisition (DAQ) module with Ethernet communication facility and a computer cluster of commercial PCs. Performance tests were carried out to determine system parameters, such as energy resolution, sensitivity and noise equivalent count rate. A modified GEANT4-based GATE Monte Carlo software package was used to simulate PET data analogous to those of the performance measurements. GATE was run on a Linux cluster of 10 processors (64 bit, Xeon with 3.0 GHz) and controlled by a SUN grid engine. The application of this special computer cluster reduced the time necessary for the simulations by an order of magnitude. The simulated energy spectra, maximum rate of true coincidences and sensitivity of the camera were in good agreement with the measured parameters.
NASA Astrophysics Data System (ADS)
Guan, Fada
Monte Carlo method has been successfully applied in simulating the particles transport problems. Most of the Monte Carlo simulation tools are static and they can only be used to perform the static simulations for the problems with fixed physics and geometry settings. Proton therapy is a dynamic treatment technique in the clinical application. In this research, we developed a method to perform the dynamic Monte Carlo simulation of proton therapy using Geant4 simulation toolkit. A passive-scattering treatment nozzle equipped with a rotating range modulation wheel was modeled in this research. One important application of the Monte Carlo simulation is to predict the spatial dose distribution in the target geometry. For simplification, a mathematical model of a human body is usually used as the target, but only the average dose over the whole organ or tissue can be obtained rather than the accurate spatial dose distribution. In this research, we developed a method using MATLAB to convert the medical images of a patient from CT scanning into the patient voxel geometry. Hence, if the patient voxel geometry is used as the target in the Monte Carlo simulation, the accurate spatial dose distribution in the target can be obtained. A data analysis tool---root was used to score the simulation results during a Geant4 simulation and to analyze the data and plot results after simulation. Finally, we successfully obtained the accurate spatial dose distribution in part of a human body after treating a patient with prostate cancer using proton therapy.
NASA Astrophysics Data System (ADS)
Zhao, Qiang; Cui, Wenjuan; He, Zhiyong; Zhang, Xueying; Ma, Wenjing
2018-07-01
China initiative Accelerator Driven System (CiADS) has been approved as a strategic plan to build an ADS demonstration facility in the next few years. It proposed a new concept for a high-power spallation target: the gravity-driven dense granular target (DGT). As the same with a monolithic target (MT), both solid and liquid target, energy deposition and neutron flux are two critical issues. In this paper, we focus on these two issues and long for some valuable results for the project. Unlike a solid target, the internal geometry structure of a DGT is very complicated. To be as much as closer with the reality, we designed an algorithm and firstly packed the grains randomly in a cylindrical container in GEANT4 software. The packing result was in great agreement with the experimentally measured results. It shows that the algorithm is practicable. In the next step, all the simulations about energy deposition and neutron flux of a DGT were performed with the GEANT4 codes, and the results were compared with the data of a MT. Compared to a MT, a DGT has inarguable advantages in both terms of energy deposition and neutron flux. In addition, the simulations with different radius of grains were also performed. Finally, we found that both the energy deposition and neutron flux are nearly irrelevant to the radius of the grains in the range of 0.5 mm-5 mm when the packing density is same by analyzing the results meticulously.
GATE - Geant4 Application for Tomographic Emission: a simulation toolkit for PET and SPECT
Jan, S.; Santin, G.; Strul, D.; Staelens, S.; Assié, K.; Autret, D.; Avner, S.; Barbier, R.; Bardiès, M.; Bloomfield, P. M.; Brasse, D.; Breton, V.; Bruyndonckx, P.; Buvat, I.; Chatziioannou, A. F.; Choi, Y.; Chung, Y. H.; Comtat, C.; Donnarieix, D.; Ferrer, L.; Glick, S. J.; Groiselle, C. J.; Guez, D.; Honore, P.-F.; Kerhoas-Cavata, S.; Kirov, A. S.; Kohli, V.; Koole, M.; Krieguer, M.; van der Laan, D. J.; Lamare, F.; Largeron, G.; Lartizien, C.; Lazaro, D.; Maas, M. C.; Maigne, L.; Mayet, F.; Melot, F.; Merheb, C.; Pennacchio, E.; Perez, J.; Pietrzyk, U.; Rannou, F. R.; Rey, M.; Schaart, D. R.; Schmidtlein, C. R.; Simon, L.; Song, T. Y.; Vieira, J.-M.; Visvikis, D.; Van de Walle, R.; Wieërs, E.; Morel, C.
2012-01-01
Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols, and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document, and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at the address http://www-lphe.ep.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects toward the gridification of GATE and its extension to other domains such as dosimetry are also discussed. PMID:15552416
Android: Call C Functions with the Native Development Kit (NDK)
2016-09-01
guide is intended to assist programmers with how to attach an NDK plugin to an Android Integrated Development Environment and how to call C functions...written in Java to interact with native C/C++. This guide is intended to take programmers through adding an NDK package into an Android Studio
Development of e-Career Guidance Programme for Secondary Schools in Akwa Ibom State
ERIC Educational Resources Information Center
John, Imitoro E.; Udofia, Nsikak-Abasi; Udoh, Nsisong A.; Anagbogu, Mercy A.
2016-01-01
This study developed and field tested an electronic career guidance package for secondary schools, the e-Career Guidance System. The study was an educational research and development study and thus utilised the instrumentation research design. The formative evaluation of the developed programme was carried out using the pretest-posttest…
GeantV: From CPU to accelerators
Amadio, G.; Ananya, A.; Apostolakis, J.; ...
2016-01-01
The GeantV project aims to research and develop the next-generation simulation software describing the passage of particles through matter. While the modern CPU architectures are being targeted first, resources such as GPGPU, Intel© Xeon Phi, Atom or ARM cannot be ignored anymore by HEP CPU-bound applications. The proof of concept GeantV prototype has been mainly engineered for CPU's having vector units but we have foreseen from early stages a bridge to arbitrary accelerators. A software layer consisting of architecture/technology specific backends supports currently this concept. This approach allows to abstract out the basic types such as scalar/vector but also tomore » formalize generic computation kernels using transparently library or device specific constructs based on Vc, CUDA, Cilk+ or Intel intrinsics. While the main goal of this approach is portable performance, as a bonus, it comes with the insulation of the core application and algorithms from the technology layer. This allows our application to be long term maintainable and versatile to changes at the backend side. The paper presents the first results of basket-based GeantV geometry navigation on the Intel© Xeon Phi KNC architecture. We present the scalability and vectorization study, conducted using Intel performance tools, as well as our preliminary conclusions on the use of accelerators for GeantV transport. Lastly, we also describe the current work and preliminary results for using the GeantV transport kernel on GPUs.« less
Tran, Nguyen Toan; Portela, Anayda; de Bernis, Luc; Beek, Kristen
2014-01-01
Given country demands for support in the training of community health workers (CHWs) to accelerate progress towards reaching the Millennium Development Goals in sexual and reproductive health and maternal, newborn, child, and adolescent health (SR/MNCAH), the United Nations Health Agencies conducted a synthesis of existing training resource packages for CHWs in different components of SR/MNCAH to identify gaps and opportunities and inform efforts to harmonize approaches to developing the capacity of CHWs. A mapping of training resource packages for CHWs was undertaken with documents retrieved online and from key informants. Materials were classified by health themes and analysed using agreed parameters. Ways forward were informed by a subsequent expert consultation. We identified 31 relevant packages. They covered different components of the SR/MNCAH continuum in varying breadth (integrated packages) and depth (focused packages), including family planning, antenatal and childbirth care (mainly postpartum haemorrhage), newborn care, and childhood care, and HIV. There is no or limited coverage of interventions related to safe abortion, adolescent health, and gender-based violence. There is no training package addressing the range of evidence-based interventions that can be delivered by CHWs as per World Health Organization guidance. Gaps include weakness in the assessment of competencies of trainees, in supportive supervision, and in impact assessment of packages. Many packages represent individual programme efforts rather than national programme materials, which could reflect weak integration into national health systems. There is a wealth of training packages on SR/MNCAH for CHWs which reflects interest in strengthening the capacity of CHWs. This offers an opportunity for governments and partners to mount a synergistic response to address the gaps and ensure an evidence-based comprehensive package of interventions to be delivered by CHWs. Packages with defined competencies and methods for assessing competencies and supervision are considered best practices but remain a gap.
Tran, Nguyen Toan; Portela, Anayda; de Bernis, Luc; Beek, Kristen
2014-01-01
Background Given country demands for support in the training of community health workers (CHWs) to accelerate progress towards reaching the Millennium Development Goals in sexual and reproductive health and maternal, newborn, child, and adolescent health (SR/MNCAH), the United Nations Health Agencies conducted a synthesis of existing training resource packages for CHWs in different components of SR/MNCAH to identify gaps and opportunities and inform efforts to harmonize approaches to developing the capacity of CHWs. Methods A mapping of training resource packages for CHWs was undertaken with documents retrieved online and from key informants. Materials were classified by health themes and analysed using agreed parameters. Ways forward were informed by a subsequent expert consultation. Results We identified 31 relevant packages. They covered different components of the SR/MNCAH continuum in varying breadth (integrated packages) and depth (focused packages), including family planning, antenatal and childbirth care (mainly postpartum haemorrhage), newborn care, and childhood care, and HIV. There is no or limited coverage of interventions related to safe abortion, adolescent health, and gender-based violence. There is no training package addressing the range of evidence-based interventions that can be delivered by CHWs as per World Health Organization guidance. Gaps include weakness in the assessment of competencies of trainees, in supportive supervision, and in impact assessment of packages. Many packages represent individual programme efforts rather than national programme materials, which could reflect weak integration into national health systems. Conclusions There is a wealth of training packages on SR/MNCAH for CHWs which reflects interest in strengthening the capacity of CHWs. This offers an opportunity for governments and partners to mount a synergistic response to address the gaps and ensure an evidence-based comprehensive package of interventions to be delivered by CHWs. Packages with defined competencies and methods for assessing competencies and supervision are considered best practices but remain a gap. PMID:24736623
NASA Astrophysics Data System (ADS)
Shin, Jae Won; Park, Tae-Sun
2017-09-01
A data-driven nuclear model dedicated to an accurate description of neutron productions in beryllium targets bombarded by proton beams is developed as a custom development that can be used as an add-on to GEANT4 code. The developed model, G4Data(Endf7.1), takes as inputs the total and differential cross section data of ENDF/B-VII.1 for not only the charge-exchange 9Be(p,n)9B reaction which produces discrete neutrons but also the nuclear reactions relevant for the production of continuum neutrons such as 9Be(p,pn)8Be and 9Be(p,n α) 5Li . In our benchmarking simulations for two experiments with 35 MeV and 50.5 MeV proton beams impinged on 1.16 and 1.05 cm thick beryllium targets, respectively, we find that the G4Data(Endf7.1) model can reproduce both the total amounts and the spectral shapes of the measured neutron yield data in a satisfactory manner, while all the considered hadronic models of GEANT4 cannot.
The Design and Implementation of NASA's Advanced Flight Computing Module
NASA Technical Reports Server (NTRS)
Alkakaj, Leon; Straedy, Richard; Jarvis, Bruce
1995-01-01
This paper describes a working flight computer Multichip Module developed jointly by JPL and TRW under their respective research programs in a collaborative fashion. The MCM is fabricated by nCHIP and is packaged within a 2 by 4 inch Al package from Coors. This flight computer module is one of three modules under development by NASA's Advanced Flight Computer (AFC) program. Further development of the Mass Memory and the programmable I/O MCM modules will follow. The three building block modules will then be stacked into a 3D MCM configuration. The mass and volume of the flight computer MCM achieved at 89 grams and 1.5 cubic inches respectively, represent a major enabling technology for future deep space as well as commercial remote sensing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
"rsed" is an R package that contains tools for stream editing: manipulating text files by making insertions, replacements, deletions, substitutions, or commenting. It hails from the powerful Unix command, "sed". While the "rsed" package is not nearly as powerful as "see", it is much simpler to use. R programmers often write scripts that may require simple manipulation of text files. "rsed" addresses that need.
Analysis of USAREUR Family Housing.
1985-04-01
Standard Installation/Division Personnel System SJA ................ Staff Judge Advocate SPSS ............... Statistical Package for the...for Projecting Family Housing Requirements. a. Attempts to define USAREUR’s programmable family housing deficit Sbased on the FHS have caused anguish ...responses using the Statistical Package for the Social Sciences ( SPSS ) computer program. E-2 ANNEX E RESPONSE TO ESC HOUSING QUESTIONNAIRE Section Page I
NLM microcomputer-based tutorials (for microcomputers). Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, M.
1990-04-01
The package consists of TOXLEARN--a microcomputer-based training package for TOXLINE (Toxicology Information Online), CHEMLEARN-a microcomputer-based training package for CHEMLINE (Chemical Information Online), MEDTUTOR--a microcomputer-based training package for MEDLINE (Medical Information Online), and ELHILL LEARN--a microcomputer-based training package for the ELHILL search and retrieval software that supports the above-mentioned databases...Software Description: The programs were developed under PILOTplus using the NLM LEARN Programmer. They run on IBM-PC, XT, AT, PS/2, and fully compatible computers. The programs require 512K RAM memory, one disk drive, and DOS 2.0 or higher. The software supports most monochrome, color graphics, enhanced color graphics, or visual graphics displays.
Ada Integrated Environment II Computer Program Development Specification. Part 1.
1981-12-01
34Programmable" access 3.2.5.5 controls ; provision for privileged 3.2.5.6 user. 3.3.1 3.3.3 4.1.2.11 3.7.1.2 KDBS - 3.2.5.7 Capability to archive data base...CM -1 1 PHASE I SOW REQUIREMENTS A - SPEC B5 -SPEC 4.111. 3.7.2 1Compiler -331 aMAPSE shall include a mechanism for 1 Linker -3.2.5 aautomatic stub...19 3.2.5.5 Process Administrator The Process Administrator controls the executions of logically concurrent MAPSE processes. The KFW Interface Package
Optimization of {sup 6}LiF:ZnS(Ag) Scintillator Light Yield Using Geant4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yehuda-Zada, Y.; Ben-Gurion University; Pritchard, K.
2015-07-01
Neutrons provide an effective tool to probe materials structure. Neutron diffraction is a method to determine the atomic and magnetic structure of a material based on neutron scattering. By this method a collimated incident beam of thermal neutrons heat the examined sample and based on the obtained diffraction pattern information on the structure of the material is provided. Research for developing a novel cold neutron detector for Chromatic Analysis Neutron Diffractometer Or Reflectometer (CANDOR) is underway at the NIST center for neutron research. The system unique design is aimed to provide over ten times fold faster analysis of materials thanmore » conventional system. In order to achieve the fast analysis a large number of neutron detectors is required. A key design constraint for this detector is the thickness of the neutron sensitive element. This is met using {sup 6}LiF:ZnS(Ag) scintillation material with embedded wavelength shifting (WLS) fibers conducting scintillation light to silicon photomultiplier photo-sensors. The detector sensitivity is determined by both the neutron capture probability ({sup 6}Li density) and the detectable light output produced by the ZnS(Ag) ionization, the latter of which is hindered by the fluorescence absorption of the scintillation light by the ZnS. Tradeoffs between the neutron capture probability, stimulated light production and light attenuation for determining the optimal stoichiometry of the {sup 6}LiF and ZnS(Ag) as well as the volume ratio of scintillator and fiber. Simulations performed using the GEANT4 Monte Carlo package were made in order to optimize the detector design. GEANT4 enables the investigation of the neutron interaction with the detector, the ionization process and the light transfer process following the nuclear process. The series of conversions required for this detector were modelled: - A cold neutron enters the sensor and is captured by {sup 6}Li in the scintillator mixture ({sup 6}Li (n,α) {sup 3}H reaction). The study of investigating the capture process probability for neutron energy of 5.1 meV to 2.27 meV (4 - 6 A) is presented. - Alpha particles and tritons travel for a few microns in the scintillation material (α ∼0.007 mm, T ∼0.04 mm) losing energy and ionizing the ZnS. The mean free path of the two particles in each of the component materials and the complete compound was investigated. - The ionization of the ZnS(Ag) scintillation material produces blue light photons with luminescence wavelength of 450 nm. The amount of light output produced for different grain sizes of ZnS is discussed. - A large portion of the scintillation photons are reabsorbed during their passage through the scintillation material. - The blue photons that reach the WLS fibers are absorbed by fluorescent dye and are re-emitted as green photons, conducted by the fiber to the SiPM photo-sensor. This work presents the CANDOR unique design and its design constrains, the results measured by the ultra-thin {sup 6}LiF:ZnS(Ag)-based neutron detector versus the simulation results for several binder concentrations. The light measurement attenuation results along with the measured stopping power were utilized to predict the sensitivity results of configuration with different ZnS grain size, weight ratios and fibers geometry (number and location). The simulations enable to optimize the final sensor design. This design successfully achieved both the high gamma rejection with a sensitive and accurate neutron event detection of 80 percent. (authors)« less
Zhang, Fan; Hu, Xiaoqi; Tian, Zuyin; Zhang, Qian; Ma, Guansheng
2015-04-01
To describe the Nutrition Improvement Programme for Rural Compulsory Education Students (NIPRCES) in China and to share the experiences of developing and implementing nationwide school meal programmes with other countries. The article is based on a literature review of technical documents and reports of NIPRCES and relevant national legislation, technical reports and studies on school nutrition, minutes of meetings and national conferences, and official documents of the National Office of Student Nutrition and the Chinese Center for Disease Control and Prevention. People's Republic of China. Published papers, national policies, legislation and unpublished official documents. A total of 23 million rural compulsory education students were covered by NIPRCES. In the development and implementation process of NIPRCES, fifteen ministries and national committees were involved and an efficient collaborative mechanism was established. All NIPRCES-covered schools were required to serve meals on a daily basis. By the end of June 2012, the proportions of students choosing 'school feeding', 'food package' and 'family feeding' modes were respectively 64.0 %, 32.0 % and 4.0 %. The central government subsidized school meals annually by more than $US 2.5 billion and invested $US 4.8 billion on school kitchens to support this programme. The NIPRCES is a significant movement of governmental nutritional intervention in China. Food safety, financial security, decentralization and other potential concerns should be considered and lessons can be learned from other countries. Further relevant research and a nationwide monitoring and evaluation programme are needed.
TOPAS/Geant4 configuration for ionization chamber calculations in proton beams
NASA Astrophysics Data System (ADS)
Wulff, Jörg; Baumann, Kilian-Simon; Verbeek, Nico; Bäumer, Christian; Timmermann, Beate; Zink, Klemens
2018-06-01
Monte Carlo (MC) calculations are a fundamental tool for the investigation of ionization chambers (ICs) in radiation fields, and for calculations in the scope of IC reference dosimetry. Geant4, as used for the toolkit TOPAS, is a major general purpose code, generally suitable for investigating ICs in primary proton beams. To provide reliable results, the impact of parameter settings and the limitations of the underlying condensed history (CH) algorithm need to be known. A Fano cavity test was implemented in Geant4 (10.03.p1) for protons, based on the existing version for electrons distributed with the Geant4 release. This self-consistent test allows the calculation to be compared with the expected result for the typical IC-like geometry of an air-filled cavity surrounded by a higher density material. Various user-selectable parameters of the CH implementation in the EMStandardOpt4 physics-list were tested for incident proton energies between 30 and 250 MeV. Using TOPAS (3.1.p1) the influence of production cuts was investigated for bare air-cavities in water, irradiated by primary protons. Detailed IC geometries for an NACP-02 plane-parallel chamber and an NE2571 Farmer-chamber were created. The overall factor f Q as a ratio between the dose-to-water and dose to the sensitive air-volume was calculated for incident proton energies between 70 and 250 MeV. The Fano test demonstrated the EMStandardOpt4 physics-list with the WentzelIV multiple scattering model as appropriate for IC calculations. If protons start perpendicular to the air cavity, no further step-size limitations are required to pass the test within 0.1%. For an isotropic source, limitations of the maximum step length within the air cavity and its surrounding as well as a limitation of the maximum fractional energy loss per step were required to pass within 0.2%. A production cut of ⩽5 μm or ∼15 keV for all particles yielded a constant result for f Q of bare air-filled cavities. The overall factor f Q for the detailed NACP-02 and NE2571 chamber models calculated with TOPAS agreed with the values of Gomà et al (2016 Phys. Med. Biol. 61 2389) within statistical uncertainties (1σ) of <0.3% for almost all energies with a maximum deviation of 0.6% at 250 MeV for the NE2571. The selection of hadronic scattering models (QGSP_BIC versus QGSP_BERT) in TOPAS impacted the results at the highest energies by 0.3% ± 0.1%. Based on the Fano cavity test, the Geant4/TOPAS Monte Carlo code, in its investigated version, can provide reliable results for IC calculations. Agreement with the detailed IC models and the published values of Gomà et al can be achieved when production cuts are reduced from the TOPAS default values. The calculations confirm the reported agreement of Gomà et al for with IAEA-TRS398 values within the given uncertainties. An additional uncertainty for the MC-calculated of ∼0.3% by hadronic interaction models should be considered.
TOPAS/Geant4 configuration for ionization chamber calculations in proton beams.
Wulff, Jörg; Baumann, Kilian-Simon; Verbeek, Nico; Bäumer, Christian; Timmermann, Beate; Zink, Klemens
2018-06-07
Monte Carlo (MC) calculations are a fundamental tool for the investigation of ionization chambers (ICs) in radiation fields, and for calculations in the scope of IC reference dosimetry. Geant4, as used for the toolkit TOPAS, is a major general purpose code, generally suitable for investigating ICs in primary proton beams. To provide reliable results, the impact of parameter settings and the limitations of the underlying condensed history (CH) algorithm need to be known. A Fano cavity test was implemented in Geant4 (10.03.p1) for protons, based on the existing version for electrons distributed with the Geant4 release. This self-consistent test allows the calculation to be compared with the expected result for the typical IC-like geometry of an air-filled cavity surrounded by a higher density material. Various user-selectable parameters of the CH implementation in the EMStandardOpt4 physics-list were tested for incident proton energies between 30 and 250 MeV. Using TOPAS (3.1.p1) the influence of production cuts was investigated for bare air-cavities in water, irradiated by primary protons. Detailed IC geometries for an NACP-02 plane-parallel chamber and an NE2571 Farmer-chamber were created. The overall factor f Q as a ratio between the dose-to-water and dose to the sensitive air-volume was calculated for incident proton energies between 70 and 250 MeV. The Fano test demonstrated the EMStandardOpt4 physics-list with the WentzelIV multiple scattering model as appropriate for IC calculations. If protons start perpendicular to the air cavity, no further step-size limitations are required to pass the test within 0.1%. For an isotropic source, limitations of the maximum step length within the air cavity and its surrounding as well as a limitation of the maximum fractional energy loss per step were required to pass within 0.2%. A production cut of ⩽5 μm or ∼15 keV for all particles yielded a constant result for f Q of bare air-filled cavities. The overall factor f Q for the detailed NACP-02 and NE2571 chamber models calculated with TOPAS agreed with the values of Gomà et al (2016 Phys. Med. Biol. 61 2389) within statistical uncertainties (1σ) of <0.3% for almost all energies with a maximum deviation of 0.6% at 250 MeV for the NE2571. The selection of hadronic scattering models (QGSP_BIC versus QGSP_BERT) in TOPAS impacted the results at the highest energies by 0.3% ± 0.1%. Based on the Fano cavity test, the Geant4/TOPAS Monte Carlo code, in its investigated version, can provide reliable results for IC calculations. Agreement with the detailed IC models and the published values of Gomà et al can be achieved when production cuts are reduced from the TOPAS default values. The calculations confirm the reported agreement of Gomà et al for [Formula: see text] with IAEA-TRS398 values within the given uncertainties. An additional uncertainty for the MC-calculated [Formula: see text] of ∼0.3% by hadronic interaction models should be considered.
An Evaluation of a Community Health Intervention Programme Aimed at Improving Health and Wellbeing
ERIC Educational Resources Information Center
Strachan, G.; Wright, G. D.; Hancock, E.
2007-01-01
Objective: The objective of this evaluation was to examine the extent to which participants in the Tailor Made Leisure Package programme experienced any improvement in their health and wellbeing. Design: A quantitative survey. Setting: The Healthy Living Centre initiative is an example of a community-based intervention which was formalized as part…
ERIC Educational Resources Information Center
Kok, Illasha; Blignaut, A. Seugnet
2014-01-01
The School of Continuing Teacher Education (SCTE) in South Africa delivers an Advanced Certificate in Education (ACE) Learner Support Programme to Open Distance Learning (ODL) students in Namibia, a developing sub-Saharan African country. This paper examines the experiences of student-teachers using DVDs included in the tutorial package. Fifteen…
A new low-energy bremsstrahlung generator for GEANT4.
Peralta, L; Rodrigues, P; Trindade, A; Pia, M G
2005-01-01
The 2BN bremsstrahlung cross section is a well-adapted distribution to describe the radiative processes at low-electron kinetic energy (E(k) < 500 keV). In this work a method to implement this distribution in a Monte Carlo generator is developed.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and the Pacific.
One of the main products of the Regional Workshop for the Development of Packages of Adequate Learning Requirements in Population is this prototype package of curriculum materials in population education. The workshop notes that one of the shortcomings of country programs in population education is that the content integrated in school subjects is…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Jae-ik; Yoo, SeungHoon; Cho, Sungho
Purpose: The significant issue of particle therapy such as proton and carbon ion was a accurate dose delivery from beam line to patient. For designing the complex delivery system, Monte Carlo simulation can be used for the simulation of various physical interaction in scatters and filters. In this report, we present the development of Monte Carlo simulation platform to help design the prototype of particle therapy nozzle and performed the Monte Carlo simulation using Geant4. Also we show the prototype design of particle therapy beam nozzle for Korea Heavy Ion Medical Accelerator (KHIMA) project in Korea Institute of Radiological andmore » Medical Science(KIRAMS) at Republic of Korea. Methods: We developed a simulation platform for particle therapy beam nozzle using Geant4. In this platform, the prototype nozzle design of Scanning system for carbon was simply designed. For comparison with theoretic beam optics, the beam profile on lateral distribution at isocenter is compared with Mont Carlo simulation result. From the result of this analysis, we can expected the beam spot property of KHIMA system and implement the spot size optimization for our spot scanning system. Results: For characteristics study of scanning system, various combination of the spot size from accerlator with ridge filter and beam monitor was tested as simple design for KHIMA dose delivery system. Conclusion: In this report, we presented the part of simulation platform and the characteristics study. This study is now on-going in order to develop the simulation platform including the beam nozzle and the dose verification tool with treatment planning system. This will be presented as soon as it is become available.« less
NASA Astrophysics Data System (ADS)
Dedes, G.; Pinto, M.; Dauvergne, D.; Freud, N.; Krimmer, J.; Létang, J. M.; Ray, C.; Testa, E.
2014-04-01
Monte Carlo simulations are nowadays essential tools for a wide range of research topics in the field of radiotherapy. They also play an important role in the effort to develop a real-time monitoring system for quality assurance in proton and carbon ion therapy, by means of prompt-gamma detection. The internal theoretical nuclear models of Monte Carlo simulation toolkits are of decisive importance for the accurate description of neutral or charged particle emission, produced by nuclear interactions between beam particles and target nuclei. We assess the performance of Geant4 nuclear models in the context of prompt-gamma emission, comparing them with experimental data from proton and carbon ion beams. As has been shown in the past and further indicated in our study, the prompt-gamma yields are consistently overestimated by Geant4 by a factor of about 100% to 200% over an energy range from 80 to 310 MeV/u for the case of 12C, and to a lesser extent for 160 MeV protons. Furthermore, we focus on the quantum molecular dynamics (QMD) modeling of ion-ion collisions, in order to optimize its description of light nuclei, which are abundant in the human body and mainly anticipated in hadrontherapy applications. The optimization has been performed by benchmarking QMD free parameters with well established nuclear properties. In addition, we study the effect of this optimization on charged particle emission. With the usage of the proposed parameter values, discrepancies reduce to less than 70%, with the highest values being attributed to the nucleon-ion induced prompt-gammas. This conclusion, also confirmed by the disagreement we observe in the case of proton beams, indicates the need for further investigation on nuclear models which describe proton and neutron induced nuclear reactions.
SU-E-T-161: SOBP Beam Analysis Using Light Output of Scintillation Plate Acquired by CCD Camera.
Cho, S; Lee, S; Shin, J; Min, B; Chung, K; Shin, D; Lim, Y; Park, S
2012-06-01
To analyze Bragg-peak beams in SOBP (spread-out Bragg-peak) beam using CCD (charge-coupled device) camera - scintillation screen system. We separated each Bragg-peak beam using light output of high sensitivity scintillation material acquired by CCD camera and compared with Bragg-peak beams calculated by Monte Carlo simulation. In this study, CCD camera - scintillation screen system was constructed with a high sensitivity scintillation plate (Gd2O2S:Tb) and a right-angled prismatic PMMA phantom, and a Marlin F-201B, EEE-1394 CCD camera. SOBP beam irradiated by the double scattering mode of a PROTEUS 235 proton therapy machine in NCC is 8 cm width, 13 g/cm 2 range. The gain, dose rate and current of this beam is 50, 2 Gy/min and 70 nA, respectively. Also, we simulated the light output of scintillation plate for SOBP beam using Geant4 toolkit. We evaluated the light output of high sensitivity scintillation plate according to intergration time (0.1 - 1.0 sec). The images of CCD camera during the shortest intergration time (0.1 sec) were acquired automatically and randomly, respectively. Bragg-peak beams in SOBP beam were analyzed by the acquired images. Then, the SOBP beam used in this study was calculated by Geant4 toolkit and Bragg-peak beams in SOBP beam were obtained by ROOT program. The SOBP beam consists of 13 Bragg-peak beams. The results of experiment were compared with that of simulation. We analyzed Bragg-peak beams in SOBP beam using light output of scintillation plate acquired by CCD camera and compared with that of Geant4 simulation. We are going to study SOBP beam analysis using more effective the image acquisition technique. © 2012 American Association of Physicists in Medicine.
GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications
NASA Astrophysics Data System (ADS)
Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris
2015-07-01
In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400 × 250 × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.
NASA Astrophysics Data System (ADS)
Chin, G.; Sagdeev, R.; Su, J. J.; Murray, J.; Livengood, T. A.
2015-12-01
Determining the quantity and vertical distribution of volatile species on and below the surface of planetary bodies is vital to understand the primordial chemical inventory and subsequent evolution of planets. Volatiles may provide resources to support future human exploration. This is particularly true for the Moon, which is well observed by many methods from ground-based, lunar orbit, and in situ, and is an accessible destination or way station for human exploration. We present Geant4 models of relative fluxes of Fast, Epithermal, and Thermal neutron emission generated in a planetary regolith by galactic cosmic rays to reveal the first 1-2 meters vertical structure of embedded hydrogen or water. Varying ratios of Thermal versus Epithermal, low-energy-Epithermal versus high-energy-Epithermal, and Thermal versus Fast neutron emissions are diagnostics of the depth in which hydrogen/water layers are buried within the top 1-2 meters of the regolith. In addition, we apply model calculations to Lunar Exploration Neutron Detector (LEND) thermal and epithermal data, acquired on the Lunar Reconnaissance Orbiter (LRO), in specific regions of the Moon to retrieve the vertical distribution of buried ice from the remote sensing information. GEANT4 is a set of particle physics transport simulation codes that exploits object-oriented software methods to deliver a comprehensive and flexible toolkit that is modular and extensible, based on a free open-source development model. GEANT4 has become a standard tool to simulate applications as diverse as particle telescope and detector response, space radiation shielding and optimization, total ionizing dose in spacecraft components, and biological effects of radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Wenkai; Ghosh, Priyarshini; Harrison, Mark
The performance of traditional Hornyak buttons and two proposed variants for fast-neutron hodoscope applications was evaluated using Geant4. The Hornyak button is a ZnS(Ag)-based device previously deployed at the Idaho National Laboratory's TRansient REActor Test Facility (better known as TREAT) for monitoring fast neutrons emitted during pulsing of fissile fuel samples. Past use of these devices relied on pulse-shape discrimination to reduce the significant levels of background Cherenkov radiation. Proposed are two simple designs that reduce the overall light guide mass (here, polymethyl methacrylate or PMMA), employ silicon photomultipliers (SiPMs), and can be operated using pulse-height discrimination alone to eliminatemore » background noise to acceptable levels. Geant4 was first used to model a traditional Hornyak button, and for assumed, hodoscope-like conditions, an intrinsic efficiency of 0.35% for mono-directional fission neutrons was predicted. The predicted efficiency is in reasonably good agreement with experimental data from the literature and, hence, served to validate the physics models and approximations employed. Geant4 models were then developed to optimize the materials and geometries of two alternatives to the Hornyak button, one based on a homogeneous mixture of ZnS(Ag) and PMMA, and one based on alternating layers of ZnS(Ag) and PMMA oriented perpendicular to the incident neutron beam. For the same radiation environment, optimized, 5-cm long (along the beam path) devices of the homogeneous and layered designs were predicted to have efficiencies of approximately 1.3% and 3.3%, respectively. For longer devices, i.e., lengths larger than 25 cm, these efficiencies were shown to peak at approximately 2.2% and 5.9%, respectively. Furthermore, both designs were shown to discriminate Cherenkov noise intrinsically by using an appropriate pulse-height discriminator level, i.e., pulse-shape discrimination is not needed for these devices.« less
Almurayshid, Mansour; Helo, Yusuf; Kacperek, Andrzej; Griffiths, Jennifer; Hebden, Jem; Gibson, Adam
2017-09-01
In this article, we evaluate a plastic scintillation detector system for quality assurance in proton therapy using a BC-408 plastic scintillator, a commercial camera, and a computer. The basic characteristics of the system were assessed in a series of proton irradiations. The reproducibility and response to changes of dose, dose-rate, and proton energy were determined. Photographs of the scintillation light distributions were acquired, and compared with Geant4 Monte Carlo simulations and with depth-dose curves measured with an ionization chamber. A quenching effect was observed at the Bragg peak of the 60 MeV proton beam where less light was produced than expected. We developed an approach using Birks equation to correct for this quenching. We simulated the linear energy transfer (LET) as a function of depth in Geant4 and found Birks constant by comparing the calculated LET and measured scintillation light distribution. We then used the derived value of Birks constant to correct the measured scintillation light distribution for quenching using Geant4. The corrected light output from the scintillator increased linearly with dose. The system is stable and offers short-term reproducibility to within 0.80%. No dose rate dependency was observed in this work. This approach offers an effective way to correct for quenching, and could provide a method for rapid, convenient, routine quality assurance for clinical proton beams. Furthermore, the system has the advantage of providing 2D visualization of individual radiation fields, with potential application for quality assurance of complex, time-varying fields. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Efficiency transfer using the GEANT4 code of CERN for HPGe gamma spectrometry.
Chagren, S; Tekaya, M Ben; Reguigui, N; Gharbi, F
2016-01-01
In this work we apply the GEANT4 code of CERN to calculate the peak efficiency in High Pure Germanium (HPGe) gamma spectrometry using three different procedures. The first is a direct calculation. The second corresponds to the usual case of efficiency transfer between two different configurations at constant emission energy assuming a reference point detection configuration and the third, a new procedure, consists on the transfer of the peak efficiency between two detection configurations emitting the gamma ray in different energies assuming a "virtual" reference point detection configuration. No pre-optimization of the detector geometrical characteristics was performed before the transfer to test the ability of the efficiency transfer to reduce the effect of the ignorance on their real magnitude on the quality of the transferred efficiency. The obtained and measured efficiencies were found in good agreement for the two investigated methods of efficiency transfer. The obtained agreement proves that Monte Carlo method and especially the GEANT4 code constitute an efficient tool to obtain accurate detection efficiency values. The second investigated efficiency transfer procedure is useful to calibrate the HPGe gamma detector for any emission energy value for a voluminous source using one point source detection efficiency emitting in a different energy as a reference efficiency. The calculations preformed in this work were applied to the measurement exercise of the EUROMET428 project. A measurement exercise where an evaluation of the full energy peak efficiencies in the energy range 60-2000 keV for a typical coaxial p-type HpGe detector and several types of source configuration: point sources located at various distances from the detector and a cylindrical box containing three matrices was performed. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reyhancan, Iskender Atilla; Ebrahimi, Alborz; Çolak, Üner; Erduran, M. Nizamettin; Angin, Nergis
2017-01-01
A new Monte-Carlo Library Least Square (MCLLS) approach for treating non-linear radiation analysis problem in Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) was developed. 14 MeV neutrons were produced by a neutron generator via the 3H (2H , n) 4He reaction. The prompt gamma ray spectra from bulk samples of seven different materials were measured by a Bismuth Germanate (BGO) gamma detection system. Polyethylene was used as neutron moderator along with iron and lead as neutron and gamma ray shielding, respectively. The gamma detection system was equipped with a list mode data acquisition system which streams spectroscopy data directly to the computer, event-by-event. A GEANT4 simulation toolkit was used for generating the single-element libraries of all the elements of interest. These libraries were then used in a Linear Library Least Square (LLLS) approach with an unknown experimental sample spectrum to fit it with the calculated elemental libraries. GEANT4 simulation results were also used for the selection of the neutron shielding material.
Comparison of hadron shower data in the PAMELA experiment with Geant 4 simulations
NASA Astrophysics Data System (ADS)
Alekseev, V. V.; Dunaeva, O. A.; Bogomolov, Yu V.; Lukyanov, A. D.; Malakhov, V. V.; Mayorov, A. G.; Rodenko, S. A.
2017-01-01
The sampling imaging electromagnetic calorimeter of ≈ 16.3 radiation lengths and ≈ 0.6 nuclear interaction length designed and constructed by the PAMELA collaboration as a part of the large magnetic spectrometer PAMELA. Calorimeter consists of 44 single-sided silicon sensor planes interleaved with 22 plates of tungsten absorber (thickness of each tungsten layer 0.26 cm). Silicon planes are composed of a 3 × 3 matrix of silicon detectors, each segmented into 32 read-out strips with a pitch of 2.4 mm. The orientation of the strips of two consecutive layers is orthogonal and therefore provides two-dimensional spatial information. Due to the high granularity, the development of hadronic showers can be study with a good precision. In this work a Monte Carlo simulations (based on Geant4) performed using different available models, and including detector and physical effects, compared with the experimental data obtained on the near Earth orbit. Response of the PAMELA calorimeter to hadronic showers investigated including total energy release in calorimeter and transverse shower profile characteristics.
NASA Astrophysics Data System (ADS)
Ishii, Akira; Tai, Haruka; Mitsudo, Jun
2007-10-01
This paper describes a real-time system for measuring the three-dimensional shape of solder bumps arrayed on an LSI chip-size-package (CSP) board presented for inspection based on the shape-from-focus technique. It uses a copper-alloy mirror deformed by a piezoelectric actuator as a varifocal mirror enabling a simple, fast, precise focusing mechanism without moving parts to be built. A practical measuring speed of 1.69 s/package for a small CSP board (4 x 4 mm2) was achieved by incorporating an exclusive field programmable gate array processor to calculate focus measure and by constructing a domed array of LEDs as a high-intensity, uniform illumination system so that a fast (150 fps) and high-resolution (1024 x 1024 pixels/frame) CMOS image sensor could be used. Accurate measurements of bump height were also achieved with errors of 10 μm (2σ) meeting the requirements for testing the coplanarity of a bump array.
Constantin, Magdalena; Perl, Joseph; LoSasso, Tom; Salop, Arthur; Whittum, David; Narula, Anisha; Svatos, Michelle; Keall, Paul J
2011-07-01
To create an accurate 6 MV Monte Carlo simulation phase space for the Varian TrueBeam treatment head geometry imported from CAD (computer aided design) without adjusting the input electron phase space parameters. GEANT4 v4.9.2.p01 was employed to simulate the 6 MV beam treatment head geometry of the Varian TrueBeam linac. The electron tracks in the linear accelerator were simulated with Parmela, and the obtained electron phase space was used as an input to the Monte Carlo beam transport and dose calculations. The geometry components are tessellated solids included in GEANT4 as GDML (generalized dynamic markup language) files obtained via STEP (standard for the exchange of product) export from Pro/Engineering, followed by STEP import in Fastrad, a STEP-GDML converter. The linac has a compact treatment head and the small space between the shielding collimator and the divergent are of the upper jaws forbids the implementation of a plane for storing the phase space. Instead, an IAEA (International Atomic Energy Agency) compliant phase space writer was implemented on a cylindrical surface. The simulation was run in parallel on a 1200 node Linux cluster. The 6 MV dose calculations were performed for field sizes varying from 4 x 4 to 40 x 40 cm2. The voxel size for the 60 x 60 x 40 cm3 water phantom was 4 x 4 x 4 mm3. For the 10 x 10 cm2 field, surface buildup calculations were performed using 4 x 4 x 2 mm3 voxels within 20 mm of the surface. For the depth dose curves, 98% of the calculated data points agree within 2% with the experimental measurements for depths between 2 and 40 cm. For depths between 5 and 30 cm, agreement within 1% is obtained for 99% (4 x 4), 95% (10 x 10), 94% (20 x 20 and 30 x 30), and 89% (40 x 40) of the data points, respectively. In the buildup region, the agreement is within 2%, except at 1 mm depth where the deviation is 5% for the 10 x 10 cm2 open field. For the lateral dose profiles, within the field size for fields up to 30 x 30 cm2, the agreement is within 2% for depths up to 10 cm. At 20 cm depth, the in-field maximum dose difference for the 30 x 30 cm2 open field is within 4%, while the smaller field sizes agree within 2%. Outside the field size, agreement within 1% of the maximum dose difference is obtained for all fields. The calculated output factors varied from 0.938 +/- 0.015 for the 4 x 4 cm2 field to 1.088 +/- 0.024 for the 40 x 40 cm2 field. Their agreement with the experimental output factors is within 1%. The authors have validated a GEANT4 simulated IAEA-compliant phase space of the TrueBeam linac for the 6 MV beam obtained using a high accuracy geometry implementation from CAD. These files are publicly available and can be used for further research.
Comparison of Space Radiation Calculations from Deterministic and Monte Carlo Transport Codes
NASA Technical Reports Server (NTRS)
Adams, J. H.; Lin, Z. W.; Nasser, A. F.; Randeniya, S.; Tripathi, r. K.; Watts, J. W.; Yepes, P.
2010-01-01
The presentation outline includes motivation, radiation transport codes being considered, space radiation cases being considered, results for slab geometry, results from spherical geometry, and summary. ///////// main physics in radiation transport codes hzetrn uprop fluka geant4, slab geometry, spe, gcr,
Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber
NASA Astrophysics Data System (ADS)
Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien
2015-04-01
This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the 'NETSCAN' method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.
NASA Astrophysics Data System (ADS)
De Napoli, M.; Romano, F.; D'Urso, D.; Licciardello, T.; Agodi, C.; Candiano, G.; Cappuzzello, F.; Cirrone, G. A. P.; Cuttone, G.; Musumarra, A.; Pandola, L.; Scuderi, V.
2014-12-01
When a carbon beam interacts with human tissues, many secondary fragments are produced into the tumor region and the surrounding healthy tissues. Therefore, in hadrontherapy precise dose calculations require Monte Carlo tools equipped with complex nuclear reaction models. To get realistic predictions, however, simulation codes must be validated against experimental results; the wider the dataset is, the more the models are finely tuned. Since no fragmentation data for tissue-equivalent materials at Fermi energies are available in literature, we measured secondary fragments produced by the interaction of a 55.6 MeV u-1 12C beam with thick muscle and cortical bone targets. Three reaction models used by the Geant4 Monte Carlo code, the Binary Light Ions Cascade, the Quantum Molecular Dynamic and the Liege Intranuclear Cascade, have been benchmarked against the collected data. In this work we present the experimental results and we discuss the predictive power of the above mentioned models.
Monte Carlo Simulation of Massive Absorbers for Cryogenic Calorimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, D.; Asai, M.; Brink, P.L.
There is a growing interest in cryogenic calorimeters with macroscopic absorbers for applications such as dark matter direct detection and rare event search experiments. The physics of energy transport in calorimeters with absorber masses exceeding several grams is made complex by the anisotropic nature of the absorber crystals as well as the changing mean free paths as phonons decay to progressively lower energies. We present a Monte Carlo model capable of simulating anisotropic phonon transport in cryogenic crystals. We have initiated the validation process and discuss the level of agreement between our simulation and experimental results reported in the literature,more » focusing on heat pulse propagation in germanium. The simulation framework is implemented using Geant4, a toolkit originally developed for high-energy physics Monte Carlo simulations. Geant4 has also been used for nuclear and accelerator physics, and applications in medical and space sciences. We believe that our current work may open up new avenues for applications in material science and condensed matter physics.« less
Matthiä, Daniel; Berger, Thomas
2017-08-01
Galactic cosmic radiation and secondary particles produced in the interaction with the atmosphere lead to a complex radiation field on the Martian surface. A workshop ("1st Mars Space Radiation Modeling Workshop") organized by the MSL-RAD science team was held in June 2016 in Boulder with the goal to compare models capable to predict this radiation field with each other and measurements from the RAD instrument onboard the curiosity rover taken between November 15, 2015 and January 15, 2016. In this work the results of PLANETOCOSMICS/GEANT4 contributed to the workshop are presented. Calculated secondary particle spectra on the Martian surface are investigated and the radiation field's directionality of the different particles in dependence on the energy is discussed. Omnidirectional particle fluxes are used in combination with fluence to dose conversion factors to calculate absorbed dose rates and dose equivalent rates in a slab of tissue. Copyright © 2017. Published by Elsevier Ltd.
Modernizing the ATLAS simulation infrastructure
NASA Astrophysics Data System (ADS)
Di Simone, A.; CollaborationAlbert-Ludwigs-Universitt Freiburg, ATLAS; Institut, Physikalisches; Br., 79104 Freiburg i.; Germany
2017-10-01
The ATLAS Simulation infrastructure has been used to produce upwards of 50 billion proton-proton collision events for analyses ranging from detailed Standard Model measurements to searches for exotic new phenomena. In the last several years, the infrastructure has been heavily revised to allow intuitive multithreading and significantly improved maintainability. Such a massive update of a legacy code base requires careful choices about what pieces of code to completely rewrite and what to wrap or revise. The initialization of the complex geometry was generalized to allow new tools and geometry description languages, popular in some detector groups. The addition of multithreading requires Geant4-MT and GaudiHive, two frameworks with fundamentally different approaches to multithreading, to work together. It also required enforcing thread safety throughout a large code base, which required the redesign of several aspects of the simulation, including truth, the record of particle interactions with the detector during the simulation. These advances were possible thanks to close interactions with the Geant4 developers.
Design and optimization of an energy degrader with a multi-wedge scheme based on Geant4
NASA Astrophysics Data System (ADS)
Liang, Zhikai; Liu, Kaifeng; Qin, Bin; Chen, Wei; Liu, Xu; Li, Dong; Xiong, Yongqian
2018-05-01
A proton therapy facility based on an isochronous superconducting cyclotron is under construction in Huazhong University of Science and Technology (HUST). To meet the clinical requirements, an energy degrader is essential in the beamline to modulate the fixed beam energy extracted from the cyclotron. Because of the multiple Coulomb scattering in the degrader, the beam emittance and the energy spread will be considerably increased during the energy degradation process. Therefore, a set of collimators is designed to restrict the increase in beam emittance after the energy degradation. The energy spread will be reduced in the following beam line which is not discussed in this paper. In this paper, the design considerations of an energy degrader and collimators are introduced, and the properties of the degrader material, degrader structure and the initial beam parameters are discussed using the Geant4 Monte-Carlo toolkit, with the main purpose of improving the overall performance of the degrader by multiple parameter optimization.
Geant4 simulation of the CERN-EU high-energy reference field (CERF) facility.
Prokopovich, D A; Reinhard, M I; Cornelius, I M; Rosenfeld, A B
2010-09-01
The CERN-EU high-energy reference field facility is used for testing and calibrating both active and passive radiation dosemeters for radiation protection applications in space and aviation. Through a combination of a primary particle beam, target and a suitable designed shielding configuration, the facility is able to reproduce the neutron component of the high altitude radiation field relevant to the jet aviation industry. Simulations of the facility using the GEANT4 (GEometry ANd Tracking) toolkit provide an improved understanding of the neutron particle fluence as well as the particle fluence of other radiation components present. The secondary particle fluence as a function of the primary particle fluence incident on the target and the associated dose equivalent rates were determined at the 20 designated irradiation positions available at the facility. Comparisons of the simulated results with previously published simulations obtained using the FLUKA Monte Carlo code, as well as with experimental results of the neutron fluence obtained with a Bonner sphere spectrometer, are made.
Basic mathematical function libraries for scientific computation
NASA Technical Reports Server (NTRS)
Galant, David C.
1989-01-01
Ada packages implementing selected mathematical functions for the support of scientific and engineering applications were written. The packages provide the Ada programmer with the mathematical function support found in the languages Pascal and FORTRAN as well as an extended precision arithmetic and a complete complex arithmetic. The algorithms used are fully described and analyzed. Implementation assumes that the Ada type FLOAT objects fully conform to the IEEE 754-1985 standard for single binary floating-point arithmetic, and that INTEGER objects are 32-bit entities. Codes for the Ada packages are included as appendixes.
Naimoli, Joseph F; Perry, Henry B; Townsend, John W; Frymus, Diana E; McCaffery, James A
2015-09-01
There is robust evidence that community health workers (CHWs) in low- and middle-income (LMIC) countries can improve their clients' health and well-being. The evidence on proven strategies to enhance and sustain CHW performance at scale, however, is limited. Nevertheless, CHW stakeholders need guidance and new ideas, which can emerge from the recognition that CHWs function at the intersection of two dynamic, overlapping systems - the formal health system and the community. Although each typically supports CHWs, their support is not necessarily strategic, collaborative or coordinated. We explore a strategic community health system partnership as one approach to improving CHW programming and performance in countries with or intending to mount large-scale CHW programmes. To identify the components of the approach, we drew on a year-long evidence synthesis exercise on CHW performance, synthesis records, author consultations, documentation on large-scale CHW programmes published after the synthesis and other relevant literature. We also established inclusion and exclusion criteria for the components we considered. We examined as well the challenges and opportunities associated with implementing each component. We identified a minimum package of four strategies that provide opportunities for increased cooperation between communities and health systems and address traditional weaknesses in large-scale CHW programmes, and for which implementation is feasible at sub-national levels over large geographic areas and among vulnerable populations in the greatest need of care. We postulate that the CHW performance benefits resulting from the simultaneous implementation of all four strategies could outweigh those that either the health system or community could produce independently. The strategies are (1) joint ownership and design of CHW programmes, (2) collaborative supervision and constructive feedback, (3) a balanced package of incentives, and (4) a practical monitoring system incorporating data from communities and the health system. We believe that strategic partnership between communities and health systems on a minimum package of simultaneously implemented strategies offers the potential for accelerating progress in improving CHW performance at scale. Comparative, retrospective and prospective research can confirm the potential of these strategies. More experience and evidence on strategic partnership can contribute to our understanding of how to achieve sustainable progress in health with equity.
NASA Astrophysics Data System (ADS)
Jung, Hyunuk; Shin, Jungsuk; Chung, Kwangzoo; Han, Youngyih; Kim, Jinsung; Choi, Doo Ho
2015-05-01
The aim of this study was to develop an independent dose verification system by using a Monte Carlo (MC) calculation method for intensity modulated radiation therapy (IMRT) conducted by using a Varian Novalis Tx (Varian Medical Systems, Palo Alto, CA, USA) equipped with a highdefinition multi-leaf collimator (HD-120 MLC). The Geant4 framework was used to implement a dose calculation system that accurately predicted the delivered dose. For this purpose, the Novalis Tx Linac head was modeled according to the specifications acquired from the manufacturer. Subsequently, MC simulations were performed by varying the mean energy, energy spread, and electron spot radius to determine optimum values of irradiation with 6-MV X-ray beams by using the Novalis Tx system. Computed percentage depth dose curves (PDDs) and lateral profiles were compared to the measurements obtained by using an ionization chamber (CC13). To validate the IMRT simulation by using the MC model we developed, we calculated a simple IMRT field and compared the result with the EBT3 film measurements in a water-equivalent solid phantom. Clinical cases, such as prostate cancer treatment plans, were then selected, and MC simulations were performed. The accuracy of the simulation was assessed against the EBT3 film measurements by using a gamma-index criterion. The optimal MC model parameters to specify the beam characteristics were a 6.8-MeV mean energy, a 0.5-MeV energy spread, and a 3-mm electron radius. The accuracy of these parameters was determined by comparison of MC simulations with measurements. The PDDs and the lateral profiles of the MC simulation deviated from the measurements by 1% and 2%, respectively, on average. The computed simple MLC fields agreed with the EBT3 measurements with a 95% passing rate with 3%/3-mm gamma-index criterion. Additionally, in applying our model to clinical IMRT plans, we found that the MC calculations and the EBT3 measurements agreed well with a passing rate of greater than 95% on average with a 3%/3-mm gamma-index criterion. In summary, the Novalis Tx Linac head equipped with a HD-120 MLC was successfully modeled by using a Geant4 platform, and the accuracy of the Geant4 platform was successfully validated by comparisons with measurements. The MC model we have developed can be a useful tool for pretreatment quality assurance of IMRT plans and for commissioning of radiotherapy treatment planning.
Loechl, Cornelia U; Menon, Purnima; Arimond, Mary; Ruel, Marie T; Pelto, Gretel; Habicht, Jean-Pierre; Michaud, Lesly
2009-01-01
This paper uses programme theory to assess, in the context of an effectiveness evaluation, the feasibility and acceptability of distributing micronutrient Sprinkles through a food-assisted maternal and child health and nutrition programme in rural Haiti. We laid out the steps related to programme delivery and household utilization of Sprinkles and used qualitative and quantitative methods to gather data on these steps. Methods included structured observations, checks of beneficiary ration cards, exit interviews, focus group discussions (FGD), individual interviews and survey data from the effectiveness evaluation. Results are as follows: (1) information on use of Sprinkles was provided before mothers first received them, as planned; (2) Sprinkles were re-packaged and distributed as planned and in the appropriate amount; (3) almost all mothers (96%) received two monthly rations of Sprinkles and received timely information on their use; (4) mothers understood instructions about use of Sprinkles and acceptance was high, and no selling of the product was reported or observed; and (5) mothers reported using Sprinkles as instructed, every day (63% in survey; 86% at exit interviews), and for the child only (99%). FGD with staff highlighted the acceptance of the intervention, with a reported 'modest' increase in workload. Within this well-established programme, it proved feasible to distribute Sprinkles and to ensure appropriate use by beneficiary mothers. Existing programme venues were suitable for distributing Sprinkles and educating mothers about their use. Use of programme theory helped to assess feasibility and acceptability of the Sprinkles intervention and provided useful information for programme replication or scale-up.
Pearce, George W.; Gooden, E. L.; Johnson, Donald R.
1959-01-01
Background information is presented on the development of specifications for 75% DDT water-dispersible powder for use in malaria control programmes supported by the International Cooperation Administration (ICA) of the United States Government. Early difficulties with DDT powders used in these programmes were investigated and it was found that the most critical requirements involved packaging, suspensibility and storage stability. ICA specifications were evolved to meet these requirements. The suspensibility test developed is described, and the importance of inspection of the material procured is discussed. PMID:14431217
NASA Technical Reports Server (NTRS)
Weidenspointner, G.; Harris, M. J.; Sturner, S.; Teegarden, B. J.; Ferguson, C.
2004-01-01
Intense and complex instrumental backgrounds, against which the much smaller signals from celestial sources have to be discerned, are a notorious problem for low and intermediate energy gamma-ray astronomy (approximately 50 keV - 10 MeV). Therefore a detailed qualitative and quantitative understanding of instrumental line and continuum backgrounds is crucial for most stages of gamma-ray astronomy missions, ranging from the design and development of new instrumentation through performance prediction to data reduction. We have developed MGGPOD, a user-friendly suite of Monte Carlo codes built around the widely used GEANT (Version 3.21) package, to simulate ab initio the physical processes relevant for the production of instrumental backgrounds. These include the build-up and delayed decay of radioactive isotopes as well as the prompt de-excitation of excited nuclei, both of which give rise to a plethora of instrumental gamma-ray background lines in addition t o continuum backgrounds. The MGGPOD package and documentation are publicly available for download. We demonstrate the capabilities of the MGGPOD suite by modeling high resolution gamma-ray spectra recorded by the Transient Gamma-Ray Spectrometer (TGRS) on board Wind during 1995. The TGRS is a Ge spectrometer operating in the 40 keV to 8 MeV range. Due to its fine energy resolution, these spectra reveal the complex instrumental background in formidable detail, particularly the many prompt and delayed gamma-ray lines. We evaluate the successes and failures of the MGGPOD package in reproducing TGRS data, and provide identifications for the numerous instrumental lines.
NASA Technical Reports Server (NTRS)
1978-01-01
A description is given of the Installation, Operation, and Maintenance Manual and information on the power panel and programmable microprocessor, a hydronic solar pump system and a hydronic heating hot water pumping system. These systems are integrated into various configurations for usages in solar energy management, control and monitoring, lighting control, data logging and other solar related applications.
Programmer's reference manual for the VAX-Gerber link software package. Revision 1. 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isobe, G.W.
1985-10-01
This guide provides the information necessary to edit, modify, and run the VAX-Gerber software link. Since the project is in the testing stage and still being modified, this guide discussess the final desired stage along with the current stage. The current stage is to set up as to allow the programmer to easily modify and update codes as necessary.
Hellfeld, D.; Bernstein, A.; Dazeley, S.; ...
2017-01-01
The potential of elastic antineutrino-electron scattering (ν¯ e + e – → ν¯ e + e –) in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13 km standoff from a 3.758 GWt light water nuclear reactor. Background was estimated via independent simulations and by appropriately scaling published measurements from similar detectors. Many potential backgrounds were considered, including solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclide and water-borne radon decays,more » and gamma rays from the photomultiplier tubes, detector walls, and surrounding rock. The detector response was modeled using a GEANT4-based simulation package. The results indicate that with the use of low radioactivity PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. The directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. Lastly, the results provide a list of theoretical conditions that, if satisfied in practice, would enable nuclear reactor antineutrino directionality in a Gd-doped water Cherenkov detector approximately 10 km from a large power reactor.« less
Ahoua, Laurence; Umutoni, Chantal; Huerga, Helena; Minetti, Andrea; Szumilin, Elisabeth; Balkan, Suna; Olson, David M; Nicholas, Sarala; Pujades-Rodríguez, Mar
2011-01-10
Among people living with HIV/AIDS, nutritional support is increasingly recognized as a critical part of the essential package of care, especially for patients in sub-Saharan Africa. The objectives of the study were to evaluate the outcomes of HIV-positive malnourished adults treated with ready-to-use therapeutic food and to identify factors associated with nutrition programme failure. We present results from a retrospective cohort analysis of patients aged 15 years or older with a body mass index of less than 17 kg/m² enrolled in three HIV/AIDS care programmes in Africa between March 2006 and August 2008. Factors associated with nutrition programme failure (patients discharged uncured after six or more months of nutritional care, defaulting from nutritional care, remaining in nutritional care for six or more months, or dead) were investigated using multiple logistic regression. Overall, 1340 of 8685 (15.4%) HIV-positive adults were enrolled in the nutrition programme. At admission, median body mass index was 15.8 kg/m² (IQR 14.9-16.4) and 12% received combination antiretroviral therapy (ART). After a median of four months of follow up (IQR 2.2-6.1), 524 of 1106 (47.4%) patients were considered cured. An overall total of 531 of 1106 (48.0%) patients failed nutrition therapy, 132 (11.9%) of whom died and 250 (22.6%) defaulted from care. Men (OR = 1.5, 95% CI 1.2-2.0), patients with severe malnutrition at nutrition programme enrolment (OR = 2.2, 95% CI 1.7-2.8), and those never started on ART (OR = 4.5, 95% CI 2.7-7.7 for those eligible; OR = 1.6, 95% CI 1.0-2.5 for those ineligible for ART at enrolment) were at increased risk of nutrition programme failure. Diagnosed tuberculosis at nutrition programme admission or during follow up, and presence of diarrhoeal disease or extensive candidiasis at admission, were unrelated to nutrition programme failure. Concomitant administration of ART and ready-to-use therapeutic food increases the chances of nutritional recovery in these high-risk patients. While adequate nutrition is necessary to treat malnourished HIV patients, development of improved strategies for the management of severely malnourished patients with HIV/AIDS are urgently needed.
USDA-ARS?s Scientific Manuscript database
Inelastic neutron scattering (INS) was applied to determine soil carbon content. Due to non-uniform soil carbon depth distribution, the correlation between INS signals with some soil carbon content parameter is not obvious; however, a proportionality between INS signals and average carbon weight per...
USDA-ARS?s Scientific Manuscript database
Computer Monte-Carlo (MC) simulations (Geant4) of neutron propagation and acquisition of gamma response from soil samples was applied to evaluate INS system performance characteristic [sensitivity, minimal detectable level (MDL)] for soil carbon measurement. The INS system model with best performanc...
Mangaraj, S; K Goswami, T; Mahajan, P V
2015-07-01
MAP is a dynamic system where respiration of the packaged product and gas permeation through the packaging film takes place simultaneously. The desired level of O2 and CO2 in a package is achieved by matching film permeation rates for O2 and CO2 with respiration rate of the packaged product. A mathematical model for MAP of fresh fruits applying enzyme kinetics based respiration equation coupled with the Arrhenious type model was developed. The model was solved numerically using MATLAB programme. The model was used to determine the time to reach to the equilibrium concentration inside the MA package and the level of O2 and CO2 concentration at equilibrium state. The developed model for prediction of equilibrium O2 and CO2 concentration was validated using experimental data for MA packaging of apple, guava and litchi.
exprso: an R-package for the rapid implementation of machine learning algorithms.
Quinn, Thomas; Tylee, Daniel; Glatt, Stephen
2016-01-01
Machine learning plays a major role in many scientific investigations. However, non-expert programmers may struggle to implement the elaborate pipelines necessary to build highly accurate and generalizable models. We introduce exprso , a new R package that is an intuitive machine learning suite designed specifically for non-expert programmers. Built initially for the classification of high-dimensional data, exprso uses an object-oriented framework to encapsulate a number of common analytical methods into a series of interchangeable modules. This includes modules for feature selection, classification, high-throughput parameter grid-searching, elaborate cross-validation schemes (e.g., Monte Carlo and nested cross-validation), ensemble classification, and prediction. In addition, exprso also supports multi-class classification (through the 1-vs-all generalization of binary classifiers) and the prediction of continuous outcomes.
Malawi three district evaluation: Community-based maternal and newborn care economic analysis.
Greco, Giulia; Daviaud, Emmanuelle; Owen, Helen; Ligowe, Reuben; Chimbalanga, Emmanuel; Guenther, Tanya; Gamache, Nathalie; Zimba, Evelyn; Lawn, Joy E
2017-10-01
Malawi is one of few low-income countries in sub-Saharan Africa to have met the fourth Millennium Development Goal for child survival (MDG 4). To accelerate progress towards MDGs, the Malawi Ministry of Health's Reproductive Health Unit - in partnership with Save the Children, UNICEF and others - implemented a Community Based Maternal and Newborn Care (CBMNC) package, integrated within the existing community-based system. Multi-purpose Health Surveillance Assistants (HSAs) already employed by the local government were trained to conduct five core home visits. The additional financial costs, including donated items, incurred by the CBMNC package were analysed from the perspective of the provider. The coverage level of HSA home visits (35%) was lower than expected: mothers received an average of 2.8 visits rather than the programme target of five, or the more reasonable target of four given the number of women who would go away from the programme area to deliver. Two were home pregnancy and less than one, postnatal, reflecting greater challenges for the tight time window to achieve postnatal home visits. As a proportion of a 40 hour working week, CBMNC related activities represented an average of 13% of the HSA work week. Modelling for 95% coverage in a population of 100,000, the same number of HSAs could achieve this high coverage and financial programme cost could remain the same. The cost per mother visited would be US$6.6, or US$1.6 per home visit. The financial cost of universal coverage in Malawi would stand at 1.3% of public health expenditure if the programme is rolled out across the country. Higher coverage would increase efficiency of financial investment as well as achieve greater effectiveness. The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mackay, James; Schulz, Peter; Rubinelli, Sara; Pithers, Andrea
2007-08-01
Many people are concerned about their family history of breast cancer, and are anxious about the possibility of developing breast cancer themselves. The majority of these people are likely not to be at significantly increased risk of developing inherited breast cancer. All women are at risk of developing sporadic breast cancer, and this risk increases with age. This project aims to aid people's understanding of these issues using an interactive online computer programme. The UK National Institute of Health and Clinical Excellence has published guidance for the National Health Service on the management of familial breast cancer. That guidance lays down clear criteria for categorising risk level and the appropriate management options. We have developed a user-friendly computer programme named OPERA (online patient education and risk assessment) which captures the individuality of the user's situation in a comprehensive way, and then produces personalised information packages, building on the theoretical framework of argumentation developed by Toulmin [Toulmin S. The uses of argument. Cambridge, MA: Cambridge University Press; 1958]. We will test this programme in a series of pilot studies commencing in 2007. This paper describes the progress of this project to date and focuses on the design of the programme. It is possible to construct a user friendly programme which delivers a personalised information package to individuals who are concerned about their risk of developing breast cancer. This user friendly programme needs to be tested within a series of carefully thought out pilot studies before it is ready for general release and use by the public.
Performance of GeantV EM Physics Models
NASA Astrophysics Data System (ADS)
Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.
2017-10-01
The recent progress in parallel hardware architectures with deeper vector pipelines or many-cores technologies brings opportunities for HEP experiments to take advantage of SIMD and SIMT computing models. Launched in 2013, the GeantV project studies performance gains in propagating multiple particles in parallel, improving instruction throughput and data locality in HEP event simulation on modern parallel hardware architecture. Due to the complexity of geometry description and physics algorithms of a typical HEP application, performance analysis is indispensable in identifying factors limiting parallel execution. In this report, we will present design considerations and preliminary computing performance of GeantV physics models on coprocessors (Intel Xeon Phi and NVidia GPUs) as well as on mainstream CPUs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, Magdalena; Perl, Joseph; LoSasso, Tom
2011-07-15
Purpose: To create an accurate 6 MV Monte Carlo simulation phase space for the Varian TrueBeam treatment head geometry imported from cad (computer aided design) without adjusting the input electron phase space parameters. Methods: geant4 v4.9.2.p01 was employed to simulate the 6 MV beam treatment head geometry of the Varian TrueBeam linac. The electron tracks in the linear accelerator were simulated with Parmela, and the obtained electron phase space was used as an input to the Monte Carlo beam transport and dose calculations. The geometry components are tessellated solids included in geant4 as gdml (generalized dynamic markup language) files obtainedmore » via STEP (standard for the exchange of product) export from Pro/Engineering, followed by STEP import in Fastrad, a STEP-gdml converter. The linac has a compact treatment head and the small space between the shielding collimator and the divergent arc of the upper jaws forbids the implementation of a plane for storing the phase space. Instead, an IAEA (International Atomic Energy Agency) compliant phase space writer was implemented on a cylindrical surface. The simulation was run in parallel on a 1200 node Linux cluster. The 6 MV dose calculations were performed for field sizes varying from 4 x 4 to 40 x 40 cm{sup 2}. The voxel size for the 60x60x40 cm{sup 3} water phantom was 4x4x4 mm{sup 3}. For the 10x10 cm{sup 2} field, surface buildup calculations were performed using 4x4x2 mm{sup 3} voxels within 20 mm of the surface. Results: For the depth dose curves, 98% of the calculated data points agree within 2% with the experimental measurements for depths between 2 and 40 cm. For depths between 5 and 30 cm, agreement within 1% is obtained for 99% (4x4), 95% (10x10), 94% (20x20 and 30x30), and 89% (40x40) of the data points, respectively. In the buildup region, the agreement is within 2%, except at 1 mm depth where the deviation is 5% for the 10x10 cm{sup 2} open field. For the lateral dose profiles, within the field size for fields up to 30x30 cm{sup 2}, the agreement is within 2% for depths up to 10 cm. At 20 cm depth, the in-field maximum dose difference for the 30x30 cm{sup 2} open field is within 4%, while the smaller field sizes agree within 2%. Outside the field size, agreement within 1% of the maximum dose difference is obtained for all fields. The calculated output factors varied from 0.938{+-}0.015 for the 4x4 cm{sup 2} field to 1.088{+-}0.024 for the 40x40 cm{sup 2} field. Their agreement with the experimental output factors is within 1%. Conclusions: The authors have validated a geant4 simulated IAEA-compliant phase space of the TrueBeam linac for the 6 MV beam obtained using a high accuracy geometry implementation from cad. These files are publicly available and can be used for further research.« less
TIERRAS: A package to simulate high energy cosmic ray showers underground, underwater and under-ice
NASA Astrophysics Data System (ADS)
Tueros, Matías; Sciutto, Sergio
2010-02-01
In this paper we present TIERRAS, a Monte Carlo simulation program based on the well-known AIRES air shower simulations system that enables the propagation of particle cascades underground, providing a tool to study particles arriving underground from a primary cosmic ray on the atmosphere or to initiate cascades directly underground and propagate them, exiting into the atmosphere if necessary. We show several cross-checks of its results against CORSIKA, FLUKA, GEANT and ZHS simulations and we make some considerations regarding its possible use and limitations. The first results of full underground shower simulations are presented, as an example of the package capabilities. Program summaryProgram title: TIERRAS for AIRES Catalogue identifier: AEFO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 36 489 No. of bytes in distributed program, including test data, etc.: 3 261 669 Distribution format: tar.gz Programming language: Fortran 77 and C Computer: PC, Alpha, IBM, HP, Silicon Graphics and Sun workstations Operating system: Linux, DEC Unix, AIX, SunOS, Unix System V RAM: 22 Mb bytes Classification: 1.1 External routines: TIERRAS requires AIRES 2.8.4 to be installed on the system. AIRES 2.8.4 can be downloaded from http://www.fisica.unlp.edu.ar/auger/aires/eg_AiresDownload.html. Nature of problem: Simulation of high and ultra high energy underground particle showers. Solution method: Modification of the AIRES 2.8.4 code to accommodate underground conditions. Restrictions: In AIRES some processes that are not statistically significant on the atmosphere are not simulated. In particular, it does not include muon photonuclear processes. This imposes a limitation on the application of this package to a depth of 1 km of standard rock (or 2.5 km of water equivalent). Neutrinos are not tracked on the simulation, but their energy is taken into account in decays. Running time: A TIERRAS for AIRES run of a 10 eV shower with statistical sampling (thinning) below 10 eV and 0.2 weight factor (see [1]) uses approximately 1 h of CPU time on an Intel Core 2 Quad Q6600 at 2.4 GHz. It uses only one core, so 4 simultaneous simulations can be run on this computer. Aires includes a spooling system to run several simultaneous jobs of any type. References:S. Sciutto, AIRES 2.6 User Manual, http://www.fisica.unlp.edu.ar/auger/aires/.
NASA Astrophysics Data System (ADS)
Vagena, E.; Theodorou, K.; Stoulos, S.
2018-04-01
Neutron activation technique has been applied using a proposed set of twelve thick metal foils (Au, As, Cd, In, Ir, Er, Mn, Ni, Se, Sm, W, Zn) for off-site measurements to obtain the neutron spectrum over a wide energy range (from thermal up to a few MeV) in intense neutron-gamma mixed fields such as around medical Linacs. The unfolding procedure takes into account the activation rates measured using thirteen (n , γ) and two (n , p) reactions without imposing a guess solution-spectrum. The MINUIT minimization routine unfolds a neutron spectrum that is dominated by fast neutrons (70%) peaking at 0.3 MeV, while the thermal peak corresponds to the 15% of the total neutron fluence equal to the epithermal-resonances area. The comparison of the unfolded neutron spectrum against the simulated one with the GEANT4 Monte-Carlo code shows a reasonable agreement within the measurement uncertainties. Therefore, the proposed set of activation thick-foils could be a useful tool in order to determine low flux neutrons spectrum in intense mixed field.
NASA Astrophysics Data System (ADS)
Perrot, Y.; Degoul, F.; Auzeloux, P.; Bonnet, M.; Cachin, F.; Chezal, J. M.; Donnarieix, D.; Labarre, P.; Moins, N.; Papon, J.; Rbah-Vidal, L.; Vidal, A.; Miot-Noirault, E.; Maigne, L.
2014-05-01
The GATE Monte Carlo simulation platform based on the Geant4 toolkit is under constant improvement for dosimetric calculations. In this study, we explore its use for the dosimetry of the preclinical targeted radiotherapy of melanoma using a new specific melanin-targeting radiotracer labeled with iodine 131. Calculated absorbed fractions and S values for spheres and murine models (digital and CT-scan-based mouse phantoms) are compared between GATE and EGSnrc Monte Carlo codes considering monoenergetic electrons and the detailed energy spectrum of iodine 131. The behavior of Geant4 standard and low energy models is also tested. Following the different authors’ guidelines concerning the parameterization of electron physics models, this study demonstrates an agreement of 1.2% and 1.5% with EGSnrc, respectively, for the calculation of S values for small spheres and mouse phantoms. S values calculated with GATE are then used to compute the dose distribution in organs of interest using the activity distribution in mouse phantoms. This study gives the dosimetric data required for the translation of the new treatment to the clinic.
Evaluation of double photon coincidence Compton imaging method with GEANT4 simulation
NASA Astrophysics Data System (ADS)
Yoshihara, Yuri; Shimazoe, Kenji; Mizumachi, Yuki; Takahashi, Hiroyuki
2017-11-01
Compton imaging has been used for various applications including astronomical observations, radioactive waste management, and biomedical imaging. The positions of radioisotopes are determined in the intersections of multiple cone traces through a large number of events, which reduces signal to noise ratio (SNR) of the images. We have developed an advanced Compton imaging method to localize radioisotopes with high SNR by using information of the interactions of Compton scattering caused by two gamma rays at the same time, as the double photon coincidence Compton imaging method. The targeted radioisotopes of this imaging method are specific nuclides that emit several gamma rays at the same time such as 60Co, 134Cs, and 111In, etc. Since their locations are determined in the intersections of two Compton cones, the most of cone traces would disappear in the three-dimensional space, which enhances the SNR and angular resolution. In this paper, the comparison of the double photon coincidence Compton imaging method and the single photon Compton imaging method was conducted by using GEANT4 Monte Carlo simulation.
A fast and complete GEANT4 and ROOT Object-Oriented Toolkit: GROOT
NASA Astrophysics Data System (ADS)
Lattuada, D.; Balabanski, D. L.; Chesnevskaya, S.; Costa, M.; Crucillà, V.; Guardo, G. L.; La Cognata, M.; Matei, C.; Pizzone, R. G.; Romano, S.; Spitaleri, C.; Tumino, A.; Xu, Y.
2018-01-01
Present and future gamma-beam facilities represent a great opportunity to validate and evaluate the cross-sections of many photonuclear reactions at near-threshold energies. Monte Carlo (MC) simulations are very important to evaluate the reaction rates and to maximize the detection efficiency but, unfortunately, they can be very cputime-consuming and in some cases very hard to reproduce, especially when exploring near-threshold cross-section. We developed a software that makes use of the validated tracking GEANT4 libraries and the n-body event generator of ROOT in order to provide a fast, realiable and complete MC tool to be used for nuclear physics experiments. This tool is indeed intended to be used for photonuclear reactions at γ-beam facilities with ELISSA (ELI Silicon Strip Array), a new detector array under development at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP). We discuss the results of MC simulations performed to evaluate the effects of the electromagnetic induced background, of the straggling due to the target thickness and of the resolution of the silicon detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzunyan, S. A.; Blazey, G.; Boi, S.
Northern Illinois University in collaboration with Fermi National Accelerator Laboratory (FNAL) and Delhi University has been designing and building a proton CT scanner for applications in proton treatment planning. The Phase II proton CT scanner consists of eight planes of tracking detectors with two X and two Y coordinate measurements both before and after the patient. In addition, a range stack detector consisting of a stack of thin scintillator tiles, arranged in twelve eight-tile frames, is used to determine the water equivalent path length (WEPL) of each track through the patient. The X-Y coordinates and WEPL are required input formore » image reconstruction software to find the relative (proton) stopping powers (RSP) value of each voxel in the patient and generate a corresponding 3D image. In this Note we describe tests conducted in 2015 at the proton beam at the Central DuPage Hospital in Warrenville, IL, focusing on the range stack calibration procedure and comparisons with the GEANT~4 range stack simulation.« less
NASA Astrophysics Data System (ADS)
Batmunkh, Munkhbaatar; Bugay, Alexander; Bayarchimeg, Lkhagvaa; Lkhagva, Oidov
2018-02-01
The present study is focused on the development of optimal models of neuron morphology for Monte Carlo microdosimetry simulations of initial radiation-induced events of heavy charged particles in the specific types of cells of the hippocampus, which is the most radiation-sensitive structure of the central nervous system. The neuron geometry and particles track structures were simulated by the Geant4/Geant4-DNA Monte Carlo toolkits. The calculations were made for beams of protons and heavy ions with different energies and doses corresponding to real fluxes of galactic cosmic rays. A simple compartmental model and a complex model with realistic morphology extracted from experimental data were constructed and compared. We estimated the distribution of the energy deposition events and the production of reactive chemical species within the developed models of CA3/CA1 pyramidal neurons and DG granule cells of the rat hippocampus under exposure to different particles with the same dose. Similar distributions of the energy deposition events and concentration of some oxidative radical species were obtained in both the simplified and realistic neuron models.
NASA Astrophysics Data System (ADS)
Gilbo, Yekaterina; Wijesooriya, Krishni; Liyanage, Nilanga
2017-01-01
Customarily applied in homeland security for identifying concealed explosives and chemical weapons, NRF (Nuclear Resonance Fluorescence) may have high potential in determining atomic compositions of body tissue. High energy photons incident on a target excite the target nuclei causing characteristic re-emission of resonance photons. As the nuclei of each isotope have well-defined excitation energies, NRF uniquely indicates the isotopic content of the target. NRF radiation corresponding to nuclear isotopes present in the human body is emitted during radiotherapy based on Bremsstrahlung photons generated in a linear electron accelerator. We have developed a Geant4 simulation in order to help assess NRF capabilities in detecting, mapping, and characterizing tumors. We have imported a digital phantom into the simulation using anatomical data linked to known chemical compositions of various tissues. Work is ongoing to implement the University of Virginia's cancer center treatment setup and patient geometry, and to collect and analyze the simulation's physics quantities to evaluate the potential of NRF for medical imaging applications. Preliminary results will be presented.
Comparison of Geant4 multiple Coulomb scattering models with theory for radiotherapy protons
NASA Astrophysics Data System (ADS)
Makarova, Anastasia; Gottschalk, Bernard; Sauerwein, Wolfgang
2017-08-01
Usually, Monte Carlo models are validated against experimental data. However, models of multiple Coulomb scattering (MCS) in the Gaussian approximation are exceptional in that we have theories which are probably more accurate than the experiments which have, so far, been done to test them. In problems directly sensitive to the distribution of angles leaving the target, the relevant theory is the Molière/Fano/Hanson variant of Molière theory (Gottschalk et al 1993 Nucl. Instrum. Methods Phys. Res. B 74 467-90). For transverse spreading of the beam in the target itself, the theory of Preston and Koehler (Gottschalk (2012 arXiv:1204.4470)) holds. Therefore, in this paper we compare Geant4 simulations, using the Urban and Wentzel models of MCS, with theory rather than experiment, revealing trends which would otherwise be obscured by experimental scatter. For medium-energy (radiotherapy) protons, and low-Z (water-like) target materials, Wentzel appears to be better than Urban in simulating the distribution of outgoing angles. For beam spreading in the target itself, the two models are essentially equal.
Exclusive data-based modeling of neutron-nuclear reactions below 20 MeV
NASA Astrophysics Data System (ADS)
Savin, Dmitry; Kosov, Mikhail
2017-09-01
We are developing CHIPS-TPT physics library for exclusive simulation of neutron-nuclear reactions below 20 MeV. Exclusive modeling reproduces each separate scattering and thus requires conservation of energy, momentum and quantum numbers in each reaction. Inclusive modeling reproduces only selected values while averaging over the others and imposes no such constraints. Therefore the exclusive modeling allows to simulate additional quantities like secondary particle correlations and gamma-lines broadening and avoid artificial fluctuations. CHIPS-TPT is based on the formerly included in Geant4 CHIPS library, which follows the exclusive approach, and extends it to incident neutrons with the energy below 20 MeV. The NeutronHP model for neutrons below 20 MeV included in Geant4 follows the inclusive approach like the well known MCNP code. Unfortunately, the available data in this energy region is mostly presented in ENDF-6 format and semi-inclusive. Imposing additional constraints on secondary particles complicates modeling but also allows to detect inconsistencies in the input data and to avoid errors that may remain unnoticed in inclusive modeling.
Muon Telescope (MuTe): A first study using Geant4
NASA Astrophysics Data System (ADS)
Asorey, H.; Balaguera-Rojas, A.; Calderon-Ardila, R.; Núñez, L. A.; Sanabria-Gómez, J. D.; Súarez-Durán, M.; Tapia, A.
2017-07-01
Muon tomography is based on recording the difference of absorption of muons by matter, as ordinary radiography does for using X-rays. The interaction of cosmic rays with the atmosphere produces extensive air showers which provides an abundant source for atmospheric muons, benefiting various applications of muon tomography, particularly the study of the inner structure of volcanoes. The MuTe (for Muon Telescope) is a hybrid detector composed of scintillation bars and a water Cherenkov detector designed to measure cosmic muon flux crossing volcanic edifices. This detector consists of two scintillator plates (1.44 m2 with 30 x 30 pixels), with a maximum distance of 2.0m of separation. In this work we report the first simulation of the MuTe using GEANT4 -set of simulation tools, based in C++ - that provides information about the interaction between radiation and matter. This computational tool allows us to know the energy deposited by the muons and modeling the response of the scintillators and the water cherenkov detector to the passage of radiation which is crucial to compare to our data analysis.
NASA Astrophysics Data System (ADS)
Palit, S.; Basak, T.; Mondal, S. K.; Pal, S.; Chakrabarti, S. K.
2013-03-01
X-ray photons emitted during solar flares cause ionization in the lower ionosphere (~ 60 to 100 km) in excess of what is expected from a quiet sun. Very Low Frequency (VLF) radio wave signals reflected from the D region are affected by this excess ionization. In this paper, we reproduce the deviation in VLF signal strength during solar flares by numerical modeling. We use GEANT4 Monte Carlo simulation code to compute the rate of ionization due to a M-class and a X-class flare. The output of the simulation is then used in a simplified ionospheric chemistry model to calculate the time variation of electron density at different altitudes in the lower ionosphere. The resulting electron density variation profile is then self-consistently used in the LWPC code to obtain the time variation of the VLF signal change. We did the modeling of the VLF signal along the NWC (Australia) to IERC/ICSP (India) propagation path and compared the results with observations. The agreement is found to be very satisfactory.
Modeling the tagged-neutron UXO identification technique using the Geant4 toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Y.; Mitra S.; Zhu X.
2011-10-16
It is proposed to use 14 MeV neutrons tagged by the associated particle neutron time-of-flight technique (APnTOF) to identify the fillers of unexploded ordnances (UXO) by characterizing their carbon, nitrogen and oxygen contents. To facilitate the design and construction of a prototype system, a preliminary simulation model was developed, using the Geant4 toolkit. This work established the toolkit environment for (a) generating tagged neutrons, (b) their transport and interactions within a sample to induce emission and detection of characteristic gamma-rays, and (c) 2D and 3D-image reconstruction of the interrogated object using the neutron and gamma-ray time-of-flight information. Using the modeling,more » this article demonstrates the novelty of the tagged-neutron approach for extracting useful signals with high signal-to-background discrimination of an object-of-interest from that of its environment. Simulations indicated that an UXO filled with the RDX explosive, hexogen (C{sub 3}H{sub 6}O{sub 6}N{sub 6}), can be identified to a depth of 20 cm when buried in soil.« less
Designing a new type of neutron detector for neutron and gamma-ray discrimination via GEANT4.
Shan, Qing; Chu, Shengnan; Ling, Yongsheng; Cai, Pingkun; Jia, Wenbao
2016-04-01
Design of a new type of neutron detector, consisting of a fast neutron converter, plastic scintillator, and Cherenkov detector, to discriminate 14-MeV fast neutrons and gamma rays in a pulsed n-γ mixed field and monitor their neutron fluxes is reported in this study. Both neutrons and gamma rays can produce fluorescence in the scintillator when they are incident on the detector. However, only the secondary charged particles of the gamma rays can produce Cherenkov light in the Cherenkov detector. The neutron and gamma-ray fluxes can be calculated by measuring the fluorescence and Cherenkov light. The GEANT4 Monte Carlo simulation toolkit is used to simulate the whole process occurring in the detector, whose optimum parameters are known. Analysis of the simulation results leads to a calculation method of neutron flux. This method is verified by calculating the neutron fluxes using pulsed n-γ mixed fields with different n/γ ratios, and the results show that the relative errors of all calculations are <5%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of Geant4 multiple Coulomb scattering models with theory for radiotherapy protons.
Makarova, Anastasia; Gottschalk, Bernard; Sauerwein, Wolfgang
2017-07-06
Usually, Monte Carlo models are validated against experimental data. However, models of multiple Coulomb scattering (MCS) in the Gaussian approximation are exceptional in that we have theories which are probably more accurate than the experiments which have, so far, been done to test them. In problems directly sensitive to the distribution of angles leaving the target, the relevant theory is the Molière/Fano/Hanson variant of Molière theory (Gottschalk et al 1993 Nucl. Instrum. Methods Phys. Res. B 74 467-90). For transverse spreading of the beam in the target itself, the theory of Preston and Koehler (Gottschalk (2012 arXiv:1204.4470)) holds. Therefore, in this paper we compare Geant4 simulations, using the Urban and Wentzel models of MCS, with theory rather than experiment, revealing trends which would otherwise be obscured by experimental scatter. For medium-energy (radiotherapy) protons, and low-Z (water-like) target materials, Wentzel appears to be better than Urban in simulating the distribution of outgoing angles. For beam spreading in the target itself, the two models are essentially equal.
Rohling, Heide; Sihver, Lembit; Priegnitz, Marlen; Enghardt, Wolfgang; Fiedler, Fine
2014-01-01
Therapeutic irradiation with protons and ions is advantageous over radiotherapy with photons due to its favorable dose deposition. Additionally, ion beams provide a higher relative biological effectiveness than photons. For this reason, an improved treatment of deep-seated tumors is achieved and normal tissue is spared. However, small deviations from the treatment plan can have a large impact on the dose distribution. Therefore, a monitoring is required to assure the quality of the treatment. Particle therapy positron emission tomography (PT-PET) is the only clinically proven method which provides a non-invasive monitoring of dose delivery. It makes use of the β+-activity produced by nuclear fragmentation during irradiation. In order to evaluate these PT-PET measurements, simulations of the β+-activity are necessary. Therefore, it is essential to know the yields of the β+-emitting nuclides at every position of the beam path as exact as possible. We evaluated the three-dimensional Monte-Carlo simulation tool PHITS (version 2.30) [ 1] and the 1D deterministic simulation tool HIBRAC [ 2] with respect to the production of β+-emitting nuclides. The yields of the most important β+-emitting nuclides for carbon, lithium, helium and proton beams have been calculated. The results were then compared with experimental data obtained at GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany. GEANT4 simulations provide an additional benchmark [ 3]. For PHITS, the impact of different nuclear reaction models, total cross-section models and evaporation models on the β+-emitter production has been studied. In general, PHITS underestimates the yields of positron-emitters and cannot compete with GEANT4 so far. The β+-emitters calculated with an extended HIBRAC code were in good agreement with the experimental data for carbon and proton beams and comparable to the GEANT4 results, see [ 4] and Fig. 1. Considering the simulation results and its speed compared with three-dimensional Monte-Carlo tools, HIBRAC is a good candidate for the implementation in clinical routine PT-PET. Fig 1.Depth-dependent yields of the production of 11C and 15O during proton irradiation of a PMMA target with 140 MeV [ 4].
Lin, Hsin-Hon; Chuang, Keh-Shih; Lin, Yi-Hsing; Ni, Yu-Ching; Wu, Jay; Jan, Meei-Ling
2014-10-21
GEANT4 Application for Tomographic Emission (GATE) is a powerful Monte Carlo simulator that combines the advantages of the general-purpose GEANT4 simulation code and the specific software tool implementations dedicated to emission tomography. However, the detailed physical modelling of GEANT4 is highly computationally demanding, especially when tracking particles through voxelized phantoms. To circumvent the relatively slow simulation of voxelized phantoms in GATE, another efficient Monte Carlo code can be used to simulate photon interactions and transport inside a voxelized phantom. The simulation system for emission tomography (SimSET), a dedicated Monte Carlo code for PET/SPECT systems, is well-known for its efficiency in simulation of voxel-based objects. An efficient Monte Carlo workflow integrating GATE and SimSET for simulating pinhole SPECT has been proposed to improve voxelized phantom simulation. Although the workflow achieves a desirable increase in speed, it sacrifices the ability to simulate decaying radioactive sources such as non-pure positron emitters or multiple emission isotopes with complex decay schemes and lacks the modelling of time-dependent processes due to the inherent limitations of the SimSET photon history generator (PHG). Moreover, a large volume of disk storage is needed to store the huge temporal photon history file produced by SimSET that must be transported to GATE. In this work, we developed a multiple photon emission history generator (MPHG) based on SimSET/PHG to support a majority of the medically important positron emitters. We incorporated the new generator codes inside GATE to improve the simulation efficiency of voxelized phantoms in GATE, while eliminating the need for the temporal photon history file. The validation of this new code based on a MicroPET R4 system was conducted for (124)I and (18)F with mouse-like and rat-like phantoms. Comparison of GATE/MPHG with GATE/GEANT4 indicated there is a slight difference in energy spectra for energy below 50 keV due to the lack of x-ray simulation from (124)I decay in the new code. The spatial resolution, scatter fraction and count rate performance are in good agreement between the two codes. For the case studies of (18)F-NaF ((124)I-IAZG) using MOBY phantom with 1 × 1 × 1 mm(3) voxel sizes, the results show that GATE/MPHG can achieve acceleration factors of approximately 3.1 × (4.5 ×), 6.5 × (10.7 ×) and 9.5 × (31.0 ×) compared with GATE using the regular navigation method, the compressed voxel method and the parameterized tracking technique, respectively. In conclusion, the implementation of MPHG in GATE allows for improved efficiency of voxelized phantom simulations and is suitable for studying clinical and preclinical imaging.
Yabe, Takuya; Sasano, Makoto; Hirano, Yoshiyuki; Toshito, Toshiyuki; Akagi, Takashi; Yamashita, Tomohiro; Hayashi, Masateru; Azuma, Tetsushi; Sakamoto, Yusuku; Komori, Masataka; Yamamoto, Seiichi
2018-06-20
Although luminescence of water lower in energy than the Cerenkov-light threshold during proton and carbon-ion irradiation has been found, the phenomenon has not yet been implemented for Monte Carlo simulations. The results provided by the simulations lead to misunderstandings of the physical phenomenon in optical imaging of water during proton and carbon-ion irradiation. To solve the problems, as well as to clarify the light production of the luminescence of water, we modified a Monte Carlo simulation code to include the light production from the luminescence of water and compared them with the experimental results of luminescence imaging of water. We used GEANT4 for the simulation of emitted light from water during proton and carbon-ion irradiation. We used the light production from the luminescence of water using the scintillation process in GEANT4 while those of Cerenkov light from the secondary electrons and prompt gamma photons in water were also included in the simulation. The modified simulation results showed similar depth profiles to those of the measured data for both proton and carbon-ion. When the light production of 0.1 photons/MeV was used for the luminescence of water in the simulation, the simulated depth profiles showed the best match to those of the measured results for both the proton and carbon-ion compared with those used for smaller and larger numbers of photons/MeV. We could successively obtain the simulated depth profiles that were basically the same as the experimental data by using GEANT4 when we assumed the light production by the luminescence of water. Our results confirmed that the inclusion of the luminescence of water in Monte Carlo simulation is indispensable to calculate the precise light distribution in water during irradiation of proton and carbon-ion.
NASA Astrophysics Data System (ADS)
Sarria, D.
2016-12-01
The field of High Energy Atmospheric Physics (HEAP) includes the study of energetic events related to thunderstorms, such as Terrestrial Gamma-ray Flashes (TGF), associated electron-positron beams (TEB), gamma-ray glows and Thunderstorm Ground Enhancements (TGE). Understanding these phenomena requires accurate models for the interaction of particles with atmospheric air and electro-magnetic fields in the <100 MeV energy range. This study is the next step of the work presented in [C. Rutjes et al., 2016] that compared the performances of various codes in the absence of electro-magnetic fields. In the first part, we quantify simple but informative test cases of electrons in various electric field profiles. We will compare the avalanche length (of the Relativistic Runaway Electron Avalanche (RREA) process), the photon/electron spectra and spatial scattering. In particular, we test the effect of the low-energy threshold, that was found to be very important [Skeltved et al., 2014]. Note that even without a field, it was found to be important because of the straggling effect [C. Rutjes et al., 2016]. For this first part, we will be comparing GEANT4 (different flavours), FLUKA and the custom made code GRRR. In the second part, we test the propagation of these high energy particles in the atmosphere, from production altitude (around 10 km to 18 km) to satellite altitude (600 km). We use a simple and clearly fixed set-up for the atmospheric density, the geomagnetic field, the initial conditions, and the detection conditions of the particles. For this second part, we will be comparing GEANT4 (different flavours), FLUKA/CORSIKA and the custom made code MC-PEPTITA. References : C. Rutjes et al., 2016. Evaluation of Monte Carlo tools for high energy atmospheric physics. Geosci. Model Dev. Under review. Skeltved, A. B. et al., 2014. Modelling the relativistic runaway electron avalanche and the feedback mechanism with geant4. JGRA, doi :10.1002/2014JA020504.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowdell, S; Paganetti, H; Schuemann, J
Purpose: To report on the efforts funded by the AAPM seed funding grant to develop the basis for fluorescent nuclear track detector (FNTD) based radiobiological experiments in combination with dedicated Monte Carlo simulations (MCS) on the nanometer scale. Methods: Two confocal microscopes were utilized in this study. Two FNTD samples were used to find the optimal microscope settings, one FNTD irradiated with 11.1 MeV/u Gold ions and one irradiated with 428.77 MeV/u Carbon ions. The first sample provided a brightly luminescent central track while the latter is used to test the capabilities to observe secondary electrons. MCS were performed usingmore » TOPAS beta9 version, layered on top of Geant4.9.6p02. Two sets of simulations were performed, one with the Geant4-DNA physics list and approximating the FNTDs by water, a second set using the Penelope physics list in a water-approximated FNTD and a aluminum-oxide FNTD. Results: Within the first half of the funding period, we have successfully established readout capabilities of FNTDs at our institute. Due to technical limitations, our microscope setup is significantly different from the approach implemented at the DKFZ, Germany. However, we can clearly reconstruct Carbon tracks in 3D with electron track resolution of 200 nm. A second microscope with superior readout capabilities will be tested in the second half of the funding period, we expect an improvement in signal to background ratio with the same the resolution.We have successfully simulated tracks in FNTDs. The more accurate Geant4-DNA track simulations can be used to reconstruct the track energy from the size and brightness of the observed tracks. Conclusion: We have achieved the goals set in the seed funding proposal: the setup of FNTD readout and simulation capabilities. We will work on improving the readout resolution to validate our MCS track structures down to the nanometer scales.« less
NASA Astrophysics Data System (ADS)
Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank
2014-10-01
Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farina, E.; Piersimoni, P.; Riccardi, C.
The aim of this work is to validate the Geant4 application reproducing the CNAO (National Centre for Oncological Hadrontherapy) beamline and to study of a possible use of carbon ion pencil beams for the treatment of ocular melanomas at the CNAO Centre. The promising aspect of carbon ions radiotherapy for the treatment of this disease lies in its superior relative radiobiological effectiveness (RBE). The Monte Carlo Geant4 toolkit is used to simulate the complete CNAO extraction beamline, with the active and passive components along it. A human eye modeled detector, including a realistic target tumor volume, is used as target.more » Cross check with previous studies at CNAO using protons allows comparisons on possible benefits on using such a technique with respect to proton beams. Before the eye-detector irradiation a validation of the Geant4 simulation with CNAO experimental data is carried out with both carbon ions and protons. Important beam parameters such as the transverse FWHM and scanned radiation field 's uniformity are tested within the simulation and compared with experimental measurements at CNAO Centre. The physical processes involved in secondary particles generation by carbon ions and protons in the eye-detector are reproduced to take into account the additional dose to the primary beam given to irradiated eye's tissues. A study of beam shaping is carried out to produce a uniform 3D dose distribution (shaped on the tumor) by the use of a spread out Bragg peak. The eye-detector is then irradiated through a two dimensional transverse beam scan at different depths. In the use case the eye-detector is rotated of an angle of 40 deg. in the vertical direction, in order to mis-align the tumor from healthy tissues in front of it. The treatment uniformity on the tumor in the eye-detector is tested. For a more quantitative description of the deposited dose in the eye-detector and for the evaluation of the ratio between the dose deposited in the tumor and the other eye components, proton and carbon DVHs (Dose Volume Histograms) are compared. A high statistics simulated sample is used to minimize statistical errors. In the simulation a new particle generation method is developed in order to reproduce the experimental treatment plan by importing the DICOM RT-PLAN file, which contains all the information on the irradiation geometries and sequences (treatment plan parameters). Conclusions Even further validations must be done, the good results so far obtained by this work point out and confirm the possibility of using carbon ions delivered with active scanning beams to treat the ocular melanoma.« less
Borsia, I.; Rossetto, R.; Schifani, C.; Hill, Mary C.
2013-01-01
In this paper two modifications to the MODFLOW code are presented. One concerns an extension of Local Grid Refinement (LGR) to Variable Saturated Flow process (VSF) capability. This modification allows the user to solve the 3D Richards’ equation only in selected parts of the model domain. The second modification introduces a new package, named CFL (Cascading Flow), which improves the computation of overland flow when ground surface saturation is simulated using either VSF or the Unsaturated Zone Flow (UZF) package. The modeling concepts are presented and demonstrated. Programmer documentation is included in appendices.
Ada Quality and Style: Guidelines for Professional Programmers
1989-01-01
Paes. Enter the total Block 7. Performing Organization Name(s) and number of pages.AccLpr., A). Self-explanatory. Block 16. Price.o de Enter...parts of typical header comment blocks. Including other, de facto extraneous or superfluous information is a waste of time. Most of the information...specification and to export only what is necessary for another unit to use the package properly. Visibility of objects such as DEFAULT.3IDT.t in package TEXTo
NASA Astrophysics Data System (ADS)
Gherghel-Lascu, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertania, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2017-06-01
The charged particle densities obtained from CORSIKA simulated EAS, using the QGSJet-II.04 hadronic interaction model are used for primary energy reconstruction. Simulated data are reconstructed by using Lateral Energy Correction Functions computed with a new realistic model of the Grande stations implemented in Geant4.10.
NASA Technical Reports Server (NTRS)
Allen, Gregory
2011-01-01
The NEPP Reconfigurable Field-Programmable Gate Array (FPGA) task has been charged to evaluate reconfigurable FPGA technologies for use in space. Under this task, the Xilinx single-event-immune, reconfigurable FPGA (SIRF) XQR5VFX130 device was evaluated for SEE. Additionally, the Altera Stratix-IV and SiliconBlue iCE65 were screened for single-event latchup (SEL).
Prototype pushing robot for emplacing vitrified waste canisters into horizontal disposal drifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Londe, L.; Seidler, W.K.; Bosgiraud, J.M.
2007-07-01
Within the French Underground Disposal concept, as described in ANDRA's (Agence Nationale pour la Gestion des Dechets Radioactifs) Dossier 2005, the Pushing Robot is an application envisaged for the emplacement (and the potential retrieval) of 'Vitrified waste packages', also called 'C type packages'. ANDRA has developed a Prototype Pushing Robot within the framework of the ESDRED Project (Engineering Studies and Demonstration of Repository Design) which is co-funded by the European Commission as part of the sixth EURATOM Research and Training Framework Programme (FP6) on nuclear energy (2002 - 2006). The Rationale of the Pushing Robot technology comes from various considerations,more » including the need for (1) a simple and robust system, capable of moving (and potentially retrieving) on up to 40 metres (m), a 2 tonne C type package (mounted on ceramic sliding runners) inside the carbon steel sleeve constituting the liner (and rock support) of a horizontal disposal cell, (2) small annular clearances between the package and the liner, (3) compactness of the device to be transferred from surface to underground, jointly with the package, inside a shielding cask, and (4) remote controlled operations for the sake of radioprotection. The initial design, based on gripping supports, has been replaced by a 'technical variant' based on inflatable toric jacks. It was then possible, using a test bench, to check that the Pushing Robot worked properly. Steps as high as 7 mm were successfully cleared by a dummy package pushed by the Prototype.. Based on the lessons learned by ANDRA's regarding the Prototype Pushing Robot, a new Scope of Work is being written for the Contract concerning an Industrial Scale Demonstrator. The Industrial Scale Demonstration should be completed by the end of the second Quarter of 2008. (authors)« less
Food and waterborne infections associated with package holidays.
Cartwright, R Y
2003-01-01
The surveillance and prevention of food and waterborne infections in package holiday tourists relies more on common sense and experience rather than evidence based scientific facts. In spite of the major economic value to both sending and receiving countries it is a problem that is largely ignored by health departments at both local and national levels. Package holiday tourism is a growing industry with over 20 million holidays sold every year in the UK. Destinations are in every continent including countries with poorly developed, as well as those with an advanced, public health infrastructure. The incidence of gastrointestinal infection is not reflected in official surveillance programmes as they largely fail to capture information on travel associated infections. Outbreaks of food and waterborne infections in these resorts are largely not investigated. Major British tour operators have responded by developing a crude but effective continuous surveillance system for subjective travellers' diarrhoea. The importance of food and water hygiene is, however, not ignored and proactive preventative programmes are being developed and implemented in some resort as well as by the tourist industry and international agencies. There is a need for further cooperation and partnership between workers in different countries, different disciplines and between the public and private sectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryadovikov, V. N., E-mail: riadovikov@ihep.ru; Aleev, A. N.; Ardashev, E. N.
2016-03-15
The results of an analysis of data from the SERP-E-184 experiment devoted to studying mechanisms of the production of charmed particles in proton–nucleus interactions at 70 GeV and their decays are presented. The data in question were obtained upon irradiating the SVD-2 active target consisting of carbon, silicon, and lead plates with a beam of 70-GeV protons. A detailed simulation on the basis of the FRITIOF7.02 and GEANT3.21 code packages made it possible to optimize event-selection criteria and to calculate the detection efficiency for Λ{sub c}{sup +} baryons. After selecting a signal from the threebody decay of a Λ{sub c}{supmore » +} baryon, the inclusive cross section for its production at near-threshold energies, its lifetime, and the parameter of the A dependence of the cross section were found. The Λ{sub c}{sup +} -baryon yields are tabulated along with data from other experiments and theoretical predictions.« less
NASA Astrophysics Data System (ADS)
Zaleski, Shawn
2017-01-01
A set of contact interaction (CI) Monte Carlo events, for which Standard Model Drell-Yan events are background, are generated using a leading-order parton-shower generator, Pythia8. We consider three isoscalar models with three different helicity structures, left-left (LL), left-right/right-left (LR), and rightright (RR), each with destructive and constructive interference. For each of these models, 150,000 events are generated for analysis of CI interactions in the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) with a centre of mass energy of 13 TeV. This study is a generator level study, and detector effects are accounted for by application of kinematic cuts on the generator-level quantities rather than application of a detailed detector simulation package (e.g. GEANT). Distributions of dilepton invariant mass, Collins-Soper angle, and the forward-backward asymmetry are compared with those arising from pure Drell-Yan events.
Wan Chan Tseung, H; Ma, J; Beltran, C
2015-06-01
Very fast Monte Carlo (MC) simulations of proton transport have been implemented recently on graphics processing units (GPUs). However, these MCs usually use simplified models for nonelastic proton-nucleus interactions. Our primary goal is to build a GPU-based proton transport MC with detailed modeling of elastic and nonelastic proton-nucleus collisions. Using the cuda framework, the authors implemented GPU kernels for the following tasks: (1) simulation of beam spots from our possible scanning nozzle configurations, (2) proton propagation through CT geometry, taking into account nuclear elastic scattering, multiple scattering, and energy loss straggling, (3) modeling of the intranuclear cascade stage of nonelastic interactions when they occur, (4) simulation of nuclear evaporation, and (5) statistical error estimates on the dose. To validate our MC, the authors performed (1) secondary particle yield calculations in proton collisions with therapeutically relevant nuclei, (2) dose calculations in homogeneous phantoms, (3) recalculations of complex head and neck treatment plans from a commercially available treatment planning system, and compared with (GEANT)4.9.6p2/TOPAS. Yields, energy, and angular distributions of secondaries from nonelastic collisions on various nuclei are in good agreement with the (GEANT)4.9.6p2 Bertini and Binary cascade models. The 3D-gamma pass rate at 2%-2 mm for treatment plan simulations is typically 98%. The net computational time on a NVIDIA GTX680 card, including all CPU-GPU data transfers, is ∼ 20 s for 1 × 10(7) proton histories. Our GPU-based MC is the first of its kind to include a detailed nuclear model to handle nonelastic interactions of protons with any nucleus. Dosimetric calculations are in very good agreement with (GEANT)4.9.6p2/TOPAS. Our MC is being integrated into a framework to perform fast routine clinical QA of pencil-beam based treatment plans, and is being used as the dose calculation engine in a clinically applicable MC-based IMPT treatment planning system. The detailed nuclear modeling will allow us to perform very fast linear energy transfer and neutron dose estimates on the GPU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos-Mendez, J; Faddegon, B; Paganetti, H
2015-06-15
Purpose: We used TOPAS (TOPAS wraps and extends Geant4 for medical physicists) to compare Geant4 physics models with published data for neutron shielding calculations. Subsequently, we calculated the source terms and attenuation lengths (shielding data) of the total ambient dose equivalent (TADE) in concrete for neutrons produced by protons in brass. Methods: Stage1: The Bertini and Binary nuclear models available in Geant4 were compared with published attenuation at depth of the TADE in concrete and iron. Stage2: Shielding data of the TADE in concrete was calculated for 50– 200 MeV proton beams on brass. Stage3: Shielding data from Stage2 wasmore » extrapolated for 235 MeV proton beams. This data was used in a point-line-source analytical model to calculate the ambient dose per unit therapeutic dose at two locations inside one treatment room at the Francis H Burr Proton Therapy Center. Finally, we compared these results with experimental data and full TOPAS simulations. Results: At larger angles (∼130o) the TADE in concrete calculated with the Bertini model was about 9 times larger than that calculated with the Binary model. The attenuation length in concrete calculated with the Binary model agreed with published data within 7%±0.4% (statistical uncertainty) for the deepest regions and 5%±0.1% for shallower regions. For iron the agreement was within 3%±0.1%. The ambient dose per therapeutic dose calculated with the Binary model, relative to the experimental data, was a ratio of 0.93±0.16 and 1.23±0.24 for two locations. The analytical model overestimated the dose by four orders of magnitude. These differences are attributed to the complexity of the geometry. Conclusion: The Binary and Bertini models gave comparable results, with the Binary model giving the best agreement with published data at large angle. Shielding data we calculated using the Binary model is useful for fast shielding calculations with other analytical models. This work was supported by National Cancer Institute Grant R01CA140735.« less
Geometry Calibration of the SVT in the CLAS12 Detector
NASA Astrophysics Data System (ADS)
Davies, Peter; Gilfoyle, Gerard
2016-09-01
A new detector called CLAS12 is being built in Hall B as part of the 12 GeV Upgrade at Jefferson Lab to learn how quarks and gluons form nuclei. The Silicon Vertex Tracker (SVT) is one of the subsystems designed to track the trajectory of charged particles as they are emitted from the target at large angles. The sensors of the SVT consist of long, narrow, strips embedded in a silicon substrate. There are 256 strips in a sensor, with a stereo angle of 0 -3° degrees. The location of the strips must be known to a precision of a few microns in order to accurately reconstruct particle tracks with the required resolution of 50-60 microns. Our first step toward achieving this resolution was to validate the nominal geometry relative to the design specification. We also resolved differences between the design and the CLAS12, Geant4-based simulation code GEMC. We developed software to apply alignment shifts to the nominal design geometry from a survey of fiducial points on the structure that supports each sensor. The final geometry will be generated by a common package written in JAVA to ensure consistency between the simulation and Reconstruction codes. The code will be tested by studying the impact of known distortions of the nominal geometry in simulation. Work supported by the Univeristy of Richmond and the US Department of Energy.
The Liquid Argon Software Toolkit (LArSoft): Goals, Status and Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pordes, Rush; Snider, Erica
LArSoft is a toolkit that provides a software infrastructure and algorithms for the simulation, reconstruction and analysis of events in Liquid Argon Time Projection Chambers (LArTPCs). It is used by the ArgoNeuT, LArIAT, MicroBooNE, DUNE (including 35ton prototype and ProtoDUNE) and SBND experiments. The LArSoft collaboration provides an environment for the development, use, and sharing of code across experiments. The ultimate goal is to develop fully automatic processes for reconstruction and analysis of LArTPC events. The toolkit is based on the art framework and has a well-defined architecture to interface to other packages, including to GEANT4 and GENIE simulation softwaremore » and the Pandora software development kit for pattern recognition. It is designed to facilitate and support the evolution of algorithms including their transition to new computing platforms. The development of the toolkit is driven by the scientific stakeholders involved. The core infrastructure includes standard definitions of types and constants, means to input experiment geometries as well as meta and event- data in several formats, and relevant general utilities. Examples of algorithms experiments have contributed to date are: photon-propagation; particle identification; hit finding, track finding and fitting; electromagnetic shower identification and reconstruction. We report on the status of the toolkit and plans for future work.« less
NASA Astrophysics Data System (ADS)
Wang, Wenjing; Qiu, Rui; Ren, Li; Liu, Huan; Wu, Zhen; Li, Chunyan; Li, Junli
2017-09-01
Mean glandular dose (MGD) is not only determined by the compressed breast thickness (CBT) and the glandular content, but also by the distribution of glandular tissues in breast. Depth dose inside the breast in mammography has been widely concerned as glandular dose decreases rapidly with increasing depth. In this study, an experiment using thermo luminescent dosimeters (TLDs) was carried out to validate Monte Carlo simulations of mammography. Percent depth doses (PDDs) at different depth values were measured inside simple breast phantoms of different thicknesses. The experimental values were well consistent with the values calculated by Geant4. Then a detailed breast model with a CBT of 4 cm and a glandular content of 50%, which has been constructed in previous work, was used to study the effects of the distribution of glandular tissues in breast with Geant4. The breast model was reversed in direction of compression to get a reverse model with a different distribution of glandular tissues. Depth dose distributions and glandular tissue dose conversion coefficients were calculated. It revealed that the conversion coefficients were about 10% larger when the breast model was reversed, for glandular tissues in the reverse model are concentrated in the upper part of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sofrata, H.; Khoshaim, B.; Megahed, M.
1980-12-01
In this paper a computer package for the design and optimization of the simple Li-Br absorption air conditioning system, operated by solar energy, is developed in order to study its performance. This was necessary, as a first step, before carrying out any computations regarding the dual system (1-3). The computer package has the facilities of examining any parameter which may control the system; namely generator, evaporator, condenser, absorber temperatures and pumping factor. The output may be tabulated and also fed to the graph plotter. The flow chart of the programme is explained in an easy way and a typical examplemore » is included.« less
NASA Technical Reports Server (NTRS)
Souleles, Dean
1993-01-01
Ada to X-Window Bindings computer program developed to provide Ada programmers with complete interfaces to Xt Intrinsics and OSF Motif toolkits. Provides "Ada view" of some mostly C-language programming libraries. Package of software written in Ada and C languages.
Heunis, J C; van Rensburg, H C J; Claassens, D L
2006-11-01
A major objective of public health policy in South Africa is to develop a district-based health service focused on the delivery of primary health care. The primary health care package has been developed to promote the delivery of a number of services at the primary level. This paper assesses the implementation of the package in eight historically disadvantaged urban renewal nodes singled out for accelerated development through the government's urban renewal strategy. Data were gathered by way of interviews with primary health care facility managers and programme co-ordinators and through physical observations at facilities. The findings show that while some facilities were able to offer clients most of the services specified by the package, many others were unable do so. The urban renewal nodes differed noticeably in this respect.
Geant4 Simulations for the Radon Electric Dipole Moment Search at TRIUMF
NASA Astrophysics Data System (ADS)
Rand, Evan; Bangay, Jack; Bianco, Laura; Dunlop, Ryan; Finlay, Paul; Garrett, Paul; Leach, Kyle; Phillips, Andrew; Svensson, Carl; Sumithrarachchi, Chandana; Wong, James
2010-11-01
The existence of a permanent electric dipole moment (EDM) requires the violation of time-reversal symmetry (T) or, equivalently, the violation of charge conjugation C and parity P (CP). Although no particle EDM has yet been found, current theories beyond the Standard Model, e.g. multiple-Higgs theories, left-right symmetry, and supersymmetry, predict EDMs within current experimental reach. In fact, present limits on the EDMs of the neutron, electron and ^199Hg atom have significantly reduced the parameter spaces of these models. The measurement of a non-zero EDM would be a direct measurement of the violation of time-reversal symmetry, and would represent a clear signal of new physics beyond the Standard Model. Recent theoretical calculations predict large enhancements in the atomic EDMs for atoms with octupole-deformed nuclei, making odd-A Rn isotopes prime candidates for the EDM search. The Geant4 simulations presented here are essential for the development towards an EDM measurement. They provide an accurate description of γ-ray scattering and backgrounds in the experimental apparatus, and are being used to study the overall sensitivity of the RnEDM experiment at TRIUMF in Vancouver, B.C.
NASA Astrophysics Data System (ADS)
Palit, S.; Basak, T.; Mondal, S. K.; Pal, S.; Chakrabarti, S. K.
2013-09-01
X-ray photons emitted during solar flares cause ionization in the lower ionosphere (~60 to 100 km) in excess of what is expected to occur due to a quiet sun. Very low frequency (VLF) radio wave signals reflected from the D-region of the ionosphere are affected by this excess ionization. In this paper, we reproduce the deviation in VLF signal strength during solar flares by numerical modeling. We use GEANT4 Monte Carlo simulation code to compute the rate of ionization due to a M-class flare and a X-class flare. The output of the simulation is then used in a simplified ionospheric chemistry model to calculate the time variation of electron density at different altitudes in the D-region of the ionosphere. The resulting electron density variation profile is then self-consistently used in the LWPC code to obtain the time variation of the change in VLF signal. We did the modeling of the VLF signal along the NWC (Australia) to IERC/ICSP (India) propagation path and compared the results with observations. The agreement is found to be very satisfactory.
The nonlinear light output of NaI(Tl) detectors in the Modular Total Absorption Spectrometer
Rasco, B. C.; Fijałkowska, A.; Karny, M.; ...
2015-04-08
New detector array, the Modular Total Absorption Spectrometer (MTAS),was commissioned at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Lab(ORNL).Total absorption gamma spectra measured with MTAS are expected to improve beta-feeding patterns and beta strength functions in fission products.MTAS is constructed out of hexagonal NaI(Tl) detectors with a unique central module surrounded by 18 identical crystals assembled in three rings. The total NaI(Tl) mass of MTAS is over1000 kg.The response of the central and other 18 MTAS modules to -radiation was simulated using the GEANT4 tool kit modified to analyze the nonlinear light output of NaI(Tl).A detailedmore » description oftheGEANT4modifications madeisdiscussed.SimulatedenergyresolutionofMTAS modules is found to agree well with the measurements for single transitions of 662keV (137Cs) with 8.2% full width half maximum (FWHM),835keV (54Mn) with FWHM of 7.5% FWHM, and 1115keV (65Zn) with FWHM of 6.5%.Simulations of single and multiple -rays from 60Co are also discussed.« less
NASA Astrophysics Data System (ADS)
Yiǧitoǧlu, Merve; Veske, Doǧa; Nilüfer Öztürk, Zeynep; Bilge Demirköz, Melahat
2016-07-01
All devices which operate in space are exposed to cosmic rays during their operation. The resulting radiation may cause fatal damages in the solid structure of devices and the amount of absorbed radiation dose and secondary particle production for each component should be calculated carefully before the production. Solar panels are semiconductor solid state devices and are very sensitive to radiation. Even a short term power cut-off may yield a total failure of the satellite. Even little doses of radiation can change the characteristics of solar cells. This deviation can be caused by rarer high energetic particles as well as the total ionizing dose from the abundant low energy particles. In this study, solar panels planned for a specific LEO satellite, IMECE, are analyzed layer by layer. The Space Environment Information System (SPENVIS) database and GEANT4 simulation software are used to simulate the layers of the panels. The results obtained from the simulation will be taken in account to determine the amount of radiation protection and resistance needed for the panels or to revise the design of the panels.
Peterson, S W; Polf, J; Bues, M; Ciangaru, G; Archambault, L; Beddar, S; Smith, A
2009-05-21
The purpose of this study is to validate the accuracy of a Monte Carlo calculation model of a proton magnetic beam scanning delivery nozzle developed using the Geant4 toolkit. The Monte Carlo model was used to produce depth dose and lateral profiles, which were compared to data measured in the clinical scanning treatment nozzle at several energies. Comparisons were also made between measured and simulated off-axis profiles to test the accuracy of the model's magnetic steering. Comparison of the 80% distal dose fall-off values for the measured and simulated depth dose profiles agreed to within 1 mm for the beam energies evaluated. Agreement of the full width at half maximum values for the measured and simulated lateral fluence profiles was within 1.3 mm for all energies. The position of measured and simulated spot positions for the magnetically steered beams agreed to within 0.7 mm of each other. Based on these results, we found that the Geant4 Monte Carlo model of the beam scanning nozzle has the ability to accurately predict depth dose profiles, lateral profiles perpendicular to the beam axis and magnetic steering of a proton beam during beam scanning proton therapy.
Contribution of indirect effects to clustered damage in DNA irradiated with protons.
Pachnerová Brabcová, K; Štěpán, V; Karamitros, M; Karabín, M; Dostálek, P; Incerti, S; Davídková, M; Sihver, L
2015-09-01
Protons are the dominant particles both in galactic cosmic rays and in solar particle events and, furthermore, proton irradiation becomes increasingly used in tumour treatment. It is believed that complex DNA damage is the determining factor for the consequent cellular response to radiation. DNA plasmid pBR322 was irradiated at U120-M cyclotron with 30 MeV protons and treated with two Escherichia coli base excision repair enzymes. The yields of SSBs and DSBs were analysed using agarose gel electrophoresis. DNA has been irradiated in the presence of hydroxyl radical scavenger (coumarin-3-carboxylic acid) in order to distinguish between direct and indirect damage of the biological target. Pure scavenger solution was used as a probe for measurement of induced OH· radical yields. Experimental OH· radical yield kinetics was compared with predictions computed by two theoretical models-RADAMOL and Geant4-DNA. Both approaches use Geant4-DNA for description of physical stages of radiation action, and then each of them applies a distinct model for description of the pre-chemical and chemical stage. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Powell, C; Bamber, D; Long, J; Garratt, R; Brown, J; Rudge, S; Morris, T; Bhupendra Jaicim, N; Plachcinski, R; Dyson, S; Boyle, E M; St James-Roberts, I
2018-04-17
During the first 4 months of age, approximately 20% of infants cry a lot without an apparent reason. Most research has targeted the crying, but the impact of the crying on parents, and subsequent outcomes, need to receive equal attention. This study reports the findings from a prospective evaluation of a package of materials designed to support the well-being and mental health of parents who judge their infant to be crying excessively. The resulting "Surviving Crying" package comprised a website, printed materials, and programme of Cognitive Behaviour Therapy-based support sessions delivered to parents by a qualified practitioner. It was designed to be suitable for United Kingdom (UK) National Health Service (NHS) use. Parents were referred to the study by 12 NHS Health Visitor/Community Public Health Nurse teams in one UK East Midlands NHS Trust. Fifty-two of 57 parents of excessively crying babies received the support package and completed the Edinburgh Postnatal Depression Scale and Generalized Anxiety Disorder-7 anxiety questionnaire, as well as other measures, before receiving the support package and afterwards. Significant reductions in depression and anxiety were found, with numbers of parents meeting clinical criteria for depression or anxiety halving between baseline and outcome. These improvements were not explained by reductions in infant crying. Reductions also occurred in the number of parents reporting the crying to be a large or severe problem (from 28 to 3 parents) or feeling very or extremely frustrated by the crying (from 31 to 1 parent). Other findings included increases in parents' confidence, knowledge of infant crying, and improvements in parents' sleep. The findings suggest that the Surviving Crying package may be effective in supporting the well-being and mental health of parents of excessively crying babies. Further, large-scale controlled trials of the package in NHS settings are warranted. © 2018 John Wiley & Sons Ltd.
Lalmuanpuii, Melody; Biangtung, Langkham; Mishra, Ritu Kumar; Reeve, Matthew J; Tzudier, Sentimoa; Singh, Angom L; Sinate, Rebecca
2013-01-01
Abstract Problem Harm reduction packages for people who inject illicit drugs, including those infected with human immunodeficiency virus (HIV), are cost-effective but have not been scaled up globally. In the north-eastern Indian states of Manipur and Nagaland, the epidemic of HIV infection is driven by the injection of illicit drugs, especially opioids. These states needed to scale up harm reduction programmes but faced difficulty doing so. Approach In 2004, the Bill & Melinda Gates Foundation funded Project ORCHID to scale up a harm reduction programme in Manipur and Nagaland. Local setting In 2003, an estimated 10 000 and 16 000 people were injecting drugs in Manipur and Nagaland, respectively. The prevalence of HIV infection among people injecting drugs was 24.5% in Manipur and 8.4% in Nagaland. Relevant changes By 2012, the harm reduction programme had been scaled up to an average of 9011 monthly contacts outside clinics (80% of target); an average of 1709 monthly clinic visits (15% of target, well above the 5% monthly goal) and an average monthly distribution of needles and syringes of 16 each per programme participant. Opioid agonist maintenance treatment coverage was 13.7% and retention 6 months after enrolment was 63%. Antiretroviral treatment coverage for HIV-positive participants was 81%. Lessons learnt A harm reduction model consisting of community-owned, locally relevant innovations and business approaches can result in good harm reduction programme scale-up and influence harm reduction policy. Project ORCHID has influenced national harm reduction policy in India and contributed to the development of harm reduction guidelines. PMID:23599555
A programmable CCD driver circuit for multiphase CCD operation
NASA Technical Reports Server (NTRS)
Ewin, Audrey J.; Reed, Kenneth V.
1989-01-01
A programmable CCD (charge-coupled device) driver circuit was designed to drive CCDs in multiphased modes. The purpose of the drive electronics is to operate developmental CCD imaging arrays for NASA's tiltable moderate resolution imaging spectrometer (MODIS-T). Five objectives for the driver were considered during its design: (1) the circuit drives CCD electrode voltages between 0 V and +30 V to produce reasonable potential wells, (2) the driving sequence is started with one input signal, (3) the driving sequence is started with one input signal, (4) the circuit allows programming of frame sequences required by arrays of any size, (5) it produces interfacing signals for the CCD and the DTF (detector test facility). Simulation of the driver verified its function with the master clock running up to 10 MHz. This suggests a maximum rate of 400,000 pixels/s. Timing and packaging parameters were verified. The design uses 54 TTL (transistor-transistor logic) chips. Two versions of hardware were fabricated: wirewrap and printed circuit board. Both were verified functionally with a logic analyzer.
NASA Astrophysics Data System (ADS)
Maneval, Daniel; Bouchard, Hugo; Ozell, Benoît; Després, Philippe
2018-01-01
The equivalent restricted stopping power formalism is introduced for proton mean energy loss calculations under the continuous slowing down approximation. The objective is the acceleration of Monte Carlo dose calculations by allowing larger steps while preserving accuracy. The fractional energy loss per step length ɛ was obtained with a secant method and a Gauss-Kronrod quadrature estimation of the integral equation relating the mean energy loss to the step length. The midpoint rule of the Newton-Cotes formulae was then used to solve this equation, allowing the creation of a lookup table linking ɛ to the equivalent restricted stopping power L eq, used here as a key physical quantity. The mean energy loss for any step length was simply defined as the product of the step length with L eq. Proton inelastic collisions with electrons were added to GPUMCD, a GPU-based Monte Carlo dose calculation code. The proton continuous slowing-down was modelled with the L eq formalism. GPUMCD was compared to Geant4 in a validation study where ionization processes alone were activated and a voxelized geometry was used. The energy straggling was first switched off to validate the L eq formalism alone. Dose differences between Geant4 and GPUMCD were smaller than 0.31% for the L eq formalism. The mean error and the standard deviation were below 0.035% and 0.038% respectively. 99.4 to 100% of GPUMCD dose points were consistent with a 0.3% dose tolerance. GPUMCD 80% falloff positions (R80 ) matched Geant’s R80 within 1 μm. With the energy straggling, dose differences were below 2.7% in the Bragg peak falloff and smaller than 0.83% elsewhere. The R80 positions matched within 100 μm. The overall computation times to transport one million protons with GPUMCD were 31-173 ms. Under similar conditions, Geant4 computation times were 1.4-20 h. The L eq formalism led to an intrinsic efficiency gain factor ranging between 30-630, increasing with the prescribed accuracy of simulations. The L eq formalism allows larger steps leading to a O(constant) algorithmic time complexity. It significantly accelerates Monte Carlo proton transport while preserving accuracy. It therefore constitutes a promising variance reduction technique for computing proton dose distributions in a clinical context.
Piroozfar, Behnaz; Raisali, Gholamreza; Alirezapour, Behrouz; Mirzaii, Mohammad
2018-04-01
In this study, the effect of 111 In position and Auger electron energy on direct induction of DSBs was investigated. The Geant4-DNA simulation toolkit was applied using a simple B-DNA form extracted from PDBlib library. First, the simulation was performed for electrons with energies of 111 In and equal emission probabilities to find the most effective electron energies. Then, 111 In Auger electrons' actual spectrum was considered and their contribution in DSB induction analysed. The results showed that the most effective electron energy is 183 eV, but due to the higher emission probability of 350 eV electrons, most of the DSBs were induced by the latter electrons. Also, it was observed that most of the DSBs are induced by electrons emitted within 4 nm of the central axis of the DNA and were mainly due to breaks with <4 base pairs distance in opposing strands. Whilst, when 111 In atoms are very close to the DNA, 1.3 DSBs have been obtained per decay of 111 In atoms. The results show that the most effective Auger electrons are the 350 eV electrons from 111 In atoms with <4 nm distance from the central axis of the DNA which induce ∼1.3 DSBs per decay when bound to the DNA. This value seems reasonable when compared with the reported experimental data.
Area. Topical Module for Use in a Mathematics Laboratory Setting.
ERIC Educational Resources Information Center
Sigurdson, Orville; And Others
This area package emphasizes three facets: (1) the concept of area as a covering; (2) the square unit; and (3) formula development. There are two enrichment activities included. The first requires the aid of a programmable calculator or computer. (Author/MK)
Electromechanical Componentry. High-Technology Training Module.
ERIC Educational Resources Information Center
Lindemann, Don
This training module on electromechanical components contains 10 units for a two-year vocational program packaging system equipment control course at Wisconsin Indianhead Technical College. This module describes the functions of electromechanical devices essential for understanding input/output devices for Programmable Logic Control (PLC)…
1977-02-01
8217P(V, .’f\\,, OCA A, 4 6), V"D(S4, 3LL) X , )lq , 5)\\8, 1( 5) , + ITP ,V0L.L,ACVI;’ D ’k-11AY VA[.IL11:3 + , ’AV./24,/, PLAC/25/,r~ f/26/ ,’A/27/, ITP /28...8217) DT(TFA2)=D( ITF) DT( rPN) =D( irF) DT(’TVF1)=D( ITF) iT(TrVF2) =D( I’rF) L1=L( 1) L2=L( 2) TF( Ll)D( ITP ) TF( L,2)=D( IT F) TC ( L1) =D( ITC) TC( L2)=D...34Gas Dynamics", McGraw Hill, 1958 7. Report GH20-0205-4 "System/360 Scientific Subroutine Package - Version III, Programmer’s Manual," IBM Corp., August
Design of Control System for Flexible Packaging Bags Palletizing Production Line Based on PLC
NASA Astrophysics Data System (ADS)
Zheng, Huiping; Chen, Lin; Zhao, Xiaoming; Liu, Zhanyang
Flexible packaging bags palletizing production line is to put the bags in the required area according to particular order and size, in order to finish handling, storage, loading and unloading, transportation and other logistics work of goods. Flexible packaging bags palletizing line is composed of turning bags mechanism, shaping mechanism, indexing mechanism, marshalling mechanism, pushing bags mechanism, pressing bags mechanism, laminating mechanism, elevator, tray warehouse, tray conveyor and loaded tray conveyor. Whether the whole production line can smoothly run depends on each of the above equipment and precision control among them. In this paper the technological process and the control logic of flexible packaging bags palletizing production line is introduced. Palletizing process of the production line realized automation by means of a control system based on programmable logic controller (PLC). It has the advantages of simple structure, reliable and easy maintenance etc.
Greene, Greg; Sriruttan, Charlotte; Le, Thuy; Chiller, Tom; Govender, Nelesh P
2017-03-01
As HIV treatment programmes scale up to meet the UNAIDS 90-90-90 goals, care must be taken to start antiretroviral treatment safely in patients with advanced disease (CD4 counts <200 cells/μl) who are simultaneously at risk for opportunistic infections and immune reconstitution inflammatory syndrome. Invasive fungal diseases pose a great threat at this critical time point, though the development of inexpensive and highly accurate rapid diagnostic tests has changed the approach HIV programmes are taking to reduce the high mortality associated with these opportunistic infections. This article summarizes recent advances and findings in fungal opportunistic infection diagnostics with a focus on screening to prevent cryptococcal meningitis. Cryptococcal antigen (CrAg) screening using a lateral flow assay platform is cost-effective and feasible to implement as either a laboratory reflex or point-of-care test. Recent CrAg screening pilots have elucidated the varying prevalence of cryptococcal antigenemia across geographic regions, which may aid programme planning. Evidence from recently completed clinical trials provides a strong motivation for the use of CrAg titer to refine treatment options for patients with subclinical cryptococcal disease. Although several operational barriers to programme effectiveness still need to be addressed, the utility of CrAg screening using inexpensive and accurate antigen assays has been demonstrated in real-world HIV programmes, paving the way for development and testing of other fungal opportunistic infection screening strategies and for an integrated advanced HIV disease testing package to reduce AIDS mortality and ensure safe antiretroviral treatment initiation.
Preliminary study for small animal preclinical hadrontherapy facility
NASA Astrophysics Data System (ADS)
Russo, G.; Pisciotta, P.; Cirrone, G. A. P.; Romano, F.; Cammarata, F.; Marchese, V.; Forte, G. I.; Lamia, D.; Minafra, L.; Bravatá, V.; Acquaviva, R.; Gilardi, M. C.; Cuttone, G.
2017-02-01
Aim of this work is the study of the preliminary steps to perform a particle treatment of cancer cells inoculated in small animals and to realize a preclinical hadrontherapy facility. A well-defined dosimetric protocol was developed to explicate the steps needed in order to perform a precise proton irradiation in small animals and achieve a highly conformal dose into the target. A precise homemade positioning and holding system for small animals was designed and developed at INFN-LNS in Catania (Italy), where an accurate Monte Carlo simulation was developed, using Geant4 code to simulate the treatment in order to choose the best animal position and perform accurately all the necessary dosimetric evaluations. The Geant4 application can also be used to realize dosimetric studies and its peculiarity consists in the possibility to introduce the real target composition in the simulation using the DICOM micro-CT image. This application was fully validated comparing the results with the experimental measurements. The latter ones were performed at the CATANA (Centro di AdroTerapia e Applicazioni Nucleari Avanzate) facility at INFN-LNS by irradiating both PMMA and water solid phantom. Dosimetric measurements were performed using previously calibrated EBT3 Gafchromic films as a detector and the results were compared with the Geant4 simulation ones. In particular, two different types of dosimetric studies were performed: the first one involved irradiation of a phantom made up of water solid slabs where a layer of EBT3 was alternated with two different slabs in a sandwich configuration, in order to validate the dosimetric distribution. The second one involved irradiation of a PMMA phantom made up of a half hemisphere and some PMMA slabs in order to simulate a subcutaneous tumour configuration, normally used in preclinical studies. In order to evaluate the accordance between experimental and simulation results, two different statistical tests were made: Kolmogorov test and gamma index test. This work represents the first step towards the realization of a preclinical hadrontherapy facility at INFN-LNS in Catania for the future in vivo studies.
Simulations of GCR interactions within planetary bodies using GEANT4
NASA Astrophysics Data System (ADS)
Mesick, K.; Feldman, W. C.; Stonehill, L. C.; Coupland, D. D. S.
2017-12-01
On planetary bodies with little to no atmosphere, Galactic Cosmic Rays (GCRs) can hit the body and produce neutrons primarily through nuclear spallation within the top few meters of the surfaces. These neutrons undergo further nuclear interactions with elements near the planetary surface and some will escape the surface and can be detected by landed or orbiting neutron radiation detector instruments. The neutron leakage signal at fast neutron energies provides a measure of average atomic mass of the near-surface material and in the epithermal and thermal energy ranges is highly sensitive to the presence of hydrogen. Gamma-rays can also escape the surface, produced at characteristic energies depending on surface composition, and can be detected by gamma-ray instruments. The intra-nuclear cascade (INC) that occurs when high-energy GCRs interact with elements within a planetary surface to produce the leakage neutron and gamma-ray signals is highly complex, and therefore Monte Carlo based radiation transport simulations are commonly used for predicting and interpreting measurements from planetary neutron and gamma-ray spectroscopy instruments. In the past, the simulation code that has been widely used for this type of analysis is MCNPX [1], which was benchmarked against data from the Lunar Neutron Probe Experiment (LPNE) on Apollo 17 [2]. In this work, we consider the validity of the radiation transport code GEANT4 [3], another widely used but open-source code, by benchmarking simulated predictions of the LPNE experiment to the Apollo 17 data. We consider the impact of different physics model options on the results, and show which models best describe the INC based on agreement with the Apollo 17 data. The success of this validation then gives us confidence in using GEANT4 to simulate GCR-induced neutron leakage signals on Mars in relevance to a re-analysis of Mars Odyssey Neutron Spectrometer data. References [1] D.B. Pelowitz, Los Alamos National Laboratory, LA-CP-05-0369, 2005. [2] G.W. McKinney et al, Journal of Geophysics Research, 111, E06004, 2006. [3] S. Agostinelli et al, Nuclear Instrumentation and Methods A, 506, 2003.
Analytical dose modeling for preclinical proton irradiation of millimetric targets.
Vanstalle, Marie; Constanzo, Julie; Karakaya, Yusuf; Finck, Christian; Rousseau, Marc; Brasse, David
2018-01-01
Due to the considerable development of proton radiotherapy, several proton platforms have emerged to irradiate small animals in order to study the biological effectiveness of proton radiation. A dedicated analytical treatment planning tool was developed in this study to accurately calculate the delivered dose given the specific constraints imposed by the small dimensions of the irradiated areas. The treatment planning system (TPS) developed in this study is based on an analytical formulation of the Bragg peak and uses experimental range values of protons. The method was validated after comparison with experimental data from the literature and then compared to Monte Carlo simulations conducted using Geant4. Three examples of treatment planning, performed with phantoms made of water targets and bone-slab insert, were generated with the analytical formulation and Geant4. Each treatment planning was evaluated using dose-volume histograms and gamma index maps. We demonstrate the value of the analytical function for mouse irradiation, which requires a targeting accuracy of 0.1 mm. Using the appropriate database, the analytical modeling limits the errors caused by misestimating the stopping power. For example, 99% of a 1-mm tumor irradiated with a 24-MeV beam receives the prescribed dose. The analytical dose deviations from the prescribed dose remain within the dose tolerances stated by report 62 of the International Commission on Radiation Units and Measurements for all tested configurations. In addition, the gamma index maps show that the highly constrained targeting accuracy of 0.1 mm for mouse irradiation leads to a significant disagreement between Geant4 and the reference. This simulated treatment planning is nevertheless compatible with a targeting accuracy exceeding 0.2 mm, corresponding to rat and rabbit irradiations. Good dose accuracy for millimetric tumors is achieved with the analytical calculation used in this work. These volume sizes are typical in mouse models for radiation studies. Our results demonstrate that the choice of analytical rather than simulated treatment planning depends on the animal model under consideration. © 2017 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, C; Chow, J
Purpose: This study investigated the dose enhancement effect of using gold nanoparticles (GNP) as radiation sensitizers radiated by different photon beam energies. Microdosimetry of photon-irradiated GNP was determined by the Geant4-DNA process in the DNA scale. Methods: Monte Carlo simulation was conducted using the Geant4 toolkit (ver. 10.2). A GNP with different sizes (30, 50, and 100nm diameter sphere) and a DNA were placed in a water cube (1µm{sup 3}). The GNP was irradiated by photon beams with different energies (50, 100, and 150keV) and produced secondary electrons to increase the dose to the DNA. Energy depositions were calculated formore » both with and without GNP and to investigate the dose enhancement effect at the DNA. The distance between the GNP and DNA was varied to optimize the best GNP position to the DNA. The photon beam source was set to 200nm from the GNP in each simulation. Results: It is found that GNP had a dose enhancement effect on kV photon radiations. For Monte Carlo results on different GNP sizes, distances between the GNP and DNA, and photon beam energies, enhancement ratio was found increasing as GNP size increased. The distance between the GNP and DNA affected the result that as distance increased while the dose enhancement ratio decreased. However, the effect of changing distance was not as significant as varying the GNP size. In addition, increasing the photon beam energy also increased the dose enhancement ratio. The largest dose enhancement ratio was found to be 3.5, when the GNP (100nm diameter) irradiated by the 150keV photon beam was set to 80nm from the DNA. Conclusion: Dose enhancement was determined in the DNA with GNP in the microdosimetry scale. It is concluded that the dose enhancement varied with the photon beam energy, GNP size and distance between the GNP and DNA.« less
Particle radiation transport and effects models from research to space weather operations
NASA Astrophysics Data System (ADS)
Santin, Giovanni; Nieminen, Petteri; Rivera, Angela; Ibarmia, Sergio; Truscott, Pete; Lei, Fan; Desorgher, Laurent; Ivanchenko, Vladimir; Kruglanski, Michel; Messios, Neophytos
Assessment of risk from potential radiation-induced effects to space systems requires knowledge of both the conditions of the radiation environment and of the impact of radiation on sensi-tive spacecraft elements. During sensitivity analyses, test data are complemented by models to predict how external radiation fields are transported and modified in spacecraft materials. Radiation transport is still itself a subject of research and models are continuously improved to describe the physical interactions that take place when particles pass through shielding materi-als or hit electronic systems or astronauts, sometimes down to nanometre-scale interactions of single particles with deep sub-micron technologies or DNA structures. In recent years, though, such radiation transport models are transitioning from being a research subject by itself, to being widely used in the space engineering domain and finally being directly applied in the context of operation of space weather services. A significant "research to operations" (R2O) case is offered by Geant4, an open source toolkit initially developed and used in the context of fundamental research in high energy physics. Geant4 is also being used in the space domain, e.g. for modelling detector responses in science payloads, but also for studying the radiation environment itself, with subjects ranging from cosmic rays, to solar energetic particles in the heliosphere, to geomagnetic shielding. Geant4-based tools are now becoming more and more integrated in spacecraft design procedures, also through user friendly interfaces such as SPEN-VIS. Some examples are given by MULASSIS, offering multi-layered shielding analysis capa-bilities in realistic spacecraft materials, or GEMAT, focused on micro-dosimetry in electronics, or PLANETOCOSMICS, describing the interaction of the space environment with planetary magneto-and atmospheres, or GRAS, providing a modular and easy to use interface to various analysis types in simple or complex and realistic 3D geometry models. GRAS will also be part of the space weather SEISOP system for supplying near-real-time detailed information on the interaction of the space radiation environment with selected spacecraft elements.
NASA Astrophysics Data System (ADS)
Parida, M. K.; Prabakar, K.; Sundari, S. T.
2018-03-01
In the present work, Monte Carlo simulations using GEANT4 are carried out to estimate the efficiency of semiconductor neutron detectors with depleted UO2 (DUO2) as converter material, in both planar (direct and indirect) and 3D geometry (cylindrical perforation and trenches structure) configurations. The simulations were conducted for neutrons of variable energy viz., thermal (25 meV) and fast (1 to 10 MeV) that were incident on varying thicknesses (0.25 μm to 1000 μm), diameters (1 μm to 9 μm) and widths (1 μm to 9 μm) along with depths (50 μm to 275 μm) of DUO2 for planar, cylindrical perforated and trench structures, respectively. In the case of direct planar detectors, efficiency was found to increase with the thickness of DUO2 and the rate at which efficiency increased was found to follow the macroscopic fission cross section at the corresponding neutron energy. In the case of indirect planar detector, efficiency was lower as compared to direct configuration and was found to saturate beyond a thickness of ~3 μm. This saturation is explained on the basis of mean free path of neutrons in the DUO2 material. For the 3D perforated silicon detectors of cylindrical (trench) geometry, backfilled with DUO2, the efficiency for detection of thermal neutrons ~25 meV and fast neutrons ~ typical energy of 10 MeV was found to be ~0.0159% (~0.0177%) and ~0.0088% (0.0098%), respectively. These efficiency values were two (one) order values higher than planar indirect detector for thermal (fast) neutrons. Histogram plots were also obtained from the GEANT4 simulations to monitor the energy distribution of fission products in planar (direct and indirect) and 3D geometry (cylindrical and trench) configurations. These plots revealed that, for all the detector configurations, the energy deposited by the fission products are higher as compared to the typical gamma ray background. Thus, for detectors with DUO2 as converter material, higher values of low level discriminator (LLD) can be set, so as to achieve good background discrimination.
Ion beam development for the needs of the JYFL nuclear physics programme.
Koivisto, H; Suominen, P; Ropponen, T; Ropponen, J; Koponen, T; Savonen, M; Toivanen, V; Wu, X; Machicoane, G; Stetson, J; Zavodszky, P; Doleans, M; Spädtke, P; Vondrasek, R; Tarvainen, O
2008-02-01
The increased requirements towards the use of higher ion beam intensities motivated us to initiate the project to improve the overall transmission of the K130 cyclotron facility. With the facility the transport efficiency decreases rapidly as a function of total beam intensity extracted from the JYFL ECR ion sources. According to statistics, the total transmission efficiency is of the order of 10% for low beam intensities (I(total)< or =0.7 mA) and only about 2% for high beam intensities (I(total)>1.5 mA). Requirements towards the use of new metal ion beams for the nuclear physics experiments have also increased. The miniature oven used for the production of metal ion beams at the JYFL is not able to reach the temperature needed for the requested metal ion beams. In order to fulfill these requirements intensive development work has been performed. An inductively and a resistively heated oven has successfully been developed and both are capable of reaching temperatures of about 2000 degrees C. In addition, sputtering technique has been tested. GEANT4 simulations have been started in order to better understand the processes involved with the bremsstrahlung, which gives an extra heat load to cryostat in the case of superconducting ECR ion source. Parallel with this work, a new advanced ECR heating simulation program has been developed. In this article we present the latest results of the above-mentioned projects.
Flight Results from the HST SM4 Relative Navigation Sensor System
NASA Technical Reports Server (NTRS)
Naasz, Bo; Eepoel, John Van; Queen, Steve; Southward, C. Michael; Hannah, Joel
2010-01-01
On May 11, 2009, Space Shuttle Atlantis roared off of Launch Pad 39A enroute to the Hubble Space Telescope (HST) to undertake its final servicing of HST, Servicing Mission 4. Onboard Atlantis was a small payload called the Relative Navigation Sensor experiment, which included three cameras of varying focal ranges, avionics to record images and estimate, in real time, the relative position and attitude (aka "pose") of the telescope during rendezvous and deploy. The avionics package, known as SpaceCube and developed at the Goddard Space Flight Center, performed image processing using field programmable gate arrays to accelerate this process, and in addition executed two different pose algorithms in parallel, the Goddard Natural Feature Image Recognition and the ULTOR Passive Pose and Position Engine (P3E) algorithms
NASA Astrophysics Data System (ADS)
Aygun, Bünyamin; Korkut, Turgay; Karabulut, Abdulhalik
2016-05-01
Despite the possibility of depletion of fossil fuels increasing energy needs the use of radiation tends to increase. Recently the security-focused debate about planned nuclear power plants still continues. The objective of this thesis is to prevent the radiation spread from nuclear reactors into the environment. In order to do this, we produced higher performanced of new shielding materials which are high radiation holders in reactors operation. Some additives used in new shielding materials; some of iron (Fe), rhenium (Re), nickel (Ni), chromium (Cr), boron (B), copper (Cu), tungsten (W), tantalum (Ta), boron carbide (B4C). The results of this experiments indicated that these materials are good shields against gamma and neutrons. The powder metallurgy technique was used to produce new shielding materials. CERN - FLUKA Geant4 Monte Carlo simulation code and WinXCom were used for determination of the percentages of high temperature resistant and high-level fast neutron and gamma shielding materials participated components. Super alloys was produced and then the experimental fast neutron dose equivalent measurements and gamma radiation absorpsion of the new shielding materials were carried out. The produced products to be used safely reactors not only in nuclear medicine, in the treatment room, for the storage of nuclear waste, nuclear research laboratories, against cosmic radiation in space vehicles and has the qualities.
LeFevre, Amnesty E; Shillcutt, Samuel D; Waters, Hugh R; Haider, Sabbir; El Arifeen, Shams; Mannan, Ishtiaq; Seraji, Habibur R; Shah, Rasheduzzaman; Darmstadt, Gary L; Wall, Steve N; Williams, Emma K; Black, Robert E; Santosham, Mathuram; Baqui, Abdullah H
2013-10-01
To evaluate and compare the cost-effectiveness of two strategies for neonatal care in Sylhet division, Bangladesh. In a cluster-randomized controlled trial, two strategies for neonatal care--known as home care and community care--were compared with existing services. For each study arm, economic costs were estimated from a societal perspective, inclusive of programme costs, provider costs and household out-of-pocket payments on care-seeking. Neonatal mortality in each study arm was determined through household surveys. The incremental cost-effectiveness of each strategy--compared with that of the pre-existing levels of maternal and neonatal care--was then estimated. The levels of uncertainty in our estimates were quantified through probabilistic sensitivity analysis. The incremental programme costs of implementing the home-care package were 2939 (95% confidence interval, CI: 1833-7616) United States dollars (US$) per neonatal death averted and US$ 103.49 (95% CI: 64.72-265.93) per disability-adjusted life year (DALY) averted. The corresponding total societal costs were US$ 2971 (95% CI: 1844-7628) and US$ 104.62 (95% CI: 65.15-266.60), respectively. The home-care package was cost-effective--with 95% certainty--if healthy life years were valued above US$ 214 per DALY averted. In contrast, implementation of the community-care strategy led to no reduction in neonatal mortality and did not appear to be cost-effective. The home-care package represents a highly cost-effective intervention strategy that should be considered for replication and scale-up in Bangladesh and similar settings elsewhere.
An evaluation of the Leading an Empowered Organisation programme.
Cooper, Simon J
To evaluate outcomes from the NHS leadership development programme Leading an Empowered Organisation (LEO). A prospective case study based on a pre- and post-course quantitative analysis with interpretative methodological support. Role conflict, whether nurse or manager, was apparent in nurses' perceptions of their roles. Respondents claimed many positive leadership attributes but lacked assertiveness and the skills for handling conflict. The LEO programme had a statistically significant effect on workplace leadership performance and positive benefits related to communication competence, articulation of goals, networking, assertiveness, zones of responsibility and problem solving. LEO is having an effect on workplace performance. However it could be improved by considering the package holistically, including not only the course content, but the entry level, pre-course preparation and post-course mentorship.
Dennis, Mardieh L; Abuya, Timothy; Campbell, Oona Maeve Renee; Benova, Lenka; Baschieri, Angela; Quartagno, Matteo; Bellows, Benjamin
2018-01-01
From 2006 to 2016, the Government of Kenya implemented a reproductive health voucher programme in select counties, providing poor women subsidised access to public and private sector care. In June 2013, the government introduced a policy calling for free maternity services to be provided in all public facilities. The concurrent implementation of these interventions presents an opportunity to provide new insights into how users adapt to a changing health financing and service provision landscape. We used data from three cross-sectional surveys to assess changes over time in use of 4+ antenatal care visits, facility delivery, postnatal care and maternal healthcare across the continuum among a sample of predominantly poor women in six counties. We conducted a difference-in-differences analysis to estimate the impact of the voucher programme on these outcomes, and whether programme impact changed after free maternity services were introduced. Between the preintervention/roll-out phase and full implementation, the voucher programme was associated with a 5.5% greater absolute increase in use of facility delivery and substantial increases in use of the private sector for all services. After free maternity services were introduced, the voucher programme was associated with a 5.7% higher absolute increase in use of the recommended package of maternal health services; however, disparities in access to facility births between voucher and comparison counties declined. Increased use of private sector services by women in voucher counties accounts for their greater access to care across the continuum. Our findings show that the voucher programme is associated with a modest increase in women's use of the full continuum of maternal health services at the recommended timings after free maternity services were introduced. The greater use of private sector services in voucher counties also suggests that there is need to expand women's access to acceptable and affordable providers.
CERN@school: bringing CERN into the classroom
NASA Astrophysics Data System (ADS)
Whyntie, T.; Cook, J.; Coupe, A.; Fickling, R. L.; Parker, B.; Shearer, N.
2016-04-01
CERN@school brings technology from CERN into the classroom to aid with the teaching of particle physics. It also aims to inspire the next generation of physicists and engineers by giving participants the opportunity to be part of a national collaboration of students, teachers and academics, analysing data obtained from detectors based on the ground and in space to make new, curiosity-driven discoveries at school. CERN@school is based around the Timepix hybrid silicon pixel detector developed by the Medipix 2 Collaboration, which features a 300 μm thick silicon sensor bump-bonded to a Timepix readout ASIC. This defines a 256-by-256 grid of pixels with a pitch of 55 μm, the data from which can be used to visualise ionising radiation in a very accessible way. Broadly speaking, CERN@school consists of a web portal that allows access to data collected by the Langton Ultimate Cosmic ray Intensity Detector (LUCID) experiment in space and the student-operated Timepix detectors on the ground; a number of Timepix detector kits for ground-based experiments, to be made available to schools for both teaching and research purposes; and educational resources for teachers to use with LUCID data and detector kits in the classroom. By providing access to cutting-edge research equipment, raw data from ground and space-based experiments, CERN@school hopes to provide the foundation for a programme that meets the many of the aims and objectives of CERN and the project's supporting academic and industrial partners. The work presented here provides an update on the status of the programme as supported by the UK Science and Technology Facilities Council (STFC) and the Royal Commission for the Exhibition of 1851. This includes recent results from work with the GridPP Collaboration on using grid resources with schools to run GEANT4 simulations of CERN@school experiments.
Lean, Michael; Brosnahan, Naomi; McLoone, Philip; McCombie, Louise; Higgs, Anna Bell; Ross, Hazel; Mackenzie, Mhairi; Grieve, Eleanor; Finer, Nick; Reckless, John; Haslam, David; Sloan, Billy; Morrison, David
2013-01-01
Background There is no established primary care solution for the rapidly increasing numbers of severely obese people with body mass index (BMI) > 40 kg/m2. Aim This programme aimed to generate weight losses of ≥15 kg at 12 months, within routine primary care. Design and setting Feasibility study in primary care. Method Patients with a BMI ≥40 kg/m2 commenced a micronutrient-replete 810–833 kcal/day low-energy liquid diet (LELD), delivered in primary care, for a planned 12 weeks or 20 kg weight loss (whichever was the sooner), with structured food reintroduction and then weight-loss maintenance, with optional orlistat to 12 months. Result Of 91 patients (74 females) entering the programme (baseline: weight 131 kg, BMI 48 kg/m2, age 46 years), 58/91(64%) completed the LELD stage, with a mean duration of 14.4 weeks (standard deviation [SD] = 6.0 weeks), and a mean weight loss of 16.9 kg (SD = 6.0 kg). Four patients commenced weight-loss maintenance omitting the food-reintroduction stage. Of the remaining 54, 37(68%) started and completed food reintroduction over a mean duration of 9.3 weeks (SD = 5.7 weeks), with a further mean weight loss of 2.1 kg (SD = 3.7 kg), before starting a long-term low-fat-diet weight-loss maintenance plan. A total of 44/91 (48%) received orlistat at some stage. At 12 months, weight was recorded for 68/91 (75%) patients, with a mean loss of 12.4 kg (SD = 11.4 kg). Of these, 30 (33% of all 91 patients starting the programme) had a documented maintained weight loss of ≥15 kg at 12 months, six (7%) had a 10–15 kg loss, and 11 (12%) had a 5–10 kg loss. The indicative cost of providing this entire programme for wider implementation would be £861 per patient entered, or £2611 per documented 15 kg loss achieved. Conclusion A care package within routine primary care for severe obesity, including LELD, food reintroduction, and weight-loss maintenance, was well accepted and achieved a 12-month-maintained weight loss of ≥15 kg for one-third of all patients entering the programme. PMID:23561690
Lean, Michael; Brosnahan, Naomi; McLoone, Philip; McCombie, Louise; Higgs, Anna Bell; Ross, Hazel; Mackenzie, Mhairi; Grieve, Eleanor; Finer, Nick; Reckless, John; Haslam, David; Sloan, Billy; Morrison, David
2013-02-01
There is no established primary care solution for the rapidly increasing numbers of severely obese people with body mass index (BMI) > 40 kg/m(2). This programme aimed to generate weight losses of ≥15 kg at 12 months, within routine primary care. Feasibility study in primary care. Patients with a BMI ≥40 kg/m(2) commenced a micronutrient-replete 810-833 kcal/day low-energy liquid diet (LELD), delivered in primary care, for a planned 12 weeks or 20 kg weight loss (whichever was the sooner), with structured food reintroduction and then weight-loss maintenance, with optional orlistat to 12 months. Of 91 patients (74 females) entering the programme (baseline: weight 131 kg, BMI 48 kg/m(2), age 46 years), 58/91(64%) completed the LELD stage, with a mean duration of 14.4 weeks (standard deviation [SD] = 6.0 weeks), and a mean weight loss of 16.9 kg (SD = 6.0 kg). Four patients commenced weight-loss maintenance omitting the food-reintroduction stage. Of the remaining 54, 37(68%) started and completed food reintroduction over a mean duration of 9.3 weeks (SD = 5.7 weeks), with a further mean weight loss of 2.1 kg (SD = 3.7 kg), before starting a long-term low-fat-diet weight-loss maintenance plan. A total of 44/91 (48%) received orlistat at some stage. At 12 months, weight was recorded for 68/91 (75%) patients, with a mean loss of 12.4 kg (SD = 11.4 kg). Of these, 30 (33% of all 91 patients starting the programme) had a documented maintained weight loss of ≥15 kg at 12 months, six (7%) had a 10-15 kg loss, and 11 (12%) had a 5-10 kg loss. The indicative cost of providing this entire programme for wider implementation would be £861 per patient entered, or £2611 per documented 15 kg loss achieved. A care package within routine primary care for severe obesity, including LELD, food reintroduction, and weight-loss maintenance, was well accepted and achieved a 12-month-maintained weight loss of ≥15 kg for one-third of all patients entering the programme.
[Development of a French-language online health policy course: an international collaboration].
Hébert, Réjean; Coppieters, Yves; Pradier, Christian; Williams-Jones, Bryn; Brahimi, Cora; Farley, Céline
2017-01-01
To present the process and challenges of developing an online competency-based course on public health policy using a collaborative international approach. Five public health experts, supported by an expert in educational technology, adopted a rigorous approach to the development of the course: a needs analysis, identification of objectives and competencies, development of a pedagogical scenario for each module and target, choice of teaching methods and learning activities, material to be identified or developed, and the responsibilities and tasks involved. The 2-credit (90-hour) graduate course consists of six modules including an integration module. The modules start with a variety of case studies: tobacco law (neutral packaging), supervised injection sites, housing, integrated services for the frail elderly, a prevention programme for mothers from disadvantaged backgrounds, and the obligatory use of bicycle helmets. In modules 1, 3, 4 and 5, students learn about different stages of the public policy development process: emergence, formulation and adoption, implementation and evaluation. Module 2 focuses on the importance of values and ideologies in public policy. The integration module allows the students to apply the knowledge learned and addresses the role of experts in public policy and ethical considerations. The course has been integrated into the graduate programmes of the participating universities and allows students to follow, at a distance, an innovative training programme.
Zhang, Chao; Yin, An-Xiang; Jiang, Ruibin; Rong, Jie; Dong, Lu; Zhao, Tian; Sun, Ling-Dong; Wang, Jianfang; Chen, Xing; Yan, Chun-Hua
2013-05-28
Food safety is a constant concern for humans. Besides adulteration and contamination, another major threat comes from the spontaneous spoilage of perishable products, which is basically inevitable and highly dependent on the temperature history during the custody chain. For advanced quality control and assessment, time-temperature indicators (TTIs) can be deployed to document the temperature history. However, the use of TTIs is currently limited by either relatively high cost or poor programmability. Here we describe a general, kinetically programmable, and cost-efficient TTI protocol constructed from plasmonic nanocrystals. We present proof-of-principle demonstrations that our TTI can be specifically tailored and thus used to track perishables, dynamically mimic the deteriorative processes therein, and indicate product quality through sharp-contrast multicolor changes. The flexible programmability of our TTI, combined with its substantially low cost and low toxicity, promises a general applicability to each single packaged item of a plethora of perishable products.
GEANT4 Simulation of Neutron Detector for DAMPE
NASA Astrophysics Data System (ADS)
Ming, He; Tao, Ma; Jin, Chang; Yan, Zhang; Yong-yi, Huang; Jing-jing, Zang; Jian, Wu; Tie-kuang, Dong
2016-10-01
In recent decades, dark matter has gradually become a hot topic in astronomical research, and the related theoretical research and experimental project are updated with each passing day. The Dark Matter Particle Explorer (DAMPE) of our country was proposed under this background. As the detected object involves high-energy electrons, appropriate methods must be taken to distinguish them from protons, in order to reduce the event probability of other charged particles (for example protons) being mistaken as electrons. The experiments show that the hadron shower of high-energy proton in BGO (Bismuth Germanium Oxide) calorimeter, which is usually accompanied with the emitting of a large number of secondary neutrons, is significantly different from the electromagnetic shower of high-energy electron. Through the detection of secondary neutron signals emerging from the bottom of BGO calorimeter, and the shower shape of incident particles in the BGO calorimeter, we can effectively distinguish whether the incident particles are high-energy protons or electrons. This paper introduces the structure and detection principle of the DAMPE neutron detector. We use the Monte-Carlo method and the GEANT4 software to simulate the signals produced by protons and electrons at the characteristic energy in the neutron detector, and finally summarize the neutron detector's ability to distinguish protons and electrons under different electron acceptabilities.
GEANT4 Simulation of Neutron Detector for DAMPE
NASA Astrophysics Data System (ADS)
He, M.; Ma, T.; Chang, J.; Zhang, Y.; Huang, Y. Y.; Zang, J. J.; Wu, J.; Dong, T. K.
2016-01-01
During recent tens of years dark matter has gradually become a hot topic in astronomical research field, and related theory researches and experiment projects change with each passing day. The Dark Matter Particle Explorer (DAMPE) of our country is proposed under this background. As the probing object involves high energy electrons, appropriate methods must be taken to distinguish them from protons in order to reduce the event probability of other charged particles (e.g. a proton) being mistaken as electrons. The experiments show that, the hadronic shower of high energy proton in BGO electromagnetic calorimeter, which is usually accompanied by the emitting of large number of secondary neutrons, is significantly different from the electromagnetic shower of high energy electron. Through the detection of secondary neutron signal emitting from the bottom of BGO electromagnetic calorimeter and the shower shape of incident particles in BGO electromagnetic calorimeter, we can effectively distinguish whether the incident particles are high energy protons or electrons. This paper introduces the structure and detecting principle of DAMPE neutron detector. We use Monte-Carlo method with GEANT4 software to simulate the signal emitting from protons and electrons at characteristic energy in the neutron detector, and finally summarize the neutron detector's ability to distinguish protons and electrons under different electron acception efficiencies.
NASA Astrophysics Data System (ADS)
Yang, Zi-Yi; Tsai, Pi-En; Lee, Shao-Chun; Liu, Yen-Chiang; Chen, Chin-Cheng; Sato, Tatsuhiko; Sheu, Rong-Jiun
2017-09-01
The dose distributions from proton pencil beam scanning were calculated by FLUKA, GEANT4, MCNP, and PHITS, in order to investigate their applicability in proton radiotherapy. The first studied case was the integrated depth dose curves (IDDCs), respectively from a 100 and a 226-MeV proton pencil beam impinging a water phantom. The calculated IDDCs agree with each other as long as each code employs 75 eV for the ionization potential of water. The second case considered a similar condition of the first case but with proton energies in a Gaussian distribution. The comparison to the measurement indicates the inter-code differences might not only due to different stopping power but also the nuclear physics models. How the physics parameter setting affect the computation time was also discussed. In the third case, the applicability of each code for pencil beam scanning was confirmed by delivering a uniform volumetric dose distribution based on the treatment plan, and the results showed general agreement between each codes, the treatment plan, and the measurement, except that some deviations were found in the penumbra region. This study has demonstrated that the selected codes are all capable of performing dose calculations for therapeutic scanning proton beams with proper physics settings.
Neutron production by cosmic-ray muons in various materials
NASA Astrophysics Data System (ADS)
Manukovsky, K. V.; Ryazhskaya, O. G.; Sobolevsky, N. M.; Yudin, A. V.
2016-07-01
The results obtained by studying the background of neutrons produced by cosmic-raymuons in underground experimental facilities intended for rare-event searches and in surrounding rock are presented. The types of this rock may include granite, sedimentary rock, gypsum, and rock salt. Neutron production and transfer were simulated using the Geant4 and SHIELD transport codes. These codes were tuned via a comparison of the results of calculations with experimental data—in particular, with data of the Artemovsk research station of the Institute for Nuclear Research (INR, Moscow, Russia)—as well as via an intercomparison of results of calculations with the Geant4 and SHIELD codes. It turns out that the atomic-number dependence of the production and yield of neutrons has an irregular character and does not allow a description in terms of a universal function of the atomic number. The parameters of this dependence are different for two groups of nuclei—nuclei consisting of alpha particles and all of the remaining nuclei. Moreover, there are manifest exceptions from a power-law dependence—for example, argon. This may entail important consequences both for the existing underground experimental facilities and for those under construction. Investigation of cosmic-ray-induced neutron production in various materials is of paramount importance for the interpretation of experiments conducted at large depths under the Earth's surface.
gemcWeb: A Cloud Based Nuclear Physics Simulation Software
NASA Astrophysics Data System (ADS)
Markelon, Sam
2017-09-01
gemcWeb allows users to run nuclear physics simulations from the web. Being completely device agnostic, scientists can run simulations from anywhere with an Internet connection. Having a full user system, gemcWeb allows users to revisit and revise their projects, and share configurations and results with collaborators. gemcWeb is based on simulation software gemc, which is based on standard GEant4. gemcWeb requires no C++, gemc, or GEant4 knowledge. Using a simple but powerful GUI allows users to configure their project from geometries and configurations stored on the deployment server. Simulations are then run on the server, with results being posted to the user, and then securely stored. Python based and open-source, the main version of gemcWeb is hosted internally at Jefferson National Labratory and used by the CLAS12 and Electron-Ion Collider Project groups. However, as the software is open-source, and hosted as a GitHub repository, an instance can be deployed on the open web, or any institution's intra-net. An instance can be configured to host experiments specific to an institution, and the code base can be modified by any individual or group. Special thanks to: Maurizio Ungaro, PhD., creator of gemc; Markus Diefenthaler, PhD., advisor; and Kyungseon Joo, PhD., advisor.
Yang, Y M; Bednarz, B
2013-02-21
Following the proposal by several groups to integrate magnetic resonance imaging (MRI) with radiation therapy, much attention has been afforded to examining the impact of strong (on the order of a Tesla) transverse magnetic fields on photon dose distributions. The effect of the magnetic field on dose distributions must be considered in order to take full advantage of the benefits of real-time intra-fraction imaging. In this investigation, we compared the handling of particle transport in magnetic fields between two Monte Carlo codes, EGSnrc and Geant4, to analyze various aspects of their electromagnetic transport algorithms; both codes are well-benchmarked for medical physics applications in the absence of magnetic fields. A water-air-water slab phantom and a water-lung-water slab phantom were used to highlight dose perturbations near high- and low-density interfaces. We have implemented a method of calculating the Lorentz force in EGSnrc based on theoretical models in literature, and show very good consistency between the two Monte Carlo codes. This investigation further demonstrates the importance of accurate dosimetry for MRI-guided radiation therapy (MRIgRT), and facilitates the integration of a ViewRay MRIgRT system in the University of Wisconsin-Madison's Radiation Oncology Department.
NASA Astrophysics Data System (ADS)
Yang, Y. M.; Bednarz, B.
2013-02-01
Following the proposal by several groups to integrate magnetic resonance imaging (MRI) with radiation therapy, much attention has been afforded to examining the impact of strong (on the order of a Tesla) transverse magnetic fields on photon dose distributions. The effect of the magnetic field on dose distributions must be considered in order to take full advantage of the benefits of real-time intra-fraction imaging. In this investigation, we compared the handling of particle transport in magnetic fields between two Monte Carlo codes, EGSnrc and Geant4, to analyze various aspects of their electromagnetic transport algorithms; both codes are well-benchmarked for medical physics applications in the absence of magnetic fields. A water-air-water slab phantom and a water-lung-water slab phantom were used to highlight dose perturbations near high- and low-density interfaces. We have implemented a method of calculating the Lorentz force in EGSnrc based on theoretical models in literature, and show very good consistency between the two Monte Carlo codes. This investigation further demonstrates the importance of accurate dosimetry for MRI-guided radiation therapy (MRIgRT), and facilitates the integration of a ViewRay MRIgRT system in the University of Wisconsin-Madison's Radiation Oncology Department.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farina, Edoardo; Riccardi, Cristina; Rimoldi, Adele
This work investigates the possibility to use carbon ion beams delivered with active scanning modality, for the treatment of ocular melanomas at the Centro Nazionale di Adroterapia Oncologica (CNAO) in Pavia. The radiotherapy with carbon ions offers many advantages with respect to the radiotherapy with protons or photons, such as a higher relative radio-biological effectiveness (RBE) and a dose release better localized to the tumor. The Monte Carlo (MC) Geant4 10.00 patch-03 toolkit is used to reproduce the complete CNAO extraction beam line, including all the active and passive components characterizing it. The simulation of proton and carbon ion beamsmore » and radiation scanned field is validated against CNAO experimental data. For the irradiation study of the ocular melanoma an eye-detector, representing a model of a human eye, is implemented in the simulation. Each element of the eye is reproduced with its chemical and physical properties. Inside the eye-detector a realistic tumor volume is placed and used as the irradiation target. A comparison between protons and carbon ions eye irradiations allows to study possible treatment benefits if carbon ions are used instead of protons. (authors)« less
NASA Astrophysics Data System (ADS)
Hubert, G.; Pazianotto, M. T.; Federico, C. A.
2016-12-01
This paper investigates seasonal cosmic ray-induced neutron variations measured over a long-term period (from 2011 to 2016) in both the high-altitude stations located in medium geomagnetic latitude and Antarctica (Pic-du-Midi and Concordia, respectively). To reinforce analysis, modeling based on ground albedo neutrons simulations of extensive air showers and the solar modulation potential was performed. Because the local environment is well known and stable over time in Antarctica, data were used to validate the modeling approach. A modeled scene representative to the Pic-du-Midi was simulated with GEANT4 for various hydrogen properties (composition, density, and wet level) and snow thickness. The orders of magnitudes of calculated thermal fluence rates are consistent with measurements obtained during summers and winters. These variations are dominant in the thermal domain (i.e., En < 0.5 eV) and lesser degree in epithermal and evaporation domains (i.e., 0.5 eV < En < 0.1 MeV and 0.1 MeV < En < 20 MeV, respectively). Cascade neutron (En > 20 MeV) is weakly impacted. The role of hydrogen content on ground albedo neutron generation was investigated with GEANT4 simulations. These investigations focused to mountain environment; nevertheless, they demonstrate the complexity of the local influences on neutron fluence rates.
Li, Xinhua; Zhang, Da; Liu, Bob
2012-07-01
To provide transmission data for broad 25-39 kVp (kilovolt peak) W/Rh and 25-49 kVp W/Al (target/filter, W-tungsten, Rh-rhodium, and Al-aluminum) x-ray beams through common shielding materials, such as lead, concrete, gypsum wallboard, wood, steel, and plate glass. The unfiltered W-target x-ray spectra measured on a Selenia Dimensions system (Hologic Inc., Bedford, MA) set at 20-49 kVp were, respectively, filtered using 50-μm Rh and 700-μm Al, and were subsequently used for Monte Carlo calculations. The transmission of broad x-ray beams through shielding materials was simulated using Geant4 low energy electromagnetic physics package with photon- and electron-processes above 250 eV, including photoelectric effect, Compton scattering, and Rayleigh scattering. The calculated transmission data were fitted using Archer equation with a robust fitting algorithm. The transmission of broad x-ray beams through the above-mentioned shielding materials was calculated down to about 10(-5) for 25-39 kVp W/Rh and 25-49 kVp W/Al. The fitted results of α, β, and γ in Archer equation were provided. The α values of kVp ≥ 40 were approximately consistent with those of NCRP Report No. 147. These data provide inputs for the shielding designs of x-ray imaging facilities with W-anode x-ray beams, such as from Selenia Dimensions.
NASA Astrophysics Data System (ADS)
Beld, E.; Seevinck, P. R.; Lagendijk, J. J. W.; Viergever, M. A.; Moerland, M. A.
2016-09-01
In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner’s magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.
Beld, E; Seevinck, P R; Lagendijk, J J W; Viergever, M A; Moerland, M A
2016-09-21
In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner's magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.
Breaking the Silos: The art Documentation Suite
NASA Astrophysics Data System (ADS)
Kutschke, Robert K.
2015-12-01
The art event-processing framework is used by almost all new experiments at Fermilab, and by several outside of Fermilab. All use art as an external product in the same sense that the compiler, ROOT, Geant4, CLHEP and boost are external products. The art team has embarked on a campaign to document art and develop training materials for new users. Many new users of art have little or no knowledge of C++, software engineering, build systems or the many external packages used by art or their experiments, such as ROOT, CLHEP, HEPPDT, and boost. To effectively teach art requires that the training materials include appropriate introductions to these topics as they are encountered. Experience has shown that simply referring readers to the existing native documentation does not work; too often a simple idea that they need to understand is described in a context that presumes prerequisites that are unimportant for a beginning user of art. There is the additional complication that the training materials must be presented in a way that does not presume knowledge of any of the experiments using art. Finally, new users of art arrive at random times throughout the year and the training materials must allow them to start to learn art at any time. This presentation will explain the strategies adopted by the art team to develop a documentation suite that complies with these boundary conditions. It will also show the present status of the documentation suite, including feedback the art team has received from pilot users.
Status of the Top and Bottom Counting Detectors for the ISS-CREAM Experiment
NASA Astrophysics Data System (ADS)
Park, J. M.; ISS-CREAM Collaboration
2017-11-01
It is important to measure the cosmic ray spectra to study the origin, acceleration and propagation mechanisms of high-energy cosmic rays. A payload of the Cosmic Ray Energetics And Mass experiment is scheduled to be launched in 2017 to the International Space Station for measuring cosmic ray elemental spectra at energies beyond the reach of balloon instruments. Top Counting Detector and Bottom Counting Detector (T/BCD) as a two-dimensional detector are to separate electrons from protons for electron/gamma-ray physics. The T/BCD each consists of a plastic scintillator read out by 20 by 20 photodiodes and is placed before and after the Calorimeter, respectively. Energy and hit information of the T/BCD can distinguish shower profiles of electrons and protons, which show narrower and shorter showers from electrons at a given energy. The T/BCD performance has been studied with the Silicon Charge Detector and the calorimeter by using a GEANT3 + FLUKA 3.21 simulation package. By comparing the number of hits and shower width distributions between electrons and protons, we have studied optimal parameters for the e/p separation.
A taxonomy and results from a comprehensive review of 28 maternal health voucher programmes.
Bellows, Ben W; Conlon, Claudia M; Higgs, Elizabeth S; Townsend, John W; Nahed, Matta G; Cavanaugh, Karen; Grainger, Corinne G; Okal, Jerry; Gorter, Anna C
2013-12-01
It is increasingly clear that Millennium Development Goal 4 and 5 will not be achieved in many low- and middle-income countries with the weakest gains among the poor. Recognizing that there are large inequalities in reproductive health outcomes, the post-2015 agenda on universal health coverage will likely generate strategies that target resources where maternal and newborn deaths are the highest. In 2012, the United States Agency for International Development convened an Evidence Summit to review the knowledge and gaps on the utilization of financial incentives to enhance the quality and uptake of maternal healthcare. The goal was to provide donors and governments of the low- and middle-income countries with evidence-informed recommendations on practice, policy, and strategies regarding the use of financial incentives, including vouchers, to enhance the demand and supply of maternal health services. The findings in this paper are intended to guide governments interested in maternal health voucher programmes with recommendations for sustainable implementation and impact. The Evidence Summit undertook a systematic review of five financing strategies. This paper presents the methods and findings for vouchers, building on a taxonomy to catalogue knowledge about voucher programme design and functionality. More than 120 characteristics under five major categories were identified: programme principles (objectives and financing); governance and management; benefits package and beneficiary targeting; providers (contracting and service pricing); and implementation arrangements (marketing, claims processing, and monitoring and evaluation). Among the 28 identified maternal health voucher programmes, common characteristics included: a stated objective to increase the use of services among the means-tested poor; contracted-out programme management; contracting either exclusively private facilities or a mix of public and private providers; prioritizing community-based distribution of vouchers; and tracking individual claims for performance purposes. Maternal voucher programmes differed on whether contracted providers were given training on clinical or administrative issues; whether some form of service verification was undertaken at facility or community-level; and the relative size of programme management costs in the overall programme budget. Evidence suggests voucher programmes can serve populations with national-level impact. Reaching scale depends on whether the voucher programme can: (i) keep management costs low, (ii) induce a large demand-side response among the bottom two quintiles, and (iii) achieve a quality of care that translates a greater number of facility-based deliveries into a reduction in maternal morbidity and mortality.
A Taxonomy and Results from a Comprehensive Review of 28 Maternal Health Voucher Programmes
Conlon, Claudia M.; Higgs, Elizabeth S.; Townsend, John W.; Nahed, Matta G.; Cavanaugh, Karen; Grainger, Corinne G.; Okal, Jerry; Gorter, Anna C.
2013-01-01
It is increasingly clear that Millennium Development Goal 4 and 5 will not be achieved in many low- and middle-income countries with the weakest gains among the poor. Recognizing that there are large inequalities in reproductive health outcomes, the post-2015 agenda on universal health coverage will likely generate strategies that target resources where maternal and newborn deaths are the highest. In 2012, the United States Agency for International Development convened an Evidence Summit to review the knowledge and gaps on the utilization of financial incentives to enhance the quality and uptake of maternal healthcare. The goal was to provide donors and governments of the low- and middle-income countries with evidence-informed recommendations on practice, policy, and strategies regarding the use of financial incentives, including vouchers, to enhance the demand and supply of maternal health services. The findings in this paper are intended to guide governments interested in maternal health voucher programmes with recommendations for sustainable implementation and impact. The Evidence Summit undertook a systematic review of five financing strategies. This paper presents the methods and findings for vouchers, building on a taxonomy to catalogue knowledge about voucher programme design and functionality. More than 120 characteristics under five major categories were identified: programme principles (objectives and financing); governance and management; benefits package and beneficiary targeting; providers (contracting and service pricing); and implementation arrangements (marketing, claims processing, and monitoring and evaluation). Among the 28 identified maternal health voucher programmes, common characteristics included: a stated objective to increase the use of services among the means-tested poor; contracted-out programme management; contracting either exclusively private facilities or a mix of public and private providers; prioritizing community-based distribution of vouchers; and tracking individual claims for performance purposes. Maternal voucher programmes differed on whether contracted providers were given training on clinical or administrative issues; whether some form of service verification was undertaken at facility or community-level; and the relative size of programme management costs in the overall programme budget. Evidence suggests voucher programmes can serve populations with national-level impact. Reaching scale depends on whether the voucher programme can: (i) keep management costs low, (ii) induce a large demand-side response among the bottom two quintiles, and (iii) achieve a quality of care that translates a greater number of facility-based deliveries into a reduction in maternal morbidity and mortality.
A Training Strategy for Personnel Working in Developing Countries.
ERIC Educational Resources Information Center
McConkey, Roy; O'Toole, Brian
1998-01-01
Describes the training strategy developed by the Community Based Rehabilitation Programme in Guyana. The strategy has three components: the identification of training needs of families and support workers, the production of video-based training packages on specific topics, and the utilization of available personnel to act as local tutors.…
Romanian experience on packaging testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieru, G.
2007-07-01
With more than twenty years ago, the Institute for Nuclear Research Pitesti (INR), through its Reliability and Testing Laboratory, was licensed by the Romanian Nuclear Regulatory Body- CNCAN and to carry out qualification tests [1] for packages intended to be used for the transport and storage of radioactive materials. Radioactive materials, generated by Romanian nuclear facilities [2] are packaged in accordance with national [3] and the IAEA's Regulations [1,6] for a safe transport to the disposal center. Subjecting these packages to the normal and simulating test conditions accomplish the evaluation and certification in order to prove the package technical performances.more » The paper describes the qualification tests for type A and B packages used for transport and storage of radioactive materials, during a period of 20 years of experience. Testing is used to substantiate assumption in analytical models and to demonstrate package structural response. The Romanian test facilities [1,3,6] are used to simulate the required qualification tests and have been developed at INR Pitesti, the main supplier of type A packages used for transport and storage of low radioactive wastes in Romania. The testing programme will continue to be a strong option to support future package development, to perform a broad range of verification and certification tests on radioactive material packages or component sections, such as packages used for transport of radioactive sources to be used for industrial or medical purposes [2,8]. The paper describes and contain illustrations showing some of the various tests packages which have been performed during certain periods and how they relate to normal conditions and minor mishaps during transport. Quality assurance and quality controls measures taken in order to meet technical specification provided by the design there are also presented and commented. (authors)« less
Newborn survival in Malawi: a decade of change and future implications.
Zimba, Evelyn; Kinney, Mary V; Kachale, Fannie; Waltensperger, Karen Z; Blencowe, Hannah; Colbourn, Tim; George, Joby; Mwansambo, Charles; Joshua, Martias; Chanza, Harriet; Nyasulu, Dorothy; Mlava, Grace; Gamache, Nathalie; Kazembe, Abigail; Lawn, Joy E
2012-07-01
Malawi is one of two low-income sub-Saharan African countries on track to meet the Millennium Development Goal (MDG 4) for child survival despite high fertility and HIV and low health worker density. With neonatal deaths becoming an increasing proportion of under-five deaths, addressing newborn survival is critical for achieving MDG 4. We examine change for newborn survival in the decade 2000-10, analysing mortality and coverage indicators whilst considering other contextual factors. We assess national and donor funding, as well as policy and programme change for newborn survival using standard analyses and tools being applied as part of a multi-country analysis. Compared with the 1990s, progress towards MDG 4 and 5 accelerated considerably from 2000 to 2010. Malawi's neonatal mortality rate (NMR) reduced slower than annual reductions in mortality for children 1-59 months and maternal mortality (NMR reduced 3.5% annually). Yet, the NMR reduced at greater pace than the regional and global averages. A significant increase in facility births and other health system changes, including increased human resources, likely contributed to this decline. High level attention for maternal health and associated comprehensive policy change has provided a platform for a small group of technical and programme experts to link in high impact interventions for newborn survival. The initial entry point for newborn care in Malawi was mainly through facility initiatives, such as Kangaroo Mother Care. This transitioned to an integrated and comprehensive approach at community and facility level through the Community-Based Maternal and Newborn Care package, now being implemented in 17 of 28 districts. Addressing quality gaps, especially for care at birth in facilities, and including newborn interventions in child health programmes, will be critical to the future agenda of newborn survival in Malawi.
PIVOT: platform for interactive analysis and visualization of transcriptomics data.
Zhu, Qin; Fisher, Stephen A; Dueck, Hannah; Middleton, Sarah; Khaladkar, Mugdha; Kim, Junhyong
2018-01-05
Many R packages have been developed for transcriptome analysis but their use often requires familiarity with R and integrating results of different packages requires scripts to wrangle the datatypes. Furthermore, exploratory data analyses often generate multiple derived datasets such as data subsets or data transformations, which can be difficult to track. Here we present PIVOT, an R-based platform that wraps open source transcriptome analysis packages with a uniform user interface and graphical data management that allows non-programmers to interactively explore transcriptomics data. PIVOT supports more than 40 popular open source packages for transcriptome analysis and provides an extensive set of tools for statistical data manipulations. A graph-based visual interface is used to represent the links between derived datasets, allowing easy tracking of data versions. PIVOT further supports automatic report generation, publication-quality plots, and program/data state saving, such that all analysis can be saved, shared and reproduced. PIVOT will allow researchers with broad background to easily access sophisticated transcriptome analysis tools and interactively explore transcriptome datasets.
Shidhaye, Rahul; Shrivastava, Sanjay; Murhar, Vaibhav; Samudre, Sandesh; Ahuja, Shalini; Ramaswamy, Rohit; Patel, Vikram
2016-01-01
Background The large treatment gap for mental disorders in India underlines the need for integration of mental health in primary care. Aims To operationalise the delivery of the World Health Organization Mental Health Gap Action Plan interventions for priority mental disorders and to design an integrated mental healthcare plan (MHCP) comprising packages of care for primary healthcare in one district. Method Mixed methods were used including theory of change workshops, qualitative research to develop the MHCP and piloting of specific packages of care in a single facility. Results The MHCP comprises three enabling packages: programme management, capacity building and community mobilisation; and four service delivery packages: awareness for mental disorders, identification, treatment and recovery. Challenges were encountered in training primary care workers to improve identification and treatment. Conclusions There are a number of challenges to integrating mental health into primary care, which can be addressed through the injection of new resources and collaborative care models. PMID:26447172
A Programmable System for Motion Control
NASA Technical Reports Server (NTRS)
Nowlin, Brent C.
2003-01-01
The need for improved flow measurements in the flow path of aeronautics testing facilities has led the NASA Glenn Research Center to develop a new motion control system. The new system is programmable, offering a flexibility unheard of in previous systems. The motion control system is PLC-based, which leads to highly accurate positioning ability, as well as reliability. The user interface is a software-based HMI package, which also adds flexibility to the overall system. The system also has the ability to create and execute motion profiles. This paper discusses the system's operation, control implementation, and experiences.
A 50Mbit/Sec. CMOS Video Linestore System
NASA Astrophysics Data System (ADS)
Jeung, Yeun C.
1988-10-01
This paper reports the architecture, design and test results of a CMOS single chip programmable video linestore system which has 16-bit data words with 1024 bit depth. The delay is fully programmable from 9 to 1033 samples by a 10 bit binary control word. The large 16 bit data word width makes the chip useful for a wide variety of digital video signal processing applications such as DPCM coding, High-Definition TV, and Video scramblers/descramblers etc. For those applications, the conventional large fixed-length shift register or static RAM scheme is not very popular because of its lack of versatility, high power consumption, and required support circuitry. The very high throughput of 50Mbit/sec is made possible by a highly parallel, pipelined dynamic memory architecture implemented in a 2-um N-well CMOS technology. The basic cell of the programmable video linestore chip is an four transistor dynamic RAM element. This cell comprises the majority of the chip's real estate, consumes no static power, and gives good noise immunity to the simply designed sense amplifier. The chip design was done using Bellcore's version of the MULGA virtual grid symbolic layout system. The chip contains approximately 90,000 transistors in an area of 6.5 x 7.5 square mm and the I/Os are TTL compatible. The chip is packaged in a 68-pin leadless ceramic chip carrier package.
The light output and the detection efficiency of the liquid scintillator EJ-309.
Pino, F; Stevanato, L; Cester, D; Nebbia, G; Sajo-Bohus, L; Viesti, G
2014-07-01
The light output response and the neutron and gamma-ray detection efficiency are determined for liquid scintillator EJ-309. The light output function is compared to those of previous studies. Experimental efficiency results are compared to predictions from GEANT4, MCNPX and PENELOPE Monte Carlo simulations. The differences associated with the use of different light output functions are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatzidakis, Stylianos; Greulich, Christopher
A cosmic ray Muon Flexible Framework for Spectral GENeration for Monte Carlo Applications (MUFFSgenMC) has been developed to support state-of-the-art cosmic ray muon tomographic applications. The flexible framework allows for easy and fast creation of source terms for popular Monte Carlo applications like GEANT4 and MCNP. This code framework simplifies the process of simulations used for cosmic ray muon tomography.
Spatial distribution of 214Po ions in the electrostatic collection.
Barlas, E; Bayrak, A; Emirhan, E; Haciomeroglu, S; Ozben, C S
2013-10-01
A low cost Si-PIN photodiode-based radon monitor was successfully designed and produced to monitor precursory earthquake indicators in the Northern Anatolian Fault Line. The spatial distribution of (214)Po ions was determined by comparing the 7.69 MeV (214)Po peak in the MCA spectrum and the Geant4 energy distribution of alpha particles at various detector source distances. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter
NASA Astrophysics Data System (ADS)
Bilki, B.; Repond, J.; Xia, L.; Eigen, G.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Lima, J. G. R.; Salcido, R.; Zutshi, V.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Dannheim, D.; Folger, G.; Ivantchenko, V.; Klempt, W.; Lucaci-Timoce, A.-I.; Ribon, A.; Schlatter, D.; Sicking, E.; Uzhinskiy, V.; Giraud, J.; Grondin, D.; Hostachy, J.-Y.; Morin, L.; Brianne, E.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Tran, H. L.; Buhmann, P.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Norbeck, E.; Northacker, D.; Onel, Y.; van Doren, B.; Wilson, G. W.; Wing, M.; Combaret, C.; Caponetto, L.; Eté, R.; Grenier, G.; Han, R.; Ianigro, J. C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Corriveau, F.; Bobchenko, B.; Chistov, R.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mironov, D.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Dulucq, F.; Fleury, J.; Frisson, T.; Martin-Chassard, G.; Pöschl, R.; Raux, L.; Richard, F.; Rouëné, J.; Seguin-Moreau, N.; de la Taille, Ch.; Anduze, M.; Boudry, V.; Brient, J.-C.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Matthieu, A.; Mora de Freitas, P.; Musat, G.; Ruan, M.; Videau, H.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Weber, S.
2015-04-01
Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using GEANT4 version 9.6 are compared.
Simbol-X Background Minimization: Mirror Spacecraft Passive Shielding Trade-off Study
NASA Astrophysics Data System (ADS)
Fioretti, V.; Malaguti, G.; Bulgarelli, A.; Palumbo, G. G. C.; Ferri, A.; Attinà, P.
2009-05-01
The present work shows a quantitative trade-off analysis of the Simbol-X Mirror Spacecraft (MSC) passive shielding, in the phase space of the various parameters: mass budget, dimension, geometry and composition. A simplified physical (and geometrical) model of the sky screen, implemented by means of a GEANT4 simulation, has been developed to perform a performance-driven mass optimization and evaluate the residual background level on Simbol-X focal plane.
Aeroflex Technology as Class-Y Demonstrator
NASA Technical Reports Server (NTRS)
Suh, Jong-ook; Agarwal, Shri; Popelar, Scott
2014-01-01
Modern space field programmable gate array (FPGA) devices with increased functional density and operational frequency, such as Xilinx Virtex 4 (V4) and S (V5), are packaged in non-hermetic ceramic flip chip forms. These next generation space parts were not qualified to the MIL-PRF-38535 Qualified Manufacturer Listing (QML) class-V when they were released because class-V was only intended for hermetic parts. In order to bring Xilinx V5 type packages into the QML system, it was suggested that class-Y be set up as a new category. From 2010 through 2014, a JEDEC G12 task group developed screening and qualification requirements for Class-Y products. The Document Standardization Division of the Defense Logistics Agency (DLA) has completed an engineering practice study. In parallel with the class-Y efforts, the NASA Electronic Parts and Packaging (NEPP) program has funded JPL to study potential reliability issues of the class-Y products. The major hurdle of this task was the absence of adequate research samples. Figure 1-1 shows schematic diagrams of typical structures of class-Y type products. Typically, class-Y products are either in ceramic flip chip column grid array (CGA) or land grid array (LGA) form. In class-Y packages, underfill and heat spread adhesive materials are directly exposed to the spacecraft environment due to their non-hermeticity. One of the concerns originally raised was that the underfill material could degrade due to the spacecraft environment and negatively impact the reliability of the package. In order to study such issues, it was necessary to use ceramic daisy chain flip chip package samples so that continuity of flip chip solder bumps could be monitored during the reliability tests. However, none of the commercially available class-Y daisy chain parts had electrical connections through flip chip solder bumps; only solder columns were daisy chained, which made it impossible to test continuity of flip chip solder bumps without using extremely costly functional parts. Among space parts manufacturers who were interested in producing class-Y products, Aeroflex Microelectronic Solutions-HiRel had been developing assembly processes using their internal R&D classy type samples. In early 2012, JPL and Aeroflex initiated a collaboration to study reliability of the Aeroflex technology as a class-Y demonstrator.
Valles, Pola; Van den Bergh, Rafael; van den Boogaard, Wilma; Tayler-Smith, Katherine; Gayraud, Olivia; Mammozai, Bashir Ahmad; Nasim, Masood; Cheréstal, Sophia; Majuste, Alberta; Charles, James Philippe; Trelles, Miguel
2016-11-01
Trauma is a leading cause of death and represents a major problem in developing countries where access to good quality emergency care is limited. Médecins Sans Frontières delivered a standard package of care in two trauma emergency departments (EDs) in different violence settings: Kunduz, Afghanistan, and Tabarre, Haiti. This study aims to assess whether this standard package resulted in similar performance in these very different contexts. A cross-sectional study using routine programme data, comparing patient characteristics and outcomes in two EDs over the course of 2014. 31 158 patients presented to the EDs: 22 076 in Kunduz and 9082 in Tabarre. Patient characteristics, such as delay in presentation (29.6% over 24 h in Kunduz, compared to 8.4% in Tabarre), triage score, and morbidity pattern differed significantly between settings. Nevertheless, both EDs showed an excellent performance, demonstrating low proportions of mortality (0.1% for both settings) and left without being seen (1.3% for both settings), and acceptable triage performance. Physicians' maximum working capacity was exceeded in both centres, and mainly during rush hours. This study supports for the first time the plausibility of using the same ED package in different settings. Mapping of patient attendance is essential for planning of human resources needs. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.
Shillcutt, Samuel D; Waters, Hugh R; Haider, Sabbir; El Arifeen, Shams; Mannan, Ishtiaq; Seraji, Habibur R; Shah, Rasheduzzaman; Darmstadt, Gary L; Wall, Steve N; Williams, Emma K; Black, Robert E; Santosham, Mathuram; Baqui, Abdullah H
2013-01-01
Abstract Objective To evaluate and compare the cost-effectiveness of two strategies for neonatal care in Sylhet division, Bangladesh. Methods In a cluster-randomized controlled trial, two strategies for neonatal care – known as home care and community care – were compared with existing services. For each study arm, economic costs were estimated from a societal perspective, inclusive of programme costs, provider costs and household out-of-pocket payments on care-seeking. Neonatal mortality in each study arm was determined through household surveys. The incremental cost-effectiveness of each strategy – compared with that of the pre-existing levels of maternal and neonatal care – was then estimated. The levels of uncertainty in our estimates were quantified through probabilistic sensitivity analysis. Findings The incremental programme costs of implementing the home-care package were 2939 (95% confidence interval, CI: 1833–7616) United States dollars (US$) per neonatal death averted and US$ 103.49 (95% CI: 64.72–265.93) per disability-adjusted life year (DALY) averted. The corresponding total societal costs were US$ 2971 (95% CI: 1844–7628) and US$ 104.62 (95% CI: 65.15–266.60), respectively. The home-care package was cost-effective – with 95% certainty – if healthy life years were valued above US$ 214 per DALY averted. In contrast, implementation of the community-care strategy led to no reduction in neonatal mortality and did not appear to be cost-effective. Conclusion The home-care package represents a highly cost-effective intervention strategy that should be considered for replication and scale-up in Bangladesh and similar settings elsewhere. PMID:24115797
2012-01-01
Background To improve health in the population, public health interventions must be successfully implemented within organisations, requiring behaviour change in health service providers as well as in the target population group. Such behavioural change is seldom easily achieved. The purpose of this study was to examine the outcomes of a child health promotion programme (The Salut Programme) on professionals’ self-reported health promotion practices, and to investigate perceived facilitators and barriers for programme implementation. Methods A before-and-after design was used to measure programme outcomes, and qualitative data on implementation facilitators and barriers were collected on two occasions during the implementation process. The sample included professionals in antenatal care, child health care, dental services and open pre-schools (n=144 pre-implementation) in 13 out of 15 municipalities in a Swedish county. Response rates ranged between 81% and 96% at the four measurement points. Results Self-reported health promotion practices and collaboration were improved in all sectors at follow up. Significant changes included: 1) an increase in the extent to which midwives in antenatal care raised issues related to men’s violence against women, 2) an increase in the extent to which several lifestyle topics were raised with parents/clients in child health care and dental services, 3) an increased use of motivational interviewing (MI) and separate ‘fathers visits’ in child health care 4) improvements in the supply of healthy snacks and beverages in open pre-schools and 5) increased collaboration between sectors. Main facilitators for programme implementation included cross-sectoral collaboration and sector-specific work manuals/questionnaires for use as support in everyday practice. Main barriers included high workload, and shortage of time and staff. Conclusion This multisectoral programme for health promotion, based on sector-specific intervention packages developed and tested by end users, and introduced via interactive multisectoral seminars, shows potential for improving health promotion practices and collaboration across sectors. Consideration of the key facilitators and barriers for programme implementation as highlighted in this study can inform future improvement efforts. PMID:23107349
ERIC Educational Resources Information Center
Mathrick, Rachel; Meagher, Tina; Norbury, Courtenay Frazier
2017-01-01
Background & Aims: We evaluated a structured intervention programme aimed at preparing adolescents with developmental language disorders for job interviews. Our primary outcome measures included change in ratings of verbal and non-verbal social communication behaviours evident during mock interviews. Methods & Procedures: In study 1, 12…
Shift Happens: The 2008 Australian Government Summer School for Teachers of English
ERIC Educational Resources Information Center
Durrant, Cal
2008-01-01
This article talks about the Australian Government "Summer School for Teachers" programme which was announced as part of the 2007-08 Budget Package: "Realising Our Potential." Funds earmarked for this initiative totalled some $102 million over four years, and it was sold to the Australian public as something that would both…
CODAP: Programmer Notes for the Subroutine Library on the Univac 1108.
ERIC Educational Resources Information Center
Weissmuller, Johnny J.; And Others
The Comprehensive Occupational Data Analysis Programs (CODAP) package is a highly interactive and efficient system of computer routines for analyzing, organizing, and reporting occupational information. Since its inception in 1960, CODAP has grown in tandem with advances in job analysis methodology and is now capable of answering most of the wide…
METAPHOR: Programmer's guide, Version 1
NASA Technical Reports Server (NTRS)
Furchtgott, D. G.
1979-01-01
The internal structure of the Michigan Evaluation Aid for Perphormability (METAPHOR), an interactive software package to facilitate performability modeling and evaluation is described. Revised supplemented guides are prepared in order to maintain an up-to-date documentation of the system. Programmed tools to facilitate each step of performability model construction and model solution are given.
Franz, R
2002-01-01
Stimulated by new ecology-driven European and national regulations, news routes of recycling waste appear on the market. Since food packages represent a large percentage of the plastics consumption and since they have a short lifetime, an important approach consists in making new packages from post-consumer used packages. On the other hand, food-packaging regulations in Europe require that packaging materials must be safe. Therefore, potential mass transfer (migration) of harmful recycling-related substances to the food must be excluded and test methods to ensure the safety-in-use of recycled materials for food packaging are needled. As a consequence of this situation, a European research project FAIR-CT98-4318, with the acronym 'Recyclability', was initiated. The project consists of three sections each focusing on a different class of recycled materials: polyethylene terephthalate (PET), paper and board, and plastics covered by functional barriers. The project consortium consists of 28 project members from 11 EU countries. In addition, the project is during its lifetime in discussion with the US Food and Drug Administrations (FDA) to consider also US FDA regulatory viewpoints and to aim, as a consequence, to harmonizable conclusions and recommendations. The paper introduces the project and presents an overview of the project work progress.
Toczek, A; Cox, H; du Cros, P; Cooke, G; Ford, N
2013-03-01
Scaling up treatment for multidrug-resistant tuberculosis is a global health priority. However, current treatment regimens are long and associated with side effects, and default rates are consequently high. This systematic review aimed to identify strategies for reducing treatment default. We conducted a systematic search up to May 2012 to identify studies describing interventions to support patients receiving treatment for multidrug-resistant tuberculosis (MDR-TB). The potential influence of study interventions were explored through subgroup analyses. A total of 75 studies provided outcomes for 18,294 patients across 31 countries. Default rates ranged from 0.5% to 56%, with a pooled proportion of 14.8% (95%CI 12.4-17.4). Strategies identified to be associated with lower default rates included the engagement of community health workers as directly observed treatment (DOT) providers, the provision of DOT throughout treatment, smaller cohort sizes and the provision of patient education. Current interventions to support adherence and retention are poorly described and based on weak evidence. This review was able to identify a number of promising, inexpensive interventions feasible for implementation and scale-up in MDR-TB programmes. The high default rates reported from many programmes underscore the pressing need to further refine and evaluate simple intervention packages to support patients.
Jones, Michael; Chanturidze, Tata; Franzen, Sam; Manu, Alex; Naylor, Mike
2017-10-01
The Government of Kazakhstan is engaged in a "root and branch" modernisation of the health care sector. One aspect of the raft of modernisation programmes was to revisit the State Guaranteed Health Benefits Package, with the aim to review citizen entitlements to healthcare. This paper reviews the ongoing evolution of the planning of the health benefits package in Kazakhstan, with the main challenges encountered, and critical lessons learned, to be considered for similar attempts elsewhere. The main conclusions are that: the design process requires a blend of technical and socio-political analysis, because it attracts public interest, and therefore political risks; the scale and burden of analysis need to be kept to manageable proportions; and the relationship between the benefits package and funding modalities needs to be carefully managed by the State, to ensure access to declared entitlements to all members, including the most vulnerable, while keeping the package financially feasible. © 2017 The Authors. International Journal of Health Planning and Management published by John Wiley & Sons, Ltd. © 2017 The Authors. International Journal of Health Planning and Management published by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Sabra, Mohammad S.
2016-09-01
In the paper by Mohammad S. Sabra, due to a mixup, wrong calculations for NEPR ratios, normalized to 20 cm-thick copper, for 40 cm and 60 cm-thick copper at 30° for QGSP-BIC, QGSP-BERT, QGSP-INCLXX, and SHIELDING were published in Table 2. The correct values are listed in the revised Table 2 as below.
Simulation of major space particles toward selected materials in a near-equatorial low earth orbit
NASA Astrophysics Data System (ADS)
Suparta, Wayan; Zulkeple, Siti Katrina
2017-05-01
A low earth orbit near the equator (LEO-NEqO) is exposed to the highest energies from galactic cosmic rays (GCR) and from trapped protons with a wide range of energies. Moreover, GCR fluxes were seen to be the highest in 2009 to 2010 when communication belonging to the RazakSAT-1 satellite was believed to have been lost. Hence, this study aimed to determine the influence of the space environment toward the operation of LEO-NEqO satellites by investigating the behavior of major space particles toward satellite materials. The space environment was referred to GCR protons and trapped protons. Their fluxes were obtained from the Space Environment Information System (SPENVIS) and their tracks were simulated through three materials using a simulation program called Geometry and Tracking (Geant4). The materials included aluminum (Al), gallium arsenide (GaAs) and silicon (Si). Then the total ionizing dose (TID) and non-ionizing dose (NIEL) were calculated for a three-year period. Simulations showed that GCR traveled at longer tracks and produced more secondary radiation than trapped protons. Al turned out to receive the lowest total dose, while GaAs showed to be susceptible toward GCR than Si. However, trapped protons contributed the most in spacecraft doses where Si received the highest doses. Finally, the comparison between two Geant4 programs revealed the estimated doses differed at <18%.
Ion therapy for uveal melanoma in new human eye phantom based on GEANT4 toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahdipour, Seyed Ali; Mowlavi, Ali Asghar, E-mail: amowlavi@hsu.ac.ir; ICTP, Associate Federation Scheme, Medical Physics Field, Trieste
Radiotherapy with ion beams like proton and carbon has been used for treatment of eye uveal melanoma for many years. In this research, we have developed a new phantom of human eye for Monte Carlo simulation of tumors treatment to use in GEANT4 toolkit. Total depth−dose profiles for the proton, alpha, and carbon incident beams with the same ranges have been calculated in the phantom. Moreover, the deposited energy of the secondary particles for each of the primary beams is calculated. The dose curves are compared for 47.8 MeV proton, 190.1 MeV alpha, and 1060 MeV carbon ions that havemore » the same range in the target region reaching to the center of tumor. The passively scattered spread-out Bragg peak (SOBP) for each incident beam as well as the flux curves of the secondary particles including neutron, gamma, and positron has been calculated and compared for the primary beams. The high sharpness of carbon beam's Bragg peak with low lateral broadening is the benefit of this beam in hadrontherapy but it has disadvantages of dose leakage in the tail after its Bragg peak and high intensity of neutron production. However, proton beam, which has a good conformation with tumor shape owing to the beam broadening caused by scattering, can be a good choice for the large-size tumors.« less
Radiation Shielding Study of Advanced Data and Power Management Systems (ADPMS) Housing Using Geant4
NASA Astrophysics Data System (ADS)
Garcia, F.; Kurvinen, K.; Brander, T.; Orava, R.; Heino, J.; Virtanen, A.; Kettunen, H.; Tenhunen, M.
2008-02-01
A design goal for current space system is to reduce the mass used to enclose components of the spacecraft. One potential target is to reduce the mass of electronics and its housings. The use of composite materials, especially CFRP (Carbon Fiber Reinforced Plastic) is a well known and vastly used approach to mass reduction. A design goal, cost reduction, has increased the use of commercial (non-space qualified) electronics. These commercial circuits and other components cannot tolerate as high radiation levels as space qualified components. Therefore, the use of standard electronics components poses a challenge in terms of the radiation protection capability of the ADPMS housings. The main goal of this study is to provide insight on the radiation shielding protection produced by different configurations of CFRP tungsten laminates of epoxies and cyanate esters and then to compare them to the protection given by the commonly used aluminum. For a spacecraft operating in LEO and MEO orbits the main components of the space radiation environment are energetic electrons and protons, therefore in our study we will compare the experimental and simulation results of the radiation attenuation of different types of laminates for those particles. At the same time the experimental data has been used to validate the Geant4 model of the laminates, which can be used for future optimizations of the laminate structures.
Neutron production by cosmic-ray muons in various materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manukovsky, K. V.; Ryazhskaya, O. G.; Sobolevsky, N. M.
The results obtained by studying the background of neutrons produced by cosmic-raymuons in underground experimental facilities intended for rare-event searches and in surrounding rock are presented. The types of this rock may include granite, sedimentary rock, gypsum, and rock salt. Neutron production and transfer were simulated using the Geant4 and SHIELD transport codes. These codes were tuned via a comparison of the results of calculations with experimental data—in particular, with data of the Artemovsk research station of the Institute for Nuclear Research (INR, Moscow, Russia)—as well as via an intercomparison of results of calculations with the Geant4 and SHIELD codes.more » It turns out that the atomic-number dependence of the production and yield of neutrons has an irregular character and does not allow a description in terms of a universal function of the atomic number. The parameters of this dependence are different for two groups of nuclei—nuclei consisting of alpha particles and all of the remaining nuclei. Moreover, there are manifest exceptions from a power-law dependence—for example, argon. This may entail important consequences both for the existing underground experimental facilities and for those under construction. Investigation of cosmic-ray-induced neutron production in various materials is of paramount importance for the interpretation of experiments conducted at large depths under the Earth’s surface.« less
Effect of a magnetic field on the track structure of low-energy electrons: a Monte Carlo study
NASA Astrophysics Data System (ADS)
Bug, M. U.; Gargioni, E.; Guatelli, S.; Incerti, S.; Rabus, H.; Schulte, R.; Rosenfeld, A. B.
2010-10-01
The increasing use of MRI-guided radiation therapy evokes the necessity to investigate the potential impact of a magnetic field on the biological effectiveness of therapeutic radiation beams. While it is known that a magnetic field, applied during irradiation, can improve the macroscopic absorbed dose distribution of electrons in the tumor region, effects on the microscopic distribution of energy depositions and ionizations have not yet been investigated. An effect on the number of ionizations in a DNA segment, which is related to initial DNA damage in form of complex strand breaks, could be beneficial in radiation therapy. In this work we studied the effects of a magnetic field on the pattern of ionizations at nanometric level by means of Monte Carlo simulations using the Geant4-DNA toolkit. The track structure of low-energy electrons in the presence of a uniform static magnetic field of strength up to 14 T was calculated for a simplified DNA segment model in form of a water cylinder. In the case that no magnetic field is applied, nanodosimetric results obtained with Geant4-DNA were compared with those from the PTB track structure code. The obtained results suggest that any potential enhancement of complexity of DNA strand breaks induced by irradiation in a magnetic field is not related to modifications of the low-energy secondary electrons track structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Waged, Khaled; Benha University, Faculty of Science, Physics Department; Felemban, Nuha
2011-07-15
We describe how various hadronic cascade models, which are implemented in the geant4 toolkit, describe proton and charged pion transverse momentum spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c, recently measured in the hadron production (HARP) experiment at CERN. The Binary, ultrarelativistic quantum molecular dynamics (UrQMD) and modified FRITIOF (FTF) hadronic cascade models are chosen for investigation. The first two models are based on limited (Binary) and branched (UrQMD) binary scattering between cascade particles which can be either a baryon or meson, in the three-dimensional space of the nucleus, while the latter (FTF) considersmore » collective interactions between nucleons only, on the plane of impact parameter. It is found that the slow (p{sub T}{<=}0.3 GeV/c) proton spectra are quite sensitive to the different treatments of cascade pictures, while the fast (p{sub T}>0.3 GeV/c) proton spectra are not strongly affected by the differences between the FTF and UrQMD models. It is also shown that the UrQMD and FTF combined with Binary (FTFB) models could reproduce both proton and charged pion spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c with the same accuracy.« less
NASA Astrophysics Data System (ADS)
Villagrasa, Carmen; Meylan, Sylvain; Gonon, Geraldine; Gruel, Gaëtan; Giesen, Ulrich; Bueno, Marta; Rabus, Hans
2017-09-01
In this work we present results obtained in the frame of the BioQuaRT project. The objective of the study was the correlation between the number of radiation-induced double strand breaks (DSB) of the DNA molecule and the probability of detecting nuclear foci after targeted microbeam irradiation of cells with protons and alpha particles of different LET. The former were obtained by simulation with new methods integrated into Geant4-DNA that permit calculating the number of DSB in a DNA target model induced by direct and indirect radiation effects. A particular focus was laid in this work on evaluating the influence of different criteria applied to the simulated results for predicting the formation of a direct SSB. Indeed, these criteria have an important impact on the predicted number of DSB per particle track and its dependence with LET. Among the criteria tested in this work, the case that a direct radiation interaction leads to a strand break if the cumulative energy deposited in the backbone part of one nucleotide exceeds a threshold of 17.5 eV leads to the best agreement with the relative LET dependence of number of radiation induced foci. Further calculations and experimental data are nevertheless needed in order to fix the simulation parameters and to help interpreting the biological experimental data observed by immunofluorescence in terms of the DSB complexity.
Siddiqi, Kamran; Khan, Amir; Ahmad, Maqsood; Shafiq-ur-Rehman
2010-03-25
In many low- and middle-income countries, where tobacco use is common, tuberculosis is also a major problem. Tobacco use increases the risk of developing tuberculosis, secondary mortality, poor treatment compliance and relapses. In countries with TB epidemic, even a modest relative risk leads to a significant attributable risk. Treating tobacco dependence, therefore, is likely to have benefits for controlling tuberculosis in addition to reducing the non-communicable disease burden associated with smoking. In poorly resourced health systems which face a dual burden of disease secondary to tuberculosis and tobacco, an integrated approach to tackle tobacco dependence in TB control could be economically desirable. During TB screening, health professionals come across large numbers of patients with respiratory symptoms, a significant proportion of which are likely to be tobacco users. These clinical encounters, considered to be "teachable moments", provide a window of opportunity to offer treatment for tobacco dependence. We aim to develop and trial a complex intervention to reduce tobacco dependence among TB suspects based on the WHO 'five steps to quit' model. This model relies on assessing personal motivation to quit tobacco use and uses it as the basis for assessing suitability for the different therapeutic options for tobacco dependence.We will use the Medical Research Council framework approach for evaluating complex interventions to: (a) design an evidence-based treatment package (likely to consist of training materials for health professionals and education tools for patients); (b) pilot the package to determine the delivery modalities in TB programme (c) assess the incremental cost-effectiveness of the package compared to usual care using a cluster RCT design; (d) to determine barriers and drivers to the provision of treatment of tobacco dependence within TB programmes; and (e) support long term implementation. The main outcomes to assess the effectiveness would be point abstinence at 4 weeks and continuous abstinence up to 6 months. This work will be carried out in Pakistan and is expected to have relevance for other low and middle income countries with high tobacco use and TB incidence. This will enhance our knowledge of the cost-effectiveness of treating tobacco dependence in patients suspected of TB. ISRCTN08829879.
PSAW/MicroSWIS [Microminiature Surface Acoustic Wave (SAW) based Wirelesss Instrumentation System
NASA Technical Reports Server (NTRS)
Heermann, Doug; Krug, Eric
2004-01-01
This Final Report for the PSAW/MicroSWIS Program is provided in compliance with contract number NAS3-01118. This report documents the overall progress of the program and presents project objectives, work carried out, and results obtained. Program Conceptual Design Package stated the following objectives: To develop a sensor/transceiver network that can support networking operations within spacecraft with sufficient bandwidth so that (1) flight control data, (2) avionics data, (3) payload/experiment data, and (4) prognostic health monitoring sensory information can flow to appropriate locations at frequencies that contain the maximum amount of information content but require minimum interconnect and power: a very high speed, low power, programmable modulation, spread-spectrum radio sensor/transceiver.
Impact of the community-based newborn care package in Nepal: a quasi-experimental evaluation
Paudel, Deepak; Shrestha, Ishwar B; Siebeck, Matthias; Rehfuess, Eva
2017-01-01
Objective To evaluate the impact of the community-based newborn care package (CBNCP) on six essential practices to improve neonatal health. Methods CBNCP pilot districts were matched to comparison districts using propensity scores. Impact on birth preparedness, antenatal care seeking, antenatal care quality, delivery by skilled birth attendant, immediate newborn care and postnatal care within 48 hours were assessed using Demographic and Health Survey (DHS) and Health Management Information System (HMIS) data through difference-in-differences and multivariate logistic regression analyses. Findings Changes over time in intervention and comparison areas were similar in difference-in-differences analysis of DHS and HMIS data. Logistic regression of DHS data also did not reveal any significant improvement in combined outcomes: birth preparedness, adjusted OR (aOR)=0.8 (95% CI 0.4 to 1.7); antenatal care seeking, aOR=1.0 (0.6 to 1.5); antenatal care quality, aOR=1.4 (0.9 to 2.1); delivery by skilled birth attendant, aOR=1.5 (1.0 to 2.3); immediate newborn care, aOR=1.1 (0.7 to 1.9); postnatal care, aOR=1.3 (0.9 to 1.9). Health providers’ knowledge and skills in intervention districts were fair but showed much variation between different providers and districts. Conclusions This study, while representing an early assessment of impact, did not identify significant improvements in newborn care practices and raises concerns regarding CBNCP implementation. It has contributed to revisions of the package and it being merged with the Integrated Management of Neonatal and Childhood Illness programme. This is now being implemented in 35 districts and carefully monitored for quality and impact. The study also highlights general challenges in evaluating the impacts of a complex health intervention under ‘real life’ conditions. PMID:28982810
NASA Astrophysics Data System (ADS)
Taheri, A.; Askari, M.; Taghan Sasanpour, M.
2017-08-01
This paper studies the effect of lead wrapping on the response of the plastic scintillators as gamma detectors. Experimental tests and Geant4 simulations showed that lead wrapping cannot increase the gamma absorption efficiency of the detector but, as a reflector, it can improve the optical properties of the detector. The reflectivity of the lead foil as an optical reflector was determined equal to 66% using an experimental-simulation combined method. Based on the obtained results, the optical collection efficiency of the detector was also increased about 4% after employing the lead reflector.
Newborn survival in Bangladesh: a decade of change and future implications.
Rubayet, Sayed; Shahidullah, Mohammad; Hossain, Altaf; Corbett, Erica; Moran, Allisyn C; Mannan, Imteaz; Matin, Ziaul; Wall, Stephen N; Pfitzer, Anne; Mannan, Ishtiaq; Syed, Uzma
2012-07-01
Remarkable progress over the last decade has put Bangladesh on track for Millennium Development Goal (MDG) 4 for child survival and achieved a 40% decline in maternal mortality. However, since neonatal deaths make up 57% of under-five mortality in the country, increased scale up and equity in programmes for neonatal survival are critical to sustain progress. We examined change for newborn survival from 2000 to 2010 considering mortality, coverage and funding indicators, as well as contextual factors. The national neonatal mortality rate has undergone an annual decline of 4.0% since 2000, reflecting greater progress than both the regional and global averages, but the mortality reduction for children 1-59 months was double this rate, at 8.6%. Examining policy and programme change, and national and donor funding for health, we identified various factors which contributed to an environment favourable to newborn survival. Locally-generated evidence combined with re-packaged global evidence, notably The Lancet Neonatal Series, has played a role, although pathways between research and policies and programme change are often complex. Several high-profile champions have had major influence. Attention for community initiatives and considerable donor funding also appear to have contributed. There have been some increases in coverage of key interventions, such as skilled attendance at birth and postnatal care, however these are low and reach less than one-third of families. Major reductions in total fertility, some change in gross national income and other contextual factors are likely to also have had an influence in mortality reduction. However, other factors such as socio-economic and geographic inequalities, frequent changes in government and pluralistic implementation structures have provided challenges. As coverage of health services increases, a notable gap remains in quality of facility-based care. Future gains for newborn survival in Bangladesh rest upon increased implementation at scale and greater consistency in content and quality of programmes and services.
Diffusion-controlled reactions modeling in Geant4-DNA
NASA Astrophysics Data System (ADS)
Karamitros, M.; Luan, S.; Bernal, M. A.; Allison, J.; Baldacchino, G.; Davidkova, M.; Francis, Z.; Friedland, W.; Ivantchenko, V.; Ivantchenko, A.; Mantero, A.; Nieminem, P.; Santin, G.; Tran, H. N.; Stepan, V.; Incerti, S.
2014-10-01
Context Under irradiation, a biological system undergoes a cascade of chemical reactions that can lead to an alteration of its normal operation. There are different types of radiation and many competing reactions. As a result the kinetics of chemical species is extremely complex. The simulation becomes then a powerful tool which, by describing the basic principles of chemical reactions, can reveal the dynamics of the macroscopic system. To understand the dynamics of biological systems under radiation, since the 80s there have been on-going efforts carried out by several research groups to establish a mechanistic model that consists in describing all the physical, chemical and biological phenomena following the irradiation of single cells. This approach is generally divided into a succession of stages that follow each other in time: (1) the physical stage, where the ionizing particles interact directly with the biological material; (2) the physico-chemical stage, where the targeted molecules release their energy by dissociating, creating new chemical species; (3) the chemical stage, where the new chemical species interact with each other or with the biomolecules; (4) the biological stage, where the repairing mechanisms of the cell come into play. This article focuses on the modeling of the chemical stage. Method This article presents a general method of speeding-up chemical reaction simulations in fluids based on the Smoluchowski equation and Monte-Carlo methods, where all molecules are explicitly simulated and the solvent is treated as a continuum. The model describes diffusion-controlled reactions. This method has been implemented in Geant4-DNA. The keys to the new algorithm include: (1) the combination of a method to compute time steps dynamically with a Brownian bridge process to account for chemical reactions, which avoids costly fixed time step simulations; (2) a k-d tree data structure for quickly locating, for a given molecule, its closest reactants. The performance advantage is presented in terms of complexity, and the accuracy of the new algorithm is demonstrated by simulating radiation chemistry in the context of the Geant4-DNA project. Application The time-dependent radiolytic yields of the main chemical species formed after irradiation are computed for incident protons at different energies (from 50 MeV to 500 keV). Both the time-evolution and energy dependency of the yields are discussed. The evolution, at one microsecond, of the yields of hydroxyls and solvated electrons with respect to the linear energy transfer is compared to theoretical and experimental data. According to our results, at high linear energy transfer, modeling radiation chemistry in the trading compartment representation might be adopted.
NASA Astrophysics Data System (ADS)
Bueno, M.; Schulte, R.; Meylan, S.; Villagrasa, C.
2015-11-01
The aim of this study was to evaluate the influence of the geometrical detail of the DNA on nanodosimetric parameters of track structure induced by protons and alpha particles of different energies (LET values ranging from 1 to 162.5~\\text{keV}~μ {{\\text{m}}-1} ) as calculated by Geant4-DNA Monte Carlo simulations. The first geometry considered consisted of a well-structured placement of a realistic description of the DNA double helix wrapped around cylindrical histones (GeomHist) forming a 18 kbp-long chromatin fiber. In the second geometry considered, the DNA was modeled as a total of 1800 ten bp-long homogeneous cylinders (2.3 nm diameter and 3.4 nm height) placed in random positions and orientations (GeomCyl). As for GeomHist, GeomCyl contained a DNA material equivalent to 18 kbp. Geant4-DNA track structure simulations were performed and ionizations were counted in the scoring volumes. For GeomCyl, clusters were defined as the number of ionizations (ν) scored in each 10 bp-long cylinder. For GeomHist, clusters of ionizations scored in the sugar-phosphate groups of the double-helix were revealed by the DBSCAN clustering algorithm according to a proximity criteria among ionizations separated by less than 10 bp. The topology of the ionization clusters formed using GeomHist and GeomCyl geometries were compared in terms of biologically relevant nanodosimetric quantities. The discontinuous modeling of the DNA for GeomCyl led to smaller cluster sizes than for GeomHist. The continuous modeling of the DNA molecule for GeomHist allowed the merging of ionization points by the DBSCAN algorithm giving rise to larger clusters, which were not detectable within the GeomCyl geometry. Mean cluster size (m1) was found to be of the order of 10% higher for GeomHist compared to GeomCyl for LET <15~\\text{keV}~μ {{\\text{m}}-1} . For higher LETs, the difference increased with LET similarly for protons and alpha particles. Both geometries showed the same relationship between m1 and the cumulative relative frequency of clusters with ν ≥slant 3 (f3) within statistical variations, independently of particle type. In order to obtain ionization cluster size distributions relevant for biological DNA lesions, the complex DNA geometry and a scoring method without fixed boundaries should be preferred to the simple cylindrical geometry with a fixed scoring volume.
Ehlhardt, L A; Sohlberg, M M; Glang, A; Albin, R
2005-08-10
The purpose of this pilot study was to evaluate an instructional package that facilitates learning and retention of multi-step procedures for persons with severe memory and executive function impairments resulting from traumatic brain injury. The study used a multiple baseline across participants design. Four participants, two males and two females, ranging in age from 36-58 years, were taught a 7-step e-mail task. The instructional package (TEACH-M) was the experimental intervention and the number of correct e-mail steps learned was the dependent variable. Treatment effects were replicated across the four participants and maintained at 30 days post-treatment. Generalization and social validity data further supported the treatment programme. The results suggest that individuals with severe cognitive impairments are capable of learning new skills. Directions for future research include application of the instructional package to other multi-step procedures.
Parallel Adaptive Mesh Refinement Library
NASA Technical Reports Server (NTRS)
Mac-Neice, Peter; Olson, Kevin
2005-01-01
Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.
Development of a scalable mental healthcare plan for a rural district in Ethiopia
Fekadu, Abebaw; Hanlon, Charlotte; Medhin, Girmay; Alem, Atalay; Selamu, Medhin; Giorgis, Tedla W.; Shibre, Teshome; Teferra, Solomon; Tegegn, Teketel; Breuer, Erica; Patel, Vikram; Tomlinson, Mark; Thornicroft, Graham; Prince, Martin; Lund, Crick
2016-01-01
Background Developing evidence for the implementation and scaling up of mental healthcare in low- and middle-income countries (LMIC) like Ethiopia is an urgent priority. Aims To outline a mental healthcare plan (MHCP), as a scalable template for the implementation of mental healthcare in rural Ethiopia. Method A mixed methods approach was used to develop the MHCP for the three levels of the district health system (community, health facility and healthcare organisation). Results The community packages were community case detection, community reintegration and community inclusion. The facility packages included capacity building, decision support and staff well-being. Organisational packages were programme management, supervision and sustainability. Conclusions The MHCP focused on improving demand and access at the community level, inclusive care at the facility level and sustainability at the organisation level. The MHCP represented an essential framework for the provision of integrated care and may be a useful template for similar LMIC. PMID:26447174
Seed Aid for Food Security? Some Lessons from Zimbabwe's Agricultural Recovery Programme
ERIC Educational Resources Information Center
Foti, Richard; Muringai, Violet; Mavunganidze, Zira
2007-01-01
Does agricultural input aid always lead to favourable food security outcomes? This paper describes Zimbabwe's agricultural recovery program for the 2003/2004 farming season and draws some lessons that can be used in the designing and implementation of future programs. Input aid was found to be most beneficial if it is packaged together with other…
Use of PharmaCALogy Software in a PBL Programme to Teach Nurse Prescribing
ERIC Educational Resources Information Center
Coleman, Iain P. L.; Watts, Adam S.
2007-01-01
Pharmacology is taught on a dedicated module for nurse prescribers who have a limited physical science background. To facilitate learning a problem-based approach was adopted. However, to enhance students' knowledge of drug action a PharmaCALogy software package from the British Pharmacological Society was used. Students were alternately given a…
Introducing Dynamic Mathematics Software to Secondary School Teachers: The Case of GeoGebra
ERIC Educational Resources Information Center
Hohenwarter, Judith; Hohenwarter, Markus; Lavicza, Zsolt
2009-01-01
This paper describes a study aimed to identify most common impediments related to the introduction of an open-source mathematical software package GeoGebra. We report on the analysis of data collected during a three-week professional development programme organised for middle and high school teachers in Florida. The study identified challenges…
ViPiA: A Project for European Entrepreneurship
ERIC Educational Resources Information Center
Folinas, Dimitris; Manthou, Vicky; Vlachopoulou, Maro
2006-01-01
The Virtual Pre-Incubator Accelerator (ViPiA) is a two-year project funded by the European Commission. The main goal of the programme is to create a training package for would-be entrepreneurs to assist them in developing their new venture concepts to a level at which they become attractive to potential investors. This paper describes and…
Communication between Tutors--Students in DL: A Case Study of the Hellenic Open University
ERIC Educational Resources Information Center
Panagiotis, Anastasiades; Chrysoula, Iliadou
2010-01-01
Two-way communication between students and tutors is one of the two key factors contributing to the success of a Distance Learning programme, the other being the complete and well-designed educational package. Both elements are essential to guide students' learning. By means of this communication the tutor can facilitate the interaction of…
A bone marrow toxicity model for 223Ra alpha-emitter radiopharmaceutical therapy
NASA Astrophysics Data System (ADS)
Hobbs, Robert F.; Song, Hong; Watchman, Christopher J.; Bolch, Wesley E.; Aksnes, Anne-Kirsti; Ramdahl, Thomas; Flux, Glenn D.; Sgouros, George
2012-05-01
Ra-223, an α-particle emitting bone-seeking radionuclide, has recently been used in clinical trials for osseous metastases of prostate cancer. We investigated the relationship between absorbed fraction-based red marrow dosimetry and cell level-dosimetry using a model that accounts for the expected localization of this agent relative to marrow cavity architecture. We show that cell level-based dosimetry is essential to understanding potential marrow toxicity. The GEANT4 software package was used to create simple spheres representing marrow cavities. Ra-223 was positioned on the trabecular bone surface or in the endosteal layer and simulated for decay, along with the descendants. The interior of the sphere was divided into cell-size voxels and the energy was collected in each voxel and interpreted as dose cell histograms. The average absorbed dose values and absorbed fractions were also calculated in order to compare those results with previously published values. The absorbed dose was predominantly deposited near the trabecular surface. The dose cell histogram results were used to plot the percentage of cells that received a potentially toxic absorbed dose (2 or 4 Gy) as a function of the average absorbed dose over the marrow cavity. The results show (1) a heterogeneous distribution of cellular absorbed dose, strongly dependent on the position of the cell within the marrow cavity; and (2) that increasing the average marrow cavity absorbed dose, or equivalently, increasing the administered activity resulted in only a small increase in potential marrow toxicity (i.e. the number of cells receiving more than 4 or 2 Gy), for a range of average marrow cavity absorbed doses from 1 to 20 Gy. The results from the trabecular model differ markedly from a standard absorbed fraction method while presenting comparable average dose values. These suggest that increasing the amount of radioactivity may not substantially increase the risk of toxicity, a result unavailable to the absorbed fraction method of dose calculation.
Simulation of secondary emission calorimeter for future colliders
NASA Astrophysics Data System (ADS)
Yetkin, E. A.; Yetkin, T.; Ozok, F.; Iren, E.; Erduran, M. N.
2018-03-01
We present updated results from a simulation study of a conceptual sampling electromagnetic calorimeter based on secondary electron emission process. We implemented the secondary electron emission process in Geant4 as a user physics list and produced the energy spectrum and yield of secondary electrons. The energy resolution of the SEE calorimeter was σ/E = (41%) GeV1/2/√E and the response linearity to electromagnetic showers was to within 1.5%. The simulation results were also compared with a traditional scintillator calorimeter.
NASA Astrophysics Data System (ADS)
Salman, Z.; Prokscha, T.; Keller, P.; Morenzoni, E.; Saadaoui, H.; Sedlak, K.; Shiroka, T.; Sidorov, S.; Suter, A.; Vrankovic, V.; Weber, H.-P.
We usedGeant4 to accurately model the low energy muons (LEM) beam line, including scattering due to the 10-nm thin carbon foil in the trigger detector. Simulations of the beam line transmission give excellent agreement with experimental results for beam energies higher than ∼ 12keV.We use these simulations to design and model the operation of a spin rotator for the LEM spectrometer, which will enable longitudinal field measurements in the near future.
∆ E /∆ E Measurements of Energetic Ions Using CVD Diamond Detectors
Alghamdi, Ahmed; Heilbronn, Lawrence; Castellanos, Luis A.; ...
2018-06-20
Experimental and computational results of a Δ E /Δ E diamond detection system are presented. The Δ E /Δ E detection system was evaluated using energetic proton and iron beams striking thick polyethylene targets at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The measured data for diamond sensor A show good agreement with the Geant4 simulation. In addition, simulations have demonstrated the ability to identify hydrogen isotopes using a diamond detection system.
∆ E /∆ E Measurements of Energetic Ions Using CVD Diamond Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alghamdi, Ahmed; Heilbronn, Lawrence; Castellanos, Luis A.
Experimental and computational results of a Δ E /Δ E diamond detection system are presented. The Δ E /Δ E detection system was evaluated using energetic proton and iron beams striking thick polyethylene targets at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The measured data for diamond sensor A show good agreement with the Geant4 simulation. In addition, simulations have demonstrated the ability to identify hydrogen isotopes using a diamond detection system.
Time Resolved Phonon Spectroscopy, Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goett, Johnny; Zhu, Brian
TRPS code was developed for the project "Time Resolved Phonon Spectroscopy". Routines contained in this piece of software were specially created to model phonon generation and tracking within materials that interact with ionizing radiation, particularly applicable to the modeling of cryogenic radiation detectors for dark matter and neutrino research. These routines were created to link seamlessly with the open source Geant4 framework for the modeling of radiation transport in matter, with the explicit intent of open sourcing them for eventual integration into that code base.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xinhua; Zhang Da; Liu, Bob
2012-07-15
Purpose: To provide transmission data for broad 25-39 kVp (kilovolt peak) W/Rh and 25-49 kVp W/Al (target/filter, W-tungsten, Rh-rhodium, and Al-aluminum) x-ray beams through common shielding materials, such as lead, concrete, gypsum wallboard, wood, steel, and plate glass. Methods: The unfiltered W-target x-ray spectra measured on a Selenia Dimensions system (Hologic Inc., Bedford, MA) set at 20-49 kVp were, respectively, filtered using 50-{mu}m Rh and 700-{mu}m Al, and were subsequently used for Monte Carlo calculations. The transmission of broad x-ray beams through shielding materials was simulated using Geant4 low energy electromagnetic physics package with photon- and electron-processes above 250 eV,more » including photoelectric effect, Compton scattering, and Rayleigh scattering. The calculated transmission data were fitted using Archer equation with a robust fitting algorithm. Results: The transmission of broad x-ray beams through the above-mentioned shielding materials was calculated down to about 10{sup -5} for 25-39 kVp W/Rh and 25-49 kVp W/Al. The fitted results of {alpha}, {beta}, and {gamma} in Archer equation were provided. The {alpha} values of kVp Greater-Than-Or-Slanted-Equal-To 40 were approximately consistent with those of NCRP Report No. 147. Conclusions: These data provide inputs for the shielding designs of x-ray imaging facilities with W-anode x-ray beams, such as from Selenia Dimensions.« less
Simulation and Optimization of Soft Gamma-Ray Concentrator Using Thin Film Multilayer Structures
NASA Astrophysics Data System (ADS)
Shirazi, Farzane; Bloser, Peter F.; Aliotta, Paul H.; Echt, Olof; Krzanowski, James E.; Legere, Jason S.; McConnell, Mark L.; Tsavalas, John G.; Wong, Emily N.; Kippen, R. Marc
2016-04-01
We are reporting the investigation result of channeling and concentrating soft gamma rays (above 100 keV) using multilayer thin films of alternating low and high-density materials. This will enable future telescopes for higher energies with same mission parameters already proven by NuSTAR. Base on initial investigations at Los Alamos National Laboratory (LANL) we are investigating of producing these multilayers with the required thicknesses and smoothness using magnetron sputter (MS) and pulsed laser deposition (PLD) techniques. A suitable arrangement of bent multilayer structures of alternating low and high-density materials will channel soft gamma-ray photons via total external reflection and then concentrate the incident radiation to a point. The high-energy astrophysics group at the UNH Space Science Center (SSC) is testing these structures for their ability to channel 122 keV gamma rays in the laboratory. In addition of experimental works, we have been working on gamma ray tracing model of the concentrator by IDL, making use of optical properties calculated by the IMD software. This modeling allows us to calculate efficiency and focal length for different energy bands and materials and compare them with experimental result. Also we will combine concentrator modeling result and detector simulation by Geant4 to archive a complete package of gamma-ray telescope simulation. If successful, this technology will offer the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and opening the field up to balloon-borne instruments and providing greatly increased sensitivity for modest cost and complexity.
Breaking the silos: The art documentation suite
Kutschke, Robert K.
2015-12-23
The art event-processing framework is used by almost all new experiments at Fermilab, and by several outside of Fermilab. All use art as an external product in the same sense that the compiler, ROOT, Geant4, CLHEP and boost are external products. The art team has embarked on a campaign to document art and develop training materials for new users. Many new users of art have little or no knowledge of C++, software engineering, build systems or the many external packages used by art or their experiments, such as ROOT, CLHEP, HEPPDT, and boost. To effectively teach art requires that themore » training materials include appropriate introductions to these topics as they are encountered. Experience has shown that simply referring readers to the existing native documentation does not work, too often a simple idea that they need to understand is described in a context that presumes prerequisites that are unimportant for a beginning user of art. There is the additional complication that the training materials must be presented in a way that does not presume knowledge of any of the experiments using art. Finally, new users of art arrive at random times throughout the year and the training materials must allow them to start to learn art at any time. This presentation will explain the strategies adopted by the art team to develop a documentation suite that complies with these boundary conditions. It will also show the present status of the documentation suite, including feedback the art team has received from pilot users.« less
Multifrequency data analysis software on STARLINK
NASA Technical Reports Server (NTRS)
Allan, P. M.
1992-01-01
Although the STARLINK project was set up to provide image processing facilities to UK astronomers, it has grown over the last 12 years to the extent that it now provides most of the data analysis facilities for UK astronomers. One aspect of the growth of the STARLINK network is that it now has to cater for astronomers working in a diverse range of wavelengths. Since a given individual may be working with data obtained in a variety of wavelengths, it is most convenient if the data can be stored in a common format and the programs that analyze the data have a similar 'look and feel'. What is known as 'STARLINK software' is obtained from many sources: STARLINK funded programmers; astronomers; foreign projects such as AIPS; generally available shareware; and commercial sources when this proves cost effective. This means that the ideal situation of a completely integrated system cannot be realized in practice. Nevertheless, many of the major packages written by STARLINK application programmers and by astronomers do use a common data format, based on the Hierarchical Data System, so that interchange of data between packages designed separately from each other is simply a matter of using the same file names. For example, as astronomer might use KAPPA to read some optical spectra off a FITS tape, then use CCDPACK to debias and flat field the data (it is easy to set up an overnight batch job to do this if there is a lot of data), then use KAPPA to have a quick look at the data and then use Figaro to reduce the spectra. It is useful to divide data analysis packages into wavelength specific packages, or even instrument specific packages, and general purpose ones. Once the instrumental signature has been removed from some data, any appropriate general purpose package can be used to analyze te data. For example, the ASTERIX package deals with x-ray data reduction, but after dealing with all of the x-ray specific processing, an astronomer may well want to find the brightness of objects in a given frame. Since ASTERIX uses the standard STARLINK data format, the astronomer can use PHOTOM or DAOPHOT 2 to measure the brightness of the objects. Although DAOPHOT was written with optical astronomy in mind, it is useful for analyzing data from several wavelengths. The ability of DAOPHOT 2 to handle non-standard point spread functions can be especially useful in many areas of astronomy.
Lamb, S E; Williams, M A; Williamson, E M; Gates, S; Withers, E J; Mt-Isa, S; Ashby, D; Castelnuovo, E; Underwood, M; Cooke, M W
2012-01-01
To examine the clinical effectiveness of a stepped care approach over a 12-month period after an acute whiplash injury; to estimate the costs and cost-effectiveness of each strategy including treatments and subsequent health-care costs; and to gain participants' perspective on experiencing whiplash injury, NHS treatment, and recovery within the context of the Managing Injuries of the Neck Trial (MINT). Two linked, pragmatic, randomised controlled trials. In Step 1, emergency departments (EDs) were cluster randomised to usual care advice (UCA) or The Whiplash Book advice (WBA)/active management advice. In Step 2, participants were individually randomised to either a single session of advice from a physiotherapist or a physiotherapy package of up to six sessions. An economic evaluation and qualitative study were run in parallel with the trial. Twelve NHS trusts in England comprising 15 EDs. People who attended EDs with an acute whiplash injury of whiplash-associated disorder grades I-III were eligible for Step 1. People who had attended EDs with whiplash injuries and had persistent symptoms 3 weeks after ED attendance were eligible for Step 2. In Step 1, the control intervention was UCA and the experimental intervention was a psycho-educational intervention (WBA/active management advice). In Step 2 the control treatment was reinforcement of the advice provided in Step 1 and the experimental intervention was a package of up to six physiotherapy treatments. The primary outcome was the Neck Disability Index (NDI), which measures severity and frequency of pain and symptoms, and a range of activities including self-care, driving, reading, sleeping and recreation. Secondary outcomes included the mental and physical health-related quality-of-life (HRQoL) subscales of the Short Form questionnaire-12 items (SF-12) and the number of work days lost. A total of 3851 patients were recruited to Step 1 of the trial. 1598 patients attending EDs were randomised to UCA, and 2253 were randomised to WBA/active management. Outcome data were obtained at 12 months for 70% and 80% of participants at Step 1 and Step 2, respectively. The majority of people recovered from the injury. Eighteen per cent of the Step 1 cohort had late whiplash syndrome. There was no statistically or clinically significant difference observed in any of the outcomes for participants attending EDs randomised to UCA or active management advice [difference in NDI 0.5, 95% confidence interval (CI) -1.8 to 2.8]. In Step 2 the physiotherapy package resulted in improvements in neck disability at 4 months compared with a single advice session, but these effects were small at the population level (difference in NDI -3.2, 95% CI -5.8 to -0.7). The physiotherapy package was accompanied by a significant reduction in the number of work days lost at 4-month follow-up (difference -40.2, 95% CI -44.3 to -35.8). MINT suggests that enhanced psycho-educational interventions in EDs are no more effective than UCA in reducing the burden of acute whiplash injuries. A physiotherapy package provided to people who have persisting symptoms within the first 6 weeks of injury produced additional short-term benefits in neck disability compared with a single physiotherapy advice session. However, from a health-care perspective, the physiotherapy package was not cost-effective at current levels of willingness to pay. Both experimental treatments were associated with increased cost with no discernible gain in health-related quality of life. However, an important benefit of the physiotherapy package was a reduction in work days lost; consequently, the intervention may prove cost-effective at the societal level. Current Controlled Trials ISRCTN33302125. This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 16, No. 49. See the HTA programme website for further project information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvi, Marco
For all experiments dealing with the rare event searches (neutrino, dark matter, neutrino-less double-beta decay), the reduction of the radioactive background is one of the most important and difficult tasks. There are basically two types of background, electron recoils and nuclear recoils. The electron recoil background is mostly from the gamma rays through the radioactive decay. The nuclear recoil background is from neutrons from spontaneous fission, (α, n) reactions and muoninduced interactions (spallations, photo-nuclear and hadronic interaction). The external gammas and neutrons from the muons and laboratory environment, can be reduced by operating the detector at deep underground laboratories andmore » by placing active or passive shield materials around the detector. The radioactivity of the detector materials also contributes to the background; in order to reduce it a careful screening campaign is mandatory to select highly radio-pure materials. In this review I present the status of current Monte Carlo simulations aimed to estimate and reproduce the background induced by gamma and neutron radioactivity of the materials and the shield of rare event search experiment. For the electromagnetic background a good level of agreement between the data and the MC simulation has been reached by the XENON100 and EDELWEISS experiments, using the GEANT4 toolkit. For the neutron background, a comparison between the yield of neutrons from spontaneous fission and (α, n) obtained with two dedicated softwares, SOURCES-4A and the one developed by Mei-Zhang-Hime, show a good overall agreement, with total yields within a factor 2 difference. The energy spectra from SOURCES-4A are in general smoother, while those from MZH presents sharp peaks. The neutron propagation through various materials has been studied with two MC codes, GEANT4 and MCNPX, showing a reasonably good agreement, inside 50% discrepancy.« less
Review of Monte Carlo simulations for backgrounds from radioactivity
NASA Astrophysics Data System (ADS)
Selvi, Marco
2013-08-01
For all experiments dealing with the rare event searches (neutrino, dark matter, neutrino-less double-beta decay), the reduction of the radioactive background is one of the most important and difficult tasks. There are basically two types of background, electron recoils and nuclear recoils. The electron recoil background is mostly from the gamma rays through the radioactive decay. The nuclear recoil background is from neutrons from spontaneous fission, (α, n) reactions and muoninduced interactions (spallations, photo-nuclear and hadronic interaction). The external gammas and neutrons from the muons and laboratory environment, can be reduced by operating the detector at deep underground laboratories and by placing active or passive shield materials around the detector. The radioactivity of the detector materials also contributes to the background; in order to reduce it a careful screening campaign is mandatory to select highly radio-pure materials. In this review I present the status of current Monte Carlo simulations aimed to estimate and reproduce the background induced by gamma and neutron radioactivity of the materials and the shield of rare event search experiment. For the electromagnetic background a good level of agreement between the data and the MC simulation has been reached by the XENON100 and EDELWEISS experiments, using the GEANT4 toolkit. For the neutron background, a comparison between the yield of neutrons from spontaneous fission and (α, n) obtained with two dedicated softwares, SOURCES-4A and the one developed by Mei-Zhang-Hime, show a good overall agreement, with total yields within a factor 2 difference. The energy spectra from SOURCES-4A are in general smoother, while those from MZH presents sharp peaks. The neutron propagation through various materials has been studied with two MC codes, GEANT4 and MCNPX, showing a reasonably good agreement, inside 50% discrepancy.
Common Ada (Trade Name) Missile Packages (CAMP). Volume 2. Software Parts Composition Study Results
1986-05-01
O’ »UNDING NOS PROGRAM iLlMfNT NO 63756A Common Ad 3® Mi ssile Packages (CAMP), Volumell: F-ROJlCT NO. TASK NO «VOR« UNIT NO ia ...i • • ni^’-’ M JM"i’. ’".nMI !• !••«••• Tl’VyiA V^W^ ^•• IA ’*’ ^•.•J^^V^l*"¥W.*1*’.« In researching the feasibility of automating the software... good as that produced by an expert Ada programmer. The user Is provided with the expected format of the Input data. This type of assistance makes
UNIX programmer`s environment and configuration control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, T.R.; Wyatt, P.W.
1993-12-31
A package of UNIX utilities has been developed which unities the advantages of the public domain utility ``imake`` and a configuration control system. The ``imake`` utility is portable It allows a user to make Makefiles on a wide variety of platforms without worrying about the machine-dependent idiosyncracies of the UNIX utility ``make.`` Makefiles are a labor-saving device for compiling and linking complicated programs, and ``imake`` is a labor-saving device for making Makefiles, as well as other useful software (like a program`s internal dependencies on included files). This ``Environment,`` which has been developed around ``imake,`` allows a programmer to manage amore » complicated project consisting of multiple executables which may each link with multiple user-created libraries. The configuration control aspect consists of a directory hierarchy (a baseline) which is mirrored in a developer`s workspace. The workspace includes a minimum of files copied from the baseline; it employs soft links into the baseline wherever possible. The utilities are a multi-tiered suite of Bourne shells to copy or check out sources, check them back in, import new sources (sources which are not in the baseline) and link them appropriately, create new low-level directories and link them, compare with the baseline, update Makefiles with minimal effort, and handle dependencies. The directory hierarchy utilizes a single source repository, which is mirrored in the baseline and in a workspace for a several platform architectures. The system was originally written to support C code on Sun-4`s and RS6000`s. It has now been extended to support FORTRAN as well as C on SGI and Cray YMP platforms as well as Sun-4`s and RS6000`s.« less
SU-F-T-672: A Novel Kernel-Based Dose Engine for KeV Photon Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhart, M; Fast, M F; Nill, S
2016-06-15
Purpose: Mimicking state-of-the-art patient radiotherapy with high precision irradiators for small animals allows advanced dose-effect studies and radiobiological investigations. One example is the implementation of pre-clinical IMRT-like irradiations, which requires the development of inverse planning for keV photon beams. As a first step, we present a novel kernel-based dose calculation engine for keV x-rays with explicit consideration of energy and material dependencies. Methods: We follow a superposition-convolution approach adapted to keV x-rays, based on previously published work on micro-beam therapy. In small animal radiotherapy, we assume local energy deposition at the photon interaction point, since the electron ranges in tissuemore » are of the same order of magnitude as the voxel size. This allows us to use photon-only kernel sets generated by MC simulations, which are pre-calculated for six energy windows and ten base materials. We validate our stand-alone dose engine against Geant4 MC simulations for various beam configurations in water, slab phantoms with bone and lung inserts, and on a mouse CT with (0.275mm)3 voxels. Results: We observe good agreement for all cases. For field sizes of 1mm{sup 2} to 1cm{sup 2} in water, the depth dose curves agree within 1% (mean), with the largest deviations in the first voxel (4%) and at depths>5cm (<2.5%). The out-of-field doses at 1cm depth agree within 8% (mean) for all but the smallest field size. In slab geometries, the mean agreement was within 3%, with maximum deviations of 8% at water-bone interfaces. The γ-index (1mm/1%) passing rate for a single-field mouse irradiation is 71%. Conclusion: The presented dose engine yields an accurate representation of keV-photon doses suitable for inverse treatment planning for IMRT. It has the potential to become a significantly faster yet sufficiently accurate alternative to full MC simulations. Further investigations will focus on energy sampling as well as calculation times. Research at ICR is also supported by Cancer Research UK under Programme C33589/A19727 and NHS funding to the NIHR Biomedical Research Centre at RMH and ICR. MFF is supported by Cancer Research UK under Programme C33589/A19908.« less
VECC array for Nuclear fast Timing and angUlar corRElation studies (VENTURE)
NASA Astrophysics Data System (ADS)
Alam, S. S.; Bhattacharjee, T.; Banerjee, D.; Saha, A.; Pandit, Deepak; Mondal, D.; Mukhopadhyay, S.; Pal, Surajit; Bhaskar, P.; Das, S. K.; Banerjee, S. R.
2017-12-01
The VECC array for Nuclear fast Timing and angUlar corRElation studies (VENTURE) has been developed using several fast Cerium-Bromide (CeBr3) scintillators coupled to Hamamatsu R9779 Photomultiplier tubes. The CeBr3 detector has been characterised for the spectroscopic properties like energy response, energy resolution, timing resolution and detection efficiency. The response and efficiency of the detector have been compared with the results obtained from a Monte Carlo simulation with GEANT3 package. A time resolution of 144(1) ps and 109(1) ps was obtained for a single detector using 622-512 keV and 1173-1332 keV cascades respectively. The Generalised Centroid Difference (GCD) method has been employed with CeBr3 detectors by measuring the level lifetimes for the 511.9 keV level of 106Pd and the 160.6 and 383.8 keV levels of 133Cs. The angular correlation measurement was performed for the 1173-1332 keV cascade in 60Ni and the 228-49 keV cascade of 132I nucleus, populated from the decay of 132Te produced via 238U(α, f) reaction.
A Detailed FLUKA-2005 Monte Carlo Simulation for the ATIC Detector
NASA Technical Reports Server (NTRS)
Gunasingha, R. M.; Fazely, A. R.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Ganel, O.; Guzik, T. G.
2006-01-01
We have performed a detailed Monte Carlo (MC) calculation for the Advanced thin Ionization Calorimeter (ATIC) detector using the MC code FLUKA-2005 which is capable of simulating particles up to 10 PeV. The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon Bight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy; using a fully active Bismuth Germanate @GO) calorimeter. It is equipped with a large mosaic of silicon detector pixels capable of charge identification and as a particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the middle and below a 0.75 nuclear interaction length graphite target. Our calculations are part of an analysis package of both A- and energy-dependences of different nuclei interacting with the ATIC detector. The MC simulates the responses of different components of the detector such as the Simatrix, the scintillator hodoscopes and the BGO calorimeter to various nuclei. We also show comparisons of the FLUKA-2005 MC calculations with a GEANT calculation and data for protons, He and CNO.
Lauritsen, T.; Korichi, A.; Zhu, S.; ...
2016-08-21
In this paper, we provide a formalism for the characterization of tracking arrays with emphasis on the proper corrections required to extract their photopeak efficiencies and peak-to-total ratios. The methods are first applied to Gammasphere, a well characterized 4π array based on the principle of Compton suppression, and subsequently to GRETINA. In addition, the tracking efficiencies are then discussed and some guidelines as to what clustering angle to use in the tracking algorithm are presented. It was possible, using GEANT4 simulations, to scale the measured efficiencies up to the expected values for the full 4π implementation of GRETA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lauritsen, T.; Korichi, A.; Zhu, S.
2016-11-01
In this paper, we provide a formalism for the characterization of the tracking arrays with emphasis on the proper corrections required to extract their photopeak efficiencies and peak-to-total ratios. The methods are first applied to Gammasphere, a well characterized 4pi array based on the principle of Compton suppression, and subsequently to GRETINA. The tracking efficiencies are then discussed and some guidelines as to what clustering angle to use in the tracking algorithm are presented. It was possible, using GEANT4 simulations, to scale the measured efficiencies up to the expected values for the full 4pi implementation of GRETA.
ERIC Educational Resources Information Center
Orey, Michael; And Others
1994-01-01
Describes the use of a commercial hypermedia package for the development of an intelligent tutoring system (ITS) for the Army's Mobile Subscriber Remote Telephone. Time comparisons with an ITS developed by programmers are discussed; users' evaluations of the two versions are described; and questionnaires used in the study are appended. (Contains…
Combination HIV prevention for female sex workers: what is the evidence?
Bekker, Linda-Gail; Johnson, Leigh; Cowan, Frances; Overs, Cheryl; Besada, Donela; Hillier, Sharon; Cates, Willard
2015-01-03
Sex work occurs in many forms and sex workers of all genders have been affected by HIV epidemics worldwide. The determinants of HIV risk associated with sex work occur at several levels, including individual biological and behavioural, dyadic and network, and community and social environmental levels. Evidence indicates that effective HIV prevention packages for sex workers should include combinations of biomedical, behavioural, and structural interventions tailored to local contexts, and be led and implemented by sex worker communities. A model simulation based on the South African heterosexual epidemic suggests that condom promotion and distribution programmes in South Africa have already reduced HIV incidence in sex workers and their clients by more than 70%. Under optimistic model assumptions, oral pre-exposure prophylaxis together with test and treat programmes could further reduce HIV incidence in South African sex workers and their clients by up to 40% over a 10-year period. Combining these biomedical approaches with a prevention package, including behavioural and structural components as part of a community-driven approach, will help to reduce HIV infection in sex workers in different settings worldwide. Copyright © 2015 Elsevier Ltd. All rights reserved.
Radovanović, Mirjana; Rus-Makovec, Maja
2018-03-01
Using the modified Theory of Planned Behaviour (mTPB), different indicators of therapeutic success were studied to understand pro-abstinence behavioural orientation during an 18-year after-care period following a 3-month intensive alcoholism treatment. The indicators were: perceived needs satisfaction (NS), normative differential (ND), perceived alcohol utility (UT), beliefs about treatment programme benefits (BE) and behavioural intentions (BI). The sample of 167 patients who consecutively started an intensive alcoholism treatment programme has been followed-up for 18 years, using standardised ailed instruments at the end of the treatment, and in the years 4-5, 9 and 18 of follow-up. The last data collection was completed by 32 subjects in 2010. The analysis followed the standard explore-analyse-explore approach. After the initial descriptive exploration of data, multivariate analysis of variance (MANOVA) in SPSS statistical package was set to explore between-groups and within-groups differences over time. At the between-group level, BI remained stable at the same level as at the end of the treatment programme, whereas BE and UT robustly changed over time and levelled off after 10 years of follow-up. NS and ND show a trend of pro-abstinent orientation and level off after 10 years of follow-up, although the trend is not significant. The same results were confirmed by the within-subject level. Studied constructs stabilised after ten years of follow-up, apart from BI. The latter suggests that BI level needed for completion of an intensive treatment programme suffices for the maintenance of abstinence when accompanied by the change in perception of alcohol usefulness.
A New Image Processing and GIS Package
NASA Technical Reports Server (NTRS)
Rickman, D.; Luvall, J. C.; Cheng, T.
1998-01-01
The image processing and GIS package ELAS was developed during the 1980's by NASA. It proved to be a popular, influential and powerful in the manipulation of digital imagery. Before the advent of PC's it was used by hundreds of institutions, mostly schools. It is the unquestioned, direct progenitor or two commercial GIS remote sensing packages, ERDAS and MapX and influenced others, such as PCI. Its power was demonstrated by its use for work far beyond its original purpose, having worked several different types of medical imagery, photomicrographs of rock, images of turtle flippers and numerous other esoteric imagery. Although development largely stopped in the early 1990's the package still offers as much or more power and flexibility than any other roughly comparable package, public or commercial. It is a huge body or code, representing more than a decade of work by full time, professional programmers. The current versions all have several deficiencies compared to current software standards and usage, notably its strictly command line interface. In order to support their research needs the authors are in the process of fundamentally changing ELAS, and in the process greatly increasing its power, utility, and ease of use. The new software is called ELAS II. This paper discusses the design of ELAS II.
Patient blood management, what does this actually mean for neonates and infants?
Crighton, G L; New, H V; Liley, H G; Stanworth, S J
2018-04-01
Patient blood management (PBM) refers to an evidence-based package of care that aims to improve patient outcomes by optimal use of transfusion therapy, including managing anaemia, preventing blood loss and improving anaemia tolerance in surgical and other patients who may need transfusion. In adults, PBM programmes are well established, yet the definition and implementation of PBM in neonates and children lags behind. Neonates and infants are frequently transfused, yet they are often under-represented in transfusion trials. Adult PBM programmes may not be directly applicable to these populations. We review the literature in neonatal (and applicable paediatric) transfusion medicine and propose specific neonatal PBM definitions and elements. © 2018 British Blood Transfusion Society.
Parsley: a Command-Line Parser for Astronomical Applications
NASA Astrophysics Data System (ADS)
Deich, William
Parsley is a sophisticated keyword + value parser, packaged as a library of routines that offers an easy method for providing command-line arguments to programs. It makes it easy for the user to enter values, and it makes it easy for the programmer to collect and validate the user's entries. Parsley is tuned for astronomical applications: for example, dates entered in Julian, Modified Julian, calendar, or several other formats are all recognized without special effort by the user or by the programmer; angles can be entered using decimal degrees or dd:mm:ss; time-like intervals as decimal hours, hh:mm:ss, or a variety of other units. Vectors of data are accepted as readily as scalars.
Spacesuit Data Display and Management System
NASA Technical Reports Server (NTRS)
Hall, David G.; Sells, Aaron; Shah, Hemal
2009-01-01
A prototype embedded avionics system has been designed for the next generation of NASA extra-vehicular-activity (EVA) spacesuits. The system performs biomedical and other sensor monitoring, image capture, data display, and data transmission. An existing NASA Phase I and II award winning design for an embedded computing system (ZIN vMetrics - BioWATCH) has been modified. The unit has a reliable, compact form factor with flexible packaging options. These innovations are significant, because current state-of-the-art EVA spacesuits do not provide capability for data displays or embedded data acquisition and management. The Phase 1 effort achieved Technology Readiness Level 4 (high fidelity breadboard demonstration). The breadboard uses a commercial-grade field-programmable gate array (FPGA) with embedded processor core that can be upgraded to a space-rated device for future revisions.
NASA Astrophysics Data System (ADS)
Liu, L.; Dong, Y.; Bao, G.; Ni, W.-T.; Shaul, D. N. A.
2010-01-01
As ASTROD I travels through space, its test mass will accrue charge due to exposure of the spacecraft to high-energy particles. This test mass charge will result in Coulomb forces between the test mass and the surrounding electrodes. In earlier work, we have used the GEANT 4 toolkit to simulate charging of the ASTROD test mass due to cosmic-ray protons of energies between 0.1 and 1000 GeV at solar maximum and at solar minimum. Here we use GEANT 4 to simulate the charging process due to solar energetic particle events and interplanetary electrons. We then estimate the test mass acceleration noise due to these fluxes. The predicted charging rates range from 2247 e+/s to 47,055 e+/s, at peak intensity, for the four largest SEP events in September and October 1989. Although the noise due to charging exceeds the ASTROD I budget for the two larger events, it can be suppressed through continuous discharging. The acceleration noise during the two small events is well below the design target. The charging rate of the ASTROD I test mass due to interplanetary electrons in this simulation is about -11% of the cosmic-ray protons at solar minimum, and over -37% at solar maximum. In addition to the Monte Carlo uncertainty, an error of ±30% in the net charging rates should be added to account for uncertainties in the spectra, physics models and geometry implementations.
Chen, Chia-Lin; Wang, Yuchuan; Lee, Jason J S; Tsui, Benjamin M W
2008-07-01
The authors developed and validated an efficient Monte Carlo simulation (MCS) workflow to facilitate small animal pinhole SPECT imaging research. This workflow seamlessly integrates two existing MCS tools: simulation system for emission tomography (SimSET) and GEANT4 application for emission tomography (GATE). Specifically, we retained the strength of GATE in describing complex collimator/detector configurations to meet the anticipated needs for studying advanced pinhole collimation (e.g., multipinhole) geometry, while inserting the fast SimSET photon history generator (PHG) to circumvent the relatively slow GEANT4 MCS code used by GATE in simulating photon interactions inside voxelized phantoms. For validation, data generated from this new SimSET-GATE workflow were compared with those from GATE-only simulations as well as experimental measurements obtained using a commercial small animal pinhole SPECT system. Our results showed excellent agreement (e.g., in system point response functions and energy spectra) between SimSET-GATE and GATE-only simulations, and, more importantly, a significant computational speedup (up to approximately 10-fold) provided by the new workflow. Satisfactory agreement between MCS results and experimental data were also observed. In conclusion, the authors have successfully integrated SimSET photon history generator in GATE for fast and realistic pinhole SPECT simulations, which can facilitate research in, for example, the development and application of quantitative pinhole and multipinhole SPECT for small animal imaging. This integrated simulation tool can also be adapted for studying other preclinical and clinical SPECT techniques.
NASA Astrophysics Data System (ADS)
Everett, Samantha
2010-10-01
A transmission curve experiment was carried out to measure the range of beta particles in aluminum in the health physics laboratory located on the campus of Texas Southern University. The transmission count rate through aluminum for varying radiation lengths was measured using beta particles emitted from a low activity (˜1 μCi) Sr-90 source. The count rate intensity was recorded using a Geiger Mueller tube (SGC N210/BNC) with an active volume of 61 cm^3 within a systematic detection accuracy of a few percent. We compared these data with a realistic simulation of the experimental setup using the Geant4 Monte Carlo toolkit (version 9.3). The purpose of this study was to benchmark our Monte Carlo for future experiments as part of a more comprehensive research program. Transmission curves were simulated based on the standard and low-energy electromagnetic physics models, and using the radioactive decay module for the electrons primary energy distribution. To ensure the validity of our measurements, linear extrapolation techniques were employed to determine the in-medium beta particle range from the measured data and was found to be 1.87 g/cm^2 (˜0.693 cm), in agreement with literature values. We found that the general shape of the measured data and simulated curves were comparable; however, a discrepancy in the relative count rates was observed. The origin of this disagreement is still under investigation.
Fast Simulation of Electromagnetic Showers in the ATLAS Calorimeter: Frozen Showers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barberio, E.; /Melbourne U.; Boudreau, J.
2011-11-29
One of the most time consuming process simulating pp interactions in the ATLAS detector at LHC is the simulation of electromagnetic showers in the calorimeter. In order to speed up the event simulation several parametrisation methods are available in ATLAS. In this paper we present a short description of a frozen shower technique, together with some recent benchmarks and comparison with full simulation. An expected high rate of proton-proton collisions in ATLAS detector at LHC requires large samples of simulated events (Monte Carlo) to study various physics processes. A detailed simulation of particle reactions ('full simulation') in the ATLAS detectormore » is based on GEANT4 and is very accurate. However, due to complexity of the detector, high particle multiplicity and GEANT4 itself, the average CPU time spend to simulate typical QCD event in pp collision is 20 or more minutes for modern computers. During detector simulation the largest time is spend in the calorimeters (up to 70%) most of which is required for electromagnetic particles in the electromagnetic (EM) part of the calorimeters. This is the motivation for fast simulation approaches which reduce the simulation time without affecting the accuracy. Several of fast simulation methods available within the ATLAS simulation framework (standard Athena based simulation program) are discussed here with the focus on the novel frozen shower library (FS) technique. The results obtained with FS are presented here as well.« less
Swain, Nicola; Gale, Christopher
2014-09-01
Previous studies have shown that healthcare workers experience high levels of aggression from patients. Prevention packages to address this have received little research support. Communication skills have been shown to influence individuals' experience of aggression and are also amenable to training. This study aims to deliver a communication skills training package that will reduce the experience of aggression in the workplace for healthcare workers. An interactive, multimedia communication skills package was developed that would be suitable for community healthcare workers. The training consisted of four workshops, including teaching, discussion and DVD illustrative examples. These were based on research and clinical experience. This intervention was delivered in two community care organisations over several months. Fifty-six community healthcare workers took part in the trial in small groups. There were 46 females and 10 males with a median age of 45-54 years. For each group a series of four communication skills workshops were given. Measurements of perceived aggression and wellbeing were taken before the workshops, at the end of the workshops, one month after and two months after. Results show statistically significant reductions in perceived aggression one and two months after baseline measures (p<0.01). Results also suggest reductions in distress and increases in general mental wellness (p<0.01). Evaluation of the programme by participants was positive. A brief communication skills training programme is both enjoyable and shows decreases in perceived aggression, distress, and increases in general mental wellness. A full RCT of this intervention is warranted. Copyright © 2014 Elsevier Ltd. All rights reserved.
Choosing front-of-package food labelling nutritional criteria: how smart were 'Smart Choices'?
Roberto, Christina A; Bragg, Marie A; Livingston, Kara A; Harris, Jennifer L; Thompson, Jackie M; Seamans, Marissa J; Brownell, Kelly D
2012-02-01
The 'Smart Choices' programme was an industry-driven, front-of-package (FOP) nutritional labelling system introduced in the USA in August 2009, ostensibly to help consumers select healthier options during food shopping. Its nutritional criteria were developed by members of the food industry in collaboration with nutrition and public health experts and government officials. The aim of the present study was to test the extent to which products labelled as 'Smart Choices' could be classified as healthy choices on the basis of the Nutrient Profile Model (NPM), a non-industry-developed, validated nutritional standard. A total of 100 packaged products that qualified for a 'Smart Choices' designation were sampled from eight food and beverage categories. All products were evaluated using the NPM method. In all, 64 % of the products deemed 'Smart Choices' did not meet the NPM standard for a healthy product. Within each 'Smart Choices' category, 0 % of condiments, 8·70 % of fats and oils, 15·63 % of cereals and 31·58 % of snacks and sweets met NPM thresholds. All sampled soups, beverages, desserts and grains deemed 'Smart Choices' were considered healthy according to the NPM standard. The 'Smart Choices' programme is an example of industries' attempts at self-regulation. More than 60 % of foods that received the 'Smart Choices' label did not meet standard nutritional criteria for a 'healthy' food choice, suggesting that industries' involvement in designing labelling systems should be scrutinized. The NPM system may be a good option as the basis for establishing FOP labelling criteria, although more comparisons with other systems are needed.
Douglass, Michael; Bezak, Eva; Penfold, Scott
2013-07-01
Investigation of increased radiation dose deposition due to gold nanoparticles (GNPs) using a 3D computational cell model during x-ray radiotherapy. Two GNP simulation scenarios were set up in Geant4; a single 400 nm diameter gold cluster randomly positioned in the cytoplasm and a 300 nm gold layer around the nucleus of the cell. Using an 80 kVp photon beam, the effect of GNP on the dose deposition in five modeled regions of the cell including cytoplasm, membrane, and nucleus was simulated. Two Geant4 physics lists were tested: the default Livermore and custom built Livermore/DNA hybrid physics list. 10(6) particles were simulated at 840 cells in the simulation. Each cell was randomly placed with random orientation and a diameter varying between 9 and 13 μm. A mathematical algorithm was used to ensure that none of the 840 cells overlapped. The energy dependence of the GNP physical dose enhancement effect was calculated by simulating the dose deposition in the cells with two energy spectra of 80 kVp and 6 MV. The contribution from Auger electrons was investigated by comparing the two GNP simulation scenarios while activating and deactivating atomic de-excitation processes in Geant4. The physical dose enhancement ratio (DER) of GNP was calculated using the Monte Carlo model. The model has demonstrated that the DER depends on the amount of gold and the position of the gold cluster within the cell. Individual cell regions experienced statistically significant (p < 0.05) change in absorbed dose (DER between 1 and 10) depending on the type of gold geometry used. The DER resulting from gold clusters attached to the cell nucleus had the more significant effect of the two cases (DER ≈ 55). The DER value calculated at 6 MV was shown to be at least an order of magnitude smaller than the DER values calculated for the 80 kVp spectrum. Based on simulations, when 80 kVp photons are used, Auger electrons have a statistically insignificant (p < 0.05) effect on the overall dose increase in the cell. The low energy of the Auger electrons produced prevents them from propagating more than 250-500 nm from the gold cluster and, therefore, has a negligible effect on the overall dose increase due to GNP. The results presented in the current work show that the primary dose enhancement is due to the production of additional photoelectrons.
NASA Astrophysics Data System (ADS)
Berger, Thomas; Matthiä, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis A.; Reitz, Guenther
The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are com-pounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself. Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrap-olation of skin dose to organ dose, which can lead to over-or under-estimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be pre-dicted to within about a +10In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The first focus of the pre-sented experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on the results of the passive dosimetry using the anthropomorphic phantoms represent the best tool to generate reliable to benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations, based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study. The help and support of Adam Russek and Michael Sivertz of the NASA Space Radiation Laboratory (NSRL), Brookhaven, USA during the setup and the irradiation of the phantom are highly appreciated. The Voxel model describing the human phantom used for the GEANT4 simulations was kindly provided by Monika Puchalska (CHALMERS, Gothenburg, Sweden).
NASA Astrophysics Data System (ADS)
Fioretti, Valentina; Mineo, Teresa; Bulgarelli, Andrea; Dondero, Paolo; Ivanchenko, Vladimir; Lei, Fan; Lotti, Simone; Macculi, Claudio; Mantero, Alfonso
2017-12-01
Low energy protons (< 300 keV) can enter the field of view of X-ray telescopes, scatter on their mirror surfaces at small incident angles, and deposit energy on the detector. This phenomenon can cause intense background flares at the focal plane decreasing the mission observing time (e.g. the XMM-Newton mission) or in the most extreme cases, damaging the X-ray detector. A correct modelization of the physics process responsible for the grazing angle scattering processes is mandatory to evaluate the impact of such events on the performance (e.g. observation time, sensitivity) of future X-ray telescopes as the ESA ATHENA mission. The Remizovich model describes particles reflected by solids at glancing angles in terms of the Boltzmann transport equation using the diffuse approximation and the model of continuous slowing down in energy. For the first time this solution, in the approximation of no energy losses, is implemented, verified, and qualitatively validated on top of the Geant4 release 10.2, with the possibility to add a constant energy loss to each interaction. This implementation is verified by comparing the simulated proton distribution to both the theoretical probability distribution and with independent ray-tracing simulations. Both the new scattering physics and the Coulomb scattering already built in the official Geant4 distribution are used to reproduce the latest experimental results on grazing angle proton scattering. At 250 keV multiple scattering delivers large proton angles and it is not consistent with the observation. Among the tested models, the single scattering seems to better reproduce the scattering efficiency at the three energies but energy loss obtained at small scattering angles is significantly lower than the experimental values. In general, the energy losses obtained in the experiment are higher than what obtained by the simulation. The experimental data are not completely representative of the soft proton scattering experienced by current X-ray telescopes because of the lack of measurements at low energies (< 200 keV) and small reflection angles, so we are not able to address any of the tested models as the one that can certainly reproduce the scattering behavior of low energy protons expected for the ATHENA mission. We can, however, discard multiple scattering as the model able to reproduce soft proton funnelling, and affirm that Coulomb single scattering can represent, until further measurements at lower energies are available, the best approximation of the proton scattered angular distribution at the exit of X-ray optics.
14 CFR 417.1 - General information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... package, (3) Preliminary and final flight data packages, (4) A tailored version of EWR 127-1, (5) Range...) Missile system pre-launch safety package, (3) Preliminary and final flight data packages, (4) A tailored...
14 CFR 417.1 - General information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... package, (3) Preliminary and final flight data packages, (4) A tailored version of EWR 127-1, (5) Range...) Missile system pre-launch safety package, (3) Preliminary and final flight data packages, (4) A tailored...
14 CFR 417.1 - General information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... package, (3) Preliminary and final flight data packages, (4) A tailored version of EWR 127-1, (5) Range...) Missile system pre-launch safety package, (3) Preliminary and final flight data packages, (4) A tailored...
14 CFR 417.1 - General information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... package, (3) Preliminary and final flight data packages, (4) A tailored version of EWR 127-1, (5) Range...) Missile system pre-launch safety package, (3) Preliminary and final flight data packages, (4) A tailored...
ERIC Educational Resources Information Center
Slattery, Peter; Cherry, Joan; Swift, Aaron; Tallon, Mary; Doyle, Ian
2012-01-01
The Baseline Project provided an assessment package and treatment for juveniles (aged 16-21 years) serving sentences for sexual offences, and was the only such programme available in Ireland (ROI). It was a venture between the Northside Inter-Agency Project and the Psychology Department of the Irish Prison Service and worked with juveniles on a…
Electronics for a focal plane crystal spectrometer
NASA Technical Reports Server (NTRS)
Goeke, R. F.
1978-01-01
The HEAO-B program forced the usual constraints upon the spacecraft experiment electronics: high reliability, low power consumption, and tight packaging at reasonable cost. The programmable high voltage power supplies were unique in both application and simplicity of manufacture. The hybridized measurement chain is a modification of that used on the SAS-C program; the charge amplifier design in particular shows definite improvement in performance over previous work.
2011-01-01
Background Graduate-entry medicine is a recent development in the UK, intended to expand and broaden access to medical training. After eight years, it is time to evaluate its success in recruitment. Objectives This study aimed to compare the applications and admissions profiles of graduate-entry programmes in the UK to traditional 5 and 6-year courses. Methods Aggregate data on applications and admissions were obtained from the Universities and Colleges Admission Service covering 2003 to 2009. Data were extracted, grouped as appropriate and analysed with the Statistical Package for the Social Sciences. Results Graduate-entry attracts 10,000 applications a year. Women form the majority of applicants and admissions to graduate-entry and traditional medicine programmes. Graduate-entry age profile is older, typically 20's or 30's compared to 18 or 19 years in traditional programmes. Graduate-entry applications and admissions were higher from white and black UK ethnic communities than traditional programmes, and lower from southern and Chinese Asian groups. Graduate-entry has few applications or admissions from Scotland or Northern Ireland. Secondary educational achievement is poorer amongst graduate-entry applicants and admissions than traditional programmes. Conclusions Graduate-entry has succeeded in recruiting substantial additional numbers of older applicants to medicine, in which white and black groups are better represented and Asian groups more poorly represented than in traditional undergraduate programmes. PMID:21943332
Garmer, K; Dahlman, S; Sperling, L
1995-12-01
This study deals with the design, trials and evaluation of a co-education programme at the Volvo Uddevalla plant in Sweden. Involving operators, manufacturing engineers and managers, the programme served as a support for the creation of a participatory ergonomics process, intended for continuous use at the plant. It consisted of a basic ergonomics knowledge package, and a dialogue model defining the roles and relations of actors involved. As a practical part of the programme, trial development projects were also carried out by the participants. The main and long term objective of the project was to start the participants cooperating in a continuous change and development process on the shop-floor. The outcome of the co-education programme was evaluated immediately after the first two regular courses, and, as a longterm follow-up, after seven subsequent courses shortly after the closing of the Uddevalla plant. The co-education programme was shown to be successful. Later on, the expertize of both operators and manufacturing engineers became obvious to everyone at the plant, and the cooperation between operators and manufacturing engineers increased steadily. The main conclusion drawn was that the co-education programme is a good starting point for a process of participation and industrial change work. However, in order to get a permanent impact, the whole organization must nurse and nourish the further development, and implementation of the process.
User's Guide for MapIMG 2: Map Image Re-projection Software Package
Finn, Michael P.; Trent, Jason R.; Buehler, Robert A.
2006-01-01
BACKGROUND Scientists routinely accomplish small-scale geospatial modeling in the raster domain, using high-resolution datasets for large parts of continents and low-resolution to high-resolution datasets for the entire globe. Direct implementation of point-to-point transformation with appropriate functions yields the variety of projections available in commercial software packages, but implementation with data other than points requires specific adaptation of the transformation equations or prior preparation of the data to allow the transformation to succeed. It seems that some of these packages use the U.S. Geological Survey's (USGS) General Cartographic Transformation Package (GCTP) or similar point transformations without adaptation to the specific characteristics of raster data (Usery and others, 2003a). Usery and others (2003b) compiled and tabulated the accuracy of categorical areas in projected raster datasets of global extent. Based on the shortcomings identified in these studies, geographers and applications programmers at the USGS expanded and evolved a USGS software package, MapIMG, for raster map projection transformation (Finn and Trent, 2004). Daniel R. Steinwand of Science Applications International Corporation, National Center for Earth Resources Observation and Science, originally developed MapIMG for the USGS, basing it on GCTP. Through previous and continuing efforts at the USGS' National Geospatial Technical Operations Center, this program has been transformed from an application based on command line input into a software package based on a graphical user interface for Windows, Linux, and other UNIX machines.
Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage
NASA Astrophysics Data System (ADS)
Hao, Chenhui; Li, Xiang; Tian, Cheng; Jiang, Wen; Wang, Guansong; Mao, Chengde
2014-05-01
RNA nanotechnology promises rational design of RNA nanostructures with wide array of structural diversities and functionalities. Such nanostructures could be used in applications such as small interfering RNA delivery and organization of in vivo chemical reactions. Though having impressive development in recent years, RNA nanotechnology is still quite limited and its programmability and complexity could not rival the degree of its closely related cousin: DNA nanotechnology. Novel strategies are needed for programmed RNA self-assembly. Here, we have assembled RNA nanocages by re-engineering a natural, biological RNA motif: the packaging RNA of phi29 bacteriophage. The resulting RNA nanostructures have been thoroughly characterized by gel electrophoresis, cryogenic electron microscopy imaging and dynamic light scattering.
JGromacs: a Java package for analyzing protein simulations.
Münz, Márton; Biggin, Philip C
2012-01-23
In this paper, we introduce JGromacs, a Java API (Application Programming Interface) that facilitates the development of cross-platform data analysis applications for Molecular Dynamics (MD) simulations. The API supports parsing and writing file formats applied by GROMACS (GROningen MAchine for Chemical Simulations), one of the most widely used MD simulation packages. JGromacs builds on the strengths of object-oriented programming in Java by providing a multilevel object-oriented representation of simulation data to integrate and interconvert sequence, structure, and dynamics information. The easy-to-learn, easy-to-use, and easy-to-extend framework is intended to simplify and accelerate the implementation and development of complex data analysis algorithms. Furthermore, a basic analysis toolkit is included in the package. The programmer is also provided with simple tools (e.g., XML-based configuration) to create applications with a user interface resembling the command-line interface of GROMACS applications. JGromacs and detailed documentation is freely available from http://sbcb.bioch.ox.ac.uk/jgromacs under a GPLv3 license .
JGromacs: A Java Package for Analyzing Protein Simulations
2011-01-01
In this paper, we introduce JGromacs, a Java API (Application Programming Interface) that facilitates the development of cross-platform data analysis applications for Molecular Dynamics (MD) simulations. The API supports parsing and writing file formats applied by GROMACS (GROningen MAchine for Chemical Simulations), one of the most widely used MD simulation packages. JGromacs builds on the strengths of object-oriented programming in Java by providing a multilevel object-oriented representation of simulation data to integrate and interconvert sequence, structure, and dynamics information. The easy-to-learn, easy-to-use, and easy-to-extend framework is intended to simplify and accelerate the implementation and development of complex data analysis algorithms. Furthermore, a basic analysis toolkit is included in the package. The programmer is also provided with simple tools (e.g., XML-based configuration) to create applications with a user interface resembling the command-line interface of GROMACS applications. Availability: JGromacs and detailed documentation is freely available from http://sbcb.bioch.ox.ac.uk/jgromacs under a GPLv3 license. PMID:22191855
Electromagnetic Physics Models for Parallel Computing Architectures
NASA Astrophysics Data System (ADS)
Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.
2016-10-01
The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.
Addressable microshutter array for a high-performance infrared miniature dispersive spectrometer
NASA Astrophysics Data System (ADS)
Ilias, S.; Picard, F.; Larouche, C.; Kruzelecky, R.; Jamroz, W.
2009-02-01
Programmable microshutter arrays were designed to improve the attainable signal to noise ratio (SNR) of a miniature dispersive spectrometer developed for space applications. Integration of a microshutter array to this instrument provides advantages such as the addition of a binary coded optical input operation mode for the miniature spectrometer which results in SNR benefits without spectral resolution loss. These arrays were successfully fabricated using surface micromachining technology. Each microshutter is basically an electrostatic zipping actuator having a curved shape. Applying critical voltage to one microshutter pulls the actuator down to the substrate and closes the associated slit. Opening of the microslits relies on the restoring force generated within the actuated zippers. High light transmission is obtained with the actuator in the open position and excellent light blocking is observed when the shutter is closed. The pull-in voltage to close the microslits was about 110 V and the response times to close and open the microslits were about 2 ms and 7 ms, respectively. Selected array dies were mounted in modified off-the-shelf ceramic packages and electrically connected to package pins. The packages were hermetically sealed with AR coated sapphire windows. This last packaging step was performed in a dry nitrogen controlled atmosphere.
Food packages for use on the Gemini 4 flight
NASA Technical Reports Server (NTRS)
1965-01-01
Food packages for use on the Gemini 4 flight. Packages include beef and gravy, peaches, strawberry cereal cubes and beef sandwiches. Water gun is used to reconstitute dehydrated food. Scissors are used to open the packages.